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T H È S E

pour obtenir le grade de docteur délivré par
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Mr. Bruno PEUPORTIER, Mâıtre de recherche, C.E.P., MINES-ParisTech Examiner

Mr. Nicolas PETIT, Professeur, C.A.S., MINES-ParisTech Examiner

Mr. François CHAPLAIS, Ingénieur de recherche, C.A.S., MINES-ParisTech Examiner

MINES ParisTech

Centre Automatique et Systèmes
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1.1 Contexte: l’optimisation énergétique des bâtiments

d’habitation individuelle

Malgré les nombreuses politiques mises en place au niveau européen depuis plus

de 30 ans en faveur des économies d’énergies, la croissance démographique et

l’augmentation de la part des énergies renouvelables intermittentes dans le mélange

(mix) électrique menacent aujourd’hui l’équilibre entre la production et la consom-

mation d’électricité. De manière critique, les périodes de pointe de consommation

sont difficiles à gérer. Dans ce contexte, les gestionnaires d’énergie (producteurs, dis-

tributeurs, en lien avec les instances gouvernementales) utilisent systématiquement

l’augmentation des moyens de production et des capacités d’acheminement (réseau)

pour maintenir cet équilibre. Or, les moyens de production de pointe présentent des

inconvénients: i) un risque à l’investissement plus élevé que les autres types de cen-

trales électriques [HC11] et ii) un coût important et de lourdes émissions de CO2,
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puisqu’ils utilisent des énergies fossiles. Une alternative à cette solution consiste à

développer et à mettre en oeuvre des programmes de gestion de la demande.

Le principe est le suivant: lisser le profil temporel de la demande, en décalant la

consommation des heures de pointe vers les heures creuses. Ce décalage peut être

obtenu par une incitation des consommateurs (via un retour d’information au client

ou une utilisation de signal-prix sur l’électricité), ou encore en prenant le contrôle

à distance des appareils. Les secteurs industriels et tertiaires sont naturellement

des cibles de choix pour cette stratégie de lissage car les puissances consommées

par chaque client sont très importantes. En retour, les clients concernés peuvent

être rétribués par une compensation financière de la réduction (voire l’arrêt) de leur

activité. Ce schéma est connu comme “Demand side biding” [AES08].

Une autre solution est de se tourner vers le secteur des particuliers, et le secteur

résidentiel notamment. De manière intéressante, la gestion de la demande dans

le secteur résidentiel n’est pas encore très développée et, pourtant, ce secteur est

fortement consommateur. A titre d’exemple, il représente environ 29 % [BA07]

de la consommation d’électricité totale en Europe. Ce manque de développement

est dû à la multitude des clients individuels de ce secteur, qui sont plus difficiles à

gérer que les “grands comptes” des secteurs industriels et tertiaire précédemment

cités. Récemment, avec le développement des technologies de communication et des

réseaux intelligents (“smart grid” [KR10, TYO+12]), on a vu apparâıtre plusieurs

projets de recherche et d’expérimentation visant à tester des implémentations à large

échelle de la gestion de la demande dans le secteur résidentiel [Fro07, PWMK07].

Ces programmes sont connus sous le nom de “Demand Response”.

C’est précisément dans le cadre de ces programmes que s’inscrivent les travaux

de cette thèse. Pour mettre au point des stratégies de “Demand Response” pour

le secteur résidentiel, une analyse quantitative de l’aptitude des usages électriques

domestiques à servir le gestionnaire d’énergie est nécessaire. Cette évaluation, que

nous allons faire grâce à des outils de commande optimale sous contraintes d’état et

de commande, est à réaliser dans un contexte d’emploi (scénarios) et en respectant

les souhaits opérationnels suivants (comme décrit dans [DS11]):

• Utilisation de la production renouvelable électrique locale au niveau de chaque

habitat.

• Introduction de tarifs innovants représentatifs de l’état d’utilisation du réseau

électrique par exemple le “Real-time-pricing” ou le “Critical peak pricing”1.

• Contrôle optimisé du fonctionnement individuel des équipements de façon à

limiter la puissance utilisée pendant certaines périodes2.

Parmi les systèmes pouvant servir à atteindre les objectifs de la gestion active de

la demande, plusieurs sont des systèmes dynamiques (ballon d’eau chaude, chauffage

1Ces types de tarif doivent encourager le lissage de la courbe de charge totale ou des pointes.
2Par exemple, le chauffage des ballons d’eau chaude sanitaire asservis heures pleines/heures

creuses.
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à accumulation, batterie, inertie du bâtiment...) ou agissent sur un système dy-

namique (chauffage à effet Joule, pompes à chaleur...). On trouvera en Annexe A,

une brève description technologique de ces systèmes.

1.2 Commande optimale: un outil pour la quantifica-

tion des gisements potentiels de flexibilité

La quantification de la flexibilité apportée par chaque système (convecteurs, pan-

neaux rayonnants, chauffage à accumulation, pompe à chaleur, eau chaude sanitaire

à accumulation, notamment) dans le but de répondre à un des objectifs de la gestion

de la demande consiste à répondre à la question suivante:

“Quel est le service maximal que peut rendre un système pour atteindre un des

objectifs de la gestion de la demande sous contraintes de maintenir le confort?”

Le confort est une notion qui couvre le confort thermique, le fonctionnement des

appareils, etc. La réponse à cette question peut être apportée assez naturellement

en résolvant un problème de commande optimale sous contraintes d’état et de com-

mande. On donne ci-dessous trois exemples, chacun répondant à un des objectifs

de la gestion active de la demande.

1.2.1 Exemple 1: déphasage de la production photovoltäıque

Considérons un particulier dont l’habitat est équipé de panneaux photovoltäıques

et d’une batterie permettant de stocker tout ou partie de la puissance produite par

les panneaux solaires PV (t) qui est variable en fonction de l’heure. L’énergie est

intégralement vendue sur le réseau au prix du marché de l’électricité. Une question

naturelle est: “quel est le revenu maximal que peut apporter le déphasage (stock-

age pour revente ultérieure) de la production photovoltäıque?”. Pour y répondre,

considérons une année de référence pour laquelle la courbe de prix de l’électricité

sur le marché prix(t) est entièrement connu. On peut chercher à comparer le revenu

obtenu par le client quand il revend sa production directement
∫ T

0
prix(t)PV (t)dt (1.1)

avec la quantité suivante:

max
u1,u2

∫ T

0
prix(t)

[

PV (t) − (1 − u1(t)) max{Pmax, PV (t)} + r (x(t), u2(t))u2(t)

]

dt

(1.2)

où Pmax est la puissance de charge maximale de la batterie, r (x(t), u2(t)) est le

rendement de la batterie, x(t) son état de charge, u1 le pourcentage de puissance

photovoltäıque stockée dans la batterie, u2 la puissance de décharge, u1 et u2 sont les

commandes du système. Cette optimisation se fait sous la contrainte de dynamique

suivante:

ẋ(t) = f(x(t), u1(t), u2(t))
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En pratique, la capacité de la batterie et la puissance maximale de décharge étant

bornées, l’optimisation doit se faire sous les contraintes suivantes

x(t) ∈ [0, Cmax], ∀t ∈ [0, T ]

u1(t) ∈ [0, 1], ∀t ∈ [0, T ]

u2(t) ∈ [0, Pmax], ∀t ∈ [0, T ]

avec, une contrainte sur la batterie x(0) = x(T ) exprimant le fait qu’à la fin de

la période considérée la batterie est chargée comme au début de la période. En

comparant la valeur des deux intégrales (1.1) et (1.2), on obtient le gain maximal sur

un an que peut apporter le déphasage d’une partie de la production photovoltäıque

au propriétaire de l’installation. Un tel exemple est traité, en utilisant les méthodes

proposées dans cette thèse, en Annexe B.1 sur un horizon temporel [0, T ] d’une

semaine.

1.2.2 Exemple 2: efficacité d’un tarif innovant

Un des moyens de juger de l’efficacité d’un tarif sur la “demand response” est de

regarder quelle est la gestion optimale (vis-à-vis du tarif) d’énergie par un parti-

culier ayant des besoins de chauffage (convecteurs électriques) et de préparation

d’eau chaude sanitaire (ballon d’Eau Chaude Sanitaire (ECS) par accumulation).

L’optimisation vise ici à minimiser la facture (hors abonnement). On désigne prix(t)

le tarif vu par le client. Le problème posé consiste à résoudre:

min
u1,u2

[
∫ T

0
prix(t) (u1(t) + u2(t)) dt

]

où u1 et u2 sont les commandes, correspondant aux consommation de chauffage

et de préparation d’eau chaude, respectivement, sous les contraintes dynamiques

induites par l’inertie thermique du bâtiment et du ballon d’eau chaude

ẋbat(t) = f(xbat(t), u1(t))

ẋecs(t) = g(xecs(t), u2(t))

Le chauffage devant garantir le confort des habitants, et en notant h(xbat) la

température à l’intérieur du bâtiment, le problème d’optimisation se fait sous la

contrainte:

h(xbat(t)) ∈ [T bat
min(t), T

bat
max(t)], ∀t ∈ [0, T ]

La température de la couche supérieure du ballon d’eau chaude l(xecs) est également

soumise à des contraintes de fonctionnement :

l(xecs(t)) ∈ [T ecs
min(t), T

ecs
max(t)], ∀t ∈ [0, T ]

Enfin, les appels de puissance étant limités par les émetteurs, on a:

u1(t) ∈
[

0, P chauf
max

]

, ∀t ∈ [0, T ]

u2(t) ∈ [0, P ecs
max] , ∀t ∈ [0, T ]
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Un tel exemple est traité, en utilisant les méthodes proposées dans cette thèse, en

Annexe B.2 sur sur un horizon temporel [0, T ] d’une semaine.

1.2.3 Exemple 3: faisabilité d’un effacement du chauffage en
période de pointe

Pour caractériser la faisabilité de l’effacement d’un particulier en période de pointe

tout en maintenant un certain confort dans l’habitation (en utilisant l’inertie ther-

mique du bâtiment), on peut résoudre le problème suivant

min
u

[
∫

pointe
u(t)dt

]

où u, la commande, est la consommation électrique pour le chauffage, sous les

contraintes

ẋbat(t) = f(xbat(t), u(t))

h(xbat(t)) ∈
[

T bat
min(t), T

bat
max(t)

]

u(t) ∈
[

0, P chauf
max (t)

]

pour tout t ∈ [0, T ]. La valeur optimale du critère indique la faisabilité des efface-

ments : si la valeur est nulle cela signifie qu’il est possible de ne consommer aucune

énergie pendant les périodes de pointe, il est donc possible de réaliser un effacement

total de la charge en période de pointe. Si la valeur n’est pas nulle, alors il n’est pas

possible de ramener la consommation en heures de pointe à zéro tout en respectant

les contraintes, il n’est donc pas possible de réaliser un effacement complet.

Dans le cas où il est possible de réaliser un effacement complet, on peut chercher

à trouver la stratégie (permettant d’effacer la consommation de pointe) la plus

économe. On cherche alors à résoudre

min
u

[
∫ T

0
u(t)dt

]

sous les contraintes

ẋbat(t) = f(xbat(t), u(t))

h(xbat(t)) ∈
[

T bat
min(t), T

bat
max(t)

]

u(t) ∈
[

0, P chauf
max

]

, hors pointe

u(t) = 0 sinon

Ces quelques problèmes sont des exemples introductifs simples aux problèmes

de commande optimale qu’on souhaite pouvoir traiter de manière plus générale.

Nous exposons maintenant les principes et méthodes de la commande optimale

avant d’annoncer les contributions de cette thèse.
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1.3 Introduction à la théorie de la commande optimale

(sans contraintes d’état)

Dans cette thèse, et comme l’ont illustré les exemples précédents, on va s’intéresser

au problème général de commande optimale s’écrivant sous la forme suivante

min
u∈U

∫ T

0
ℓ(x(t), u(t))dt (1.3)

où ℓ est une fonction à valeur réelle régulière de ses arguments, sous la contrainte

de dynamique suivante:

ẋu(t) = f(xu(t), u(t)) ; x(0) = x0 (1.4)

correspondant à une représentation sous forme d’état d’un système dynamique.

Nous laissons pour l’instant de côté les contraintes d’état3. Sur l’horizon de temps

[0, T ], T fixé sans perte de généralité, on peut agir sur l’état du système x à travers la

variable de commande u, qu’on peut choisir dans un ensemble U , que nous précisons

ici sans perte de généralité, sous-ensemble restreint de L∞

U = {u ∈ L∞([0, T ],Rm) t.q. u(t) ∈ C p.p.t. t ∈ [0, T ]}

avec C un ensemble convexe fermé borné d’intérieur non vide deRm. Le problème de

commande optimale consiste à trouver la commande u et l’état associé xu solution

de l’équation différentielle (1.4) minimisant le critère intégral (1.3). De nombreuses

extensions et variantes sont possibles: temps final libre, coût final, définition d’une

cible, saut de dynamique, etc., voir [BH69, HT11].

1.3.1 Caractérisation des solutions

Pour résoudre un tel problème de commande optimale, deux grandes approches sont

usuellement considérées : le principe du minimum de Pontryaguine et le principe de

programmation dynamique de Bellman. Pour présenter ces théories, introduisons

d’abord l’Hamiltonien H : Rn ×Rm ×Rn 7→ R,

H(x(t), u(t), p(t)) , ℓ(x(t), u(t)) + p(t)tf(x(t), u(t))

1.3.1.1 Conditions nécessaires d’optimalité: principe du minimum de

Pontryaguine (PMP)

Le principe du minimum [PBGM62, Tré08] donne une condition nécessaire

d’optimalité. Si (u, x) ∈ U × W 1,∞([0, T ],Rn)4 est une solution optimale du

3Le lecteur pourra trouver un exposé d’extensions, que nous n’utiliserons pas ici, aux techniques

présentées ci-dessous aux cas avec contraintes d’état [HSV95]
4avec, classiquement [Ada75], W 1,∞([0, T ],Rn) , {x ∈ L∞([0, T ],Rn) t.q. ẋ ∈ L∞([0, T ],Rn)}
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problème (1.3) alors il existe p ∈ W 1,∞([0, T ],Rn) appelé état adjoint, tel que,

presque partout sur [0, T ], on a:

ẋu(t) = f(xu(t), u(t))

x(0) = x0

ṗ(t) = −
∂

∂x
H(x(t), u(t), p(t))

p(T ) = 0

u(t) ∈ arg min
v∈C

H(x(t), v, p(t))

1.3.1.2 Programmation dynamique

La deuxième approche est basée sur le principe de programmation dynamique de

Bellman [Bel57] et est née au début des années 60. La fonction valeur J du problème

définie par:

J (ξ, t) , inf
(u,x)

{
∫ T

t

ℓ(x(s), u(s))ds :

ẋ(s) = f(x(s), u(s)) p.p. s ∈ [t, T ], x(t) = ξ, u(s) ∈ C

}

est solution d’une équation aux dérivées partielles non linéaire appelée équation de

Hamilton-Jacobi-Bellman (HJB)

∂J

∂t
(ξ, t) + inf

v∈C
H(v, ξ,

∂J

∂ξ
(ξ, t)) = 0 (ξ, t) ∈ Rn × (0, T )

J (ξ, T ) = 0

Cette condition d’optimalité présente l’avantage d’être nécessaire et suffisante.

Cependant, pour des raisons de temps et calcul et d’encombrement de mémoire,

la méthode de programmation dynamique ne permet pas, en général, de calculer

des solutions optimales sur des horizons de temps importants avec une dimension

d’état supérieure à 3 [Bel57]. Néanmoins, de nombreux travaux ont apporté des

réponses sur des cas de dimension supérieure, notamment dans le domaine spatial

[ABZ12].

1.3.2 Méthodes numériques de résolution

1.3.2.1 Méthodes directes

Les méthodes directes, qui sont très couramment utilisées, utilisent une

discrétisation des équations du problème pour le ramener à un problème de program-

mation non linéaire (NLP), c’est-à-dire à un problème d’optimisation non linéaire

en dimension finie. Cette approche a par exemple été utilisée avec succès dans les

références suivantes [BCM98, BMDP02, Bha06, CP05, JLW03, HP87, KM04, LS99,

PMM01, RF04, Vic98, Wri93, YGFDD05].
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L’avantage des méthodes directes est qu’elles sont faciles à implémenter et réputées

relativement robustes à l’initialisation. Elles ont, en général, la complexité des al-

gorithmes de résolution de la NLP qu’elles emploient, souvent O(N3) où N est

la dimension du problème discrétisé. Elles sont capables de traiter des problèmes

avec un grand nombre de variables d’état. Cependant leur précision est en général

limitée par la précision de la discrétisation.

1.3.2.2 Méthodes indirectes

Méthodes de tir Les méthodes de tir exploitent les conditions d’optimalité

données par le PMP. Sous certaines hypothèses, voir en particulier [AS04], le PMP

permet d’exprimer la commande comme une fonction de l’état et de l’état adjoint:

u(t) = Γ(x(t), p(t)) t ∈ [0, T ]

Les conditions nécessaires d’optimalité se résument alors à résoudre les 2n équations

différentielles sur x et p formant un problème aux deux bouts puisqu’on a une

condition initiale sur x et une condition finale sur p. L’idée de l’algorithme de tir

est d’introduire une inconnue, la valeur initiale de l’état adjoint p0, et de considérer

la fonction de tir qui à p0 associe la condition finale p(T ), où (x, p) est solution du

problème de Cauchy sur [0,T].

ẋ(t) = f(x(t),Γ(x(t), p(t))), x(0) = x0

ṗ(t) = −
∂

∂x
H(x(t),Γ(x(t), p(t)), p(t)), p(0) = p0

On considère que les conditions de stationnarité sont atteintes quand p(T ) = 0. On

se ramène donc par cette méthode à chercher un zéro d’une fonction de Rn dans

R
n, ce qui peut se réaliser, par exemple, avec une méthode de Newton [BH69].

La convergence de la méthode nécessite d’avoir une bonne initialisation de la

condition initiale de l’état adjoint p0, ce qui est parfois difficile à obtenir en pra-

tique. De plus, pour un problème avec contraintes d’état tel que ceux que nous

allons étudier, une connaissance a priori de la structure de la trajectoire optimale

est requise [BH69, Her08]5. Cependant, cette méthode possède l’avantage d’être

extrêmement précise et d’avoir un coût numérique faible. Ces méthodes ont été

étudiées par exemple dans [AMR88, Her08, RS72] et notamment utilisées pour des

problèmes complexes nécessitant une forte précision dans les références suivantes

[BFLT03, CHT11, Tré03].

Méthodes de collocation du problème indirect Les méthodes de colloca-

tion du problème indirect reposent elles aussi sur les conditions d’optimalité du

PMP, mais au lieu d’intégrer directement un problème aux conditions initiales, on

y discrétise les solutions des équations différentielles selon un schéma de différence

finie (Euler ou Runge-Kutta par exemple) en N points de maillage. La résolution

5C’est une hypothèse assez difficile à réaliser ne pratique sans étude théorique des extrémales
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du problème aux deux bouts consiste alors à trouver le zéro d’une fonction de R2nN

dans R2nN correspondant aux valeurs de l’état x(t) et de l’état adjoint p(t) aux N

instants de discrétisation. Comme expliqué dans [AMR88], les méthodes de collo-

cation intègrent souvent des techniques de raffinement de maillage permettant de

résoudre les problèmes avec une grande précision, au détriment de la taille (et donc

d’un accroissement de la complexité numérique) du problème d’optimisation. Ces

méthodes constituent un intermédiaire entre les méthodes directes simples à mettre

en oeuvre, mais pouvant être peu précises et nécessitant une grande puissance de

calcul, et les méthodes de tir difficiles à mettre en oeuvre mais très précises et peu

gourmandes numériquement.

1.4 Contraintes d’état et méthodes de points intérieurs

Historiquement, les méthodes de points intérieurs ont été introduites dans le cadre

de l’optimisation en dimension finie sous contraintes6 par Fiacco et MacCormick

[FM68] à la fin des années 60. Ces méthodes ont connu un important succès dans le

milieu des années 80 grâce aux travaux de Karmarkar [Kar08] où ce dernier a montré

que, sur des problèmes de programmation linéaire (LP), son algorithme de points

intérieurs est 50 fois plus rapide que la méthode du simplexe. Nous présentons

brièvement l’idée de cette classe de méthodes, avant d’en exposer la généralisation

pour les problèmes de commande optimale qui nous intéressent dans cette thèse.

1.4.1 Points intérieurs en dimension finie

Dans le cadre d’un problème d’optimisation en dimension finie

min
x∈Rn

f(x)

sous les contraintes gi(x) ≤ 0, i = 1 . . . q, les méthodes de points intérieurs consistent

à résoudre une suite de problèmes, indexée par une suite de paramètres positifs (εn)

décroissante vers zéro, de la forme

min
x∈Rn

[

f(x) + εn

q
∑

i=1

γ ◦ gi(x)

]

où γ : R− 7→ R
+ est une fonction de pénalisation. Sous certaines hypothèses,

notamment réalisées en programmation quadratique, la suite de solutions optimales

ainsi obtenue (x∗εn
) converge vers la solution du problème original à mesure que la

suite (εn) tend vers zéro [FM68, NW99]. Ces méthodes de points intérieurs sont très

attractives car leur résolution consiste en la résolution d’une suite de problèmes sans

contraintes. Dans le cadre de l’optimisation en dimension finie, l’analyse et le choix

des fonctions de pénalisation (ainsi que le choix de la suite (εn)) ont permis d’aboutir

6sous la dénomination “sequential unconstrained minimization techniques” or SUMT voir

[BV04]
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à des algorithmes de résolution extrêmement performants qui ont été intégrés dans

des logiciels d’optimisation comme KNITRO [BNW06], OOQP [Wri04], IPOPT

[WB06]. Nous invitons le lecteur intéressé à consulter [FGW02] pour un panorama

très complet des méthodes de points intérieurs depuis la fin des années 60 jusqu’aux

contribution les plus récentes [Gon12].

1.4.2 L’extension des points intérieurs à la commande optimale

Pour pouvoir traiter des exemples plus généraux, notamment ceux évoqués en §1.2,

le problème de commande optimale (1.3)-(1.4) doit être soumis à un certain nombre

de contraintes du type g(x(t)) ≤ 0 pour tout t ∈ [0, T ]. La résolution du problème

de commande optimale sous ces contraintes est l’objet de cette thèse.

Un tel problème de commande optimale (1.3) et (1.4) sous les contraintes

gi(x(t)) ≤ 0, ∀t ∈ [0, T ], i = 1 . . . q a été traité pour la première fois par une

méthode de points intérieurs par Lasdon, Waren et Rice [LWR67]. Dans leur arti-

cle, les auteurs proposent de résoudre une suite de problèmes de commande optimale

pénalisés indexée par ε > 0

min
u∈U

[

∫ T

0
ℓ(x(t), u(t)) + ε

q
∑

i=1

1

gi(x(t))
dt

]

avec

U = {u ∈ L∞([0, T ],Rm) t.q. gi(x(t)) ≤ 0, ∀t ∈ [0, T ], i = 1 . . . q}

sous la contrainte de dynamique décrite par l’équation (1.4). Dans cet article, les

auteurs étendent les résultats obtenus en dimension finie par Fiacco et MacCormick

aux problèmes de commande optimale.

Cette approche a notamment inspiré les travaux [GKPC10, GP08b, GP09,

GPK08] où, en complément, on utilise des changements de variable sur l’état et la

commande. D’autres choix de fonction de pénalisation (notamment logarithmique)

ont également été considérés [HS06].

