Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications, 2008.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, 2008.
DOI : 10.1002/9780470191736

C. M. Krowne and Y. Zhang, Physics of Negative Refraction and Negative Index Materials: Optical and Electronic Aspects and Diversified Approaches, 2007.
DOI : 10.1007/978-3-540-72132-1

N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, 2006.

G. V. Eleftheriades and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, 2005.
DOI : 10.1002/0471744751

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 2005.
DOI : 10.1002/0471754323

F. Capolino, Theory and Phenomena of Metamaterial, 2009.
DOI : 10.1201/9781420054262

J. C. Bose, On the Rotation of Plane of Polarisation of Electric Waves by a Twisted Structure, Proceedings of the Royal Society of London (1854-1905), vol.63, issue.1, pp.146-152, 1898.
DOI : 10.1098/rspl.1898.0019

H. Lamp, On Group - Velocity, Proc. London Math. Soc. 1, pp.473-479, 1904.
DOI : 10.1112/plms/s2-1.1.473

V. G. Veselago, THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND ??, Soviet Physics Uspekhi, vol.10, issue.4, pp.509-514, 1968.
DOI : 10.1070/PU1968v010n04ABEH003699

W. Kock, Metallic Delay Lenses, Bell System Technical Journal, vol.27, issue.1, pp.58-82, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01331.x

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters, vol.84, issue.18, pp.4184-4187, 2000.
DOI : 10.1103/PhysRevLett.84.4184

J. B. Pendry, Extremely Low Frequency Plasmons in Metallic Mesostructures, Physical Review Letters, vol.76, issue.25, pp.4773-4776, 1996.
DOI : 10.1103/PhysRevLett.76.4773

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, vol.85, issue.18, pp.3966-3969, 2000.
DOI : 10.1103/PhysRevLett.85.3966

J. A. Kong, Theorems of bianisotropic media, Proceedings of the IEEE, vol.60, issue.9, pp.1036-1046, 1972.
DOI : 10.1109/PROC.1972.8851

A. Sihvola, Metamaterials in electromagnetics, Metamaterials, vol.1, issue.1, pp.2-11, 2007.
DOI : 10.1016/j.metmat.2007.02.003

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Direct calculation of permeability and permittivity for a left-handed metamaterial, Applied Physics Letters, vol.77, issue.14, pp.2246-2248, 2000.
DOI : 10.1063/1.1314884

E. Yablonovitch, T. Gmitter, and K. Leung, Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Physical Review Letters, vol.67, issue.17, pp.2295-2298, 1991.
DOI : 10.1103/PhysRevLett.67.2295

H. Boutayeb, T. A. Denidni, K. Mahdjoubi, A. Tarot, A. Sebak et al., Analysis and Design of a Cylindrical EBG-Based Directive Antenna, IEEE Transactions on Antennas and Propagation, vol.54, issue.1, pp.211-219, 2006.
DOI : 10.1109/TAP.2005.861560

URL : https://hal.archives-ouvertes.fr/hal-00133701

Y. Zhao, Y. Hao, and C. G. Parini, Radiation properties of PIFA on electromagnetic bandgap substrates, Microwave and Optical Technology Letters, vol.52, issue.1, pp.21-24, 2005.
DOI : 10.1002/mop.20535

L. Damaj, A. C. Lepage, and X. Begaud, Low profile, directive and very wideband antenna on a high impedance surface, Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) 2010, pp.1-5, 2010.

D. Rittenhouse, An optical problem, proposed by Mr. Hopkinson, and solved by Mr

T. K. Wu, Frequency Selective Surfaces and Grid Array, 1995.

B. A. Munk, Frequency Selective Surfaces: Theory and Design, 2000.
DOI : 10.1002/0471723770

T. Cwik, R. Mittra, K. Lang, T. Wu, and T. , Frequency selective screens, IEEE Antennas and Propagation Society Newsletter, vol.29, issue.2, pp.5-10, 1987.
DOI : 10.1109/MAP.1987.27905

R. M. Cruz, P. H. Silva, and A. G. , Neuromodeling stop band properties of Koch Island patch elements for FSS filter design Microwave and Optical Technology Letters, pp.51-3014, 2009.

