
HAL Id: pastel-00756952
https://pastel.hal.science/pastel-00756952

Submitted on 24 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bisimulation Techniques and Algorithms for Concurrent
Constraint Programming

Andrés Aristizábal

To cite this version:
Andrés Aristizábal. Bisimulation Techniques and Algorithms for Concurrent Constraint Programming.
Other [cs.OH]. Ecole Polytechnique X, 2012. English. �NNT : �. �pastel-00756952�

https://pastel.hal.science/pastel-00756952
https://hal.archives-ouvertes.fr

ÉCOLE POLYTECHNIQUE

Thèse de Doctorat

Spécialité Informatique

BISIMULATION TECHNIQUES AND ALGORITHMS FOR

CONCURRENT CONSTRAINT PROGRAMMING

Présentée et soutenue publiquement par

ANDRÉS ALBERTO ARISTIZÁBAL PINZÓN

17 octobre 2012

devant le jury composé de

Rapporteurs: María ALPUENTE

Fabio GADDUCCI

Directeurs de thèse: Catuscia PALAMIDESSI

Frank D. VALENCIA

Examinateurs: Filippo BONCHI

Carlos AGÓN

François FAGES

Eva CRÜCK

To God and my beloved and supportive parents, Hersilia and Alvaro

Abstract

Concurrent constraint programming (ccp) is a well-established model for concur-

rency that builds upon operational and algebraic notions from process calculi and

first-order logic. It singles out the fundamental aspects of asynchronous systems

whose agents (or processes) evolve by posting and querying (partial) informa-

tion in a global medium. Bisimilarity is one of the central reasoning techniques in

concurrency. It is the main representative of the so called behavioral equivalences,

i.e., equivalence relations that determine when two processes (e.g., the specifica-

tion and the implementation) behave in the same way. The standard definition

of bisimilarity, however, is not completely satisfactory for ccp since it yields an

equivalence that is too fine grained.

By building upon recent foundational investigations, in this dissertation we

introduce a labeled transition semantics and a novel notion of bisimilarity that

is fully abstract wrt the typical observational equivalence in ccp. This way we

provide ccp with a new proof technique coherent with existing ones. Remarkably,

our co-inductive characterization of observation equivalence for ccp in terms of

bisimilarity avoids complicated concepts used in previous work such as fairness

and infinite computations.

When the state space of a system is finite, the ordinary notion of bisimilar-

ity can be computed via the well-known partition refinement algorithm, unfortu-

nately, this algorithm does not work for ccp bisimilarity. In this dissertation we

propose a variation of the standard partition refinement algorithm for verifying ccp

strong bisimilarity. To the best of our knowledge this is the first work providing

for the automatic verification of concurrent constraint programme.

Weak bisimiliarity is a central behavioural equivalence in process calculi and

it is obtained from the strong case by taking into account only the actions that are

i

ii

observable in the system. Typically, the standard partition refinement can also be

used for deciding weak bisimilarity simply by using Milner’s reduction from weak

to strong bisimilarity; a technique referred to as saturation. In this dissertation we

demonstrate that, because of its involved labeled transitions, the above-mentioned

saturation technique does not work for ccp. We give an alternative reduction from

weak ccp bisimilarity to the strong one that allows us to use the ccp partition

refinement algorithm that we introduced for deciding this equivalence.

Acknowledgments

First of all I want to express my deepest gratitude to my supervisors Frank D.

Valencia and Catuscia Palamidessi for their guidance, encouragement, dedication

and faith in my work. I am really indebted with them for inspiring me and for

enlightening my professional path through their hard work, dedication and enthu-

siasm for Computer Science. Right now, I can truly say that I have become a

better researcher and most relevantly, a better person. Certainly, I have nourished

myself from my two supervisors whom have always cared for me in any aspect of

my life, always guiding me into the right direction and giving me one of the best

environments any student could ever desire. I hope, one day, I can be just like

them, professionally and personally.

Special thanks to Camilo Rueda, the person that lighted in me the torch of

research in theoretical computer science. The first one that believed in my abil-

ities, giving me the opportunity to make my first steps in research, in our group,

AVISPA. Also my thanks to the members of this group and specially to Carlos

Olarte, for all the invaluable help he gave me during my studies.

I also owe a lot to my mentor and friend Filippo Bonchi who believed in me

more than myself, who placed me on the right track regarding my research work

with his brilliant ideas, his excellent advices and his motivation. Although he only

stayed for 6 months at LIX, he still worked with me during the remaining 2 years

and a half of my PhD studies, teaching me a great variety of things and as I have

already stated, providing me with the basics and guidances for this dissertation to

be successfully concluded.

My gratitude also goes to Luis Pino a colleague and great friend at LIX who

worked side by side with me during most of my studies.

Thanks to the DGA and the CNRS for funding my doctoral studies and to

iii

iv

INRIA and the Laboratoire d’Informatique de l’École Polytechnique for allowing

me to develop my PhD thesis there.

Many thanks to Alejandro Arbeláez, Filippo Bonchi, Sophia Knight, Jorge A.

Pérez and Luis Pino to proofread some of the chapters of this dissertation. I am

also grateful to María Alpuente, Fabio Gadducci, François Fages, Filippo Bonchi,

Carlos Agón and Eva Crück to be part of my jury.

I also want to thank my colleagues and friends at LIX, Miguel, Nico, Kostas,

Ehab, Sophia, Matteo, Luis, Hamadou, Marco and Lili. My gratitude also goes

to Marie-Jeanne Gaffard (thanks indeed for all your help, understanding and ad-

vices), Christelle Lievin, Valérie Lecompte, Valérie Berthou, Audrey Lemarechal,

Christine Ferret, Lydie Fontaine, Docteur Martine Bettane-Caperan, Anne De-

laigue and Alexandra Bélus.

I want express my affection to my friends around the world: María del Mar

Caldas, Gloria Correa, Alejandro Arbeláez, Vero Giraldo, Conie Medina, Lina

Palacio, Jorge A. Pérez, Fernando Matiz, Anita Serrano, Ferenc Figueroa, Paola

Bianchi, Kate Puzakova, Dasha Kovaleva, Magda Olesińska, Alexandra Silva,

Viktoria Nasyrova, Kat, Lara, Luis Alfredo Céspedes, Jérémy Dubreil, Andrea

Mairone, Justin Dean, Lorena Montes and many others.

I am grateful to the group of ex-magistrates and all my relatives for giving

me their support and love in one way or the other. Elenita and Beatriz Elena,

you mean a lot to me, I am lucky to have you as my aunt and cousin. Alejandro

Almario, you were a second father to me, your memory will not vanish from my

heart.

I will never forget those families that took me as one of them. Thanks a lot to

Sara, Felipe and Frank, and Madame Passani and her friends.

I am deeply indebted with people such as Blanca Estelia, Jaime, my dad’s

nurses and therapists, etc.

Comète team, what can I say?, I will remember all the parties, games, meet-

ings, chats, trips, even the sleepless nights working. Those memories will never

be erased, this group will be forever in my heart.

I have no words to describe the last months of my PhD, I have been through

really tough but enriching times. I have grown as a person. I have found my true

friends. But mainly I thank God for finding my girlfriend Krystyna Węgrzyniak,

v

she has supported and helped me during the most difficult times. Thanks for loving

and pampering me during my personal problems and the last and most stressful

phase of my studies.

Last but not least, I thank God, my mother and father from the bottom of my

heart. Without them my goals would have never been fulfilled. My appropriate

gratitude to my father, Alvaro Aristizábal, a real fighter of life, who taught me

how to behave myself and gave me his constant support. To my mother, Hersilia

Pinzón, my deepest appreciation for her love, help, understanding, tenderness, for

her advices and obviously for her hard work carrying me through almost all life.

All in all, my parents deserve this PhD title as much or even more than I do.

Andrés A. Aristizábal P.

