F. Hamdan and P. Dowling, Fluid???structure interaction: application to structures in an acoustic fluid medium, part 1: an introduction to numerical treatment, Engineering Computations, vol.12, issue.8, pp.749-758, 1995.
DOI : 10.1108/02644409510733769

D. Hartwanger and A. Horvat, 3D modeling of a wind turbine using CFD, NAFEMS Conference, 2008.

D. Trimarchi, D. Turnock, S. R. Chapelle, and D. Taunton, Fluid-structure interactions of anisotropic thin composite materials for application to sail aerodynamics of a yacht in waves, 12th Numerical Towing Tank Symposium, pp.173-178, 2009.

H. Zhao and S. Pierson, Simulation of automotive exhaust noise using fluid structure interaction, altair engineering, 2009.

J. Leung, A. Wright, N. Cheshire, J. Crane, S. Thom et al., Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models, BioMedical Engineering OnLine, vol.5, issue.1, p.33, 2006.
DOI : 10.1186/1475-925X-5-33

S. Deparis, M. A. Fernandez, and L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.601-616, 2003.
DOI : 10.1051/m2an:2003050

URL : https://hal.archives-ouvertes.fr/hal-00705114

F. Chouly, A. Van-hirtum, P. Lagrée, J. Paoli, X. Pelorson et al., Simulation of the Retroglossal Fluid-Structure Interaction During Obstructive Sleep Apnea, Lecture notes in computer science, vol.4072, pp.48-57, 2006.
DOI : 10.1007/11790273_6

URL : https://hal.archives-ouvertes.fr/hal-00082252

M. Souli, A. Ouahsine, and L. Lewin, ALE formulation for fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.5-7, pp.5-7, 2000.
DOI : 10.1016/S0045-7825(99)00432-6

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.3, pp.471-492, 2008.
DOI : 10.1051/m2an:2008013

URL : https://hal.archives-ouvertes.fr/hal-00297711

P. Persson, J. Peraire, A. A. Amsden, and J. L. Cook, Curved mesh generation and mesh refinement using lagrangian solid mechanics An Arbitrary Lagrangian-Eulerian computing method for all speeds, Journal of Computational Physics, vol.14, pp.227-253, 1974.

T. J. Hughes, W. K. Liu, and T. Zimmerman, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.29, issue.3, pp.239-249, 1981.
DOI : 10.1016/0045-7825(81)90049-9

J. Donea, S. Giuliani, and J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.689-723, 1982.
DOI : 10.1016/0045-7825(82)90128-1

L. and A. Moudid, Couplage Fluide-Structure pour la simulation numérique des écoulements fluides dans une conduite à parois rigides ou élastiques, en présence d'obstacle ou non, 2008.

D. Benson, An efficient, accurate, simple ale method for nonlinear finite element programs, Computer Methods in Applied Mechanics and Engineering, vol.72, issue.3, pp.305-350, 1989.
DOI : 10.1016/0045-7825(89)90003-0

M. Souli, A. Ouahsine, and L. Lewin, ALE formulation for fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.5-7, pp.659-675, 2000.
DOI : 10.1016/S0045-7825(99)00432-6

R. Van-loon, P. D. Anderson, F. N. Van-de-vosse, and S. J. Sherwin, Comparison of various fluid???structure interaction methods for deformable bodies, Computers & Structures, vol.85, issue.11-14, pp.833-843, 2007.
DOI : 10.1016/j.compstruc.2007.01.010

A. Legay, T. Chessa, and J. Belytschko, An Eulerian???Lagrangian method for fluid???structure interaction based on level sets, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.305-334, 2008.
DOI : 10.1016/j.cma.2005.02.025

P. H. Saksono, W. G. Dettmer, and D. Peri?, An adaptive remeshing strategy for flows with moving boundaries and fluid???structure interaction, International Journal for Numerical Methods in Engineering, vol.70, issue.9, pp.1009-1050, 2007.
DOI : 10.1002/nme.1971

A. Gerstenberger and W. A. Wall, An eXtended Finite Element Method/Lagrange multiplier based approach for fluid???structure interaction, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.19-20, 2008.
DOI : 10.1016/j.cma.2007.07.002

W. A. Wall, A. Gerstenberger, P. Gamnitzer, and U. Mayer, Advances in fixedgrid fluid structure interaction, Computational methods in applied sciences, vol.14, pp.235-249, 2009.

