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1.1 Introduction 

This chapter introduces general background information for 

readers. Basic knowledge on plasma enhanced chemical vapor 

deposition, hydrogenated amorphous silicon and polymorphous 

silicon, Staebler-Wronski effect, material and device 

characterization such as spectroscopic ellipsometry and model, UV-

VIS-IR transmission-reflection, sub-gap absorption measurements 

(PDS, CPM), Fourier transform infrared absorption, hydrogen 

exodiffusion, dark conductivity, atomic force microscope and 

scanning electron microscope, diode dark J(V), solar cell 

parameters will be briefly presented, and reference textbooks with 

more detail will be cited.  

 

1.2 Plasma enhanced chemical vapor deposition 

Plasma enhanced chemical vapor deposition (PECVD) is a thin film 

fabrication method based on the dissociation of gas molecules by 

electron impact in an electrical discharge, instead of thermal 

dissociation (CVD). In PECVD, the dissociation of a precursor gas 

and the surface reactions of ionized species are controlled by the 

plasma. Since electron temperature of a low-pressure discharge is 

high enough (~ 2–5 V) for dissociation, the deposition can be carried 

out at substrate temperatures (Ts) much lower than for pure CVD. 

Such low Ts allows large area electronic applications on cheap 

substrates. Process pressure is usually higher than that used in 

reactive-ion-etching because secondary reactions between radical 

species are often desired in PECVD. The process pressures used in 

this thesis covers the range from 45 to 5000 mTorr. Therefore, 

mean free paths of radical species are small, of order 0.003–0.3 mm. 

The plasma densities are in the range from 109–1011 cm-3, and the 
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fractional ionizations are low, of order 10-4. Surface activation 

energies for PECVD are often small, occasionally negative. Hence 

deposition rates (rd) are usually not very sensitive to the Ts. 

However, physical properties and morphology of the films are 

generally strong functions of Ts. 

  The use of a RF discharge enables PECVD deposition on 

insulating substrates i.e. glass. The excitation frequency of power 

supply ranges from a few kHz to 200 MHz, but the usual frequency 

used for RF-PECVD is 13.56 MHz. This frequency was chosen by a 

standard for international telecommunications as an unoccupied 

frequency. Industry is interested more and more by higher process 

frequencies such as 27.13 MHz, 40.68 MHz (2nd and 3rd harmonics 

of 13.56 MHz), but this study only deals with the excitation 

frequency of 13.56 MHz. This is currently a standard frequency for 

which we can easily find commercial generators and matching box. 

A matching box is inserted between RF generator and the plasma 

in order to minimize the reflected power. 

  Capacitively coupled plasma (CCP) systems are one of the 

most common types of industrial plasma sources. They essentially 

consist of two metal electrodes separated by a small distance, 

placed in a reactor. An electrode is connected to the RF generator, 

through a matching box and DC current blocking capacitor (CB) 

while the other is grounded. Usually, the matching box circuit 

includes CB inside. A plasma is ignited between the two electrodes, 

and at the interface between the plasma and the electrodes, the 

sheath arises. Because electrons are much lighter than ions, 

electrons will fly out of the plasma, leaving behind positive ions in 

the plasma, and thus leaving the bulk plasma charged positively 

relative to the electrodes. The electron-free region between the 

plasma and the walls is named the sheath, and the resulting 
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potential drop from the plasma to the sheath is called the plasma 

potential (Vp). 

 

Figure 1.1 – (a) Schematic view of the potential distribution in a RF discharge where the 
RF voltage is applied to the RF electrode, with dielectric substrate, and (b) time-
dependent sheath voltages. Figure 1.1(b) from Ref. [1.3] 

 

The sheath shows rectifying characteristic. When the RF electrode 

is biased to a negative voltage, essentially all electrons (and any 

negative ions) are repulsed, but there is only small ion current, due 
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to low ion velocity. Otherwise, when the RF electrode is positively 

biased, there is a large electron current. Furthermore, if the net 

area of the grounded electrode is actually larger than that of the RF 

electrode, the discharge becomes asymmetric, and makes RF 

electrode negatively charged. Such behavior in the discharge is 

called self bias or DC bias (VDC), and it is related to the capacitive 

nature of the sheath. Under RF field, CB is negatively charged 

through the rectifying characteristic of the sheath, compensating 

for the unequal current flow in each RF cycle. When using an 

insulating substrate e.g. glass, the plasma behaves as a variable 

load, and so the substrate is at floating potential and acts like a 

capacitor in series with CB. 

  More details on plasma discharge process are found in the 

thesis of P. Roca i Cabarrocas [1.1] or the textbooks such as Ref. 

[1.2]. Figure 1.1 shows a schematic view of the potential 

distribution in a RF discharge and time-dependent sheath voltages 

and currents. 

 

1.3 Hydrogenated amorphous silicon 

Hydrogenated amorphous silicon (a-Si:H) has been the most 

promising candidate for over two decades as an absorber layer for 

thin film solar cells. It is obvious that a-Si:H creates tremendous 

interest for two reasons. First, the material has several interesting 

properties that opened up many opportunities for semiconductor 

device applications. For example, due to the high absorption 

coefficient of a-Si:H in the visible range of the solar spectrum, a 1 

µm thick a-Si:H layer is sufficient to absorb 90% of the photon 

energy above its bandgap (~1.7 eV). Second, the glow discharge 

deposition technique, also referred to as PECVD, has enabled the 

production of a-Si:H films over large areas (2.1×2.5 m2) and at a 



Chapter 1 

 

 

28 

 

low substrate temperature (100 to 400 °C). The low process 

temperature allows the use of a wide range of low cost substrates 

such as glass, metal or polymer foils. Furthermore, a-Si:H can be 

simply doped and alloyed by adding the appropriate gases to a 

source gas, usually silane. These features have made a-Si:H a 

promising candidate for low cost thin film solar cells.  

  Since the first a-Si:H solar cell was reported by Carlson and 

Wronski [1.4] in 1976 with an efficiency of 2.4 %, great 

improvements have been made. Nowadays, a-Si:H single junction 

solar cells show stable efficiencies above 10 % [1.5], and a-Si:H 

based multijunction solar cells present initial efficiencies above 16 % 

[1.6], thus competing with polycrystalline silicon solar cells. More 

detail on a-Si:H can be found in the textbook of R. A. Street [1.7]. 

 

1.4 Staebler-Wronski effect 

Shortly after the development of the first a-Si:H solar cell in 1976, 

a light induced degradation effect was reported by Staebler and 

Wronski in 1977 [1.8, 1.9]. They reported that the dark conductivity 

and photoconductivity of a-Si:H are reduced significantly by 

prolonged illumination. This was correlated to the creation of 

metastable defects under illumination. Interestingly, metastable 

defects can be annealed out at temperatures above 150 °C. The 

reversible changes that occur between the annealed, initial, and the 

‘‘light-soaked’’, degraded states, introduces a shift of the Fermi 

level towards midgap, and have become one of the most 

investigated phenomena in a-Si:H based materials and solar cells. 

Since the first report, light induced metastable changes in the 

properties of hydrogenated amorphous silicon are referred to as the 

Staebler-Wronski effect (SWE). 
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  The most common model has been the hydrogen bond 

switching model which proposes that photo-excited electrons and 

holes recombine at weak Si-Si bond locations. The accompanying 

non-radiative energy release is sufficient to break the weak bond, 

and that a back-bonded H atom prevents restoration of the broken 

bond by a bond switching event. Another model, known as the 

charge transfer model suggests that preexisting spinless centers 

(positively and negatively charged dangling bonds) are transformed 

to neutral dangling bonds by capture of excess carriers. The SWE is 

less significant in heavily doped materials [1.9].  

  Many reports suggest that the intrinsic and light induced 

defects are closely related to the microstructure of the sample, in 

particular to the hydrogen content (CH) and Si-H bonding 

configuration [1.10]. For example, material with lower CH and films 

containing fluorine or chlorine show a less pronounced SWE [1.11]. 

In fact, the role of impurities is somewhat controversial. It is 

known that impurity incorporation, such as carbon, nitrogen, and 

oxygen, at concentrations in the film above 1019 #cm-3 lead to a 

more pronounced SWE [1.12-1.15]. However, it is not very clear if 

the alloying changes to the atomic network allow more defect 

creation [1.13], or if the impurities are directly associated with the 

light-induced degradation kinetics. 

  The creation of metastable defect states can be induced by 

pulsed and prolonged illumination [1.9], rapid quenching [1.16], 

current-injection, and double-injection currents [1.17, 1.18], as well 

as by keV electron bombardment [1.19]. In other words, defect 

creation requires an external excitation energy to cross the barrier 

between two states. Annealing can be considered as the reverse 

recovery process achieved by thermal excitation.  

  Stutzmann et al. showed that the defect density (ND) 
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depends on the generation rate G and the time t as, 

3

1

3

2

)( tGCtN D   

where C is a constant depending on the tail-to-tail transitions 

[1.12]. The non-radiative recombination of electron-hole pairs at 

tail states release an energy of about 1.5 eV that possibly breaks 

weak bonds and thus creates dangling bonds. In order to prevent 

the recombination of the two broken bonds, a neighboring hydrogen 

atom moves to isolate the two dangling bonds. In the annealing 

process, the hydrogen atoms revert back to their original positions. 

Hydrogen is thus directly involved both in the defect creation and 

annealing. 

  Redfield and Bube provided a more practical model, 

explaining that illumination can cause the reverse process (light-

induced annealing) of defect creation. When the illumination is 

kept on for a long time, the forward and reverse rates balances and 

a steady state is reached. The light-induced defect creation follows 

stretched exponential form 
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where ND is the density of metastable defects, NS is the saturated 

defect density, which is final state, N0 is the initial defect density. τ 

decides an inflection point of the defect creation, and β is a 

broadening term, which characterizes the “stretched” nature [1.20]. 

The RB model, summarized above, shows good agreement with 

light-induced degradation behavior, and it is well explained by the 

fact that light-induced degradation and annealing balance out, and 

therefore the degradation saturates. 

  Based on experimental observation that over a wide range 
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of exposure times the cell efficiency degrades linearly with the 

logarithm of time, while the defect density follows a power law or 

stretched exponential form in time (as described in above), the 

following simplified relationship can be proposed 

DNAlog  

where η is the cell efficiency and A is a constant depending on the 

structure of the solar cell such as intrinsic layer thickness, 

respectively [1.21]. 

  There are still new findings being discovered on the subject 

of the degradation of a-Si:H, in particular on the range of hydrogen 

motion involved [1.22], and large structural changes in the material 

such as light-induced volume changes [1.23], healing after light-

induced degradation [1.24], coalescence and agglomeration of voids 

into larger macroscopic defects [1.25, 1.26], increase in Si-H 

absorption [1.27-1.29], and light-induced hydrogen effusion 

spectrum shift to lower temperatures [1.30]. 

 

1.5 Hydrogenated polymorphous silicon 

The first report on hydrogenated polymorphous silicon (pm-Si:H) 

was published in 1988 [1.31]. Roca i Cabarrocas et al. reported that 

the structure of silicon films can consist of nanometer-sized (~ 2 nm) 

ordered regions in a disordered matrix when prepared under 

particular RF glow discharge conditions. The glow discharge 

condition was indeed at the transition between hydrogenated 

amorphous silicon (a-Si:H) to hydrogenated microcrystalline silicon 

(µc-Si:H). The transition between the two discharge regimes was 

controlled by increasing the process pressure at a constant RF 

voltage, whereupon an abrupt increase in the dissociation in the 

plasma and a decrease in VDC was observed, a phenomenon which 
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has been correlated to the onset of formation of powders in the 

discharge [1.32].  

  HRTEM reveals that a number of ordered domains (~ few 

nm) are embedded in the a-Si:H matrix. The corresponding electron 

diffraction patterns verify that the ordered regions are nanocrystals. 

Silicon-hydrogen stretching mode infrared absorption in pm-Si:H is 

characterized by the distinguishing presence of a band at 2030 cm-1, 

showing that the microstructure in pm-Si:H has been greatly 

modified with respect to a-Si:H. The concentration of small 

crystallites is approximately less than 10% [1.33]. Spectroscopic 

ellipsometry measurements demonstrated that pm-Si:H films are 

more dense than a-Si:H, in spite of their high hydrogen content, in 

the range of 15~20 %. This peculiar structure of pm-Si:H results in 

a low defect density (down to order of 1014 cm-3 at Fermi level as 

measured by SCLC and modulated photocurrent) and higher 

resistance to light soaking than a-Si:H [1.34]. 

  There is a controversial argument that pm-Si:H is often 

confused with hydrogenated protocrystalline silicon (pc-Si:H) [1.35, 

1.36]. Indeed, both materials are grown from highly hydrogen 

diluted silane plasma, and they are both depicted as highly 

heterogeneous mixed-phase materials. Moreover, due to the mixed-

phase nature of these materials, their optical band gap are wider 

than that of a-Si:H [1.31, 1.37], and both materials show the 

characteristic low temperature peak near 400 °C in the hydrogen 

exodiffusion spectrum [1.38, 1.39]. However, distinct differences 

still exist in the plasma physics during their deposition and their 

material nanostructures [1.40]. In particular, while the growth of 

pc-Si:H is assumed to rely on SiH3 radicals, pm-Si:H deposition 

relies on the presence of plasma synthesized nanocrystals [1.36, 

1.40]. Due to the growth mechanism of pc-Si:H, its mixed-phase 
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nanostructure appears after an amorphous incubation layer. In 

other words, the heterogeneous nature of pc-Si:H only appears after 

some thickness. However, in pm-Si:H, the mixed-phase nature 

appears homogeneously through the film thickness because of the 

different deposition mechanism. It is an important point in 

practical solar cell application because the nanostructure and 

physical properties of pc-Si:H mainly depend on both hydrogen 

dilution and film thickness while those of pm-Si:H are independent 

of thickness. 

  The contribution of plasma generated nanocrystals to pm-

Si:H deposition has been demonstrated by using a thermal gradient 

between the RF electrode and the substrate holder [1.36] as well as 

by controlling bias voltage applied to the substrate holder [1.41]. It 

is proposed that positively charged nanocrystals accelerate along 

the Vp of the plasma and introduce amorphization with the 

energetic ion bombardment. It has also been shown that the 

crystalline fraction of silicon thin films is significantly modified by 

controlling impact energy, and the conventional growth mechanism 

based on ionized radicals cannot explain the impact energy 

controlled crystalline fraction change [1.42]. One can conclude that 

the key point to understanding pm-Si:H is the plasma physics, in 

particular, the plasma generated nanoparticle formation. 

 

1.6 Material and device characterization 

One of the most important physical properties in solar cell 

materials is absorption coefficient (α). Due to their disordered 

nature and complex composition, a-Si:H and pm-Si:H films react to 

photons of wide range of energy: the molecular vibration of Si-H 

bonds are detected by infrared absorption; inter-band electronic 

transitions are observed (by UV-VIS-IR spectrophotometry) with an 
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optical bandgap around 1.7 eV, and these materials also show a 

sub-gap absorption due to the particular density-of-states structure, 

attributed to the tail states and mid-gap defect states.  

  The optical properties listed above can all be accurately 

represented by α, even though the measurement methods vary. 

Figure 1.2 shows absorption coefficient (α) versus the photon 

energy measured by various measurement techniques, such as 

Fourier transform infrared spectroscopy (FTIR), photothermal 

deflection spectroscopy (PDS), constant photocurrent method 

(CPM), ultraviolet-visible-infrared (UV-VIS-IR) transmission-

reflection (TR) and spectroscopic ellipsometry (SE). 

 

Figure 1.2 – Absorption coefficient (α) versus the photon energy measured by various 
measurement techniques, such as FTIR, PDS or CPM, UV-VIS TR and SE. 
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1.6.1 Spectroscopic Ellipsometry and Modelling 

Various material parameters can be obtained from the 

measurement and modelling of Spectroscopic Ellipsometry (SE) 

spectra. Ellipsometry can be thought of as an optical impedance 

measurement, while TR can be viewed as power measurements. 

Impedance measurements give the amplitude and phase, whereas 

power measurements only give amplitudes. Exploiting the 

additional information gained through ellipsometry, the Tauc-

Lorentz dispersion model is widely used in SE models. If only a 

single transition is considered [1.43], the imaginary part of the 

dielectric function is given by: 
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where E0 is the peak transition energy, Eg is the optical band gap, 

C is the broadening term, and A is proportional to the transition 

probability matrix element [1.43, 1.44]. In practice, the optical 

bandgap obtained from εi (obtained from a different equation) is 

also called the Cody gap (ECody) [1.45, 1.46]. It is also known that A 

and C are related to the material density and the disorder, 

respectively [1.33].  

  The Tauc-Lorentz dispersion law assumes uniformity 

throughout the layer. However, the porosity of the layer, including 

any surface roughness, may introduce some fraction of void, and 

this phenomenon can be introduced by the Bruggeman effective 

medium approximation (BEMA) [1.47, 1.48]. 

  Measurements of thickness and refractive index are 

another major application of ellipsometry. Careful interpretation of 

the ellipsometry-modeled thickness should be done because most of 



Chapter 1 

 

 

36 

 

the models assume uniform optical properties and a sharp and 

planar film-substrate interface. Generally, the measurements 

appear to give reasonable average thicknesses based on the 

macroscopic Maxwell’s equations. Figure 1.3 shows an example of 

SE modeling including a fitting result of a measured SE spectrum 

of pm-Si:H on glass and its model. The model consists of a bulk 

layer and a surface roughness. Table 1.1 shows typical SE modeling 

parameters of a-Si:H and pm-Si:H. 

 

Figure 1.3 – Example of SE modeling. (a) The fitting result of a measured SE spectrum of 
pm-Si:H on glass and its model. (b) The model structure. The model consists of a bulk 
layer and surface roughness. 

 

  Eopt A E0 C Roughness (Å)  

a‐Si:H 1.67  211.1  3.57  2.28  10.5  

pm‐Si:H 1.70 225.8 3.63 2.14 16.7  

 

Table 1.1 – Typical SE modeling parameters of a-Si:H and pm-Si:H. 

 

1.6.2 UV-VIS Transmission-Reflection 

The optical bandgap of a material can be also determined by direct 

Transmission-Reflection (TR) method, as TR measurements are 

used to determine the optical absorption coefficient (α). During 

Photon Energy (eV)

2.0 2.5 3.0 3.5 4.0 4.5

 i

-10

0

10

20

30

Measured
Modeled

(a)

Glass Substrate

Bulk

Roughness

(b) Model structure



1.6 Material and device characterization 

 

 

37 

 

transmission measurements, light is incident on the sample and 

the transmitted light is measured as a function of wavelength. The 

transmittance T of a sample under light incident normal to the 

sample surface is 
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  The Tauc optical gap (ETauc) is determined through an 

extrapolation of the linear trend in the expression below, 

)E( Tauc  hAh  

where ETauc is an optical gap [1.49], and A is a constant related to 

the width of tail states [1.50, 1.51]. ETauc is generally accepted as an 

optical bandgap of a-Si:H related materials, although less variation 

in the determination is in ECody is observed than for the case of 

ETauc [1.52]. 

 

Figure 1.4 – Example of the determination of ETauc. (a) A UV-VIS-IR Transmission 
spectrum of pm-Si:H  and (b) Tauc plot of a-Si:H and pm-Si:H on glass substrate. 
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1.6.3 Sub-gap absorption measurements 

SE and TR measure the high energy, high absorption transitions. 

In the weak absorption regime near the band edge, the 

determination of α by direct optical measurement is difficult 

because of the interference fringes and instrument sensitivity. The 

photothermal deflection spectroscopy (PDS) and the constant 

photocurrent method (CPM) allow one to detect weak signals in 

sub-gap absorption. 

  For PDS, a laser beam passing just above the surface is 

deflected by the thermal change in refractive index of the liquid in 

which the sample is immersed. The CPM uses a background 

illumination to ensure that the recombination lifetime does not 

depend on the photon energy and intensity of the illumination. In 

spite of the technical difficulty, the measurement of α at low energy 

is particularly important because it provides information on the 

localized states such as band tails and midgap defect density.  

  Figure 1.5 shows PDS spectra of a-Si:H and pm-Si:H, and 

Table 1.2 shows the material parameters such as Eu, ND, and E04 

deduced from Figure 1.5. For photon energies lower than Eg, the α 

follows an exponential decay with photon energy hv: 











uE

h
h

 exp)(α 0  

where Eu us the Urbach energy, which is attributed to the width of 

band tail states [1.53]. The midgap defect density, ND, is 

determined from the integration of the sub-gap absorption [1.54], 





2

15  d 109.7 gED EN   

At last, another optical bandgap, E04 can be defined as the photon 
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energy where α equals to 104 cm-1.  

 

Figure 1.5 – Photothermal deflection spectroscopy spectra of a-Si:H and pm-Si:H.  

 

  Eu (meV) ND (10
16 #cm‐3) E04 (eV) 

a‐Si:H 60.2  6.31 1.712  
pm‐Si:H 59.2 4.59 1.797 

 

Table 1.2 – Material parameters deduced from sub-gap absorption PDS spectra in Figure 
1.5. Eu, ND, and E04 of a-Si:H and pm-Si:H. 

 

1.6.4 Fourier transform infrared spectroscopy 

Because hydrogen definitely plays an important role in material 

quality i.e. defect passivation, the detailed characterization of 

hydrogen is an interesting subject. Fourier transform infrared 

absorption spectroscopy (FTIR) detects the molecular vibration of 

Si-H bonds [1.55-1.57]. In particular, stretching absorption modes 

located at around 2000 cm-1 are important because they provide 

information on various mono-, di-, and multi-hydrides (e.g. Si-H, Si-

H2) bonds. For the transmission measurement, samples should be 

deposited on a highly resistive, float-zone (FZ) c-Si wafer. There are 

two reasons: low carrier density of highly resistive c-Si prevents 
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free-carrier absorption in IR region, and the intrinsic c-Si provides 

the most similar refractive index to a-Si:H films. 

  Stretching mode absorption peaks consist of low stretching 

mode (LSM) and high stretching mode (HSM) peaks at around 1990 

cm-1 and 2090 cm-1, respectively. It is known that FTIR stretching 

mode of pm-Si:H can be deconvoluted into peaks including a 

medium stretching mode (MSM), band centered at 2030 cm-1 [1.58], 

and the evolution of this MSM is interpretated as Si-H bonds at 

silicon nanocrystal surfaces [1.38], or platelets [1.59]. Figure 1.6 

shows the FTIR stretching modes peaks of a-Si:H and pm-Si:H and 

an example of the deconvolution. 

 

 

Figure 1.6 – FTIR stretching modes peak of (a) a-Si:H and (b) pm-Si:H PIN layer stacks 
and the deconvolution. Note that stretching mode peak of pm-Si:H consists of a MSM at 
2030 cm-1. 
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a‐Si:H 

1990 
Area  48.66 

FWHM  103.0 

2090 
Area  1.77 

FWHM  52.17 

Total Area  50.43 

pm‐Si:H 

1990 
Area  52.38 

FWHM  106.16 

2030 
Area  14.31 

FWHM  80.91 

2090 
Area  11.17 

FWHM  86.23 

Total Area  77.86 

Table 1.3 – The deconvolution result of Figure 1.6 

 

1.6.5 Hydrogen exodiffusion 

Since FTIR only detects hydrogen bound to silicon atoms, a 

complementary measurement technique is required to detect 

molecular hydrogen in the material. NMR experiments revealed 

that molecular hydrogen forms up to 40 % of the total hydrogen 

content in a-Si:H [1.60]. One of the common methods to measure 

the hydrogen evolution is from the rate of pressure increase of gas 

released into a known volume, for samples heated at constant rate. 

The experiment is often called hydrogen exodiffusion or thermal 

desorption. Hydrogen exodiffusion sensitively detects structural 

characteristics of the material such as interconnected voids, 

nanoparticle surfaces, amorphous matrices, and isolated voids 

[1.61].  

  In practice, the sample is placed inside a vacuum chamber, 

to which is attached a furnace. The overall system is kept at 

pressure of 10-7 mbar during experiment through primary and 

turbo pumps. Hydrogen exodiffusion spectra are measured and 

monitored by Quadruple Mass Spectrometer (QMS), measuring the 

partial pressure (count) and are recorded in a continuous manner 

with increasing temperature. The H2O spectrum as a function of 
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temperature is also carefully recorded to see whether H2 comes 

from the sample or from any water molecules present in the form of 

moisture. More detailed explanations and interpretations on the 

hydrogen exodiffusion results will be dealt with in following 

chapters. Figure 1.7 shows typical hydrogen exodiffusion spectra of 

a-Si:H and pm-Si:H PIN layer stacks deposited on glass substrate. 

 

Figure 1.7 – Hydrogen exodiffusion spectra of a-Si:H and pm-Si:H PIN layer stacks 
deposited on glass substrate. 

 

1.6.6 Dark conductivity 

Conductivity (σ) is an electrical property of the material. As a 

semiconductor, the σ of a-Si:H and pm-Si:H is thermally activated 

and depends on the carrier concentration (n) as a function of 

temperature. The σ is the product of n and μ,  

 nq  
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where NC is the effective density of states (in the conduction band), 

EC and EF are conduction band (or valence band, depends on the 

majority carrier) and Fermi energy level, respectively [1.62]. The σ 

also depends on the carrier mobility μ, but the temperature 

dependence of μ is far less significant than that of n. The 

temperature dependent conductivity σ(T) is therefore given by 














 


kT

E

kT

EE
T aFC expexp)( 00   

where Ea is the activation energy of majority carriers. In practice, 

Ea is usually measured by placing the thin film sample on a heating 

stage and monitoring the change in the dark conductivity as a 

function of temperature. Optimal quality films exhibit a straight 

line over many orders of magnitude on log(σ) versus 1000/T 

Arrhenius plot and hence its slope is defined as, 

T
ET a

1000

1982.0

1
log))(log( 0    

Ea is important in both intrinsic and doped materials because it 

gives information on the location of the Fermi level. In case of 

intrinsic layers, Ea is usually about half of the Eg. An example of 

Arrhenius plot of the temperature dependent dark conductivity of 

intrinsic a-Si:H, pm-Si:H, and µc-Si:H layers are displayed in 

Figure 1.8. 
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Figure 1.8 – Arrhenius plot of the temperature dependent dark conductivity of intrinsic a-
Si:H, pm-Si:H, and µc-Si:H layers. Ea and the conductivity at room temperature can be 
extracted from the extrapolation. 

 

1.6.7 Atomic Force Microscopy and Scanning Electron 
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high-resolution type of scanning probe microscope to observe 
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optics, it provides a resolution of fractions of a nanometer, more 

than 1000 times better than the optical diffraction limit. The AFM 
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used to scan the sample surface. The cantilever is typically made of 

silicon or silicon nitride with a tip radius of curvature on the order 

of nanometers. When the tip is brought into proximity of a sample 

surface, forces between the tip and the sample lead to a deflection 

of the cantilever. The deflection is measured using a laser spot 
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damage while expecting higher resolution than non-contact mode. 

The scanning rate, scanning area and the image resolution are 

important trade-off factors.  

  SEM is a type of electron microscope that images the 

sample surface by scanning it with a high-energy beam of electrons 

in a raster scan pattern. The electrons interact with the atoms that 

make up the sample producing signals that contain information 

about the sample's surface topography, composition and other 

properties such as electrical conductivity. The types of signals 

produced by an SEM include secondary electrons, back scattered 

electrons (BSE), characteristic x-rays, cathodoluminescence, 

specimen current, and transmitted electrons. In the most common 

or standard detection mode, secondary electron imaging, the SEM 

can produce very high-resolution images of a sample surface, 

revealing details about 1 to 5 nm in size. Due to the way these 

images are created, SEM micrographs have a very large depth of 

field yielding a characteristic three-dimensional appearance useful 

for understanding the surface structure of a sample. A wide range 

of magnifications is possible. The contrast in an SEM depends on a 

number of factors. For a flat, uniform sample the image shows no 

contrast. Contrast is also influenced by surface conditions, local 

electric fields, conductivities of the sample and by the surface tilt. 

  AFM and SEM are exemplary complementary 

measurements, for the contrast of SEM images often deceivingly 

caused by the conductivity of the surface objects, while AFM can 

also suffer from various artifacts such as damaged tips or thermal 

drift. Figure 1.9 shows AFM and SEM images of the surface 

morphology of a pm-Si:H PIN solar cell on textured Asahi. 
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Figure 1.9 – (a) AFM and (b) SEM images of surface morphology of pm-Si:H PIN solar cell 
on textured Asahi.  

  

1.6.8 Diode dark J(V) 

As a semiconductor device, a solar cell is first and foremost a diode. 

The ideal diode has zero resistance under the forward bias, and 

infinite resistance (conducts zero current) under the reverse bias. 

In other words, the semiconductor diode acts as an electrical 

rectifier. The ideal diode equation is given by 
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where kBT is thermal energy (~0.02586 eV at 27 °C), J0 is reverse 

(a)

(b)

500 nm



1.6 Material and device characterization 

 

 

47 

 

saturation current, and n is diode ideality factor [1.63, 1.64]. 

Ideally, log current density versus voltage of the diode shows linear 

proportionality in the forward bias region. Extrapolating the linear 

region down to the y axis (V=0) gives J0, while the slope, m, is given 

by 

dV

Jd
m

log
  

The knowing the slope and sample temperature allows the ideality 

factor to be determined from the relationship 

mTk

q
n

B 


3.2
 

Typical a-Si:H and pm-Si:H solar cells are PIN diodes: a thick 

(~250 nm) intrinsic layer is sandwiched in between P and N layers. 

