H. Macklouf, Modélisation numérique du soudage à l'arc, 2008.

J. C. Rozzi, W. P. Klinzing, and I. Mudawar, Effects of spray configuration on the uniformity of cooling rate and hardness in the quenching of aluminum parts with nonuniform shapes, Journal of Materials Engineering and Performance, vol.8, issue.1, pp.49-60, 1992.
DOI : 10.1007/BF02650032

N. Seiler-marie, Modélisation et simulation des phénomènes d'ébullition et du transfert de chaleur dans la zone d'impact d'un jet sur une plaque chaude, 2003.

B. Bourouga and J. Gilles, Roles of heat transfer modes on transient cooling by quenching process, International Journal of Material Forming, vol.39, issue.4, pp.77-88, 2009.
DOI : 10.1007/s12289-009-0645-z

L. F. Canale and G. E. Totten, Quenching technology: a selected overview of the current state-of-the-art, Materials Research, vol.8, issue.4, pp.461-467, 2005.
DOI : 10.1590/S1516-14392005000400018

P. L. Woodfield, A. K. Mozumber, and M. Monde, On the size of the boiling region in jet impingement quenching, International Journal of Heat and Mass Transfer, vol.52, issue.1-2, pp.460-465, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2008.05.024

R. Ikkene, Z. , and M. Mouzali, Pouvoir de refroidissement des solutions de trempe ?? base de polym??res hydrosolubles, Comptes Rendus Chimie, vol.11, issue.3, pp.297-306, 2007.
DOI : 10.1016/j.crci.2007.09.005

L. Lefèvre and V. Perrin, Trempe gazeuse en conditions optimisées, 2000.

S. Nukiyama, The maximum and minimum values of the heat q transmitted from metal to boiling water under atmospheric pressure (english translation of the original paper published in journal japan soc. mech, International Journal of Heat and Mass Transfer, vol.37, issue.9, pp.367-3741419, 1934.

L. S. Tong and Y. S. Tang, Boiling Heat transfer and two-phase flow. Chemical and Mechanical Engineering, 1997.

E. Hachem, Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces References References, 2009.

E. Hachem, H. Digonnet, N. Kosseifi, E. Massoni, and T. Coupez, Enriched finite element spaces for transient conduction heat transfer, Applied Mathematics and Computation, vol.217, issue.8, pp.3929-3943, 2010.
DOI : 10.1016/j.amc.2010.09.057

URL : https://hal.archives-ouvertes.fr/hal-00549723

F. Alauzet and P. J. Frey, Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. partie 1 : aspects théoriques, p.4759, 2003.

C. Aliaga, Simulation numérique par éléments finis en 3D du comportement thermomécanique au cours du traitement d'aciers : application à la trempe de pièces forgées ou colées, 2000.

S. Badia and R. Codina, On a multiscale approach to the transient Stokes problem: Dynamic subscales and anisotropic space???time discretization, Applied Mathematics and Computation, vol.207, issue.2, pp.415-433, 2003.
DOI : 10.1016/j.amc.2008.10.059

C. Pelissou, Discrétisation spatio-temporelle du problème thermique à deux champs Application au procédé de forgeage à chaud, 2005.

S. B. Hemo, Thermique multidomaines en simulation numérique du remplissage, 2002.

V. Fachinotti and M. Bellet, Linear tetrahedral finite elements for thermal shock problems, International Journal of Numerical Methods for Heat & Fluid Flow, vol.16, issue.5, pp.590-601, 2006.
DOI : 10.1108/09615530610669120

URL : https://hal.archives-ouvertes.fr/hal-00576032

F. Ilinca and J. Hétu, Galerkin gradient least-squares formulations for transient conduction heat transfer, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.27-28, pp.27-283073, 2002.
DOI : 10.1016/S0045-7825(02)00242-6

L. P. Franca and E. G. Carmo, The Galerkin gradient least-squares method, Computer Methods in Applied Mechanics and Engineering, vol.74, issue.1, pp.41-54, 1989.
DOI : 10.1016/0045-7825(89)90085-6

I. Harari, Stability of semi discrete formulations for parabolic problems at small time steps Computer methods in applied mechanics and engineering, pp.491-1516, 2003.