September the 23rd, 2012

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Bisimilarity for CCP . 2

1.2 Labeled Semantics . 3

1.3 Algorithms . 4

1.4 From Weak to Strong Bisimilarity 6

1.5 Summary of Contributions and Organization 7

1.6 Publications from this Dissertation 9

2 Deriving Labels and Bisimilarity for CCP 11

2.1 Background . 12

2.1.1 Constraint Systems . 12

2.1.2 Syntax . 17

2.1.3 Reduction Semantics . 18

2.1.4 Observational Equivalence 21

2.2 Saturated Bisimilarity for CCP 22

2.2.1 Saturated Barbed Bisimilarity 22

2.2.2 Correspondence with Observational Equivalence 25

2.3 Labeled Semantics . 27

2.4 Strong and Weak Bisimilarity . 34

2.5 Summary of Contributions and Related Work 42

vi

CONTENTS vii

3 Partition Refinement for Bisimilarity in CCP 43

3.1 Background . 44

3.1.1 Partition Refinement . 44

3.2 Irredundant Bisimilarity . 46

3.2.1 Reduction Semantics for Non-deterministic CCP 46

3.2.2 Labeled Semantics for Non-deterministic CCP 46

3.2.3 Saturated Bisimilarity in a Non-deterministic CCP Fragment 47

3.2.4 Soundness and Completeness 48

3.2.5 Syntactic Bisimilarity and Redundancy 49

3.2.6 Symbolic and Irredundant Bisimilarity 56

3.3 Partition Refinement for CCP . 64

3.3.1 Termination . 67

3.3.2 Complexity of the Algorithm 68

3.4 Summary of Contributions and Related Work 71

4 Reducing Weak to Strong Bisimilarity in CCP 73

4.1 Background . 74

4.1.1 Reducing Weak to Strong Bisimilarity 74

4.2 Defining a New Saturation Method for CCP 81

4.2.1 A New Saturation Method 81

4.2.2 A Remark about our Saturation in CCS 84

4.2.3 Soundness and Completeness 86

4.3 Correspondence between ≈̇sb, ∼̇sym, ∼̇I 88

4.4 Algorithm for the Weak Notion of the CCP Partition Refinement

Algorithm . 90

4.5 Summary of Contributions and Related Work 92

5 Conclusions 93

A Implementation and Experiments for the CCP Partition Refinement 96

A.1 Programming Language . 97

A.2 Abstract Data Types . 97

A.2.1 Implementation Layout 98

A.2.2 Layout of the Automaton 98

CONTENTS viii

A.2.3 Layout of the Redundant Class 98

A.2.4 Layout of a Tool to Verify Bisimilarity in CCP 99

A.3 Procedures and Functions . 101

A.3.1 Calculating Irredundancy 101

A.3.2 Strong Prerefinement . 102

A.3.3 Weak Prerefinement . 104

A.3.4 Final Algorithm . 105

A.3.5 Final Strong Algorithm 108

A.3.6 Saturation . 108

A.3.7 Final Weak Algorithm 110

A.4 Results and Examples . 110

A.4.1 Transitions/Nodes . 111

A.4.2 Percentage of Same Labels 115

A.4.3 Percentage of Configurations Satisfying the Same Barb . . 119

A.4.4 Percentage of Dominated Transitions 123

A.4.5 Time vs Branches . 127

A.5 Summary of Contributions and Related Work 130

List of Tables

2.1 Reduction Semantics for CCP 20

2.2 Labeled Transitions. 29

4.1 Milner’s Saturation Method . 76

4.2 New Labeled Transition System. 81

4.3 New Labeled Transition System for CCS. 85

A.1 Time vs. Transitions/Nodes . 113

A.2 Time vs % of Same Labels . 118

A.3 Time vs % of Configurations Satisfying the Same Barb 122

A.4 Time vs % of Dominated Transitions 126

A.5 Time vs Branches . 129

ix

List of Figures

2.1 The Herbrand Constraint Lattice for x, y, a, b. 13

2.2 The Cylindric Herbrand Constraint System for x, a and f 15

2.3 Strong Bisimulation for Example 2.4.1 36

2.4 Weak Bisimulation for Example 2.4.2 37

3.1 The Labeled Transition System of a Running Example. 51

3.2 Partitions Computed by the CCP-Partition-Refinement Algorithm. 52

3.3 Symbolic Bisimulation for Example 3.2.4 57

3.4 CCP Partition Refinement . 65

3.5 Transitions for sn(0, 0) as in Definition 3.3.2. 71

4.1 Counterexample for Completeness using Milner’s Sat. Method. . . 78

4.2 Transitions from 〈P, true〉 and 〈Q, true〉 80

4.3 Saturated Transitions from 〈P, true〉 and 〈Q, true〉. 80

4.4 CCS Process P = a.P (finitely branching). 86

4.5 Saturated CCS Process P = a.P (infinitely branching). 86

4.6 CCP-Weak Partition Refinement 91

A.1 A Design of an Automaton Class 98

A.2 A Design of a Redundant Class 99

A.3 Layout of a Tool to Verify Strong Bisimilarity in CCP 100

A.4 Layout of a Tool to Verify Weak Bisimilarity in CCP 101

A.5 Example 1 Transitions/Nodes . 111

A.6 Example 2 Transitions/Nodes . 112

A.7 Time vs. Transitions . 114

x

LIST OF FIGURES xi

A.8 Time vs. Nodes . 115

A.9 Example 1 % of Same Labels . 116

A.10 Example 2 % of Same Labels . 117

A.11 Time vs Percentage of Same Labels 119

A.12 Example 1 % of Configurations Satisfying the Same Barb 120

A.13 Example 2 % of Configurations Satisfying the Same Barb 121

A.14 Time vs Percentage of Configs. Sat. Same Barbs 123

A.15 Example 1 % of Dominated Transitions 124

A.16 Example 2 % of Dominated Transitions 125

A.17 Time vs Percentage Dominated Transitions 127

A.18 Saturated Example 1 Branches 128

A.19 Saturated Example 2 Branches 128

A.20 Time vs Branches . 129

Chapter 1

Introduction

An ounce of practice is worth more than tons of preaching.

– Mahatma Gandhi.

If I can introduce someone to something new, as is constantly

happening to me, then I am elated.

– Trevor Dunn.

Concurrent constraint programming (ccp) [SR90] is a model for concurrency

that combines operational and algebraic notions from process calculi and first-

order logic. It was designed to give programmers explicit access to the concept

of partial information. A distinctive aspect of ccp is that, unlike other process

calculi, is not concerned about point-to-point channel communication but rather

about systems of agents posting and querying information (traditionally referred

to as constraints) in some medium.

This dissertation is devoted to the development of a co-inductive reasoning

technique, namely bisimilarity, for ccp. We shall demonstrate that the distinctive

nature of ccp makes this development a non-trivial, novel and relevant task for the

modelling of concurrent systems. In the following chapters we shall present the

foundations of ccp bisimilarity as well as the techniques and algorithms to decide

this relation. In what follows we motivate and briefly describe the contributions

of this work.

1

1.1. BISIMILARITY FOR CCP 2

1.1 Bisimilarity for CCP

Concurrency is concerned with the fundamental aspects of systems of multiple

computing agents, usually called processes, that interact with each other. Proc-

ess calculi treat processes much like the λ-calculus treats computable functions.

They provide a language in which processes are represented by terms, and com-

putational steps are represented as transitions between them.

Co-induction [JR97, San09, San11] is the most natural and powerful approach

to define and reason about infinite or circular structures and computations, bring-

ing in tools and methods that are dual and complementary to those of induc-

tion. In particular, coinduction is central in concurrency, where processes are

naturally seen as entities that continuously interact with their environment. Co-

induction, in the form of bisimulation, is used to define equality between proc-

esses, and the coinduction proof method, in the form of the bisimulation proof

method, is employed to prove such equalities. The largest bisimulation, bisim-

ilarity [Mil80, Mil99], captures an intuitive notion of process equivalence; two

processes are equivalent if they can match each other’s moves.

Concurrent Constraint Programming (ccp) [SR90] is a well-established for-

malism that combines the traditional algebraic and operational view of process

calculi with a declarative one based upon first-order logic. In ccp, processes in-

teract by posting (or telling) and asking information (traditionally referred to as

constraints) in a medium (referred to as the store). Ccp is parametric in a cons-

traint system indicating interdependencies (entailment) between constraints and

providing for the specification of data types and other rich structures. The above

features have recently attracted a renewed attention as witnessed by the works

[PSVV06, BM08, BJPV09, BZ10] on calculi exhibiting data-types, logic asser-

tions as well as tell and ask operations.

Surprisingly, the development of co-inductive techniques, in particular, of

bisimulation for ccp has been so far too little considered. There have been few

attempts to define a notion of bisimilarity for ccp. The ones we are aware of are

those in [SR90] and [MPSS95] upon which we build. These equivalences are not

completely satisfactory: We shall demonstrate in this thesis that the first one may

tell apart processes with identical observable behavior, while the second quantifies

1.2. LABELED SEMANTICS 3

over all possible inputs from the environment, and hence it is not clear whether it

can lead to a feasible proof technique.

In this dissertation we shall introduce a notion of bisimilarity for ccp that al-

lows us to benefit of the feasible proof and verification techniques typically asso-

ciated with bisimilarity. Furthermore, we aim at studying the relationship between

this equivalence and other existing semantic notions for ccp. In particular, its el-

egant denotational characterization based on closure operators [SRP91] and the

connection with logic [MPSS95].

1.2 Labeled Semantics

Bisimilarity relies on labeled transitions: each evolution step of a system is tagged

by some information aimed at capturing the possible interactions of a process with

the environment. Nowadays process calculi tend to adopt reduction semantics

based on unlabeled transitions and barbed congruence [MS92a]. The main draw-

back of this approach is that to verify barbed congruences it is often necessary to

analyze the behavior of processes under every context.

This scenario has motivated a novel stream of research [Sew98, LM00, EK04,

SS05, BKM06, RS08, GHL08, BGM09] aimed at defining techniques for “deriv-

ing labels and bisimilarity” from unlabeled reduction semantics. The main intu-

ition is that labels should represent the “minimal contexts allowing a process to

reduce”. The theory of reactive systems by Leifer and Milner [LM00] provides a

formal characterization (by means of a categorical construction) of such “minimal

contexts” and it focuses on the bisimilarity over transition systems labeled as:

P
C

−→ P ′ iff C[P] −→ P ′

where C is the minimal context allowing such reduction.

In [BKM06, BGM09], it is argued that the above bisimilarity is often too fine

grained and an alternative, coarser, notion of bisimilarity is provided. Intuitively

in the bisimulation game each move (transition) P
C

−→ P ′ has to be matched with

a move C[Q] −→ Q′, where C[−] is not necessarily the minimal.

1.3. ALGORITHMS 4

Labeled Semantics for ccp. The operational semantics of ccp is expressed by

reductions between configurations of the form

〈P, d〉 −→ 〈P ′, d′〉

meaning that the process P with store d may reduce to P ′ with store d′. From

this semantics we shall derive a labeled transition system for ccp by exploiting the

intuition of [Sew98, LM00]. The transition

〈P, d〉
e

−→ 〈P ′, d′〉

means that e is a “minimal constraint” (from the environment) that needs to be

added to d to reduce from 〈P, d〉 into 〈P ′, d′〉.