The intrinsic layer makes the PIN diode an inferior rectifier, but 

makes the device suitable for photovoltaic applications. More 

details on the device physics of the PN junction diode can be found 

in the textbooks such as Ref [1.63]. Figure 1.10 shows dark J(V) 

curves of a good and a bad pm-Si:H PIN diodes. Extrapolation from 

the linear region in the forward bias shows that good PIN diodes 

should have smaller n and J0. 
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Figure 1.10 – Dark J(V) curves of good and bad pm-Si:H PIN diodes. Extrapolation from 
the linear region of the forward bias shows the different dark J(V) parameters for 
different PIN diode quality. 

 

1.6.9 Solar cell parameters 

An ideal solar cell can be represented by a current source connected 

in parallel with a rectifying diode, as shown in the equivalent 

circuit of Figure 1.11. 

 

Figure 1.11 – An equivalent circuit of a solar cell. An ideal solar cell consists of  a current 
source connected in parallel with a rectifying diode, RS and RSH. 
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where kBT is thermal energy (~0.02586 eV at 27 °C), J0 is reverse 

saturation current. The photogenerated current density (Jph) is 

closely related to the photon flux incident on the cell and its 

dependence on the wavelength of light is frequently discussed in 

terms of the quantum efficiency or spectral response. In the ideal 

case, the short-circuit current density (Jsc) is equal to the Jph and 

the open circuit voltage (Voc) is given by 









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0

1ln
J

J

q

Tk
V phB

oc  

In the operation condition such as Jsc ~ 10 mA/cm2 and J0 < 10-6 

mA/cm2, the relationship can be simplified, 


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J
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q
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V phB

oc  

Of particular interest is the point on the J(V) curve where the 

power produced is at a maximum. This is referred to as the 

maximum power point (Pmax), which defines the largest possible 

area rectangle for any point on the J(V) curve. The fill factor (FF) is 

a measure of the squareness of the J(V) characteristic and is 

always less than one. It is the ratio of the areas of the two 

rectangles, between Pmax and VocJsc. 
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Figure 1.12 – An example of solar cell J(V) curve. Jsc, Voc, FF, Pmax are marked. 

 

Usually the FF of solar cells decreases with series resistance (RS) 

and shunt resistance (RSH). Interfaces between the layers and the 

sheet resistance of solar cell itself causes RS, and surface leakage 

near the edge of the film, pinholes in the film, and back-diffusion of 

carriers increases RSH. Finally, the most important figure of merit 

for a solar cell is its conversion efficiency, η, which is defined as 
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The incident power, Pin, is determined by the properties of the light 

spectrum incident upon the solar cell. Figure 1.11 shows an 

example of solar cell J(V) curve. More details on solar cell J(V) 

curve interpretation can be found in Ref [1.65]. 
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2.1 Introduction 

This chapter mainly deals with the properties of pm-Si:H films 

produced under a wide range of deposition conditions, aiming for a 

high deposition rate (rd). From an industrial point of view, a high rd 

over large areas while preserving a good material quality is sought 

after. Nowadays, cost reduction is one of the most important issues in 

photovoltaics. Even though a-Si:H based solar cell technology is 

already produced at low cost of $ 0.5/Wp [2.1], M. A. Green expects that 

further cost reduction is needed down to $ 0.1/Wp for a-Si:H based 

technology [2.2]. In this chapter, we have tested the effect of process 

parameters on pm-Si:H films deposition in order to increase the rd. The 

causes of and consequences for the material properties of PECVD 

deposited pm-Si:H films at various rd are studied. The aim of this work 

is to study the plasma process conditions and understand their effect 

on the rd and the material properties. Readers should also note that 

the discussion on pm-Si:H is based on our current understanding of its 

growth mechanism (which includes plasma-synthesized silicon 

nanoparticles contributing to the deposition). 

 

2.2 ARCAM reactor 

Intrinsic pm-Si:H films were deposited in the ARCAM reactor [2.3]. 

ARCAM is a monochamber-multiplasma reactor, consisting of a single 

vacuum vessel containing three independent plasma chambers. Figure 

2.1 shows the inside of the vessel. The vacuum vessel is a 400 mm 

diameter stainless steel cylinder. Its bottom face contains a pumping 

port, gas inlets, and the RF electrode terminals with plasma boxes. 

The cover can be opened for loading operations and is equipped with a 

water-cooled seal. The whole vacuum vessel can be heated up to 300 °C 

by an oven-like structure made of regulated thermo-coax wires. A 
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protecting thermal isolation surrounds the whole vacuum chamber 

minimizing the thermal losses. The top, the wall, and the cover parts 

of the reactor can be independently heated, but the temperature for 

the three parts is usually set at the same value. The reactor is always 

heated at the desired substrate temperature and kept at a base 

pressure of 10-7 mbar. 

  A rotating plate handles six 100 mm diameter substrates 

allowing large sample productions without breaking vacuum. One of 

the substrate positions (typically #6) is usually reserved for the 

ignition of the silane plasma and to pre-coat the plasma chambers. 

Multichamber system and the rotating plate with multiple sample 

handling is a key feature in ARCAM reactor, in order to minimize 

cross-contamination. In PIN solar cells, controlling the interfaces is 

very important, in particular p/i interface that mainly determines the 

solar cell properties [2.4-2.6]. However, silane plasma is a reactive 

environment where deposition takes place at the same time as etching 

and sputtering of the material deposited on the walls of the reactor. 

These effects may produce a cross contamination between the different 

layers constituting a device when deposited in a monochamber system. 

In PIN solar cells, a boron tail from p-type layer may be incorporated 

in the intrinsic layer and deteriorate the p/i interface quality [2.6]. 

Multichamber systems provide sharp interfaces, a necessary condition 

for obtaining high efficiency of PIN solar cells. 

  Each plasma chamber consists of a RF electrode disk 

surrounded by a grounded cylinder (plasma box, diameter of 150 mm). 

The area of each plasma electrode is 171.95 cm2. RF electrodes and 

plasma boxes can be very easily removed and modified to vary the 

plasma geometry, most importantly the inter-electrode distance, 

enabling one to control the symmetry of the discharge or the gas 

residence time. The gas flows from the inlet hole below the RF 
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electrode to the upper plasma chamber and to the pumping port 

through a 2 mm gap between the upper part of plasma chamber and 

the substrate holder. This annular flow restriction creates a positive 

differential pressure between plasma chamber and the vacuum vessel 

and thus also reduces chemical contamination during deposition. The 

gas pressure in the vacuum chamber is regulated by an electrically 

driven throttle valve. Therefore the gas pressure can be controlled by 

either gas flow rate or pumping rate. The pumping system of ARCAM 

consists of two lines, the base pressure of 10-7 mbar is ensured by a 

turbo-molecular pump, backed by a rotary vane pump. The pumping 

during glow discharge process is ensured by a roots pump backed by a 

rotary vane pump. Figure 2.2 shows a schematic view of one of the 

plasma boxes used in ARCAM. 

 

 

Figure 2.1 – Photo of ARCAM reactor and inside of vessel. Three plasma chambers are seen. 
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Figure 2.2 – Schematic view of one of the plasma boxes used in ARCAM. 

 

2.3 a-Si:H and pm-Si:H deposition 

PECVD deposition of a-Si:H is usually done by dissociation of silane 

(SiH4) or SiH4-H2 gas mixtures. Gas-phase additions such as B2H6 (or 

TMB, BF3) and PH3 are used to obtain p- or n-type material, 

respectively. The substrate temperatures (Ts) are between 25–400 °C, 

depending on the application. In case of ARCAM, our optimum Ts is at 

around 175 °C. SiH4 is tetrahedral molecule, having a heat of 

formation of 34.3 kJ/mol and a Si–H bond distance of 1.5 Å. Gas 

discharge is usually done at a pressure of 0.1-10 Torr and RF power 

density of 10–100 mW/cm2, yielding a rd of 1-10 Å/s. 

  Electron collisions with silane molecules are the primary 

excitation event in the plasma. Electrons having different energies in 

the plasma excite ground state electrons in the molecular orbit of 

silane molecules to their electronic excited states depending on the 

energy of the electrons, often up to 70 eV [2.7-2.10]. Electronic excited 

states of silane molecules are dissociative states meaning that 

spontaneous dissociation occurs from those electronic excited states to 
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a variety of radicals. Figure 2.3 represents some of the species that can 

be generated by glow discharge. 

  

Figure 2.3 – Electron-induced dissociative-excitation of SiH4 molecules upon electron impact. 
All the species are produced spontaneously from electronic excited states via a one-electron-
impact dissociation pathway. Figure from Ref [2.8, 2.7]. 

 

Surface reactions during the film growth determine film properties. 

Addition of H2 in the discharge greatly modifies surface reaction 

probability, introducing secondary reactions such as etching, chemical 

annealing, and surface diffusion [2.8-2.10]. The growth surface, shown 

in Fig. 2.5, consists of active sites, containing at least one dangling 

bond, and passive sites, containing either silicon or hydrogen atoms at 

all four bonds. At the usual deposition temperature of Ts < 400 °C, 

growing film surface is covered by hydrogen [2.11]. The surface 

reaction probability β can be expressed as, 

10               1  βγsrβ  

where r is the coefficient of reflection, s the sticking probability of the 

Si atom and γ the recombination probability as a volatile species. Low 

β values allow conformal coverage and dense material. The dangling 

bonds are created by processes such as ion bombardment and H 

abstraction. SiH2 can insert itself into the matrix upon impact with the 

surface at either active or passive sites. Due to its low mobility, giving 

a sticking probability of near 1, incorporation of SiH2 leads to film 
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growth in a manner similar to that of physical vapor deposition (PVD). 

Such films are generally of poor quality, having voids, undesired 

surface roughness, and other surface defects. SiH3 radicals are indeed 

more favorable due to higher surface mobility, so they react weakly 

with the a-Si:H surface. SiH3 has a small sticking coefficient. 

According to the modeling, it can diffuse up to 1 µm before 

contributing on film deposition, probably through repeated desorption 

and physisorption events [2.11]. SiH3 can diffuse along the surface but 

can stick only at active sites, filling in the surface roughness and 

contributing to growth of a smooth, high-quality film with conformal 

coverage associated with a chemical vapor deposition [2.12]. 

 

Figure 2.4 – Schematic of processes of a SiH3 radical on growing a-Si:H surface. From Ref 
[2.11]. 

 

  Dissociation of SiH4 and H2 produces atomic hydrogen, and 

atomic hydrogen can move in and out of the surface during growth of 

films. This diffusion allows hydrogen to react with the silicon network 

in the subsurface region, after the silicon has attached to the surface. 

The hydrogen also terminates dangling bonds and removes weak 

bonds while excess hydrogen is evolved from the film. The free 

exchange of the hydrogen between the film and the plasma establishes 

(approximate) equilibrium between the plasma gas and the film. Thus 
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the concentration of hydrogen in the film and the reactions with the 

network depend on the chemical potential of the hydrogen in the 

plasma.  

  R. A. Street introduced the hydrogen chemical potential (µH) in 

the plasma as, 











H0

H
HH ln

N

N
kTEµ  

where EH is the energy of atomic H in vacuum, NH is the concentration 

in the plasma, and NH0 is the effective density of states (2.5·1024 cm-3 

at 550 K) [2.13]. Novikova et al. have performed a numerical modeling 

of hydrogen plasma and have shown NH is around 1014 cm-3 [2.14]. µH 

is an important growth parameter and is strongly related to the 

structure of a-Si:H. An increase in µH breaks weak Si-Si bonds and 

passivates dangling bonds, which leads to a sharp valence band tail. 

Weak Si-Si bonds which lie below the µH are broken while stronger 

bonds remain. Therefore, the structural order of the film material 

greatly depends on µH. In a simple material, the concentration of 

hydrogen should increase as the chemical potential is raised at least in 

general terms, nevertheless actual deposition process and gas phase 

reactions are much more complicated. In extreme case, excess 

hydrogen in the plasma induces a transition to microcrystalline silicon 

(µc-Si:H). A possible explanation is that µH is increased by H2 dilution 

to a critical point that there is no amorphous structure available with 

degree of structural order determined µH. The transition to crystalline 

growth is enhanced by high H concentration in the plasma, high RF 

power, and optimum Ts, since all three raise the chemical potential. 

More practical view on hydrogen role such as etching, chemical 

annealing, and surface diffusion can be found in references elsewhere 

[2.8-2.10]. 
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  It is thought that powder formation in the plasma is initiated 

by the nucleation and agglomeration of particles (less than 3 nm in 

diameter), and begins through polymerization of the species. In the 

explanation of the initiation of powder formation, there are two schools 

of thought. One school explains that powder formation starts from an 

insertion reaction of SiH2 with SiH4 forming Si2H6 [2.15, 2.16], thus 

the reaction can be expressed as, 

6224 HSiSiHSiH   

The other school [2.17, 2.18] suggests condensation reaction below, 

2
-
52

-
34 HHSiSiHSiH   

Powder formation is indeed very pronounced under high pressure 

[2.19], and pm-Si:H is produced under plasma conditions close to the 

powder formation [2.19]. The most significant difference in plasma 

conditions of pm-Si:H in comparison to a-Si:H is high pressure and 

high RF power [2.20], which are related to the residence time and the 

electron density, respectively. The presence of primary radicals and 

longer residence time increases the probability of collisions between 

radicals. Primary negative ions can react, giving rise to a first 

nucleation, but additional polymerization reactions need a hydrogen 

loss from the surface. However, secondary negative ions can strongly 

polymerize in a chain reaction, be confined in the plasma and 

contribute to growth of the particles inside the plasma [2.21]. The 

increase in the total pressure results an increase in the density of 

growth precursors in the plasma, followed by onset of agglomeration 

with a sharp increase in the rd. Such transition in silane plasma 

chemistry to the “dusty” regime is called the α–γ’ transition [2.22], and 

there is a sharp edge between α–γ’ transition, the deposition 

contributed by agglomerates of the primary particles [2.23]. 
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Figure 2.5 – Schematic of the process of powder formation in silane plasmas. Starting from 
silicon radicals, it leads to formation of nanometer size clusters and nanocrystals that can be 
considered as the primary nanoparticles. Their density increases with the total pressure until 
a critical concentration of 1011 cm-3, above which they form agglomerates of 10 nm. This 
process can continue by the formation of larger agglomerates and end with the formation of 
larger powders. Depending on the plasma conditions, the whole process from the primary 
particles up to the powders can take a few seconds or it can be sustained under a steady state 
at some intermediate stage. In the case of pm-Si:H deposition the agglomeration phase is 
avoided by keeping the pressure at values for which the characteristic time for diffusion is 
smaller than the agglomeration time. Result from Ref [2.23]. 

 

  Figure 2.6 shows QMS scanned molecular mass distribution of 

plasma species under conditions of pm-Si:H and a-Si:H deposition. In 

both a-Si:H and pm-Si:H deposition, there is a decrease in SiHx signal 

(molecular mass ~ 30) that is attributed to the fact that the silane is 

dissociated and consumed to the deposition. An increase in SiHx 

species is undetectable because the QMS was installed at the gas 

exhaust line (right after the throttle valve). Unstable radicals are 

expected to recombine into SiH4. An interesting point is that poly-

silane species, such as Si2Hx (molecular mass ~ 60) and Si3Hx 

(molecular mass ~ 90), are significantly detected during pm-Si:H 

deposition. There is no higher order silane species signal in a-Si:H 

deposition condition. Detection of the higher order silane species is one 

of the most distinguished differences of pm-Si:H in comparing to a-

Si:H, and the higher order silane species are believed to initiate the 

nanoparticle growth and contribute in the deposition of pm-Si:H. One 

can notice that the detection of poly-silane species by QMS could also 
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be indicative of the existence of larger poly-silane species (e.g. SixHx, x 

> 3), and the signal detected by the QMS could be only the fragments 

of the larger poly-silane species. 

 

Figure 2.6 – QMS scanned molecular mass distribution of (a) a-Si:H and (b) pm-Si:H 
deposition condition at plasma on/off condition. Note that in pm-Si:H deposition condition, 
higher-order silane species such as Si2Hx and Si3Hx are observed. 
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  Greater gas residence time is a key factor leading to 

nanoparticle formation. The growth of nanoparticles is partially 

determined by gas residence time, τr [2.24]. The τr can be defined as, 

Q

VolP r
r


 (s)   

where P is pressure in Torr, Volr is volume of reactor in l (16 l in 

ARCAM), and Q is total gas flow [2.26]. Unit of gas flow is usually in 

standard cubic centimeters per minute (sccm) and can be converted 

into Torr·l (sec)-1 using the conversion relation below, 







 


s

lTorr
  0.0127  (sccm)  1  

In case of Figure 2.6, τr of a-Si:H and pm-Si:H is found to be 1.13 and 

4.58 s, respectively.  

  In practice, the plasma process condition of pm-Si:H is very 

different from that of a-Si:H. Even by observing the matching 

capacitance of the a-Si:H and pm-Si:H processes, one can see that the 

plasma impedance of those two deposition conditions are far apart. 

Nevertheless, the uniqueness of pm-Si:H from a-Si:H can be an 

endless debate because of the difficulty in the detection of structural 

uniqueness of pm-Si:H. Currently, the detection of nanocrystals is only 

possible by transmission electron microscopy (TEM). In spite of the 

difficulty in the detection of the plasma generated nanoparticle, their 

contribution is still considered the a feature of pm-Si:H deposition 

[2.25]. More work on the deposition mechanism and plasma process is 

needed, but the aim of this thesis is the fabrication of solar cells 

consisting of pm-Si:H and the study on their light-induced degradation. 

Therefore, readers should note that the discussion in this work on pm-

Si:H is based on our current understanding of its growth mechanism 

(including a contribution to the deposition of plasma synthesized 
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silicon nanoparticles). 

 

2.4 Gas flow rate series 

Higher SiH4 partial pressure is one way to increase rd, so the effect of 

different process gas flows was studied. The gas flow ratio of SiH4 and 

H2 was varied while the other process parameters were fixed e.g. 

pressure = 3.5 Torr, Ts = 210 °C, RF = 30 W. Gas flow ratio R is 

defined as; 

24

4

HSiH

SiH
  R


  

where SiH4 and H2 are the gas flow rate of gas in sccm. The films are 

deposited on flat corning glass. SE measurement and modeling result 

are provided. Typical values for a-Si:H are also marked as ×. The goal 

of this chapter is to demonstrate the trend of the material properties 

during the parametric studies. 

  QMS analysis of signal intensity ratio SiHx to Si2Hx is shown 

in Figure 2.7(a). The result gives interesting view on the effects of gas 

flow on pm-Si:H deposition, as this signal ratio could represent a 

proportional measure of nanoparticle formation. Figure 2.7(a) shows 

Si2Hx/SiHx and Si3Hx/SiHx ratio as functions of gas flow ratio R. Total 

pressure and RF power were fixed at 2 Torr and 30 W, respectively. 

The total gas pressure was kept constant by adjusting the throttling 

valve. Increasing the H2 dilution reduces Si2Hx and Si3Hx 

concentration in the plasma. Ifuku et al. have studied the behavior of 

plasma generated nanoparticles under different H2 flow, and have 

shown that average particle size decreases when SiH4 was diluted by 

H2 [2.24]. For the formation of the nanoparticles in the plasma, 

polymerization of the species is needed. The nucleation and 

agglomeration of the species or particles are enhanced by larger 
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concentration of precursor (SiH4 partial pressure or total pressure). 

When the gas flow ratio R is smaller than 0.025, the film deposition is 

largely modified. For example, there is no deposition on glass 

substrate at the gas flow ratio R of 0.01, while the deposited material 

changes from µc-Si:H at 0.02 to pm-Si:H at 0.05. The signal intensity 

ratio for a-Si:H deposition (45 mTorr, 1 W, pure silane dissociation) is 

marked as ×. When the gas flow ratio R is lower than 0.025, Si2Hx 

signal intensity ratio is small and goes down to 10-3. In other words, 

there is large difference in concentration of Si2Hx and SiHx species in 

plasma. Above a gas flow ratio R of 0.04, the Si2Hx/SiHx signal 

intensity ratio increases and saturates. Interestingly, Si2Hx/SiHx and 

Si3Hx/SiHx intensity ratio show different slopes upon the gas flow ratio 

R. It suggests that Si2Hx and Si3Hx have different physical origins. In 

other words, Si2Hx and Si3Hx are fragments of different types of higher 

order silane species. Figure 2.7(b) shows that the rd increases under 

SiH4 flow rate, which is interesting, as the Si2Hx concentration 

saturates. However, the surface roughness also increases at high rd, so 

notably there is a change in the material. 

  A low SiH4 flow rate (highly diluted silane gas) leads to µc-Si:H 

deposition, which indicates that µH is significantly high in this region. 

In this region, low Si2Hx intensity can be attributed to the fact that 

atomic H dissociates higher order silane species. The atomic H can 

also prevent agglomeration of growth precursors, passivating the 

surface of nanoparticles. SiH4 can be also recycled by H in plasma from 

dissociation of higher order silane species. It is important to consider 

why a-Si:H deposition condition also shows low concentration of higher 

order silane species. Indeed, a-Si:H deposition conditions are 

completely different from pm-Si:H deposition condition; they consist of 

low pressure of 45 mTorr, dissociation of 50 sccm pure SiH4, and low 

RF power of 1 W. In a-Si:H deposition condition, H induced gas phase 

reaction is much less significant in pure SiH4 dissociation, and 
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nanoparticle formation is suppressed under such low pressure. Silicon 

nanoparticle growth greatly depends on SiH4 partial pressure [2.27] 

and hydrogen dilution [2.24]. Therefore formation of higher order 

silane species is not expected in a-Si:H deposition condition. Auxiliary 

SE results obtained in this study can be found in annex 2.1. 

 

Figure 2.7 – Representative results of gas flow series. (a) QMS analysis of signal intensity 
ratio of Si2Hx to SiHx and Si3Hx to SiHx as functions of gas flow ratio R, and (b) rd and surface 
roughness as functions of SiH4 flow. 
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2.5 Pressure series 

High pressure deposition leads to a reduction of the ion energy [2.28, 

2.29], denser material [2.30] as well as high rd [2.31]. High energy of 

the positive ions causes ion bombardment on growing film surface 

[2.32], thus results high defect density material and poor device [2.28, 

2.33]. On the other hand, high pressure deposition conditions risk 

powder formation [2.34] that are associated with a deterioration of the 

film quality due to the production of pinholes, roughness and porosity 

[2.35], and columnar growth [2.36]. Indeed, in the high rd condition, 

the characteristics of plasma deposition process changes, which is 

characterized by the impinging species having a high sticking 

coefficient that each molecule remains where it first strikes at the 

growth surface. In that case the growth rate is determined by the flux 

of species striking the surface. 

  Figure 2.8 shows rd and surface roughness as functions of 

deposition pressure. Deposition pressure was adjusted by controlling 

throttle valve opening, thus also changing the residence time of 

ionized gas species. A link between powder formation and residence 

time (dependence on gas flow and pressure) has been observed for 

deposition [2.24], and the generation of powder is highly facilitated by 

increasing residence time [2.37]. Therefore, a short residence time 

(high gas flow rate or low pressure) is required to suppress powder 

formation. In Figure 2.8, the total pressure was varied from 2 to 5.5 

Torr, which for the ARCAM reactor, means that τr was changed from 

4.53 to 12.2 s. The surface roughness was estimated from two different 

methods, SE modeling and AFM measurement. In Figure 2.8, rd and 

surface roughness increase when the deposition pressure increases. SE 

roughness and RMS roughness by AFM show similar trends.  
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Figure 2.8 – rd, SE surface roughness, and AFM measured RMS roughness as functions of 
deposition pressure. Calculated residence time at each pressure is marked at top. Typical 
values for a-Si:H are also given as reference.  

 

Regarding the correlation between powder formation and residence 

time [2.24, 2.37], we suggest that higher rd at high pressure possibly 

comes from higher concentration of growth precursor generated in the 

plasma. At the same time, deposition at very high pressures (P > 3 

Torr) increases the surface roughness. One of the possible explanations 

on the surface roughness evolution is the contribution of the positively 

charged precursors. At high pressure, one can imagine the high 

concentration of ions leads to high concentration of positively charged 

growth precursors. The effect of the deposition condition on the surface 

morphology is reflected by a set of AFM images.  

  Figure 2.9 shows AFM images of standard a-Si:H, pm-Si:H 

deposited at 2 Torr and pm-Si:H deposited at 4 Torr. Increasing the 

pressure from 45 mTorr to 4 Torr leads to an increase in both RMS 

roughness and surface feature size. The surface feature in Figure 2.9(b) 
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Figure 2.9 – AFM images and its cross-section of (a) standard a-Si:H, (b) pm-Si:H deposited at 
2 Torr, and (c) pm-Si:H deposited at 4 Torr. Note that at higher pressure, larger surface 
features and rougher surface is observed. Note that the size of the bumps cannot be attributed 
to individual nanoparticles (a few nanometers). 

 

(a) a-Si:H at 45 mTorr
RMS ~ 0.97 nm 

(b) pm-Si:H at 2 Torr
RMS ~ 1.48 nm 

(c) pm-Si:H at 4 Torr
RMS ~ 5.8 nm 
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and (c) could be interpretated as surface roughness introduced by high 

sticking coefficient. It should be noted that the height of the surface 

feature (several nanometers) is orders of magnitude smaller than the 

surface feature size of few hundred nanometers.  

  One can notice that the deposition at pressure above 3 Torr 

results in material with high roughness and high porosity. Hydrogen 

exodiffusion sensitively detects interconnected voids in the material; in 

particular a-Si:H materials demonstrate that a void related 

microstructure is a major source of defects [2.38, 2.39]. Figure 2.10 

shows exodiffusion spectra of a set of pm-Si:H films deposited under 

different pressure values from 2 to 5 Torr.  

 

Figure 2.10 – Hydrogen exodiffusion spectra of a set of pm-Si:H films deposited under different 
pressure from 2 to 5 Torr. 

 

Figure 2.10 shows that increasing deposition pressure increases 

hydrogen evolution at both 350 °C and 500 °C. In particular, hydrogen 

evolution at 350 °C is closely related to the porosity of the material. 

Material structure with a high degree of columnar morphology or 

extensive internal inhomogeneity evolves a large amount of hydrogen 
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between 300-400 °C with further evolution near 500-600 °C, while 

samples made under CVD growth conditions have only the higher 

temperature peak [2.40]. The evolution peak at 300-400 °C is also 

considered to be molecular hydrogen release from internal surface of 

interconnected voids [2.41] or from silicon nanoparticle surfaces [2.42]. 

Moreover, in case of silicon nanoparticles, the low temperature 

hydrogen effusion peak shifts to lower temperature when larger 

nanoparticles are incorporated [2.42]. Therefore, one can conclude that 

high pressure deposition results in higher porosity. Another 

interesting point is that the shoulder of exodiffusion spectra at 600 °C 

slightly decreases at higher deposition pressure. The exodiffusion 

shoulder at 600 °C indicates hydrogen evolution from isolated voids 

[2.6]. Therefore, increase in deposition pressure of pm-Si:H resulted in 

a decrease in the isolated void density and increase in interconnected 

void density. Such trend could also imply a larger area of internal 

surface, providing more space to hydrogen. A trade-off seems to exist 

between the interconnected voids (350 °C shoulder) and isolated voids 

(600 °C shoulder). The last point is that high pressure deposition also 

increases the hydrogen evolution signal at 500 °C, which is thought to 

be bound Si-H [2.40]. The existence of a low temperature exodiffusion 

peak can be also interpretated as incomplete structural re-construction 

[2.38]. Auxiliary results obtained for this pressure series can be found 

in annex 2.2. 

 

2.6 RF power series 

Increasing the RF power is another way to increase the rd. As a higher 

RF power results a higher electron density in the plasma, the 

dissociation rate increases [2.43, 2.44]. However, the rise in the 

electron density increases ionization and polymerization becomes more 

intense, which leads to uncontrolled growth of powder. As mentioned 



2.6 RF power series 

 

 

75 

 

in the pressure series section, an increase in rd can lead to high surface 

roughness and deteriorate the material quality. Furthermore, high RF 

power causes high ion bombardment energy for the positive ions on 

growing film surface [2.32]. Controlling the voltage waveform of the 

plasma excitation source could be helpful solution controlling of the 

powder production through the primary parameters [2.45]. 

  Figure 2.11 shows rd, surface roughness and the 

microstructure parameter R (defined below) as functions of RF power.  

 

Figure 2.11 – rd, surface roughness and microstructure parameter R as functions of RF power. 
DC bias on the RF electrode is marked at top. Typical values for a-Si:H are also given as 
reference. 
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dihydrides to monohydrides. Even though the a-Si:H microstructure 

has been the subject of a continuing debate, the microstructure 

parameter R is believed to indicate the concentration of nanovoids 

[2.46], and there is a correlation between microstructure and material 

properties in the sense that material and device stability deteriorates 

with increasing nanovoid density [2.46, 2.47]. Microstructure 

parameter R is related to the fraction of dihydrides, and it is also 

reported that a high amount of dihydrides in the film has the same 

result as a high nanovoid density [2.8]. In Figure 2.11, rd and surface 

roughness increase with RF power. One might expect that high RF 

power creates higher concentration of growth precursors and further 

contributes to high rd. One can also notice that the increasing surface 

roughness can be often associated to a signature of material 

deterioration, as discussed in the pressure series section. 