S. Lee, G. Zarrillo, and C. Law, Simple Formulas for Transmission Through Periodic Metal Grids or Plates, IEEE Trans. Ant. Prop, vol.30, pp.904-909, 1982.

F. T. Ulaby, Fundamentals of Applied Electromagnetics, 2001.

B. A. Munk, Finite Antenna Arrays and FSS, 2003.
DOI : 10.1002/0471457531

. Vittoria, Tunable NIM using yttrium iron garnet, Jour. of Magnetism and Magnetic Mat, vol.313, issue.1, pp.187-191, 2007.

A. Alù and E. Nader, Evanescent Growth and Tunneling Through Stacks of Frequency-Selective Surfaces, Antennas and Wireless Propagation Letters, vol.4, issue.1, pp.417-420, 2005.
DOI : 10.1109/LAWP.2005.859381

D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2059-2074, 1999.
DOI : 10.1109/22.798001

J. R. Sohn, K. Y. Kim, H. Tae, and H. J. Lee, COMPARATIVE STUDY ON VARIOUS ARTFICIAL MAGNETIC CONDUCTORS FOR LOW-PROFILE ANTENNA, Progress In Electromagnetics Research, vol.61, pp.27-37, 2006.
DOI : 10.2528/PIER06011701

Y. E. Erdemli, K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, Frequency- Selective Surfaces to Enhance Performance of Broad-Band Reconfigurable Arrays " Antennas and Propagation, IEEE Transactions on, pp.1716-1724, 2002.

J. D. Shumpert, W. J. Chappell, and L. P. Katehi, Parallel-plate mode reduction in conductor-backed slots using electromagnetic band gap substrates, IEEE Trans

U. Yeo and D. Kim, Novel Design of a High-gain and Wideband Fabry-P??rot Cavity Antenna Using a Tapered AMC Substrate, Journal of Infrared, Millimeter, and Terahertz Waves, vol.50, issue.3, 2008.
DOI : 10.1007/s10762-008-9451-9

G. Gampala and A. B. Yakovlev, Wideband high impedance surface for X-band antenna applications, 2007 IEEE Antennas and Propagation International Symposium, pp.1329-1332, 2007.
DOI : 10.1109/APS.2007.4395748

S. Maci and P. S. , Hard and soft Gangbuster surfaces, Proc. URSI International Symposium Electromagnetic Theory, pp.290-292, 2004.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab, IEEE Transactions on Antennas and Propagation, vol.53, issue.1, pp.70-81, 2005.
DOI : 10.1109/TAP.2004.840520

G. Goussetis, Y. Guo, A. P. Feresidis, and J. C. Vardaxoglou, Miniaturized and multiband artificial magnetic conductors and electromagnetic band gap surfaces, IEEE Antennas Propagation Society Int. Symp, vol.1, pp.20-25, 2004.

M. Hiranandani, A. B. Yakovlev, and A. A. Kishk, Artificial magnetic conductors realized by frequency selective surfaces on a grounded dielectric slab for antenna applications, IEEE Proceedings Microwave Antennas Propagation, pp.487-493, 2006.

A. A. Kalteh, R. Fallahi, and M. G. Roozbahani, A novel microstrip-fed UWB circular slot antenna with 5-GHz band-notch characteristics, 2008 IEEE International Conference on Ultra-Wideband, pp.117-120, 2008.
DOI : 10.1109/ICUWB.2008.4653298

M. Ojaroudi, G. Ghanbari, N. Ojaroudi, and C. Ghobadi, Small Square Monopole Antenna for UWB Applications With Variable Frequency Band-Notch Function, IEEE Antennas and Wireless Propagation Letters, vol.8, 2009.
DOI : 10.1109/LAWP.2009.2030697

X. Begaud, Ultra wideband wide slot antenna with band-rejection characteristics, Proceedings of the First European Conference on Antennas and Propagation (EuCAP) 2010, pp.1-6, 2006.