L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, pp.229-308, 1995.
DOI : 10.1016/0045-7825(94)00721-X

I. Harari and T. J. Hughes, What are C and h?: Inequalities for the analysis and design of finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.97, issue.2, pp.157-192, 1995.
DOI : 10.1016/0045-7825(92)90162-D

C. Baiocchi, F. Brezzi, and L. P. Franca, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.), Computer Methods in Applied Mechanics and Engineering, vol.105, issue.1, pp.125-141, 1993.
DOI : 10.1016/0045-7825(93)90119-I

A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.
DOI : 10.1016/0045-7825(82)90071-8

T. J. Hughes, G. R. Feijoo, L. Mazzei, and J. B. Quincy, The variational multiscale method???a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.3-24, 1998.
DOI : 10.1016/S0045-7825(98)00079-6

T. J. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the babu??ka-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, vol.59, issue.1, pp.85-99, 1986.
DOI : 10.1016/0045-7825(86)90025-3

L. P. Franca, A. Nesliturk, and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.35-49, 1998.
DOI : 10.1016/S0045-7825(98)00081-4

G. Scovazzi, A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.4-61108, 2007.
DOI : 10.1016/j.cma.2006.08.012

A. Nesliturk, Approximating The Incompressible NAvier-STokes Equations Using A Two Level Finite Element Method, 1999.

E. F. Lins, R. N. Elias, G. M. Guerra, F. A. Rochinha, and A. L. Coutinho, Edge-based finite element implementation of the residual-based variational multiscale method, International Journal for Numerical Methods in Fluids, vol.48, issue.1, pp.1-22, 2009.
DOI : 10.1016/j.nucengdes.2007.05.009

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
DOI : 10.1016/j.jcp.2010.07.030

URL : https://hal.archives-ouvertes.fr/hal-00521881

L. P. Franca and S. P. Oliveira, Pressure bubbles stabilization features in the Stokes problem, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.16-18, pp.16-181929, 2003.
DOI : 10.1016/S0045-7825(02)00628-X

R. Codina, ]. Masud, and R. A. Khurram, Stabilization Of Incompressibility And Convection Through Orthogonal Sub- Scales In Finite Element Methods A Multiscale/Stabilized Finite Element Method For The Advection-Diffusion Equation, Computer Methods In Applied Mechanics And Engineering Computer Methods In Applied Mechanics And Engineering, vol.190, issue.193, pp.13-141579, 2000.

T. E. Tezduyar and Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.3-4, pp.411-430, 2000.
DOI : 10.1016/S0045-7825(00)00211-5

R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.39-40, pp.39-404295, 2002.
DOI : 10.1016/S0045-7825(02)00337-7

R. Codina and J. Blasco, Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales, Computing and Visualization in Science, vol.4, issue.3, pp.167-174, 2002.
DOI : 10.1007/s007910100068

E. Hachem, Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

Z. Sun, R. E. Logé, and M. Bernacki, 3D finite element model of semi-solid permeability in an equiaxed granular structure, Computational Materials Science, vol.49, issue.1, pp.158-170, 2010.
DOI : 10.1016/j.commatsci.2010.04.042

URL : https://hal.archives-ouvertes.fr/hal-00509733

T. Coupez, Grandes Transformations Et Remaillage Automatique, 1991.

F. Alauzet, P. Frey, and B. Mohammadi, Adaptation de maillage non structurés pour les problèmes instationnaires en trois dimensions, 35ème Congrés National d'Analyse Numérique, 2003.

C. Dobrzynski, O. Pironneau, and P. Frey, Numerical coupling for air flow computations in complex architectures, European Congress on Computational Methods in Applied Sciences and Engineering, 2004.

C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.4951-4976, 2005.
DOI : 10.1016/j.cma.2004.11.020

URL : https://hal.archives-ouvertes.fr/hal-00517639

T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale. Revue Européenne Des Eléments Finis, pp.403-423, 2000.