  Further information of hydrogen bonding is obtained from the 

evolution of FTIR stretching mode spectra with RF power. Figure 2.12 

shows FTIR stretching mode spectra of pm-Si:H produced at varying 

RF power. With increasing RF power, hydrogen content (CH) of pm-

Si:H film increase up to 22 at.%, but the evolution of FTIR stretching 

mode of pm-Si:H differs from that of a-Si:H as reported in the 

literature [2.48].  In such results for a-Si:H, at such high CH, the 

fraction in the 2100 cm-1 peak becomes very significant and even 

larger than at 2000 cm-1, but in pm-Si:H, the evolution of 2100 cm-1 

fraction is much less pronounced. Indeed, the evolution of the FTIR 

stretching mode of pm-Si:H resembles that of a-Si:H deposited by 

magnetron sputtering [2.49]. This modest evolution of the dihydrides 

peak in pm-Si:H could be explained by claiming that plasma generated 

nanoparticles are heavier than radical species, and therefore have a 

higher sticking coefficient. Moreover, increasing sheath potential at 

high RF power would accelerate any positively charged nanoparticles.  
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Figure 2.12 – (a) FTIR stretching mode spectra of pm-Si:H under various RF power and (b) 
hydrogen content calculated from (a). Note that stretching mode peak shifts towards higher 
wavenumbers with higher RF power. Hydrogen content of a-Si:H is marked as cross. (c) FTIR 
stretching mode absorption spectra of a-Si:H films deposited by PECVD (solid) and magnetron 
sputtering (dashed lines). Spectra are shown in pairs to compare features for samples with 
hydrogen content of 7, 13, 20, and 24 at.%. The result from Ref [2.49]. 

 

  In Figure 2.12(a), the evolution of the FTIR stretching mode 

spectra of pm-Si:H with various RF powers showed the peak shift to a 

higher frequency region, and this shift is separated into a low 

stretching mode (LSM) and a high stretching mode (HSM) peaks in 

Figure 2.13 (a), (c), and (e), using the peak position of LSM and HSM 

bands at 1990 cm-1 and 2090 cm-1, respectively. Using such a 

deconvolution for pm-Si:H, the medium stretching mode (MSM), band 

centered at 2030 cm-1 [2.20] has been interpreted as Si-H bonds at 
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silicon nanocrystal surfaces [2.50], and as an increase in 

surface/volume ratio [2.42].   

 

Figure 2.13 – Demonstrations of stretching mode deconvolution of spectra shown in Figure. 
2.12(a). In (a), (c), and (e), the spectra are deconvoluted into classical two modes. In this case, 
both LSM and HSM show peak shift. In (b), (d), and (f), the spectra are deconvoluted into 
three modes including MSM at 2030 cm-1. It is shown that the stretching mode peak shift can 
be attributed to the evolution of MSM mode. 
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remarkable, and therefore the stretching mode peak shift could be also 

attributed to the evolution of MSM band. In Ref [2.49], Langford et al. 

described the evolution of stretching mode as a “broadening”. However, 

at that time, the existence of 2030 cm-1 band was not recognized. 
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Gradual stretching mode peak shift to higher frequency can be 

attributed to larger internal surface, under higher RF power. Table 2.1 

summarizes the fitting parameters of the deconvolution in Figure 2.13. 

Auxiliary results obtained in RF power series can be found in annex 

2.3. 

 

RF power (W)  30  50  120 

2 peaks 

LSM 

Center  2012  2014  2016 

Area  67.1  81.12  97.1 

FWHM  109.6  108.4  108.0 

HSM 

Center  2098  2099  2101 

Area  9.25  10.54  12.45 

FWHM  75.6  100.6  101.8 

Total Area  76.35  91.66  109.55 

3 peaks 

1990 
Area  35.21  36.12  39.11 

FWHM  94.1  91.0  85.7 

2030 
Area  26.6  34.04  46.25 

FWHM  83.1  85.1  86.5 

2090 
Area  14.91  21  24.41 

FWHM  82.0  104.2  105.4 

Total Area  76.72  91.09  109.77 

 

Table 2.1 – Fitting parameters of the FTIR stretching mode deconvolution in Figure. 2.13. 
Note that in three peaks deconvolution each peak positions are fixed. 

 

2.7 Ts series 

At the deposition temperature of 150 < Ts < 400 °C, the growing 

surface is covered by hydrogen [2.51]. Surface hydrogen coverage is 

reduced at higher temperature, and the growth surface is no longer 

covered by hydrogen at Ts > 400 °C [2.29]. One must recall that 

regarding the chemical potential µH, the optimum growth temperature 

of 150 < Ts < 300 °C is explained by the balance between hydrogen 

diffusion and interactions. At Ts < 100, the diffusion coefficient of H is 

too low to allow structural equilibration. At higher temperatures, the 

H diffusion is fast enough to allow the film structure and H content to 

be determined by the µH. The surface reactions first establish a 
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structural order determined by µH, and then continue to remove 

hydrogen. At Ts < 400, temperature reduces µH, thus induces 

disordered film at a lower hydrogen concentration. Optimum films are 

therefore grown at the lowest temperature at which the kinetic 

limitation can be avoided [2.13]. Increase in Ts decreases hydrogen 

content (CH) [2.11, 2.43]. Moreover, the material stability largely relies 

on the dihydride concentration [2.8], so an increase in Ts would make 

more stable material. 

  Figure 2.14 shows the rd, surface roughness and optical 

bandgap (Eopt) as functions of Ts. One can notice that the effect of Ts on 

the rd is quite small compared to that of pressure or RF power. 

However, there is a moderate decrease in the rd at the Ts higher than 

210 °C, and it is attributed that high Ts suppresses initiation of 

nanoparticles [2.52-2.54]. At high temperature, thermal motion of 

particles is highly stimulated, thus the diffusion of (negatively charged) 

growth precursor is facilitated. Therefore, growth precursors have 

higher probability to escape the plasma, thus prevent powder 

formation. In addition, through a similar mechanism, narrow inter-

electrode distance also prevents powder formation [2.55, 2.56], but the 

smallest inter-electrode distance (12 mm) is used in this study, so we 

are already taking benefit from the narrow inter-electrode distance. It 

is another interesting result that Eopt decreases as Ts increases. It 

suggests that there is structural change in pm-Si:H deposited at high 

Ts.  
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Figure 2.14 – rd, surface roughness and optical bandgap as functions of Ts. 

 

  Figure 2.15(a) shows exodiffusion spectra of pm-Si:H deposited 

at different Ts from 175 °C to 275 °C. Figure 2.15(b) also shows CH and 

microstructure parameter R. At higher Ts, hydrogen evolution at both 

350 °C and 500 °C is reduced. Exodiffusion result is again coherent 

with decreased CH and microstructure parameter R deduced from 

FTIR. Recalling that both exodiffusion peak at 350 °C and 

microstructure parameter R indicate material porosity, the deposition 

at higher Ts results in more compact material structure. Suppression 

of powder formation would be significant at high Ts, and it is 

attributed to the dissociation of growth precursors since µH increase, 

thus increase in material density at high Ts can be attributed to the 

suppression of powder formation.  
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Figure 2.15 – Effect of substrate temperature on hydrogen incorporation in pm-Si:H. (a) 
Hydrogen exodiffusion spectra of pm-Si:H deposited at different Ts from 175 °C to 275 °C, and 
(b) hydrogen content in pm-Si:H and microstructure parameter R as functions of Ts as deduced 
from FTIR study. 
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density of isolated voids [2.6], and the trade-off between isolated voids 

and interconnected voids are related to the material porosity, as 

discussed in previous sections. It is interesting that at higher Ts, the 

high temperature exodiffusion peak shifts to lower temperature. A 

high temperature exodiffusion peak position is decided by material 

reconstruction during low temperature hydrogen effusion [2.57], so 

structural modification during deposition should have been more 

pronounced at high Ts, due to high µH. 

 

Figure 2.16 – Evolution of normalized photoconductivity as a function of light-soaking time for 
pm-Si:H films deposited at different Ts. 

 

  At higher Ts, both CH and dihydrides fraction I2100 decreased. 

Therefore, high temperature deposition could make a stable material. 
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degradation. Moreover, result shows that magnitude of the light-

induced degradation depends on the Ts, which is attributed to the CH.  

 

Figure 2.17 – (a) FTIR transmission spectra in Si-O-Si stretching mode region of Ts series and 
(b) Activation energy, room temperature conductivity of Ts series. 
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spectra in Si-O-Si stretching mode region of the Ts series of Figure 

2.15(b). Two peaks at 960 cm-1 and 1110 cm-1 provide a signature of 

oxygen-type a-Si:H and amorphous SiOx, respectively [2.58]. It is 

widely known that oxygen is deleterious impurity acting as a deep-

state donor, thus careful effort is needed to reduce the oxygen 

contamination [2.59]. Indeed, room temperature conductivity and 

activation energy of those films showed a moderate change and 

evidence of slight n-type doping, yet the properties are still in the 

range of intrinsic materials, as shown in 2.17(b). Oxygen may come 

from leaks due to imperfection of the vacuum system, or more likely, 

from out-gassing from the inner wall of the reactor. As a matter of fact, 

ARCAM is a monochamber reactor without loadlock. ARCAM is indeed 

designed to maintain chemical purity by high gas flow, achieving high 

process-gas-flow/out-gassing ratio [2.1]. Moreover, in pm-Si:H 

deposition condition, high pressure is obtained by reducing throttle 

valve diameter. In other words, pm-Si:H deposition condition in 

ARCAM consists of relatively high out-gassing in comparison to low 

pressure a-Si:H deposition. Therefore, in ARCAM, pm-Si:H deposition 

would be difficult to maintain chemical purity at high temperature. 

The oxygen contamination issue can be resolved by an addition of a 

small amount of silicon-tetra-fluoride (SiF4) [2.60]. Auxiliary results 

obtained in Ts series can be found in annex 2.4. 

 

2.8 Powder formation and residence time 

This chapter deals with a deposition study of intrinsic pm-Si:H with 

various plasma conditions. The goal is still to develop high quality 

material deposited at high rd. Plasma deposition is a sensitive process, 

and any change in plasma process parameters brings various effects. 

For example, Figure 2.18 shows a SIMS profile of the hydrogen and 

oxygen content of a RF power series of pm-Si:H deposited on FZ c-Si. 
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Increasing the RF power results in high rd, and high rd greatly reduces 

oxygen content in the films, compared to a-Si:H. In this case, 

impurities such as oxygen originate from out-gassing or leaks. During 

the deposition process, one may then consider a precursor gas flow and 

an additional impurity gas flow. At high rd, relatively less supply of the 

impurity, with respect to SiHx, is expected. However, at higher RF 

power, reduction of oxygen content becomes less significant, as rd 

saturates at RF powers greater than 80 W (Figure 2.11). Therefore, 

one can notice that the impurity content can be controlled by the rd, 

but not by the RF power. 

 

Figure 2.18 – SIMS profile of hydrogen and oxygen content of a RF power series of pm-Si:H 
deposited on FZ c-Si 
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2.19(a) shows the SIMS profile of a total flow series. Figure 2.19(b) 

also demonstrates that increasing residence time increases the oxygen 

content but also the hydrogen content. 
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Figure 2.19 – (a) SIMS profile of residence time series. Total pressure and gas flow ratio is 
fixed, while only gas flow is changed. (b) O and H content from (a) as functions of calculated 
residence time. 
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increase of Eopt when rd saturates at extreme plasma conditions such 

as pressure > 3 Torr or RF power > 50 W. The sharp increase of Eopt is 

a consequence of the high CH, as seen in Figure 2.20(c). Therefore, one 

can notice that extreme plasma conditions mentioned above do not 

contribute to a further increase in rd, but rather lead to excessive 

hydrogen incorporation (CH > 16 at.%). Recalling that long τr leads to 

high oxygen content, one is tempted to suggest that high Eopt originate 

from SiOx alloy formation, as both oxygen and hydrogen content are 

linked to widening of Eopt. However, for device-quality intrinsic layers, 

the oxygen content is orders or magnitude below that necessary for 

any alloying effects. For further proof, in Figure 2.14-2.17, as 

temperature increases, the Eopt decreases while hydrogen content 

decreases and oxygen content increase. However, oxygen is an 

important doping impurity that degrades the material quality [2.63], 

especially as oxygen incorporation on crystalline silicon is more serious 

because of higher doping efficiency. Therefore, due to the mixed-phase 

nature of pm-Si:H, efforts to reduce oxygen content should be taken.

  In overall, this chapter deals with pm-Si:H deposition under 

various plasma conditions, and the most critical issue should be 

increasing the rd while maintaining the material quality. Under 

extreme process conditions e.g. P > 3 Torr and RF power > 50 W, the 

material shows notable features of change, such as the evolution of a 

low temperature exodiffusion peak, a higher CH, and the rise of a MSM 

band. In other words, excessive hydrogen incorporation is a signal for 

the extreme process conditions of pm-Si:H which do not further 

contribute to rd. Returning to the Eopt versus rd plot in Figure 2.20(a), 

the consequence of extreme plasma conditions such as pressure > 3 

Torr or RF power > 50 W is reflected as excessive hydrogen 

incorporation that widens Eopt of the material, without further 

contributing to deposition rate. Therefore, the Eopt versus rd plot 

provides a simple diagnostic for this pm-Si:H deposition study on how 
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much rd can be increased while maintaining the material quality. For 

example, the Tauc plot of Figure 2.20(b) shows that the Eopt of the pm-

Si:H deposited at 30 W and 50 W are identical, while the Eopt of the 

pm-Si:H starts to increase at higher RF power. Figure 2.20 displays 

that rd can be increased up to 16 Å/s while keeping Eopt of about 1.69 

eV and CH of 16 at.%. 

 

Figure 2.20 – (a) Optical bandgap, Eopt, versus rd of different pressure, RF series of pm-Si:H. (b) 
Tauc plot of one of the RF series in (a). (c) Hydrogen content, CH, versus rd. 

  

2.9 Summary 

We have made an extensive test on the material properties of pm-Si:H 

under various plasma parameters. The main goal in this chapter is to 

deposit pm-Si:H at high rd while maintaining material quality. A QMS 

study of a-Si:H and pm-Si:H deposition conditions reveals the 

existence of higher-order-silane species in pm-Si:H deposition, which 
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could be correlated with the contribution of nanoparticles. In the 

pressure and RF series, varying the precursor concentration, 

dissociation, and τr values result in an increase in the rd, but could also 

lead to poor quality material. The material deposited at extreme 

process conditions such as P > 3 Torr or RF power > 50 W shows the 

evidence of deterioration such as roughness, porosity and 

interconnected voids, and excessive CH. Deposition at higher Ts helps 

to suppress hydrogen incorporation, but in practical view, impurity 

incorporation due to outgasing becomes significant, and furthermore, 

p-type a-SiC deteriorates at high Ts. Therefore, at high Ts, making 

solar cell device would be difficult. Regarding the nature of pm-Si:H 

deposition, control of τr seems interesting, to avoid powder formation 

and to reduce impurity incorporation while maintaining rd and any 

deposition contribution by nanoparticles. 

  As discussed above, there are many controllable process 

parameters. In addition, the cause-effect-consequence relationship 

between each process parameter and material property are inter-

related, adding more complexity to the study. Therefore, Table 2.2 

shows possible actions in controllable plasma parameters and the 

ensuing benefits and drawbacks. The solutions for the drawbacks are 

also considered. As mentioned above, deposition at high rd while 

maintaining material quality is a key issue in pm-Si:H deposition, 

recalling that extreme process conditions such as too high pressure or 

RF power lead to poor material. There are indeed few fundamental 

solutions such as installing a load-lock on the reactor, reducing the 

volume of reactor, or having a multichamber cluster. As mentioned 

above, lowering of τr appears to be more interesting in order to avoid 

powder formation and excessive hydrogen incorporation while 

maintaining rd. τr can be simply reduced by increasing total gas flow 

and opening throttle valve, without changing any other plasma 

parameters above.  
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Actions  Benefits  Drawbacks  Solution 

SiH4 flow   Precursor    Material changes  Fixed gas flow rate 

Pressure  
Precursor   
Ion energy  

Powder  
Residence time  

Total gas flow  
Inter electrode gap  
Small volume reactor 
Multichamber cluster 

Ts  

RF power  
Dissociation   
µH  

Powder  
Ion energy  

Gas flow  
Pressure  
Ts  
Novel plasma sources 
Multichamber cluster 

Ts  
Powder  
CH  
µH  

Outgasing  
Poor p a‐SiC 

Loadlock 
Multichamber cluster 
Use of SiF4 
Novel doped layers 

 

Table 2.2 – Controllable plasma parameters and their benefits, drawbacks and solutions. Note 
that most of the case, the drawbacks are powder formation, and solutions are indeed trade-off 
of each other cause-and-effects.   
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3.1 Introduction 

This chapter deals with pm-Si:H solar cells made of intrinsic material 

prepared under various deposition conditions. In the previous chapter 

we have studied the growth of pm-Si:H at various process conditions. 

In this chapter, we present experimental studies on the performance of 

pm-Si:H solar cells using various intrinsic layers. Controlling τr leads 

to fabricate solar cells with high FF, which is attributed to the low 

defect density material, and the application of ITO/Ag reflector 

enhanced Jsc thus allows high efficiency PIN solar cells showing initial 

ηinitial of 9.22 %. Application of HR pm-Si:H layers was also studied. 

HR pm-Si:H PIN solar cells show potential to further cost reduction, 

but also showed deterioration of device performance. The improvement 

in material quality of HR pm-Si:H is needed.    

 

3.2 Standard PIN solar cells  

In a-Si:H solar cells, the diffusion length of the charge carriers is 

shorter than that in crystalline silicon. For example, device quality 

intrinsic a-Si:H shows an as-deposited ambipolar diffusion length 

around 200 nm [3.1], and doped layers have even lower diffusion 

length of the minority carriers because of the high defect density 

associated with the doping in a-Si:H. A solar cell structure in 

crystalline silicon is based on the transport of the minority carriers by 

diffusion in the base material, but it is inefficient for thin film silicon 

solar cells. A PN junction based on a-Si:H would show very low 

efficiency due to the very short diffusion length, and the 

photogenerated carriers would recombine before being separated by 

the electric field in the depletion region of the PN junction. Therefore, 

thin film silicon solar cells should be designed differently compared to 

the standard PIN junction of a crystalline silicon cell.  
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  A schematic structure of a PIN solar cell is shown in Figure 3.1. 

The PIN device consists of three fundamental components: a p-type a-

SiC:H, an intrinsic layer, and an n-type a-Si:H, which form a PIN 

junction. This structure is often called a single junction solar cell. The 

PIN devices in this study were deposited in the ARCAM reactor. 

Standard a-Si:H and pm-Si:H materials are used in the intrinsic layers. 

The structure of PIN solar cell consists of a textured Asahi SnO2 

substrate/p-type a-SiC/SiC buffer/intrinsic layer/n-type a-Si:H/Top 

contact. Various back-contacts such as Al, Ag, and ITO/Ag can be used. 

The area of the cells was 0.126 cm2. The thickness of p and n-type 

layers were about 150 Å, and the intrinsic thickness can vary from 

1500 to 7000 Å. Figure 3.1 shows an SEM image of cross-section of a 

pm-Si:H PIN solar cell deposited on textured SnO2 substrate. 

 

Figure 3.1 –SEM image of the cross-section of a pm-Si:H PIN solar cell deposited on textured 
SnO2 substrate and its schematic drawing. In SEM image, silicon layers appear dark due to 
the low conductivity. 

 

  Boron doped a-SiC:H has become a standard p-type layer in a-

Si:H solar cells [3.2]. Since boron incorporation reduces the bandgap of 

a-SiC:H, it should be carefully considered that an optimal p-type layer 

is a result of a trade-off between conductivity and absorption. In this 

experiment, our standard p-type a-SiC:H layer was obtained from the 

following flow rates for the different gases injected in the reactor: H2: 

SnO2

n layer

Back contact

p layer

Intrinsic 

Al

SnO2

PIN
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100 sccm, SiH4: 25 sccm, CH4: 100 sccm and trimethyl-boron (TMB): 20 

sccm, and deposited at a pressure of 120 mTorr and RF power of 1W. 

After the deposition of p-type a-SiC:H layers, a thin buffer layer is 

deposited. It is widely known that the design of the p/i interface region 

significantly influences the efficiency of solar cells, and a thin 

interlayer (buffer) improves solar cell performance [3.3, 3.4]. The 

buffer layer prevents diffusion of boron from the p-type a-SiC:H into 

intrinsic layer and back diffusion of the photogenerated electrons from 

the intrinsic into p-type layer. The thin buffer layer is often coupled 

with a lightly doped p-type a-SiC:H to make smooth gradient of 

distribution of the electric field. Therefore, usually p/i interface region 

consists of multilayers including heavily doped p / lightly doped p / 

intrinsic a-SiC:H. Intrinsic a-SiC:H film was applied in highly efficient 

solar cells as a thin buffer layer in the following condition: H2: 100 

sccm, SiH4: 40 sccm, CH4: 80 sccm.  

  In the intrinsic layer, the electron-hole pairs are generated and 

collected, and the strength and profile of the internal electric field 

across the intrinsic layer determines the collection of the 

photogenerated charge carriers. The electric field profile in the 

intrinsic layer strongly depends on the defect density and the 

distribution in the intrinsic layer and at the interfaces with the doped 

layers. Therefore, the material quality of the intrinsic layer is a crucial 

part of the solar cell performance, and intrinsic pm-Si:H film should be 

deposited in carefully controlled plasma conditions. In this chapter, 

work is described where plasma parameters of pm-Si:H were varied to 

optimize the solar cells, and two series of pm-Si:H are tested. Standard 

intrinsic pm-Si:H was deposited under pressure of 2 Torr, RF power of 

5 W, Ts of 175 °C. Inter-electrode distance was 22 mm. Relative and 

total gas flow rates of SiH4 and H2 were varied. High deposition rate 

(HR) intrinsic pm-Si:H PIN solar cells were also studied under various 

plasma conditions. For HR pm-Si:H, the pressure was varied from 2 
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Torr to 3.5 Torr, the RF power varied from 30 W to 80 W, and the 

substrate temperature (Ts) was varied from 210 °C to 240 °C. 

Narrower inter-electrode distance of 12 mm was used in HR pm-Si:H, 

and gas flow rate was varied. Application of such deposition 

parameters leads to pm-Si:H films such as very stable films at low 

deposition rate (rd) of 1.5 Å/s to films with rd as high as 10 Å/s while 

still maintaining device quality [3.5]. The best quality film is obtained 

at the lowest rd of 1.5 Å/s, and another good quality material with 

higher rd up to 10 Å/s was also possible. The rd was further increased 

up to 20 Å/s with higher RF power, but the material quality tends to 

degrade at high rd.. Standard a-Si:H was deposited dissociating 

undiluted silane at pressure of 45 mTorr and low RF power of 1 W 

leading to a deposition rate of ~ 0.7 Å /s 

  On the top of intrinsic layer, a n-type a-Si:H layer was 

deposited from a mixture of 100 sccm of hydrogen, 50 sccm of silane 

and 2 sccm of phosphine under a pressure of 110 mTorr and RF power 

of 1 W. Since n-type a-Si:H layer is located at the back end of the PIN 

solar cells and most of high energy photons are absorbed in the 

intrinsic layer, the transparency of n-type layer is less important than 

that of the p-type layer. However, still there is some parasitic 

absorption in n-type layer, which is a leads to a decrease in Jsc , so 

wide bandgap n-type layer should be an important topic. Table 3.1 

summarizes material properties of doped layers and standard PIN 

solar cell components. After the deposition of the PIN layer stack, 

back-contact should be deposited. Various materials such as Al, Ag, 

and ITO/Ag can be used. Evaporated Al is the simplest back-contact, 

providing high conductivity and moderate reflectivity. Sputtered ITO 

and evaporated Ag are often coupled in order to enhance Jsc. After the 

fabrication, the solar cells were annealed at 160 °C for two hours for Al 

and ITO/Ag case. In case of Ag contact, annealing was done at 150 °C 

for 30 minutes in order to prevent Ag diffusion.  
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  The physical properties of PIN solar cells and the material 

quality of the two groups of materials listed above can be tested by the 

dark J(V) characteristics. Figure 3.2 shows the dark J(V) 

characteristics of a-Si:H and pm-Si:H PIN solar cells, and Table 3.1 

shows dark diode parameters extracted in Figure 3.2. In Figure 3.2, 

both a-Si:H and pm-Si:H produce good diodes with clear rectifying 

characteristic, the on/off ratio reaching up to 106. In Table 3.2, 

extracted dark parameters are in the range of good a-Si:H PIN diodes 

presented in literature [3.6]. Low ideality factor, low J0, and high 

on/off ratio with clear rectifying characteristic indicate that both 

materials are of device quality and that the doped layers work 

effectively. Dark J(V) curve of pm-Si:H PIN solar cell shows small shift 

to higher voltage and a lower current density compared to that of a-

Si:H, and it is also reflected in dark parameters. In Table 3.1, the pm-

Si:H PIN solar cell shows lower J0 because of the shift in the dark J(V) 

curve due to wider bandgap. It is interesting that the ideality factor of 

pm-Si:H PIN solar cell is a bit higher than that of a-Si:H PIN solar cell. 

It can be also explained by that the bandgap of pm-Si:H is slightly 

wider than that of a-Si:H.  

  J(V) curves of PIN solar cells can be also measured under 

illumination. Figure 3.3 shows initial characteristics of typical a-Si:H 

and pm-Si:H PIN solar cells. Intrinsic layer thickness (di) was about 

3000 Å for both solar cells, and Al back-contact was used. Table 3.3 

shows solar cell parameters of PIN solar cells shown in Figure 3.3. 

Note that multiple (usually six) individual solar cells on 2.5×2.5 cm2 

substrate are measured and the solar cell parameters are averaged. 

Figure 3.3 and Table 3.3 show that both a-Si:H and pm-Si:H indeed 

result in good solar cells at initial state. High fill factor (FF) of both 

cells indicates that both materials have low defect density at initial 

states. In Voc and Jsc, there is slight difference, namely pm-Si:H PIN 

solar cell shows a slightly lower Jsc and high Voc compared to that of a-
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Si:H PIN solar cell. External quantum efficiency (EQE) in Figure 3.3(b) 

also shows that absorption edge of pm-Si:H PIN solar cell is slightly 

shifted to shorter wavelength region, thus pm-Si:H PIN solar cell 

shows a bit lower Jsc. It is related to the bandgap difference between 

the two materials.  Due to the higher bandgap, pm-Si:H PIN solar cells 

show higher Voc than a-Si:H PIN solar cells, which is attractive  in 

view of multi-junction solar cells [3.7]. 

 

Figure 3.2 – Initial dark J(V) characteristics of a-Si:H and pm-Si:H PIN solar cells. Ideality 
factor and J0 can be extracted from the extrapolation of forward bias region. Note that 
intrinsic layer thickness was about 3000 Å. 

 

Sample  n  J0 (mA/cm2) 

a‐Si:H 
a1102252 

1.66  4.65×10‐8 

pm‐Si:H 
a1104114 

1.75  1.14×10‐8 

 

Table 3.2 – Ideality factor n and J0 of a-Si:H and pm-Si:H PIN solar cells in Figure 3.2. Dark 
diode parameters are extracted from the extrapolation of forward bias region.  
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Figure 3.3 – Initial characteristics of a-Si:H and pm-Si:H PIN solar cells. (a) J(V) curve and (b) 
external quantum efficiency. Note that intrinsic layer thickness was about 3000 Å, and Al 
back-contact was used. 

 

 

Sample  FF  Rsc (Ωcm
2)  Roc (Ωcm

2)  Jsc (mA/cm2)  Voc (V)   η (%) 

a‐Si:H  72.56  4786  6.44  13.56  0.842  8.28 

pm‐Si:H   73.67  2982  5.86  12.95  0.867  8.28 

 

Table 3.3 – Solar cell parameters of PIN solar cells shown in Figure 3.3. 
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3.3 Effect of light-trapping  

One of the most effective approaches to enhance the solar cell 

efficiency is to increase Jsc. In PIN solar cells, Jsc mostly depends on 

the absorption in the intrinsic layer, thus application of thicker 

intrinsic layer could be a simple way. However, thick intrinsic layer 

weakens the internal electric field across the intrinsic layer, increases 

recombination, and thus degrades the collection of photo-generated-

carriers, thus introducing a decrease in FF. Furthermore, this 

increased sensitivity to recombination accelerates light-induced 

degradation in thick intrinsic layers. Therefore, it is important to use 

special device design of “optically thick” while maintaining “electrically 

thin” features [3.8], also known as light trapping. In brief, studies on 

intrinsic layer thickness and its effects on PIN solar cells can bring 

important information on device physics. A brief detail on intrinsic 

layer thickness on PIN solar cells can be found in annex 3.1 and 

chapter 5. 

  At present, the most important research in the thin film solar 

cells is the development and implementation of efficient light trapping. 

Efficient light trapping mostly relies on light scattering at rough 

interfaces and employment of highly reflective back contacts, and 

refractive index matching (or mis-matching) between each component. 