W. A. Wall, A. Gerstenberger, P. Gamnitzer, C. Förster, and E. Ramm, Large Deformation Fluid-Structure Interaction ??? Advances in ALE Methods and New Fixed Grid Approaches, Lecture Notes in Computational Science and Engineering, vol.53, pp.195-232, 2006.
DOI : 10.1007/3-540-34596-5_9

D. Sternel, M. Schäfer, M. Heck, and S. Yigit, Efficiency and accuracy of fluidstructure interaction simulations using an implicit partitioned approach, Computational mechanics, vol.13, issue.1, pp.103-113, 2008.

R. Garg, N. C. , and S. S. , A numerically convergent Lagrangian???Eulerian simulation method for dispersed two-phase flows, International Journal of Multiphase Flow, vol.35, issue.4, pp.376-388, 2009.
DOI : 10.1016/j.ijmultiphaseflow.2008.12.004

A. Legay and A. Tralli, An Euler-Lagrange enriched finite element approach for fluid-structure interaction, European Journal of Computational Mechanics, vol.16, issue.2, pp.145-160, 2007.

A. Zilian and A. Legay, The enriched space???time finite element method (EST) for simultaneous solution of fluid???structure interaction, International Journal for Numerical Methods in Engineering, vol.90, issue.3, pp.305-334, 2008.
DOI : 10.1002/nme.2258

URL : https://hal.archives-ouvertes.fr/hal-01371129

C. S. Peskin, The immersed boundary method, Acta Numerica, vol.11, pp.479-517, 2002.

R. Glowinski, T. Pan, T. Helsa, and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

R. Glowinski, T. Pan, T. I. Helsa, D. D. Joseph, and J. Periaux, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.
DOI : 10.1006/jcph.2000.6542

J. Hart, G. Peters, P. Schreurs, and F. Baaijens, A three-dimensional computational analysis of fluid???structure interaction in the aortic valve, Journal of Biomechanics, vol.36, issue.1, pp.103-112, 2003.
DOI : 10.1016/S0021-9290(02)00244-0

Z. Yu, A DLM/FD method for fluid/flexible-body interactions, Journal of Computational Physics, vol.207, issue.1, pp.1-27, 2005.
DOI : 10.1016/j.jcp.2004.12.026

R. Van-lon, P. Anderson, and F. Van-de-vosse, A fluid???structure interaction method with solid-rigid contact for heart valve dynamics, Journal of Computational Physics, vol.217, issue.2, pp.806-823, 2006.
DOI : 10.1016/j.jcp.2006.01.032

B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid-structure interaction using space-time finite elements, Computer Methods in Applied Mechanics and Engineering, vol.193, pp.23-26, 2004.

E. Walhorn, A. Kölke, B. Hübner, and D. Dinkler, Fluid???structure coupling within a monolithic model involving free surface flows, Computers & Structures, vol.83, issue.25-26, pp.2100-2111, 2005.
DOI : 10.1016/j.compstruc.2005.03.010

J. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-647, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/hal-00694625

C. Michler, E. H. Van-brummelen, and R. De-borst, An interface Newton-Krylov solver for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.192, issue.10-11, pp.10-11, 2005.
DOI : 10.1002/fld.850

URL : http://repository.tue.nl/656357

M. A. Fernández and M. Moubachir, A Newton method using exact jacobians for solving fluid???structure coupling, Computers & Structures, vol.83, issue.2-3, pp.127-142, 2005.
DOI : 10.1016/j.compstruc.2004.04.021

W. A. Wall, S. Genkinger, and E. Ramm, A strong coupling partitioned approach for fluid???structure interaction with free surfaces, Computers & Fluids, vol.36, issue.1, pp.139-183, 2007.
DOI : 10.1016/j.compfluid.2005.08.007

P. Caussin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.4506-4527, 2005.
DOI : 10.1016/j.cma.2004.12.005

C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7, pp.1278-1293, 2007.
DOI : 10.1016/j.cma.2006.09.002

M. Razzaq, Finite Element Simulation Techniques for Incompressible Fluidstructure Interaction with Applications to Bio-engineering and Optimization, Der fakultät für mathematik der technischen universität, 2011.