L’intérêt de ces méthodes de points intérieurs est que les solutions sont toutes

caractérisées par les conditions simples de stationnarité (sans contraintes) du PMP

tels qu’exposées au §1.3.1.1. Sous certaines hypothèses, on peut montrer, dans les

différents cas, la convergence de la méthode en terme de critère de coût et, sous

l’hypothèse supplémentaire de convexité forte du coût par rapport à la commande,

la convergence presque partout de l’état et de la commande.

En général, les résultats obtenus reposent sur l’hypothèse (toujours supposée

comme réalisée) de l’intériorité des solutions optimales des problèmes pénalisés.

Cette intériorité est un point clé pour garantir la convergence des méthodes de

point intérieurs en commande optimale. C’est l’hypothèse qui garantit que: i) les

solutions des problèmes pénalisés sont caractérisées par les simples conditions de

stationnarité sans contraintes du PMP. ii) on ne crée pas de solutions parasites en
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dehors des contraintes.

Cette propriété d’intériorité en dimension infinie a été étudiée par Bonnans

et Guilbaud [BG03] dans le cadre de contraintes cubiques sur la commande, i.e.

pour les problèmes du type

min
u∈U

∫ T

0
ℓ(x, u)dt

où U = {u ∈ L∞([0, T ],Rm) t.q. ai ≤ ui(t) ≤ bi, p.p.t. t ∈ [0, T ], i = 1, . . . ,m}. Les

auteurs montrent que le problème de commande optimale pénalisé suivant

min
u∈U

∫ T

0
ℓ(x, u) − ε

m
∑

i=1

log(ui(t) − ai) + log(bi − ui(t))dt

est tel que, pour tout ε > 0, les solutions optimales du problème u∗ε sont strictement

intérieures aux contraintes:

ai < u∗i,ε(t) < bi, p.p.t. t ∈ [0, T ], i = 1 · · ·m

C’est le résultat le plus avancé, à notre connaissance, sur cette question. Nous

cherchons dans cette thèse à obtenir un résultat semblable dans le cas des contraintes

d’état.

1.5 Contributions de cette thèse

Les contributions de cette thèse sont de 2 ordres:

1. Contribution méthodologique: dans cette thèse le résultat d’intériorité

est étendu aux contraintes d’état gi(x(t)) ≤ 0, pour presque tout t, i = 1 . . . q

et aux contraintes de commande de la forme u(t) ∈ C, ∀t où C est un ensem-

ble convexe fermé borné. De plus, en reprenant les fonctions de saturations

introduites dans [GP09] nous montrons que la résolution du problème origi-

nal peut se ramener à la résolution d’une suite de problèmes de commande

optimale totalement non contraints dont les solutions sont caractérisées par

les conditions de stationnarité du PMP.

2. Applications: nous considérons deux cas d’optimisation énergétique de

bâtiments d’habitation individuelle et utilisons les outils méthodologiques que

nous avons développés pour quantifier le gain de flexibilité que les différentes

techniques d’isolation peuvent apporter dans le contexte présenté de “Demand

Response”.
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2.1 Context: energy optimization in individual housing

buildings

Despite numerous policies in favor of energy savings in place at European level

for more than 30 years, demographic growth and the increasing part of renewable

energies in the electrical mix both threaten the balance between production and

consumption of electricity. Consumption peak periods are critically difficult to

handle. In this context, energy managers (producers, distributors in connection with

governmental bodies) systematically increase production facilities and distribution

capacities (electric grid) to maintain this balance. But peak production facilities

have drawbacks: i) an investment risk higher than other types of electric power

plant [HC11] and ii) an important financial cost and high CO2 emissions, since

they use fossil energies. An alternative to this solution consists in developing and

implementing smart programs of energy management.

The principle is as follows: smoothing the temporal profile of the demand by

shifting the energy consumption from peak periods to off-peak periods. This shifting
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can be achieved by an incitation of consumers (by a feedback to the customer or

by using a pricing-signal on electricity), or by remotely controlling some devices.

Industrial and residential sectors are appealing for this smoothing strategy because

each customer consumes a large amount of power. In return, concerned customers

could be retributed by a compensation for the reduction (or stopping) of their

activity. This scheme is known as “Demand side biding” [AES08].

Another solution is to turn to the residential sector. Interestingly, demand

management in residential sector is not very developed even though this sector

represents an important energy consumption. For example, it represents around

29% [BA07] of total electrical consumption in Europe. This lack of development

is due to the multitude of individual customers of the sector ; customers who are

more difficult to manage than the ≪ big groups ≫ from the industrial and ter-

tiary sectors. Recently, with the development of communication technologies and

smart grid [KR10, TYO+12], many research and experimentation projects have

been launched to test large-scale demand response implementations in the resi-

dential sector [Fro07, PWMK07]. These programs are commonly referred to as

“Demand Response”.

The works of this thesis are part of these programs. In order to develop de-

mand response strategies for the residential sector, it is necessary to carry out a

quantitative analysis of the ability of domestic electrical uses to serve the energy

provider/distributor. This evaluation, that we will perform thanks to state and in-

put constrained optimal control tools, is to be carried out in the following scenarios

and operational objectives (as described in [DS11]):

• Use of the local renewable electricity production at the individual housing level.

• Introduction of innovative pricing representing the state of use of the electric

grid, for instance the “Real-time-pricing” or the “Critical peak pricing”1.

• Optimized control of the individual operation of equipment in order to limit

the power used at certain times2.

Among the systems that can be used to achieve the objectives of active de-

mand response, several are dynamical systems (hot water boiler, storage heater,

battery, building inertia,. . . ) or work on a dynamical system (convector heater,

heat pumps. . . ). A brief technological description can be found in Appendix A.

2.2 Optimal control: a tool for the quantification of

potential flexibility assets

The quantification of the flexibility provided by each system (convector heaters,

radiative heaters, storage heaters, heat pumps, hot water boilers with storage tank)

1These types of pricing must encourage the smoothing of the load curve or of the peaks.
2For example, domestic hot water heating functioning only at night.
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in order to achieve one of the objectives of active demand response boils down to

answering to the following question:

“What is the maximum contribution of a system to achieve one of the objectives

of active demand response under comfort constraints?”

The term comfort can refer to thermal comfort or to the operation of devices

etc. The answer to that question can be found quite naturally by solving a state

and input constrained optimal control problem. Three examples are given below,

each one meeting one of the objectives of active demand response.

2.2.1 Example 1: Photovoltaic production shifting

Let us take the example of an individual whose housing is equipped with photo-

voltaic panels and a battery that can store all or part of the power produced by

the solar panels PV (t), which varies with time. The energy is totally sold on the

grid at the electricity market price. The problem we want to solve is : “what is

the maximum income that can be drawn from the shifting (storage for later resale)

of the photovoltaic production?” In order to solve it, let us consider a reference

year for which the electricity price on the market price(t) is totally known. The

problem thus consists in comparing the income the customer gets when s/he resells

this production without storage

∫ T

0
price(t)Ppv(t)dt (2.1)

with the following cost

max
u1,u2

∫ T

0
price(t)

[

PV (t) − (1 − u1(t)) max{Pmax, PV (t)} + r (x(t), u2(t))u2(t)

]

dt

(2.2)

where Pmax is the maximum power of charge of the battery, r (x(t), u2(t)) is the

battery efficiency, x(t) its state of charge, u1 the percentage of the photovoltaic

power stored in the battery, u2 the battery discharge power, u1 and u2 are the con-

trols of the system. This optimization is carried out under the following dynamical

constraint

ẋ(t) = f(x(t), u1(t), u2(t))

Since the battery capacity and the maximal power of discharge are limited, the

optimization must be performed under the following constraints

x(t) ∈ [0, Cmax], ∀t ∈ [0, T ]

u1(t) ∈ [0, 1], ∀t ∈ [0, T ]

u2(t) ∈ [0, Pmax], ∀t ∈ [0, T ]

with a constraint on the battery x(0) = x(T ) that is to say that the final state

of charge of the battery is equal to the initial one. When we compare the value
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of the two integrals (2.1) and (2.2), we find the maximal gain on a year that can

be brought by the shifting of part of the photovoltaic production of the owner of

the device. This example is solved using the methods proposed in this thesis in

Appendix B.1 over one week.

2.2.2 Example 2: Efficiency of an innovative electricity pricing

One of the ways to gauge the efficiency of the pricing applied to the “demand

response” is to see what is the optimal management for this pricing on an individual

customer who has needs of heating (convector heaters) and of hot water preparation

(hot water boilers (HWB) with storage tank). The optimization process aims here

at reducing the electricity bill (without subscription). We note price(t) the pricing

seen by the customer. The problem consists in solving

min
u1,u2

[
∫ T

0
price(t) (u1(t) + u2(t)) dt

]

where u1 and u2 are the controls, that respectively correspond to the heating and

HWB preparation consumption, under the dynamical constraints induced by the

thermal inertia of the building and the hot water boilers

ẋbui(t) = f(xbui(t), u1(t))

ẋhwb(t) = g(xhwb(t), u2(t))

When the heating is supposed to maintain the inhabitants comfort, and noting

h(xbui) the temperature inside the building, the optimization problem is made under

the following constraint:

h(xbui(t)) ∈ [T bui
min(t), T

bui
max(t)], ∀t ∈ [0, T ]

The temperature of the superior layer of the hot water boiler l(xhwb) is also subject

to functioning constraint

l(xhwb(t)) ∈ [T hwb
min (t), T hwb

max (t)], ∀t ∈ [0, T ]

Finally, with the electric demands limited by the emitters, we have

u1(t) ∈
[

0, P heat
max

]

, ∀t ∈ [0, T ]

u2(t) ∈
[

0, P hwb
max

]

, ∀t ∈ [0, T ]

Such an example is solved using the methods proposed in this thesis in Appendix

B.2 over one week.
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2.2.3 Example 3: feasibility of a load shifting from peak period to
off-peak period

In order to characterize the feasibility of a load shifting during a peak period (using

the thermal inertia of the building) while preserving some comfort in the housing,

we can solve the following problem

min
u

[
∫

peak
u(t)dt

]

where the control u is the heating electricity consumption, under the following

constraints

ẋbui(t) = f(xbui(t), u(t))

h(xbui(t)) ∈
[

T bui
min(t), T

bui
max(t)

]

u(t) ∈
[

0, P heat
max (t)

]

for all t ∈ [0, T ]. The optimal value of the criterion indicates the feasibility of the

load shiftings: if the criterion has a zero value, it means that it is possible not to

consume energy at all during the peak periods. It is therefore possible to perform a

load shifting during a peak period. If the criterion does not take a zero value, then

it is not possible to bring the consumption in peak period to zero while satisfying

the constraints. It is therefore not possible to achieve a complete load shifting.

In the case where it is possible to achieve a complete load shifting, it is then

necessary to make sure that the best strategy is used to achieve a complete shifting

of the load, and to solve the following problem

min
u

[
∫ T

0
u(t)dt

]

under the constraints

ẋbui(t) = f(xbui(t), u(t))

h(xbui(t)) ∈
[

T bui
min, T

bui
max

]

u(t) ∈
[

0, P heat
max

]

, off-peak

u(t) = 0 otherwise

These problems are introductive examples to optimal control problems that we want

to solve in a more general way.

We will now expose the principles and methods of the optimal control before

presenting the contributions of this thesis.
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2.3 Introduction to optimal control theory (without

state constraints)

In this thesis, and as illustrated through examples above, we will look at the general

optimal control problem that can be written as follows

min
u∈U

∫ T

0
ℓ(x(t), u(t))dt (2.3)

where ℓ is a smooth real-valued function of its arguments, under the following

dynamical constraints

ẋu(t) = f(xu(t), u(t)) ; x(0) = x0 (2.4)

corresponding to a state space representation of a dynamical system. We will look

upon state constraints later on3. On the considered time horizon T , which is as-

sumed to be fixed without loss of generality, one can act on the system state through

the control variable u, which can be chosen in a set U (a subset of L∞ without loss

of generality)

U = {u ∈ L∞([0, T ],Rm) s.t. u(t) ∈ C a.e. t ∈ [0, T ]}

with C a bounded closed convex set of Rm with non empty interior. The optimal

control problem consists in finding the control u and its associated state xu solution

of (2.4) minimizing the integral cost (2.3). Numerous extensions are possible: free

final time, final cost, definition of a target, jumps in the dynamics, see [BH69, HT11].

2.3.1 Characterization of the solutions

To solve this optimal control problem two main approaches are usually considered:

the Pontryaguine minimum principle (PMP) and the dynamic programming prin-

ciple of Bellman. To present these theories let us first introduce the Hamiltonian

H : Rn ×Rm ×Rn 7→ R,

H(x(t), u(t), p(t)) , ℓ(x(t), u(t)) + p(t)tf(x(t), u(t))

2.3.1.1 Necessary conditions of optimality: Pontryaguine minimum

principle

The minimum principle [PBGM62, Tré08] states necessary conditions of optimality.

If (u, x) ∈ U ×W 1,∞([0, T ],Rn)4 is an optimal solution of problem (2.3) then there

3The reader can find an extended survey (which will not be used here) to techniques presented

above in the presence of state constraints [HSV95].
4with, classically [Ada75], W 1,∞([0, T ],Rn) , {x ∈ L∞([0, T ],Rn) s.t. ẋ ∈ L∞([0, T ],Rn)}
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exists p ∈ W 1,∞([0, T ],Rn) called adjoint state, such that almost everywhere on

[0, T ], we have

ẋu(t) = f(xu(t), u(t))

x(0) = x0

ṗ(t) = −
∂

∂x
H(x(t), u(t), p(t))

p(T ) = 0

u(t) ∈ arg min
v∈C

H(x(t), v, p(t))

2.3.1.2 Dynamic programming

The second approach is based on the principle of dynamic programming of Bellman

[Bel57] which has emerged in the beginning of the 60s. The value function J of the

problem defined by

J (ξ, t) , inf
(u,x)

{
∫ T

t

ℓ(x(s), u(s))ds :

ẋ(s) = f(x(s), u(s)) a.e. s ∈ [t, T ], x(t) = ξ, u(s) ∈ C

}

is a solution of a non-linear partial derivative equation named Hamilton-Jacobi-

Bellman equation (HJB)

∂J

∂t
(ξ, t) + inf

v∈C
H(v, ξ,

∂J

∂ξ
(ξ, t)) = 0 (ξ, t) ∈ Rn × (0, T )

J (ξ, T ) = 0

This optimality condition is necessary and sufficient. However, problems of compu-

tation time and of memory allocation prevent, in general, the method to compute

optimal solutions of problems with long time horizon and a state dimension superior

to 3 [Bel57]. Nevertheless, numerous work have been performed on extended cases,

particularly in the spatial domain [ABZ12].

2.3.2 Solving numerical methods

2.3.2.1 Direct methods

These widely used methods consist in a discretization of the problem equations

yielding a non-linear programming problem (NLP), that is to say a finite dimen-

sional non-linear optimization problem. This approach has been successfully used

in the following references [BCM98, BMDP02, Bha06, CP05, JLW03, HP87, KM04,

LS99, PMM01, RF04, Vic98, Wri93, YGFDD05].

The main advantage of direct methods is that they are easy to implement and

are relatively robust to a poor initialization. In general, these methods have the

complexity of the used NLP algorithm, mostly O(N3) where N is size of the time
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discretized problem. These methods make it possible to solve problems with a large

number of state variables. However, their precision is in general limited by the

precision of the discretization.

2.3.2.2 Indirect methods

Shooting methods Shooting methods rely on the optimality conditions from

the PMP. Under certain assumptions, see [AS04], the PMP allows one to write the

control as a function of the state and of the adjoint state

u(t) = Γ(x(t), p(t)) t ∈ [0, T ]

Stationnarity conditions are considered as satisfied when p(T ) = 0. Necessary

conditions of optimality consist in solving the 2n differential equations on x and

p forming a two point boundary value problem since we have an initial condition

on x and a final condition on p. The idea of this algorithm is to consider the

initial condition of the adjoint state p0 as an unknown variable and to consider the

shooting function which associates the final condition p(T ) to p0, where (x, p) is

solution of the Cauchy problem on [0, T ]

ẋ(t) = f(x(t),Γ(x(t), p(t))), x(0) = x0

ṗ(t) = −
∂

∂x
H(x(t),Γ(x(t), p(t)), p(t)), p(0) = p0

This method consists in finding the zero of a function from R
n into Rn, which can

be achieved using for example a Newton method [BH69].

The convergence of the method requires a good initial guess of the initial condi-

tion p0 of the adjoint state, which in practice can be difficult to achieve. Moreover

for a state constrained optimal control problem like the ones we are about to study,

an a priori knowledge of the structure of the trajectory is required [BH69, Her08]5.

However, this method is extremely precise and implies a low numerical cost. These

methods have been studied in [AMR88, Her08, RS72] and used for complex prob-

lems requiring a high precision in the following references [BFLT03, CHT11, Tré03].

Collocation methods of indirect problems Collocation methods also rely on

optimality conditions from the PMP, but instead of directly integrate an initial

condition problem the differential equations are discretized in N mesh points using

finite element methods such as (Euler or Runge-Kutta for example). Solving the

two point boundary value problem consists in finding the zero of a function from

R
2nN to R2nN corresponding to the values of the state x(t) and the adjoint state

p(t) at mesh points.

As explained in [AMR88], mesh refinement techniques are embedded in collo-

cation methods allowing a high precision solving. But this precision is achieved

at the expense of an increase of the optimization problem dimension (and of its

5In practice this assumption is difficult to satisfy without a theoretical study of the extremals
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numerical complexity). These methods are a trade-off between direct methods easy

to implement but which can have a low precision and require large computational

expenses and shooting methods difficult to implement but extremely precise and do

not require large computational expenses.

2.4 State constraints and interior point methods

Historically, interior point methods have been introduced for finite dimensional

constrained optimization6 by Fiacco and MacCormick [FM68] during the late 60s.

These methods have been very successful in the middle of the 80s thanks to Kar-

markar’s work [Kar08] where he has shown that on linear programming problems

(LP) his interior point algorithm is 50 times faster than the simplex method. We

briefly describe the general idea of these methods before exposing their generaliza-

tion to optimal control problems which are studied in this thesis.

2.4.1 Interior point in finite dimensional optimization

In the framework of finite dimensional optimization

min
x∈Rn

f(x)

under the following constraints gi(x) ≤ 0, i = 1 . . . q, interior point methods consist

in solving a sequence of problems, indexed by a sequence of positive parameter (εn)

decreasing to zero of the form

min
x∈Rn

[

f(x) + εn

q
∑

i=1

γ ◦ gi(x)

]

where γ : R− 7→ R
+ is a penalty function. Under certain assumptions, especially

satisfied in quadratic programming, the obtained sequence of optimal solutions

(x∗εn
) converges to the original problem solution as the sequence (εn) tends to zero

[FM68, NW99]. These interior point methods are very appealing from the program-

ming point of view since their solving consists in solving a sequence of unconstrained

problems. In the framework of finite dimensional optimization, the analysis and the

choice of penalty functions (and the choice of the sequence (εn)) have led to aston-

ishing solving algorithms which have been implemented in optimization softwares

such as KNITRO [BNW06], OOQP [Wri04], IPOPT [WB06]. We refer the inter-

ested reader to [FGW02] for a full survey of interior point methods from the 60s to

most recent contributions [Gon12].

2.4.2 Extension of interior point methods to optimal control

In order to solve more general examples, especially those described in §2.2, the

optimal control problem (2.3)-(2.4) must take into account some constraints under

6Under the denomination “Sequential Unconstrained Minimization Techniques” or SUMT

[BV04].
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the form g(x(t)) ≤ 0 for all t ∈ [0, T ]. Solving these problems is the subject of this

thesis.

Such a problem of optimal control (2.3) and (2.4) under the constraints

gi(x(t)) ≤ 0, ∀t ∈ [0, T ], i = 1 . . . q using interior point methods has been first

addressed by Lasdon, Waren and Rice [LWR67]. In their article, the authors pro-

pose to solve the following optimal control problems sequence

min
u∈U

[

∫ T

0
ℓ(x(t), u(t)) + ε

q
∑

i=1

1

gi(x(t))
dt

]

with

U = {u ∈ L∞([0, T ],Rm) s.t. gi(x(t)) ≤ 0, ∀t ∈ [0, T ], i = 1 . . . q}

under the dynamical constraint given in equation (2.4). In this article the authors

generalize the results obtained in finite dimensional optimization by Fiacco and

MacCormick.

This approach has been continued in [GKPC10, GP08b, GP09, GPK08], where,

in addition, changes of variables of the state and the control are used. Alternative

choices of penalty functions (especially logarithmic functions) have also been used

[HS06].

The advantage of these interior point methods is that the solutions are charac-

terized by the simple conditions of stationarity (without constraints) of the PMP

as described in §2.3.1.1. Under certain assumptions, the convergence of the cost

can be proven and under assumption of strong convexity of the cost with respect

to the control, the convergence almost everywhere of the control and the state can

also be proven.

In general, these results rely on the assumption (always considered as satisfied)

of the interiority of the optimal solutions of the penalized problems. This interiority

is a key point to guarantee the convergence of interior point methods in optimal

control. This is the assumption which induces that i) the solutions of the penalized

problems are characterized by the simple unconstrained stationarity conditions of

the PMP, ii) no parasite solutions which do not satisfy the constraints are found.

The interiority property in infinite dimensional optimization has been ad-

dressed by Bonnans and Guilbaud [BG03] in the case of cubic constraints on the

control, i.e. for problems under the form

min
u∈U

∫ T

0
ℓ(x, u)dt

where U = {u ∈ L∞([0, T ],Rm) s.t. ai ≤ ui(t) ≤ bi, a.e. t ∈ [0, T ], i = 1, . . . ,m}.

The authors prove that the following penalized optimal control problem

min
u∈U

∫ T

0
ℓ(x, u) − ε

m
∑

i=1

log(ui(t) − ai) + log(bi − ui(t))dt
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is such that, for all ε > 0, optimal solutions of the problem u∗ε are strictly interior

to the constraints

ai < u∗i,ε(t) < bi, a.e. t ∈ [0, T ], i = 1 · · ·m

This is the most advanced result, to our knowledge, on this question. One of

the purposes of this thesis is to obtain a similar result when dealing with state

constraints.

2.5 Thesis contributions

This thesis contributions are twofold

1. Methodological contribution: in this thesis the result of interiority is

extended to state constraints gi(x(t)) ≤ 0, ∀t, i = 1 . . . q and to control

constraints under the form u(t) ∈ C, for almost every t where C is a bounded

closed convex set. Moreover, using saturation functions developed in [GP09]

we prove that solving the original problem can be achieved through the solving

of a sequence of fully unconstrained optimal control problems whose solutions

are readily characterized by the simple stationarity conditions of the PMP.

2. Applications: we consider two cases of energy management optimization in

individual housing and use the methodological tools that we have developed

to quantify the flexibility provided by different techniques of insulation in the

presented “Demand Response” context.
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Chapter 3. A constructive penalty design for non-linear state and

input constrained optimal control problems

3.1 Notations, assumptions and problems statements

3.1.1 Constrained optimal control problem (COCP) and notations

The following Constrained Optimal Control Problem (COCP) is studied

min
u∈U∩X

[

J(xu, u) =

∫ T

0
ℓ(xu, u)dt

]

(3.1)

for the dynamics

ẋu(t) = f(xu(t), u(t)), x(0) = x0 (3.2)

where ℓ : Rn×Rm 7→ R is a locally Lipschitz function of its arguments and contin-

uously differentiable with respect to u, xu(t) ∈ Rn and u(t) ∈ Rm are the state and

the control which satisfy (MIMO) non-linear dynamics described in equation (3.2).

The set U ∩ X is defined by control and state constraints that we detail below. A

solution u∗ of (3.1) is defined as a global minimizer of the cost function over U ∩X .