The light scattering at rough interfaces spreads the photons in random 

directions and introduces internal-reflection at the back and front 

contacts, thus resulting in a longer optical path, thus making an 

“optically thick” device structure. For the light-trapping, transparent 

conductive oxide (TCO) and innovative doped layers (such as doped µc-

SiOx) play an important role, through their surface texture and 

refractive index matching. Indeed, recent progress on the efficiency of 

a-Si:H and µc-Si:H solar cells are results of an improvement in TCO 

[3.9] or innovative doped layers [3.10].  
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  An example of the effect of highly reflective back contact is 

demonstrated in Figure 3.4, which shows initial J(V) curves and EQE 

of a pm-Si:H PIN solar cell with different back reflector of Al and 

ITO/Ag. Table 3.4 shows solar cell parameters extracted from Figure 

3.4. Increase in Jsc is a significant change with ITO/Ag back reflector, 

and it is also seen in EQE curve, increase in Jsc mostly comes from 

enhanced response in red region. However, there is also a trade off 

factors that the FF and Rsc are smaller for the ITO/Ag contact. One can 

suspect that while Al and SnO2 form Al2O3 at any small pinholes 

which can remove the shunt path, the ITO/Ag contact does not remove 

the shunt path through any such mechanism. It is also seen that Roc 

slightly increases. Ohmic contact at n-type a-Si:H/ITO/Ag should be 

improved. In 2012, more recent trends in the device design are based 

on the development and implementation of innovative doped layers 

such as doped µc-SiOx having high conductivity and low refractive 

index. In this thesis, results on pm-Si:H solar cells using doped µc-SiOx 

will be presented in chapter 5. 

 

3.4 Intrinsic layer optimization 

In chapter 2, we have demonstrated that minimizing residence time, τr 

is a critical key factor to improve the material quality. As seen in 

Figure 2.19, reducing τr lead a good quality material with low 

hydrogen content CH. One of the most convenient indicators of 

material property change is the optical bandgap, Eopt, because Eopt is 

sensitive to CH. 

  A series of pm-Si:H PIN solar cells were fabricated, using 

different intrinsic layer deposition conditions, having different τr and 

gas flow ratio. Three pm-Si:H PIN solar cells are having identical 

substrates (Textured SnO2:F and corning glass), both p and n-type 

layers, and Al back contacts.  
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Figure 3.4 – Initial characteristics of a pm-Si:H PIN solar cell with different back reflector of 
Al and ITO/Ag. (a) J(V) curve and (b) external quantum efficiency. Note that intrinsic layer 
thickness was about 3300 Å. 

 

 Back reflector FF  Rsc (Ωcm
2)  Roc (Ωcm

2)  Jsc (mA/cm2)  Voc (V)   η (%) 

Al BR   70.51  4052  6.14  13.59  0.871  8.34 

ITO/Ag BR   68.24  2775  6.81  14.87  0.885  9.01 

 

Table 3.4 – Solar cell parameters of PIN solar cells shown in Figure 3.4. 
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For the intrinsic layer deposition, only the gas flow and the total flow 

were varied while total pressure, RF power, and Ts were fixed to 2 Torr, 

5 W, and 175 °C, respectively. After deposition, sample thickness and 

material parameters are obtained from SE modeling on PIN layer 

stack co-deposited on Corning glass. Table 3.5 shows the brief sample 

description.. From a1104092 to a1104112, hydrogen flow was kept 

same and silane flow was increased by 40 %. As a result, rd increased 

and Eopt decreased. Increased rd can be explained by higher silane 

partial pressure (larger flow). Effect of changing gas flow ratio also 

changes hydrogen content (CH) [3.11]. 

 

Sample  H2  SiH4  Eopt (eV)  di (Å)  rd (Å/s) 

a1104092  200  12  1.74  2700  1.2 

a1104112  200  20  1.71  3000  1.5 

a1104114  500  50  1.70  3000  1.5 

 

Table 3.5 – Gas flow and SE modeling parameters from pm-Si:H PIN solar cells deposited in 
three different intrinsic layer conditions. Note that the three pm-Si:H PIN solar cells are 
having identical substrates (Textured SnO2:F and corning glass), both p and n-type layers, and 
Al back contacts. For the intrinsic layer deposition condition, only gas flow and total flow were 
varied while total pressure, RF power, and Ts were fixed at 2 Torr, 5 W, and 175 °C, 
respectively. 

 

Meanwhile, from a1104112 to a1104114, increasing total gas flow 

while keeping same total pressure (2 Torr) and same gas flow ratio 

leads to a large reduction of τr. Figure 3.5 shows initial J(V) curves of a 

pm-Si:H PIN solar cells deposited under conditions described above. 

Table 3.6 shows extracted solar cell parameters.  
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Figure 3.5 – Initial characteristics of a pm-Si:H PIN solar cells deposited under various gas 
flow. Note that intrinsic layer thickness was about 3000 Å, Al back contact are used. 

 

Sample 
(Gas flow) 

FF 
Rsc 

(Ωcm2) 
Roc 

(Ωcm2) 
Jsc 

(mA/cm2) 
Voc (V)  η (%)  CO (a.u.) 

a1104092 
(200/12) 

57.89  2103  11.11  11.19  0.887  5.75  7.85 

a1104112 
(200/20) 

69.82  2742  6.82  12.6  0.881  7.75  5.67 

a1104114 
(500/50) 

73.67  2982  5.86  12.95  0.867  8.28  4.03 

 

Table 3.6 – Solar cell parameters of PIN solar cells shown in Figure 3.5. Oxygen content 
deduced from Figure 3.6 is also marked. Note that multiple individual solar cells on 2.5×2.5 
cm2 substrate are measured and the solar cell parameters are averaged. Al back-contact was 
used. 

 

  In Figure 3.5 and Table 3.6, it is well demonstrated that J(V) 

curve improves with greater gas flow, having higher FF that suggests 

low defect density in intrinsic layer. An interesting result is that Voc 

also decreases at large gas flow. As mentioned above, low CH results 

low Eopt. Since Voc is largely affected by bandgap of the material [3.13], 

decrease in Voc comes from narrower bandgap of the material. It is 
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again cross-validated by SIMS result. Figure 3.6 shows a SIMS profile 

of hydrogen and oxygen content of intrinsic pm-Si:H layer stack 

deposited on FZ c-Si. Intrinsic pm-Si:H films are deposited using 

different gas flow condition presented in Table 3.5. The result in 

Figure 3.6 is coherent with the result presented in Table 3.6. 

Increasing SiH4 flow from 12 to 20 sccm (at fixed H2 flow of 200) 

resulted in a decrease in both hydrogen and oxygen content, which is a 

consequence of different gas flow ratio and higher rd. This is consistent 

with the improvement in solar cell parameters, as well as decrease in 

both Eopt and Voc. Furthermore, at fixed gas flow ratio of H2/SiH4 = 10, 

increase in total gas flow from 200/20 to 500/50 causes low τr. In this 

case, decrease in oxygen incorporation in the intrinsic layer is more 

significant, and the reduced oxygen content results in even better solar 

cell parameters, e.g. high FF. The result of optimized pm-Si:H PIN 

with low defect density material, with light tapping from ITO/Ag back-

contact is shown in Figure 3.7. 

 

Figure 3.6 – SIMS profile of hydrogen and oxygen content for different gas flow in intrinsic 
pm-Si:H deposition condition. Note that entire layer stack is deposited on FZ c-Si wafer, and a-
Si:H was also deposited as a reference. 
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Figure 3.7 – Initial characteristics of an optimized pm-Si:H PIN solar cell (a) J(V) curve and (b) 
external quantum efficiency. Intrinsic layer thickness was about 2500 Å, and ITO/Ag was used 
as back reflector. Solar cell parameters are indicated in (a). 

 

Figure 3.7 shows initial J(V) curve and EQE of the optimized pm-Si:H 

PIN solar cell. Thanks to the improved light trapping efficiency due to 

the ITO/Ag back reflector, red response of EQE shown in Figure 3.7(b) 

is high in spite of only 2500 Å of intrinsic layer thickness. Initial FF of 

74.1 suggests that the intrinsic layer has a low defect density, and Jsc 
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of 14.45 mA/cm2 pushes the initial efficiency up to 9.2 %. It should be 

mentioned that the optimized pm-Si:H PIN solar cell shows low Voc 

because of low bandgap of intrinsic layer, but Voc can be enhanced by 

novel device design. Improvement in Voc by development of new device 

design will be presented in chapter 5. 

 

3.5 HR pm-Si:H PIN solar cells  

The rd of the intrinsic layer for standard pm-Si:H PIN solar cells is 

about 1.5 Å/s. Deposition of 2500 Å intrinsic layer takes about 30 

minutes, and an accelerated rd would be industrially relevant from the 

point of productivity and cost reduction. Therefore, now we turn to the 

study on pm-Si:H PIN solar cells using high rd (HR) intrinsic layer. For 

HR pm-Si:H, in order to avoid the powder formation, the intrinsic 

layers are deposited at a higher temperature of 210 °C, and the plasma 

chamber has narrower inter-electrode distance of 12 mm, as previously 

reported [3.14]. In HR pm-Si:H, the intrinsic layer was optimized in 

same way as for std pm-Si:H, i.e., by reducing τr. In addition, to test 

the results obtained for the low rd pm-Si:H, for HR pm-Si:H, SiH4 flow 

is fixed and H2 flow is varied. 

  Table 3.7 summarizes the process conditions and SE modeling 

parameters from HR pm-Si:H PIN solar cells. HR pm-Si:H PIN solar 

cells are all deposited on identical substrates (textured SnO2:F) with 

the same p- and n-type layers, and Ag back contacts. For the intrinsic 

layer deposition condition, only gas flow and total flow were varied 

while total pressure, RF power, and Ts were fixed at 3 Torr, 30 W, and 

210 °C, respectively. After deposition, the sample thickness and 

material parameters were obtained from SE modeling on PIN layer 

stack co-deposited on Corning glass. 
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Sample  H2  SiH4  Eopt (eV)  di (Å)  rd (Å/s) 

a910291  338  50  1.69  2500  10.3 

a910292  375  50  1.69  2500  10.25 

a910293  412  50  1.69  2400  10.05 

a910302  450  50  1.68  2400  9.92 

a910303  500  50  1.65  2400  9.18 

 

Table 3.7 – Gas flow and SE modeling parameters from HR pm-Si:H PIN solar cells deposited 
in five different intrinsic layer conditions. Note that the five HR pm-Si:H PIN solar cells are 
having identical substrates (Textured SnO2:F and corning glass), both p and n-type layers, and 
Ag back contacts. For the intrinsic layer deposition condition, only gas flow were varied while 
total pressure, RF power, and Ts were fixed to 3 Torr, 30 W, and 210 °C, respectively. 

 

Note that the p-type a-SiC was first deposited at 175 °C and the 

intrinsic and n-type layers were deposited at 210 °C. The process could 

be further optimized by better device design or use of multichamber 

reactor. 

  Table 3.8 shows solar cell parameters of HR pm-Si:H solar 

cells. The trend in HR pm-Si:H is in agreement with std pm-Si:H 

series, namely, the lower τr, the better the material quality. Moreover, 

narrowing of Eopt at larger total gas flow is also seen in HR pm-Si:H 

series. The behavior of Eopt also results in a decrease in Voc at larger 

gas flow. It should be pointed out that even though the intrinsic layers 

are thin, and Ag back-contact provide insufficient light trapping, 

overall Jsc in HR pm-Si:H PIN solar cells are low.  

  

Sample  FF  Rsc (Ωcm
2)  Roc (Ωcm

2)  Jsc (mA/cm2)  Voc (V)  η (%) 

a910291  65.74  2936  8.22  12.98  0.855  7.30 

a910292  68.84  3387  7.78  12.34  0.854  7.23 

a910293  68.22  2699  7.56  12.3  0.851  7.14 

a910302  69.51  3077  7.85  12.11  0.847  7.13 

a910303  69.9  2695  7.87  11.83  0.847  7.00 

 

Table 3.8 – Solar cell parameters of HR pm-Si:H PIN solar cells shown in Figure 3.7. Note that 
multiple individual solar cells on 2.5×2.5 cm2 substrate are measured and the solar cell 
parameters are averaged. Ag back-contacts are used. 
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  Figure 3.8 shows the EQE curves of HR pm-Si:H PIN solar 

cells deposited at 210 °C and a single std pm-Si:H PIN cell deposited 

at 175 °C for comparison. The HR cells use the conditions of Table 3.7 

and have a Ag back-reflector, while the LR cell is one with ITO/Ag 

previously shown in Figure 3.6. The EQE curve of HR pm-Si:H solar 

cells show low response in the entire region compared to that of std 

pm-Si:H. One can rule out the effect of different back-contact because 

light-trapping is more efficient in red-IR response, but in Figure 3.8, 

EQE curve of HR pm-Si:H solar cells show low response even in blue-

green region.  

 

Figure 3.8 – EQE of various pm-Si:H PIN solar cells. pm-Si:H PIN solar cells deposited at 
210 °C are indeed HR pm-Si:H solar cells with Ag back-reflector that shown in Table 3.7. pm-
Si:H PIN solar cell deposited at 175 °C is one with ITO/Ag shown in Table 3.6.  

 

Moreover, the deterioration of EQE becomes more serious for the PIN 

deposited under larger H2 flow. It suggests that at high Ts (210 °C), 

high RF (30 W), and under large H2 flow, deposition of intrinsic HR 

pm-Si:H introduced reduction of SnO2:F by the H in the plasma, and 
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resulted in a gray-filter effect. This effect is facilitated at high 

deposition temperature [3.15]. The gray filter effect becomes more 

significant at larger H2 flow because reduction of SnO2:F is induced by 

H plasma. ZnO substrate or thin ZnO coated Asahi substrate could be 

a solution. In the optimization of both low rd pm-Si:H and HR pm-Si:H, 

there is a consistent trend that good quality material - namely low 

defect density material - comes from low τr in process condition. By 

suppressing powder formation, low τr results in low Eopt at the same 

time as low impurity concentration. The general relationship between 

Eopt and the initial FF of pm-Si:H is represented in Figure 3.9. 

 

Figure 3.9 – Initial fill factor of pm-Si:H PIN solar cells versus optical bandgap (Eopt)  of 
various pm-Si:H PIN solar cells. Note that the Eopt is also a consequence of τr, so τr is also 
marked on the plot. There is a general trend in τr -Eopt- FF, in which pm-Si:H having high FF 
come from low τr. FF-Eopt relation of HR pm-Si:H shows a little shift from std pm-Si:H series 
probably due to high Ts (210 °C). 

 

In Figure 3.9, the initial fill factor of pm-Si:H PIN solar cells versus 

optical bandgap (Eopt) is plotted for various pm-Si:H PIN solar cells 
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can be linked under certain conditions to τr, this value is also marked 

on the plot. There is a general trend in τr -Eopt- FF of PIN solar cells: 

pm-Si:H deposited at long τr and high Eopt (in the range between 1.72-

1.76 eV) results in a low initial FF, which is also randomly scattered at 

low values.  The pm-Si:H deposition condition at low τr leads to low 

impurity (O) concentration, as well as lower excess hydrogen content, 

leading to higher FF.  One may notice that the deposition at long τr 

leads not only to lower FF, but also to a higher degree of scattering in 

the material quality. It suggests that the powder formation becomes 

uncontrollable in long τr condition.   

  It is also interesting that the FF - Eopt relation of HR pm-Si:H 

shows little shift from the std pm-Si:H series. Recalling the Ts series 

result in chapter 2, the high Ts of 210 °C used for HR pm-Si:H series is 

expected to result in a shift of Eopt. However, it should also be pointed 

out that in std pm-Si:H PIN optimization, decrease in τr was realized 

by increasing SiH4 flow and increasing total flow. On the other hand, 

in HR pm-Si:H PIN optimization, decrease in τr was realized by 

increasing H2 flow and increasing total flow. However, the same effect 

in Eopt and FF is observed, despite opposite direction of movement in 

gas flow ratio. If we only consider the effect of gas flow ratio of SiH4/H2 

and the resulting structural re-construction from different degree of 

hydrogen dilution, it is difficult to explain why both std and HR pm-

Si:H PIN solar cells have high FF. Therefore, one can conclude that τr 

strongly determines the material quality, and thus, in order to have 

good pm-Si:H PIN solar cell, the intrinsic pm-Si:H layer should be 

deposited under the condition at the lowest τr. 

  As a high rd is very attractive from the point of view of 

industry, we further tried to maximize the rd. Another pm-Si:H PIN 

solar cell was deposited with intrinsic layer deposited at 19.6 Å/s, 

using high RF power of 80 W and higher silane concentration ratio. At 
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the same time, the pressure was lowered to 2 Torr and Ts was 

increased to 240 °C in order to reduce τr and suppress powder 

formation. Table 3.9 summarizes the difference in process conditions. 

 

Sample  H2  SiH4  P (Torr) Ts (°C)  RF (W) rd (Å/s) 
delectrode 
(mm) 

pm‐Si:H 1.5 Å/s 
a1104114  500  50  2  175  5  1.5  22 

pm‐Si:H 10 Å/s 
a910303  500  50  3  210  30  9.18  12 

pm‐Si:H 20 Å/s 
a1103225 

250  50  2  240  80  19.6  12 

 

Table 3.9 – Process conditions of pm-Si:H PIN solar cells. From 10 to 20 Å/s condition, silane 
concentration ratio, RF power was increased. At the same time, pressure was lowered and Ts 
was increased in order to suppress powder formation. 

 

Figure 3.10 shows initial J(V) curves of two HR pm-Si:H PIN solar 

cells deposited at 10 Å/s and 20 Å/s. J(V) curve of pm-Si:H PIN solar 

cell deposited at 20 Å/s shows notable features of deterioration in 

material quality. Compared to that of 10 Å/s PIN solar cell, 20 Å/s PIN 

solar cell shows modest slope at Pmax region, low Rsc, and high Roc, 

which result in a low FF, due to higher recombination and poor 

transport properties. Relatively flat reverse bias up to -1 V suggests 

that the physical origin of the low FF is poor material quality, rather 

than shunted diode. Indeed, it was already implied in previous chapter 

that a high rd of pm-Si:H deteriorates the material quality. Further 

improvement is needed in HR pm-Si:H PIN solar cells. Table 3.10 

shows solar cell parameters of HR pm-Si:H PIN solar cells extracted 

from Figure 3.10. 

 



3.6 Stability issues of PIN solar cells 

 

 

119 

 

 

Figure 3.10 – Initial characteristics of HR pm-Si:H PIN solar cells deposited at 10 Å/s and 20 
Å/s. The PIN at  20 Å/s was annealed at 160 °C for two hours, while the PIN at 10 Å/s was 
annealed at 150 °C for 30 minutes in order to avoid Ag diffusion. 

 

Sample, BR  FF  Rsc (Ωcm
2) Roc (Ωcm

2)  Jsc (mA/cm2) Voc (V)  η (%) 
pm‐Si:H 10 Å/s
a910303, Ag  69.9  2695  7.87  11.83  0.847  7.00 

pm‐Si:H 20 Å/s
a1103225, Al  46.71  402  17.81  11.15  0.866  4.51 

 

Table 3.10 – Solar cell parameters of HR pm-Si:H PIN solar cells in Figure 3.10. Note that 
multiple individual solar cells on 2.5×2.5 cm2 substrate are measured and the solar cell 
parameters are averaged. Ag back-contact is used in 10 Å/s PIN, and Al back-contact is used 
in 20 Å/s PIN . 

 

3.6 Stability issue of PIN solar cells  

A light-induced degradation study was done for representative PIN 

solar cells. Sets of successive J(V) measurements were performed to 

observe changes of solar cell parameters. Between each J(V) 

measurement, the cells were light-soaked by light from a non-filtered 

Oriel-Apex Xe lamp. The cells were light soaked and their J(V) curves 

were measured under an illumination of 100 mW/cm2, which is 
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equivalent to one sun. Few initial J(V) measurements were set to be 

measured more often than later in order to carefully observe initial 

behavior. The representative PIN solar cells are a standard a-Si:H PIN, 

a 1.5 Å/s pm-Si:H PIN, a 10 Å/s pm-Si:H PIN, and a 20 Å/s pm-Si:H 

PIN. Their intrinsic layer thickness is 3000 Å for a-Si:H and 1.5 Å/s 

pm-Si:H PIN, and 2400 Å and 2500 Å for HR pm-Si:H PIN solar cells. 

Evaporated Al was used as back reflector except 10 Å/s pm-Si:H PIN 

(Ag), resulting in lower Jsc. Figure 3.11 shows the result of the light-

soaking test.  

  In Figure 3.11(a), an interesting behavior for a-Si:H and 1.5 

Å/s pm-Si:H PIN solar cells can be observed. The initial efficiency of 

the two PIN solar cells is similar, but the stabilized efficiency becomes 

different, as the 1.5 Å/s pm-Si:H PIN solar cell shows less degradation 

than the a-Si:H PIN solar cell. Moreover, the initial efficiency of 10 Å/s 

pm-Si:H PIN solar cell was much lower than that of a-Si:H PIN solar 

cell, but after light-soaking, the stabilized efficiency of 10 Å/s pm-Si:H 

PIN solar cell became comparable to that of a-Si:H PIN solar cell. The 

20 Å/s pm-Si:H PIN solar cell barely degraded from initial to stabilized 

efficiency, but the efficiency is too low to merit a discussion of the 

kinetics. The kinetics of FF shown in Figure 3.11(b) is closely related 

to that of efficiency. As well, one can notice that the major source of 

the light-induced degradation is the degradation of FF that is 

attributed to the deterioration of transport and recombination 

properties of the intrinsic layers. Voc indeed showed the lowest 

degradation among the solar cell parameters under LS. Moreover, 1.5 

Å/s and 10 Å/s pm-Si:H PIN solar cells show increase in Voc during 

light-soaking, with the 1.5 Å/s PIN solar cells showing more 

pronounced behavior. The Voc increase of pm-Si:H PIN solar cells is 

consistent and reproducible. On the contrary a-Si:H PIN solar cells 

deposited in ARCAM show a consistent Voc decrease. 
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Figure 3.11 – Evolution of solar cell parameters of PIN solar cells using different intrinsic 

layers, (a) η, (b) FF, (c) Voc, and (d) Jsc during LS under an illumination of 1 sun. The PIN solar 

cells were light-soaked and measured the J(V) curve by non-filtered Oriel-Apex Xe lamp. 
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A detailed discussion on Voc increase will be held in the next chapter. 

In Figure 3.11(d), Jsc of the pm-Si:H PIN solar cell shows a faster 

initial drop followed by a phase of more moderate degradation at 

longer light-soaking times, while the a-Si:H solar cell demonstrates a 

monotonic degradation and no clear distinction into such phases. The 

faster initial decrease of Jsc is a major contribution to the initial 

efficiency degradation of pm-Si:H solar cells in contrast to that of a-

Si:H. Due to the initial drop of Jsc,  degradation kinetics of pm-Si:H 

PIN solar cells differ in character from the classic stretched 

exponential behavior observed in a-Si:H. Extracted solar cell 

parameters from Figure 3.11 are presented in Table 3.11. Magnitudes 

of degradation, Δη and intrinsic layer thickness, di are also marked. As 

mentioned above, smaller light-induced degradation of HR pm-Si:H 

PIN solar cells compared to a-Si:H is indeed due to the low initial 

efficiency.  

 

Sample  FF 
Jsc 

(mA/cm2) 
Voc (V)  η (%)  η (%)  di (Å) 

a‐Si:H 
a1004083 

Initial  72.01  13.37  0.851  8.19 
‐20.64  3000 

LS 10 hrs  60.19  12.92  0.837  6.5 

pm‐Si:H 
1.5 Å/s 

a1104264 

Initial  72.57  13.1  0.871  8.12 
‐16.88  3000 

LS 10 hrs  63.89  12.28  0.878  6.75 

pm‐Si:H 
10 Å/s 
a910303 

Initial  68.21  12.08  0.857  7.06 
‐13.6  2400 

LS 10 hrs  62.44  11.48  0.851  6.10 

pm‐Si:H 
20 Å/s 

a1103215 

Initial  47.48  11.24  0.858  4.58 
‐4.81  2500 

LS 10 hrs  47.16  10.93  0.846  4.36 

 

Table 3.11 – Solar cell parameters extracted from light-soaking test in Figure 3.11. 

Degradation, η and intrinsic layer thickness, di are also marked. Note that low light-induced 

degradation of HR pm-Si:H PIN solar cells compared to a-Si:H and 1.5 Å/s pm-Si:H PIN solar 

cells are indeed due to the low initial efficiency. The stabilized efficiency is a consequence of 

both initial efficiency and η.  
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3.7 Summary 

In this chapter we have presented pm-Si:H PIN solar cells made of 

intrinsic materials prepared under various deposition conditions. 

Minimizing τr leads to depositing low defect density material, and the 

application of an ITO/Ag reflector enhanced Jsc, resulting in PINs 

showing ηinitial of 9.22 %. Application of HR pm-Si:H layers was also 

studied and HR pm-Si:H PIN solar cells using 10 Å/s pm-Si:H still 

show a reasonable ηinitial of 7 %. Further increase in the rd up to 20 Å/s 

was not successful. Further improvement of material quality is needed. 
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4.1 Introduction 

This chapter is devoted to the stability issue of pm-Si:H PIN solar cells 

compared to that of a-Si:H solar cells.. The pm-Si:H solar cells show an 

irreversible degradation at the first hours  of light-soaking, while 

having higher stabilized efficiency with respect to a-Si:H cells. Such 

irreversible degradation of pm-Si:H solar cells cannot be explained by 

Staebler-Wronski Effect (SWE) models proposed so far. We correlate 

the particular behavior of pm-Si:H solar cells  to changes in hydrogen 

incorporation and structural properties in their layers. Numerous 

techniques are used to study the light-induced changes from 

microscopic to macroscopic scales (up to tens of microns). Our results 

lead us to view the kinetics from a different angle: that stimulated 

hydrogen motion - which occurs in a-Si:H under extreme conditions - 

takes place in pm-Si:H under conditions close to the device operation, 

and it introduces structural changes including diffusion of molecular 

hydrogen, hydrogen accumulation at p-layer/substrate interface and 

localized delamination of the interface. Based on these results we 

propose that light-induced degradation of PIN solar cells has to be 

addressed not only from a material perspective, but also from a device 

point of view. In particular we bring experimental evidence that 

localized delamination at the interface between the p-layer and SnO2 

substrate by light-induced hydrogen motion causes the rapid drop of 

short circuit current density. 

 

4.2 PIN solar cell device stability – initial behavior 

The PIN solar cells were deposited at 175 °C by the radio-frequency 

(RF, 13.56 MHz) glow discharge (PECVD) method in the ARCAM 

reactor [4.1]. Standard a-Si:H was obtained by the dissociation of pure 

silane and under a pressure of 50 mTorr and a RF power of 1 W. 
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Intrinsic pm-Si:H layers were deposited at a pressure of 2 Torr and RF 

power density was varied from 30 to 60 mW/cm2. The solar cells had 

the PIN structure: glass/textured SnO2:F/p-type hydrogenated 

amorphous silicon carbon (a-SiC:H)/a-SiC:H buffer/intrinsic layer/n-

type a-Si:H/Al contact. NIP solar cells were also fabricated to test our 

hypothesis on the metastability. More details on NIP solar cell 

structure will be given in forthcoming chapter. The area of the cells 

was 0.126 cm2. The thickness of p and n-type layers were about 150 Å, 

and the intrinsic layer thickness varied from 3000 to 6500 Å. 

  For the light-induced degradation studies, sets of current-

density-voltage (J(V)) measurements at various stages of the light-

soaking were performed. The J(V) measurements during the early 

stages of light-soaking were taken more frequently than later, in order 

to accurately monitor the dynamics during this critical phase. Between 

each J(V) measurement, the cells were light-soaked in the open-circuit 

condition using an Oriel-Apex Xe lamp. The cells were both light-

soaked and had their J(V) curves measured under an illumination of 

100 mW/cm2 (equivalent to one sun). In some cases, to accelerate light-

induced degradation, the solar cells are light-soaked and J(V) curves 

measured under an intense illumination of 200 mW/cm2 (equivalent to 

two suns). During light-soaking, the PIN solar cells were fan cooled to 

limit illumination induced heating. The temperature of the PIN solar 

cells, measured by a PT100 thermometer during light-soaking (LS), 

stayed under 50 °C. Figure 4.1 shows the evolution of a-Si:H and pm-

Si:H PIN solar cell parameters, such as the power conversion efficiency 

(η), fill factor (FF), open-circuit voltage (Voc), and short-circuit current 

density (Jsc) as functions of LS time. Note that here, the PIN solar cells 

are light-soaked and measured J(V) curves under two suns. One can 

find a notable difference in the light-induced degradation behavior of 

the pm-Si:H and the a-Si:H PIN solar cells.  
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Figure 4.1 – Evolution of a-Si:H and pm-Si:H PIN solar cell parameters. (a) power conversion 
efficiency (b) fill factor (c) Voc  and (d) Jsc during light-soaking under an illumination of 200 
mW/cm2. 
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The η in Figure 4.1(a) shows that the pm-Si:H PIN solar cell is more 

stable than the a-Si:H. However, the pm-Si:H PIN solar cell shows a 

rapid η drop at the early stages (about first two hours) of light-soaking. 

Strong proportionality between the FF and the η implies that the FF 

provides a major contribution of the η degradation, and that most of 

the light-induced degradation takes place in the intrinsic layer. The 

difference in behavior between the two types of cells is also striking for 

Voc (Figure 4.1c), which increases for the pm-Si:H cell, whereas it drops 

for the a-Si:H solar cell during light-soaking. This behavior cannot be 

explained by heating of the cells. Indeed if this were the case, then we 

should observe a decrease in Voc and an increase in Jsc. Therefore, the 

increase of Voc provides a strong indication that heating effects are 

negligible during light-soaking, in agreement with PT100 thermo-

resistor probe measurement indicating that the temperature of the 

PIN solar cells stayed under 50 °C during light-soaking. It is 

important to note that the data in Figure 4.1 were continuously 

recorded during the light-soaking, without turning off the lamp. 