H. W. Liu, C. H. Ku, T. S. Wang, and C. F. Yang, Compact monopole antenna with band-notched characteristic for UWB applications, IEEE Antennas and Wireless Propagation Letters, vol.9, 2010.

R. F. Ahamadi and . Dana, A miniaturized monopole antenna for ultra-wideband applications with band-notch filter, IET Microwave antennas Propagations, pp.1224-1231, 2009.

W. T. Lo, X. W. Shi, and Y. Hei, Novel Planar UWB Monopole Antenna With Triple Band-Notched Characteristics, IEEE Ant. And Wire. Prop. Letters, vol.8, pp.1094-1098, 2009.

L. Zhu, S. Sun, and W. Menzel, Ultra-wideband (UWB) bandpass filters using multiple-mode resonator, IEEE Microwave Wireless Compon Lett, vol.11, pp.796-798, 2005.

C. Y. Hung, M. H. Weng, Y. K. Su, R. Y. Yang, and H. W. Wu, Design of compact and sharp rejection UWB BPFs using interdigital stepped impedance resonators, IEICE Electron Lett, vol.1, pp.1652-1654, 2007.

K. G. Thomas and N. Lenin, Ultra wideband printed monopole antenna, Microwave and Optical Technology Letters, vol.150, issue.5, pp.1082-1084, 2007.
DOI : 10.1002/mop.22343

C. H. Hsu, Planar multilateral disc monopole antenna for UWB application, Microwave and Optical Technology Letters, vol.27, issue.5, pp.1101-1103, 2007.
DOI : 10.1002/mop.22353

K. Siwiak and D. Mckeown, Ultra-wideband Radio Technology, 2004.
DOI : 10.1002/0470859334

B. Allen, M. Dohler, E. Okon, W. Malik, A. Brown et al., Ultra Wideband Antennas and Propagation for Communications, Radar and Imaging, 2006.

V. H. Rumsey, Frequency independent antennas, IRE International Convention Record, pp.251-259, 1957.
DOI : 10.1109/IRECON.1957.1150565

S. Uda and Y. Mushiake, The input impedances of slit antennas, Tech. Rep. of Tohoku Univ, vol.14, issue.1, pp.46-59, 1949.

W. Runge, Polarization diversity reception, U.S. Patent, vol.1892221, 1932.

C. A. Balanis, Antenna Theory: Analysis and Design, 2005.

J. A. Stratton, Electromagnetic Theory (IEEE Press Series on Electromagnetic Wave Theory, 2007.

J. B. Pendy, J. B. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2075-2084, 1999.
DOI : 10.1109/22.798002

R. Marqués, F. Mesa, J. Martel, and F. Medina, Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - Theory and experiments, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2572-2581, 2003.
DOI : 10.1109/TAP.2003.817562

H. G. Booker, Slot aerials and their relation to complementary wire aerials (Babinet's principle), Journal of the Institution of Electrical Engineers - Part IIIA: Radiolocation, vol.93, issue.4, pp.620-626, 1946.
DOI : 10.1049/ji-3a-1.1946.0150

G. A. Deschamps, Impedance properties of complementary multiterminal planar structures, IRE Transactions on Antennas and Propagation, vol.7, issue.5, pp.371-378, 1959.
DOI : 10.1109/TAP.1959.1144717

J. Laso, ?. García, I. García, M. F. Gil, M. Portillo et al., Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines, IEEE Trans. On Microw. Theory and Tech, vol.53, issue.4, pp.1451-1461, 2005.