3.1.1.1 Control constraints

The control u : R 7→ R
m is constrained to belong to the set

U , {u ∈ L∞([0, T ],Rm) s.t. u(t) ∈ C a.e. t ∈ [0, T ]}

where the set C satisfies the following assumption

Assumption 1 C is a bounded closed convex subset of Rm which has a nonempty

interior which contains 0. Moreover, it is assumed that ∂C the boundary of C is

continuously differentiable.

3.1.1.2 State constraints

The state xu : R 7→ R
n is subjected to satisfy a set of inequalities

gi(x
u(t)) ≤ 0 , i = 1 . . . q , ∀t ∈ [0, T ]

where the gi are continuously differentiable functions R
n
7→ R. They serve to define

Xad , {x ∈ Rn s.t. gi(x) ≤ 0, i = 1, . . . , q}

We make the following assumption1 on Xad:

Assumption 2 The interior set of Xad is the set noted
◦
Xad such that

◦
Xad, {x ∈ Rn s.t. gi(x) < 0 i = 1 . . . q}

To implement interior point methods, we shall naturally make the following

assumption

Assumption 3 The initial condition x0 of equation (3.2) belongs to
◦
Xad.

1 This assumption is not trivial: consider for instance q = 1 with g a continuously differentiable

function from R to R such that g(x) < 0 for x < 0 and g(x) = 0 for x ≥ 0. Then Xad = R, while

the set g(x) < 0 is (−∞, 0), which is not the interior of Xad.
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3.1.1.3 Set of admissible controls

Now, we can properly define the set X in (3.1) by

X ,

{

u ∈ L∞([0, T ],Rm) s.t. xu(t) ∈ Xad for all t ∈ [0, T ]
}

Before defining the penalized problem (3.5) that will be used in our interior point

method, we shall elaborate on the problem settings and introduce some related

concepts and one further assumption.

3.1.1.4 Assumptions on the dynamics and consequences on the state

Assumption 4 f is continuously differentiable. Moreover, there exists a positive

constant D such that

‖f(x, u)‖ ≤ D(1 + ‖x‖), ∀x ∈ Rn,∀u ∈ C (3.3)

This is verified by linear dynamics ẋ = Ax+Bu, for instance.

Under Assumption 4, we classically derive the following proposition

Proposition 1 For all u ∈ U , the maximal solution xu of the dynamics (3.2) is

defined on [0, T ] and xu is bounded by a constant that depends only on x0 and D.

Moreover, the following mappings

L∞([0, T ],Rm) ∋ u 7→ xu ∈ C0([0, T ],Rn)

L1([0, T ],Rm) ∋ u 7→ xu ∈ C0([0, T ],Rn)

are Lipschitz.

Proof: Consider xu the maximal solution of (3.2). The use of the Gronwall

lemma ([Kha02] p. 651) for equation (3.3) shows that xu is bounded on its interval

of definition. Since f is continuously differentiable, the boundedness of u ∈ U and

of xu implies that the derivatives of f are bounded when u ∈ U . Consider now

two controls u and v in U . Using the Gronwall lemma on xu − xv shows that its

dynamics is sublinear with respect to xu−xv and u−v with a zero initial condition,

which proves the regularity of xu with respect to u, both in the L1 and L∞ norms.

3.1.2 Gauge functions of convex sets

Classically [Sch78], one can associate a gauge function GC to any convex set C.

Under some mild assumptions, the gauge acts almost like a norm and reveals handy

in our problem formulation. Conveniently, the fact that a vector u belongs to the

interior, boundary or exterior of C boils down to comparing GC(u) to 1. For this

reason, in our methodology, the gauge is used as an argument of the penalty function

referring to the convex set C.
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Definition 1 (Schwartz [Sch78]) The gauge function defined by C is the map-

ping GC : R
m 7→ R

+ defined by

GC(u) = inf {λ ≥ 0 s.t. u ∈ λC}

In our context, the gauge function of C satisfies the following properties:

Proposition 2 Under Assumption 1 on the set C, the gauge function GC has the

following properties

a) GC(u) is a well defined non-negative real for all u

b) There exists 0 < N < M such that

‖u‖

M
≤ GC(u) ≤

‖u‖

N
∀u ∈ R

m (3.4)

In particular, GC(u) = 0 implies u = 0

c) The gauge is positively homogeneous, i.e. GC(λu) = λGC(u) for all λ ≥ 0

d) GC is a strictly convex function which is locally bounded; as a consequence, it

is continuous

e) GC has a directional derivative in the sense of Dini2 at u = 0 along direction

d and its value is GC(d)

f) If Assumption 1 holds, GC is differentiable on Rm \ {0}

g) [main result for later discussions] GC(u) < 1 if and only if u belongs to

the interior of C; GC(u) = 1 if and only if u belongs to the boundary ∂C of C;

GC(u) > 1 if and only if u belongs to the exterior of C

Proof: See Appendix C.1.

3.1.2.1 Differentiability issues and control decomposition

In cases of practical interest, it may happen that the gauge function may be

non-differentiable, because the boundary of the convex set itself may be non-

differentiable. A simple example is the case where C is the cube defined by

maxi |ui| ≤ 1. This may turn troublesome in algorithms where the differentia-

bility of the cost is required (e.g. descent methods), because our penalties (which

will be added to the original cost function) will involve gauge functions.

This is why we shall now introduce a more general formalism which (as we

shall see later) will encompass the case where the boundary of C is differentiable

as a whole, the case of a cubic convex, and a whole range of intermediate cases.

This reformulation will allow a more general definition of the control penalties used

later in the penalized control problem (3.5); in particular, these penalties will be

differentiable.
2 The Dini derivative of a function f at point x ∈ R

n along the direction d ∈ R
n is defined as

the limit (when it exists) of f(x+hd)−f(x)
h

when h tends to 0 with positive values.
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Assumption 5 The control u is considered to belong to the cartesian product R
m1×

. . . × R
mp, p ≥ 1, with

∑

mi = m and written under the form u = (u1, . . . , up).

The constraints on u are expressed by ui ∈ Ci, where each Ci, i = 1 · · · p satisfies

Assumption 1 and has a continuously differentiable boundary3.

Note that any control satisfying Assumption 5 satisfies Assumption 1; conversely,

any control set satisfying Assumption 1 where C has a differentiable boundary ∂C

satisfies Assumption 5 with p = 1.

In Assumption 5, C stands for the convex defined by the cartesian product of

the Ci. The control u belongs to the interior of C if and only if all of the ui belong

to the interior of Ci, or equivalently (see Proposition 2) if GCi
(ui) < 1, ∀i = 1 . . . p.

Example: This settings allows one to consider the case where C is {u ∈

R
3 s.t. u2

1+u2
2 ≤ 1 , |u3| ≤ 1}. The boundary of C is not differentiable, yet u ∈ C can

be rewritten as u = (u1, u2), where u1 belongs to an appropriate Euclidian disk, and

u2 belongs to an appropriate segment of R. Conveniently, the formalism used in

Assumption 5 includes the case where the convex C is a hypercube, or alternatively,

where C has a differentiable boundary.

We can now proceed with the presentation of the penalty method that will be

instrumental in the implementation of an interior point method.

3.1.3 Presentation of a penalized problem (POCP)

3.1.3.1 Introduction of the penalty functions

Following the approach of interior methods in their application to optimal control

[BG03], we introduce two penalty functions

γg : (−∞,+∞) → [0,+∞)

γu : [0, 1] → [0,+∞)

for which we make the following assumptions

Assumption 6 We assume that

•

{

γg(x) = 0 if x ≥ 0

γg(x) ≥ 0 if x < 0

• for x < 0, γg is continuously differentiable, convex, and increasing

• limx↑0 γg(x) = +∞

• γu is continuously differentiable, strictly convex, and non-decreasing

• limu↑1 γu(u) = +∞

• γu(0) = 0; γu is right continuously differentiable at u = 0 with γ′u(0) = 0.

3 this makes sense only for the indices i for which mi > 1.
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Figure 3.1: Plot of penalty functions γg and γu.

• γ′u(u) is right Lipschitz at u = 0

In addition, we shall consider that γu(1) = +∞.

Adding such penalties to the cost function (3.1) may yield infinite values for the

integral (3.5) below. Naturally, controls that lead to an infinite cost will not be

considered as optimal.

Typical graphes of γg and γu are presented in Figure 3.1. In the following

section, we combine the penalty functions γg and γu with the formulation of the

constraints to define a penalized optimal control problem (POCP). Interestingly,

the usage of +∞ will not lead to indeterminations, as γu will be summed with

lower-bounded quantities, and there will be no product of γu with zero.

3.1.3.2 Definition of a (first) penalized problem

For a given parameter ε > 0, consider the following POCP

min
u∈ U

[

K(u, ε) =

∫ T

0
ℓ(xu, u) + ε

(

q
∑

i=1

γg ◦ gi(x
u) +

p
∑

i=1

γu ◦GCi
(ui)

)

dt

]

(3.5)

under the dynamics (3.2). Observe that now u is constrained to belong to U , which

means that the state constraints have disappeared from the formulation (as will

be shown, these state constraints are automatically managed by the introduction

of the penalties), but the control constraints have not been relaxed (compare with

(3.1)). In §3.3 we shall also remove the control constraints, once we have proved

that optimal solutions to the penalized problems are interior, in §3.2.2.
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3.1.3.3 Properties of the control penalty

We now use the properties of the control sets Ci and of the penalty function γu to

exhibit important properties on the POCP (3.5).

Proposition 3 (Differentiability) For i = 1, . . . , p, the application γu ◦ GCi
is

continuously differentiable on the interior of Ci. As a consequence the integrand in

the penalized cost (3.5) is continuously differentiable with respect to the control u

in the interior of C.

Proof: From Proposition 2, we know that GCi
is continuously differentiable on

R
mi \ {0} because the boundary ∂Ci is continuously differentiable. On the other

hand, γu is continuously differentiable on [0, 1); hence γu ◦ GCi
is continuously

differentiable on the interior of Ci minus the origin.

Since GC has bounded derivatives at u = 0 in the sense of Dini, and since

γ′u(GC(0)) = γ′u(0) = 0, we conclude that γu ◦GC has a zero derivative at the origin.

Moreover, γ′u being Lipschitz (with constant K) in a neighborhood of 0, one has

|γ′u ◦GC(u)| ≤ K|GC(u)|. We derive that the limit of the derivative of γu ◦GC(u) is

0 when u tends to 0. This concludes the proof.

Convexity

Proposition 4 (Convexity) For i = 1, . . . , p, the penalty γu ◦GCi
is convex. As

a consequence, if ℓ is convex with respect to u, the integrand in the penalized cost

(3.5) is convex with respect to u.

Proof: We have seen that GCi
is convex; since γu is convex, and since it is

non-decreasing, then γu ◦GCi
is convex.

3.2 Interiority of the optimal constrained variables of

the POCP

The objective of this section is to exhibit sufficient conditions on the penalty func-

tions such that any optimal solution u∗ ∈ U of POCP (3.5) (satisfying the input

constraint) actually belongs to U∩X and, as a consequence, is admissible for COCP

(3.1) (i.e. it satisfies both input and state constraints).

This section is organized as follows. In §3.2.1, we exhibit a sufficient condition

on the state penalty γg under which any optimal solution of POCP (3.5) strictly

satisfies the state constraints, i.e. gi(x(t)) < 0, ∀i ∀t ∈ [0, T ]. According to

Assumption 2, this is equivalent to the fact that the state remains at all times

in
◦
Xad. In §3.2.2, we exhibit an additional sufficient condition on the control penalty

γu under which any optimal solution of POCP (3.5) strictly satisfies the input

constraints, specifically the essential supremum for t ∈ [0, T ] of the gauge functions

is strictly smaller than 1. In §3.2.3, our first main result (Theorem 1) constructively

proves the existence of penalties that satisfy the conditions of §3.2.1 and §3.2.2. As
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a consequence, if the penalties satisfy these two sufficient conditions, then any

optimal solution of POCP (3.5) is interior.

We shall use the following notations:

Definition 2

X strict = {u ∈ L∞([0, T ],Rm) s.t. xu(t) ∈
◦
Xad ∀t ∈ [0, T ]}

U strict =

{

u ∈ U s.t. max
i

ess sup
t
GCi

(ui) < 1

}

3.2.1 Interiority of the optimal states for the penalized problem

In this section, we exhibit a sufficient condition on the state penalty γg ensuring

that any optimal solution of POCP (3.5) belongs to X strict and hence is admissible

for COCP (3.1).

Definition 3 (Proximity to a constraint) For any constraint gi, we define the

proximity to the constraint by

α 7→ µgi
(u, α) = meas ({t ∈ [0, T ] s.t. 0 > gi(x

u(t)) ≥ −α}) (3.6)

where meas(.) is the Lebesgue measure of its argument.

Proposition 5 If, for all u ∈ U \ X strict, the penalty function γg satisfies

lim
α↓0

γg(−α)µgi
(u, α) = +∞ (3.7)

then, ∀ε > 0, ∀u ∈ U \ X strict

K(u, ε) = +∞

It follows that the penalized cost K(u, ε) is finite only if u ∈ U ∩ X strict.

Proof: Let u ∈ U \ X strict, then there exists an index i such that

maxt∈[0,T ] gi(x(t)) ≥ 0. Since γg(x) = 0 when x ≥ 0, we have

Ii ,

∫ T

0
γg(gi(x(t)))dt =

∫

0>gi(x(t))
γg(gi(x(t)))dt

Moreover, since γg ≥ 0, we have, for α > 0

Ii ≥

∫

0>gi(x(t))≥−α
γg(gi(x(t)))dt , Ji(α)

The state penalty satisfies γg ≥ 0 on (−∞, 0), thus Ji(α) is a non-decreasing

positive continuous function of α > 0 which satisfies

inf
α>0

Ji(α) = lim
α↓0

Ji(α) , Ji(0
+)
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Since γg is increasing and since the Lebesgue measure is right continuous [KF99]

J (0+) = lim
α↓0

∫

0>gi(x(t))≥−α
γg(gi(x(t)))dt ≥ lim

α↓0

∫

0>gi(x(t))≥−α
γg(−α)dt

= lim
α↓0

γg(−α)µgi
(u, α)

with µgi
(u, α) the Lebesgue measure defined in (3.6). If (3.7) holds, then Ji(0

+) =

+∞ which implies that Ii = +∞. From Proposition 1, we know that xu is uniformly

bounded in sup norm for u ∈ U , and, as a consequence, |
∫ T

0 ℓ(xu, u)dt| is bounded

for all u ∈ U . Moreover,
∑

i≤p

∫ T

0 γu(GCi
(ui))dt ≥ 0. As a summary, K(u, ε) is the

sum of lower-bounded terms and of ε Ii, with Ii = +∞. This proves that the cost

K(u, ε) is infinite for every ε > 0.

Since the measure µgi
(u, α) which appears in equation (3.7) involves the control

u, it is handy to give a lower bound of it when u spans U \X strict. This bound will

be used, in §3.2.3, in the explicit construction of penalty functions. This bound is

given by the following result.

Proposition 6 Define −α0 = maxi(gi(x0)); one has α0 > 0 because the initial

condition is interior (Assumptions 2 and 3). Then, there exists a constant Γ < +∞

such that for all α ∈ [0, α0], for all u ∈ U \ X strict the measure µgi
(u, α) defined in

equation (3.6) is lower-bounded as follows

µgi
(u, α) ≥

α

Γ

Proof: The proof is given in Appendix C.2 together with the expression of Γ.

Using Assumption 3 together with Propositions 5 and 6, one finally obtains

Lemma 1 If the state penalty γg is such that

lim
α↓0

αγg(−α) = +∞ (3.8)

then, any local optimal solution u∗ of POCP (3.5) is admissible for COCP (3.1)

because

u∗ ∈ U ∩ X strict

Then any local optimal control u∗ for problem (3.5) yields a trajectory xu
∗

with

values in
◦
Xad.

Proof: If equation (3.8) holds, then we derive from Proposition 6 that (3.7) holds

for u ∈ U \ X strict. From Proposition 5, we derive that K(u, ε) < +∞ for u ∈ U

only if u ∈ U ∩ X strict. This holds, in particular, for any local optimal control of

POCP (3.5).
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3.2.2 Interiority of the optimal constrained control

In this section, we assume that the state penalty satisfies condition (3.8) from

Lemma 1. In particular, any optimal control for the penalized problem belongs

to U ∩ X strict. Then, we exhibit a sufficient condition on the control penalty γu
such that any optimal solution u∗ of POCP (3.5) belongs to U strict ∩ X strict. In

particular ui(t) belongs to the interior of Ci for almost every t.

3.2.2.1 Construction of an interior control v

In what follows, we shall use the following result:

Proposition 7 For all u ∈ U ∩ X strict, there exists α > 0 such that, for all v ∈

U strict satisfying ‖u− v‖L∞ ≤ α, we have

v ∈ X strict

Proof: Let u ∈ U ∩ X strict and note −2β0 = maxt∈[0,T ],i=1,...,q gi(x
u(t)). Since

u ∈ U ∩ X strict, we have β0 > 0. From Proposition 1, and the continuity of the

function g, there exists αN > 0 and Λ > 0 such that for all v ∈ U strict

max
i

‖ui − vi‖L∞ ≤ αN ⇒ max
i

‖ gi(x
u) − gi(x

v) ‖L∞≤ ΛαN

Setting α = β0/Λ, one has maxi maxt∈[0,T ] gi(x
v(t)) ≤ −β0 < 0. Therefore, v ∈

U strict ∩ X strict. This concludes the proof.

We now proceed to the construction of a control v ∈ U strict ∩ X strict which will

be used in Proposition 9.

Definition 4 (Desaturated control) For all u ∈ U ∩ X strict, for all α > 0, we

define a desaturated control v(u, α) = (v1 · · · vp) as follows

vi(t) =

{

ui(t) if GCi
(ui(t)) < 1 − α

(1 − 2α)ui(t) otherwise
(3.9)

Proposition 8 For all u ∈ U ∩ X strict, there exists α > 0 such that the modified

control v from Definition 4 satisfies

v ∈ U strict ∩ X strict

Proof: We shall use the following definitions, inspired by Definition 3

Eu(α) , {t ∈ [0, T ] s.t. ∃i ≤ p s.t. GCi
(ui(t)) ≥ 1 − α}

µu(α) , meas(Eu(α)) (3.10)

First, let us prove that v ∈ U strict. Assume that µu(α) = 0; in this case, for all i,

GCi
(ui(t)) < 1 − α almost everywhere. Therefore, u ∈ U strict ∩ X strict. Using
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equation (3.9) yields v = u ∈ U strict ∩ X strict.

Now, let us assume that µu(α) > 0. In this case, for all i,

GCi
(vi(t)) < 1 − α a.e. t ∈ [0, T ] \ Eu(α)

GCi
(vi(t)) ≤ 1 − 2α ∀t ∈ Eu(α)

For all i, ui(t) ∈ Ci almost everywhere, and, since 1−2α ∈ (0, 1), then vi(t) ∈ int(Ci)

almost everywhere, therefore v ∈ U strict.

We now prove that v ∈ X strict. Let Mi be the radius of a ball that contains Ci,

using equation (3.9) we have ‖ui(t) − vi(t)‖ ≤ 2α‖ui(t)‖ ≤ 2αMi. From Proposi-

tion 7, there exists α+ > 0 such that if ‖ u− v ‖L∞≤ α+ then v ∈ U strict ∩ X strict.

For all α ∈ (0,min{1/2,mini
α+

2Mi
)}) we have

‖ui(t) − vi(t)‖ ≤ 2α‖ui(t)‖ ≤ α+, i = 1 · · · p

Therefore v ∈ X strict. Thus, v ∈ U strict ∩ X strict. This concludes the proof.

3.2.2.2 Condition guaranteeing the strict interiority of the optimal con-

trol

To prove that any optimal control belongs to U strict ∩ X strict, it is enough to find a

condition on the penalties such that for any u ∈ (U \ U strict) ∩ X strict, the modified

control v ∈ U strict ∩ X strict from Definition 4 satisfies

K(v, ε) < K(u, ε)

This fact contradicts the optimality of every point of (U \ U strict) ∩ X strict.

The following result gives an upper estimate on the difference K(v, ε) − K(u, ε).

This estimate is the sum of three terms, representing respectively

(i) the integral variation of the original cost (3.1)

(ii) the integral variation of the state penalties ε
∑

i≤q γg ◦ gi

(iii) the integral variation of the input penalty ε
∑

i≤p γu ◦GCi

In §3.2.3 we give constructive conditions on the penalties that make this upper

bound strictly negative when u ∈ (U \ U strict) ∩ X strict.

Proposition 9 For any control u ∈ (U \ U strict) ∩ X strict, considering the modified

control v from equation (3.9), for any ε > 0 one has

K(v, ε) −K(u, ε) ≤ α
[

Uℓ + Ug(ε) − εγ′u(1 − 3α)
]

µu(α) (3.11)

where µu(α) is defined by (3.10), Ul is a constant parameter and Ug(ε) only depends

linearly on ε.

Proof: See Appendix C.3.
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Finally, using (3.11), the following result holds.

Lemma 2 If an optimal control u∗ for POCP (3.5) belongs to U ∩ X strict, and if

lim
α↓0

γ′u(1 − α) = +∞ (3.12)

then,

u∗ ∈ U strict ∩ X strict

Proof: Note that the construction of γu in Assumption 6 makes (3.12) always

satisfied. Now, remember that if, for some α > 0, µu∗(α) = 0, then u∗ ∈ U strict ∩

X strict. We shall now assume that µu∗(α) > 0 for α > 0 in a neighborhood of 0. If

u∗ does not belong to U strict∩X strict, then, using (3.12), for α small enough one can

build a control v ∈ U strict ∩ X strict such that K(v, ε) < K(u, ε) because of (3.11);

this contradicts the assumed optimality of u∗ and concludes the proof.

3.2.3 First main result

We are now ready to state our first main result.

Theorem 1 (Existence of penalties providing interior optima) Under As-

sumptions 2, 3, 4, 5, there exists penalty functions γg(.) and γu(.) such that any

optimal solution u∗ of POCP (3.5) belongs to U strict∩X strict. A constructive choice

is to use penalties that satisfy Assumption 6, and which satisfy the conditions of

Lemmas 1 and 2 (equations (3.8) and (3.12), respectively)

For example, a suitable choice of penalties is:

γg(x) = (−x)−ng for x < 0 (3.13)

γg(x) = 0 for x ≥ 0

γu(u) = −u log(1 − u) for u ∈ [0, 1) (3.14)

γu(1) = +∞

with ng > 1.

Proof: The existence is proven constructively by showing that (3.13) and (3.14)

are suitable penalties. This is done by checking that Lemmas 1 and 2 hold in

the present case. Prior to this, we first easily check that both penalties satisfy

Assumption 6.

The penalty (3.13) is such that equation (3.8) is satisfied, then Lemma 1 holds.

Therefore, any optimal solution of POCP (3.5) belongs to U ∩X strict. From Lemma

2, we know that any optimal control must actually belong to U strict ∩ X strict if

γ′u(1 − α) tends to +∞ when α > 0 tends to 0. This concludes the proof. Finally,

let us compute γ′u(u) for the choice (3.14)

γ′u(u) = − log(1 − u) +
u

1 − u

Hence

γ′u(1 − α) = − log(α) +
1 − α

α
which tends indeed to +∞ when α > 0 tends to 0.
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3.3 Removing the control constraints

At this point, we have proven that, provided that suitable penalty functions are

chosen, the optimal solutions of the penalized problem are interior and thus satisfy

the stationarity conditions of the PMP. Nevertheless, the control constraint has not

been completely relaxed at this point since the solution the POCP (3.5) are sought in

the set U . Our ultimate purpose being to solve completely unconstrained optimal

control problems, we generalize the saturation function approach (introduced by

Graichen et al [Gra06, GP08a, GP09, GPK08]) in §3.3.1. In §3.3.2, we study this

change of variable on the control. Then, we introduce, in §3.3.3 (3.20), a new POCP

that incorporates this change of variables. Next, we show that it is equivalent to

the POCP (3.5). Further on, this convenient reformulation allows us, in §3.5.1, to

propose a simple solving algorithm.