  Various hypothesis have been proposed to explain the increase 

in Voc  during light-soaking- i) the activation of boron in the p-layer of 

the solar cells during light-soaking [4.2-4.8], ii) light-induced changes 

in the intrinsic mixed-phase material [4.9-4.11] and iii) decrease in 

valence band tail and state re-distribution at p/i interface [4.12]. Most 

of those studies deal with solar cells based on a-Si:H materials 

deposited by dissociating silane-hydrogen gas mixtures, while our 

standard a-Si:H was deposited by dissociating pure silane. Therefore, 

the physical origin of the Voc kinetics of the a-Si:H solar cells in the 

literature can differ from that of our standard a-Si:H PIN solar cells. 

Besides, a common physical origin in the discussion of the Voc increase 

is hydrogen motion, and it is rather related to the highly hydrogen 

diluted silane gas mixture used in pm-Si:H deposition. Another 

interesting point concerning the Voc increase as addressed in the 
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literature is that none of those studies included comprehensive 

observation of the kinetics of Jsc. The Jsc of the pm-Si:H PIN solar cell 

(Figure 4.1d) shows a faster initial drop followed by a phase of more 

moderate degradation at longer LS times, while the a-Si:H solar cell 

demonstrates a monotonic degradation and no clear distinction into 

such “phases”. The faster initial decrease of Jsc is another contribution 

to the initial η degradation of pm-Si:H PIN solar cells, and it differs in 

character from the classic stretched exponential behavior observed in 

a-Si:H. It has also been reported that a-Si:H shows very fast creation 

of charged gap states during light-soaking [4.13], which could be 

related to the fast degradation kinetics of the pm-Si:H cell. However, 

midgap state defect creation should lead to a decrease in Voc in 

addition to that of the overall efficiency. Therefore, we consider that 

fast defect creation is insufficient to explain the particular degradation 

of pm-Si:H solar cells and that other phenomena must be involved. 

  The initial degradation behavior of the pm-Si:H PIN solar cells 

is indeed irreversible. The a-Si:H and pm-Si:H PIN solar cells were 

both light-soaked and had their J(V) curves measured under an 

illumination of one sun. After 10 hours of LS, both a-Si:H and pm-Si:H 

based PIN solar cells were annealed at 160 °C for two hours. This LS-

annealing cycle was repeated three times. During the LS, the PIN 

solar cells were fan cooled to reduce illumination-induced heating. The 

temperature of the PIN solar cells was also monitored to verify that 

the device temperature stayed at 40 °C. The main source of 

uncertainty in the solar cell parameters comes from the dependence of 

Voc and Jsc on the measurement temperature. We have determined 

that a variation in the temperature of ±7.5 °C results in a variation in 

Jsc and Voc of ±1.5 % and ±0.5 %, respectively, and a negligible change 

in FF. Figure 4.2 shows the reversibility test result. 
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Figure 4.2 – Evolution of a-Si:H and pm-Si:H PIN solar cell parameters: (a) η, (b) FF, (c) Voc, 
and (d) Jsc during LS under an illumination of 1 sun. Note that every 10 hours LS was 
interrupted and the solar cells were annealed at 160 °C for 2 hours in order to check for the 
reversibility of the light-soaking effect. Note that the error bars indicate temperature 
dependent (±7.5 °C) variation of solar cell parameters.  
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Figure 4.2 shows evolution of a-Si:H and pm-Si:H PIN solar cell 

parameters as functions of LS time, including two annealing steps (as 

described above). Figure 4.2a again shows that the η of the pm-Si:H 

PIN solar cells is more stable than that of the a-Si:H PIN solar cells. 

Most of the degradation in the η of the pm-Si:H PIN solar cells occurs 

in the first five hours of the LS while that of the a-Si:H PIN solar cell 

shows continuous degradation. Figure 4.2b shows the FF of a-Si:H and 

pm-Si:H PIN solar cells as functions of LS time. Strong proportionality 

between the FF and the η implies that the FF provides a major 

contribution to the η degradation, and that most of the light-induced 

degradation takes place in the intrinsic layer. However, there is an 

interesting feature in the FF behavior after the first LS cycle. After 

annealing, the FF of the pm-Si:H PIN solar cell remained at its 

degraded value, while the FF of the a-Si:H PIN solar cell recovered to 

97 % of its initial value. Moreover, the pm-Si:H PIN solar cell shows 

an absence of further degradation in the FF with further LS, in 

contrast to the a-Si:H PIN solar cell, which degrades again in both the 

second and third LS cycles. To our knowledge, the irreversible 

degradation of the pm-Si:H PIN solar cells has never been reported 

before. Moreover, such irreversibility cannot be explained by the 

conventional SWE alone [4.14, 4.15], so a different physical origin 

must exist. Even though the irreversibility of pm-Si:H PINs is 

consistently demonstrated, we have examined our results with a 

critical eye because they fall out of the conventional paradigm of 

metastability in a-Si:H. Such irreversibility in the FF decay for the 

pm-Si:H PIN solar cells is coherent with evidence that the defect 

density in pm-Si:H films shows irreversible light-induced defect 

creation and increase in tail states after LS [4.16]. Furthermore, the 

fast initial degradation and rapid stabilization of the FF in pm-Si:H 

resembles the behavior of a-Si:H after a high temperature (above 

350 °C) annealing treatment, which creates additional initial defects, 
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but suppresses further light-induced defect creation [4.17]. It should be 

mentioned that we have also tested annealing the PIN solar cells at 

higher temperatures, at 175 and 200 °C. However the higher 

temperature annealing deteriorated both a-Si:H and pm-Si:H solar 

cells. 

  The deviation between a-Si:H and pm-Si:H PIN solar cell 

behavior becomes even more striking when observing the Voc (Figure 

4.2c) and Jsc (Figure 4.2d) kinetics. Note that the error bars indicate 

temperature dependent (±7.5 °C) variation of parameters. The initial 

increase in the Voc of PIN solar cells during LS has already been 

discussed above, especially for material deposited at the onset of the 

amorphous-to-crystalline transition [4.9-4.11, 4.18]. There are 

interesting features to discuss on the Voc of the pm-Si:H PIN solar cells. 

First, the changes in Voc are due to two opposing processes: an initial 

increase (explained above) and a slow decrease due to the SWE. 

Second, even if the Voc of the pm-Si:H PIN solar cells shows a 

moderate initial increase during LS while that of the a-Si:H PIN solar 

cells shows a decrease, the changes are within the error range. Third, 

it is hard to imagine that Voc will continue to increase. The magnitude 

of the initial increase in Voc mainly depends on the gas flow ratio 

during intrinsic layer deposition [4.9, 4.11], and the variation of initial 

increase in Voc is limited to about 150 mV [4.11]. The Jsc of the pm-

Si:H PIN solar cell shows a rapid drop in the first two hours, followed 

by a phase of stability at longer LS times. An even more interesting 

feature of the Jsc kinetics of the pm-Si:H PIN solar cell is the absence 

of further degradation as well as the absence of  annealing induced 

recovery during subsequent LS cycles. Such interesting behavior of the 

Jsc is confirmed by external quantum efficiency (EQE) measurements. 

Figure 4.3 shows EQE curves of both a-Si:H and pm-Si:H PIN solar 

cells in their as-deposited, light-soaked  and annealed states.  
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  In Figure 4.3a, it is shown that the a-Si:H PIN solar cell 

suffers from a uniform degradation over its entire EQE curve after LS. 

However, the pm-Si:H PIN solar cell (Figure. 4.3b) shows degradation 

only in the blue region, while the response at longer wavelength region 

has increased with LS. Such behavior in EQE - a decrease in the blue 

and an increase at longer wavelengths - has been previously reported 

[4.19, 4.20]. 

 

Figure 4.3 – EQE curves of both a-Si:H and pm-Si:H PIN solar cells in their as-deposited, 
light-soaked, and annealed states. 
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Numerical simulation studies examining such behavior in pm-Si:H 

PIN solar cells showed that an electric field re-distribution introduces 

the Voc increase and the specific Jsc behavior during LS [4.19].  

  In some aspects, the light-induced degradation behavior of pm-

Si:H PIN solar cells resembles that of a-Si:H PIN solar cells exposed to 

an intense illumination (~ 50 suns) at elevated temperatures (> 130 °C) 

[4.20, 4.21]. Under such conditions, a-Si:H PIN solar cells also show 

irreversible degradation - namely significant degradation of EQE in 

the blue - a result attributed to the hydrogen diffusion and the 

delamination of p-layer/SnO2 interface under extreme conditions [4.20]. 

Carlson and Rajan observed “blisters” after subjecting their a-Si:H 

solar cells to extreme conditions of LS, and they related them to 

interface delamination. We note that here also, the irreversibility 

comes from device scale structural changes. Interestingly, the 

discussions on the increase in Voc also invoke structural changes, such 

as barrier formation at the p-layer/SnO2 interface [4.9] and hydrogen 

evolution from the surface of nanocrystals [4.18]. Contrary to the a-

Si:H PIN solar cells, the pm-Si:H PIN solar cells examined herein 

display irreversibility under conditions close to normal solar cell 

operation (~ one sun,  < 40 °C). 

  Let us now focus on the initial degradation kinetics of pm-Si:H 

PIN solar cells, which is quite different from that of a-Si:H. The η 

degradation of a-Si:H and pm-Si:H PIN solar cells are modeled by 

Redfield-Bube Model (RB model) introduced in chapter 1. The model is 

in the stretched exponential form, and defined by the relation below; 




















β

SSD τ

t
)N(NNN exp0  

Here ND is the density of metastable defects, Ns is the saturated defect 

density, and N0 is the initial defect density. τ defines an inflection 
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point of the defect creation, and β is a broadening term, which 

characterizes the “stretched” nature. Usually a-Si:H shows β ranges in 

0.6 < β < 0.8. Furthermore, solar cell efficiency degrades with 

logarithmic time scale, and the defect density in the meantime follows 

a power law in stretched exponential form as described above. The 

simplified following relationship can be proposed as below 

D NAη log  

where η is the cell efficiency and A is a constant depending on the 

structure of the solar cell such as intrinsic layer thickness [4.23]. 

Therefore, one can model η with the expression below 




















β

τ

t
Ayη exp10  

where y0 is estimated normalized stabilized efficiency and A1 is 

magnitude of degradation. Figure 4.4 shows normalized efficiency of a-

Si:H and pm-Si:H PIN solar cells as functions of LS time and fit to the 

model. Table 4.1 shows the fitting parameters of the modeling. As seen 

in the results above, pm-Si:H PIN solar cell shows less light-induced 

degradation. More interesting features are contained in τ and β. 

According to the modeling result, pm-Si:H PIN solar cell shows 

smaller τ. As explained above, τ determines an inflection point, that is, 

metastable defect creation process starts to saturate after τ. pm-Si:H 

PIN solar cell shows about half of τ comparing to that of a-Si:H, and it 

suggests the light-induced degradation process of pm-Si:H PIN solar 

cells is about twice faster than that of a-Si:H PIN solar cells. Similarly, 

higher β of pm-Si:H PIN solar cells is another notable feature. β 

characterizes the stretched nature of degradation kinetics, and the 

process is no more in “stretched” form when β approaches to 1. In case 

of pm-Si:H, β is far-above than empirical range of a-Si:H. Indeed, the 

fitting with β=1, the LS result of pm-Si:H PIN solar cell shows 
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reasonable agreement. In other words, the degradation process of pm-

Si:H PIN solar cells is indeed in “barely stretched” form, and it is much 

faster than the degradation kinetics of a-Si:H PIN solar cell. 

 

Figure 4.4 – Normalized efficiency of a-Si:H and pm-Si:H PIN solar cells as functions of LS 
time and fit to the model. Note that the LS result is from Figure 4.2. 

 

   a‐Si:H  pm‐Si:H 

y
0
  0.734   0.849  

A
1
   0.267   0.151  

τ  11719   5344  

β  0.621   0.934  

 

Table 4.1 – Fitting parameters of modeling in Figure 4.4. y0 is estimated stabilized efficiency, 
A1 is magnitude of degradation, τ decides an inflection point of the defect creation, and β is a 
broadening term, which characterize the “stretched” nature of the expression. 
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under white light of 100 mW/cm2. The intrinsic layer thickness of PIN 

solar cells is 3000 Å. Figure 4.5 shows the evolution of a-Si:H and pm-

Si:H PIN solar cell parameters under filtered 570 nm illumination. It 

is notable that the pm-Si:H PIN solar cell barely degrades. Indeed, it 

has been already published that even 0.75 µm thick pm-Si:H solar cell 

shows no significant degradation under red light illumination [4.2], 

and Figure 4.5 shows a nice reproducibility of our previous result. 

Another interesting feature is that under filtered 570 nm illumination, 

FF and Jsc of pm-Si:H show an absence of rapid initial degradation, 

while the Voc of pm-Si:H shows a relatively large increase. Thus, most 

of the degradation of pm-Si:H PIN solar cell occurs at the front of the 

cell where high energy photons are absorbed, as shown in the EQE 

curve of Figure 4.3. Moreover, recalling that evolution of Voc of pm-

Si:H PIN solar cells is a consequence of two opposing processes leading 

to an initial increase and a slow decrease (Figure 4.2c), large increase 

of Voc under filtered 570 nm illumination shows only an initial increase 

portion of Voc. Of course, Voc will eventually degrade at longer times. 

  What happens if the PIN solar cells are left in dark right after 

the LS? We have tested so-called “healing” experiment. The a-Si:H and 

pm-Si:H PIN solar cells were first light-soaked for 90 minutes, and left 

in the dark for another 90 minutes. Then, the cells were again light-

soaked for another 90 minutes. In this case, the intrinsic layer 

thickness of PIN solar cells is 5000 Å. PT100 thermo-resistor revealed 

that LS heats the PIN solar cells up to 50 °C.    
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Figure 4.5 – Evolution of a-Si:H and pm-Si:H PIN solar cell parameters under yellow 
illumination: (a) η, (b) FF, (c) Voc, and (d) Jsc during LS of band-pass filtered 570 nm 
illumination. Note that the LS intensity was about 40 mW/cm2, and J(V) curves are measured 
under white light of 100 mW/cm2. The intrinsic layer thickness of PIN solar cells is 3000 Å. 
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Figure 4.6 shows the result of the LS-healing-LS test. One can notice 

that for the pm-Si:H PIN solar cell, the initial rapid drop in FF and Jsc 

and increase in Voc that were previously observed are well reproduced. 

After the PIN solar cells were light-soaked, they were left in the dark 

and the solar cell parameters were measured for one hour. The PIN 

solar cells are illuminated only when the J(V) curves are measured. 

During this period, the η of pm-Si:H PIN solar cell slightly recovered 

in the dark through a recovery in its FF, while the a-Si:H PIN solar 

cell kept its degraded cell parameters. In more detail, both PIN solar 

cells show increase of Voc and decrease in Jsc, which is attributed to the 

effect of temperature. The temperature effect is also shown in the 

second LS cycle, in which both PIN solar cells show decrease in Voc and 

increase in Jsc. The initial stage of the first LS cycle did not show the 

effect of heating, because the PIN solar cells had already been 

subjected to several J(V) measurements, in order to ensure electrical 

contact and setup. During the healing cycle, FF of the pm-Si:H cell 

slightly increased. Moreover, the Jsc of the pm-Si:H cell only slightly 

decreased compared to that of the a-Si:H cell. It is assumed that the 

Jsc of the a-Si:H cell decreased during the healing cycle due to the 

effect of temperature, and it is expected that pm-Si:H PIN solar cell 

should also experience the cool-down, as suggested by the large 

increase in its Voc during the healing cycle. Together, these results 

suggests that the Jsc of the pm-Si:H cell experiences some decrease due 

to a cooling effect, but there is also an increasing portion of Jsc, so Jsc of 

pm-Si:H PIN solar cell had less decrease than that of a-Si:H PIN solar 

cell. In summary, the pm-Si:H PIN solar cell shows healing after LS 

because of a combined effect of FF increase and Jsc stability.   
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Figure 4.6 – Evolution of a-Si:H and pm-Si:H PIN solar cell parameters: (a) η, (b) FF, (c) Voc, 
and (d) Jsc during LS under an illumination of 1 sun and healing. Note that after 90 minutes 
of LS, the PIN solar cells are left in the dark for another 90 mins. At last, the PIN solar cells 
were again light-soaked for another 90 minutes. The intrinsic layer thickness of PIN solar cells 
is 5000 Å. 
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Another interesting aspect comes out in the second LS cycle. In second 

LS cycle, degradation kinetics of pm-Si:H PIN solar cell change  

become more similar to those of a-Si:H. No more rapid decrease in FF 

and Jsc are observed in the second LS cycle, as well as Voc shows initial 

decrease instead of increase. In addition, suppression of the 

characteristic initial behavior makes degradation kinetics of pm-Si:H 

PIN solar cell monotonous, like that of a-Si:H PIN solar cell. 

  Pioneering work in such healing behavior was carried out in 

Wronski’s group [4.24-4.26], who studied room-temperature (RT) 

annealing of hydrogenated protocrystalline silicon (pc-Si:H) solar cell 

after LS. They presented phenomenological observation of dark J(V) 

parameters of pc-Si:H solar cells, and suggested various presoak-

relaxation relationship. Yang and Chen suggested “Fast and slow 

defects” model [4.27, 4.28]. They light-soaked both diluted and 

undiluted a-Si:H PIN solar cell under 1 sun, after LS under 50 suns. 

As a result, the η of a-Si:H solar cells converge into 1 sun stabilized 

state. They suggested a model based on RB model [4.22] that having 

two different stretched exponential components with different τ. 

Takeda et al. suggested a model with more practical view [4.29]. They 

fabricated a-Si:H samples having unusually high CH between 22 - 36 

at.%, and light-soaked at various intensities. They observed that ESR 

signal decreases under illumination of above 1000 mW/cm2 while ESR 

signal increases under illumination of 700 mW/cm2. They suggested a 

model that hydrogen rich voids work as hydrogen reservoir and supply 

hydrogen into dangling bonds under illumination while normal 

isolated Si-H bonds create dangling bonds under illumination. Those 

two mechanisms compete against each other during LS. Meaudre and 

Meaudre have presented more detailed experiments whereupon they 

annealed a sample after illumination, and reported that the efficiency 

of annealing depends on the illumination intensity. At moderate 

illumination, annealing becomes efficient while under intense 
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illumination the annealing becomes less efficient. For the healing 

effect, many research groups have worked and suggested various 

mechanisms, but there are some similarities and common features. 

Materials showing healing effect are usually deposited from highly 

diluted hydrogen gas-mixture. Materials with high CH also show 

significant effect of healing under moderate illumination. At last, LS 

creates defect states anyway under intense illumination around one 

sun. 

  One may suspect that both healing behavior and irreversible 

degradation of pm-Si:H PIN solar cells have a common physical origin: 

hydrogen. Highly heterogeneous materials like pm-Si:H contain 

surface of nanocrystals covered with hydrogen. The different light-

induced degradation kinetics of pm-Si:H PIN solar cells must originate 

from the peculiar nanostructure of pm-Si:H material. An interesting 

aspect is that the irreversible changes in light-induced degradation 

kinetics of pm-Si:H PIN solar cells can be explained recalling the 

hydrogen evolution from internal surface [4.29]. The internal surfaces 

of nanovoids (or nanocrystal surface) are apparently hydrogenated 

with SiH and SiH2 bonds [4.31-4.33], and hydrogen evolves during 

metastable defect creation [4.29, 4.34]. Hydrogen evolves and 

passivates newly created dangling bonds, but if the hydrogen in voids 

is depleted, the kinetics of the creation of dangling bonds would be 

similar to that of a-Si:H. Moreover, the evolution of hydrogen 

introduces various structural modifications, initiated by creation of 

bond-centered hydrogen [4.16, 4.35-4.37]. It has been suggested that 

the evolution of hydrogen from surface of nanocrystals originates from 

structural changes such as coalescence and agglomeration of the 

monovacancies into larger vacancies [4.37, 4.38] and that hydrogen is 

emitted as a consequence of reduced internal surface areas. Annealing 

at temperatures over 350 °C leads to similar effects [4.17]. 

Furthermore, one may imagine that such nanoscale structural changes 
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will consequently lead to large macroscopic changes. 

 

4.3 Light-induced structural changes 

To better exploit the light-induced macroscopic changes discussed 

above, a set of complementary techniques was used to characterize the 

changes in the structure of the PIN layer stacks during or after LS. a-

Si:H and pm-Si:H PIN layer stacks were also deposited on Corning 

Eagle glass, flat TCO and highly resistive (>104 Ωcm) FZ c-Si 

substrates for more comprehensive studies. 

  Structural changes can affect the stress in thin film. Raman 

spectroscopy is a vibrational spectroscopic technique to characterize 

molecular vibrations. Raman peaks normally indicate the material’s 

phonon modes. It is sensitive to strain, allowing it to be used to detect 

stress in a semiconductor material or device [4.39]. Structural changes 

during light-soaking were characterized through in-situ micro Raman 

scattering measurements. A He–Ne laser (632 nm) and a back-

scattering collection configuration were used for the Raman 

measurements. For LS, a white light source with an intensity of 80 

mW/cm2 was applied from the glass side. The test was done for both a-

Si:H and pm-Si:H PIN layer stacks on Corning Eagle glass, and the 

study on the pm-Si:H PIN was done twice to check its reproducibility. 

During LS, Raman spectra were measured every five minutes, and for 

the second pm-Si:H PIN test, the measurement was done every two 

minutes.  

  Figure 4.7a and 4.7b show the evolution of the Raman spectra 

during LS of the a-Si:H and pm-Si:H PIN layer stacks on glass, for 

which the spectra have been normalized to the intensity of the TO 

mode. In Figure 4.7b, in contrast with a-Si:H PIN stack, the Raman 

spectra of the pm-Si:H PIN layer stack displays a peak shift during LS, 
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and this change was found to be reproducible in multiple pm-Si:H PIN 

layer stacks. To quantify these changes, TO peak position was 

determined through deconvolution of the measured spectra. Figure 

4.7c shows the Raman spectrum of as-deposited pm-Si:H PIN stack 

and its deconvolution. The Raman spectra of both pm-Si:H and a-Si:H 

consist of a broad peak located at around 480 cm-1, which corresponds 

to the TO mode in the amorphous phase, and the LO and LA modes 

are additionally observed at lower wave numbers around 330 cm-1 and 

440 cm-1, respectively [4.40, 4.41]. The shift of the peak position can be 

treated as a measure of the average strain resulting from built-in 

stress. To minimize the influence of the weak vibrational modes, LA 

and LO, we performed a fit on each spectrum from 250 to 550 cm-1 by 

three Gaussian curves and a straight base line [4.40]. 

  Figure 4.8 shows the evolution of TO peak position during LS. 

One can recognize the notable feature that the TO peak of pm-Si:H 

PIN shifts towards lower wavenumbers during LS, whereas the two a-

Si:H PINs show no significant change. Since the shift of the Raman 

peak towards lower wavenumbers could be due to local heating from 

laser excitation, the pm-Si:H PIN was allowed to cool in the dark for 

20 minutes after LS. However, the peak position remained the same. 

Physically, a phonon is a quantized mode of vibration occurring in a 

rigid crystal lattice, such as the atomic lattice of a solid. The Raman 

spectra peak shift towards lower k can be regarded as a consequence of 

increasing the inter-atomic distance, that is, tensile stress. On the 

other hand, it should be noted that for all the samples, the TO band 

position in the as-deposited state is above 480 cm-1 which can be 

related to compressive stress in the as-deposited films. However, while 

the peak position does not change for the a-Si:H PIN stack, it shifts to 

low wavenumbers for the pm-Si:H case during light-soaking. It can 

therefore be stated that the cells are under high compressive stress, as 

is usually the case for plasma deposited silicon thin films [4.42].  
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Figure 4.7 – Evolution of Raman spectra during LS of (a) a-Si:H and (b) pm-Si:H PIN solar 
cells, and (c) Raman spectrum of as-deposited pm-Si:H PIN solar cell and its deconvolution. 

 

 

Figure 4.8 – Evolution of TO peak position during light-soaking. Note that on some samples 
we have checked that these material properties did not change after turning off the light. 
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In other words, the peak position evolution from higher k to lower k 

(towards 480 cm-1) suggests a relaxation of compressive stress during 

LS for the pm-Si:H PIN layer stacks. 

  In-situ surface morphology characterization during LS was 

obtained from AFM measurements. Tapping mode was used to prevent 

the cantilever from dragging across the surface and resulting in 

surface damage, as well as providing higher resolution. Due to the 

design of AFM setup, PIN layer stacks were illuminated from the top 

(n-type layer side), with an intensity of 150 mW/cm2. The scan rate 

was chosen to be slow because the surface displays low roughness and 

small features. Scanning area size was varied from 500×500 nm2 to 

2×2 μm2. Sets of AFM images were analyzed by surface grain 

extraction, from which the surface grain size and distribution were 

obtained. Figure 4.9 show examples of AFM images taken in both the 

as-deposited and light-soaked states for both a-Si:H and pm-Si:H PIN 

stacks on glass. For both a-Si:H and pm-Si:H PIN layer stacks we 

observe a grain structure related to the surface roughness of the 

samples. Indeed, based on the Raman spectra shown in Figure 4.8, the 

grains are amorphous. The Watershed image processing segmentation 

algorithm was used to extract information about the surface grain area 

[4.43, 4.44] by splitting the images into surface grains, based on the 

topology of the image. 

  Figure 4.9e summarizes the surface grain size growth during 

LS analyzed from surface grain extraction. One can see that the 

surface grain area of pm-Si:H PIN layer stack increases during LS, 

and this expansion stops when LS is stopped, which is to say that the 

surface expands while illuminated, and the expansion remains even 

after LS stops.  
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Figure 4.9 – AFM images of a-Si:H and pm-Si:H PIN layer stacks on Corning Eagle glass 
before (a, c) and after (b, d) LS, and (e) mean surface grain area evolution during LS, as 
extracted from AFM images. Note that no evolution is observed for the a-Si:H PIN layer stacks, 
and that the evolution for the pm-Si:H PIN layer stacks stops when the LS is turned off. 
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Figure 4.10 – (a) Demonstration of zone selection for AFM images to follow changes in area of 
individual grains, and (b) average surface area evolution of selected grains during LS of pm-
Si:H PIN layer stacks. 
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For the a-Si:H PIN layer stacks, no significant changes were observed. 

As in the case of the Raman measurements, these results were 

reproduced in multiple trials. To eliminate the effect of image drift on 

the AFM scan during LS, individual grain sampling was performed on 

a selected set of grains. As shown in Figure. 4.10(a), a region was first 

cropped from the AFM images that remained within the field of 

measurement during the LS, and eight surface-grains from within that 

region were analyzed. The surface of each grain was extracted by the 

Watershed algorithm. Figure 4.10(a) shows an example from cropping 

a sample region, and Figure 4.10(b) shows the average area of the 

eight selected grains as a function of LS time. In spite of the small 

sampling number, the manual grain extraction shows the same trend 

as the statistical group behavior of surface grains in Figure 4.9(e). 

Therefore, one can conclude that the “swelling” behavior of the surface 

grains is not due to an image drift effect, but due to LS induced 

changes on the thin film topology. 

  Changes in film morphology during light-soaking were 

observed for the films deposited on glass. We turn now to effects of LS 

on the same PIN layer stacks deposited on transparent conductive 

oxide (TCO) substrates. Another set of pm-Si:H PIN layer stacks co-

deposited on various substrates such as Corning Eagle glass, textured 

SnO2:F (Asahi-U), and flat ZnO:Al, was LS for longer periods (up to 

100 hours under 100 mW/cm2) and the changes in their topology were 

characterized by scanning electron microscopy (SEM) and AFM. 

Figure 4.11 shows SEM and AFM images of the surface of pm-Si:H 

PIN solar cell on flat ZnO:Al, before and after LS for 16 hours. Images 

throughout the entire 1×1 square inch substrate were acquired on the 

as-deposited state and light-soaked. While the as-deposited sample 

shows no clear feature except surface roughness (Figure. 4.11(a),(b)), 

the light-soaked sample shows that the surface morphology is strongly 

modified (Figure. 4.11(c),(d)).  



4.3 Light-induced structural changes 

 

 

151 

 

 

 

Figure 4.11 – SEM images of pm-Si:H PIN solar cell surface when deposited on flat ZnO:Al : (a) 
as-deposited, and (c) LS for 16 hours. (inset b, d) AFM image of surface shown in Figure. 

 

 

Figure 4.12 – An AFM image of a pm-Si:H PIN solar cell on textured Asahi substrate after 100 
hours of LS and (b) cross-sectional profile measurement through center of hole showing a 
depth of film thickness. 

 

  A large number of bubbles is observed and the formation of 

holes takes place all over the surface. The depth of the holes and 

height of the bubbles are estimated from the cross-section of the AFM 

images. The depth of the holes varies from 30 to 400 nm, which means 

that some of the holes correspond to a complete peeling of the pm-Si:H 

PIN layers. The height of the bubbles reaches up to 1 µm. It is clear 
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that bubbles are not dust or particles because of their surface topology 

is similar to that of the rest of the surface, as well as the fact that they 

are not seen in the as-deposited state. In addition, not only circular 

shaped holes, but also many irregular shaped holes are found in SEM 

images. It implies that the macroscopic changes are similar to the 

buckling observed when films are annealed at high temperature [4.45-

4.48]. 