Similar ideas were already proposed in [SR90], but the recent developments in

[BGM09] enlighten the way for obtaining a fully abstract equivalence. Indeed, the

standard notion of bisimilarity defined on our labeled semantics can be seen as an

instance of the one proposed in [LM00]. As for the bisimilarity in [SR90], it is too

fine grained, i.e., it separates processes which are behaviorally indistinguishable.

Instead, the notion of bisimulation from [BGM09] (instantiated to the case of

ccp) is fully abstract with respect to the standard observational equivalence given

in [SRP91]. Our work can therefore be also regarded as a compelling application

of the theory of reactive systems.

1.3 Algorithms

A fundamental issue in concurrency concerns the analysis techniques. That is,

methods and tools to decide equivalence between behaviours, or more generally

to prove behavioural properties of a concurrent system. The tractability of a tech-

nique is important: we need techniques which make proofs shorter, and reduce

the number of cases to be examined when analysing a behaviour. Tools may be

derived out of the techniques, to permit automatic or semi-automatic analysis.

Many efficient algorithms and tools for bisimilarity checking have been devel-

oped [VM94, Fer89, FGM+98]. Among these, the partition refinement algorithm

1.3. ALGORITHMS 5

[KS83] is the best known: first it generates the state space of a labeled transi-

tion system (LTS), i.e., the set of states reachable through the transitions; then, it

creates a partition equating all states and afterwards, iteratively, refines these par-

titions by splitting non equivalent states. At the end, the resulting partition equates

all and only bisimilar states.

The ccp formalism has been widely investigated and tested in terms of the-

oretical studies and the implementation of several ccp programming languages.

From the applied computing point of view, however, ccp lacks algorithms and

tools to automatically verify program equivalence. Furthermore, the absence of

a well-behaved notion of bisimilarity for ccp made the development of tools for

automatic verification in ccp somewhat a pointless effort. Therefore, after intro-

ducing a suitable definition of bisimilarity for ccp, we shall give the first step

towards automatic verification of ccp program equivalences by presenting an al-

gorithm based on an alternative notion of bisimilarity, namely saturated barbed

bisimilarity (∼̇sb) for ccp.

Two configurations are equivalent according to ∼̇sb if (i) they have the same

store, (ii) their transitions go into equivalent states and (iii) they are still equivalent

when adding an arbitrary constraint to the store. We shall also prove that the

weak variant of ∼̇sb is shown to be fully abstract w.r.t. the standard observational

equivalence of [SRP91].

Unfortunately, the standard partition refinement algorithm does not work for

∼̇sb because condition (iii) requires to check all possible constraints that might

be added to the store. In this dissertation we shall introduce a modified partition

refinement algorithm for ∼̇sb.

We closely follow the approach in [BM09] that studies the notion of saturated

bisimilarity from a more general perspective and proposes an abstract checking

procedure. We first define a derivation relation ⊢D amongst the transitions of

ccp processes: γ
α1−→ γ1 ⊢D γ

α2−→ γ2 which intuitively means that the latter

transition is a logical consequence of the former. Then we introduce the notion

of domination (≻D), which means that if there exist two transitions γ
α1−→ γ1

and γ
α2−→ γ2, γ

α1−→ γ1 ≻D γ
α2−→ γ′2 if and only if γ

α1−→ γ1 ⊢D γ
α2−→ γ′2

and α1 6= α2. Finally we give the definition of a redundant transition. Intuitively

γ
α2−→ γ2 is redundant if γ

α1−→ γ1 dominates it, that is γ
α1−→ γ1 ≻D γ

α2−→ γ′2 and

1.4. FROM WEAK TO STRONG BISIMILARITY 6

γ2 ∼̇sb γ
′
2. Now, if we consider the LTS having only non-redundant transitions,

the ordinary notion of bisimilarity coincides with ∼̇sb. Thus, in principle, we

could remove all the redundant transitions and then check bisimilarity with the

standard partition refinement algorithm. But how can we decide which transitions

are redundant, if redundancy itself depends on ∼̇sb ?

Our solution consists in computing ∼̇sb and redundancy at the same time. In

the first step, the algorithm considers all the states as equivalent and all the tran-

sitions (potentially redundant) as redundant. At any iteration, states are discerned

according to (the current estimation of) non-redundant transitions and then non-

redundant transitions are updated according to the new computed partition.

A distinctive aspect of our algorithm is that in the initial partition we insert

not only the reachable states, but also extra ones which are needed to check for

redundancy. We prove that these additional states are finitely many and thus the

termination of the algorithm is guaranteed whenever the original LTS is finite (as

it is the case of the standard partition refinement). Unfortunately, the number of

these states might be exponential w.r.t. the size of the original LTS, consequently

the worst-case running time is exponential.

1.4 From Weak to Strong Bisimilarity

A major dichotomy among behavioural equivalences concerns strong and weak

equivalences. In strong equivalences, all the transitions performed by a system

are deemed observable. In weak equivalences, instead, internal transitions (usu-

ally denoted by τ) are unobservable. On the one hand, weak equivalences are

more abstract (and thus closer to the intuitive notion of behaviour); on the other

hand, strong equivalences are usually much easier to be checked (for instance, in

[LPSS11] it is introduced a strong equivalence which is computable for a Turing

complete formalism).

In Section 1.3 we develop a partition refinement algorithm to verify strong

bisimilarity for ccp.

Weak bisimilarity can be computed by reducing it to strong bisimilarity. Given

1.5. SUMMARY OF CONTRIBUTIONS AND ORGANIZATION 7

an LTS
a

−→, one can build
a

=⇒ as follows.

P
a

−→ Q

P
a

=⇒ Q P
τ

=⇒ P

P
τ

=⇒ P1
a

=⇒ Q1
τ

=⇒ Q

P
a

=⇒ Q

Since weak bisimilarity on
a

−→ coincides with strong bisimilarity on
a

=⇒, then

one can check weak bisimilarity with the algorithms for strong bisimilarity on the

new LTS
a

=⇒.

Nevertheless, this standard reduction method cannot entirely be regarded as

the general solution since it works with labels resembling actions, but not, as in

the case of ccp, as constraints.

1.5 Summary of Contributions and Organization

Here we briefly describe the structure of this dissertation and its contributions.

Each chapter begins with a brief introduction and relevant background and ends

with a summary of its contents and a discussion about its related work. Frequently

used notational conventions and terminology are summarized in the Index.

Chapter 2 (Deriving Labels and Bisimilarity for CCP) In this chapter we

provide a labeled transition semantics and a novel notion of labeled bisimilar-

ity for ccp by building upon the work in [SR90, BGM09]. We also establish

a strong correspondence with existing ccp notions by providing a fully-abstract

characterization of a standard observable behavior for infinite ccp processes (the

limits of fair, possibly infinite, computations). Remarkably, complex notions such

as fairness and infinite computations are avoided in our characterization of the

observable behavior via bisimilarity. From [SRP91] this implies a fully-abstract

correspondence with the closure operator denotational semantics of ccp. There-

fore, this work provides ccp with a new co-inductive proof technique, coherent

with the existing ones, for reasoning about process equivalence.

1.5. SUMMARY OF CONTRIBUTIONS AND ORGANIZATION 8

Chapter 3 (Partition Refinement for Bisimilarity in CCP) In this chapter we

provide an algorithm that allows us to verify saturated barbed bisimilarity for

ccp. To the best of our knowledge, this is the first algorithm for the automatic

verification of ccp program equivalence. This is done by building upon the re-

sults of [BM09]. We also show the termination and the complexity of the algo-

rithm. We have implemented the algorithm in c++ and the code is available at

http://www.lix.polytechnique.fr/~andresaristi/strong/.

Chapter 4 (Reducing Weak to Strong Bisimilarity in CCP) In this chapter

we first show that the standard method for reducing weak to strong bisimilarity

does not work for ccp and then we provide a way out of the impasse. Our solution

can be readily explained by observing that the labels in the LTS of a ccp agent

are constraints (actually, they are “the minimal constraints” that the store should

satisfy in order to make the agent progress). These constraints form a lattice where

the least upper bound (denoted by ⊔) intuitively corresponds to conjunction and

the bottom element is the constraint true. (As expected, transitions labeled by

true are internal transitions, corresponding to the τ moves in standard process

calculi.) Now, rather than closing the transitions just with respect to true, we

need to close them w.r.t. all the constraints. Formally we build the new LTS with

the following rules.

P
a

−→ Q

P
a

=⇒ Q P
true
=⇒ P

P
a

=⇒ Q
b

=⇒ R

P
a⊔b
=⇒ R

Note that, since ⊔ is idempotent, if the original LTS
a

−→ has finitely many transi-

tions, then also
a

=⇒ is finite. This allows us to use the algorithm in [ABPV12a] to

check weak bisimilarity on (the finite fragment) of concurrent constraint program-

ming. We have implemented this procedure in a tool that is available at http://

www.lix.polytechnique.fr/~andresaristi/checkers/. At the

best of our knowledge, this is the first tool for checking weak equivalence of ccp

programs.

http://www.lix.polytechnique.fr/~andresaristi/strong/
http://www.lix.polytechnique.fr/~andresaristi/checkers/
http://www.lix.polytechnique.fr/~andresaristi/checkers/

1.6. PUBLICATIONS FROM THIS DISSERTATION 9

Chapter 5 (Conclusions) This Chapter offers some concluding remarks, dis-

cusses related works, and proposes some future work.