3.3.1 Saturation functions for convex sets

Following Graichen et al [Gra06, GP08a, GP09, GPK08], one can use saturation

functions to represent some constraints (on control or state variables) in an opti-

mal control problem. Saturation functions [Gra06] typically map R into the open

interval (−1,+1). One commonly considered saturation function is tanh(.). For

example, if a variable z is such that |z| < 1 then it can be written as z = tanh(ξ),

ξ ∈ R. This approach is readily generalized to dimensions higher than 1 when the

constraint set has a cubic shape, e.g. |z1| < 1, |z2| < 1, . . . , |zm| < 1 for some m.

Simply, saturation functions are used for each coordinate.

In order to generalize saturation functions to general smooth convex sets it is

handy to first consider the mapping ψ : Rm 7→ Bm
‖.‖(0, 1) such that

ψ(ν) ,







0 if ν = 0

tanh(‖ν‖)
ν

‖ν‖
otherwise

(3.15)

where Bm
‖.‖(0, 1) is the open unit ball of Rm for the norm ‖.‖, e.g. the Euclidian

norm. This mapping is a homeomorphism4 and is differentiable on Rm \ {0}. The

next proposition states the generalization5. This generalization, formally repre-

sented by function φ in equation (3.16), will be used in §3.3 to deal with constraints

on the control.

Proposition 10 (Generalized saturation functions) Let C ⊂ Rm be a convex

set satisfying Assumption 1. The function φ : Rm 7→ int(C) defined by

φ(ν) ,











0 if ν = 0

tanh2(‖ν‖)

GC(ψ(ν))

ν

‖ν‖
otherwise

(3.16)

4 whose inverse is ψ−1(u) , atanh(‖ u ‖) u
‖u‖

5 it is indeed a generalization, as we recover the usual saturation function from [Gra06] when

the convex is an interval of R.
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where ψ is defined in (3.15), is a homeorphism. Moreover, this mapping is dif-

ferentiable on int(C) \ {0}. Its inverse is the function σ : int(C) 7→ R
m defined

by

σ(u) ,







0 if u = 0

atanh(GC(u))
u

‖u‖
otherwise

(3.17)

Proof: See Appendix C.4. Notations are illustrated in Fig. 3.2.

Proposition 10 implies that: if u belongs to int(C), then there exists ν ∈ Rm such

that u = φ(ν) and the correspondence is one-to-one.

0 1

−1

u1

u2

B�.�(0, 1)

C

ψ(ν)

ν = σ(u)

u = φ(ν)

Figure 3.2: Example of generalized saturation function. On this figure, we note ∂C

the boundary of the set C (the ellipse shaped set). If u belongs to int(C), then there

exists ν ∈ Rm such that u = φ(ν) where φ is defined in (3.16). The correspondence

is one-to-one. We say that φ is the saturation function associated to C.

3.3.2 Correspondence of control sets

Let

L ,

p
∏

i=1

L∞([0, T ],Rmi)

For each convex Ci, define with (3.16)-(3.17) the related functions φi (3.16) and

σi = φ−1
i defined in equation (3.17).
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Proposition 11 We have

L =
{

(σ1(u1), . . . , σp(up)), u ∈ U strict
}

(3.18)

and

U strict = {(φ1(ν1), . . . , φp(νp)), ν ∈ L} (3.19)

Proof: We recall that

U strict =

{

u = (u1, . . . , up) s.t. ess sup
t

max
i
GCi

(ui(t)) < 1

}

For u ∈ U strict, we shall note G(u) = ess supt maxiGCi
(ui(t)) which is strictly

smaller than 1. Hence, for u ∈ U strict, the σi(ui) are well defined, and ‖σi(ui)(t)‖ ≤

atanh (G(u)) <∞. This proves that the right hand-side of (3.18) is included in L.

Conversely, let ν ∈ L and define ui = φi(νi). We have GCi
(ui) =‖ ψ(ν)‖ =

tanh(‖νi‖) ≤ tanh (‖ν‖L∞) < 1 and, hence, u ∈ U strict. Since σi ◦ φi(νi) = νi,

this proves that L is included in the right-hand side of (3.18), yielding the desired

equality (3.18).

The proof of (3.19) goes along the same lines and is simply omitted here.

3.3.3 Penalized problem (final version)

Finally, we define a last penalized optimal control problem

min
ν∈L



P (ν, ε) =

∫ T

0
ℓ(xφ(ν), φ(ν)) + ε





∑

i≤q

γg ◦ gi(x
φ(ν)) +

∑

i≤p

γu ◦GCi
◦ φi(νi)



 dt





(3.20)

where the penalty functions are given by equations (3.13)-(3.14), and make the

following assumption

Assumption 7 The (unconstrained) penalized problem (3.5) has at least one opti-

mal solution.

3.3.4 Second main result

We have the following equivalence theorem between problems (3.5) and (3.20),

which is our second main result

Theorem 2 Under the assumptions of Theorem 1 and (existence) Assumption 7,

for any ε > 0 POCP (3.5) and POCP (3.20) are equivalent in the sense that

arg min
u∈U

K(u, ε) = φ

(

arg min
ν∈L

P (ν, ε)

)

where φ(ν) denotes (φ1(ν1), . . . , φp(νp)).

As a consequence, one can solve the POCP (3.5) which is constrained by u ∈ U

by solving instead the unconstrained POCP (3.20), and then apply the operator φ

to obtain an optimal solution for (3.5).
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Proof: Let us consider u∗ ∈ U a minimizer of K(., ε), which exists by

Assumption 7. We have

K(u∗, ε) ≤ K(u, ε), ∀u ∈ U strict

Define ν∗ = σ(u∗) and ν = σ(u). This definition is valid because both controls

belong to U strict. Then, u∗ = φ(ν∗) and u = φ(ν). Therefore,

K(φ(ν∗), ε) ≤ K(φ(ν), ε)

or, equivalently,

P (ν∗, ε) ≤ P (ν, ε)

From Proposition 11, we know that σ(u) spans L when u spans U strict. Therefore,

ν∗ is optimal for POCP (3.20); this proves, incidentally, the existence of a solution

to POCP (3.20). Since u∗ = φ(ν∗), this proves

arg min
u∈U

K(u, ε) ⊂ φ

(

arg min
ν∈L

P (ν, ε)

)

Now, let us consider ν∗ ∈ L a minimizer of P (., ε) (which has been proven to

exist). From Proposition 11, u∗ , φ(ν∗) ∈ U strict. We have

P (ν∗, ε) ≤ P (ν, ε), ∀ν ∈ L

From Proposition 11, this implies

P (σ(u∗), ε) ≤ P (σ(u), ε), ∀u ∈ U strict

i.e.

K(u∗, ε) ≤ K(u, ε), ∀u ∈ U strict (3.21)

From Theorem 1, we know that any optimal control for K(u, ε), u ∈ U must belong

to U strict. Therefore, we can substitute one of these optimal controls in place of u

in (3.21); which proves that u∗ = σ(ν∗) is optimal for POCP (3.5). Therefore,

arg min
u∈U

K(u, ε) ⊃ φ

(

arg min
ν∈L

P (ν, ε)

)

Finally, we have

arg min
u∈U

K(u, ε) = φ

(

arg min
ν∈L

P (ν, ε)

)

This concludes the proof.
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3.4 Convergence of the interior point method

3.4.1 Well-posedness of the interior point method

To exploit interior point methods, it is usually considered that, in numerical im-

plementation, the sequence of POCPs should start with relatively large value of ε

(typically 1 for a suitable scaled COCP). Then, ε is decreased and a previous solu-

tion serves to initialize the solving method of the next POCP. Naturally the question

of convergence of this process arises. In the following, we give sufficient conditions

on the optimal control problem such that the interior points methods is well-posed

in a sense defined below, which is of interest for the convergence when the penalty

parameter ε is decreased.

Definition 1 (Well-posedness) If the following condition is satisfied, the COCP

(3.1) is said to be well-posed for interior point methods.

U ∩ X = clos(U ∩ X strict)

where the closure is taken in the L∞ sense.

In the following, we assume that the COCP (3.1) is well-posed for interior point

methods.

3.4.2 Results on convergence

The following proof of convergence follows the exact same line as [GP09, LWR67]

but one does not need to formulate the assumption on the interiority of the optimal

solution anymore because it has been established in Theorem 1. First, let us note

J̄(ν) =

∫ T

0
ℓ
(

xφ(ν)(t), φ(ν(t))
)

dt

Γ(ν) =

∫ T

0

∑

i≤q

γg ◦ g(x
φ(ν)(t)) +

∑

i≤p

γu ◦GCi
◦ φi(νi(t))dt

which gives : P (ν, ε) = J̄(ν) + εΓ(ν)

Lemma 3 Let νk+1 and νk be the optimal controls of (3.20) for 0 < εk+1 < εk.

Then, the following inequalities hold for the cost functional (3.20):

J̄(νk+1) ≤ J̄(νk)

Γ(νk+1) ≥ Γ(νk)

P (νk+1, εk+1) ≤ P (νk, εk)

Proof: See [GP09, LWR67].

The following theorem concerns the convergence of the cost P (νk, εk) using the

results of Lemma 3.
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Theorem 3 Let (εk) be a decreasing sequence of positive penalty parameters with

limk→∞ εk = 0. Then, P (νk, εk) converges to the optimal cost J∗ of COCP (3.1)

lim
k→∞

P (νk, εk) = J∗

with

lim
k→∞

J̄(νk) = J∗, lim
k→∞

εkΓ(νk) = 0

Proof: See [GP09, LWR67].

To prove the convergence of the states, we require the following assumption

Assumption 8 The cost functional J(u) of COCP (3.1) satisfies the strong con-

vexity property:

D ‖ u− v ‖2
L2≤ J(u) + J(v) − 2J

(

u+ v

2

)

∀u, v ∈ U ∩ X

for some D > 0. Moreover, the optimal control u∗ of problem (3.1) is assumed to

be unique.

Theorem 4 If Assumption 8 holds, the input uk = φ(νk) as well as xuk = xφ(νk)

solutions of POCP (3.20) converge to the optimal trajectory (u∗) of problem (3.1)

in the following sense

lim
k→∞

‖ uk − u∗ ‖L2= 0, lim
k→∞

‖ xuk − xu
∗
‖L∞= 0

Proof: See [GP09, LWR67].

3.5 Solving algorithms

The purpose of the main results of this chapter, i.e. Theorems 1 and 2 respectively,

is to allow one to solve, for a decreasing sequence of εk > 0 that tends to 0, a se-

quence of simple (unconstrained) POCPs (Problem (3.20)) instead of POCP (3.5)

because they are equivalent. In §3.4 it has been recalled that, under classic strong

convexity assumptions, the sequence of states and controls converge (in relevant

topologies) to the optimal solutions of COCP (3.1). Thus, using suitable penal-

ties and saturation functions, one can solve the original COCP (3.1) by solving a

sequence of unconstrained problems.

3.5.1 Indirect method

The indirect method proposed here is based on the solving of the unconstrained

optimality conditions of PMP by using collocation. Each POCP (3.20) penalized
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by ε belonging to a sequence (εn) can be solved using the calculus of variations.

Define the Hamiltonian of the penalized problem (3.20) as follows

Hε(x
φ(ν), ν, p) , ℓ(xφ(ν), φ(ν)) + ε





∑

i≤q

γg ◦ gi(x
φ(ν)) +

∑

i≤p

γu ◦GCi
◦ φi(νi)





+ptf(xφ(ν), φ(ν))

where p ∈ R
n is the adjoint state solution of dp

dt
= − ∂Hε

∂xφ(ν) , p(T ) = 0 and where

the penalty functions are chosen according to Theorem 1. Now, defining a positive

decreasing sequence, one can approach the solution of COCP (3.1).

• Step 1: Initialize the continuous functions xφ(ν)(t) and p(t) such that the

initial values satisfy gi(x
φ(ν)(t)) < 0 for all t ∈ [0, T ], and set ε = ε0. Note

that xφ(ν)(t) and p(t) need not satisfy any differential equation at this stage,

even if it is better if they do.

• Step 2: Solve for each time ∂Hε

∂ν
= 0, and note ν∗ε the solution.

• Step 3: Solve the 2n differential equations dxφ(ν)

dt
= f(xφ(ν), φ(ν∗ε )) and

dp
dt

= − ∂Hε

∂xφ(ν) (x
φ(ν), ν∗ε , p) forming a two point boundary values problem using

e.g. bvp5c or bvp4c (see [SKR00]), with the following boundary constraints

xφ(ν)(0) = x0 and p(T ) = 0.

• Step 4: Decrease ε, initialize xφ(ν)(t) and p(t) with the solutions found at Step

3 and restart at Step 2.

3.5.2 Direct method

Solving the problem with direct methods does not involve any adjoint vector p and

does not rely on the calculus of variations. To compute the solution using these

methods, let us first introduce the augmented system as follows
{

ẋφ(ν) = f(xφ(ν), φ(ν))

ż = ℓ(xφ(ν), φ(ν)) + ε
[

∑

i≤q γg ◦ gi(x
φ(ν)) +

∑

i≤p γu ◦GCi
◦ φi(νi)

]

with the following initial conditions: xφ(ν)(0) = x0 and z(0) = 0. Direct methods

consist in transforming an infinite dimensional optimization problem into a finite

dimension one. To do so, a time discretization is chosen which defines the mapping

xφ(ν)(t), z(t), ν(t) 7→ xφ(ν)[0 . . . N ], z[0 . . . N ], ν[0 . . . N ]

where [0 · · ·N ] are indexes for mesh points spread over [0, T ]. This time discretiza-

tion relies on numerical schemes such as Euler, Gauss, Runge-Kunta. Several nu-

merical methods are fully described in [But08]. This time discretization transforms

the dynamical constraints into (N + 1)× (n+ 1) equality constraints, where N + 1

is the number of collocation points and n the dimension of the state vector xφ(ν)(t).

The direct method algorithm is thus the following:
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• Step 1: Initialize xφ(ν)[0 . . . N ], z[0 . . . N ], ν[0 . . . N ] such that the state con-

straints are satisfied at each collocation point and set ε = ε0.

• Step 2: Solve the following optimization problem

min
xφ(ν)[0···N ],z[0···N ],ν[0···N ]

z[N ]

under the (N + 1) × (n + 1) equality constraints corresponding to the time

discretization of the dynamical constraints.

• Step 3: Decrease ε, initialize xφ(ν)[0 . . . N ], z[0 . . . N ], ν[0 . . . N ] with the values

computed at Step 2 and start over at Step 2.
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Illustrative numerical examples
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In this chapter we propose a series of examples to illustrate the methodology

exposed in the previous chapter.

4.1 Toy Problem

As a first example to illustrate the methodology, we consider a simple double inte-

grator with a position and control constraints

min
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ẍ = u

|u| ≤ 1

x ≥ 0.2

x(0) = 1

ẋ(0) = 0

∫ 5

0
x2(t)dt

4.1.1 Indirect method

By a direct application of (POCP) formulation (3.20), we now consider the following

POCP, ε > 0

min
ν

∫ 5

0
x2 + ε

(

γg(x− 0.2) + γu ◦ φ(ν)
)

dt

where γg(x) , (x)−ng , ng > 1, according to (3.13) and γu and φ are now defined.

The stationarity condition Hν = 0 yields the equation γ′u ◦ φ(ν) = −µ
ε

obtained by
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differentiating the Hamiltonian of our POCP

H , x2 + ε
(

γg(x− 0.2) + γu ◦ φ(ν)
)

+ p1ẋ+ p2φ(ν)

Consistently with equation (3.16) where we set ‖ . ‖= GC(.) = |.|, we have

φ(ν) , tanh(ν)

Then, consistently with Lemma 2, a sufficient condition to guarantee that Theo-

rem 2 holds is that limν→±∞ γ′u ◦ φ(ν) = ±∞. This last condition leaves us with

a vast choice of functions for γu and φ. Conveniently, in order to easily solve the

Hν = 0 condition for the unknown ν, we choose

γ′u ◦ φ(ν) = sinh(ν)

Then, one simply has to formulate the two-point boundary value problem for OCP



















































ẋ1 = x2

ẋ2 = φ
(

−asinh
(

p2
ε

))

ṗ1 = −2x1 + εγ′g(x1 − 0.2)

ṗ2 = −p1

x1(0) = 1

x2(0) = 0

p1(5) = 0

p2(5) = 0

For every ε > 0, according to Theorem 2, the obtained solution gives the solution ν∗ε
which is such that φ(ν∗ε ) = u∗ε where u∗ε = − tanh

(

asinh
(

p2
ε

))

is solution for POCP

(3.5) which is interior. To solve this problem, the sequence (εn) is logarithmically

decreasing from 1 to 10−7. The code uses one tuning parameter ng > 1 which is

set to ng = 1.1 in this example. The final solution is obtained on a (not equally

distributed) mesh of 192 points automatically generated by the two-point boundary

value problem solved by bvp5c. The histories of optimal state x∗ε(t) for ε = 1 . . . 10−7

is displayed on Figure 4.1, the corresponding histories of optimal control is displayed

on Figure 4.2, and the histories of the first adjoint states p∗1,ε(t) is displayed on

Figure 4.3. The script file implemented in Matlab, is available at http://cas.

ensmp.fr/~petit/code_optimisation_PM/.

http://cas.ensmp.fr/~petit/code_optimisation_PM/
http://cas.ensmp.fr/~petit/code_optimisation_PM/
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Figure 4.1: Optimal state x∗ε(t) for ε = 10−7 (indirect method).
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Figure 4.2: Optimal control u∗ε(t) = tanh(ν∗ε (t)) for ε = 10−7 (indirect method).
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Figure 4.3: Optimal adjoint states p1(t) for ε = 10−7 (indirect method).

4.1.2 Direct method

As described in Section 3.5.2, direct methods use a discretization scheme to yield

a finite dimensional optimization problem. Then, to solve this finite dimensional

optimization problem numerous softwares are available. In this Section we use two

optimization softwares both based on the IPOPT [WB06] solver.

4.1.2.1 Using BOCOP

We first use the package Scilab/BOCOP [MGB12] (see http://bocop.org) by

Martinon, Grélat and Bonnans. We choose the explicit 4th order Runge-Kutta

discretization scheme provided by this software with 500 equally distributed mesh

points. The sequence of (εn)n=1···40 = 1.5−n is considered. The evolution of the

optimal cost (3.20) while decreasing ε is displayed on Figure 4.4. The optimal

state x∗(t) for ε = 1.5−40 is displayed on Figure 4.5, and the corresponding optimal

control u∗(t) is displayed on Figure 4.6.

4.1.2.2 Using AMPL

To solve the direct problem, we use the software AMPL [FGK90] with the solver

IPOPT [WB06]. We choose the 3-stage Lobatto IIIa discretization formula (which

is also employed in bvp4c) with 500 equally distributed mesh points. The sequence

of (εn)n=1···40 = 1.5−n is considered. The optimal state x∗(t) for ε = 1.5−40 is

http://bocop.org
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Figure 4.4: Histories of optimal values of the penalized cost (3.20) for decreasing

values of ε (direct method with BOCOP).

Figure 4.5: Optimal position x∗ε(t) for ε = 10−11 (direct method with BOCOP).
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Figure 4.6: Optimal control u∗ε(t) = tanh(ν∗ε (t)) for ε = 10−11 (direct method with

BOCOP).

displayed on Figure 4.7, and the corresponding optimal control u∗(t) is displayed

on Figure 4.8.
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Figure 4.7: Optimal position x∗ε(t) for ε = 1.5−40 (direct method with AMPL).
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4.2 Goddard’s problem

The historical Goddard’s problem (first presented in 1919 [God19]) is the maximiza-

tion of the final altitude of a rocket flying in vertical direction. The problem has

become a benchmark in optimal control due to a characteristic singular-constrained

arc behavior in connection with a relatively simple model structure, which makes

the Goddard’s rocket an ideal object of study, see [BMT08, GP08b, Rug06].

4.2.1 Problem statement

4.2.1.1 Model equations

The equations of motion of the rocket are given by the ordinary differential equations

ḣ = v

v̇ =
u−D(h, v)

m
−

1

h2

ṁ = −
u

c

(4.1)

with h the altitude, v the upward velocity, and m the mass of the rocket. The

states h, v, m, the thrust u as the input of the system, and the time t are commonly

normalized and dimension–free. The drag function D(h, v) is given by

D(h, v) = q(h, v)
CDA

m0g

as a function of the Earth’s gravitational acceleration g and the dynamic pressure

q(h, v) =
1

2
ρ0v

2eβ(1−h)

depending on the altitude h and the velocity v. The constants in the model equa-

tions are

CD drag coefficient, ρ0 air density at sea level,

A reference area, β density decay rate,

m0 initial mass, c exhaust velocity

The following values are taken from [GP08b, Sey94]:

β = 500, c = 0.5,
ρ0CDA

m0g
= 620, g = 9.81

4.2.1.2 Constrained optimal control problem

The optimal control problem is the following:

min
u

−h(T )
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under the dynamics (4.1) and the following state and input constraints

u(t) ∈ [0; 3.5] a.e. t ∈ [0, T ]

q(h(t), v(t)) ≤ 10, ∀t ∈ [0, T ]

where the final time T is a free parameter. First, one can reformulate the problem

as a fixed horizon optimal control problem. To do so we make the following change

of variable τ = t
T

and obtain the following augmented dynamics



































ḣ = Tv

v̇ = T

[

u−D(h, v)

m
−

1

h2

]

ṁ = −T
u

c

Ṫ = 0

(4.2)

and the optimal control problem becomes

min
u

−

∫ 1

0
Tvdt

under the aforementioned augmented dynamics (4.2) and the following constraints:

{

u(t) ∈ [0; 3.5] a.e. t ∈ [0, 1]

q(h(t), v(t)) ≤ 10, ∀t ∈ [0, 1]
(4.3)

In this case, 0 does not belong to the interior of the admissible control set. To

overcome this difficulty, we simply use two invertible changes of variables: φ : R 7→

(−1, 1) and ψ : (−1, 1) 7→ (umin, umax) defined by

φ(ν) , tanh

(

2ν

umax − umin

)

ψ(z) ,
umax − umin

2
(z + 1) + umin

Using these change of variables we have

u , ψ ◦ φ(ν)

Now, we introduce a control penalty in POCP (3.20) of the form γu ◦G[−1,1] ◦ φ(ν)

where γu remains to be chosen and G[−1,1] is the gauge function of [−1, 1] which is

simply |.|. According to the formulation in (3.20), the Hamiltonian of the POCP

corresponding to this problem is the following (ε > 0):

H(h, v,m, T, ν, ph, pv, pm, pT ) , T

[

− v + phv + pv

[

ψ ◦ φ(ν) −D(h, v)

m
−

1

h2

]

−pm
ψ ◦ φ(ν)

c

]

+ε
[

γu ◦G[−1,1] ◦ φ(ν) + γg(q(h, v) − 10)
]
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The two point boundary value problem consists in solving the followings ODEs



















ḣ = Tv v̇ = T
[

ψ◦φ(ν∗)−D(h,v)
m

− 1
h2

]

ṁ = −T ψ◦φ(ν∗)
c

Ṫ = 0

ṗh = −∂H
∂h

ṗv = −∂H
∂v

ṗm = −∂H
∂m

ṗT = −∂H
∂T

h(0) = 1 v(0) = 0 m(0) = 1 m(1) = 0.6

ph(1) = 0 pv(1) = 0 pT (0) = 0 pT (1) = 0

where ν∗ is solution of ∂H
∂ν

= 0. To compute this solution, first let us consider the

function γu ◦G[−1,1] ◦ φ(ν) which writes

γu ◦G[−1,1] ◦ φ(ν) = γu ◦ φ(ν)

where γu : (−1, 1) 7→ R
+ is a smooth symmetric function. The control penalty is

differentiable with respect to ν and we have

∂H

∂ν
= T

[

pv
φ′(ν)ψ′ ◦ φ(ν)

m
− pm

φ′(ν)ψ′ ◦ φ(ν)

c

]

+ εφ′(ν)γ′u ◦ φ(ν)

Therefore, ν∗ is the solution of

0 = T
[pv
m

−
pm
c

]

+ ε
2

3.5
γ′u ◦ φ(ν) (4.4)

From Lemma 2 and the symmetry of γu, we know that the solution are interior

as soon as γ′u is a bijective increasing mapping from (−1, 1) to R. Moreover, φ(ν)

being an increasing bijective mapping from R to (-1,1), one can simply choose the

following parameterization of the control penalty

γ′u ◦ φ(ν) , sinh(ν)

which is a bijective increasing mapping fromR toR. Thanks to this choice, equation

(4.4) has an analytical solution

ν∗ = sinh−1

(

−
T

ε

(pv
m

−
pm
c

)

)

One can notice that γu need not be defined analytically. The problem is initialized

with constant values of the variables as follows

h(t) = 1 v(t) = 0.2 m(t) = 1 T = 0.5

ph(t) = 0 pv(t) = 1 pm(t) = 0 pT (t) = 0

The sequence (εn) is initialized with ε0 = 10−2, the parameter ng from equation

(3.13) is set at ng = 1.1. Moreover, to initialize the problem the state constraint

for the first value of ε is q(h, v) ≤ 15, then, for the rest of the sequence (εn) the

constraints is set exactly as described in equation (4.3). To solve each two-point

boundary value problem of the sequence, we use the MATLAB implementation

of collocation code bvp5c. The script file, is available at http://cas.ensmp.fr/

~petit/code_optimisation_PM/.

http://cas.ensmp.fr/~petit/code_optimisation_PM/
http://cas.ensmp.fr/~petit/code_optimisation_PM/
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Figure 4.9: Histories of optimal altitude for decreasing values of ε.