D. B. Brito, X. Begaud, A. G. , and H. C. Fernandes, Ultra wideband monopole antenna with Split Ring Resonator for notching frequencies, EuCAP 2010. 4th European Conference on Antennas and Propagation, pp.1-5, 2010.

A. Thior, A. C. Lepage, and X. Begaud, Low profile, directive and ultra wideband antenna on a high impedance surface, EuCAP 2009. 3rd European Conference on Antennas and Propagation, pp.3222-3226, 2009.

P. Deo, A. Mehta, D. Mirshekar-syahkal, and H. Nakano, An HIS-Based Spiral Antenna for Pattern Reconfigurable Applications, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.196-199, 2009.
DOI : 10.1109/LAWP.2008.2010003

M. G. Floquet, Sur les equations différentielles Iinéaires a coefficients périodiques, Annale École Normale Superieur, pp.47-88, 1883.

A. Foroozesh and L. Shafai, Investigation Into the Effects of the Patch-Type FSS Superstrate on the High-Gain Cavity Resonance Antenna Design, IEEE Transactions on Antennas and Propagation, vol.58, issue.2, pp.258-270, 2009.
DOI : 10.1109/TAP.2009.2037702

Y. Ge and K. P. Esselle, Designing high gain microwave antennas by optimising a FSS superstrate, European Microwave Conference, pp.412-415, 2007.

F. Costa, E. Carrubba, A. Monorchio, and G. Manara, Multi-frequency highly directive Fabry-Perot based antenna, 2008 IEEE Antennas and Propagation Society International Symposium, pp.1-4, 2008.
DOI : 10.1109/APS.2008.4619442

J. Yeo and D. Kim, Novel Design of a High-gain and Wideband Fabry-P??rot Cavity Antenna Using a Tapered AMC Substrate, Journal of Infrared, Millimeter, and Terahertz Waves, vol.50, issue.3, pp.217-224, 2008.
DOI : 10.1007/s10762-008-9451-9

J. R. Kelly and A. P. Feresidis, Array Antenna With Increased Element Separation Based on a Fabry–PÉrot Resonant Cavity With AMC Walls, IEEE Transactions on Antennas and Propagation, vol.57, issue.3, pp.682-687, 2009.
DOI : 10.1109/TAP.2009.2013429

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent et al., A Metallic Fabry???Perot Directive Antenna, IEEE Transactions on Antennas and Propagation, vol.54, issue.1, pp.220-242, 2006.
DOI : 10.1109/TAP.2005.861578

J. S. Zheng1, L. X. Chen1, Y. G. Lu, and C. H. Liu, A High-gain Wideband Antenna with Double Fabry-perot Cavities, International Journal of Infrared and Millimeter Waves, vol.54, issue.9, pp.839-845, 2008.
DOI : 10.1007/s10762-008-9385-2

J. F. Mulligan, Who were Fabry and P??rot?, American Journal of Physics, vol.66, issue.9, p.797, 1998.
DOI : 10.1119/1.18960

A. Perot and C. Fabry, Sur les franges des lames minces argentées et leus application a la mesure de petites épasseur d'air, Ann. Chim. Phy, vol.12, p.459, 1987.

. Compréhension, La première antenne est présentée sur la figure suivante (démontée puis assemblée, Figure R15)

R. Figure and . Fabry, Pérot avec antenne patch carré : patch et HIS, FSS, puis antenne assemblée. Nous avons placé la FSS à une hauteur égale à ?0 / 2 pour atteindre la valeur maximale de directivité, où ?0 est la longueur d'onde en espace libre à la fréquence de fonctionnement de 12,95 GHz

. Db-en-moyenne, En suivant le même principe, l'antenne à fente en U a aussi été associé à une FSS pour construite une antenne FP (Figure R16)

R. ?. Figure, Antenne Fabry-Pérot avec antenne à fente en U : antenne à fente en U et HIS, FSS, puis antenne assemblée