Appendix (A Tool for Verifying Bisimilarity in CCP) In the appendix we briefly

describe a tool for verifying strong and weak bisimilarity for ccp using as a ba-

sis all the theoretical knowledge we gathered. We highlight the importance of the

selected programming language, the abstract data types used to represent the com-

ponents to implement the partition refinement algorithm for ccp, the analysis of

the auxiliary functions or procedures, a study of several graphs that can show the

relation between the way a ccp process is composed, and how much time it takes

for the algorithm to give an answer regarding the strong or the weak bisimilarity.

1.6 Publications from this Dissertation

Most of the material of this dissertation has been previously reported in the fol-

lowing papers.

• Proceedings of conferences.

– Andres Aristizabal, Filippo Bonchi, Luis Pino and Frank D. Valencia.

Partition Refinement for Bisimilarity in CCP. In Proc of SAC 2012:

88-93. ACM Press. 2012 [ABPV12b].

The main contributions of this paper are included in Chapter 3 and

4, and Appendix A.

– Andres Aristizabal, Filippo Bonchi, Catuscia Palamidessi, Luis Pino

and Frank D. Valencia. Deriving Labels and Bisimilarity for Concur-

rent Constraint Programming. In Proc of FOSSACS 2011: 138-152.

Springer 2011 [ABP+11b].

The main contributions of this paper are included in Chapter 2.

1.6. PUBLICATIONS FROM THIS DISSERTATION 10

• Proceedings of Workshops.

– Andres Aristizabal, Filippo Bonchi, Luis Pino and Frank D. Valencia.

Reducing Weak to Strong Bisimilarity in CCP. In Proc of ICE 2012

[ABPV12c].

The main contributions of this paper are included in Chapter 4 and

Appendix A.

• Short Papers.

– Andres Aristizabal. Bisimilarity in Concurrent Constraint Program-

ming. (Short Paper) In Proceedings ICLP 2010. Springer, 2010. [Ari10a]

– Andres Aristizabal. Bisimilarity in Concurrent Constraint Program-

ming. (Short Paper) YR-CONCUR 2010, a satellite workshop of CON-

CUR 2010. [Ari10b].

• Technical Reports.

– Andres Aristizabal, Filippo Bonchi, Luis Pino and Frank D. Valen-

cia. Partition Refinement for Bisimilarity in CCP (Extended Version).

Technical Report. INRIA-CNRS, 2012 [ABPV12a].

– Andres Aristizabal, Filippo Bonchi, Catuscia Palamidessi, Luis Pino

and Frank D. Valencia. Deriving Labels and Bisimilarity for Concur-

rent Constraint Programming (Extended Version). Technical Report.

INRIA-CNRS, 2011 [ABP+11a].

Chapter 2

Deriving Labels and Bisimilarity for

CCP

Labeled semantics does two things: it gives the semantics of the raw

processes, the computational steps and it helps you reason about the

congruences. Reduction semantics just does the first thing and then

you have some horrid rules about congruences and you need some

nice tools to reason about this.

– Martin Berger.

In this chapter we introduce a labeled semantics for ccp [SR90] and a well-

behaved equivalence for this language, namely, a new coarse grained bisimilarity

notion for ccp. We begin by presenting the notion of constraint systems (cs), then

we show the basic insights of ccp by recalling its syntax, its operational semantics

and its observational equivalence. We show that the only existing notion of stan-

dard bisimilarity for ccp, one of the central reasoning techniques in concurrency,

is not completely satisfactory for ccp since it yields an equivalence that is too fine

grained. Therefore, by building upon recent foundational investigations, we give

a labeled transition semantics and a novel notion of bisimilarity that is fully ab-

stract w.r.t. the typical observational equivalence in ccp. This way we are able to

provide ccp with a new proof technique coherent with the existing ones.

11

2.1. BACKGROUND 12

2.1 Background

2.1.1 Constraint Systems

The ccp model is parametric in a constraint system specifying the structure and in-

terdependencies of the information that processes can ask and tell. We presuppose

a basic knowledge of domain theory (see [AJ94]). Following [SRP91, dBPP95],

we regard a constraint system as a complete algebraic lattice structure in which

the ordering ⊑ is the reverse of an entailment relation (c ⊑ d means that d con-

tains “more information” than c, hence c can be derived from d). The top element

false represents inconsistency, the bottom element true is the empty constraint,

and the least upper bound (lub) ⊔ represents the join of information.

Definition 2.1.1 A constraint system C is a complete algebraic lattice (Con,

Con0,⊑,⊔, true, false) where Con (the set of constraints) is a partially ordered

set w.r.t. ⊑, Con0 is the subset of finite elements of Con, ⊔ is the lub operation,

and true and false are the least and greatest elements of Con, respectively.

Recall that C is a complete lattice if every subset of Con has a least upper bound in

Con. An element c ∈ Con is finite if for any directed subset D of Con, c ⊑
⊔

D

implies c ⊑ d for some d ∈ D. C is algebraic if each element c ∈ Con is the

least upper bound of the finite elements below c.

Example 2.1.1 We briefly explain the Herbrand cs from [V.A89, SRP91]. This cs

captures syntactic equality between terms t, t′, . . . built from a first-order alphabet

L with countably many variables x, y, . . ., function symbols, and equality =. The

constraints are sets of equalities over the terms of L (e.g., {x = t, y = t} is a

constraint). The relation c ⊑ d holds if the equalities in c follow from those in

d (e.g., {x = y} ⊑ {x = t, y = t}). The constraint false is the set of all term

equalities in L and true is (the equivalence class of) the empty set. The finite

elements are the (equivalence classes of) finite sets of equalities. The lub is (the

equivalence class of) set union. (See [V.A89, SRP91] for full details). Figure 2.1

represents this kind of constraint lattice for x, y, a, b. Let us stress that the only

symbols of L are the constants a and b.

2.1. BACKGROUND 13

��������������

�
�
�
�
�

�
�

@
@

@
@

@
@

@

HHHHHHHHHHHHHH
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
��

A
A
A
A

A
A
A

�
�
�
�

�
�

�
�
�
��

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

�
�

�
�
�
�
�
�
�
��

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

�
�
�
�
�
�
�

A
A
A

A
A
A
A

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

�
�
�
�

�
�

�
�

�
��

�
�
�
�
�
�
�

A
A

A
A
A

A
A

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

true

{x = a} {y = a} {x = y} {y = b} {x = b}

{

x = a,

y = a

} {

x = a,

y = b

} {

x = b,

y = a

} {

x = b,

y = b

}

false

Note that the constraints are made out of a variable and a term, therefore a = b

cannot be in the lattice.

Figure 2.1: The Herbrand Constraint Lattice for x, y, a, b.

In order to model hiding of local variables and parameter passing, in [SRP91]

the notion of constraint system is enriched with cylindrification operators and

diagonal elements, concepts borrowed from the theory of cylindric algebras (see

[HT71]).

Let us consider a (denumerable) set of variables Var with typical elements

x, y, z, . . . Define ∃Var as the family of operators ∃Var = {∃x | x ∈ Var} (cylin-

dric operators) and DVar as the set DVar = {dxy | x, y ∈ Var} (diagonal ele-

ments).

A cylindric constraint system over a set of variables Var is a constraint system

whose underlying support set Con ⊇ DVar is closed under the cylindric operators

∃Var and quotiented by Axioms C1− C4, and whose ordering ⊑ satisfies Axioms

2.1. BACKGROUND 14

C5− C7 :

C1. ∃x∃yc = ∃y∃xc C2. dxx = true

C3. if z 6= x, y then dxy = ∃z(dxz ⊔ dzy) C4. ∃x(c ⊔ ∃xd) = ∃xc ⊔ ∃xd

C5. ∃xc ⊑ c C6. if c ⊑ d then ∃xc ⊑ ∃xd

C7. if x 6= y then c ⊑ dxy ⊔ ∃x(c ⊔ dxy)

where c, ci, d indicate finite constraints, and ∃xc ⊔ d stands for (∃xc) ⊔ d. For

our purposes, it is enough to think the operator ∃x as existential quantifier and the

constraint dxy as the equality x = y.

Cylindrification and diagonal elements allow us to model the variable renam-

ing of a formula φ; in fact, by the aforementioned axioms, the formula ∃x(dxy ⊔

φ) = true can be depicted as the formula φ[y/x], i.e., the formula obtained from

φ by replacing all free occurrences of x by y.

We assume notions of free variable and of substitution that satisfy the follow-

ing conditions, where c[y/x] is the constraint obtained by substituting x by y in c

and fv(c) is the set of free variables of c: (1) if y /∈ fv(c) then (c[y/x])[x/y] = c;

(2) (c⊔d)[y/x] = c[y/x]⊔d[y/x]; (3) x /∈ fv(c[y/x]); (4) fv(c⊔d) = fv(c)∪fv(d).

Example 2.1.2 The Herbrand constraint system in Example 2.1.1 can be extended

to be a cylindric constraint system, where ∃x just represents the standard existen-

tial quantifier. For instance, consider the alphabet which contains a constant

symbol a and a monadic function symbol f . Figure 2.2 represents the part of the

cylindric constraint system in which x (and only x) is free. For simplicity we have

indicated a set {t = u} by t = u.