4.2.2 Results

In Figures 4.9 to 4.13, histories of state variables, thrust and state constraint are

given for decreasing values of the parameter ε. One can see that these solutions are

very similar to those reported in [GP08b]. Moreover, the optimal final time and the

optimal value of the criterion are the following:

T = 0.20405546 ; h(T ) = 1.01271747

4.3 A multivariable Linear Quadratic Problem

4.3.1 Problem statement

Consider the following optimal control problem

J =

∫ T

0

1

2

(

u2
1(t) + u2

2(t) + x2(t) + y2(t)
)

dt

with T fixed, for the following dynamics

ẍ(t) = u1(t) ; ÿ(t) = u2(t)

having the following initial conditions

x(0) = y(0) = 5 ; ẋ(0) = ẏ(0) = 0
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Figure 4.10: Histories of optimal thrust for decreasing values of ε.
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∗
ε) for decreasing values

of ε.
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Figure 4.12: Histories of optimal velocity for decreasing values of ε.
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under the following path constraints:

0 ≥ g1(x(t)) , x(t) − 2 − 1.5 [sin(0.2t) + sin(0.2πt)]

0 ≥ g2(y(t)) , y(t) − 1.5 − 1.5 [sin(0.2t+ 5.5) + sin(0.2πt+ 5.5)]

1 ≥
√

u2
1(t) + u2

2(t)

The input constraint, which requires that the vector (u1(t), u2(t)) belongs to the

unit ball, couples the two variables. We use our generalization of saturation function

of §3.3.1, and introduce the vector change of variables (3.16) where GC , ‖.‖ is the

Euclidian norm

u1(t) , φ1(ν) =
tanh(‖ ν(t) ‖)

‖ ν(t) ‖
ν1(t)

u2(t) , φ2(ν) =
tanh(‖ ν(t) ‖)

‖ ν(t) ‖
ν2(t)

with ν = (ν1, ν2)
t. Using this vector change of variables in the POCP formula-

tion (3.20), we obtain the following Hamiltonian, presented in Theorem 1

H(x, ẋ, y, ẏ, ν, p) , tanh(‖ ν ‖)2 + x2 + y2 + p1ẋ+ p2φ1(ν) + p3ẏ + p4φ2(ν)

+ε
(

γg ◦ g1(x) + γg ◦ g2(x) − tanh(‖ ν ‖) log(1 − tanh(‖ ν ‖))
)

with γg(x) = (−x)−ng , ng > 1, and γu◦GC◦φ(ν) = − tanh(‖ ν ‖) log(1−tanh(‖ ν ‖))

because

γu(u) = −u log(1 − u)

GC(u) = ‖ u ‖

φ(ν) = tanh(‖ ν ‖)
ν

‖ ν ‖

The adjoint vector p satisfies the following differential equations














ṗ1 = −εγ′g ◦ g1
ṗ2 = −p1

ṗ3 = −εγ′g ◦ g2
ṗ4 = −p3

with the following boundary conditions, T = 14, pi(T ) = 0, i = 1 . . . 4. The optimal

unconstrained control ν∗ satisfies the following algebraic equations

∂H

∂ν
(x, ẋ, y, ẏ, ν∗, p) = 0

To solve this problem we use a self-developed collocation code1 for two-point

boundary value problems of differential and algebraic equations (index 1). This

collocation code uses a 3-stage Lobatto IIIa formula (also employed in bvp4c) for

the differential variables (xφ, p) and a simple interpolation of order 1 for the al-

gebraic variable (ν). Collocation method equations are solved using the software

IPOPT [WB06].

1which is available for internal use only at EDF R&D
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Figure 4.14: Histories of optimal x∗ε(t) for decreasing values of ε. The dark domain

is forbidden.

4.3.2 Results

From Figures 4.14 to 4.20, histories of constrained state variables, controls and

control constraint are given for decreasing values of the parameter ε. The optimal

value of the criterion is the following

J∗ = 252.2082
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Figure 4.15: Histories of optimal y∗ε(t) for decreasing values of ε. The dark domain

is forbidden.
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Figure 4.17: Histories of the first optimal control u∗1,ε(t) for decreasing values of ε.
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Figure 4.19: Histories of the first adjoint state p∗1,ε(t) for decreasing values of ε.
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5.1 Introduction

As discussed in Chapter 2, significant recent efforts have been targeted at reducing

electricity peak-demand. In Europe, these peaks mostly occur in winter time, and

are, for the main part, due to heating systems. To guarantee the electric grid

stability, numerous studies have focused on the overall load reduction. At the level

of individual houses, this reduction can be achieved thanks to a careful architectural

design aiming at efficiently capturing and, later, restoring solar gains [BHM77].

Advanced heating control strategies can also be a solution. Such control strategies

must account for the occurrence of discount periods of power tariff [KM04] and

use the building thermal mass as an asset to shift the building consumption. A
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beneficial effect is the created reduction of the peak consumption [Bra90, Che01,

HM02, XHBH04].

This chapter follows such an approach and studies the impact of load shifting

on five thermal models ranging from poorly to well insulated houses. The method

of analysis consists in solving COCPs to accurately compute optimal trajectories

following the approach presented in this thesis. Gradually, considering the duration

of the load shift as a parameter, one determines the maximum allowable duration of

a complete heating load shifting while maintaining an acceptable level of comfort.

The results obtained in this study show that the thermal mass of a poorly insulated

building is not sufficient to perform load shiftings superior to twenty minutes. Thus,

the use of the house inertia as energy storage capacity is shown to be relevant only in

the case of sufficiently insulated buildings (which can actually handle load shiftings

of several hours). Practical cases of interest are presented.

In §5.2, a description of the considered building is given, together with a descrip-

tion of the discretization scheme yielding a high-order linear model of the system.

In §5.3, this model is reduced and constraints are formulated on its input and out-

puts. In §5.4, the algorithm serving to solve the obtained constrained dynamical

optimization is presented. In §5.5, the results on the abilities of the different consid-

ered systems are presented together with the maximum bearable duration of daily

load shiftings for each model. Finally in §5.6 the conclusion and the perspectives

of the study are presented.

5.2 Model of the building

5.2.1 Building description

The building under study is a single-family house. It corresponds to an actual

experimental passive house being part of the INCAS platform built in Le Bourget

du Lac, France (see Figure 5.1). For our study, five low performance versions of the

building are considered. The reference version corresponds to a house built prior

to the introduction of the first French thermal regulation (1975). This reference

version used to represent 58% of the French stock in 2008. The four other versions

correspond to various renovation levels on this reference. In this chapter, they serve

to study the beneficial effects of renovation efforts on the peak load management.

The house has two floors for a total living area of 89 m2. 34% of its South facade

surface is glazed while the North facade has only two small windows. All the

windows are single-glazed. The South facade is also equipped with solar protections

for the summer period. The external walls are made of a 30 cm-thick layer of

concrete blocks and the floor consists in 20 cm of reinforced concrete. There is no

insulation in the building except for the 10 cm of glass-wool in the attic. According

to thermal simulation results using the Pléiades+COMFIE software [PS90], the

heating load is 253 kWh/(m2.year) which is typical for such type of house in this

area. Comparisons have been performed during the design phase on the passive

house version of this building with other simulation tools like Energy Plus and



5.2. Model of the building 45

TRNSYS [BSW09] and have shown similar results.

Figure 5.1: Computer graphics view of the house (west and south facades).

Four different renovations of this building are presented in Table 5.1

Heating

Version Renovation applied consumption

(kWh/m2/year)

Reference (1st) none 253

Roof (1) + 30 cm of

insulation (2nd) glass-wool in the attic 246

Triple glazing (2) + Triple glazed

(3rd) windows 215

Insulation of (3) + 15 cm of glass-

external walls (4th) wool in external walls 93

Heat recovery (4) + HRV with an

ventilation (HRV) efficiency of 0.5 80

(5th) (accounting for air infiltration)

Table 5.1: Versions of the considered building throughout renovations.

5.2.2 Thermal model

The building is modeled with a set of spatial zones of homogeneous temperature. For

each zone, each wall is divided in fine meshes small enough to consider homogeneous

temperature in each mesh point. Two additional mesh points are considered for

the air and furniture in the zone, respectively. Eventually, a thermal balance is

performed on each mesh within the building. It takes into account:

• Pcond: the losses (or gains) by conduction in walls, floor and ceiling

• Psol: the gains due to solar irradiance through the windows

• Pconv: the losses (or gains) due to convection at walls surface
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• Pin: the internal gains due to heating, occupancy and other loads (only for

zone air mesh)

• Pbridges: heat losses through thermal bridges, not associated to thermal mass

• Pventil : heat losses due to air exchange.

When applied to the air of each zone, the thermal balance equation reads:

CairṪair = Pin + Pcond + Pbridges + Pventil + Psol + Pconv (5.1)

with Cair the thermal capacity of the air node (including furniture) and Tair the

temperature of the mesh. For each zone, repeating equation (5.1) for each mesh

point and including an output equation leads to the following continuous linear

time-invariant system

{

CṪ (t) = AT (t) + EU(t)

Y (t) = JT (t) +GU(t)
(5.2)

with:

• T mesh temperatures vector

• U driving forces vector (climate parameters, heating, etc.)

• Y output vector (here, temperature of the air nodes)

• C thermal capacity (diagonal) matrix

• A,E, J,G matrices relating the vectors of the dynamics.

For representative simulations, it is important to account for the occupancy of

the building, which partly defines Pin through the emission of heat by the inhab-

itants and the appliances. The second part of heat emission in Pin is due to the

heating system. Another important factor is the weather model. It defines the

losses due to heat transfer with the ambient temperature and the gains with solar

irradiance. All the data of the house occupancy and weather models are included

in the input vector U .

5.3 Model reduction and definition of constraints

5.3.1 Model reduction

The high-order linear model (5.2) is now reduced. In view of solving COCPs over

relatively long time horizons, the state dimension (order 33) is too large and discards

hope of a fast convergence of the optimization algorithm. Therefore, a reduction

method is applied to lower the state dimension. For this task, several methods

can be used, among which are singular perturbations [Kha02], and identification

methods [MCPF10]. In our case, an efficient method is the balanced truncation
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[ZDG96]. Indeed, this truncation consists in removing the state variables which

receive the least effort from the input and contribute the least to the variations of

the output1. Precisely, let us call Σh(s) (resp. Σr(s)) the Laplace-transform of the

high (resp. reduced) order system. The order of reduction is chosen as the minimal

order such that

‖ Σh(s) − Σr(s) ‖H∞≤ −70 dB

where the H∞ norm is defined in [ZDG96]. In this case, all models are at least

third order models, and one of them is a fourth order one.

In Table 5.2, the various time constants of the considered models are reported. One

shall notice that these thermal building models clearly have (at least) three well

separated time scales [Kha02]. Interestingly, it shall be noticed that the main effects

of the renovation is to enlarge the slower time constant.

Building version 1st 2nd 3rd 4th 5th

8 min 7 min 8 min 9 min 9 min

Time 13 h 13 h 2 h 13 h 18 h

constants 95 h 98 h 8 h 160 h 180 h

91 h

Table 5.2: Value of the time constants of the five different models.

5.3.2 Model and constraints

5.3.2.1 Model notations

In the following, we use the classical linear state space representation to represent

the model:

ẋ(t) = Ax(t) +BP (t) + d(t)

T (t) = Cx(t)

where x is the state of the model, T is the inside temperature, d represents the

influence of the outside temperature and the solar fluxes on the heating of the

house, and P represents the heating flux on the air node and is the control variable.

5.3.2.2 Constraints

Inside temperature constraints The temperature constraints are 24 hours

periodic and are:

• T ≤ 24̊ C at all times

• T ≥ 14̊ C between 9 a.m. and 5 p.m.

1We refer the interested reader to [ZDG96], for mathematical definitions of the considered

approximation



48
Chapter 5. Investigating the ability of various buildings in handling

load shiftings

• T ≥ 20̊ C otherwise.

To simplify the notations, we write these temperature constraints as follows

T−(t) ≤ T (t) ≤ T+(t) (5.3)

where Ṫ−(t) = Ṫ+(t) = 0 almost everywhere.

Control constraints The control constraints are not the same for all systems:

• 0 ≤ P ≤ 20 kW for the buildings whose walls have not been insulated

• 0 ≤ P ≤ 10 kW for the buildings whose walls have been insulated.

Again, to simplify the notations in the algorithm, we write the control constraints

as follows

0 ≤ P (t) ≤ P+(t) (5.4)

where Ṗ+(t) = 0 almost everywhere.

Load shifting In the considered scenarios, the load shiftings consist in a daily

time period when the heating of the house is not allowed to consume any energy.

These shiftings start everyday at 5 p.m.. The objective of this study is to determine

the maximum duration of these load shiftings beyond which it becomes impossible

to satisfy both (5.3) and (5.4).

5.4 Problem statement and solution method

5.4.1 Method

To characterize the duration of load shifting which allows the inside temperature

to satisfy (5.3) while the heating power satisfies (5.4), we solve the corresponding

state and input COCP. When no solution can be found, it is deduced that the load

shiftings are too long. This property is independent of the temperature control

system, and solely stems from the ability of the building to store energy.

To determine the maximum allowable duration of the load shifting, we gradually

increase the load shifting period durations until no solution satisfying the constraints

(5.3) and (5.4) exists.

5.4.2 Algorithm

To solve the COCP, we use the interior-point methodology proposed in this thesis

and summarized in §3.5.1. In this example it is desired to minimize the energy

consumption. The criterion is given by the following (to minimize energy consump-

tion):

J = min
P (t)∈[0,P+(t)]

∫ T

0
P (t)dt
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with the dynamics and the state constraint T (t) ∈ [T−(t), T+(t)] seen above, and

where T = 7 days. The change of variables permitting to remove the input con-

straint is the following

P , φ(ν) = P+

(

ekν

1 + ekν

)

, k > 0 (5.5)

The Hamiltonian of (3.20) is then

Hε(x, p, ν) , φ(ν) + pt
(

Ax+Bφ(ν) + d
)

+ε
(

γg(Cx− T−) + γg(T
+ − Cx) + γu ◦ φ(ν)

)

In this example, the adjoint vector p satisfies the following differential equation

dp

dt
(t) = −Atp(t) − εCt

(

γ′g(Cx(t) − T−) − γ′g(T
+ − Cx(t))

)

where γ′g is the derivative of the following function

γg(x) =

{

x−1.1 ∀x > 0

0 otherwise

This function is chosen accordingly to Theorem 1. The algorithm described in §3.5.1

used in this example is the following:

Step 1: Initialize the functions x(t) and p(t) such that the initial unknown Cx(t) ∈

(T−, T+) for all t ∈ [0, T ], and set ε = ε0. Simply, p can be chosen identically

equal to zero at first step.

Step 2: Compute ν∗ε = sinh−1
(

−1+ptB
ε

)

2. Thus, the optimal solution P ∗
ε = φ(ν∗ε ) is

given using equation (5.5) with k = 1.

Step 3: Solve the two-point boundary value problem

dx(t)

dt
= Ax(t) +BP ∗

ε (t) + d(t)

and

dp(t)

dt
= −Atp(t) − εCt

[

γ′g
(

Cx(t) − T−
)

− γ′g
(

T+ − Cx(t)
)]

with the following boundary constraints x(0) = x0 and p(T ) = 0.

Step 4: Decrease ε, initialize x(t) and p(t) with the solutions found at Step 3 and

start over at Step 2.

In our case, the sequence (εn) has been chosen such that εn = 10−
n
10 with n =

0 . . . 40.

2This is the analytical solution of ∂Hε

∂ν
= 0, where we have set γ′

u ◦ φ(ν) , sinh(ν)
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5.5 Simulations and results

5.5.1 Simulations

The considered optimization takes place in winter over one particularly cold week.

The ambient temperature history is reported on Figure 5.2. For each version of

the building, indoor temperatures (see Figure 5.3) and energy consumptions over

the week have been computed, first without load shiftings and then, with maximal

bearable load shiftings (see Figure 5.4).
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Figure 5.2: Ambient temperature over one week of winter.

5.5.2 Summary of the results

In terms of energy consumption, the first and second versions of the building are

quite similar (Fig. 5.4). The adjunction of triple glazed windows (3rd version)

induces a significant decrease of energy consumption (≈ 30%). The insulation of

the external walls (4th version) clearly induces a further reduction of the energy

consumption (≈ 50%). The most effective renovation strategy (in terms of energy

consumption) seems to be the increasing of insulation.

Now, we consider the ability in handling load shiftings. Table 5.3 and Figure 5.5

illustrate that the three first versions of the building cannot handle load shifting

durations superior to 20 minutes. Interestingly, the adjunction of triple glazed

windows (3rd version) does not improve the load shifting ability whereas it is efficient

for energy savings. Actually, handling large load shifting periods becomes possible

solely when the insulation is sufficiently increased.
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Figure 5.3: Comparison between the optimal indoor temperature for each building

(with the maximum bearable load shiftings duration in each case). The behavior

of the indoor temperature is different on the last day from the other days because

the ambient temperature is particularly cold.
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Figure 5.4: Energy consumption over one week for the five versions of the building.

For each building the consumed energy is displayed without load shifting and with

the maximal bearable one.



52
Chapter 5. Investigating the ability of various buildings in handling

load shiftings

Building version 1st 2nd 3rd 4th 5th

Load shifting duration 15 min 20 min 20 min 4 h 6 h

Table 5.3: Value of the maximum load shifting duration for each version of the

building.

152 153 154 155 156 157 158

20

20.5

21

21.5

22

22.5

23

23.5

24

Indoor temperature during the last load shifting

Time in hour

In
d
o
o
r 

te
m

p
e
ra

tu
re

 i
n
 °

C

 

 

Building 1: load shifting 15 min

Building 2: load shifting 20 min

Building 3: load shifting 20 min

Building 4: load shifting 4 hours

Building 5: load shifting 6 hours

Minimal inside temperature

Figure 5.5: Comparison of the optimal indoor temperature during the load shifting

of the last day of the week.

5.6 Conclusion

On the methodological side, it appears that solving the discussed COCPs is an

effective tool to study properties of the buildings. The existence of feasible trajec-

tories only depends on the characteristics of the buildings. The presented method

yields quantitative results even when considering fast time scales phenomenon.

On the applicative side, we have emphasized that a non-insulated residential house

cannot handle load shifting durations superior to 20 minutes even if an advanced

strategy of regulation is used. To allow these buildings to handle long load shiftings,

their thermal mass is not sufficient, the buildings must be insulated enough or have

auxiliary energy storage capacity.
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6.1 Introduction

In Western Europe, peaks in the overall consumption of electricity mostly occur in

winter time. At the beginning of the 2000s, a decrease in the smoothed national

ambient temperature of 1◦C used to induce an increase of the peak consumption

of 1000 MW at the national scale of France. Nowadays this effect, called ther-

mal sensitivity is estimated around 2300 MW/◦C [RTE11]. Simultaneously, due to

global Earth warming, more and more attention is being payed on global energy

consumption and CO2 emissions. This has resulted in the emergence of ever more

restrictive laws on levels of insulation and consumption of primary energy of new

buildings (prime example being RT 2005 see [RT206] and RT 2012 [RT211]). In-

stalling high efficiency electric heaters in such houses allows home owners to have a
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reliable and low CO2 emissions heating device. A way to reduce thermal sensitivity

of the electrical peak consumption, while maintaining low CO2 emissions for heating

systems in well insulated buildings, is to use their thermal mass as an asset to shift

all or part of the energy consumption [XHBH04, Bra90, Che01, HM02] from day to

night time during the whole heating season. This is true for two reasons. First, the

peak is naturally smoothed-out by the considered individual load shifting. Second

electric heaters are virtually CO2 emission free, when used at night, because their

power comes from nuclear plants.

This chapter uses the methodology of this thesis to evaluate the feasibility of

complete load shiftings from day to night time during the whole heating period. It is

applied to two well insulated buildings corresponding to two different construction

methods (position of the insulation in the walls). Gradually, considering the amount

of energy shifted from day to night as a parameter, one can determine the ability

of the house to perform load shiftings while maintaining an acceptable level of

comfort. The first conclusion of the conducted study is that it is possible to use the

thermal mass of well insulated buildings to heat the ambience during night time

only (from 10 p.m. to 6 a.m.) while maintaining the comfort. Hence, it is possible

to use electric convector heaters in well insulated buildings without increasing the

thermal sensitivity of peak consumption.

The second conclusion of this study is that the construction method consisting

in putting the concrete core of the house between the insulation and the interior

of the building (exterior insulation) is more efficient in performing complete load

shiftings (both in term of comfort and energy consumption) than the classic interior

insulation technique.

The chapter is organized as follows. In §6.2, a description of the considered

building is given, together with the method used to obtain an accurate reduced order

linear model. In §6.3, the scenario of optimization is given, i.e. the weather, the

occupancy period and the constraints. In §6.4, the various optimization scenarios

are presented. In §6.5, the algorithm used to solve the problem is detailed. In §6.6,

the quantitative results are presented. Finally §6.7 contains the conclusions along

with perspectives of the study.

6.2 Model

6.2.1 Building description

The buildings under study in this chapter are low-consumption single-family de-

tached houses. Two types of building (I and E) are considered. They are built

using the same materials but the first one (I) is insulated from the interior whereas

the second (E) is insulated from the exterior as described in Table 6.1.