T. Coupez, H. Digonnet, and R. Ducloux, Parallel meshing and remeshing, Applied Mathematical Modelling, vol.25, issue.2, pp.153-175, 2000.
DOI : 10.1016/S0307-904X(00)00045-7

URL : https://hal.archives-ouvertes.fr/hal-00536635

Y. Mesri, W. Zerguine, H. Digonnet, L. Silva, and T. Coupez, Dynamic Parallel Adaption for Three Dimensional Unstructured Meshes: Application to Interface Tracking, 17Th International meshing roundtable, pp.195-212, 2008.
DOI : 10.1007/978-3-540-87921-3_12

URL : https://hal.archives-ouvertes.fr/hal-01466975

J. Bruchon, H. Digonnet, and T. Coupez, Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach, International Journal for Numerical Methods in Engineering, vol.11, issue.3, pp.980-1008, 2009.
DOI : 10.1002/nme.2519

URL : https://hal.archives-ouvertes.fr/emse-00475556

R. Boussetta, T. Coupez, and L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulationAdvances in Computational Metal Forming, Computer Methods in Applied Mechanics and Engineering, special issue on, vol.195, pp.6579-6858, 2006.

F. Alauzet and P. J. Frey, Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. partie 2 : exemples d'applications, p.4789, 2003.

F. Alauzet, P. L. George, B. Mohammadi, P. Frey, and H. Borouchaki, Transient fixed point-based unstructured mesh adaptation, International Journal for Numerical Methods in Fluids, vol.9, issue.6-7, pp.729-745, 2003.
DOI : 10.1002/fld.548

A. R. Bineli, M. I. Barbosa, A. L. Jardini, and R. M. Filho, Simulation to analyse two models of agitation system in quench process, European symposium on computer aided Process Engineering-ESCAPE20, 2010.

R. Ikkene, Z. , and M. Mouzali, Pouvoir de refroidissement des solutions de trempe ?? base de polym??res hydrosolubles, Comptes Rendus Chimie, vol.11, issue.3, pp.297-306, 2007.
DOI : 10.1016/j.crci.2007.09.005

K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van-der-biest, Modelling of the temperature distribution during field assisted sintering, Acta Materialia, vol.53, issue.16, pp.4379-4388, 2005.
DOI : 10.1016/j.actamat.2005.05.042

E. Marchandise, F. Geuzaine, N. Chevaugeon, and J. F. Remacle, A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics, Journal of Computational Physics, vol.225, issue.1, pp.949-974, 2007.
DOI : 10.1016/j.jcp.2007.01.005

URL : https://hal.archives-ouvertes.fr/hal-01004949

G. Yadigaroglu, Computational Fluid Dynamics for nuclear applications: from CFD to multi-scale CMFD, Nuclear Engineering and Design, vol.235, issue.2-4, pp.2-4, 2005.
DOI : 10.1016/j.nucengdes.2004.08.044

M. G. Cooper, SATURATION NUCLEATE POOL BOILING - A SIMPLE CORRELATION, Intitution of Chemical EngineersIchemE) Symposium Series, vol.86, pp.786-793, 1984.
DOI : 10.1016/B978-0-85295-175-0.50013-8

T. Bo, CFD Homogeneous Mixing Flow Modelling to Simulate Subcooled Nucleate Boiling Flow, SAE Technical Paper Series, pp.1-1512, 2004.
DOI : 10.4271/2004-01-1512

F. Krause, S. Sch, and U. Fritshing, Modelling and simulation of flow boiling heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, vol.20, issue.3, pp.312-331, 2010.
DOI : 10.1108/09615531011024066

K. Robinson, N. A. Campbell, J. G. Hawley, and M. J. Leathard, Predicting heat transfer in simulated ic engine cooling galleries. Vehicle Thermal Management Systems, 2003.

V. Srinivasan, K. M. Moon, D. Greif, D. M. Wang, and M. H. Kim, Numerical simulation of immersion quenching process of an engine cylinder head, Applied Mathematical Modelling, vol.34, issue.8, pp.2111-2128, 2010.
DOI : 10.1016/j.apm.2009.10.023

V. Srinivasan, K. M. Moon, D. Greif, D. M. Wang, and M. H. Kim, Numerical simulation of immersion quench cooling process using an Eulerian multi-fluid approach, Applied Thermal Engineering, vol.30, issue.5, pp.499-509, 2010.
DOI : 10.1016/j.applthermaleng.2009.10.012

D. Turlajs, V. Grivcovs, and S. Yaundalders, Initial stage of vapor bubble growth in superheated liquids, International Journal of Systems Applications, Engineering and Developpement, vol.1, 2007.