S. R. Idelsohn, J. Marti, A. Limache, and E. Onate, Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid???structure interaction problems via the PFEM, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1762-1776, 2008.
DOI : 10.1016/j.cma.2007.06.004

C. Förster, Robust methods for fluid-structure interaction with stabiliseed finite elements, 2007.

H. Digonnet, L. Silva, and T. Coupez, Cimlib: A Fully Parallel Application For Numerical Simulations Based On Components Assembly, AIP Conference Proceedings, 2007.
DOI : 10.1063/1.2740823

H. Digonnet and T. Coupez, Object-oriented programming for ???fast and easy??? development of parallel applications in forming processes simulation, Second MIT Conference on Computational Fluid and Solid Mechanics, pp.1922-1924, 2003.
DOI : 10.1016/B978-008044046-0.50471-1

URL : https://hal.archives-ouvertes.fr/hal-00531577

E. Hachem, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method, International Journal for Numerical Methods in Fluids, vol.2, issue.3, pp.99-121, 2012.
DOI : 10.1002/fld.2498

URL : https://hal.archives-ouvertes.fr/hal-00549730

E. Hachem, H. Digonnet, N. Kosseifi, M. Massoni, and T. Coupez, Immersed volume method for solving natural convection, conduction and radiation of a hatshaped disk inside a 3d enclosure, International Journal of Numerical Methods for Heat and Fluid Flow, vol.22, issue.6, pp.22-59, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730502

M. Bernacki, Y. Chastel, and T. Coupez, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

J. Bruchon, H. Digonnet, and T. Coupez, Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach, International Journal for Numerical Methods in Engineering, vol.11, issue.3, pp.980-1008, 2009.
DOI : 10.1002/nme.2519

URL : https://hal.archives-ouvertes.fr/emse-00475556

T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale Revue européenne des éléments finis, pp.403-423, 2000.

C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.4951-4976, 2006.
DOI : 10.1016/j.cma.2004.11.020

URL : https://hal.archives-ouvertes.fr/hal-00517639

R. Boussetta, T. Coupez, and L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.48-49, pp.6626-6645, 2006.
DOI : 10.1016/j.cma.2005.06.029

URL : https://hal.archives-ouvertes.fr/hal-00512775

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

M. Cervera, M. Chiumenti, and R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics: Part i: Formulation, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.37-40, 2010.

T. Coupez, E. Hachem, and H. Digonnet, Stabilized finite element method for heat transfer and fluid flow inside industrial furnaces, 15th International Conference on Finite Elements in Flow Problems, 2009.

R. Valette, J. Bruchon, H. Digonnet, P. Laure, M. Leboeuf et al., M??thodes d'interaction fluide-structure pour la simulation multi-??chelles des proc??d??s de m??lange, M??canique & Industries, vol.8, issue.3, pp.251-258, 2007.
DOI : 10.1051/meca:2007046

P. Laure, G. Beaume, O. Basset, L. Silva, and T. Coupez, Les méthodes numériques pour les écoulements de fluides chargés, 1er colloque du GDR interactions fluidestructure, 2005.

T. Coupez, D. Hugues, E. Hachem, P. Laure, L. Silva et al., Multidomain Finite Element Computations, pp.221-289, 2010.
DOI : 10.1002/9781118557884.ch5

URL : https://hal.archives-ouvertes.fr/hal-00508514

J. B. Ritz and J. P. Caltagirone, A numerical continuous model for the hydrodynamics of fluid particle systems, International Journal for Numerical Methods in Fluids, vol.271, issue.8, pp.1067-1090, 1999.
DOI : 10.1002/(SICI)1097-0363(19990830)30:8<1067::AID-FLD881>3.0.CO;2-6