  Because the above results could be due to the use of flat 

ZnO:Al, we performed another light-soaking test on a pm-Si:H PIN 

layer stack deposited on a textured Asahi (SnO2:F) substrate, which is 

usually used for PIN solar cells. The pm-Si:H PIN solar cell was light-

soaked for 100 hours, and again many irregularly shaped large holes 

were found. Figure 4.12 shows an AFM image of one of these holes. 

One can see that the size of the hole is larger (~ 20 µm) than the ones 

in Figure 4.11 (~ few µm), suggesting that the size of macroscopic 

defect grows with LS time. Another interesting aspect is also seen, 

wherein the groups of many small holes are found in the AFM image 

along with larger ones. The size distribution of the holes shows a high 

density of small ones (~ few µm), and few larger ones (as large as 20 

µm). Considering the fact that small holes are locally grouped, the 

origin of the large hole might be related to the coalescence or 

agglomeration of small ones. Therefore, one can conjecture that the 

macroscopic structural change proceeds with LS, and the growth 

mechanism of the holes and bubbles is most probably the 

agglomeration. The depth of hole corresponds to the film thickness 

(about 400 nm), suggesting that the film has completely peeled off. 

Furthermore, many small sized holes (~ few µm) are also seen in 

Figure 4.12, similar to those observed on flat ZnO:Al (Figure 4.11(c),(d). 

Developing the idea, assuming that the holes are a result of local 

stress relief, a region where small holes are grouped is most likely less 

rigid than nearby areas, and when those areas crack and peel-off 
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during LS, compressive stress is relaxed. Large cracked holes could be 

created through such stress release-crack cycle while more areas are 

cracked and peeled-off. 

  In order to examine the conjecture on the coalescence and the 

agglomeration of the vacancies into larger voids, a longer period of 

illumination is needed. Since studies on the SWE are time consuming, 

accelerated degradation tests, such as current-injection degradation 

(CID), are also widely used to study the mechanism [4.49, 4.50]. A set 

of a-Si:H and pm-Si:H PIN layer stacks were deposited on Cr 

evaporated on Corning Eagle glass. Sputtered ITO was used as a top 

contact and to define the cell area of 0.0314 cm2. The total thickness of 

PIN layer stack was about 2100 Å. The PIN layer stacks were 

connected to a DC power supply and constant current bias of 300 

mA/cm2 was injected to the PIN diodes. The current density of 300 

mA/cm2 can be regarded as equivalent to an illumination under 15 

suns [4.49]. CID was done for 200 mins, which is equivalent to 500 hrs 

of LS under one sun illumination [4.23]. During the CID, a series of 

optical images were taken in real time with an Olympus BX61 optical 

microscope for both a-Si:H and pm-Si:H PIN layer stacks. The 

temperature of the PIN solar cells was monitored using a PT100 

thermometer during the CID, verifying that the device temperature 

stayed at 80 °C.  

  Figure 4.13 shows optical images of a-Si:H and pm-Si:H PIN 

layer stacks at various stages of CID. In Figure 4.13a, a-Si:H PIN 

layer stack shows no significant changes under CID, while the pm-

Si:H PIN layer stack in Figure 4.13(b) shows macroscopic changes.  
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Figure 4.13 – Optical images of a-Si:H and pm-Si:H PIN layer stacks at various stages of 
current-injection degradation (CID). CID condition was done for 200 mins under 300 mA/cm2, 
and it is equivalent to the LS of 500 hrs under 1 sun illumination. 
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Bubbles and dark regions appear at 20 minutes. The bubbles keep 

growing and the dark regions also expand with CID. At 100 minutes, 

pinholes appear at the borders of bubbles, as shown in Figure 4.13(c), 

(d). They look like cracks extending out from the border of bubbles, 

and some of the bubbles have multiple opening holes. As CID 

continues, larger topological defects appear for both the bubbles and 

holes. An interesting point is that after CID for 200 minutes, the dark 

region disappears and the entire surface turns to dark-blue. No 

artificial modification on optical microscope was done and such 

chromatic changes are reproducible. 

  In order to have more detailed information on the bubbles, an 

AFM image was taken on one of the bubbles. Fig. 4.14 shows an AFM 

image of a bubble and its cross section profile, showing that the 

bubbles are up to 1.2 µm high. Similarly to the LS test, the surface of 

the bubble and the rest of the surface show homogeneous morphology, 

which allows us to conclude that the bubbles are not an experimental 

artifact such as dust. The macroscopic defects (such as dark regions, 

bubbles and holes) first appear in small sizes, and then the dark 

regions expand and more bubbles and holes emerge, and finally the 

bubbles and holes merge into larger ones. The growth behavior of such 

macroscopic defects is depicted (as discussed above) as a result of the 

coalescence or the agglomeration of voids into larger ones at the 

interface [4.37, 4.38].  As hydrogen evolution occurs due to microscopic 

structural changes, this hydrogen may fill the bubbles that form. The 

holes appearing from the bubbles can be thought as a consequence of 

cracks extending out from the bubble, these holes can be explained as 

the cavity inside the bubble being unveiled after the destruction of the 

bubble.  
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Figure 4.14 – An AFM image of a pm-Si:H PIN solar cell on Cr/glass substrate after CID and 
(b) cross-sectional profile measurement through center of bubble shown in Figure 4.13. CID 
condition was done for 200 mins under 300 mA/cm2, and it is equivalent to the LS of 500 hrs 
under 1 sun illumination. 

 

  One can recall that the entire surface turned to dark-blue after 

CID of 200 minutes. As mentioned above, no artificial modification was 

done. The reason could be that either the film or the interface between 

film/substrate became very porous after CID. The dark region could be 

a group of very small topological defects, both holes and bubbles, too 

small to be individually seen by optical microscope, but previously 

observed in SEM and AFM images in Figure 4.11, 4.12. This further 

supports the concept of the agglomerating growth behavior of the 

structural defects. Furthermore, there are still small holes and 

bubbles coming out after current-injection of 200 minutes, even after 

large scale topological changes. Assuming that the dark regions consist 

of with very small topological defects, the small holes and bubbles 

would be continuously created during CID. The strong contrast in 

refractive index of nanovoids would cause strong optical scattering, 

reflected in the change in color of film surface. Paul et al. [4.51] have 

discussed in detail the effects of voids of dimensions of 5 - 40 Å on the 

optical properties of amorphous germanium and have demonstrated 
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that large voids have the effect of reducing the refractive index. The 

change in refractive index after long term LS should be also detectable. 

  Spectroscopic ellipsometry (SE) is a useful tool to measure the 

optical properties of thin films. SE measurements were performed on a 

pm-Si:H PIN layer stack deposited on flat glass. The pm-Si:H PIN 

solar cell was light-soaked for 500 hours and SE spectra of as-

deposited and light-soaked state were measured. The measured 

spectra were modeled using the Tauc-Lorentz dispersion model and 

the material parameters were obtained from the modeling [4.52, 4.53]. 

Figure 4.15 summarizes the SE modeling of pm-Si:H PIN layer stacks 

before and after LS of 500 hrs. Figure 4.15(a) shows the optical model 

used to analyze the experimental data. The imaginary part of the 

pseudo-dielectric function (ε2) of the film measured by spectroscopic 

ellipsometry, as well as the material parameters deduced from 

modeling the pm-Si PIN stack on glass. SE spectrum of as-deposited 

pm-Si:H PIN layer stack can be modeled by a simple single layer with 

a surface roughness [4.54]. However, after LS of 500 hrs, SE spectrum 

cannot be modeled with the same optical model. The best fit was 

obtained when adding a bottom layer of 1000 Å with 50 % of void 

fraction. Indeed, in Figure 4.15b, the raw ε2 spectra before/after LS are 

very different, in particular the peak intensity and optical bandgap 

(Eopt) decreased a lot. Figure 4.15c shows that the refractive index of 

pm-Si:H PIN layer stack also decreased after LS. 
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Figure 4.15 – Summary of SE modeling of pm-Si:H PIN layer stacks before and after LS of 500 
hrs. (a) the structure of the optical model, (b) optical bandgap (Eopt) and raw ε2 spectra (inset), 
and (c) modeled refractive index before/after LS. The sample was light-soaked under Mercury 
lamp illumination and the intensity was about 0.7 sun. 
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Table 4.2 shows the fitting parameters of Tauc-Lorentz dispersion 

from Figure 4.15. Let us recall that Eopt is the optical bandgap, 

whereas A and C are fitting parameters related to the density and the 

disorder, respectively. Significant changes are observed in the material, 

in particular Eopt, A, and surface roughness. LS introduced a shift of 

the absorption edge (low energy part of ε2) to lower energy. This shift 

is associated with the decrease of the Eopt. There are two possible 

reasons for the decrease in Eopt. It could suggest that Si-H bonds are 

breaking as a consequence of LS. The other reason can be changes in 

the inter-atomic distance. In-situ Raman and AFM revealed that light-

soaking introduces stress-relaxation, which also implies that inter-

atomic distance gets larger after light-soaking. Less splitting of orbital 

energy (band gap) is then expected from larger inter-nuclear distance 

of atoms. Such narrowing of Eopt seems to correlate with the evolution 

in the red response of EQE of pm-Si:H shown in Figure 4.3. 

 

State  Eopt (eV)  A  Eo  C  Roughness (Å) 

As‐deposited  1.69  207  3.88  2.35  44.2 

LS 500 hrs  1.56  178  3.75  2.55  58.5 

 

Table 4.2 – Fitting parameters of Tauc-Lorentz dispersion model of Figure 4.15. Eopt is the 
optical bandgap, E0 is peak-to-peak transition energy, whereas A and C are fitting parameters 
related to the film density and the disorder. 

 

LS introduced a strong decrease in the amplitude of ε2, which can be 

accounted for by an increase of the surface roughness and/or a 

decrease in the density parameter A. Decrease in the density 

parameter A suggests that the sample becomes porous. Such porosity 

could connect to the evolution of macroscopic structural changes such 

as bubbles and holes, shown in Figure 4.11-4.14.  
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4.4 Light-induced hydrogen motion 

We have examined the light-induced degradation kinetics of pm-Si:H 

PIN solar cells and associated macroscopic structural changes. An 

important feature in the evolution of solar cell parameters and 

macroscopic structural changes under LS is evolution in the hydrogen 

bonding. In order to study the characteristics of Si-H bond breaking 

and subsequent dangling bond recombination as a consequence of 

light-soaking, infrared absorption was measured for both a-Si:H and 

pm-Si:H solar cells. Infrared spectra in transmission mode were 

measured with a Nicolet 6700 Fourier transform infrared (FTIR) 

spectrometer on samples grown on <100> highly resistive (>104 Ωcm) 

FZ c-Si substrates. Its resolution was set to 4 cm−1. The transmission 

spectra, resulting from the average over 32 scans, were normalized to 

the transmission of the c-Si substrates. As a complementary study for 

infrared absorption, hydrogen exodiffusion experiments were 

performed on both a-Si:H and pm-Si:H PIN stacks. During these 

experiments, the base vacuum was 10-7 mbar and the heating rate was 

10 °C/min. The effused hydrogen was detected by a Quadruple Mass 

Spectrometer (QMS), and recorded in a continuous manner with the 

increase in temperature, to obtain the hydrogen exodiffusion spectrum. 

For this study, a pm-Si:H PIN solar cell was prepared on Corning 

Eagle glass substrate and then cut into three pieces: one as a control, a 

second one to be LS for one hour, and a third one to be LS for 20 hours. 

  Figure 4.16 shows the FTIR spectra in the stretching region of 

a-Si:H and pm-Si:H PIN stacks on FZ c-Si substrates extracted from 

infrared transmission. The stretching region of infrared absorption 

consists of two peaks centered at 2000 cm-1 and 2090 cm-1 [4.55]. The 

2000 cm−1 mode is commonly associated with isolated Si-H groups in 

the bulk, related to the saturation of the dangling bonds during growth, 

while the 2090 cm−1 mode is attributed to clustered monohydrides 
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and/or dihydrides. Furthermore, there is a third peak, which is 

detected in pm-Si:H PIN samples, centered at around 2030 cm-1. The 

stretching mode at 2030 cm-1 has been interpreted as clustered Si-H 

groups in the form of platelet-like configurations [4.56]. Therefore, this 

component could come from Si-H bonds at the amorphous-crystalline 

interface at nanocrystals surface in pm-Si:H. One can recognize that 

the stretching mode peak of pm-Si:H PIN layer stacks is shifted to the 

high wavenumbers compared to that of a-Si:H. This supports the 

existence of the 2030 cm-1 band. 

 

Figure 4.16 – Absorption coefficient spectra of FTIR stretching modes of (a) a-Si:H and (c) pm-
Si:H PIN layer stacks on intrinsic FZ wafer and their zoom-in to the peak (b, d). The spectra 
are extracted from infrared transmission at four light-soaking (LS) states : as-deposited 
(black), after one hour of LS (red), after 5 hours (blue) and after 20 hours (green). 
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  Evolution of FTIR stretching mode during LS is also quite 

distinct for those two materials. a-Si:H PIN shows a slow but steady 

reduction of its stretching modes absorption during LS. This result 

implies that Si-H bonds are broken under illumination, creating 

dangling bonds. However, in pm-Si:H PIN case, there is an increase in 

the stretching modes absorption at the early stages (up to five hours) 

of LS. The absorption starts to decrease after LS for 20 hours, but the 

absorption is still higher than in the as-deposited state. Similar 

experimental results are found in the literature [4.57-4.60]. Z. Yiping 

et al. observed a light induced increase of the Si-H stretching mode 

upon LS, and the authors argue that the increase cannot be due to an 

increase in the oscillator strength of those Si-H bonds [4.57]. They 

suggest that the primary effect of LS is an increase in the 

concentration of Si-H bonds that originate from H2 molecules in the 

material. However, H. Fritzsche suggested another interpretation on 

the same reference. He proposed that LS introduced structural 

changes such as light-induced increase in strain or structural disorder, 

and the structural change increased the effective bond charge of Si-H 

bonds, so just sensitivity increased [4.58]. R. Darwich et al. reported 

indeed light-induced increase in bending mode (~870 cm-1), and they 

suggested the formation of bond-centered hydrogen [4.59]. At last, S. 

Sheng et al. demonstrated irreversible light-induced increase in 

stretching mode that is non-monotonic [4.60]. They also suspected 

some structural changes, but could not propose further explanation. 

  In our case, first of all, the magnitude of the change is very 

small, However, multiple tests were done to confirm that the initial 

absorption increase was reproducible. Multiple infrared transmission 

spectra were taken to check the error range, which was found to be 

within ± 0.1 % of the absolute value of transmission. Thus the error 

range is much lower than the change in transmission caused by light-

soaking, which is more than ± 0.5 %. Therefore, one can conclude that 
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there is very small change in the total amount of Si-H bonds, both in a-

Si:H and pm-Si:H PIN layer stacks, with a reproducible consistency in 

their behavior. An initial increase is observed in the infrared 

absorption band of a pm-Si:H PIN layer stack, contrary to one 

containing a-Si:H, which shows a monotonous decrease. 

  Figure 4.17 shows the H2 partial pressure detected during 

exodiffusion, normalized to the volume of the sample, as a function of 

temperature for a-Si:H and pm-Si:H PIN layer stacks on Corning glass. 

The exodiffusion spectrum of the as-deposited pm-Si:H PIN layer stack 

(Figure 4.17(b)) shows two distinct peaks at around 350 °C and 500 °C 

along with hydrogen spikes at low temperature around 250 °C. 

Otherwise, the exodiffusion spectra of a-Si:H PIN layer stacks show 

only one peak at 500 °C. The evolution peak at 300-400 °C is 

associated to molecular hydrogen release from internal surfaces of 

interconnected voids [4.61] or from silicon nanoparticle surface [4.62]. 

It is of note that materials deposited under CVD growth conditions 

only show an evolution peak at 500-600 °C [4.63]. Exodiffusion 

shoulder at 600 °C indicates hydrogen evolution from isolated voids 

during crystallization [4.64]. There is another possibility that the low 

temperature peak at 350 °C can also originate from the fact that we 

are analyzing a PIN stack instead of just an intrinsic layer. As a 

matter of fact, it has been shown that there is a different effusion 

behavior between p/i and n/i layer stacks. The p/i structure shows a 

low temperature effusion peak at 300 °C, while n/i structure shows a 

shift of the effusion peak to a higher temperature of 450 °C [4.65]. 

There are few possible reasons to have a low temperature peak in the 

structure with a p-layer at the bottom. Boron doped a-SiC:H layers are 

porous, and have a high diffusion coefficient of hydrogen [4.66], so 

atomic hydrogen could be incorporated in this layer when another 

layer is deposited on top of it. In this way, molecular hydrogen could 

already exist in p-layer or p-layer/substrate interface. 
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Figure 4.17 – Hydrogen exodiffusion spectra of co-deposited (a) a-Si:H and (b) pm-Si:H PIN 
layer stacks for different light-soaking (LS) states. Note that the pm-Si:H PIN layer stack 
shows abrupt  disappearance of the peak around 350 °C even after 1 hour of LS, while there is 
only small change in a-Si:H PIN layer stack. 
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observed on the sample light-soaked for 20 hours. This result is 

surprising because not only is the change very abrupt, but also such 

change is much stronger than the one observed in the FTIR study 

(Figure 4.16). Recalling that only bonded hydrogen is detected by FTIR, 

this suggests that the origin of the peak at 350 °C is molecular 

hydrogen in the stack. Furthermore, the signal at 400 °C increased 

after LS, which can be linked to the initial increase of stretching 

modes absorbance in the previous section (Figure 4.16). This implies 

that a portion of molecular hydrogen associated with the 350 °C peak 

may have converted into bonded hydrogen. After LS for 20 hours, the 

signal at 400 °C is still higher than its initial value, even if the high 

temperature signal (~500 °C) shows a notable reduction. Last but not 

least, unusual sharp spikes are observed at low temperature (as low as 

50 °C) for the light-soaked samples. The detection of these low 

temperature spikes in the light-soaked samples suggests that a portion 

of molecular hydrogen (350 °C peak) is also transformed to be mobile 

during the LS and accumulates at internal cavities or at the 

film/substrate interface. This hydrogen can easily escape during 

macroscopic cracking events and introduce sharp and rapid increases 

in hydrogen partial pressure at even lower temperature than 350 °C in 

the exodiffusion experiments [4.61]. 

  In order to have more detailed information, the exodiffusion 

results were deconvoluted into five Gaussian peaks. The results of 

such analysis are summarized in Table 4.3. The exodiffusion spectrum 

of the as-deposited pm-Si:H PIN layer stack is characterized by five 

peaks at 320 °C, 353 °C, 469 °C, 516 °C and 591 °C. Note that the 

spikes were not taken into account in the deconvolution. Table 4.3 

shows that the area of the peak at 469 °C increased after LS for one 

hour, while the two low temperature peaks (320, 353 °C) disappeared. 

This gives support to the fact there is not only diffusion of molecular 

hydrogen, but also reconstruction of Si-H bonding during light-soaking 
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[4.67].  

 

As‐Deposited  LS 1 hour  LS 20 hours 

Peak 
position (°C) 

Area (a .u.) 
Peak 

position (°C)
Area ( a. u.) 

Peak 
position (°C) 

Area ( a. u.) 

320  2.43 
   

353  2.32 

469  9.06  464  12.1  457  9.44 

516  2.99  507  2.59  509  1.98 

590  2.23  596  1.18  584  1.35 

Total  19.03                                15.87                                  12.77 

 

Table 4.3 – Peak positions and integrated areas extracted from exodiffusion results of Figure 
4.17. Data are presented for co-deposited pm-Si:H cell layer stacks in the as-deposited state 
and after two light-soaking times ( 1 hour, and 20 hours). 

 

  With the experimental results presented in this chapter, we 

now aim to understand the light-induced degradation kinetics of the 

pm-Si:H PIN solar cells, such as rapid initial drop of FF and Jsc, 

increase in Voc, irreversibility, and healing. In-situ Raman and AFM 

measurements reveal that LS relaxes compressive stress. LS on pm-

Si:H PIN solar cells introduces the evolution of macroscopic structural 

changes, such as holes and bubbles, which grow by coalescence and 

agglomeration. The structural changes listed above are indeed because 

of stimulated hydrogen motion, as deduced from infrared absorption 

and exodiffusion. 

  One could argue that the results above are due to the 

illumination induced local heating. However, there are several points 

disputing this perspective. First, heating of the PIN solar cells by 

illumination was suppressed by fan cooling. As mentioned above, the 

temperature stayed under 50 °C even at 2 suns of illumination (well 

below the deposition temperature of 175 °C). Second, we have observed 
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increasing Voc and decreasing Jsc. The opposite would be seen if pm-

Si:H cells were heated. At last, Raman measurements show that the 

TO peak remained in same position even after cooling down for 20 

minutes. Therefore, we conclude that the macroscopic changes 

presented here do not rely on heating, but on illumination. 

  Based on our experimental study, the collected results can be 

summarized as follows: 

1. LS of pm-Si:H PIN solar cells introduces various unusual 

effects which are not observed in a-Si:H solar cells, such as a 

fast decrease in FF and Jsc, an increase of Voc, irreversibility, 

and healing. 

2. At the initial stages of LS, pm-Si:H PIN solar cells experience a 

relaxation of their compressive stress. 

3. LS of pm-Si:H solar cells results in evolution of macroscopic 

structural changes, creating bubbles and holes, growing up to 

few hundred µm scale. This is observed by AFM, SEM, optical 

microscope, and SE measurements, all of which provide 

evidence of macroscopic changes of pm-Si:H PIN solar cells. 

4. Infrared absorption and exodiffusion studies demonstrate that 

LS induces strong changes in the hydrogen distribution in the 

material. In particular, the disappearance of the exodiffusion 

peak at 350 °C , the increase in FTIR stretching modes, as well 

as the increase in the exodiffusion signal at 400 °C and the 

appearance of low temperature sharp spikes after light-soaking. 

These results suggest that molecular hydrogen in the pm-Si:H 

PIN layer stacks (350 °C peak in exodiffusion) effuses out 

during LS, and a portion of the effused hydrogen is converted 

into bonded hydrogen and into hydrogen filled cavities, in 

particular at the substrate/p-layer interface. 
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These results lead us to postulate that LS leads molecular hydrogen to 

effuse from pm-Si:H PIN solar cells, and a fraction of molecular 

hydrogen (made mobile during LS) forms cavities, probably around the 

silicon nanocrystals of the pm-Si:H material and at the substrate/p-

layer interface. This causes the peel-off observed in microscope images. 

Therefore, the question is whether there is a connection between the 

macroscopic changes and the behavior of the solar cell parameters. 

  Indeed, there is a general consensus on light-soaking 

modifying hydrogen incorporation in a-Si:H. Light-induced, long-range 

H motion has been postulated as the key step in the Branz model of 

SWE defect formation [4.68, 4.69]. According to the Branz model, only 

a small subset of the Si-H bonds involved in the SWE contributes to 

metastable dangling bond formation, while most of the broken Si-H 

bonds are recycled by re-trapping mobile hydrogen. This process could 

be a reason for the molecular hydrogen diffusion during LS [4.68-4.70]. 

We therefore postulate that the large structural changes reported 

above are macroscopic manifestations of molecular hydrogen 

accumulation at the interface between the substrate and the pm-Si:H 

PIN stacks. 

  However, there is still a question remaining about the fast 

diffusion of hydrogen. As a matter of fact, it is reported that hydrogen 

diffusion in a-Si:H is more moderate than the result presented here 

[4.61, 4.69, 4.70]. Nevertheless, one can still find the difference in the 

hydrogen diffusivity between pm-Si:H and a-Si:H, recalling the abrupt 

disappearance of exodiffusion peak at 350 °C (Figure 4.17) while FTIR 

measurements show only small changes in Si-H bond concentration 

(Figure 4.16). Therefore, such fast hydrogen diffusion cannot originate 

from Si-H bond breaking, but from molecular hydrogen in the material. 

As mentioned above, molecular hydrogen could exist either in 

microvoids or at the p-layer/substrate interface or it could have been 
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created during LS by the coalescence of nanovoids. It has been 

reported that molecular hydrogen can diffuse faster in a highly 

inhomogeneous material such as pm-Si:H [4.71]. In addition, such 

diffusion would be even accelerated if the material experiences a 

volume expansion, providing larger space for hydrogen to diffuse. As a 

matter of fact, there has been a great deal of research on light-induced 

volume changes [4.72]. Various beam bending experiments have been 

performed using samples consisting of long and narrow pieces of thin 

glass or quartz substrates coated with a-Si:H [4.73-4.79]. These results 

reveal that light-induced volume expansion follows a stretched 

exponential behavior, usually showing saturation at dV/V~10-3 [4.42]. 

This phenomenon has also been connected with hydrogen motion, as 

light-induced volume changes have been shown to depend on the 

hydrogen content of the film [4.42]. “On-the-edge” or mixed phase 

materials grown under high hydrogen dilution and having improved 

order result in solar cells with significantly reduced light-induced 

degradation. Interestingly enough, these materials show the fastest 

and largest photo-expansion amongst many different a-Si:H materials 

[4.15, 4.42]. Their large photo-induced volume change prompts 

comparison to the macroscopic evolution of our pm-Si:H solar cells. In 

other words, the volume expansion of the film is a product of the stress 

being relieved, and is particularly important at the p-layer/substrate 

interface. 

  Turning now to the light-induced degradation kinetics of a-

Si:H and pm-Si:H PIN solar cells, one should also consider the 

different process conditions of a-Si:H and pm-Si:H materials (notably 

vastly different hydrogen dilution and ion-bombardment conditions) 

which could induce different modification of the p-type a-SiC:H layer of 

the solar cells. Indeed, the deposition conditions of the pm-Si:H layer 

could strongly modify the hydrogen content and bonding 

configurations in the p-layer, even if the p-type a-SiC:H layer was 
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deposited under the same conditions for both the a-Si:H and pm-Si:H 

PIN solar cells. As atomic hydrogen has a high diffusivity in boron 

doped a-SiC:H [4.66], it is even more likely that  deposition conditions 

involving high hydrogen dilution will modify the p-type a-SiC:H layer 

and weaken the interface between the substrate and the p-type layer. 

The fact that we study PIN stacks and not just intrinsic layers may 

also be the reason for the exodiffusion peak at 350 °C as it has been 

reported elsewhere [4.46]. Therefore, we suggest that pm-Si:H 

deposition conditions may lead to a fragile p-layer/substrate interface, 

which can be further damaged during LS. This is supported by the low 

temperature sharp spikes in the exodiffusion results. Indeed, those 

sharp spikes are evidence of molecular hydrogen escaping from 

cavities at relatively low temperature. The hydrogen evolving from 

these cavities must have been accumulated during LS.  

  The initial increase in FTIR stretching mode of pm-Si:H PIN 

during LS can be explained in the framework of Branz model, where 

mobile hydrogen is emitted by photo-carrier recombination, creating 

dangling bonds. When mobile hydrogen diffuses through the silicon 

network it can be captured by a dangling bond and recycled into 

another Si-H bond [4.80]. In this cycle, re-trapped hydrogen is 

assumed to originate from Si-H bond breaking. However, if a large 

amount of mobile hydrogen exists in the material (for instance 

molecular hydrogen), then the number of hydrogen atoms captured by 

dangling bonds can be larger than the number of hydrogen atoms 

produced by Si-H bond-breaking. The presence of molecular hydrogen 

in pm-Si:H PIN solar cells, suggested by the exodiffusion spectra 

(Figure 4.17) may cause the fast hydrogen diffusion and initial 

increase in Si-H bonding (Figure 4.16, 4.17) during LS. Indeed, our 

result on hydrogen diffusion after LS of pm-Si:H PIN solar cells is 

found to be much faster [4.81] and indeed takes place at much lower 

temperature than that of a-Si:H in literature. 
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  Therefore, the initial increase in FTIR stretching mode can be 

explained by creation of bond-centered hydrogen [4.59], mediated by 

molecular hydrogen [4.16]. In this mechanism, atomic hydrogen comes 

to passivate a newly created dangling bond left by another atomic 

hydrogen parted from bond centered position, and two hydrogen atoms 

form a molecular hydrogen or interstitial hydrogen [4.16]. This 

mechanism of bond centered hydrogen creation and annihilation at the 

very beginning of the LS process indicates that bond centered 

hydrogen could play the role as an intermediate precursor [4.59], 

initiating structural changes [4.82]. It may seem difficult for molecular 

hydrogen to spontaneously dissociate into atomic hydrogen. Indeed, 

molecular hydrogen in free space is more stable than Si-H bond. 

However, the energy level of molecular hydrogen in silicon is much 

less stable than in free space [4.83, 4.84]. Moreover, the existence of 

not only molecular hydrogen, but also metastable diatomic species in 

silicon has been reported [4.85]. Diatomic species are denoted as H2* 

while molecular hydrogen is denoted as H2. They are metastable and 

are at higher energy level (unstable) compared to H2. H2* has 

asymmetric charge distribution between two hydrogen atoms. Recent 

works have reported on strain-induced dissociation of molecular 

hydrogen, in particular at the vicinity of strained Si-Si bonds [4.86, 

4.87]. This is interesting in light of the results we have seen in Raman 

study that LS of pm-Si:H PIN solar cells is accompanied by a large 

amount of stress relaxation. 