J. J. Feng and C. A. Bertelo, Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model, Journal of Rheology, vol.48, issue.2, pp.439-462, 2004.
DOI : 10.1122/1.1645518

M. V. Annaland, N. G. Deen, and J. A. Kuipers, Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method, Chemical Engineering Science, vol.60, issue.11, pp.2999-3011, 2005.
DOI : 10.1016/j.ces.2005.01.031

A. Claisse, V. Ducrot, and P. Frey, Levelsets and anisotropic mesh adaptation. Discrete and Continuous Dynamical Systems, pp.165-183, 2009.

O. Basset, Simulation numérique d'écoulements multi fluides sur grille de calcul, 2006.

S. Osher, H. K. Zhao, D. Peng, B. Merriman, and M. Kang, A pde based fast local level set method, Journal of Computational Physics, vol.155, pp.410-438, 1999.

M. Sussman, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, 1994.
DOI : 10.1006/jcph.1994.1155

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, 2003.

W. Zerguine, Adaptation de maillage anisotrope et écoulements multifluides Applications en injection assistée eau, 2010.

T. Coupez, Réinitialisation convective et locale des fonctions level set pour le mouvement de surfaces et d'interfaces, 2006.

L. Ville, L. Silva, and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids, vol.4, issue.3, 2010.
DOI : 10.1002/fld.2259

URL : https://hal.archives-ouvertes.fr/hal-00595325

T. Coupez, N. Kosseifi, and E. Hachem, Direct computational methods for multiphase fluid dynamics of vapor-liquid flow, ECI 8th International Conference on Boiling and Condensation Heat Transfer Ecole Polytechnique Fédérale de Lausanne, pp.3-7, 2012.

R. N. Elias and A. L. Coutinho, Stabilized edge-based finite element simulation of free-surface flows, International Journal for Numerical Methods in Fluids, vol.47, issue.6-8, pp.965-993, 2007.
DOI : 10.1002/fld.1475

N. Zuber, The dynamics of vapor bubbles in nonuniform temperature fields, International Journal of Heat and Mass Transfer, vol.2, issue.1-2, pp.83-98, 1961.
DOI : 10.1016/0017-9310(61)90016-3

A. J. Robinson and R. J. Judd, Bubble growth in a uniform and spatially distributed temperature field, International Journal of Heat and Mass Transfer, vol.44, issue.14, pp.2699-2710, 2001.
DOI : 10.1016/S0017-9310(00)00294-5

B. B. Mikic, W. M. Rohsenow, and P. Griffith, On bubble growth rates, International Journal of Heat and Mass Transfer, vol.13, issue.4, pp.657-666, 1970.
DOI : 10.1016/0017-9310(70)90040-2

H. S. Lee, H. Jr, and . Merte, Explosive vapor bubble growth in uniformly superheated liquids: R-113 and mercury, International Journal of Heat and Mass Transfer, vol.48, issue.13, pp.2593-2600, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2005.02.002

G. Tryggvasona, A. Esmaeelia, and N. , Direct numerical simulations of flows with phase change, Computers & Structures, vol.83, issue.6-7, pp.445-453, 2005.
DOI : 10.1016/j.compstruc.2004.05.021

L. Tan and N. Zabaras, A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods, Journal of Computational Physics, vol.211, issue.1, pp.36-63, 2006.
DOI : 10.1016/j.jcp.2005.05.013

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, Journal of Computational Physics, vol.124, issue.2, pp.449-464, 1996.
DOI : 10.1006/jcph.1996.0072

J. U. Brackbill, D. B. Kothe, and C. Zemach, A continum method for modeling surface tension, Journal of Chemical Physics, vol.100, issue.2, pp.335-383, 1992.