The two houses have the same geometry:

• Total floor area 100.86 m2 ; Area of the roof: 100.86 m2

• Area of the southern wall: 25.75 m2 ; Area of the southern window: 5 m2



6.2. Model 55

• Area of the western wall: 18.5 m2 ; Area of the western window: 2 m2

• Area of the northern wall: 26.75 m2 ; Area of the northern window: 4 m2

• Area of the eastern wall: 16.5 m2 ; Area of the eastern window: 4 m2

Layers Building I Building E

External layer 20 cm of concrete 15 cm of insulation

Intermediate layer 15 cm of insulation 20 cm of concrete

Interior layer 1 cm of plater 1 cm of plater

Table 6.1: Constitution of the external walls for the two buildings.

6.2.2 Building model

In this study, we consider the temperature of the air node within the buildings

to be homogeneous. The building is modeled using the software Dymola [Elm95],

resulting in the following high-order linear system (order 42)

Ẋ(t) = AX(t) +BTTamb(t) +BsΦs(t) +BwΦw(t) +BnΦn(t) · · ·

+BeΦe(t) +BiΦi(t) +BhP (t)

T (t) = CX(t)

with

• Tamb: the ambient temperature

• Φs :the solar flux on the southern wall

• Φw: the solar flux on the western wall

• Φn: the solar flux on the northern wall

• Φe: the solar flux on the eastern wall

• Φi: the internal gains (occupancy, lights...) on the air node

• P : the heating power on the air node

• T : the indoor temperature.

6.2.3 Model reduction

The high-order model is now reduced with the same method as in §5.3.1. In this

case, the order of reduction for the two systems is 5. In Table 6.2, the various time

constants of the considered models are reported. One shall notice that these thermal

building models clearly have three well-separated time scales [Kha02]. Interestingly,

it shall be noticed that the building E has a slowest time constant much bigger than
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the other. This phenomenon is due to the fact that the thermal mass of the part of

the wall between the air node and the insulation is greater for the building E than

for building I.

Building I Building E

2 min 8 s 1 min 42 s

Time 27 min 21 s 16 min 23 s

constants 2 H 36 min 48 min

10 H 30 min 9 H 30 min

212 H 357 H

Table 6.2: Value of the time constants of the two reduced models.

In the following, we use the classical linear state space representation for the

reduced models

ẋ(t) = Ax(t) +BP (t) + d(t) (6.1)

T (t) = Cx(t) (6.2)

where x is the state of the reduced model (dimension 5 vector), T is the output,

d lumps the influence of the outside temperature, the solar fluxes and the internal

gains on the heating of the house, and P is the control variable.

6.3 Scenario of optimization

6.3.1 Weather data and occupancy period

The employed weather data are actual measurements of external temperature, direct

and indirect solar fluxes of the year 1991 in the city of Trappes in France. For

this study, one is only interested in the heating period which starts on the 1st of

November and ends at the end of March. The reason for this is that, with well

insulated buildings, it is usually considered that no heating is needed after the 10th

of March. The time horizon of optimization is then of 137 days.

This scenario of optimization includes a period of vacancies, between the 25th

of December and the 1st of January, where the inhabitants leave the house.

6.3.2 Constraints

6.3.2.1 Indoor temperature constraints

The temperature constraints are the following

• T ≤ 26 ◦C between 6 a.m. and 10 p.m.

• T ≤ 23 ◦C otherwise

• T ≥ 12 ◦C during the one week holiday period
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• T ≥ 19 ◦C otherwise.

To simplify the notations, we write these temperature constraints as follows:

T−(t) ≤ T (t) ≤ T+(t) (6.3)

with Ṫ−(t) = Ṫ+(t) = 0 almost everywhere.

6.3.2.2 Control constraint

The control constraint is the following

0 ≤ P (t) ≤ 3 kW

To simplify the notations in the algorithm, we write the control constraint as follows

0 ≤ P (t) ≤ P+ (6.4)

6.4 Methodology

The objective is to evaluate the efficiency of these low-consumption buildings to

shift a certain amount of energy from day to night. We proceed by solving the

following state and input COCP

min
P

∫ Tf

0
f(t)P (t)dt

where the weight factor f(t) is

f(t) = Fday between 6 a.m. and 10 p.m.

f(t) = Fnight otherwise

This formulation aims at minimizing the cost of electricity for the dynamics (6.1)-

(6.2) under the constraints (6.3)-(6.4). Naturally, it is expected that the amount

of shifted energy will be related to the ratio Fday/Fnight. For both buildings a

collection, indexed by the ratio Fday/Fnight, of COCPs is solved. The higher this

ratio, the more energy will be shifted from the day to the night period.

This problem is solved for both buildings with the following values of the ratio

Fday/Fnight

Fday/Fnight ∈ {1 ; 1.2 ; 1.5 ; 3 ; 5 ; 10}

6.5 Algorithm

To solve the collection of COCPs, we use the interior-point algorithm described in

Chapter 3. Each COCP in the collection is addressed using a sequence of penalized
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unconstrained OCPs. In this example, the change of variables yielding an uncon-

strained formulation is the same as in equation (5.5) P = P+ ekν

1+ekν and therefore

the cost to minimize is

min
ν

∫ Tf

0
f(t)φ(ν(t))dt

with the dynamics and the state constraint T (t) ∈ [T−(t), T+(t)] seen above. In

this example, the adjoint vector p satisfies the following differential equation

dp

dt
(t) = −Atp(t) − εCt

[

γ′g(Cx(t) − T−(t)) − γ′g(T
+(t) − Cx(t))

]

where γ′g is explicitly defined in equation (5.4.2). According to the methodology

exposed in §3.5.1, the solving algorithm is the following:

Step 1: Initialize the functions x(t) and p(t) such that the initial unknown Cx(t) ∈

(T−(t), T+(t)) for all t ∈ [0, Tf ], and set ε = ε0. Simply, p can be chosen

identically equal to zero at first step.

Step 2: Compute ν∗ε (t) = sinh−1
(

−f(t)+pt(t)B
ε

)

1. Thus, the optimal solution P ∗
ε (t) =

φ(ν∗ε (t)) is given using equation (5.5) with k = 1.

Step 3: Solve the two point boundary value problem































dx(t)

dt
= Ax(t) +BP ∗

ε (t) + d(t)

P ∗
ε (t) = φ

(

asinh

(

−
f(t) + pt(t)B

ε

))

dp(t)

dt
= −Atp(t) − εCt

[

γ′g
(

Cx(t) − T−
)

− γ′g
(

T+ − Cx(t)
)]

with the following boundary constraints x(0) = x0 and p(Tf ) = 0.

Step 4: Decrease ε, initialize x(t) and p(t) with the solutions found at Step 3 and

restart at Step 2.

In our case, the sequence (εn) has been chosen such that εn = 10−
n
10 with n =

0 · · · 40.

6.6 Results

6.6.1 Influence of the Fday/Fnight ratio on indoor temperature

We now discuss the obtained numerical results. As expected, as the ratio Fday/Fnight

increases, more energy is shifted from the day period to the night time. To satisfy

the indoor temperature constraints, substantial overheatings of the house during

1Defining the Hamiltonian H as follows H(x, ν, p) = fφ(ν) + pt(Ax + Bφ(ν) + d) +

ε (γg ◦ g(x) + γu ◦ φ(ν)), ν∗ε is the solution of ∂H
∂ν

= 0 where we chose γ′
u ◦ φ(ν) , sinh(ν).
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night time are, unfortunately, necessary. On Figures 6.1 and 6.2, the averaged

temperature over one day is displayed for the two buildings under consideration.

First, one can see that the averaged temperature over the heating season at

6 a.m. is all the higher as the ratio Fday/Fnight increases. This phenomenon is

natural because, to minimize the thermal loss during the day period, the indoor

peak of temperature must be achieved at 6 a.m., i.e. at the beginning of the day

period.

Moreover, one can see that the mean overheating of the building E is lower than

the one of the building I. The averaged temperature over the whole heating season

(leaving out holidays) are given in Table 6.3 for the two buildings and for each value

of the ratio.

ratio=1 ratio=1.2 ratio=1.5 ratio=3 ratio=5 ratio=10

Building I 19.31 19.35 19.60 19.93 20.00 20.07

Building E 19.21 19.32 19.46 19.56 19.60 19.62

Table 6.3: Mean temperature over the whole heating season except holidays for the

two considered building for each value of the ratio Fday/Fnight.
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Figure 6.1: For the building I, the average temperature over one day is displayed

for various values of the ratio Fday/Fnight. Temperature at 6 a.m. increases with

the ratio.

On Figures 6.3 and 6.4, the time histogram of the indoor temperature is given

for both buildings during the night period, i.e. between 10 p.m. and 6 a.m. When

minimizing the energy consumption (ratio=1), one can see that the indoor temper-

ature of the building I does not exceed 21.5◦C while it does not exceed 20.5◦C for
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Figure 6.2: For the building E, the average temperature over one day is displayed

for various values of the ratio Fday/Fnight. Temperature at 6 a.m. increases with

the ratio.

building E. On Figure 6.3 (building I) one can see that for values of the ratio supe-

rior to 1.5 the cumulated time spent with a night overheating superior to 22.5◦C is

large whereas the cumulated time spent with a night overheating between 20.5◦C

and 22.5◦C is not. This phenomenon does not happen for building E as shown

on Figure 6.4. This is probably a striking advantage of building E compared to

building I. This confirms that, in order to shift energy from the day period to night

period, the building I generates a larger overheating than the building E.

6.6.2 Influence of the Fday/Fnight ratio on the heating power

On Figures 6.5 and 6.6, the averaged power is displayed for the two buildings

under consideration. First, when minimizing energy consumption (ratio=1) one

can see that 47% of the total amount of consumed energy is consumed during the

day period in both cases. Accordingly with the discussion in §6.6.1, one can see

that, as the ratio Fday/Fnight increases, the average power at the end of the night

period (between 4 a.m. and 6 a.m.) increases. Moreover, one can see that for a

ratio superior or equal to 3, the mean power during the day period is almost equal

to zero, i.e. the total load shifting from the day period is almost complete. In

addition, as observed in §6.6.1, the average temperature at the end of the night
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Figure 6.3: For the building I the histogram of the indoor temperature during night

time is given for various values of the ratio Fday/Fnight. Building I is relatively

uncomfortable when the load-shifting strategy is employed.

period is higher for the building I than for the building E. Concerning the mean

power, the opposite phenomenon appears : the mean power for the building E is

higher than for the building I. This phenomenon is due to the upper temperature

constraint. Indeed, Figure 6.3 shows that during the night period, the indoor

temperature of the building I is close to 23◦C during a significant cumulated time.

Thus, an increase of the heating power would induce an overheating superior

to 23◦C which is forbidden. But on Figure 6.4, whatever the ratio, the indoor

temperature never gets close to 23◦C which allows a larger use of heating power

without inducing a forbidden overheating.

6.6.3 Influence of the Fday/Fnight ratio on the energy consumption

On Figure 6.7 for the two buildings and each value of the price ratio, the total

amount of consumed energy versus the amount of energy consumed during the day

period is reported. First, minimizing energy (ratio=1) shows that the building I

consumes less energy than the building E (727 kWh vs 758 kWh). This difference

is mostly due to the management of the holiday period and a detrimental effect of

thermal inertia of building E. Indeed as described in §6.3.2, the minimal tempera-

ture constraints drops to 12◦C during the holiday period. Thus, to reach 19◦C at

the end of the holiday period, the restarting of the heating has to be anticipated.
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Figure 6.4: For the building E the histogram of the indoor temperature during night

time is given for various values of the ratio Fday/Fnight. Building E is relatively

comfortable when the load-shifting strategy is employed.
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Figure 6.5: Building I. Average heating power over one day for various values of

the ratio Fday/Fnight, using the optimal load shifting from day to night.

Since the building E has a thermal mass higher than the building I, its heating

restarting occurs 22 hours before the one of building I, which causes the difference
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Figure 6.6: Building E. Average heating power over one day is displayed for various

values of the ratio Fday/Fnight, using the optimal load shifting from day to night.

of energy consumption. But, this difference in energy consumption does not exceed

6 kWh between the two buildings when withdrawing the holiday period. Also, as

expected, the increase of the ratio Fday/Fnight induces an increase of the global

energy consumption compared to the reference case where the ratio is equal to 1

because the mean indoor temperature is higher than in the reference case. The

percentages of overconsumption are given in Table 6.4 for the two buildings and

each value of the ratio.

ratio=1 ratio=1.2 ratio=1.5 ratio=3 ratio=5 ratio=10

Building I 0% 1.64% 8.27% 19.39% 24.29% 27.24%

Building E 0% 3% 7.45% 13% 14.85% 15.8%

Table 6.4: Percentage of total energy consumption increase for each building for in-

creasing values of Fday/Fnight compared to the reference case where Fday/Fnight = 1.

On Figure 6.8, the percentage of energy shifted from the day period (compared

to the reference case where Fday/Fnight = 1) is displayed as a function of the ratio

for the two buildings. First, one can see that, for a value of the ratio Fday/Fnight

superior to 3, the two buildings shift more than 90% of their consumption from

the day to the night period. A value of 10 for the ratio yields a shifting of 98.9%

and 99.7% of the energy consumed during the day period by the buildings I and

E respectively. This figure highlights that building E is more sensitive to the ratio

Fday/Fnight than building I. Indeed, using the same value of the ratio, the percentage
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Figure 6.7: Total consumed energy as a function of day time energy consumption.

Building E is all the more efficient compared to building I as the ratio Fday/Fnight =

1 is increased.

of energy shifted from the day period of the building E is always higher than the

percentage of the building I.

6.6.4 Efficiency of the heating load shifting from day to night

In the previous section, we have seen that the low-consumption buildings under

consideration are able to shift almost all the heating consumption from day to

night. To fully characterize this ability in shifting the load to the night period one

has to compute the efficiency of these shiftings. First, let us define the following

variables

Eαn,r = Optimal amount of energy consumed during the night period by

the building α with Fday/Fnight=r

Eαd,r = Optimal amount of energy consumed during the day period by

the building α with Fday/Fnight=r

For the building α with Fday/Fnight = r, we define the efficiency of the load

shifting as follows

ηαr ,

∣

∣

∣

∣

∣

Eαd,1 − Eαd,r
Eαn,1 − Eαn,r

∣

∣

∣

∣

∣

On Figure 6.9, for each building, the efficiency of the load shifting versus the amount

of energy shifted from the day period is displayed. The efficiency to shift almost all
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Figure 6.8: Normalized percentage of energy shifted from day to night as a function

of the ratio Fday/Fnight = 1.

the energy consumption to night period is of 66% for the building I and of 77% for

the building E. Also, for example, if we wish to work with an efficiency of 85%, it

is possible to shift around 50% of the day energy consumption to the night period

for the building I and around 90% of this energy for the building E.

It is noticeable that even if the two buildings are efficient in handling long daily

load shiftings, the building E is much more efficient than building I. Insulating

the concrete core of the building from the exterior increases its thermal mass and

therefore its inertia. So, once a set point temperature is reached, the temperature

variations around this set-point temperature are really slow. As seen in Section

6.6.3, it might increase the need of anticipation (switching from a set-point to

another) but also yields improved flexibility and a higher efficiency.

6.7 Conclusion

In this chapter, we have used our methodology to solve state and input COCPs

for low-consumption building heating problems. These type of problems are an

efficient way to study the dynamical properties (such as the ability to perform load

shiftings) of energetic systems.

We have shown that well insulated buildings can be heated only during night

time (10 p.m. to 6 a.m.) while maintaining a certain level of comfort and therefore
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Figure 6.9: Efficiency of the load shifting as a function of the percentage of energy

shifted from day to night. Relatively high level of efficiency can be achieved only

with building E.

have the ability to reduce the electric thermal sensitivity in a country like France.

In turn, CO2 consumption of electricity production in France during night time

being very low (40 g/MW), this heating strategy makes the electric heating a low

CO2 emitter.

We have also shown that the construction method influences the performances of the

load shiftings both in comfort for the inhabitants and in global efficiency. Indeed,

insulating the concrete core from the exterior allows the load shiftings to be more

comfortable by limiting the need of over-heating and, additionally, significantly

increases their global efficiency, e.g. it is possible to shift 90% of energy from the

day period to the night time with an efficiency above 85%.
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[HT11] T. Haberkorn and E. Trélat. Convergence results for smooth regular-

izations of hybrid nonlinear optimal control problems. SIAM Journal

on Control and Optimization, 49(4):1498–1522, 2011.



Bibliography 75

[JLW03] T. Jockenhövel, T. B. Lorenz, and A. Wächter. Dynamic optimiza-
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réduites des systèmes thermiques complexes. PhD thesis, Ecole Na-

tionale Supérieure des Mines de Paris, 1995.

[LS99] F. Leibfritz and E. W. Sachs. Inexact SQP interior point methods and

large scale optimal control problems. SIAM Journal on Control and

Optimization, 38:272–293, 1999.

[LWR67] L. Lasdon, A. Waren, and R. Rice. An interior penalty method for

inequality constrained optimal control problems. IEEE Transactions

on Automatic Control, 12:388–395, 1967.

[MCPF10] P. Malisani, F. Chaplais, N. Petit, and D. Feldmann. Thermal building

model identification using time-scaled identification methods. 49th

IEEE Conference on Decision and Control, pages 308–315, 2010.



76 Bibliography

[MG86] R. H. Middleton and G. C. Goodwin. Improved finite word length

characteristic in digital control using delta operators. IEEE Transac-

tions on Automatic Control, 1C-31(1):1015–1021, 1986.

[MGB12] P. Martinon, V. Grélard, and F. Bonnans. BOCOP v1.03 user guide,

2012.

[NW99] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

[PBGM62] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.

Mishchenko. The mathematical theory of optimal processes. Inter-

science Publishers John Wiley & Sons, Inc. New York, London, 1962.

[PMM01] N. Petit, M. Milam, and R. Murray. Inversion based constrained tra-

jectory optimization. IFAC Symposium on Nonlinear Control Systems

Design, 2001.

[PS90] B. Peuportier and I.B. Sommereux. Simulation tool with its expert

interface for the thermal design of multizone buildings. International

Journal of Sustainable Energy, 8(2):109–120, 1990.

[PWMK07] M. A. Piette, D. Watson, N. Motegi, and S Kiliccote. Automated criti-

cal peak pricing field tests: 2006 pilot program description and results.

Tech. rept. Ernest Orlando Lawrence berkeley national laboratory,

2007.

[RF04] I. M. Ross and F. Fahroo. Pseudospectral knotting methods for solving

nonsmooth optimal control problems. AIAA Journal of Guidance,

Control and Dynamics, 27, 2004.

[RS72] S. Roberts and J. Shipman. Two-point boundary value problems :

shooting methods. American Elsevier, 1972.
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neufs ou les parties nouvelles de bâtiments, 2011.
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Appendix A

Technical description of electric

appliances playing a role in

active demand response

A.1 Electric heating

An electric heating device can be a dynamical system itself, for example, an electric

storage heater, or can be considered as a static system but coupled with a dynamical

system such as the building.

A.1.1 Convector heaters

The principle of this device consists in letting cool air in at the bottom of the

convector to heat it with an electrical resistance. Then by convection, the air

comes out from the superior part of the device. Each equipment can efficiently heat

15 to 20 m2 rooms in which the ceiling is not too high. Because of their important

heat emission by convection, these systems lead to a higher stratification1 compared

to other systems, i.e. temperature rises with height up to 1.2◦C per meter in old

buildings and up to 0.5◦C in well insulated buildings [BBCI97, DS11]. Heating

powers generally range from 750 to 2000 watts. For those systems, the part of heat

emitted by radiation usually reaches 5 to 10% [BBCI97, DS11].

Generally, the dynamics of this equipment is considered as instantaneous (neg-

ligible) compared to that of the building in which it is installed and is therefore not

taken into account in establishing optimization models.

A.1.2 Radiative heaters

This type of heating is made of a heating unit, which releases an important part of

heating, by radiation (approximately 40% according to [BBCI97]). The inertia of

these systems (the total mass varies from 7 to 20 kg depending on the model) can

be slightly superior to that of electric convectors.

A.1.3 Storage heaters

As opposed to the previous systems, the inertia of this type of systems is not

negligible towards the building dynamics. Indeed, since these systems can be made

1Gradient of temperature depending on the height.
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of refractory bricks of high density or granite crush or even lava, they have a very

important thermal capacity.

This heating system allows for a heating storage in thermal form on an intraday

horizon. For example, they allow the customer to buy electricity at night, to store

it as heat, and to restore it during the day. As indicated in [DS11], two types of

storage heaters exist: static storage heaters and dynamical storage heaters.

A.1.3.1 Static storage heaters

These devices store heat using electrical resistances. The heat release is only static,

non-controllable.

A.1.3.2 Dynamical storage heaters

For this type of devices, the heat release can be accelerated using a fan that is

installed in the inferior part of the system. The fan allows the cool air to circulate

inside the storage heater and thus to increase the heat release of the device by

convection.

A.1.4 Heat pumps

A heat pump is a thermodynamical device allowing a heat transfer from a cold

source to a hot source thanks to a refrigerated device, generally a compression

mechanism. This refrigerated device is made of at least the four following elements:

• Compressor: the compressor is first going to pump the low-pressure low-

temperature refrigerant gas. The mechanical energy provided by the com-

pressor is going to raise the pressure and temperature of the refrigerant gas.

• Condenser: the condenser is a heat exchanger in which are circulating both

the exterior fluid to heat (air or water) and the refrigerant fluid. The hot gases

transmit their heat to the exterior fluid to heat: it is the phase of desuper-

heating of the high-pressure gases up until condensation. This condensation

temperature is superior to the exterior fluid temperature.

• Expansion device: the liquid formed into the condenser shifts from high-

pressure to low-pressure. This shifting occurs in an expansion valve or in

a capillary aperture. During this shifting, a slight formation of gas occurs.

This happens with no exchange with the exterior whatsoever: no heat nor

mechanical energy.

• Evaporator: at a low-pressure, the equilibrium temperature liquid-steam is

lower than the temperature of the exterior fluid. The evaporator is a heat

exchanger in which circulate both the refrigerant fluid from the expansion

valve, and the exterior fluid (air or water) from which heat is derived (air or

water). The liquid refrigerant fluid from the expansion valve then starts to boil
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in the evaporator by absorbing heat from the exterior fluid. The compressor

then sucks up the gas for another cycle.

Air/water heat pumps stand for the majority of models installed in France. This

type of heat pump can be installed for heating (some installations exist with and

without storage tank, according to the inertia of water loop of the system) or

for heating and domestic hot water (with storage tank). They are cheaper than

other types of water heat pumps, but their coefficient of performance (COP) is

inferior because of lower temperatures from the heat source, and because they

need a defrosting system or an auxiliary heating system when the COP is poor

(sometimes these systems are also equipped with electric resistance).

A.2 Domestic hot water with storage tank

In the residential sector, domestic hot water (DHW) stands for approximately 13%

of electricity consumption. DHW systems with storage tank can be made of a

vertical and horizontal cylinder. The water is heated with an electric resistance.

This resistance is generally located at the centre of a vertical cylinder, but the

cylinder can also possess resistances installed horizontally or even possess several

resistances. With the heating, there is a stratification effect (convection), which

means that hot water goes up while colder water remains down. The hot water is

then removed from the superior part and the cold water comes through the inferior

part of the reservoir.

The heat provided can also be produced, in recent models, by a thermody-

namical cycle (thermodynamical tank or heat pump), where the heat is no longer

provided by a resistance but by an exchanger.

A.3 Electrical storage

The battery is often integrated to a photovoltaic generator. The battery can be

used to shift the solar energy production to synchronize it either with the local

consumption or with the requirements of the grid. The battery can also be charged

from the grid and thus participate to the intraday smoothing of the load curve.