 

4.5 Hypothesis on light-induced changes 

The structural studies presented above can be summarized in 

proposing the macroscopic defect creation scenario shown in Figure 

4.18. In the as-deposited state (Figure 4.18(a)), the pm-Si:H PIN solar 

cells have already weak film/substrate interface due to the process 
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conditions of the pm-Si:H intrinsic layer. Then, light-soaking (Figure 

4.18(b)) introduces volume changes, stress relaxation, and coalescence 

of nanovoids at the interface. Molecular hydrogen in the material 

becomes mobile and isotropically diffuses to the film free surface as 

well as to the interface with the substrate where it can accumulate 

and form hydrogen cavities (Figure 4.18(c)). This delamination 

continues to release built-in “compressive” stress of the film, and the 

stress relaxation will eventually result in the formation of mechanical 

defects such as bubbles and holes (Figure 4.18(d)), as well as the 

accumulation of hydrogen at the interface. Based on the above 

scenario we propose that the unusual evolution of pm-Si:H solar cell 

parameters, particularly rapid decrease in FF and Jsc is related to the 

diffusion of molecular hydrogen, resulting in a reduction of active solar 

cell area due to delamination.  

  It should be mentioned that a-Si:H also shows large 

macroscopic structural changes such as redistribution of Si-H bonding 

configuration [4.17], increase in band-tail states attributed to the 

change in microstructure [4.88], relief of internal stress [4.89, 4.90], 

nanovoid formation [4.91], and internal diffusion of hydrogen [4.92] 

but all at temperatures above 350 °C.  As well as irreversible solar cell 

degradation is observed when material is light-soaked under 50 suns 

at 130 °C [4.20, 4.21]. However, in pm-Si:H, the structural changes 

listed above manifest under one sun illumination at temperatures as 

low as 40 °C. When a-Si:H is annealed at 350 °C [4.47, 4.48] and these 

extreme conditions lead to enhanced hydrogen motion at the origin of 

the reported macroscopic structural changes in both films and a-Si:H 

solar cells. Interestingly, our results on pm-Si:H PIN solar cells show 

that such irreversible changes can take in this material under 

standard LS conditions. 
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Figure 4.18 – Schematic representation of proposed mechanism for structural defect formation 
through localized delamination. In the as-deposited state (a), a weak film/substrate interface 
is due to the pm-Si:H deposition conditions. Light-soaking (b) introduces volume changes, 
stress relaxation, and nanovoids agglomerate into larger ones. Molecular hydrogen in the 
material becomes mobile and diffuses to the interface where it forms hydrogen cavities (c). The 
delamination continues to release built-in “compressive” stress, and the stress relaxation 
eventually results in the formation of macroscopic defects such as bubbles and holes (d), as 
well as the accumulation of hydrogen at the interface. 

 

We attribute this to the peculiar nanostructure of pm-Si:H which 

provides a good environment for hydrogen diffusion [4.67, 4.71], and to 

the presence of weakly bonded hydrogen in the material. Therefore, 

one can conclude that the reported degradation kinetics of pm-Si:H 

PIN solar cells is a particular case of a-Si:H solar cells, which also 

show hydrogen induced structural changes under extreme conditions.
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4.6 Long-term stability and new device structure 

Now we turn to the kinetics of light-induced degradation after a long 

period of time. A set of PIN and NIP solar cells were prepared and 

were subjected to LS for 800 hours. The intrinsic layers of PIN solar 

cells were deposited at various RF powers, and some pairs of PIN cells 

varied only in intrinsic layer thickness. A state-of-art a-Si:H PIN mini-

module from external group is also studied as a reference. NIP solar 

cells are also fabricated, and our NIP solar cells utilize p-type µc-SiOx 

while our PIN solar cells are optimized with p-type a-SiC:H. All the 

solar cells are illuminated and light-soaked through p-type layer side. 

Table 4.4 summarizes the process conditions and intrinsic thickness of 

selected solar cells. 

 

Sample   Description  RF power (W)  rd (Å/s)  di (Å) 

State‐of‐art 
reference 

a‐Si:H PIN 
 

  3000 

a1102253  a‐Si:H PIN  1  1  3000 

a1104264  pm‐Si:H PIN  5  1.5  3000 

a1104282  pm‐Si:H PIN  5  1.5  3500 

a1104181  pm‐Si:H PIN  10  5  3000 

a1104182  pm‐Si:H PIN  10  5  6500 

a1112121  a‐Si:H NIP  1  1  3000 

 

Table 4.4 – Process conditions of various PIN and NIP solar cells. The intrinsic layers of PIN 
solar cells were deposited at various RF power, and some PIN solar cells had same material 
properties with different intrinsic layer thickness. 

 

  For the long term LS, the PIN and NIP solar cells are light-

soaked under a Mercury-vapor lamp (Hg lamp) of an intensity of 100 

mW/cm2. Hg lamp was chosen due to the advantages of a long bulb 

lifetime and a high intensity, in spite of the spectrum mismatch to the 

AM1.5 standard. Emission line spectrum of Hg lamp mainly consists of 

UV-blue light [4.93], as well as intense emission lines in the visible 
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[4.94]. The lamp intensity was calibrated with a commercial c-Si 

reference solar cell. During LS, the PIN and NIP solar cells are fan 

cooled and the solar cell temperature was monitored by a PT100 

thermometer, ensuring that the solar cell temperature stayed under 

50 °C. J(V) measurements of the solar cells are measured under an 

intensity of 100 mW/cm2 with AM1.5 spectrum. For each J(V) 

measurement, six individual solar cells on 2.5×2.5 cm2 substrates are 

measured and the solar cell parameters are averaged. The maximum 

and minimum values are reflected by error bars. 

  Figure 4.19 shows the evolution of solar cell parameters of 

selected PIN and NIP solar cells during LS under Hg lamp 

illumination. There is notable difference in light-induced degradation 

kinetics compared to earlier results on short period LS. In particular, 

one can find out that pm-Si:H PIN solar cells show disappointing 

stability, degrading down from about 9 % to 3 % in worst case. Such 

disappointing long-term stability of pm-Si:H PIN solar cells can be 

attributed to the spectrum of LS illumination. We have seen that pm-

Si:H PIN solar cells are especially stable under yellow-red illumination, 

but are much more sensitive to degradation done with UV-blue light 

(Figure 4.3). Since the emission spectrum of Hg lamp mainly consists 

of UV-blue light, it makes sense that pm-Si:H PIN solar cells show 

such accelerated degradation under Hg lamp. Moreover, one can find 

many interesting aspects in light-induced degradation kinetics of pm-

Si:H PIN solar cells under Hg illumination. First, the stable efficiency 

of pm-Si:H PIN solar cells does not depend on the intrinsic layer 

thickness, but depends on the RF power used in the deposition of 

intrinsic layers. This is another distinguishing characteristic of light-

induced degradation kinetics of pm-Si:H PIN solar cells. Light-induced 

degradation of a-Si:H sample should depend on the intrinsic layer 

thickness. 
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Figure 4.19 – Evolution of solar cell parameters of selected PIN and NIP solar cells 
summarized in Table 4.4: (a) η, (b) FF, (c) Voc, and (d) Jsc during LS under an Hg lamp 
illumination. Note that multiple individual solar cells on 2.5×2.5 cm2 substrate are measured 
and the solar cell parameters are averaged. The maximum and minimum values are reflected 
in error bars. Al is used as back-reflector in PIN solar cells except the state-of-art reference 
sample, and ITO is used in NIP.  
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Usually, the magnitude of the light-induced degradation of a-Si:H 

solar cells varies with intrinsic layer thickness [4.95, 4.96], thus 

motivating the many efforts on enabling thin intrinsic layers with 

efficient light trapping [4.95, 4.97]. Again, another evidence of the 

additional physical origin in the light-induced degradation kinetics of 

pm-Si:H PIN solar cells is seen in their independence on the intrinsic 

layer thickness. In Figure 4.19(b), FF of PIN and NIP solar cells show 

that the stabilized FF is mostly determined by the RF power used in 

the deposition of intrinsic layers. Note that even the state-of-art 

reference sample shows stabilized FF of about 55. It suggests that the 

LS condition in this test is obviously harsher than standard condition. 

Looking the pm-Si:H PIN solar cells deposited at 10 W, their initial FF 

approaches to 70, which is indeed good FF attributing good transport 

and recombination properties, but after LS, the FF drops to 45. This 

large degradation is also found in Jsc, Figure 4.19(d). The Jsc of PIN 

solar cells also vary with RF power used for intrinsic layer deposition. 

In addition, the Jsc of the pm-Si:H PIN solar cells deposited at 10 W 

show continued degradation even after LS for 800 hrs. It is interesting 

that Jsc of the state-of-art reference sample is very high, while the 

degradation behavior is similar. This can be explained by an efficient 

light trapping technique in the state-of-art reference sample. Looking 

now at the Voc, pm-Si:H PIN solar cells show no net increase in Voc, 

even though there is a slight increase at the initial stage (~10 hrs) of 

LS. Otherwise, the Voc is the most stable parameter during LS, 

remaining unchanged after initial degradation within about 5 %. It is 

impressive that the NIP solar cell shows high Voc through the use of p-

type µc-SiOx. More detail on the doped µc-SiOx will be given in the next 

chapter. 
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Figure 4.20 – Optical images of pm-Si:H PIN and NIP solar cells as deposited (a, c) and light-
soaked (b, d). One can observe that there are large macroscopic changes in the pm-Si:H PIN 
solar cell, resulting in a loss of the actual solar cell area, while NIP solar cell shows no visible 
changes. 

 

  In general, the results presented in Figure 4.19 are indeed a 

magnified version of the LS result presented earlier in this chapter. 

Therefore, one should also observe the macroscopic structural changes 

of pm-Si:H PIN solar cells after LS. Figure 4.20 shows a set of optical 

images of pm-Si:H PIN and NIP solar cells. As expected, there are 

large macroscopic changes in the pm-Si:H PIN solar cells, leading to a 

loss of actual solar cell area. In addition, the loss of actual solar cell 

area results in additional loss in Jsc. As a matter of fact, we have 

observed a clear trend between Jsc degradation and the area loss. 

Figure 4.21 shows the Jsc loss as a function of the area loss, in the PIN 

solar cell case represented in Figures 4.19 and 4.20. A large set of 

stability results at various stages of LS shows the progressive growth 
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of macroscopic defects that have accumulated into a significant area 

loss. Simultaneously, the loss of Jsc shows clear proportionality to the 

area loss.  It suggests that the additional degradation of Jsc is because 

of the decreased real collection area.  

 

Figure 4.21 – The Jsc loss as a function of the area loss, in the PIN case represented in Figure 
4.19 and 4.20. The loss of Jsc shows clear proportionality to the area loss. 

 

  Meanwhile, returning to Figures 4.19 and 4.20, one may point 

out another aspect concerning the NIP structure. In the set of optical 

images, the NIP solar cell shows no area loss, implying that NIP 

structure might not suffer from the light-induced macroscopic 

structural changes of PIN solar cells. The light-induced degradation 

kinetics of NIP solar cell presented in Figure 4.19 are consistent with 

the lack of structural changes observed in Figure 4.20. In Figure 4.19, 

in spite of the reasonable initial parameters, the NIP solar cell shows 

the smallest degradation, so that the stabilized efficiency of NIP solar 

cell remained the best among the sample group. Furthermore, the 

smallest η degradation of NIP solar cell is related to surprisingly 
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stable FF and Jsc. As discussed, the characteristic light-induced 

degradation kinetics of pm-Si:H PIN solar cells, such as a rapid 

decrease in FF and Jsc, originate from the macroscopic structural 

changes, and no such changes are observed in these stable cells. 

Recalling previous sections, one of the most striking results on light-

induced structural changes is the exodiffusion data. Figure 4.22 shows 

the exodiffusion spectra of pm-Si:H NIP layer stacks in the as-

deposited state and for two different light-soaking (LS) times. 

Compared to the exodiffusion spectra of pm-Si:H PIN layer stacks 

(Figure 4.17), the exodiffusion spectra of  NIP structures show large 

differences. As mentioned, the exodiffusion spectrum of as-deposited 

pm-Si:H PIN layer stack shows two clear peaks at 350 °C and 500 °C, 

which differs from NIP structure, which shows a broad, non-Gaussian 

peak centered at around 490 °C and an additional high temperature 

peak at 650 °C. Let us recall that the exodiffusion signal at 350 °C 

indicates interconnected voids [4.61] while the one over 600 °C 

corresponds to the isolated ones [4.64]. We suggest that the NIP 

structure consists of less interconnected voids, but instead contains 

more isolated ones, probably at the interface between the substrates. 

  Taking a look into the evolution of exodiffusion spectra during 

LS, the difference is even larger. In the PIN case, there is a 

disappearance of the 350 °C peak after only one hour of LS. At the 

same time, the NIP structure shows the entire spectrum reduced, 

rather similar to the behavior of a-Si:H PIN layer stacks. From the 

evolution of exodiffusion spectra, NIP structure shows only moderate 

change at low temperature region (~ 350 °C), while PIN structure 

shows highly pronounced and abrupt disappearance of the 350 °C 

exodiffusion peak. Such moderate change for NIPs could correlate to 

the absence of structural changes i.e. the delamination at TCO/p-layer 

interface, which is supported by the stable solar cell parameters in Jsc 

and FF under LS. 



4.7 Summary 

 

 

181 

 

 

Figure 4.22 – Hydrogen exodiffusion results of pm-Si:H NIP solar cells for three states : as-
deposited (black), after one hour of LS (red), and after 20 hours (blue). Note that  the NIP 
structure shows no significant change in exodiffusion signal as well as no delamination. 

 

4.7 Summary 

We have performed a detailed and extensive study on light-induced 

changes in a-Si:H and pm-Si:H PIN and NIP solar cells deposited on 

various substrates and characterized these changes by a wide range of 

techniques. The experimental results support the hypothesis that LS 

results in the formation of cavities at the interface between the 

substrate and the p-layer which are progressively filled by molecular 

hydrogen during LS. This process weakens this interface and causes 

mechanical defects such as delamination. This is an often forgotten 

aspect degradation occurring in parallel to the SWE. Indeed our 

results show that besides the creation of electronic defects, 

macroscopic defects related to the delamination of the SnO2/p-layer 

interface and H2 diffusion should be considered as the source for this 

effect. This is particularly true in the case of pm-Si:H PIN solar cells, 
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for which a fast initial drop in Jsc has been explained by the 

delamination of the interface at the SnO2/p-layer interface. As a 

consequence, the pm-Si:H PIN solar cells suffer greatly from 

irreversible light-induced electrical and macroscopic changes. In 

particular, pm-Si:H PIN solar cells demonstrate rapid initial 

degradation, which cannot be explained by conventional paradigms on 

SWE. We correlated the effects to changes in hydrogen incorporation 

and structural properties in the PIN solar cells. In addition, with the 

goal of suppressing the rapid initial degradation, we have 

demonstrated that the NIP structure does not show  large structural 

changes i.e. interface delamination. Therefore, a highly stable solar 

cell could be obtained from the NIP structure. However, the solar cell 

parameters of NIP solar cell presented in Figure 4.19 are not yet 

satisfying compared to the state-of-art solar cells in literature [4.95]. 

Therefore, optimization of NIP solar cell is needed. Hence, the next 

chapter will be dedicated to the optimization of NIP solar cell 

parameters and the cross-verification of the high stability of NIP 

structures. 
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5.1 Introduction 

This chapter deals with the optimization of pm-Si:H NIP solar cells. 

NIP solar cells are made in the “substrate” configuration, and are 

illuminated through the top, p-type layer.  As for a-Si:H and pm-

Si:H solar cells should be always illuminated through the p-type 

layer side due to lower mobility of holes in comparison to electrons. 

Since most of the photo-generated carriers are generated near the 

p/i interface, on average, holes have shorter distance for the 

collection. NIP structure uses thin TCO such as 100 nm thick ITO 

as a front contact, on top of the p-type layer. Highly conductive and 

transparent p-type layer is needed. The main challenge in the 

optimization of the NIP solar cells is to develop a novel p-type layer.  

While p-type μc-Si:H layer with the high conductivity (σ) and low 

absorption coefficient (α) in the visible range has been explored by 

some authors [5.1], nowadays p-type μc-SiOx layers have attracted 

much interest [5.2, 5.3]. One of the merits of doped μc-SiOx layers is 

their “tunable refractive index”, achieved by varying the SiH4/CO2 

gas precursor ratio during deposition. Such high flexibility in the 

optical properties of doped μc-SiOx layers enables their application 

as both the front window layer [5.2] and as the intermediate 

reflector in tandem junctions [5.3, 5.4]. Recently a record efficiency 

of 16.3% has been demonstrated in triple junction solar cells 

incorporating doped μc-SiOx layers [5.4]. In this chapter, 

optimization of high efficiency pm-Si:H NIP solar cells using p-type 

μc-SiOx layers will be presented. 

 

5.2 p-type µc-SiOx 

Doped µc-SiOx can be deposited by adding CO2 gas during µc-Si 

deposition. While n-type µc-SiOx are readily achieved (see annex 
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5.1), p-type µc-SiOx is more difficult to achieve due to the 

amorphization effect of B(CH3)3 (TMB). In this chapter, 

optimization of p-type µc-SiOx and its application to solar cells is 

studied. Table 5.1 summarizes the deposition conditions of p-type 

µc-SiOx. The p-type µc-SiOx layers are deposited at 175 °C from a 

gas mixture of SiH4, H2, and CO2, and p- and n-type doping is 

achieved by adding TMB and PH3, respectively. The effect of CO2 

addition was studied by varying the CO2 flow. 

 

Sample  H2  SiH4  TMB  CO2  Pressure  RF power  Ts 

p‐type  500  9  1.5 
Varied 

(optimum : 2) 
2 Torr  14 W  175 °C 

 

Table 5.1 – Summary of the deposition conditions of p-type µc-SiOx. 

 

The addition of CO2 during the deposition results into a transition 

from µc-Si:H to amorphous growth. Figure 5.1 shows Raman 

scattering spectra of p-type µc-SiOx layers deposited with different 

CO2 flow rates. A He–Ne laser (632 nm) and a back-scattering 

collection configuration were used for the micro Raman 

measurements. In the Raman spectra, at low CO2 flow, a 

crystalline silicon (c-Si) peak is detected at 520 cm-1. It is also 

observed that c-Si peak shifts to lower wave-numbers with higher 

CO2 flow. The c-Si peak shift may indicate smaller grain size at 

larger CO2 flow. Broad peaks centered at ~470 cm-1 indicate an 

amorphous phase such as a-Si and SiO2, but the peaks of a-Si (~480 

cm-1) and SiO2 (~ 460 cm-1) are almost indistinguishable. One could 

claim that the Raman spectrum of the sample with 3 sccm of CO2 

flow still shows c-Si peak at around 520 cm-1. However, it is 

difficult to determine the c-Si peak because of the broad amorphous 

peak. Furthermore, even if the c-Si phase exists, the crystalline 
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volume fraction would be low thus would not contribute to the 

electrical conductivity.  

 

Figure 5.1 – Raman spectra of p-type µc-SiOx layers deposited with different CO2 flow. A 
transition from crystalline (520 cm-1) to amorphous (480 cm-1) when varying CO2 flow is 
notably seen. 

 

  The phase shift from crystalline to amorphous is also 

shown in spectroscopic ellipsometry (SE) measurements and 

modeling. The measured spectra were modeled using the 

Bruggeman effective medium approximation (BEMA). This 

approach, based on the assumption of the linearity of the optical 

response of mixed phase materials, gives a unique opportunity to 

define the films’ structure as expressed in terms of the volume 

fraction of its constituents. The modeling steps consist of rebuilding 

the measured pseudo-dielectric function from a combination of the 

optical responses of a mixture of known dielectric function 

materials [5.5, 5.6]. This approach has been shown to be very well 

adapted to modeling complex multilayer structures consisting of 

amorphous and nanocrystalline silicon materials [5.7]. Figure 5.2 
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shows the SE spectra of various p-type materials. SE spectrum of c-

Si shows two peaks at 3.4 and 4.2 eV, representing the first two 

direct transition energies in the dispersion relation. SE spectrum of 

the material consisting of smaller crystallite size, such as µc-Si:H, 

shows a broadening of these peaks. p-type a-SiC shows a broad 

single peak centered at around 3.75 eV in the SE spectrum, while 

p-type µc-Si:H shows a broad peak with a plateau between 3.4 and 

4.2 eV due to the broadening of these two peaks. Addition of CO2 to 

the gas mixture produces a decrease in the peak intensity of εi, 

indicating that the material is less dense or the surface is rougher.  

 

Figure 5.2 – SE spectra of various p-type layers. p-type µc-SiOx deposited with two 
different CO2 flows, 2 and 3 sccm are also shown. 

 

The reduction of the amplitude of the interference fringes at low 

photon energy region of material deposited at high CO2 flow 

indicates that the refractive index of the material decreases and 

becomes closer to that of the glass substrate, implying more SiO2 

fraction. It should be mentioned that in the SE spectra, the 

interference fringes might be confused as an absorption edge. This 
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is due to the thickness of the samples (~ 150 Å), and that is why 

there is sharp increase in εi at the photon energy of 2.5~3 eV. 

  BEMA modeling of the SE spectra provides more detailed 

information on the material properties. The measured spectra were 

modeled by a medium based on the relative fractions of SiO2, µc-Si, 

and a-Si. Figure 5.3(a) shows evolution of SiO2, µc-Si, and a-Si 

volume fraction of p-type µc-SiOx as functions of CO2 flow. 

Evolution of µc-Si and a-Si fraction show same trend, while SiO2 

fraction increases with CO2 flow. It suggests that the SiO2 fraction 

originates from CO2 flow, and the SiO2 fraction and silicon (µc-Si, a-

Si) fractions are in trade off. Such highly heterogeneous mixed 

phase nature of µc-SiOx is necessary for the material to perform its 

multifunctional role. In other words, SiO2 fraction modifies the 

optical properties and contributes to the transparency of the 

material, while µc-Si maintains the electrical conductivity. 

Therefore, it is needed to find the optimum trade-off between 

transparency and conductivity. 

  Another interesting aspect is the necessity of a crystallized 

µc-Si bottom layer in SE optical model, as shown in Figure 5.3(b). 

Figure 5.3(c) shows that the thickness of this bottom layer is linked 

with the µc-Si fraction in the “top” layer. It is suspected that during 

growth, there would be a phase transition from µc-Si:H to µc-SiOx. 

It can be due to that highly reactive and electronegative oxygen 

atoms have longer residence time compared to the other gases such 

as H2 and SiH4 [5.8]. The film would initially grow as µc-Si:H at the 

initial stage and then slowly evolve into µc-SiOx. Further studies 

based on TEM and the analysis of a film thickness series should 

provide a clearer view on the growth mechanism of doped µc-SiOx. 
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Figure 5.3 – (a) Evolution of SiO2, µc-Si, and a-Si volume fractions of p-type µc-SiOx as 
functions of CO2 flow deduced from BEMA method, (b) structure of optical model, and (c) 
Raman crystalline fraction Xc and SE top layer crystalline fraction Xc versus thickness of 
fully crystallized bottom layer. 
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Over parts of the spectrum, εi is closely related to the absorption 

coefficient of the material. The SiO2 fraction increases with the CO2 

flow, while the µc-Si fraction decreases. As a consequence, the 

absorption coefficient (α) of the film decreases with increasing CO2 

flow rate. A set of p-type layers was deposited on Corning glass 

substrate and their transmission spectra were measured. The 

absorption coefficient (α) was calculated from the transmission 

spectra, neglecting any reflection losses. Under the assumption of a 

parabolic distribution of electronic states, a simple analysis of 

transmission measurement can be performed [5.9]. Optical 

absorption occur by transition of electrons and holes between 

electronic states such as conduction and valence bands, tail states, 

and gap states. Tauc gap (ETauc) is generally used for determining 

Eopt of a-Si:H. However, it is risky to represent the ETauc of a two 

phase material such as µc-Si:H,. It should be noted that an indirect 

bandgap material does not have a single distinct absorption onset, 

which corresponds to a more gradually sloping curve in the Tauc 

plot. Therefore, here we present E04, a photon energy where α=104 

cm-1. Figure 5.4 shows α for various p-type layers versus photon 

energy. 

  In Figure 5.4, p-type µc-Si:H shows higher α compared to 

that of p-type a-SiC:H, so from an optical point of view, µc-Si:H is 

less preferable than a-SiC:H as window layer if one neglects the 

effect of reflection losses. However, addition of CO2 during the 

growth of p-type µc-Si:H changes the composition of the material, 

as shown in Figure 5.3, and decreases α, as is also shown in Figure 

5.5. Figure 5.5 shows E04 from transmission measurement and SiO2 

fraction deduced from SE modeling of p-type µc-SiOx as functions of 

CO2 flow. Notably, E04 and SiO2 fraction shows strong correlation. 

Electrically, SiO2 is an insulator with electrical conductivity of 10-15 

Scm-1. Even though p-type µc-SiOx shows wide bandgap thanks to 
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the SiO2 fraction, it is easy to imagine that too much SiO2 fraction 

would deteriorate the electrical properties of the material. 

 

Figure 5.4 – Absorption coefficient of various p-type layers. p-type µc-SiOx deposited with 
two different CO2 flow, 2 and 3 sccm are also shown. E04 can be extracted at the energy 
where α=104. 

 

 

Figure 5.5 – E04 from transmission measurement and SiO2 fraction deduced from SE 
modeling as functions of CO2 flow.  Note that E04 and SiO2 fraction show strong 
correlation. 
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  Returning back to Figure 5.3, the p-type µc-SiOx consists of 

about 20 % of µc-Si fraction up to 2 sccm of CO2 flow, and the µc-Si 

fraction sharply drops to zero at larger CO2 flow. One can imagine 

an impact on conductivity of the material because the conductivity 

of the doped µc-SiOx layer relies on the nanocrystalline fraction 

[5.8]. Meanwhile, p-type µc-SiOx layers show high a-Si fraction, 

from 20 to 55 %. It suggests that the a-Si fraction in p-type µc-SiOx 

only gives negative effects due to its high (parasitic) absorption 

coefficient and low conductivity. Therefore, further work on the 

removal of a-Si fraction and its replacement by µc-Si would improve 

both transparency and conductivity. 

  The electrical properties of various p-type materials have 

been investigated through the temperature-dependence of their 

dark conductivity (σ(T)) using evaporated Al coplanar electrodes. 5 

mm wide Al coplanar electrodes were separated by 1 mm gap. The 

current was measured under voltage bias while the samples are 

heated / cooled. At every 5 °C of the cycle, current was measured 

after 5 minutes of stabilization. The measurement sequence is then 

repeated for another temperature (+ 5 °C). In this manner, a series 

of points are obtained to generate an Arrhenius plot. The samples 

were heated up to 160 °C than cooled down to 50 °C, and the 

conductivity of both heating-cooling cycles was recorded. Activation 

energy (Ea) of the material can be determined from the slope 

obtained during the cooling cycle. The cooling rate was slow enough 

(0.016 °C/s) in order to avoid the quenching the defect states [5.10]. 

Figure 5.6 shows the Arrhenius plots of various p-type layers. The 

σ(T) reveals that p-type µc-Si:H has a higher conductivity (σ) 

compared to the p-type a-SiC:H. On the contrary to the optical 

properties, p-type µc-Si:H layer is electrically a much more 

preferable doped layer. As seen in Figure 5.3, addition of CO2 

introduces changes in material composition, resulting in a large 
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fraction of a-Si and SiO2. 

 

Figure 5.6 – Arrhenius plots of various p-type layers. p-type µc-SiOx deposited with two 
different CO2 flows, 2 and 3 sccm are also shown. Activation energy (Ea) can be extracted 
from the slopes of the plots. 

 

  Electrically, both a-Si and SiO2 degrade the electrical 

properties of the material. Addition of 2 sccm of CO2 results in a 

decrease of the room-temperature conductivity (σRT) from 10-1 to 10-

6, a factor of 105. Further increase of CO2 flow continues to decrease 
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properties of the material. Figure 5.7 shows a relationship between 
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result of Figure 5.3, the p-type µc-SiOx consists of 20 % of µc-Si. 

Continuous optimization of the deposition condition would bring 

even more transparent and conductive window layers. Based on 

these results we will use 2 sccm of CO2 for the p-layers of solar cells, 

as shown in the Table 5.1. 

 

Figure 5.7 – Ea and σRT from σ(T) measurement and µc-Si fraction (Xc) deduced from SE 
modeling as functions of CO2 flow. Note that Ea, σRT and µc-Si fraction show strong 
correlation.
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gas flow rate, and we have fabricated a p-type µc-SiOx layer, which 

is both more conductive and more transparent than our standard p-

type a-SiC:H. The next step should be, of course, the introduction of 

the optimized p-type µc-SiOx layers in the NIP devices. 