S. Groß, V. Reichelt, A. Reusken, and S. Osher, A finite element based level set method for two-phase incompressible flows, Computing and Visualization in Science, vol.21, issue.2, pp.239-257, 2006.
DOI : 10.1007/s00791-006-0024-y

S. Hysing, A new implicit surface tension implementation for interfacial flows, International Journal for Numerical Methods in Fluids, vol.33, issue.2, pp.659-672, 2006.
DOI : 10.1002/fld.1147

Z. Zhang, H. D. Victory, H. Jr, and . Dean, Mathematical analysis of zienkiewicz-zhu? derivative patch recovery technique, Numerical Methods Partial Dierential Equations, issue.4, 1996.

M. Kang, R. P. Fedkiw, and X. D. Liu, A boundary condition capturing method for multiphase incompressible flow, 2000.

Y. Mesri, H. Digonnet, and T. Coupez, Advanced parallel computing in material forming with CIMLib, Revue europ??enne de m??canique num??rique, vol.18, issue.7-8, pp.669-694, 2009.
DOI : 10.3166/ejcm.18.669-694

URL : https://hal.archives-ouvertes.fr/hal-00836212

S. P. Van-der-pijl, A. Segal, C. Vuik, and P. Wesseling, A mass-conserving Level-Set method for modelling of multi-phase flows, International Journal for Numerical Methods in Fluids, vol.37, issue.4, pp.339-361, 2005.
DOI : 10.1002/fld.817

M. A. Talaia, Terminal velocity of a bubble rise in a liquid column, World Academy of Science, Engineering and Technology, vol.28, 2007.

A. K. Tornberg and B. Engquist, A finite element based level-set method for multiphase flow applications, Computing and Visualization in Science, vol.3, issue.1-2, pp.39-101, 2000.
DOI : 10.1007/s007910050056

F. S. De-sousa, N. Mangiavacch, L. G. Nonato, A. Castelo, M. F. Tome et al., A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces, Journal of Computational Physics, vol.198, issue.2, pp.469-499, 2004.
DOI : 10.1016/j.jcp.2004.01.032

W. L. Haberman and R. K. Morton, An experimental investigation of the grag and shape pf air bubbles rising in various liquids. Navy departement The David W, 1953.

J. Hua and J. Lou, Numerical simulation of bubble rising in viscous liquid, Journal of Computational Physics, vol.222, issue.2, pp.769-795, 2007.
DOI : 10.1016/j.jcp.2006.08.008

M. Barthès, Ebullition sur site isolé étude expérimentale de la dynamique de croissance d'une bulle et des transferts associés, 2005.

A. J. Robinson and R. J. Judd, Bubble growth in a uniform and spatially distributed temperature field, International Journal of Heat and Mass Transfer, vol.44, issue.14, pp.2699-2710, 2001.
DOI : 10.1016/S0017-9310(00)00294-5

T. Bonometti, Développement d'une méthode de simulation d'écoulements à bulles et à gouttes, 2005.

J. F. Torré, Quenching runaway reactions: hydrodynamics and jet injection studies for agitated reactors with a deformed free surface, 2007.

J. Coppeta and C. Rogers, Dual emission laser induced fluorescence for direct planar scalar behavior measurements, Experiments in Fluids, vol.25, issue.1, 1998.
DOI : 10.1007/s003480050202

Y. Chen and M. Groll, Dynamics and shape of bubbles on heating surfaces: A simulation study, International Journal of Heat and Mass Transfer, vol.49, issue.5-6, pp.1115-1128, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2005.07.053

Y. Fujita and Q. Bai, Numerical simulation of the growth for an isolated bubble in nucleate boiling, International Heat transfer Conference, 1998.

N. Kosseifi, E. Hachem, L. Silva, E. Massoni, and T. Coupez, Numerical simulation of boiling during the quenching process, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00592676

N. Zuber, The dynamics of vapor bubbles in nonuniform temperature fields, International Journal of Heat and Mass Transfer, vol.2, issue.1-2, pp.83-98, 1961.
DOI : 10.1016/0017-9310(61)90016-3

S. Basic, L. Skerget, and J. Marn, Hydrodynamics of partial nucleate boiling by piv technique, International Journal of Dynamics of Fluids, vol.3, issue.1, pp.11-30, 2007.

T. A. Kowalewski, J. Paklezab, R. Trzci?ski, and A. Zachara, Experimental analysis of bubble growth on a heated surface. archives of themodynamics, pp.1-12, 2004.