2.1. BACKGROUND 15

true
•@

@
@

@
@

•@
@

@
@

@
•

•

•

•

•

x = a ∃yx = f(y)

x = f(a) ∃yx = f(f(y))

x = fω

false

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��

Figure 2.2: The Cylindric Herbrand Constraint System for x, a and f .

The constraint x = fω stands for the limit of the chain {∃yx = f i(y)}i.

We now define the cylindric constraint system that will be used in all the exam-

ples.

Example 2.1.3 (The S Constraint System) Let S = (ω + 1, 0,∞,=, <, succ)

be a first-order structure whose domain of interpretation is ω + 1
def
= ω ∪ {∞},

i.e., the natural numbers extended with a top element ∞. The constant symbols

0 and ∞ are interpreted as zero and infinity, respectively. The symbols =, <

and succ are all binary predicates on ω + 1. The symbol = is interpreted as the

identity relation. The symbol < is interpreted as the set of pairs (n,m) s.t. n ∈ ω,

m ∈ ω + 1 and n strictly smaller than m. The symbol succ is interpreted as the

set of pairs (n,m) s.t. n,m ∈ ω and m = n+ 1.

Let Var be an infinite set of variables. Let L be the logic whose formulae φ

are: φ ::= t | φ1 ∧ φ2 | ∃xφ and t ::= e1 = e2 | e1 < e2 | succ(e1, e2)

where e1 and e2 are either 0 or ∞ or variables in V ar. Note that formulas like

x = n or x < n (for n = 1, 2, . . .) do not belong to L. A useful abbreviation to

express them is succn(x, y)
def
= ∃y0 . . . ∃yn(

∧

0<i≤n succ(yi−1, yi) ∧ x = y0 ∧ y =

yn). We use x = n as shorthand for succn(0, x) and x < n as shorthand for

∃y(x < y ∧ y = n).

2.1. BACKGROUND 16

A variable assignment is a function µ : Var −→ ω + 1. We use A to denote

the set of all assignments; P(X) to denote the powerset of a set X , ∅ the empty set

and ∩ the intersection of sets. We use M(φ) to denote the set of all assignments

that satisfy the formula φ, where the definition of satisfaction is as expected.

We can now introduce a constraint system as follows: the set of constraints

is P(A), and define c ⊑ d iff c ⊇ d. The constraint false is ∅, while true is A.

Given two constraints c and d, c ⊔ d is the intersection c ∩ d. By abusing the

notation, we will often use a formula φ to denote the corresponding constraint,

i.e., the set of all assignments satisfying φ. E.g. we use 1 < x ⊑ 5 < x to mean

M(1 < x) ⊑ M(5 < x).

From this structure, let us now define the cylindric constraint system S as

follows. We say that an assignment µ′ is an x-variant of µ if ∀y 6= x, µ(y) = µ′(y).

Given x ∈ Var and c ∈ P(A), the constraint ∃xc is the set of assignments µ such

that there exists µ′ ∈ c that is an x-variant of µ. The diagonal element dxy is

x = y. �

We make an assumption that will be pivotal in Section 2.3. Given a partial

order (C,⊑), we say that c is strictly smaller than d (written c ⊏ d) if c ⊑ d and

c 6= d. We say that (C,⊑) is well-founded if there exists no infinite descending

chain · · · ⊏ cn ⊏ · · · ⊏ c1 ⊏ c0. For a set A ⊆ C, we say that an element m ∈ A

is minimal in A if for all a ∈ A, a 6⊏ m. We shall use min(A) to denote the set of

all minimal elements of A. Well-founded orders and minimal elements are related

by the following result.

Proposition 2.1.1 Let (C,⊑) be a well-founded order and A ⊆ C. If a ∈ A, then

∃m ∈ min(A) s.t. m ⊑ a.

In spite of its being a reasonable assumption, well-foundedness of (Con,⊑)

is not usually required in the standard theory of ccp. We require it because the

above proposition is fundamental for proving the completeness of labeled seman-

tics (Lemma 2.3.2).

2.1. BACKGROUND 17

2.1.2 Syntax

Ccp was proposed in [V.A89] and then refined in [SR90, SRP91]. In this chapter

we restrict ourselves to the summation-free fragment of this formalism. The dis-

tinctive confluent (for more details about confluence in ccp see [FGMP94]) nature

of this fragment is necessary for showing that our notion of bisimilarity coincides

with the observational equivalence for infinite ccp processes given in [SRP91].

Remark 2.1.1 A ccp summation-free fragment is the one in which the nondeter-

ministic choice is not included in the syntax of the ccp language.

Definition 2.1.2 Assume a cylindric constraint system C = (Con,Con0,⊑,⊔,

true, false) over a set of variables Var . The ccp processes are given by the fol-

lowing syntax:

P,Q . . . ::= tell(c) | ask(c) → P | P | Q | ∃xP | ask (c) → p(~z)

where c ∈ Con0, x ∈ Var , ~z ∈ Var ∗. We use Proc to denote the set of all

processes.

Remark 2.1.2 The notions and relations in this and the following chapters as-

sume an underlying cylindric constraint system C.

Finite processes. Intuitively, the tell process tell(c) adds c to the global store.

This addition is performed regardless of the generation of inconsistent informa-

tion. The ask process ask(c) → P may execute P if c is entailed by the informa-

tion in the store. The process P | Q stands for the parallel execution of P and Q;

∃x is a hiding operator, namely it indicates that in ∃xP the variable x is local to

P . The occurrences of x in ∃xP are said to be bound. The bound variables of P ,

bv(P), are those with a bound occurrence in P , and its free variables, fv(P), are

those with an unbound occurrence.

Infinite processes. To specify infinite behavior, ccp provides parametric proc-

ess definitions. A process p(~z) is said to be a procedure call with identifier p and

2.1. BACKGROUND 18

actual parameters ~z. We presuppose that for each procedure call p(z1 . . . zm) there

exists a unique (possibly recursive) procedure definition of the form

p(x1 . . . xm)
def
= P where fv(P) ⊆ {x1, . . . , xm}. Furthermore we require re-

cursion to be guarded, i.e., each procedure call within P must occur within an ask

process. The behavior of p(z1 . . . zm) is that of P [z1 . . . zm/x1 . . . xm], i.e., P with

each xi replaced with zi (applying α-conversion to avoid clashes). We shall use

D to denote the set of all procedure definitions.

Although we have not yet defined the semantics of processes, we find it in-

structive to illustrate the above operators with the following example. Recall that

we shall use S in Example 2.1.3 as the underlying constraint system in all exam-

ples.

Example 2.1.4 Consider the following (family of) process definitions.

upn(x)
def
= ∃y(tell(y = n) | ask (y = n) → up(x, y))

up(x, y)
def
= ∃y′(tell(y < x∧succ2(y, y′)) | ask(y < x∧succ2(y, y′)) → up(x, y′))

Intuitively, upn(x), where n is a natural number, specifies that x should be greater

than any natural number (i.e., x = ∞ since x ∈ ω + 1) by telling (adding to the

global store) the constraints yi+1 = yi + 2 and yi < x for some y0, y1, . . . with

y0 = n. The process up0 (x) | ask(42 < x) → tell(z = 0) can set z = 0 when it

infers from the global store that 42 < x. (This inference is only possible after the

22nd call to up.) �

2.1.3 Reduction Semantics

To describe the evolution of processes, we extend the syntax by introducing a

process stop representing successful termination, and a process ∃e
xP representing

the evolution of a process of the form ∃xP , where e is the local information (local

store) produced during this evolution. The process ∃xP can be seen as a particular

case of ∃e
xP : it represents the situation in which the local store is empty. Namely,

∃xP = ∃
true
x P .

2.1. BACKGROUND 19

A configuration is a pair 〈P, d〉 representing the state of a system; d is a cons-

traint representing the global store, and P is a process in the extended syntax. We

use Conf with typical elements γ, γ′, . . . to denote the set of configurations. The

operational model of ccp can be described formally in the SOS style by means of

the relation between configurations −→ ⊆ Conf × Conf defined in Table 2.1.

Rules R1-R3 and R5 are easily seen to realize the above process intuitions.

Rule R4 is somewhat more involved. Intuitively, ∃e
xP behaves like P , except that

the variable x possibly present in P must be considered local, and that the infor-

mation present in e has to be taken into account. It is convenient to distinguish

between the external and the internal points of view. From the internal point of

view, the variable x, possibly occurring in the global store d, is hidden.

This corresponds to the usual scoping rules: the x in d is global, hence “cov-

ered” by the local x. Therefore, P has no access to the information on x in d, and

this is achieved by filtering d with ∃x. Furthermore, P can use the information

(which may also concern the local x) that has been produced locally and accumu-

lated in e. In conclusion, if the visible store at the external level is d1, then the

store that is visible internally by P is e ⊔ ∃xd. Now, if P is able to make a step,

thus reducing to P ′ and transforming the local store into e′, what we see from the

external point of view is that the process is transformed into ∃
e′

x P
′, and that the

information ∃xe present in the global store is transformed into ∃xe
′. To show how

this works we show an instructive example.