Appendix B

Examples of energy

optimization

B.1 PV shifting

B.1.1 Model

PV (t) = collected photovoltaic power

r(.) = efficiency

As for the battery, here are the following used notations

Cmax = 3.2 : battery capacity kWh

x(t) : battery state of charge in kWh

Pmax = 2.2 : maximal power of the battery (charge and discharge) in kW

u1(t) : percentage of power directly sold

u2(t) : discharge power

Later on we will use the following variable

Ppv(t) , min{Pmax, PV (t)}

Thus, Ppv(t) stands for the power that can be potentially stored in the battery.

Indeed, the part of the power superior to 2 kW is directly sold on the grid. Now,

the dynamical equation of the battery is as follows

ẋ(t) = 0.95(1 − u1(t))Ppv(t) − u2(t) −
x(t)

100

B.1.2 Optimal control problem

The optimal control problem to solve is

max
u1,u2

∫ T

0
price(t)

[

PV (t) − (1 − u1(t))Ppv(t) + 0.95u2(t)

]

dt
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under the constraints

x(t) ∈ [0, Cmax]

u1(t) ∈ [0, 1]

u2(t) ∈ [0, Pmax]

x(0) = 2

x(T ) = 2

B.1.3 Results

Figure B.1 displays the price of electricity per kWh over one week. Figures B.2 and

B.3 respectively display the photovoltaic power injected in the battery ((1−u1)Ppv)

and the optimal discharge power (u2). Figure B.4 represents the optimal charge of

the battery (x) over one week.
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Figure B.1: Price of electricity per kWh over one week.

B.2 Electricity pricing efficiency

B.2.1 Model of the HWB storage tank

B.2.1.1 Modeling

The hot water boiler (HWB) model is a two layer model yielding a state vector of

dimension 2

xhwb(t) =

(

x1
hwb(t)

x2
hwb(t)

)
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Figure B.2: Collected photovoltaic power (Ppv) and photovoltaic power fed into the

battery ((1 − u1)Ppv) over one week.
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Figure B.3: Optimal power of discharge (u2) over one week.

where x1
hwb (resp. x2

hwb) is the temperature of the lower layer (resp. high). Finally,

we find the following state equation

ẋhwb(t) = A(xhwb(t), ṁ(t))xhwb(t)+BPuisu2(t)+BTef(xhwb(t), ṁ(t))Twi+BTambTroom

(B.1)
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Figure B.4: Optimal state of charge of the battery over one week. The charge

values must range from 0 to 3kWh. The conditions at the level of the edges are

x(0) = x(T ) = 2.

where u2(t) is the electric power consumed by the storage tank, ṁ(t) stands for

the extraction of hot water from the storage tank, Twi is the temperature of the

water input, Troom is the temperature of the room where the HWB is stored. These

temperatures are chosen as follows

Twi = 12◦C, Troom = 19◦C

The matrices A(xhwb(t), ṁ(t)) and BTef(xhwb(t), ṁ(t)) are matrices whose coeffi-

cients are non-linear continuous functions of xhwb(t) and ṁ(t). For confidentiality

reasons, we do not give additional informations on this model.

B.2.2 Building model

The model of the building used for this example corresponds to the model n̊ 2 from

Table 5.1 after balanced reduction of order 4.

{

ẋbui = Axbui(t) +Bu1(t) + d(t)

Tbui(t) = Cxbui(t)
(B.2)

B.2.3 Optimal control problem

The optimal control problem is the following

min
u2,u1

[
∫ T

0
price(t) (u2(t) + u1(t)) dt

]
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with

price(t)

{

1.5 between 6 a.m. and 11 p.m.

1 otherwise

Under the dynamical constraints (B.1) and (B.2), under the following control con-

straints

u1 ∈ [0, 20 kW]

u2 ∈ [0, 2.2 kW]

and the following state constraints

Cxbui ∈

{

[14, 22] between 9 a.m. and 4 p.m.

[20, 22] otherwise

x2
hwb ∈

{

[57, 62] between 5 a.m. and 6 a.m.

[20, 62] otherwise

B.2.4 Results

Figures B.5 and B.6 respectively represent the heating optimal power for the build-

ing (u1) and the heating optimal power for HWB (u2) over one week.

Figures B.7 et B.8 respectively represent the optimal indoor temperature (Tbui) and

the optimal temperatures of the two layers of the HWB storage tank (xhwb) over

one week.
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Figure B.5: Optimal heating power on the air node over one week.
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Figure B.6: Optimal heating power of HWB over one week.
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Figure B.7: Optimal indoor temperature over one week.
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Figure B.8: Optimal temperatures of the two layers of the HWB over one week.





Appendix C

Proofs of some results of

Chapter 3

C.1 Proof of Proposition 2

From Assumption 1, there exists two closed ball BN and BM such that

BN ⊂ C ⊂ BM

with strict inclusions. We define N > 0 (resp. M > 0) as the radius of the ball BN
(resp. BM ).Now, if u = 0, then GC(u) is well defined and is equal to 0. We now

assume that u 6= 0. Then

N
u

‖u‖
∈ C

because it has norm N ; as a consequence u ∈ ‖u‖
N

C which proves that GC(u) is well

defined and upper bounded by ‖u‖
N

. This proves property a) and the right hand

side inequality of (3.4).

On the other side, if u 6= 0 then

M
u

‖u‖
/∈ C

because its norm is M . As a consequence u /∈ ‖u‖
M

C, and u /∈ λC if λ ≤ ‖u‖
M

. Then,

GC(u) is lower bounded by ‖u‖
M

; this also holds if u = 0. This end the proof of

property b).

The positive homogeneity of the gauge is trivial; since it is sub-additive [Sch78],

it is convex. The continuity comes from the fact that it is convex and lower and

upper bounded in the neighborhood of any point. This proves properties c) and d).

The Dini derivative at 0 is obtained by observing that GC(0) = 0 and that
GC(hd)

h
= GC(d) if h > 0. We see that there exists a directional derivative at 0 along

the direction d if and only if the Dini derivatives along the directions d and −d

are equal, which is equivalent to the intersection of C with the line directed by d

being symmetrical with respect to 0. This proves property e). Note that, if this

symmetry holds for all directions, then the gauge function is a norm.

Let us prove property f ). Since the boundary is continuously differentiable,

there exists a continuously differentiable function ϕ : Rm 7→ R such that ∂C =

{u s.t. ϕ(u) = 0}. For all u ∈ R
m \ {0}, λu ∈ ∂C ⇔ g(u, λ) , ϕ(λu) = 0. In

the following, for any u ∈ Rm \ {0}, we consider λ such that g(u, λ) = 0. From
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the convexity of C and since 0 belongs to the interior of C, one has ∂g
∂λ

(u, λ) =<

∇ϕ(λu), u >6= 0 for all u ∈ Rm \ {0}. Using the implicit function theorem, there

exits (−α, α) ⊂ R and U a neighborhood of u and a C1 function h : U 7→ (−α, α)

such that ∀µ ∈ (λ − α, λ + α) and ∀v ∈ U g(v, µ) = 0 ⇔ µ = h(v) = GC(v).

Therefore GC is C1 on Rm \ {0}. This proves f ).

Let us now prove property g). We first verify easily that u ∈ C if and only if

GC(u) ≤ 1 because C is closed [Sch78]. Moreover, for any u 6= 0, the intersection of

C with the half axis directed by u is the segment
[

0, u
GC(u)

]

because C is closed and

GC(u) > 0 [Sch78]. As a consequence GC(u) = 1 implies that u is in the boundary

of C. Conversely, if GC(u) = 1 − 2α with α > 0, since GC is continuous, there

exists a neighborhood V of u where GC(u) ≤ 1 − α. For all elements v ∈ V , the

intersection of C with the half-axis directed by v contains
[

0, v
1−α

]

. This implies the

existence of a neighborhood of u that is included in C, and hence that u is interior

to C. Similarly, if GC(u) > 1, u /∈ C, one shows the existence of a neighborhood V of

u and of α > 0 such that the intersection of C with the half-axis directed by v ∈ V

is included in
[

0, v
1+α

]

. Therefore, u belongs to the exterior of C. A consequence

of all this is that the boundary of C is exactly defined by GC(u) = 1, its interior by

GC(u) < 1, and its exterior by GC(u) > 1. This ends the proof.

C.2 Proof of Proposition 6

The result is trivial if α = 0. We now assume α > 0. From Proposition 1 and from

the continuous differentiability of the gi, there exists a constant Γ such that, for all

u ∈ U and any s, t in [0, T ]

|gi(x
u(t)) − gi(x

u(s))| ≤ Γ|t− s| (C.1)

Let α ∈ (0, α0] and u ∈ U \ X strict. Then, there exists an index i for which gi(x
u)

reaches 0 in [0, T ]. Remember that gi(x0) = −α0 < 0. Denote by t2 the first instant

at which gi(x
u) = 0 and t1 = max{s < t2 s.t. gi(x

u(s)) = −α ∈ [−α0, 0)}. From

equation (C.1), we have

α = gi(x
u(t2)) − gi(x

u(t1)) ≤ Γ|t2 − t1| = Γ(t2 − t1)

As a consequence, we have (t2 − t1) ≥ α/Γ. Then, we have

−α ≤ gi(x
u(s)) ≤ 0 ∀s ∈ [t1, t2]

and hence µgi
(u, α) ≥ t2 − t1 ≥ α/Γ. This concludes the proof.

C.3 Proof of Proposition 9

To exhibit an upper bound on the variation of the cost, this variation is split into

three additive terms, bounding respectively the variation of the original cost, of the

integral of the state penalty, and the integral of the control penalty.
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Define M = maxiMi. From §3.2.2.1, one readily sees that

‖u− v‖L1 ≤ 2αMµu(α)

We now proceed to establish bounds for the various terms.

C.3.1 Upper bound on the variation of the original cost

Here, an upper bound on |
∫ T

0 ℓ(xv, v) − ℓ(xu, u)dt| is exhibited. It is noted Kℓ.

From Proposition 1, there exist Λ ≥ 0 such that

Kℓ ≤ Λ

∫ T

0
‖xv − xu‖L∞+ ‖ v(t) − u(t) ‖ dt ≤ Λ [CT + 1] ‖v − u‖L1

≤ Λ[CT + 1]2αMµu(α)

Define Ul = Λ(CT + 1)2M ; then

Kl ≤ Ulαµu(α) (C.2)

C.3.2 Upper bound on the variation of the state penalty

Note Kγg , ε
∑q

i=1

∫ T

0 γg ◦ gi(x
v) − γg ◦ gi(x

u)dt. Because γg is increasing, the

integrand is positive only when gi(x
v(t)) ≥ gi(x

u(t)). Yet, from the construction of

v in (3.9), one has maxi gi(x
v(t)) ≤ −β0 for all t ∈ [0, T ]. Using the convexity of

γg, and the fact that gi is Lipschitz with constant Kg on Xad, one obtains

Kγg ≤ ε

q
∑

i=1

∫

gi(xv(t))≥gi(xu(t))
γg ◦ gi(x

v) − γg ◦ gi(x
u)dt

≤ ε

q
∑

i=1

∫

gi(xv(t))≥gi(xu(t))
|gi(x

u(t)) − gi(x
v(t))|γ′g(gi(x

v(t)))dt

≤ εq

∫ T

0
Kg‖x

u − xv‖∞γ
′
g(−β0)dt

≤ εqTKgC‖u− v‖L1γ′g(−β0)

≤ εqTKgCγ
′
g(−β0)2αMµu(α) (C.3)

Define

Ug(ε) = εqTKgCγ
′
g(−β0)2M

then, we have

Kγg ≤ Ug(ε)αµu(α)
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C.3.3 Upper bound on the variation of the control penalty

There, we aim at getting a negative variation so that, as a whole, the cost is

decreased when replacing u by v.

Define

Ku , ε

p
∑

i=1

∫ T

0
γu(GCi

(vi(t))) − γu(GCi
(ui(t)))dt.

From the construction of v (3.9), we know that GCi
(vi(t)) ≤ GCi

(ui(t)). Since

γu is non decreasing, this proves that the integral is negative or null. Moreover,

since ui = vi when GCi
(ui) < 1 − αi, we have

Ku = ε

p
∑

i=1

∫

GCi
(ui)≥1−αi

γu(GCi
(vi(t))) − γu(GCi

(ui(t)))dt

Using the convexity of γu, one has

Ku ≤ −ε

p
∑

i=1

∫

GCi
(ui)≥1−α

‖ GCi
(vi) −GCi

(ui) ‖L∞ γ′u(GCi
(vi(t)))dt

= −ε

p
∑

i=1

∫

GCi
(ui)≥1−α

‖ GCi
(vi) −GCi

(ui) ‖L∞ γ′u [(1 − 2α)GCi
(ui(t))] dt

≤ −ε

p
∑

i=1

∫

GCi
(ui)≥1−α

‖ GCi
(vi) −GCi

(ui) ‖L∞ γ′u [(1 − 2α)(1 − α)] dt

≤ −ε

p
∑

i=1

∫

GCi
(ui)≥1−α

‖ GCi
(vi) −GCi

(ui) ‖L∞ γ′u(1 − 3α)dt

≤ −ε

p
∑

i=1

∫

GCi
(ui)≥1−α

2α ‖ GCi
(ui) ‖L∞ γ′u(1 − 3α)dt

≤ −ε

p
∑

i=1

∫

GCi
(ui)≥1−α

2α(1 − α)γ′u(1 − 3α)dt

= −ε

p
∑

i=1

µui
(α)αγ′u(1 − 3α)

≤ −εαγ′u(1 − 3α)µu(α) (C.4)

C.3.4 An upper bound on K(u2, ε) − K(u1, ε)

Gathering equations (C.2,C.3,C.4) we obtain

K(v, ε) −K(u, ε) ≤ α
[

Uℓ + Ug(ε) − εγ′u(1 − 3α)
]

µu(α)

This concludes the proof of Proposition 9. One can see that the variation is negative

for α small enough if γ′u(1 − α) tends to +∞ when α tends to 0.
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C.4 Proof of Proposition 10

Let us define f : B‖.‖(0, 1) 7→ int(C) as

f(ξ) =











0 if ξ = 0

‖ξ‖

GC(ξ)
ξ otherwise

The differentiability of the function f on Rm \ {0} stems from the differentiability

of both ‖.‖ and GC . The continuity at 0 stems from (3.4). Its inverse is given by

the following function

f−1(ξ) =







0 if ξ = 0

GC(ξ)
ξ

‖ξ‖
otherwise

Similarly, the differentiability of the function f−1 on Rm \ {0} stems from the

differentiability of both ‖.‖ and GC . The continuity at 0 stems from (3.4).

Using equation (3.15), the function

φ(ν) , f ◦ ψ(ν) = tanh(‖ ν ‖) [GC ◦ ψ(ν)]−1 tanh(‖ ν ‖)
ν

‖ ν ‖

= tanh2(‖ν‖) [GC ◦ ψ(ν)]−1 ν

‖ν‖

maps Rm into int(C). This mapping being the composition of two homeomorphism

not differentiable only in 0, φ is a homeomorphism differentiable everywhere except

at 0. The inverse function σ : int(C) 7→ R
m is the following:

σ(u) , ψ−1 ◦ f−1(u) = atanh(GC(u))
u

‖ u ‖

This concludes the proof.
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Identification of building models

D.1 Introduction

According to ( [FVLA02], [GDP02],[JMA08]), low order linear models form a good

set of models to describe the general thermal behavior of buildings. But, as has

been stressed in [JM08], these models can give quite good results on prediction

errors while providing poor estimates of the building physical characteristics. This

is a serious problem in the presented context of optimal control (especially under

constraints) which requires good estimates of poles, zeros and static gains.

Usually, such bad performances can be the result of a bad conditioning of the

identification optimization problem. For the three identification methods presented

here, these optimizations are formulated as quadratic problems, and the condition is

the conditioning of the excitation matrix (or matrices).1It is related to the sensitivity

of the solution of Ax = b with respect to variations of A or b.

Ill conditioning of the excitation matrix(ces) can be the result of insufficient

frequency content in the input data; it can be also related to near collinearity

of the state and future input subspaces [CP04]. However, it has been proved in

[CAEA96] that, even for inputs which are rich enough in the frequency domain, the

excitation matrix of two time scaled systems (such as low consumption buildings) is

asymptotically degenerate as the ratio between the large and small time constants

of the system tends to the infinity. Identifying these systems locally in the frequency

domain removes these degeneracy problem.

It should be noted that, in the last two or three decades, time scales have been

largely associated to wavelet transforms. Wavelets can be used in several ways in

dynamical systems identification. The first usage is for data filtering. Indeed, we

could use wavelet transforms to separate frequency bands in the data. However,

if one sticks to the popular dyadic transforms, one is limited to time scales which

are equal to powers of 2. More classical low-pass and high-pass filters are more

flexible, and quite sufficient for our purpose. The other usage is to model the system

directly in the wavelet domain. Characterization of finite dimensional systems in

this domain have been studied in ([BBW92a] , [BBW92b]). Reference [SKD08]

covers a similar topic. A limitation is that these processes are hardly (or even not

at all) related to classical (rational) Linear Time Invariant (LTI) systems. The most

visible reason for this is that the transforms from the time domain to the wavelet

1We recall that, for the L2 norm, the condition number [SB93] of a matrix A is the ratio between

the largest and the smallest eigenvalues of ATA.
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domain and back are not causal; therefore it seems unlikely that operations in the

wavelet domain can be turned into causal operations in the time domain.

The purpose of this Appendix is to compare the performance of a classical

ARX identification procedure to two variants of the two time scaled identification

(see [CAEA96]), for the purpose of modeling a low consumption building with a

second order model. The difference with [CAEA96] is that we are never in the

model matching case. The performance is considered both in terms of simulation

error with respect to a high order model, and in robustness with respect to data

corruption.

This Appendix is organized as follows.

In Section D.2, we describe the plant we wish to identify, and define various data

sets that will be used for that purpose. For comparison purposes, we introduce here

data sets where each input generates a separate output; actually, we currently have

access to the sum of these outputs, that is, the temperature inside the building.

It is interesting to consider this possibility because it gives more information on

the system, and we wish to evaluate the benefits of having access to that extra

information.

In Section D.3, we describe the various model classes within which we will look

for a model, and how we parameterize them with a finite set of numbers. This

where we introduce two time scaled models. We detail how the parameters of a

model class are related to the parameters of another one.

In Section D.4, we define the various optimization problems which, with the

parameterizations of D.3 and the data sets of Section D.2, will define how the

various parameters used in the model classes are obtained from the data sets. The

definition of these optimization problem are important because the plant does not

match any model of any class of Section D.3. Indeed, the output data is generated

by a LTI system of order 47 (possibly corrupted with noise), whereas we are looking

for a model of order 2. Therefore the choice of the optimization problems greatly

influences the determination of the system parameters.

In Section D.5 we compare the results obtained in terms of static gains identi-

fication, statistical properties of simulation errors, conditioning of the optimization

problems and poles and zeros locations. This is done using various data sets, mod-

els, and model parameterizations. These results are interpreted in the light of

simulation accuracy and robustness with respect to data corruption.

In Section D.6, we conclude on the results and show the substantial efficiency

of the time scaled method in terms of simulation errors and robustness of the

parameters identification to noises.

D.2 Plant and data

Our desired goal is to obtain a low-order thermal model of a one-area building

describing the general behavior of the internal temperature depending on several

inputs. We need those models to optimally control the heating of a building under
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constraints. We shall use a high order (47th) linear system as the “true” input-

output mapping. This high-order model is a spatial discretization of the heat equa-

tion in the building.

The inputs and output and listed in Table D.1. The control of this system is a

part of the last input, together with human activities. We consider a person to be a

constant input of 100W and we also know the heat provided by the devices inside the

house. For identification purposes, we use inputs which are an average of chronicles

Output input

External temperature

Solar flux on the floor

Internal temperature Solar flux on the walls

Heating flux on the air node

Table D.1: Input-output.

over several decades. These data are experimentally measured weather histories

sampled with a period of one hour over one year; due to their poor time-resolution

it is likely that these signals are not well shaped to perform a good identification

(see [CP04]).

The knowledge of the building’s geometric shape and its orientation, allows us

to generate the input of the system. These preliminary transformations are non-

linear, and because a linear model is sought after, one cannot directly use the

measured data but the transformed data to perform the identification. These non-

linear transformations are described in [SZ09]. The output is then computed by

simulation using a LTI model of order 47 which accounts for the three-dimensions

geometry of the building.

This data set the noise free data. By contrast, we will call noisy data the

same data set to which we add noise independently on each input and output.

The noises on each signal are Gaussian white noises of standard deviation equal

to one thirtieth of the standard deviation of the signal. Because the signals are

not stationary it represents a quite strong noise on the signals. For instance, this

represents a standard deviation of .3̊ C on a temperature measurement, which is a

realistic value for a temperature sensor. This signal/noise ratio is consistent with

real application.

In addition, we shall use another data set, which we call separated output data

set. It is obtained by separating (in simulation) the influence of each input within

the internal temperature. This gives much more information on the plant behavior.

We shall also allow ourselves to corrupt the data with independent noises; in this

case, the data set will be called noisy separated output.
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D.3 Model classes and parameterization

It is well known (see [LM95]) that the system detailed in Section D.2 can be ef-

ficiently represented by a second order linear model. This can be done in several

manners, which we now discuss.

D.3.1 Classical ARX model

This is the classical LTI model with rational transfer function. The order here is two.

We have restricted our study to strictly proper transfer. This model class, together

with the chosen parameterization (see equation (D.1)), has been found to represent

the best trade-off between robustness and simulation accuracy in numerical results.

The parameterization is given by (see [Lju87])

y[k] + a1y[k − 1] + a2y[k − 2] =
4
∑

i=1

bi1ui[k − 1] + bi2ui[k − 2] (D.1)

with i = 1, . . . , 4, and where the models parameters are

a1, a2, b11, . . . , b14, b21, . . . , b24.

D.3.2 Two Time scale transfer

The difference with the previous model class (see equation (D.1)) is the introduction

of a parameter ε≪ 1 which represents the ratio between the ”slow” and the ”fast”

time scales. Specifically, the transfer is expressed as

Tε(s) = Tf (s)Ts(
s

ε
) (D.2)

Ts and Tf are slow and fast transfer functions independent of ε. Thermal models

are known to be two time scale and, then, can be represented by the equation (D.2)

(see [LK85]).

For a given ε, the model class is the same as the ARX; however, it suggests a

different parameterization and an adequate handling of each time scale. To do so,

the following definition is needed:

Definition 5 We define the fast transfer τf (s) and the slow transfer τs(s) as follows

lim
ε→0

T (iω) = Ts(i∞)Tf (iω)
def
= τf (iω) (D.3)

lim
ε→0

T (iεω) = Ts(iω)Tf (i0)
def
= τs(iω) (D.4)

Observe that, as ε goes to zero, the slow and the fast transfer keep a similar magni-

tude if and only if the slow transfer is biproper as defined in [Kai80]. As suggested

by Definition 5, Tε behaves like τs in the low frequencies and like τf in the high

frequencies. For a given ε, we can recover Tε from τs and τf if the static gain of the

fast transfer is equal to the high frequency gain of the slow transfer.
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If some knowledge of a frequency that separates the two parts of Tε in the

frequency domain is available, we can design a low-pass pre-filter Fl and a high-

pass pre-filter Fh from which the following model class and parameterization are

defined:

Definition 2 The two time scale model class for the filters Fl and Fh are described

in transfer form by

Fly = τsFlu (D.5)

Fhy = τfFhu (D.6)

For a given Tε the orders of τs and τf are given by definition 5. These two transfers

are parameterized linearly as in the ARX class and are subject to the constraint that

|τs(i∞)| = |τf (0)| (D.7)

Several observations can be made

• a suitable change of time scale in the differential operator, as suggested by

(D.4), makes (D.6) independent of ε.