E. Hachem, Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

M. Coquerelle and G. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, Journal of Computational Physics, vol.227, issue.21, pp.9121-9137, 2008.
DOI : 10.1016/j.jcp.2008.03.041

URL : https://hal.archives-ouvertes.fr/hal-00297673

J. Janela, A. Lefebvre, and B. Maury, A penalty method for the simulation of fluid - rigid body interaction, ESAIM Proceedings, pp.115-123, 2005.
DOI : 10.1051/proc:2005010

URL : https://hal.archives-ouvertes.fr/hal-00728372

L. P. Franca and T. J. Hughes, Two classes of mixed finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.69, issue.1, pp.89-129, 1988.
DOI : 10.1016/0045-7825(88)90168-5

R. Codina, J. M. González-ondina, G. Díaz-hernández, and J. Principe, Finite element approximation of the modified Boussinesq equations using a stabilized formulation, International Journal for Numerical Methods in Fluids, vol.55, issue.9, pp.1249-1268, 2008.
DOI : 10.1016/j.cma.2007.11.006

R. Codina, Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows, Journal of Computational Physics, vol.170, issue.1, pp.112-140, 2001.
DOI : 10.1006/jcph.2001.6725

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
DOI : 10.1016/j.jcp.2010.07.030

URL : https://hal.archives-ouvertes.fr/hal-00521881

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.13-14, pp.1579-1599, 2000.
DOI : 10.1016/S0045-7825(00)00254-1

Y. Mesri, H. Digonnet, and T. Coupez, Advanced parallel computing in material forming with CIMLib, Revue europ??enne de m??canique num??rique, vol.18, issue.7-8, pp.669-694, 2009.
DOI : 10.3166/ejcm.18.669-694

URL : https://hal.archives-ouvertes.fr/hal-00836212

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

D. Rixen and P. Gosselet, MINISYMPOSIUM 3: Domain Decomposition Methods Applied to Challenging Engineering Problems, 16th International Conference on Domain Decomposition Method, pp.564-581, 2005.
DOI : 10.1007/978-3-540-34469-8_23

J. Bruchon, H. Digonnet, and T. Coupez, Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach, International Journal for Numerical Methods in Engineering, vol.11, issue.3, pp.980-1008, 2009.
DOI : 10.1002/nme.2519

URL : https://hal.archives-ouvertes.fr/emse-00475556

S. Van-der-pijl, A. Segal, C. Vuik, and P. Wesseling, A mass-conserving Level-Set method for modelling of multi-phase flows, International Journal for Numerical Methods in Fluids, vol.37, issue.4, pp.339-361, 2005.
DOI : 10.1002/fld.817

T. Coupez, H. Digonnet, and R. Ducloux, Parallel meshing and remeshing, Applied Mathematical Modelling, vol.25, issue.2, pp.83-98, 2000.
DOI : 10.1016/S0307-904X(00)00045-7

URL : https://hal.archives-ouvertes.fr/hal-00536635

C. Gruau, Génération de métriques pour adaptation anisotrope de maillages, applications à la mise en forme des matériaux, 2004.

Y. Mesri, W. Zerguine, H. Digonnet, L. Silva, and T. Coupez, Dynamic Parallel Adaption for Three Dimensional Unstructured Meshes: Application to Interface Tracking, Proceedings of the 17th International Meshing Roundtable, pp.195-212, 2008.
DOI : 10.1007/978-3-540-87921-3_12

URL : https://hal.archives-ouvertes.fr/hal-01466975

T. Coupez, Convection of local level set function for moving surfaces and interfaces in forming flow, " in NUMIFORM '07: Materials Processing and Design: Modeling, Simulation and Applications, Pts I and II, pp.61-66, 2007.

T. Coupez, Réinitialisation convective et locale des fonctions level set pour le mouvement de surfaces et d'interfaces, 2006.