M. S. Plesset and S. A. Zwick, The Growth of Vapor Bubbles in Superheated Liquids, Journal of Applied Physics, vol.25, issue.4, pp.493-500, 1954.
DOI : 10.1063/1.1721668

S. Moghaddam, E. Pengwang, K. Lin, R. I. Masel, and M. A. Shannon, Millimeter-Scale Fuel Cell With Onboard Fuel and Passive Control System, Journal of Microelectromechanical Systems, vol.17, issue.6, pp.1388-1395, 2008.
DOI : 10.1109/JMEMS.2008.2007250

S. Moghaddam and K. Kiger, Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-I. Experimental investigation, International Journal of Heat and Mass Transfer, vol.52, issue.5-6, pp.1284-1294, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2008.08.018

H. C. Lee, B. D. Oh, S. W. Bae, and M. H. Kim, Single bubble growth in saturated pool boiling on a constant wall temperature surface, International Journal of Multiphase Flow, vol.29, issue.12, pp.1857-1874, 2003.
DOI : 10.1016/j.ijmultiphaseflow.2003.09.003

D. Qiu and V. K. Dhir, Experimental study of flow pattern and heat transfer associated with a bubble sliding on downward facing inclined surfaces, Experimental Thermal and Fluid Science, vol.26, issue.6-7, pp.605-616, 2002.
DOI : 10.1016/S0894-1777(02)00184-X

D. Euh, B. Ozar, T. Hibiki, M. Ishii, and C. H. Song, Characteristics of Bubble Departure Frequency in a Low-Pressure Subcooled Boiling Flow, Journal of Nuclear Science and Technology, vol.36, issue.7, pp.47608-617, 2010.
DOI : 10.1080/18811248.2010.9720958

F. Mayinger, W. Gabler, G. Kappler, R. , and R. Laghner, Spectroscopic techniques for ram-combustors. Space Course, pp.11-22, 1993.

S. Siedel, S. Cioulachtjian, and J. Bonjour, Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites, Experimental Thermal and Fluid Science, vol.32, issue.8, pp.1504-1511, 2008.
DOI : 10.1016/j.expthermflusci.2008.04.004

URL : https://hal.archives-ouvertes.fr/hal-00351579

T. A. Kowalewski, J. Pakleza, and A. Cybulski, Particle image velocimetry for vapour bubble growth analysis, International Conference Laser Anemometry Advanced and Applications, 1999.

P. Meunier and T. Leweke, Analysis and treatment of errors due to high velocity gradients in particle image velocimetry, Experiments in Fluids, vol.35, issue.5, pp.408-421, 2003.
DOI : 10.1007/s00348-003-0673-2

URL : https://hal.archives-ouvertes.fr/hal-00014834

F. Blanc, F. Peters, and E. Lemaire, Particle image velocimetry in concentrated suspensions: Application to local rheometry, Applied Rheology, vol.21, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00568753

M. Honkanen, Turbulent Multiphase flow Measurements with Digital partical Image Velocimetry: Application to bubbly flows, 2002.

U. D. Kück, M. Schlüter, and N. Räbiger, Investigation on reactive mass transfer at freely rising gas bubbles, 7 international conference on multiphase flow, 2010.

L. K. Hjertager, B. H. Hjertager, N. G. Deen, and T. Solberg, Measurement of Turbulent Mixing in a Confined Wake Flow Using Combined PIV and PLIF, The Canadian Journal of Chemical Engineering, vol.304, issue.6, 2003.
DOI : 10.1002/cjce.5450810604

]. L. Shi, X. Mao, and A. J. Jaworski, Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices, Measurement Science and Technology, vol.21, issue.11, p.115405, 2010.
DOI : 10.1088/0957-0233/21/11/115405

F. Guillard, R. Fritzon, J. Revstedt, C. Trägårdh, M. Aldén et al., Mixing in a confined turbulent impinging jet using planar laser-induced fluorescence, Experiments in Fluids, vol.25, issue.2, pp.143-150, 1998.
DOI : 10.1007/s003480050218

Y. Yuan, Mass transfer process analysis near phase boundary with combined PIV-PLIF method, a single-camera single-laser approach, 2008.