1Operationally ∃
e

x
P can only derive from a ccp process of the form ∃

x
P ′′, which has produced

the local information e while evolving into ∃
e

x
P . This local information is externally seen as ∃xe,

that is, ∃xe ⊑ d

2.1. BACKGROUND 20

R1 〈tell(c), d〉 −→ 〈stop, d ⊔ c〉 R2
c ⊑ d

〈ask (c) → P, d〉 −→ 〈P, d〉

R3 (a)
〈P, d〉 −→ 〈P ′, d′〉

〈P | Q, d〉 −→ 〈P ′ | Q, d′〉

R3 (b)
〈P, d〉 −→ 〈P ′, d′〉

〈Q | P, d〉 −→ 〈Q | P ′, d′〉

R4
〈P, e ⊔ ∃xd〉 −→ 〈P ′, e′ ⊔ ∃xd〉

〈∃e
xP, d〉 −→ 〈∃e′

x P
′, d ⊔ ∃xe

′〉

R5
〈P [~z/~x], d〉 −→ γ′

〈p(~z), d〉 −→ γ′

where p(~x)
def
= P is a process definition in D

Table 2.1: Reduction Semantics for CCP

Example 2.1.5 We exhibit below the reduction of P = ∃
e
x(ask (y > 1) → Q)

where the local store is e = x < 1, and the global store d′ = d⊔α with d = y > x,

α = x > 1.

R2

R4

(y > 1) ⊑ e ⊔ ∃xd
′

〈ask (y > 1) → Q, e ⊔ ∃xd
′〉 −→ 〈Q, e ⊔ ∃xd

′〉

〈P, d′〉 −→ 〈∃e
xQ, d′ ⊔ ∃xe〉

Note that the x in d′ is hidden, by using existential quantification in the reduc-

2.1. BACKGROUND 21

tion obtained by Rule R2. This expresses that the x in d′ is different from the one

bound by the local process. Otherwise an inconsistency would be generated (i.e.,

(e ⊔ d′) = false). Rule R2 applies since (y > 1) ⊑ e ⊔ ∃xd
′. Note that the free x

in e⊔∃xd
′ is hidden in the global store to indicate that is different from the global

x. �

2.1.4 Observational Equivalence

The notion of fairness is central to the definition of observational equivalence for

ccp. To define fair computations, we introduce the notions of enabled and active

processes, following [FGMP97]. Observe that any transition is generated either

by a process tell(c) or by a process ask (c) → Q. We say that a process P

is active in a transition t = γ −→ γ′ if it generates such transition; i.e. if there

exists a derivation of t where R1 or R2 are used to produce a transition of the form

〈P, d〉 −→ γ′′. Moreover, we say that a process P is enabled in a configuration γ

if there exists γ′ such that P is active in γ −→ γ′.

Definition 2.1.3 A computation γ0 −→ γ1 −→ γ2 −→ . . . is said to be fair if for

each process enabled in some γi there exists j ≥ i such that the process is active

in γj .

Note that a finite fair computation is guaranteed to be maximal, namely no outgo-

ing transitions are possible from its last configuration.

The standard notion of observables for ccp are the results computed by a proc-

ess for a given initial store. The result of a computation is defined as the least

upper bound of all the stores occurring in the computation, which, due to the mo-

notonic properties of ccp, form an increasing chain. More formally,

Definition 2.1.4 Given a finite or infinite computation ξ of the form 〈Q0, d0〉 −→

〈Q1, d1〉 −→ 〈Q2, d2〉 −→ . . . the result of ξ is the constraint
⊔

i di and is denoted

as Result(ξ).

Note that for a finite computation the result coincides with the store of the last

configuration.

The following theorem states that all the fair computations of a configuration

have the same result (due to fact that summation-free ccp is confluent).

2.2. SATURATED BISIMILARITY FOR CCP 22

Theorem 2.1.1 (from [SRP91]) Let γ be a configuration and let ξ1 and ξ2 be two

computations of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

This allows us to set Result(γ)
def
= Result(ξ) for any fair computation ξ of γ.

Definition 2.1.5 (Observational equivalence) Let O : Proc → Con0 → Con

be given by O(P)(d) = Result(〈P, d〉). We say that P and Q are observational

equivalent, written P ∼o Q if O(P) = O(Q).

Example 2.1.6 Consider the processes P = up0(x) | up1(y) and Q =

∃z(tell(z = 0) | ask(z = 0) → fairup(x, y, z)) with up0 and up1 as in Example

2.1.4 and f airup(x, y, z)
def
=

∃z′(tell(z < x∧succ(z, z′)) | ask ((z < x)∧succ(z, z′)) → f airup(y, x, z′)))

Let s(γ) denote the store in the configuration γ. For every infinite computation

ξ : 〈P, true〉 = γ0 −→ γ1 −→ . . . with (1 < y) 6⊑ s(γi) for each i ≥ 0, ξ

is not fair and Result(ξ) = (x = ∞). In contrast, every infinite computation

ξ : 〈Q, true〉 = γ0 −→ γ1 −→ . . . is fair and Result(ξ) = (x = ∞∧ y = ∞).

Nevertheless, under our fair observations, P and Q are indistinguishable (the

results of their fair computations are the same), i.e., O(P) = O(Q). �

2.2 Saturated Bisimilarity for CCP

We introduce a notion of bisimilarity in terms of reductions and barbs and we

prove that this equivalence is fully abstract w.r.t. observational equivalence.

2.2.1 Saturated Barbed Bisimilarity

Barbed equivalences have been introduced in [MS92a] for CCS, and have become

the standard behavioural equivalences for formalisms equipped with unlabeled

reduction semantics. Intuitively, barbs are basic observations (predicates) on the

states of a system.

2.2. SATURATED BISIMILARITY FOR CCP 23

The choice of the “right” barbs is a crucial step in the barbed approach, and it

is usually not a trivial task. For example, in synchronous languages like CCS or π-

calculus both the inputs and the outputs are considered as barbs (see e.g. [MS92a,

Mil99]), while in the asynchronous variants only the outputs (see e.g. [ACS96]).

Even several works (e.g. [RSS07, HY95]) have proposed abstract criteria for

defining “good” barbs.

We shall take as barbs all the finite constraints in Con0. This choice allows

us to introduce a barbed equivalence (Definition 2.2.3) that coincides with the

standard observational equivalence (Definition 2.1.5). It is worth to note that in

∼o the observables are all the constraints in Con and not just the finite ones.

We say that γ = 〈P, d〉 satisfies the barb c, written γ ↓c, if c ⊑ d; γ weakly

satisfies the barb c, written γ ⇓c, if γ −→∗ γ′ and γ′ ↓c. As usual, −→∗ denotes

the reflexive and transitive closure of −→.

Definition 2.2.1 (Barbed bisimilarity) A barbed bisimulation is a symmetric re-

lation R on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1 −→ γ′1 then there exists γ′2 such that γ2 −→ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are barbed bisimilar, written γ1 ∼̇b γ2, if there exists a

barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇b Q if 〈P, true〉 ∼̇b

〈Q, true〉.

Congruence characterization. One can verify that ∼̇b is an equivalence. How-

ever, it is not a congruence, i.e., it is not preserved under arbitrary contexts. A

context C is a term with a hole [−] s.t. replacing it with a process P yields a

process term C[P], e.g., C = tell(c) | [−] and C[tell(d)] = tell(c) | tell(d).

Example 2.2.1 Let us consider the context C = tell(a) | [−] and the processes

P = ask (b) → tell(d) and Q = ask (c) → tell(d) with a, b, c, d 6= true, b ⊑

a and c 6⊑ a. We have 〈P, true〉∼̇b〈Q, true〉 because both configurations cannot

move and they only satisfy the barb true. But 〈C[P], true〉 6∼̇b〈C[Q], true〉, be-

cause the former can perform three transitions (in sequence), while the latter only

one. �

2.2. SATURATED BISIMILARITY FOR CCP 24

An elegant solution to modify bisimilarity for obtaining a congruence has been

introduced in [MS92b] for the case of weak bisimilarity in CCS. This work has

inspired the introduction of saturated bisimilarity [BKM06] (and its extension to

the barbed approach [BGM09]). The basic idea is simple: saturated bisimulations

are closed w.r.t. all the possible contexts of the language. In the case of ccp, it is

enough to require that bisimulations are upward closed as in condition (iii) below.

Definition 2.2.2 (Saturated barbed bisimilarity) A saturated barbed bisimula-

tion is a symmetric relation R on configurations such that whenever (γ1, γ2) ∈ R

with γ1 = 〈P, d〉 and γ2 = 〈Q, e〉:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1 −→ γ′1 then there exists γ′2 such that γ2 −→ γ′2 and (γ′1, γ
′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, d ⊔ a〉, 〈Q, e ⊔ a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar, written γ1 ∼̇sb γ2, if there

exists a saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇sb Q if

〈P, true〉∼̇sb〈Q, true〉.

The weak notion of the aforementioned definition uses ⇓c and −→∗ instead of

↓c and −→ respectively.

Definition 2.2.3 (Weak saturated barbed bisimilarity) A weak saturated barbed

bisimulation is a symmetric relation R on configurations such that whenever

(γ1, γ2) ∈ R with γ1 = 〈P, d〉 and γ2 = 〈Q, e〉:

(i) if γ1 ⇓c then γ2 ⇓c,

(ii) if γ1 −→
∗ γ′1 then there exists γ′2 such that γ2 −→

∗ γ′2 and (γ′1, γ
′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, d ⊔ a〉, 〈Q, e ⊔ a〉) ∈ R.

We say that γ1 and γ2 are weak saturated barbed bisimilar, written γ1 ≈̇sb γ2, if

there exists a weak saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write

P ≈̇sb Q if 〈P, true〉≈̇sb〈Q, true〉.

2.2. SATURATED BISIMILARITY FOR CCP 25

Since ∼̇sb is itself a saturated barbed bisimulation, it is obvious that it is up-

ward closed. This fact also guarantees that it is a congruence w.r.t. all the contexts

of ccp: a context C can modify the behavior of a configuration γ only by adding

constraints to its store. The same holds for ≈̇sb in the summation-free fragment.