L. Ville, L. Silva, and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids, vol.4, issue.3, 2010.
DOI : 10.1002/fld.2259

URL : https://hal.archives-ouvertes.fr/hal-00595325

A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.
DOI : 10.1016/0045-7825(82)90071-8

R. N. Elias and A. L. Coutinho, Stabilized edge-based finite element simulation of free-surface flows, International Journal for Numerical Methods in Fluids, vol.47, issue.6-8, pp.965-993, 2007.
DOI : 10.1002/fld.1475

A. Johnson and T. Tezduyar, 3D Simulation of fluid-particle interactions with the number of particles reaching 100, Computer Methods in Applied Mechanics and Engineering, vol.145, issue.3-4, pp.301-321, 1997.
DOI : 10.1016/S0045-7825(96)01223-6

H. Hu, Direct simulation of flows of solid-liquid mixtures, International Journal of Multiphase Flow, vol.22, issue.2, pp.335-352, 1996.
DOI : 10.1016/0301-9322(95)00068-2

W. G. Dettmer and D. Peri?, A computational framework for fluid???rigid body interaction: Finite element formulation and applications, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.13-16, 2006.
DOI : 10.1016/j.cma.2005.05.033

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.112, issue.1-4, pp.133-148, 1994.
DOI : 10.1016/0045-7825(94)90022-1

K. Khadraa, P. Angot, S. Parneixc, and J. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.16, issue.8, pp.651-684, 2000.
DOI : 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D

G. J. Wagner, N. Moës, W. Liu, and T. Belytschko, The extended finite element method for rigid particles in Stokes flow, International Journal for Numerical Methods in Engineering, vol.51, issue.3, pp.293-313, 2001.
DOI : 10.1002/nme.169

URL : https://hal.archives-ouvertes.fr/hal-01007367

N. Pantankar, P. Singh, D. Joseph, P. Glowinki, and T. Pan, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.26, issue.9, pp.1509-1524, 2000.
DOI : 10.1016/S0301-9322(99)00100-7

N. Sharma and N. Patankar, A fast computation technique for the direct numerical simulation of rigid particulate flows, Journal of Computational Physics, vol.205, issue.2, pp.439-457, 2005.
DOI : 10.1016/j.jcp.2004.11.012

S. Aptea, M. M. , and N. Patankar, A numerical method for fully resolved simulation (FRS) of rigid particle???flow interactions in complex flows, Journal of Computational Physics, vol.228, issue.8, pp.2712-2738, 2009.
DOI : 10.1016/j.jcp.2008.11.034

D. V. Le, B. C. Khoo, and J. Peraire, An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, Journal of Computational Physics, vol.220, issue.1, pp.109-138, 2006.
DOI : 10.1016/j.jcp.2006.05.004

URL : http://acdl.mit.edu/ducvinhthesis.pdf

D. Le, An immersed interface method for solving viscous incompressible flows involving rigid and flexible boundaries, 2005.

E. Lima, A. Silva, A. Silveira-neto, and J. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, vol.189, issue.2, pp.351-370, 2003.
DOI : 10.1016/S0021-9991(03)00214-6

M. C. Lai and C. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, vol.160, issue.2, pp.707-719, 2000.
DOI : 10.1006/jcph.2000.6483

P. , L. Tallec, and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.190, pp.24-25, 2001.

C. Michler, E. E. Van-brummelen, and R. De-borst, An interface newton?krylov solver for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.47, pp.10-11, 2005.

J. Gerbeau, M. Vidrascu, and P. Frey, Fluid???structure interaction in blood flows on geometries based on medical imaging, Computers & Structures, vol.83, issue.2-3, pp.155-165, 2005.
DOI : 10.1016/j.compstruc.2004.03.083

U. Küttler and A. W. Wall, Fixed-point fluid???structure interaction solvers with dynamic relaxation, Computational Mechanics, vol.35, issue.6???8, pp.61-72, 2008.
DOI : 10.1007/s00466-008-0255-5

P. Laure, G. Beaume, O. Basset, L. Silva, and T. Coupez, Numerical methods for solid particles in particulate flow simulations, Fluid structure interaction, pp.365-383, 2007.
DOI : 10.3166/remn.16.365-383

URL : https://hal.archives-ouvertes.fr/hal-00521627

S. Badia and R. Codina, Stabilized continuous and discontinuous Galerkin techniques for Darcy flow, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.25-28, pp.1654-1667, 2010.
DOI : 10.1016/j.cma.2010.01.015

M. Cereva, M. Chinumenti, and R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics: Parti: Formulation, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.2559-2570, 2010.