J. Sakakibara and R. J. Adrian, Measurement of temperature field of rayleigh-bénard convection using two-color laser-induced fluorescence, Experiments in Fluids, 2004.

V. K. Natrajan and K. T. Christensen, Two-color laser-induced fluorescent thermometry for microfluidic systems, Measurement Science and Technology, vol.20, issue.1, 2009.
DOI : 10.1088/0957-0233/20/1/015401

Z. Zhengyou, Flexible camera calibration by viewing a plane from unknown orientations, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999.
DOI : 10.1109/ICCV.1999.791289

J. Heikkilä and O. Silvén, A four-step camera calibration procedure with implicit image correction, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997.
DOI : 10.1109/CVPR.1997.609468

J. Y. Bouguet, Camera calibration toolbox for matlab, 2002.

H. G. Maas, Complexity analysis for the establishment of image correspondences of dense spatial target fields. International Advances of Photogrammetry and Remote Sensing, XXIX, issue.B5, 1992.

P. H. Biwole, W. Yan, Y. Zhang, and J. Roux, A complete 3D particle tracking algorithm and its applications to the indoor airflow study, Measurement Science and Technology, vol.20, issue.11, pp.15401-015412, 2009.
DOI : 10.1088/0957-0233/20/11/115403

. Th, F. Lubben, F. Frerichs, H. W. Hoffiman, and . Zoch, Rewetting behaviour during immersion quenching. New challenges in heat treatment and surface rewetting, pp.9-12, 2009.

C. S. Kim, K. Y. Suh, J. L. Rempe, F. B. Cheung, and S. B. Kim, Effect of interfacial wavy motion on film boiling heat transfer from isothermal downward-facing hemispheres, Nuclear Engineering and Design, vol.235, issue.20, pp.2141-2154, 2005.
DOI : 10.1016/j.nucengdes.2005.03.004

T. Bo, CFD Homogeneous Mixing Flow Modelling to Simulate Subcooled Nucleate Boiling Flow, SAE Technical Paper Series, pp.1-1512, 2004.
DOI : 10.4271/2004-01-1512

V. Srinivasan, K. M. Moon, D. Greif, D. M. Wang, and M. H. Kim, Numerical simulation of immersion quench cooling process using an Eulerian multi-fluid approach, Applied Thermal Engineering, vol.30, issue.5, pp.499-509, 2010.
DOI : 10.1016/j.applthermaleng.2009.10.012

V. Srinivasan, K. M. Moon, D. Greif, D. M. Wang, and M. H. Kim, Numerical simulation of immersion quenching process of an engine cylinder head, Applied Mathematical Modelling, vol.34, issue.8, pp.2111-2128, 2010.
DOI : 10.1016/j.apm.2009.10.023

D. M. Wang, A. Alajbegovic, X. M. Su, and J. Jan, Numerical modeling of quenching cooling using eulerian two-fluid method, Proceedings of asme. International Mechanical Engineering Congress and Exposition, 2002.

D. M. Wang, A. Alajbegovic, X. M. Su, and J. Jan, Numerical Simulation of Water Quenching Process of an Engine Cylinder Head, Volume 1: Fora, Parts A, B, C, and D, p.24, 2003.
DOI : 10.1115/FEDSM2003-45538

G. Jérome, Etude Expérimentale des Aspects Thermiques lies à une Opération de Trempe, 2004.

D. Juric and G. Tryggvason, Computations of boiling flows, International Journal of Multiphase Flow, vol.24, issue.3, pp.387-410, 1998.
DOI : 10.1016/S0301-9322(97)00050-5

G. Tryggvason and A. Esmaeeli, Computations of film boiling. part i: numerical method, International Journal of Heat and Mass Transfer, vol.47, pp.5451-5461, 2004.

D. Juric and S. Shin, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Journal of Computational Physics, vol.180, pp.427-470, 2002.

G. Son and V. K. Dhir, Three-dimensional simulation of saturated film boiling on a horizontal cylinder, International Journal of Heat and Mass Transfer, vol.51, issue.5-6, pp.1156-1167, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2007.04.026