2.2.2 Correspondence with Observational Equivalence

We now show that ≈̇sb coincides with the observational equivalence ∼o. This

is remarkable since ≈̇sb avoids complex concepts such as fairness and infinite

elements used in the definition of ∼o. Furthermore, from [SRP91] it follows that

≈̇sb coincides with the standard denotational semantics for ccp.

First, we recall some basic facts from domain theory that are central to our

proof. Two (possibly infinite) chains d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ . . . and e0 ⊑ e1 ⊑

· · · ⊑ en ⊑ . . . are said to be cofinal if for all di there exists an ej such that

di ⊑ ej and, viceversa, for all ei there exists a dj such that ei ⊑ dj .

Lemma 2.2.1 Let D = d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ . . . and E = e0 ⊑ e1 ⊑ · · · ⊑

en ⊑ . . . be two chains. (1) If they are cofinal, then they have the same limit, i.e.,
⊔

D =
⊔

E. (2) If the elements of the chains are finite and
⊔
D =

⊔
E, then the

two chains are cofinal.

Proof Recall that D and E are cofinal if for every di there exists ej such that

di ⊑ ej and for every ei there exists dj such that ei ⊑ dj .

1. For each di ∈ D, there exists eki ∈ E such that di ⊑ eki . Define fl =
⊔l

i=0 eki . Then for all l, dl ⊑ fl and f0 ⊑ f1 ⊑ f2 ⊑ So the chain

d0, d1, d2, ... is dominated by the chain f0, f1, f2, ... and therefore
⊔
D ⊑

⊔

i∈N fi. However
⊔

i∈N fi =
⊔

i∈N eki =
⊔

E, proving that
⊔
D ⊑

⊔
E.

But we can prove in exactly the same way that
⊔

E ⊑
⊔

D, so we have that
⊔
D =

⊔
E.

2. If
⊔

D =
⊔
E then for arbitrary di, since di ⊑

⊔
D, di ⊑

⊔
E, and

since di is finite, by definition there must be ej such that di ⊑ ej . The same

reasoning can be used to prove that for every ei, there exists dj with ei ⊑ dj .

Therefore D and E are cofinal.

2.2. SATURATED BISIMILARITY FOR CCP 26

Lemma 2.2.2 Let 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . . be a

(possibly infinite) fair computation. If 〈P0, d0〉 ⇓c then there exist a store di (in

the above computation) such that c ⊑ di.

Proof If 〈P0, d0〉 ⇓c, then 〈P0, d0〉 −→∗ 〈P ′, d′〉 with c ⊑ d′ (by definition of

barb). If 〈P ′, d′〉 belongs to the above computation (i.e., there exists an i such that

Pi = P ′ and di = d′) then the result follows immediately. If 〈P ′, d′〉 does not

belong to the computation, it holds that there exists 〈Pi, di〉 (in the computation

above) such that 〈P ′, d′〉 −→∗ 〈Pi, di〉, because (summation-free) ccp is confluent

and the computation is fair. Since the store is preserved, d′ ⊑ di and then c ⊑ di.�

Theorem 2.2.1 P∼oQ if and only if P ≈̇sbQ.

Proof The proof proceeds as follows:

• From ≈̇sb to ∼o. Suppose that 〈P, true〉 ≈̇sb 〈Q, true〉 and take a finite

input b ∈ Con0. Let

〈P, b〉 −→ 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . .

〈Q, b〉 −→ 〈Q0, e0〉 −→ 〈Q1, e1〉 −→ . . . −→ 〈Qn, en〉 −→ . . .

be two fair computations. Since ≈̇sb is upward closed, 〈P, b〉 ≈̇sb 〈Q, b〉 and

thus, for all di, 〈Q, b〉 ⇓di . By Lemma 2.2.2, it follows that there exists an ej

(in the above computation) such that di ⊑ ej . Analogously, for all ei there

exists a dj such that ei ⊑ dj . Then the two chains are cofinal and by Lemma

2.2.1.1, it holds that
⊔
di =

⊔
ei, that means O(P)(b) = O(Q)(b).

• From ∼o to ≈̇sb. Suppose that P ∼o Q. We first show that for all b ∈ Con0,

〈P, b〉 and 〈Q, b〉 satisfy the same weak barbs. Let

〈P, b〉 −→ 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . .

〈Q, b〉 −→ 〈Q0, e0〉 −→ 〈Q1, e1〉 −→ . . . −→ 〈Qn, en〉 −→ . . .

be two (possibly infinite) fair computations. Since P ∼o Q, then
⊔
di =

⊔
ei. Since all the stores of computations are finite constraints, then by

2.3. LABELED SEMANTICS 27

Lemma 2.2.1.2, it holds that for all di there exists an ej such that di ⊑ ej .

Now suppose that 〈P, b〉 ⇓c. By Lemma 2.2.2, it holds that there exists a di

(in the above computation) such that c ⊑ di. Thus c ⊑ di ⊑ ej that means

〈Q, b〉 ⇓c.

With this observation it is easy to prove that

R = {(γ1, γ2) | ∃b s.t. 〈P, b〉 −→∗ γ1, 〈Q, b〉 −→∗ γ2}

is a weak saturated barbed bisimulation (Definition 2.2.3). Take (γ1, γ2) ∈

R.

If γ1 ⇓c then 〈P, b〉 ⇓c and, by the above observation, 〈Q, b〉 ⇓c. Since ccp

is confluent, also γ2 ⇓c.

The fact that R is closed under −→∗ is evident from the definition of R.

While for proving that R is upward-closed take γ1 = 〈P ′, d′〉 and γ2 =

〈Q′, e′〉. It is easy to see that for all a ∈ Con0, 〈P, b⊔a〉 −→∗ 〈P ′, d′⊔a〉 and

〈Q, b⊔a〉 −→∗ 〈Q′, e′⊔a〉. Thus, by definition of R, (〈P ′, d′⊔a〉, 〈Q′, e′⊔

a〉) ∈ R.�

2.3 Labeled Semantics

Although ≈̇sb is fully abstract, it is at some extent unsatisfactory because of the

upward-closure (namely, the quantification over all possible a ∈ Con0 in con-

dition (iii)) of Definition 2.2.2. We shall deal with this by refining the notion

of transition by adding to it a label that carries additional information about the

constraints that cause the reduction.

Labeled Transitions. Intuitively, we will use transitions of the form

〈P, d〉
α

−→ 〈P ′, d′〉

where label α represents a minimal information (from the environment) that needs

to be added to the store d to evolve from 〈P, d〉 into 〈P ′, d′〉, i.e., 〈P, d ⊔ α〉 −→

〈P ′, d′〉. From a more abstract perspective, our labeled semantic accords with the

2.3. LABELED SEMANTICS 28

proposal of [Sew98, LM00] of looking at “labels as the minimal contexts allowing

a reduction”. In our setting we take as contexts only the constraints that can be

added to the store.

2.3. LABELED SEMANTICS 29

LR1 〈tell(c), d〉
true
−→ 〈stop, d ⊔ c〉

LR2
α ∈ min{a ∈ Con0 | c ⊑ d ⊔ a }

〈ask (c) → P, d〉
α

−→ 〈P, d ⊔ α〉

LR3 (a)
〈P, d〉

α
−→ 〈P ′, d′〉

〈P | Q, d〉
α

−→ 〈P ′ | Q, d′〉

LR3 (b)
〈P, d〉

α
−→ 〈P ′, d′〉

〈Q | P, d〉
α

−→ 〈Q | P ′, d′〉

LR4
〈P [z/x], e[z/x] ⊔ d〉

α
−→ 〈P ′, e′ ⊔ d ⊔ α〉

〈∃e
xP, d〉

α
−→ 〈∃

e′[x/z]
x P ′[x/z], ∃x(e

′[x/z]) ⊔ d ⊔ α〉

x 6∈ fv(e′), z 6∈ fv(P) ∪ fv(e ⊔ d ⊔ α)

LR5
〈P [~z/~x], d〉

α
−→ γ′

〈p(~z), d〉
α

−→ γ′

where p(~x)
def
= P is a process definition in D

Table 2.2: Labeled Transitions.

The Rules. The labeled transition
α

−→ ⊆ Conf × Con0 × Conf is defined by

the rules in Table 2.2. We shall only explain rules LR2 and LR4 as the other rules

2.3. LABELED SEMANTICS 30

are easily seen to realize the above intuition and follow closely the corresponding

ones in Table 2.1.

The rule LR2 says that 〈ask (c) → P, d〉 can evolve to 〈P, d ⊔ α〉 if the

environment provides a minimal constraint α that added to the store d entails

c, i.e., α ∈ min{a ∈ Con0 | c ⊑ d ⊔ a }. Note that assuming that (Con,⊑)

is well-founded (Sec. 2.1.1) is necessary to guarantee that α exists whenever

{a ∈ Con0 | c ⊑ d ⊔ a } is not empty.

To give an intuition about LR4, it may be convenient to first explain why a

naive adaptation of the analogous reduction rule R4 in Table 2.1 would not work.

One may be tempted to define the rule for the local case, by analogy to the labeled

local rules in other process calculi (e.g., the π-calculus) and R4, as follows:

(*)
〈P, e ⊔ ∃xd〉

α
−→ 〈Q, e′ ⊔ ∃xd〉

〈∃e
xP, d〉

α
−→ 〈∃e′

xQ, d ⊔ ∃xe
′〉

where x 6∈ fv(α)

This rule however is not “complete” (in the sense of Lemma 2.3.2 below) as it

does not derive all the transitions we wish to have.