W. R. Hwang, M. A. Hulsen, and H. E. Meijer, Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames, Journal of Non-Newtonian Fluid Mechanics, vol.121, issue.1, pp.15-33, 2004.
DOI : 10.1016/j.jnnfm.2004.03.008

R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.39-40, pp.4295-4321, 2002.
DOI : 10.1016/S0045-7825(02)00337-7

J. Volker, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, International Journal for Numerical Methods in Fluids, vol.44, issue.7, pp.777-788, 2004.

D. P. Mok and W. A. Wall, Partitioned analysis schemes for the transient interactions in incompressible flows and non linear flexible structures, Trends in computational structural mechanics, 2001.

W. A. Wall, D. P. Mok, and E. Ramm, Partitioned analysis approach for the transient coupled response of viscous fluids and flexible structures, ECCM'99, European conference on computational mechanics, 1999.

R. Codina, J. Houzeaux, H. Coppola-owen, and J. Baiges, The fixed-mesh ALE approach for the numerical approximation of flows in moving domains, Journal of Computational Physics, vol.228, issue.5, pp.1591-1611, 2009.
DOI : 10.1016/j.jcp.2008.11.004

J. Baiges and R. Codina, The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems, International Journal for Numerical Methods in Engineering, vol.191, issue.3, pp.1529-1557, 2010.
DOI : 10.1002/nme.2662

J. Baiges, R. Codina, and H. Coppola-owen, The Fixed-Mesh ALE approach for the numerical simulation of floating solids, International Journal for Numerical Methods in Fluids, vol.17, issue.11, pp.1004-1023, 2011.
DOI : 10.1002/fld.2403

S. Feghali, E. Hachem, and T. Coupez, Monolithic stabilized finite element method for rigid body motions in the incompressible Navier-Stokes flow, Revue europ??enne de m??canique num??rique, vol.19, issue.5-7, pp.5-7, 2010.
DOI : 10.3166/ejcm.19.547-573

URL : https://hal.archives-ouvertes.fr/hal-00614099

R. Codina and O. Soto, A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique, International Journal for Numerical Methods in Fluids, vol.37, issue.1-2, pp.293-301, 2002.
DOI : 10.1002/fld.277

T. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, vol.127, issue.1-4, pp.387-401, 1995.
DOI : 10.1016/0045-7825(95)00844-9

R. Codina, Finite Element Approximation of the Three-Field Formulation of the Stokes Problem Using Arbitrary Interpolations, SIAM Journal on Numerical Analysis, vol.47, issue.1, pp.699-718, 2009.
DOI : 10.1137/080712726

C. Codina, P. Principe, O. Guasch, and S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.21-24, pp.2413-2430, 2007.
DOI : 10.1016/j.cma.2007.01.002

S. Badia and R. Codina, On a multiscale approach to the transient Stokes problem: Dynamic subscales and anisotropic space???time discretization, Applied Mathematics and Computation, vol.207, issue.2, pp.415-433, 2009.
DOI : 10.1016/j.amc.2008.10.059

M. Schäfer and S. Turek, The benchmark problem 'flow around a cylinder'. in flow simulation with high-performance computers ii, Notes on Numerical Fluid Mechanics, vol.52, pp.547-566, 1996.

J. Volker and M. Gunar, Higher order finite element discretizations in a benchmark problem for incompressible flows, Internat. J. Numer. Methods Fluids, vol.37, pp.885-903, 2001.

J. Frochte and W. Heinrichs, A splitting technique of higher order for the Navier???Stokes equations, Journal of Computational and Applied Mathematics, vol.228, issue.1, pp.373-390, 2009.
DOI : 10.1016/j.cam.2008.09.028

D. Wan and S. Turek, Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows, Journal of Computational Physics, vol.222, issue.1, pp.28-56, 2007.
DOI : 10.1016/j.jcp.2006.06.002

T. Rabczuk, R. Gracie, J. Song, and T. Belytschko, Immersed particle method for fluid?structure interaction, International Journal for Numerical Methods in Fluids, vol.81, pp.48-71, 2010.