  The NIP cells have the following structure: textured Asahi 

(SnO2) substrate/n-type a-Si:H/intrinsic pm-Si:H/p-type µc-SiOx/p-

type µc-Si:H/sputtered indium-tin-oxide (ITO). The NIP solar cells 

in this study were deposited in ARCAM. The intrinsic pm-Si:H was 

the one previously optimized in chapter 3. The p-type layer had to 

be µc-SiOx/µc-Si:H bi-layer in order to have good ohmic contact with 

ITO front contact. The NIP solar cells are deposited on textured 

Asahi substrate as a back reflector. Use of better optimized 

substrate and back reflector is necessary further work. Figure 5.8 

shows an initial J(V) and EQE curves of a pm-Si:H NIP solar cell 

using p-type µc-SiOx. A great enhancement in Voc is the most 

impressive feature. About 100 mV of improvement compared to std 

pm-Si:H PIN solar cells has been achieved, and a shift of Vmax 

compared to Figure 3.7 also shows that the high Voc is a 

consequence of application of such heterojunction structure. The 

NIP solar cell show a FF of 65.2, which needs to be further 

optimized. There are three reasons for the limited FF. At first, the 

pm-Si:H NIP solar cells using µc-SiOx is indeed the first trial in this 

laboratory, and p/i interface is not yet fully optimized. The 

importance of the p/i interface is widely known in particular for the 

transport properties of solar cells [5.11, 5.12]. Gradual interface or 

novel buffer layer at p/i interface could further improve the FF 

[5.12]. Second, the limitation of FF in NIP solar cells seems to come 

from the low Rsc. The physical origin of this low Rsc could be the 

recombination, or the physical shunt in diode. In the thin film solar 

cells, shunted diode is made by the pinhole, non-conformal coverage 

of textured substrate, or imperfection of substrate cleaning. It is 
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also supported by the fact that solar cells with thicker intrinsic 

layer showed less shunted diodes. A third reason is the conductive 

p-type µc-Si:H layer at the interface with the ITO. This layer will 

act like a poor TCO layer, and collection through this layer will 

increase the JSC measured in a solar simulator (but with a poor FF) 

but not the JSC calculated from EQE. In Figure 5.8(b), EQE curve of 

NIP solar cell showed disappointing response, in spite of excellent 

optical properties of p-type µc-SiOx. Poor EQE could be due to the 

thick p-type layer (about 280 Å) which absorbs too much light, or to 

insufficient light trapping due to no metallic back reflector. 

  In order to further optimize the NIP solar cell efficiency, 

various series of pm-Si:H NIP solar cells were fabricated. At first, 

effect of the intrinsic layer thickness was tested. A series of pm-

Si:H NIP solar cells having different intrinsic layers were 

fabricated. pm-Si:H NIP solar cells were also light-soaked under 

Mercury (Hg) lamp illumination of an intensity of 1 sun for 500 

hours. One can notice that the LS condition is done under strong 

UV component compared to standard AM1.5 condition because of 

high UV/blue emission of Hg lamp, as one can find the spectrum of 

the lamp in the reference [5.13]. However, the solar cell J(V) curves 

are measured under AM1.5 spectrum.  
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Figure 5.8 – Initial characteristics of a pm-Si:H NIP solar cell using p-type µc-SiOx (a) J(V) 
curve and (b) external quantum efficiency. The intrinsic layer thickness was about 2500 Å, 
and NIP solar cell is deposited on textured Asahi. Thickness of p µc-SiOx/µc-Si:H bi-layer 
is 280 Å. 
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  Figure 5.9 shows the evolution of pm-Si:H NIP solar cell 

parameters as functions of intrinsic layer thickness. Initial and 

stabilized solar cell parameters are shown together. In the 

thickness series, a NIP solar cell with 1500 Å thick intrinsic layer 

was almost entirely shunted, so the solar cell parameters of LS 

state could not be measured. The conversion efficiency (η) of the 

thickness series shows the usual trend, namely that the initial 

efficiency (ηinitial) increases with the intrinsic layer thickness, but 

the stabilized efficiency (ηstable) decreases with the intrinsic layer 

thickness. In other words, thicker intrinsic layer makes NIP solar 

cell less stable under LS in spite of the high ηinitial. This is a widely 

known effect, and emphasizes the importance of the light-trapping. 

Another interesting aspect of the intrinsic layer thickness 

dependence of the stability is that NIP solar cells no longer suffer 

from hydrogen accumulation at interface and interface 

delamination. Looking into more detail, most of the degradation 

comes from the FF attributed to the fact that the solar cell 

efficiency is dominated by the degradation of intrinsic layer. Voc 

stays stable after LS, showing the degradation of about 3 %. 

Degradation of Jsc is much less than that observed in PIN solar 

cells. This may be interpreted as evidence that the interface 

delamination no longer impacts the degradation kinetics. In the 

intrinsic thickness series, the stability of NIP solar cells depend on 

the intrinsic layer thickness, so one can notice that the intrinsic 

layer of the NIP solar cell should not be very thick in spite of high 

ηinitial, as expected. 
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Figure 5.9 – Evolution of pm-Si:H NIP solar cell parameters as functions of intrinsic layer 
thickness: (a) η, (b) FF, (c) Voc, and (d) Jsc. Note that initial and stabilized solar cell 
parameters are shown together. For the stabilization, the NIP solar cells are light-soaked 
under 1 sun of Hg lamp for 500 h, and J(V) curves are measured under 100 mW/cm2 of 
simulated AM1.5 spectrum. Thickness of p µc-SiOx/µc-Si:H bi-layer is 280 Å. 
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As mentioned above, in Figure 5.8, the p-type layer might have 

been too thick (µc-SiOx/µc-Si:H, 280 Å), so another series with 

thinner p-type µc-SiOx was tested. A series of pm-Si:H NIP solar 

cells having different p-type µc-SiOx layer are fabricated. Same as 

in case of Figure 5.9, pm-Si:H NIP solar cells were light-soaked 

under Hg lamp illumination of an intensity of 1 sun for 500 hours. 

Figure 5.10 shows evolution of pm-Si:H NIP solar cell parameters 

as functions of p-type µc-SiOx layer thickness. Notable 

improvement of η is demonstrated with thinner p-type layer. The 

improvement mainly relies on the increase in Jsc. Figure 5.11 shows 

an evolution of EQE curves of pm-Si:H NIP solar cells with 

different p-type µc-SiOx layer thickness. Interestingly, the 

reduction of the p-type layer thickness enhances both short and 

long wavelength regions. Usually a thick p-type a-SiC:H layer only 

reduces the blue response, so the parasitic absorption in the long 

wavelength region suggests that there is another mechanism 

involved. This could be the parasitic absorption in p-type µc-SiOx 

due to its µc-Si phase. Another interesting result is that the 

stabilized FF increases with p-layer thickness. This can be 

attributed to multiple reasons. Firstly, pm-Si:H is more stable 

under yellow/red illumination, and a thick p-type layer absorbs a 

large portion of blue light, working as a filter. Such a combined 

filtering effect looks interesting to make highly stable solar cells, 

but with the tradeoff of a large loss of blue response with thick p-

type layer. Therefore, more efficient light-trapping is required to 

extract any net benefit from the filtering effect. 
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Figure 5.10 – Evolution of pm-Si:H NIP solar cell parameters as functions of p-type µc-
SiOx layer thickness: (a) η, (b) FF, (c) Voc, and (d) Jsc. Note that initial and stabilized solar 
cell parameters are shown together. For the stabilization, the NIP solar cells are light-
soaked under 1 sun of Hg lamp, and J(V) curves are measured under 100 mW/cm2 of 
AM1.5 spectrum. Thickness of p µc-Si:H layer is 100 Å.  
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Figure 5.11 – Evolution of EQE curves of pm-Si:H NIP solar cells with different p-type µc-
SiOx layer thickness. Thickness of p µc-Si:H layer is 100 Å. Interestingly,, the decrease of 
the p-type layer thickness enhances both short and long wavelength regions. 
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Figure 5.12 – Initial, stabilized and annealed (at 160 °C for 2 hrs) characteristics of an 
optimized pm-Si:H NIP solar cell (a) J(V) and (b) EQE curves. Intrinsic layer thickness 
was about 2500 Å. 
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Table 5.2 – Solar cell parameters of an optimized pm-Si:H NIP solar cell from Figure 5.12. 
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The stabilized FF of about 60 is indeed lower than that of the state-

of-art a-Si:H solar cell [5.14] and may be due to the different LS 

conditions and the presence of the thin p-type µc-Si:H bottom layer. 

The NIP solar cells in this work are light-soaked under Hg lamp 

illumination, which spectrum consists of much more high energy 

photons than standard AM1.5 spectrum. EQE curve in Figure 

5.12(b) also shows that most of the degradation in the pm-Si:H NIP 

solar cell is in the high energy photon region. Furthermore, 

recalling that the state-of-art reference sample shows stabilized FF 

of 55 under same LS spectrum (Figure 4.19),, the stabilized FF of 

60 is actually a high value. EQE curve of the pm-Si:H NIP solar cell 

shows that there is still needed for further improvement. Our 

record pm-Si:H NIP solar cells are fabricated on commercially 

available textured Asahi substrates, thus further studies on novel 

substrates for light trapping should bring NIP solar cells with even 

higher stabilized efficiency. 

 

5.4 Stable pm-Si:H NIP solar cells 

As discussed in previous chapters, there are notable characteristics 

in the light-induced degradation kinetics of pm-Si:H PIN solar cells. 

At first, pm-Si:H PIN solar cells show poor stability, degrading 

down from about 9 % to 3 % in worst case. Second, the stable 

efficiency of pm-Si:H PIN solar cells does not depend on the 

intrinsic layer thickness, but depends on the RF power used in the 

deposition of intrinsic layers. The RF power dependency is 

attributed to the CH, as shown in Figure 2.12. The most important 

contribution to the light-induced degradation in both a-Si:H and 

pm-Si:H comes from the change in FF, but pm-Si:H shows 

secondary effects, notably a rapid initial drop in FF and Jsc.  
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Figure 5.13 – Evolution of solar cell parameters of selected PIN and NIP solar cells (a) η, 
(b) FF, (c) Voc, and (d) Jsc during LS under an Hg lamp illumination. Note that various 
individual solar cells (up to six) on the 2.5×2.5 cm2 substrates were measured and the 
solar cell parameters are averaged. The maximum and minimum values are reflected in 
error bars. Al is used as back-reflector in PIN solar cells, and ITO is used in NIP. After 
the LS, the cells are annealed (at 160 °C for 2 hrs) and checked for reversibility of the 
light-induced degradation.  
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Such rapid initial degradation is irreversible, and cannot be 

explained by the SWE. As we have extensively discussed in chapter 

4, the physical origin of rapid drop of Jsc is the hydrogen 

accumulation at p/i interface and the delamination of pm-Si:H PIN 

solar cells, while this does not happen in NIP solar cells. Figure 

5.13 summarizes the evolution of solar cell parameters of selected 

PIN and NIP solar cells during LS under Hg lamp illumination. 

After the LS, the cells were annealed and checked the reversibility 

of the light-induced degradation. One can see that only a-Si:H PIN 

solar cell recovers to the initial state after annealing. The pm-Si:H 

NIP solar cell shows the irreversible light-induced degradation, as 

seen in the PIN case (Figure 4.2) and in the materials [5.15]. Such 

small irreversible degradation may originate from structural 

changes and hydrogen motion in pm-Si:H, even though the 

hydrogen accumulation at interface and the interface delamination 

were significantly suppressed by the NIP structure. Therefore, the 

light-induced degradation kinetics of pm-Si:H NIP solar cells relies 

mostly on the stability of intrinsic layer, while in the case of pm-

Si:H PIN solar cells degradation is mostly governed by interface 

delamination. 

 

5.5 Summary 

In this chapter we have presented preliminary results on the 

optimization of pm-Si:H NIP solar cells. In the previous chapters, 

we have demonstrated that our pm-Si:H PIN solar cells can reach a 

high initial efficiency, but suffer from unusual light-induced 

degradation, namely the interface delamination during light-

soaking. Interestingly the use of NIP structure greatly suppresses 

the irreversible effects due to delamination.  This lead us to pm-

Si:H NIP solar cells showing a high stabilized efficiency of 8.43 %, 
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showing 10 % of light-induced degradation after light-soaking for 

500 hours. While these results constitute a big step towards high 

stabilized efficiency pm-Si:H solar cells,, there are still some 

opportunities to further optimize their efficiency. In particular the 

development of proper buffer layer at p/i interface could reduce 

recombination and yield a higher FF.  Moreover, EQE curves show 

that even higher Jsc could be achieved by applying light-trapping 

and anti-reflection solutions to our NIP solar cells. 
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Conclusion and perspectives 

The aim of this thesis was to develop pm-Si:H solar cells at high 

deposition rate (rd) and with high stabilized efficiency (ηstable). This 

work further explores the optimization of pm-Si:H thin films 

addressed in the thesis of Anna Fontcuberta i Morral (2001), as well as 

the optimization of PIN solar cells studied in the thesis of Yves 

Poissant (2001) and Svetoslav Tchakarov (2004). Growth mechanism 

studies of pm-Si:H have been carried out at LPICM over the past 10 

years. In this work we have compared QMS molecular mass 

measurements under a-Si:H and pm-Si:H deposition conditions. The 

QMS results reveal the presence of higher order silane species such as 

Si2Hx and Si3Hx during pm-Si:H deposition, supporting the original 

hypothesis about the contribution of nanoparticles to pm-Si:H growth. 

High deposition rate pm-Si:H was explored through various 

parametric studies e.g. gas flow rate, pressure, and RF power. During 

these parametric sweeps, we have observed a sharp increase in the 

optical bandgap (Eopt) of the films when rd saturates at extreme plasma 

conditions such as pressure > 3 Torr or RF power > 50 W. The sharp 

increase of Eopt is related to the excessive hydrogen content (CH) of the 

films. Therefore, extreme plasma conditions as mentioned above do not 

further contribute to rd but lead to excessive hydrogen incorporation 

(CH > 16 at.%). Interestingly, we have found that a short residence 

time τr reduces CH as well as decreasing impurity content. Our results 

have demonstrated that rd can be increased up to 16 Å/s while keeping 

Eopt < 1.7 eV and CH of 16 at.%. 

  Based on the above results, pm-Si:H PIN solar cells were 

optimized. Various series of pm-Si:H PIN solar cells were fabricated 

with different intrinsic layer deposition conditions such as gas flow 

ratio and τr. Once again, pm-Si:H PIN solar cells with the best FF were 

obtained using the intrinsic layer with the lowest Eopt, and the 



Conclusion and perspectives 

 

 

216 

 

intrinsic layer with low Eopt was obtained by low τr. The FF of the PIN 

solar cells is controlled by the defect density of the intrinsic layers. We 

could fabricate pm-Si:H PIN solar cells with ηinitial of 9.22 % and FF of 

74.1 using optimized intrinsic layers at 1.5 Å/s. Moreover, the 

optimization of pm-Si:H PIN solar cells using high deposition rate (HR) 

intrinsic layers were fabricated. HR pm-Si:H PIN solar cell deposited 

at 10 Å/s showed ηinitial of about 7 %, while pm-Si:H PIN solar cell 

deposited at 20 Å/s displays poor solar cell parameters and needs 

further improvements. 

  Metastability in a-Si:H thin film and solar cells is a 35 year- 

old topic, first reported by Staebler and Wronski. We have discovered 

that pm-Si:H PIN solar cells demonstrate unusual light-induced 

effects, namely i) a rapid and irreversible initial degradation and ii) 

large macroscopic structural changes including the interface 

delamination at TCO/p-layer. This is indeed a new finding because it 

cannot be explained by the metastability models that explain the 

Staebler-Wronski effect, which focus on the electronic defects in 

intrinsic layers. We have made comprehensive studies on the light-

induced degradation kinetics of pm-Si:H PIN solar cells. As a result, 

we have shown a correlation between macroscopic structural changes 

(e.g. interface delamination) in the device and the electrical 

characteristics of solar cells. 

  An interesting result was that the pm-Si:H solar cell device 

stability largely depends on the illumination spectrum. External 

quantum efficiency (EQE) measurements show that most of the light-

induced degradation of pm-Si:H solar cells takes place in the UV-blue 

region. Moreover pm-Si:H solar cells show pronounced degradation 

under Hg lamp illumination, which consists of more UV-blue than 

standard AM1.5 spectrum. On the contrary, pm-Si:H PIN solar cells 

remained stable under 570 nm (yellow-orange) illumination. 
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  Furthermore, we have found that the delamination problem 

can be suppressed by changing the deposition sequence, from PIN, 

superstrate configuration to NIP, substrate configuration. In case of 

NIP structures, hydrogen does not accumulate at the TCO/p layer 

interface, thus preventing delamination. In order to optimize NIP 

structure, we developed highly conductive and transparent p-type µc-

SiOx layers. The application and optimization of the NIP structure, 

namely by using p-type µc-SiOx window layers, has enabled us to 

fabricate pm-Si:H NIP solar cells showing a high ηinitial of 9.38 % that 

shows a small (10 %) light-induced degradation after light-soaking for 

500 hours, thus also showing a high ηstable of 8.43 %. 

  As future work, increasing the efficiency of single junction pm-

Si:H solar cells is certainly to be considered. At first, EQE curves of 

optimized pm-Si:H NIP solar cells show losses in the UV-blue range of 

the spectrum. Enhancement on the UV-blue response could be done by 

reduction of parasitic absorption in the p-layer or by the use of anti-

reflective coatings. pm-Si:H NIP solar cells also showed initial FF of 

about 65. Further enhancement could be done by removing shunt 

paths, more conductive ITO front contact, optimization of p/i interface, 

and application of highly conductive n-type µc-SiOx. In particular, the 

material properties of n-type µc-SiOx are interesting compared to our 

standard n-type a-Si:H. Our optimized n-type µc-SiOx shows σRT ~ 10-1 

Scm-1 and E04 ~ 2.2 eV. Finally, most of the solar cells studied in this 

thesis were deposited on the commercially available textured SnO2:F 

(Asahi) substrate. Application of state-of-art TCO technologies such as 

APCVD ZnO would bring more efficient light-trapping. 

  One could further test HR pm-Si:H PIN solar cells. In this 

thesis, we have shown that intrinsic pm-Si:H layer deposited at 16 Å/s 

could be a good material for solar cells, while intrinsic pm-Si:H layer 

deposited at 20 Å/s showed poor material properties (high Eopt, high CH, 
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poor solar cell parameters…). Fabrication of HR pm-Si:H PIN solar 

cells using 16 Å/s process condition could be an interesting further 

work. Meanwhile, HR pm-Si:H NIP solar cells have not yet been tested. 

As the NIP structure shows superior device stability compared to that 

of PIN structure, the fabrication of HR pm-Si:H NIP solar cells would 

be also an interesting topic. 

  The spectral dependence of the light-induced degradation of 

pm-Si:H solar cells is another important topic which deserves further 

studies. Indeed, we have shown that pm-Si:H solar cells show most of 

the light-induced degradation in UV-blue region, while they remain 

stable under longer wavelength illumination (~570 nm). Moreover, we 

have found that a thick p-type layer in pm-Si:H NIP solar cells may 

contribute to an interesting “filter” effect, leading to higher stabilized 

FF. However, the physical origin of such spectral dependence of the 

solar cell stability is still an open question. Further studies on the 

spectral dependency would bring clearer view in the pm-Si:H solar cell 

device stability. 

  The high Eopt (~ 1.7 eV) of pm-Si:H solar cells along with their 

stable efficiency makes them an ideal “top-cell” for “micromorph” 

tandem or triple junction solar cells. It will be an interesting work to 

test if PINPIN tandem structure also suffers from the interface 

delamination. Otherwise NIPNIP structure could be used. Highly 

conductive n-type µc-SiOx would act an important role as an 

intermediate reflector and a tunnel junction. 

  Finally, the results presented in this thesis were done in the 

ARCAM reactor. Regarding its flexibility and simplicity, ARCAM is an 

excellent reactor for studies. However, this 25 year-old equipment also 

has practical limitations, particularly with respect to the impurity 

levels that can be achieved compared to state-of-the-art equipment. In 

particular, ARCAM does not have a load-lock port which increases the 
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time required to pump down and also makes it difficult to maintain 

chemical purity at high temperature or under high pressure. The 

multi-chamber cluster tool available at the Total-LPICM joint research 

team as of September 2012 will certainly help to further increase the 

stabilized efficiency of pm-Si:H solar cells. 
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Annex 2.1 Gas flow series 

Annex 2.1 provides auxiliary results of the gas flow series presented in 

chapter 2. Only SiH4 flow was varied while the other process 

parameters were fixed e.g. pressure = 3.5 Torr, Ts = 210 °C, RF = 30 W, 

and H2 = 500. The films are deposited on flat corning glass. SE 

measurement and modeling result are provided. Typical value of a-

Si:H is also marked as ×. This annex is to demonstrate the trend of the 

material properties during the parametric studies. 

 

Figure A.1 – rd and the disorder parameter C as functions of gas flow ratio. Note that H2 and 
was fixed to 500, and only SiH4 was varied. 
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Figure A.2 – Optical bandgap and peak-to-peak transition energy E0 as functions of gas flow 
ratio. Note that H2 flow was fixed to 500, and only SiH4 was varied. 

 

 

Figure A.3 – Density parameter A and surface roughness thickness as functions of gas flow 
ratio. Note that H2 flow was fixed to 500, and only SiH4 was varied. 
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Figure A.4 – Hydrogen content and microstructure parameter R as functions of gas flow ratio. 

Note that H2 flow was fixed, and only SiH4 was varied.  
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Annex 2.2 Pressure series 

Annex 2.2 provides auxiliary results of the pressure series presented 

in chapter 2. Only total pressure was varied while the other process 

parameters were fixed e.g. Ts = 210 °C, RF = 30 W, H2 = 500, and SiH4 

= 40. The films are deposited on flat corning glass. SE measurement 

and modeling result are provided. Typical value of a-Si:H is also 

marked as ×. This annex is to demonstrate the trend of the material 

properties during the parametric studies. 

 

 

Figure A.5 – rd and the disorder parameter C as functions of total pressure.  
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Figure A.6 – Optical bandgap and peak-to-peak transition energy E0 as functions of total 

pressure. 

 

Figure A.7 – Density parameter A and surface roughness thickness as functions of total 

pressure.  
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Annex 2.3 RF power series 

Annex 2.3 provides auxiliary results of the RF power series presented 

in chapter 2. Only RF power was varied while the other process 

parameters were fixed e.g. Ts = 240 °C, Pressure = 3 Torr, H2 = 338, 

and SiH4 = 50. The films are deposited on flat corning glass. SE 

measurement and modeling result are provided. Typical value of a-

Si:H is also marked as ×. This annex is to demonstrate the trend of the 

material properties during the parametric studies. 

 

Figure A.8 – rd and the disorder parameter C as functions of RF power. 
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Figure A.9 – Optical bandgap and peak-to-peak transition energy E0 as functions of RF power. 

 

 

Figure A.10 – Density parameter A and surface roughness thickness as functions of RF power. 
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Figure A.11 – Hydrogen content and microstructure parameter R as functions of RF power. 
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Annex 2.4 Ts series 

Annex 2.4 provides auxiliary results of the Ts series presented in 

chapter 2. Only Ts was varied while the other process parameters were 

fixed e.g. Pressure = 3 Torr, RF power = 30 W, H2 = 500, and SiH4 = 40. 

The films are deposited on flat corning glass. SE measurement and 

modeling result are provided. Typical value of a-Si:H is also marked as 

×. This annex is to demonstrate the trend of the material properties 

during the parametric studies. 

 

Figure A.12 – rd and the disorder parameter C as functions of Ts. 
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Figure A.13 – Optical bandgap and peak-to-peak transition energy E0 as functions of Ts. 
 

 

Figure A.14 – Density parameter A and surface roughness thickness as functions of Ts. 
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Annex 3.1 Intrinsic layer thickness series 

Annex 3.1 demonstrates the evolution of the solar cell parameters as 

functions of intrinsic layer thickness (di). Multiple sets of PIN solar 

cells are fabricated with different di. The two major impacts of di are 

absorption and the electric field. Thicker di attributes to increase in 

absorber layer thickness, thus results in increase of Jsc. In particular, 

longer wavelength region, where the material have lower absorption 

coefficient. Figure A.15 shows EQE curves of a-Si:H PIN solar cells 

with different di. However, at the same time, thick di results weak 

electric field across the junction and longer carrier drift path, and it is 

reflected into higher recombination.  

 

Figure A.15 – EQE curves of a-Si:H PIN solar cells having different intrinsic layer thickness. 

 

It is more significant in the case of defective intrinsic layer case, one 

can notice that FF of bad pm-Si:H PIN rapidly decrease with di in 

Figure A.16. Even if good PIN solar cells show no significant change in 

the initial parameters, thick intrinsic layer would result in heavy 

light-induced degradation. Therefore, importance of the light-trapping 

is once again stressed. 
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Figure A.16 – Evolution of solar cell parameters of selected PIN solar cells (a) η, (b) FF, (c) Voc, 

and (d) Jsc as functions of di.  
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Annex 5.1 n-type µc-SiOx 

Annex 5.1 provides material properties of n-type µc-SiOx layers. 

Similarly in the p-type µc-SiOx, the n-type µc-SiOx layers are deposited 

at 175 °C from a gas mixture of SiH4, H2, and CO2. n-type doping is 

achieved by adding PH3. Effect of CO2 addition was studied by varying 

the CO2 flow. It is shown that CO2 flow reduces µc-Si fraction and 

increase SiO2 fraction in the material. Therefore, increase in CO2 flow 

deteriorates electrical properties and enhances the optical properties. 

 

Figure A.17 – Evolution of SiO2, µc-Si, and a-Si volume fraction of n-type µc-SiOx as functions 
of CO2 flow deduced from BEMA method. 
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Figure A.18 – E04 from transmission measurement and SiO2 fraction of n-type µc-SiOx deduced 
from SE modeling as functions of CO2 flow.  Note that E04 and SiO2 fraction show strong 
correlation 

 

Figure A.19 – Ea and σRT from σ(T) measurement and µc-Si fraction (Xc) of n-type µc-SiOx 

deduced from SE modeling as functions of CO2 flow. Note that Ea, σRT and µc-Si fraction show 
strong correlation. 
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Abstract 
This thesis is dedicated to hydrogenated polymorphous silicon (pm-Si:H) and solar cells based on 
this material. pm-Si:H is a nanostructured thin film deposited by conventional PECVD method. 
The effects of various deposition parameters (gas flow ratio, pressure, RF power, Ts) on material 
properties were investigated in order to optimize its quality. The strategy was to combine a wide 
range of diagnostics (spectroscopic ellipsometry, hydrogen exodiffusion, SIMS, FTIR, AFM, etc.). 
Due to the contribution of plasma synthesized silicon nanoparticles, the process condition of pm-
Si:H shows the difference in contrary to a-Si:H deposition through ionized radicals. 
 Studies on pm-Si:H deposition process allows to fabricate pm-Si:H PIN solar cells with a 
high initial efficiency of 9.22 % and fill factor of 74.1, but also demonstrate unusual light-induced 
effects, namely i) a rapid initial degradation, ii) an irreversible degradation, and iii)  large 
macroscopic structural changes. Comprehensive investigation on the light-induced degradation 
kinetics of pm-Si:H PIN layer stacks reveals a pronounced hydrogen accumulation and 
delamination at the substrate/p-type layer interface under light-soaking, leading to macroscopic 
structural changes, e.g., peel-off and solar cell area loss. 

 We have found that a PIN structure leads to facilitated delamination during light-
soaking, which we attribute to hydrogen accumulation at the substrate/p-layer interface, while 
use of a NIP structure prevents the hydrogen accumulation and delamination. This lead us to 
fabricate pm-Si:H NIP solar cells showing a high stabilized efficiency of 8.43 %, that shows a 
small (10 %) light-induced degradation after light-soaking for 500 hours. 
Keywords:  amorphous silicon, polymorphous silicon, nanocrystalline silicon, solar cell, 
hydrogen, PECVD 

 
Résumé 
Cette thèse est consacrée au silicium polymorphe hydrogéné (pm-Si:H). Elle porte tout d’abord 
sur une étude du pm-Si :H puis sur une étude des cellules photovoltaïques fabriquées à partir de 
ce matériau. Le pm-Si:H est formé de couches minces nanostructurées et peut être déposé par 
PECVD conventionnelle. Les effets des différents paramètres de dépôt (mélanges gazeux, 
pression, puissance RF, température du substrat) sur les propriétés du matériau ont été étudiés 
pour optimiser sa qualité. La caractérisation des couches a été un enjeu primordial. Pour cela, 
nous avons choisi de combiner une palette très large de méthodes de caractérisation 
(ellipsomètrie spectroscopique, exodiffusion d'hydrogène, SIMS, FTIR, AFM, etc...). A cause de la 
contribution des nanoparticules de silicium dans le plasma, la nature du dépôt du pm-Si:H  
montre la différence contrairement au a-Si:H pour lequel le dépôt se fait par le biais de radicaux 
ionisés. 
 L'étude des conditions du procédé nous a conduit à fabriquer des cellules solaires d’un 
rendement initial de 9.22 % avec un facteur de forme élevé (74.1), mais aussi de démontrer des 
effets de vieillissement inhabituels, tels que i) une dégradation initiale rapide, ii) une 
dégradation irréversible, et iii) de grands changements structuraux macroscopiques. Nous avons 
découvert que le principal problème se situe entre le substrat et la couche mince de silicium. 
L'hydrogène moléculaire diffuse et s'accumule à l'interface entre le substrat et la couche mince, 
ce qui introduit un délaminage local qui a pour conséquence une dégradation initiale rapide des 
performances des cellules. 
 Nous avons trouvé que sous éclairement une structure PIN facilite l'accumulation 
d'hydrogène et le délaminage à l'interface entre le substrat et la couche dopée p. Cependant, 
l'utilisation d'une structure NIP empêche l'accumulation d'hydrogène et le délaminage. Cela nous 
a permis de fabriquer des cellules solaires pm-Si:H de structure NIP d’un rendement stable de 
8.43 %, mais aussi de démontrer une degradation minimale (10 %) après un vieillissement de 500 
heures. 
Mots-clés: silicium amorphe, silicium polymorphe, silicium nanocristallin, cellule photovoltaïque, 
hydrogène, PECVD 