• for a finite ε, a system with transfer Tε does not satisfy (D.5,D.6). How-

ever, there is a one-to-one correspondence between the parameters of Tε and

the parameters of τs and τf when (D.7) holds. This is essentially similar to

the correspondence of the linear parameterization of ARX models and their

gain/poles/zeros description.

• if one uses a classic least square method to identify Tε, the excitation matrix,

i.e. the Hessian of the cost, is asymptotically degenerate as ε tends to zero

[CAEA96]. Therefore this method is not robust for small ε.

• it has been proven in [CAEA96] that, if one considers the classical L2 predic-

tion error as cost for the models (D.5,D.6), then its minimum tends to zero

when ε tends to zero if (y, u) satisfy y = Tεu. Further, the limit excitation

matrix is non-degenerate.

In the experiments carried-out on the discussed thermal model, it has been observed

that the poles given by the ARX identification provide a good indication of the value

of the cutting frequency that should used to design the low and high pass pre-filters

(see eq. (D.5) and (D.6)). Figure D.1 shows the amplitude Bode plot of the high

order model for the heating control, and its value when multiplied by the low-pass

and high-pass pre-filters Fl and Fh, respectively used in the following numerical

experiments. The filters are Butterworth filters.

D.4 The parametric identification problems

Here, we define optimization problems to perform the identification of the param-

eters for each model class. Some emphasis is put on the difference between the

separated and non separated output data sets.
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Figure D.1: Global and pre-filtered heating transfers. The right part of the plot,

where the slope goes back to -1, is irrelevant to the identification because the data

sample rate makes it disappear.
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D.4.1 Global ARX model

Using (D.1), we minimize the L2 norm of the prediction error, as defined by the

difference between the two sides of (D.1). In practice, we use MATLAB ARX

routine to determine optimal coefficients.

D.4.2 Two time scales identification with a global measurement of
the inside temperature

D.4.2.1 Parameterization

The number of poles and zeros of each transfer function has to be set. Since we

want a model of order two, we chose a model Tε with two poles, with one pole in

τs and one pole in τf . The third pole that is visible in Figure D.1 is irrelevant

because its time constant is significantly faster than the sampling rate. As in

Section D.3.2, the method requires a slow zero. A fast zero could be considered

too. This one is visible in Figure D.1. It turns out that, for the data set where the

global inside temperature is measured, the best trade-off between robustness and

simulation accuracy is achieved by including a fast zero in the fast transfers. Thus

the parameterization for the slow and fast models are

τs(t) =
1

s + α

(

k1s + z1, · · · , k4s + z4

)

(D.8)

τf (t) =
1

βs + 1

(

ρ1s + p1, · · · , ρ4s + p4

)

D.4.2.2 The identification problem

To perform the identification, we follow the two following steps

• Step 1 : Use of high-pass and low-pass pre-filtering data for which the ap-

proximations as given by Definition 5 are as accurate as possible.

• Step 2 : Perform separate identifications of τn and τs under the constraint

that

|τsi(i∞)| = |τfi(i0)| (i = 1 · · · 4) (D.9)

Let ys(t) and us(t) (resp. yf (t) and uf (t) =
(

us1(t) · · · us4(t)
)

) be the low-

pass (resp. high-pass) filtered data, then the corresponding differential equations

are given by

d

dt
ys(t) + αys(t) =

4
∑

i=1

ki
d

dt
usi(t) + ziusi(t) (D.10)

β
d

dt
yf (t) + yf (t) =

4
∑

i=1

ρi
d

dt
ufi(t) + piufi(t) (D.11)
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Using finite differences we obtain, using usual discrete-time notations,

yk+1
s − yks

∆s
+ αyks =

4
∑

i=1

ki
uk+1
si − uksi

∆s
+ ziu

k
si (D.12)

β
yk+1
f − ykf

∆f
+ ykf =

4
∑

i=1

ρi
uk+1
fi − ukfi

∆f
+ piu

k
fi (D.13)

where ∆s and ∆f are rescaling parameters chosen to improve the conditioning of the

problem by adapting the finite difference to the considered time scale (see [MG86]).

Note that in (D.12) the sampling rate may be smaller than ∆s since ys has been

pre-filtered by a low pass filter.

The problem is linear with respect to the parameters so it is convenient to

use a least squares method to identify the two transfer matrices. Moreover, this

parameterization of the transfer matrix allows to write the constraints linearly with

respect to the parameters as shown in (D.14)

νT = νTs − νTf =
(

k1 − p1, · · · , k4 − p4

)

= 0 (D.14)

where the parameters ki, pi are appearing in the equations (D.10), (D.11), (D.12)

and (D.13).

D.4.2.3 Problem statement

We can now formulate an optimization problem. Given a set of data, the problem

is to find the parameters vectors θs =
(

k1 · · · k4 z1 · · · z4 α
)

and θf =
(

p1 · · · p4 ρ1 · · · ρ4 β
)

, corresponding to the parameters from the equations

(D.10), (D.11), (D.12) and (D.13), by solving the following problem

min
θs, θf
ν = 0

Js(θs) + Jf (θf ) (D.15)

where Js(θs) (resp. Jf (θf )) is the least squares cost of the slow (resp. fast) matrix

transfer given by

Js(θs) =
1

M

M
∑

1

ε̂2
s[k, θs]

Jf (θf ) =
1

M

M
∑

1

ε̂2
f [k, θf ]

where

ε̂2
s[k, θs] =

yk+1
s − yks

∆s
− ϕs[k]θs

ε̂2
f [k, θf ] = ykf − ϕf [k]θf
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ϕs[k] =
(uk+1

s1 − uks1
∆s

, · · · ,
uk+1
s4 − uks4

∆s
· · ·

uks1, · · · , uks4,−yks

)

ϕf [k] =
(

ukf1, · · · , ukf4,
uk+1

f1 −uk
f1

∆f
, · · · ,

uk+1
f4 −uk

f4

∆f
· · ·

−
yk+1

f
−yk

f

∆f

)

In [CAEA96] it has been proved that, if the real transfer is indeed Tε, the minimum

of (D.15) is asymptotically reached (as ε tends to zero) by the parameters corre-

sponding to the slow and fast transfers. Moreover, the Hessians of Js and Jf are

not degenerate when ε tends to zero.

D.4.2.4 Problem solving

While this is not a requirement, we chose to solve problem (D.15) with Uzawa

algorithm (see [AHU72]). Its main feature is that, at the minimization stage, each

subproblem is very similar to an identification problem on the relevant frequency

range, (see [Lju87]), in the sense that the Hessian of the inner optimization problem

is a matrix that contains the signals covariance. Moreover, the gradient step of the

maximization problem is adapted to each constraint.

D.4.3 Two time scales identification with a separation of the in-
fluences of each input

Using a data set which is different from the data set used in the previous section

leads to a different tradeoff between accuracy and robustness. Indeed, we have

observed that for separated outputs it was best to make some of the fast zeros

“vanish” from the parameterization.

D.4.3.1 Parameterization

Even if using the two time scaled method to identify the system allows a clear im-

provement of the results in terms of simulation errors and parameters identification,

as compared to the classical least squares method, an even better identification can

be achieved. One explanation is that the system has four inputs and just one out-

put. These inputs are really poorly balanced and some of them do not excite the

system in an appropriate frequency range. For instance, the solar fluxes are almost

perfectly 24 hours-periodic signals. Therefore, it is difficult to clearly identify the

influence of these inputs on the temperature inside the building. That is why in

this part we now separate the influence of each input on the temperature. Instead

of identifying a transfer matrix we identify four separate transfer functions. This

method is referred to as the separated time scaled method.Because we look for a
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second order model we have to impose that the four slow (resp. fast) transfer share

the same poles.

Observe that, even if the model class may appear similar to the one in Section

D.4.2 (once the equality of the poles in the four transfers is duly accounted for),

the cost that we will minimize in (D.23) is not the same as in (D.15), because we

add four prediction error costs.

In other words, the sum of the excitation matrices of four signals is different

from the excitation matrix of the sum of these four signals.

In this case, we have four transfer functions Ti(s) = Tsi(s/ε)Tfi
(s) (i = 1 · · · 4).

Each transfer can be decomposed into a fast and a slow transfer as mentioned in

Definition 5. We now separately identify the four slow (resp. fast) sub-systems in

their own time scale under the following constraints :

• for each transfer function the high frequency gain of the slow system must be

equal to the static gain of the fast system (|τsj(i∞)| = |τfj(i0)| j = 1 · · · 4)

• the fast (resp. slow) sub-systems share the same poles.

To perform the identification, we follow the two following steps

• Step 1 : use of high-pass and low-pass pre-filtering data for which the approx-

imations as given by definition (5) are accurate.

• Step 2 : perform separate identifications of τn and τs under the constraint

that |τsj(i∞)| = |τfj(i0)| (j = 1 · · · 4) and that the transfer functions τsj
(resp. τfj) share the same poles.

Let ysi(t) and usi(t) (resp. yfi(t) and ufi(t)) be the low-pass (resp. high-

pass) filtered simulations data of the ith transfer function, then the corresponding

differential equations are given by a slow subsystem

d

dt
ysi(t) + αiysi(t) = ki

d

dt
usi(t) + ziusi(t) (i = 1 · · · 4)

and a fast subsystem

βi
d

dt
yfi(t) + yfi(t) = piufi(t) (i = 1 · · · 3) (D.16)

β4
d

dt
yf4(t) + yf4(t) = ρ4

d

dt
uf4(t) + p4uf4(t)

This model class has been found to achieve the best trade-off between robustness

and simulation accuracy. In particular, deleting the zeros in (D.16) achieves the

best trade off between robustness and simulation accuracy.
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Using finite differences we have, using the same notations employed in Section

D.4.2

yk+1
si − yksi

∆si
+ αiy

k
si = ki

uk+1
si − uksi

∆si
+ ziu

k
si (D.17)

(i = 1 · · · 4)

βi
yk+1
fi − ykfi

∆fi
+ ykfi = piu

k
fi (i = 1 · · · 3) (D.18)

β4

yk+1
f4 − ykf4

∆f4
+ ykf4 = ρ4

uk+1
f4 − ukf4

∆f4
+ p4u

k
f4 (D.19)

Once again, the constraints can be expressed linearly with respect to the pa-

rameters. Actually, the constraints of the identification problem are :

αi − αi+1 = 0, i = 1 · · · 3 (D.20)

βi − βi+1 = 0, i = 1 · · · 3 (D.21)

ki − pi = 0, i = 1 · · · 4 (D.22)

Thus, the vector of constraints ν = νs− νf is given by the concatenation of the ten

equalities given by (D.20), (D.21) and (D.22).

D.4.3.2 Problem statement

Given a set of data, the problem is to find the four parameters vectors θsi =
(

ki zi αi
)T

, the three θfi =
(

pi βi
)T

(i = 1 · · · 3) and θf4 =
(

p4 ρ4 β4

)T

by solving the following problem

min
θsi, θfi
ν = 0

4
∑

i=1

Jsi(θsi) + Jfi(θfi) (D.23)

where Jsi(θsi) (resp. Jfi(θfi)) is the least squares cost of the ith slow (resp. fast)

transfer function.

Jsi(θsi) =
1

M

M
∑

1

ε̂2
si[k, θsi]

Jfi(θfi) =
1

M

M
∑

1

ε̂2
fi[k, θfi]
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where

ε̂2
si[k, θsi] =

yk+1
si − yksi

∆si
− ϕsi[k]θsi

ε̂2
fi[k, θfi] = ykfi − ϕfi[k]θfi

ϕsi[k] =
(

uk+1
si −uk

si

∆si
uksi −yksi

)

ϕfi[k] =
(

ukfi −
yk+1

fi
−yk

fi

∆fi

)

(i = 1 · · · 3)

ϕf4[k] =
(

ukf4

uk+1
f4 −uk

f4

∆f4
−
yk+1

f4 −yk
f4

∆f4

)

D.4.3.3 Problem solving

Here again, we use Uzawa algorithm to solve this problem.

D.5 Numerical results

D.5.1 Conditioning of the problems

To perform a robust parameter identification, the Hessian of the optimization prob-

lem has to be well conditioned (see [Lju87]). Yet, a two-time scaled system usually

induces bad conditioning (see [CAEA96]). The time scaled identification has been

designed to improve the conditioning of the optimization problem. For the classical

least squares method there is one conditioning number, while there are two condi-

tioning numbers for the time-scaled method (one for the slow transfer matrix and

one for the fast one), and there are eight conditioning numbers for the separated

time scaled method (one for each subsystem). The conditioning numbers are given

in the Table D.2. We use everywhere data without noise corruption resulting from

the high order model (see section D.2).

least squares Time scaled Separated

identification identification time scaled

rs1 = 0.0011

rs2 = 0.00083

rs3 = 0.00078

conditioning rLS = 2.6/1010 rs = 1.4/108 rs4 = 0.0016

numbers rf = 1.4/109 rf1 = 0.043

rf2 = 0.013

rf3 = 0.037

rf4 = 0.020

Table D.2: Conditioning numbers.

As one can see it on Table D.2, the separated time scaled method improves the

conditioning of the problem. But, we can also see that using a non separated time
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scaled method does not improve the conditioning numbers as well as the previous

method. Having separated outputs provides extra information on the system as we

have virtually three extra sensors.

The bad conditioning of the least squares method (ARX) is highly problematic

because the results of the identification are very poor, in simulation results and

in parameter identification. Concerning the non separated time scaled method, in

the following, we will see that, despite the bad conditioning of the system, this

method yields better results in simulation and in parameter identification than the

least squares method. On the other side, it will be seen that this method fails to

estimate the location of the zeros of the system, particularly when the identification

is performed using noisy data.

Finally, we can see that the separation of the transfers allows us to normalize

the problem and then to improve the conditioning numbers. As a result, this

method is really robust with respect to noises and consistent results2 in parameter

identification are obtained wether noisy or noise free data are used.

D.5.2 Simulation results

D.5.2.1 Simulation protocol

This protocol is decomposed in four steps:

1. Using noise free input data described in Section D.2 and using the high order

model, we get the four noise free corresponding outputs.

2. Then, we perform a first identification using the previous data.

3. Further, we add independent noises on the inputs and the outputs collected

from the first step. Then, we perform three identifications using this noisy

data and the three identification methods.

4. Finally a validation step is performed. We simulate all the models from 2 and

3 using noise free inputs to obtain the global temperature of the building. We

compare these temperature to the global output of step 1. The Table D.3

gives some statistical properties of the simulation error between the global

temperature from the high order model and the global temperature of each

of the six identified models.

D.5.2.2 Results

Figure D.2 shows the errors of simulation between the high order reference model

and the three identified systems, the latter being identified using noisy data. These

simulations are performed using noise free inputs over 25 days. As can be seen in

Figure D.2 the ARX model identified using MATLAB’s identification toolbox does

not give good results in terms of simulation errors. Moreover, one can see in Figure

2This comparison is made with noises which have the same statistical properties.
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D.2 that the standard deviation of the simulation error seems to be better with the

separation of the influences of the inputs than without.
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Figure D.2: Comparison of simulations errors using noise free data obtained with

the three identified models which have been identified using noisy data.

Stat. Least squares Time scaled Separated

prop. identification identification time scaled

Noise free Mean −0.0989 −0.0024 −0.0088

data std dev 0.93 0.35 0.266

Noisy Mean 0.0461 0.0021 −0.0045

data std dev 0.641 0.49 0.34

Table D.3: Comparison of statistical properties of the simulation error with respect

to the noise free simulation using the high order model.

Using noise free data The Table D.3 shows some statistical properties of the

simulation errors of the three identified systems. Considering the identification

using noise free data, one can see that the best results are obtained by the time-

scaled methods. Indeed, the statistical properties of the simulation error obtained

with the time scaled methods are similar. One can also notice that the worst results

are clearly obtained with the ARX model.

Using noisy data Let us focus on the identification using noisy data. one can

see that the best results are again achieved with the time-scaled methods. One

can also observe that the deterioration of the standard deviation is less important
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when we separate the influences of the input than with a global measurement of

the temperature. We can also notice that even if the ARX model is still the worst,

the addition of noises has clearly improved its performances.

D.5.2.3 Conclusion

One can see that using a time scaled method allows a good improvement of the

results in terms of simulation error. The comparison between the least squares

method and the time scaled method shows that the results are better using the

latter.

D.5.3 Static gains, poles and zeros identification

Concerning poles and zeros, we give, in Tables D.6 ,D.7 and D.8 the correspond-

ing time constants. Those time constants are calculated using the discrete model

provided by equations (D.1), (D.12), (D.13), (D.17), (D.18) and (D.19)

D.5.3.1 Static gains identification

Let us see the results of the three identification on the static gains

High order least squares Time scaled Separated

model identification identification time scaled

Gain 1 1 0.903 1.0013 1.0004

Gain 2 0.0088 0.0058 0.0089 0.0088

Gain 3 6.75 · 10−5 5.68 · 10−4 5.48 · 10−5 6.75 · 10−5

Gain 4 0.009 0.0125 0.009 0.009

Table D.4: Comparison of the identified static gain using noise free data.

High order least squares Time scaled Separated

model identification identification time scaled

Gain 1 1 0.959 1.0008 1.0007

Gain 2 0.0088 0.006 0.0088 0.0088

Gain 3 6.75 · 10−5 5 · 10−4 6.73 · 10−5 6.75 · 10−5

Gain 4 0.009 0.0107 0.009 0.009

Table D.5: Comparison of the identified static gain using noisy data.

As one can see on the Table D.4 and Table D.5, using a time-scaled identification

method yields a substantial improvement compared to the classical least squares

method. In fact, the classical least squares method never correctly estimates the

static gains whereas the time-scaled methods estimate the gains of the transfer

matrix adequately.
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Moreover, the separation of the influences of each input allows one to reach

the same accuracy using noisy or noise free data, whereas the others methods give

better results using noisy data.

D.5.3.2 Time constants and zeros location

Time constants identification. Table D.6 reports the identified time constants

using noisy and noise free data. We can see that with and without noises the

identification of the two time constants of the system are similar using the time-

scaled methods, whereas the ARX model provides time constants quite different of

the other models. Since the simulation results are better with the models identified

by time scaled methods, one can suppose that the time constants are well identified

by these methods.

least squares Time scaled Separated

identification identification time scaled

Noise free Slow 117 143 147

data Fast 1.1 2.5 2.9

noisy Slow 108 144 147

data Fast 1.2 2.4 2

Table D.6: Identified time constant in hours.

Zeros time constants Table D.7 and Table D.8 give the zeros time constants of

each transfer using respectively noise free and noisy data to perform the identifica-

tion. As one can see on these tables, the only method yielding a weak dispersion

of the identified parameters is the time scaled identification with separation of the

influences of the inputs. Moreover, using Moore’s method to reduce the system does

not keep the two time scaled structure of the system. Indeed, looking at the Bode

diagram of the reduced system, one can notice that the two time scaled structure

exhibited by both the high order model and the identified one is not preserved by

the reduced one.

D.5.3.3 Conclusion

The least squares method does not really identify static gains, time constants and

zeros of the system, the time scaled method with global measurement allows us

to identify the static gains and the time constants, but shows poor results in the

identification of the zeros. Finally, the time-scaled method with separation of each

inputs allows to identify all these parameters with robustness to noises.
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least squares Time scaled Separated

identification identification time scaled

First Slow zero 7.8 14.8 24

Transfer Fast zero None 4.6 None

Second Slow zero 2.1 9.9 5.1

Transfer Fast zero None 0.85 None

Third Slow zero 1.65 197† 11.1

Transfer Fast zero None 0.44 None

Fourth Slow zero 9.99 21.3 24.9

Transfer Fast zero None 0.051† 0.76

Table D.7: Identified zeros location using noise free data. The † symbol means

that the zero has been found to be unstable.

least squares Time scaled Separated

identification identification time scaled

First Slow zero 5.3 15.5 23.2

Transfer Fast zero None 4.4 None

Second Slow zero 2.8 9.9 5.2

Transfer Fast zero None 1.1 None

Third Slow zero 1.9 116† 11.6

Transfer Fast zero None 0.023† None

Fourth Slow zero 11.2 22.6 24.3

Transfer Fast zero None 0.019† 0.44

Table D.8: Identified zeros location using noisy data. The † symbol means that

the zero has been found to be unstable.

D.6 Conclusion

In this Appendix, it was shown that using a time-scaled identification method (see

[CAEA96]) allows a substantial improvement of the model identification compared

to a classical least squares method, in terms of prediction error and of parameters

sensitivity to measurement noises. It was also emphasized that to clearly identify

a time-scaled system it is needed to find a good compromise between simulation

error and robustness to noise. The time-scaled method allows a great improvement

in the search of this compromise compared to the least squares method.
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Nevertheless, it has been observed that the identification of the zeros of the

system is too sensitive to the noises using that method. To improve the conditioning

of the system the inputs and the output should be normalized. Using a separation of

the influences of each input is a solution. Then, it has been shown that separating

the influences of the inputs and using a time scaled method can provide a good

compromise between identification error and robustness toward noises since the

results obtained with or without noises are quite similar.

In summary, this work proposes an efficient method, based on a two time scale

models to identify a low order linear model describing the thermal behavior of the

system. This efficiency is measured in terms of simulation errors and in terms of

robustness of the parameters identification to noises. This is due to the normaliza-

tion of the two time scale problems, both in magnitude of the signals and in their

frequency range. The model obtained by this method can be used in simulation

and it can also be used in constrained optimal control since the parameters are well

identified.
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Pilotage dynamique de l’énergie du bâtiment par commande optimale

sous contraintes utilisant la pénalisation intérieure.

Résumé : Dans cette thèse, nous proposons une méthode de résolution de

problèmes de commande optimale non linéaires sous contraintes d’état et de com-

mande. Cette méthode repose sur l’adaptation des méthodes de points intérieurs,

utilisées en optimisation de dimension finie, à la commande optimale. Un choix

constructif de fonctions de pénalisation intérieure est fourni. On montre que

ce choix permet d’approcher la solution d’un problème de commande optimale

sous contraintes en résolvant une suite de problèmes de commande optimale sans

contraintes dont les solutions sont simplement caractérisées par les conditions de

stationnarité du calcul des variations. Deux études dans le domaine de la gestion de

l’énergie dans les bâtiments sont ensuite conduites. La première consiste à quantifier

la durée maximale d’effacement quotidien du chauffage permettant de maintenir la

température intérieure dans une certaine bande de confort, et ce pour différents

types de bâtiments classés de mal à bien isolés. La seconde étude se concentre sur

les bâtiments basse consommation (BBC) et consiste à quantifier la capacité de ces

bâtiments à réaliser des effacements électriques complets du chauffage de 6h00 à

22h00.

Mots clés : Commande optimale, points intérieurs, contraintes d’état et de com-

mande, effacements électriques, bâtiments BBC, isolation extérieure-intérieure.

Dynamic control of energy in buildings using constrained optimal

control by interior penalty

Abstract: This thesis exposes a methodology to solve state and input constrained

optimal control of non-linear systems by interior penalty methods. A constructive

choice for the penalty functions used to implement the interior method is exhib-

ited. It is shown that the methodology allows one to approach the solution of the

non-linear optimal control problem using a sequence of unconstrained problems,

whose solutions are readily characterized by the simple calculus of variations. Two

representatives study of energy management in buildings are conducted using the

provided algorithm. The first study consists in quantifying the maximal duration

of daily complete load shiftings achievable by several buildings ranging from poorly

to well insulated. The second study focuses on low consumption buildings and aim

at quantifying the ability of these buildings to perform complete load shiftings of

the heating consumption from the day (6 a.m. to 10 p.m.) to the night period.

Keywords: Optimal control, interior point methods, state and input con-

straints, load shiftings, interior/exterior insulation, low consumption build-

ings.
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