E. Hachem, S. Feghali, R. Codina, and T. Coupez, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, International Journal for Numerical Methods in Engineering, vol.230, issue.4, 2012.
DOI : 10.1002/nme.4481

URL : https://hal.archives-ouvertes.fr/hal-00815641

F. Alauzet, P. Frey, P. George, and B. Mohammadi, 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations, Journal of Computational Physics, vol.222, issue.2, pp.592-623, 2007.
DOI : 10.1016/j.jcp.2006.08.012

A. Robinson, C. Schroeder, and R. Fedkiw, A symmetric positive definite formulation for monolithic fluid structure interaction, Journal of Computational Physics, vol.230, issue.4, pp.1547-1566, 2010.
DOI : 10.1016/j.jcp.2010.11.021

D. Pagnutti and C. Olivier-gooch, two-dimensional delaunay-based anisotropic mesh adaptation doug pagnutti, engineering with computers, vol.4, pp.407-418, 2010.

T. Richter and T. Wick, Finite elements for fluid???structure interaction in ALE and fully Eulerian coordinates, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41-44, pp.2633-2642, 2010.
DOI : 10.1016/j.cma.2010.04.016

J. Hron and S. Turek, A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics Fluid-Structure Interaction Modelling, pp.146-170, 2006.

T. Wick, Solving monolithic fluid-structure interaction problems in arbitrary lagrangian eulerian coordinates with the deal.II library, 2011.

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.3, pp.471-492, 2008.
DOI : 10.1051/m2an:2008013

URL : https://hal.archives-ouvertes.fr/hal-00297711

S. Okazawa, K. Kashiyama, and Y. Kaneko, Eulerian formulation using stabilized finite element method for large deformation solid dynamics, International Journal for Numerical Methods in Engineering, vol.128, issue.13, pp.1544-1559, 2007.
DOI : 10.1002/nme.2057

P. He and R. Qiao, A full-eulerian solid level set method for simulation of fluidstructure interactions, Micro fluid and Nano fluid, pp.557-567, 2011.

T. Dunne, An Eulerian approach to fluid???structure interaction and goal-oriented mesh adaptation, International Journal for Numerical Methods in Fluids, vol.17, issue.9-10, pp.1017-1039, 2006.
DOI : 10.1002/fld.1205

D. Clamond, Mécanique des Milieux Continus, 2011.

P. Wriggers, Nichtlineare Finite-Element-Methoden, 2001.
DOI : 10.1007/978-3-642-56865-7

T. Dunne, Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations, 2007.

R. Duddu, L. L. Lavier, T. J. Hughes, and V. Calo, A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements, International Journal for Numerical Methods in Engineering, vol.36, issue.1, pp.762-785, 2012.
DOI : 10.1002/nme.3262

C. Bost, Méthodes Level-Set et pénalisation pour le calcul d'interaction fluidestructure, 2008.

Z. Zhang, G. R. Liu, and B. C. Khoo, Immersed smoothed finite element method for two dimensional fluid-structure interaction problems, International Journal for Numerical Methods in Engineering, vol.135, issue.2, pp.1097-0207, 2012.
DOI : 10.1002/nme.4299

B. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, International Journal for Numerical Methods in Biomedical Engineering, pp.317-345, 2012.

T. Shinar, C. Schroeder, and R. Fedkiw, Two-way coupling of rigid and deformable bodies, SCA'08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp.95-103, 2008.

H. Zhao, J. Freunda, and R. Moser, A fixed-mesh method for incompressible flow???structure systems with finite solid deformations, Journal of Computational Physics, vol.227, issue.6, pp.3114-3140, 2008.
DOI : 10.1016/j.jcp.2007.11.019

G. Xia and C. Lin, An unstructured finite volume approach for structural dynamics in response to fluid motions, Computers & Structures, vol.86, issue.7-8, pp.684-701, 2008.
DOI : 10.1016/j.compstruc.2007.07.008

J. Caltagirone, Sur l'interaction fluide-milieu poreux: application au calcul des efforts exercés sur un obstacle par un fluide visqueux Comptes rendus de l'Académie des sciences, Série II, vol.318, issue.5, pp.571-577, 1994.

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

S. Chan, K. Lam, R. So, and R. Leung, Numerical study of flow around circular cylinder, Flow-Induced Vibration, Poceedings of the 7th International Conference on Flow Induced Vibrations FIV, pp.249-255, 2000.

S. Mittal and V. Kumar, FLOW-INDUCED OSCILLATIONS OF TWO CYLINDERS IN TANDEM AND STAGGERED ARRANGEMENTS, Journal of Fluids and Structures, vol.15, issue.5, pp.717-736, 2001.
DOI : 10.1006/jfls.2000.0376

A. Huerta and W. Liu, Viscous Flow Structure Interaction, Journal of Pressure Vessel Technology, vol.110, issue.1, pp.15-21, 1988.
DOI : 10.1115/1.3265561

URL : http://upcommons.upc.edu/bitstream/2117/8029/5/~6931833.pdf

P. Anagnostopoulos and P. Berman, Response characteristics of a vortex-excited cylinder at low reynolds numbers, Journal of Fluids and Structures, vol.6, issue.1, pp.39-50, 1992.
DOI : 10.1016/0889-9746(92)90054-7

A. Khalak and C. Williamson, Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder, Journal of Wind Engineering and Industrial Aerodynamics, vol.69, issue.71, pp.69-71, 1997.
DOI : 10.1016/S0167-6105(97)00167-0

D. Brika and A. Laneville, Vortex-induced vibrations of a long flexible circular cylinder, Journal of Fluid Mechanics, vol.277, issue.-1, pp.481-508, 1993.
DOI : 10.1016/0022-460X(76)90771-9

E. Guilmineau and P. Queutey, Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow, Journal of Fluids and Structures, vol.19, issue.4, pp.449-466, 2004.
DOI : 10.1016/j.jfluidstructs.2004.02.004

URL : https://hal.archives-ouvertes.fr/hal-00699450

S. Dong and G. Lesoinne, DNS of flow past a stationary and oscillating cylinder at, Journal of Fluids and Structures, vol.20, issue.4, pp.519-531, 2005.
DOI : 10.1016/j.jfluidstructs.2005.02.004

H. and C. Dalton, Vortex induced vibrations using large eddy simulation at a moderate reynolds number, Journal of Fluids and Structures, vol.19, pp.73-92, 2004.

A. Placzek, J. Sigrist, and A. Hamdouni, Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations, Computers & Fluids, vol.38, issue.1, pp.80-100, 2008.
DOI : 10.1016/j.compfluid.2008.01.007

URL : https://hal.archives-ouvertes.fr/hal-00534010

C. Zhou, C. Sorm, and K. Lam, VORTEX-INDUCED VIBRATIONS OF AN ELASTIC CIRCULAR CYLINDER, Journal of Fluids and Structures, vol.13, issue.2, pp.165-189, 1999.
DOI : 10.1006/jfls.1998.0195

M. Gerouache, Etude numérique de l'instabilité de bénard-karman derrière un cylindre fix ou en mouvement pérodique. dynamique de l'écoulement et advection chaotique, 2000.

M. Braza, P. Chassaing, and H. H. Minh, Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, Journal of Fluid Mechanics, vol.49, issue.-1, pp.79-130, 1986.
DOI : 10.1063/1.1692470

C. Lange, F. Durst, and M. Breuer, Momentum and heat transfer from cylinders in laminar crossflow at 10???4 ??? Re ??? 200, International Journal of Heat and Mass Transfer, vol.41, issue.22, pp.3409-3430, 1998.
DOI : 10.1016/S0017-9310(98)00077-5

R. Henderson, Details of the drag curve near the onset of vortex shedding, Physics of Fluids, vol.7, issue.9, p.2102, 1995.
DOI : 10.1063/1.868459

G. Koopmann, The vortex wakes of vibrating cylinders at low Reynolds numbers, Journal of Fluid Mechanics, vol.12, issue.03, pp.501-512, 1967.
DOI : 10.1121/1.1918274