Example 2.3.1 Let P as in Example 2.1.5, i.e., P = ∃
x<1
x (ask (y > 1) → Q)

and d = y > x. Note that α = x > 1 is a minimal constraint that added

to d enables a reduction from P . In Example 2.1.5 we obtained the transition:

〈P, d ⊔ α〉 −→ 〈∃x<1
x Q, d ⊔ α ⊔ ∃x(x < 1)〉 Thus, we would like to have a

transition from 〈P, d〉 labeled with α. But such a transition cannot be derived

with Rule (*) above since x ∈ fv(α). �

Now, besides the side condition, another related problem with Rule (*) arises

from the existential quantification ∃xd in the antecedent transition 〈P, e⊔∃xd〉
α

−→

〈Q, e′⊔∃xd〉. This quantification hides the effect of d on x and thus is not possible

to identify the x in α with the x in d. The information from the environment α

needs to be added to the global store d, hence the occurrences of x in both d and

α must be identified. Notice that dropping the existential quantification of x in d

in the antecedent transition does identify the occurrences of x in d with those in α

but also with those in the local store e thus possibly generating variable clashes.

2.3. LABELED SEMANTICS 31

The rule LR4 in Table 2.2 solves the above-mentioned issues by using in the

antecedent derivation a fresh variable z that acts as a substitute for the free oc-

currences of x in P and its local store e. (Recall that T [z/x] represents T with

x replaced with z.) This way we identify with z the free occurrences of x in P

and e and avoid clashes with those in α and d. E.g., for the process defined in the

Example 2.3.1, using LR4 (and LR2) one can derive

〈ask (y > 1) → Q[z/x], z < 1 ⊔ y > x〉
x>1
−→ 〈Q[z/x], z < 1 ⊔ y > x ⊔ x > 1〉

〈∃x<1
x (ask (y > 1) → Q), y > x〉

x>1
−→ 〈∃x<1

x Q, ∃x(x < 1) ⊔ y > x ⊔ x > 1〉

The labeled semantics is sound and complete w.r.t. the unlabeled one. Sound-

ness states that 〈P, d〉
α

−→ 〈P ′, d′〉 corresponds to our intuition that if α is added

to d, P can reach 〈P ′, d′〉. Completeness states that if we add a to (the store in)

〈P, d〉 and reduce to 〈P ′, d′〉, there exists a minimal information α ⊑ a such that

〈P, d〉
α

−→ 〈P ′, d′′〉 with d′′ ⊑ d′.

For technical reasons we shall use an equivalent formulation of Rule R4. In

the new rule (R4’), instead of using existential quantification to hide the global x,

we rename it to match the renaming used in its corresponding labeled transition

rule (LR4).

R4’
〈P, e ⊔ d[z/x]〉 −→ 〈P ′, e′ ⊔ d[z/x]〉

〈∃e
xP, d〉 −→ 〈∃e′

x P
′, d ⊔ ∃xe

′〉

with z 6∈ fv(P) ∪ fv(e) ∪ fv(d)

We also use an equivalent formulation of LR4, in which we choose not to rename

the local x (with a fresh name z). Instead, we rename the global one thus we

check when the environment is giving information about z and rename it (there-

fore α[x/z]). Notice that in LR4’ we do not use renaming on the process but we

must rename on the label.

2.3. LABELED SEMANTICS 32

LR4’
〈P, e ⊔ d[z/x]〉

α
−→ 〈P ′, α ⊔ e′ ⊔ d[z/x]〉

〈∃e
xP, d〉

α[x/z]
−→ 〈∃e′

x P
′, α[x/z] ⊔ ∃x(e

′) ⊔ d〉

with x 6∈ fv(α), z 6∈ fv(P)∪fv(e⊔d)

Lemma 2.3.1 (Soundness). If 〈P, d〉
α

−→ 〈P ′, d′〉 then 〈P, d ⊔ α〉 −→ 〈P ′, d′〉.

Proof By induction on (the depth) of the inference of 〈P, d〉
α

−→ 〈P ′, d′〉 and a

case analysis on the last transition rule used.

• Using LR1 then P = tell(c) with d′ = d ⊔ c. Now the transition 〈P, d ⊔

α〉 −→ 〈P ′, d ⊔ α ⊔ c〉 = 〈P ′, d′〉 follows from the fact that α = true and

by applying Rule R1.

• Using LR2 then P = ask (c) → P ′, α ∈ min{a | c ⊑ d⊔a} and d′ = d⊔α.

Now the transition 〈P, d ⊔ α〉 −→ 〈P ′, d ⊔ α〉 = 〈P ′, d′〉 follows from the

fact that c ⊑ d ⊔ α and by applying Rule R2.

• Using LR3 (a) then P = Q | R and P ′ = Q′ | R, which leads us to

〈Q, d〉
α

−→ 〈Q′, d′〉, by a shorter inference. By appeal to induction then

〈Q, d ⊔ α〉 −→ 〈Q′, d′〉. Applying Rule R3(a) to the previous reduction we

get 〈Q | R, d ⊔ α〉 −→ 〈Q′ | R, d′〉.2

• Using LR4’ then P = ∃
e
xQ,P ′ = ∃

e′

xQ
′, α = α′[x/z] and d′ = d⊔ (∃xe

′)⊔

α′[x/z] with 〈Q, e⊔d[z/x]〉
α′

−→ 〈Q′, e′⊔d[z/x]⊔α′〉 by a shorter inference.

By appeal to induction then 〈Q, e⊔ d[z/x]⊔α′〉 −→ 〈Q′, e′ ⊔ d[z/x]⊔α′〉.

Note that α′ = (α′[x/z])[z/x] = α[z/x]. Thus, the previous transition is

equivalent to 〈Q, e ⊔ (d ⊔ α)[z/x]〉 −→ 〈Q′, e′ ⊔ (d ⊔ α)[z/x]〉. Using this

reduction, the transition 〈∃e
xQ, d ⊔ α〉 −→ 〈∃e′

xQ
′, d ⊔ (∃xe

′) ⊔ α〉 follows

from Rule R4’. Hence 〈P, d ⊔ α〉 −→ 〈P ′, d′〉.�

Lemma 2.3.2 (Completeness). If 〈P, d⊔a〉 −→ 〈P ′, d′〉 then ∃α, b s.t. 〈P, d〉
α

−→

〈P ′, d′′〉 and α ⊔ b = a, d′′ ⊔ b = d′.

2Rules LR3 (b) and R3 (b) can be also used instead too.

2.3. LABELED SEMANTICS 33

Proof The proof proceeds by induction on (the depth) of the inference of 〈P, d ⊔

a〉 −→ 〈P ′, d′〉 and a case analysis on the last transition Rule used.

• Using the Rule R1. Then P = tell(c), d′ = d ⊔ a ⊔ c. By Rule LR1

〈P, d〉
true
−→ 〈P ′, d ⊔ c〉. Let d′′ = d ⊔ c and a = b. We have that a = α ⊔ b

and that d′ = d ⊔ a ⊔ c = d ⊔ b ⊔ c = d′′ ⊔ b.

• Using the Rule R2. Then P = ask (c) → P ′, d′ = d ⊔ a and c ⊑ d ⊔ a.

Note that a ∈ {a′ ∈ Con0|c ⊑ d ⊔ a′} and then, by Proposition 2.1.1, there

exists α ∈ min{a′ ∈ Con0|c ⊑ d ⊔ a′} such that α ⊑ a. By Rule LR2,

〈P, d〉
α

−→ 〈P ′, d ⊔ α〉. Let d′′ = d ⊔ α and take b = a. Since a = α ⊔ b we

have that α = true and then d′ = d ⊔ b = d ⊔ α ⊔ b = d′′ ⊔ b.

• Using the Rule R3 (a). Then P = Q | R, and P ′ = Q′ | R, which leads us to

〈Q, d ⊔ a〉 −→ 〈Q′, d′〉, by a shorter inference. Note that the active process

generating this transition could be either an ask or a tell. Let suppose that

the constraint that has been either asked or told is c. If it is generated by an

ask then d′ = d ⊔ a and if it comes from a tell d′ = d ⊔ a ⊔ c. Thereafter,

by inductive hypothesis, we have that there exist α and b such that

〈Q, d〉
α

−→ 〈Q′, d′′〉

s.t. a = α ⊔ b and d′ = d′′ ⊔ b. Now by Rule LR3 (a), we have that

〈Q | R, d〉
α

−→ 〈Q′ | R, d′′〉3.

• Using the Rule R4’. Then P = ∃
e
xQ,P ′ = ∃

e′

xQ
′, and d′ = d ⊔ a ⊔ ∃xe

′

with 〈Q, e ⊔ (d ⊔ a)[z/x]〉 −→ 〈Q′, e′ ⊔ (d ⊔ a)[z/x]〉 where z 6∈ fv(Q) ∪

fv(e) ∪ fv(d) ∪ fv(a), by a shorter inference. This transition is equivalent

to 〈Q, (e⊔ d[z/x])⊔ a[z/x]〉 −→ 〈Q′, (e′ ⊔ d[z/x])⊔ a[z/x]〉. By induction

hypothesis, we have that there exist α and b such that

〈Q, e ⊔ d[z/x]〉
α

−→ 〈Q′, d′′1〉

3R3 (b) and LR3 (b) can be also used instead.

2.4. STRONG AND WEAK BISIMILARITY 34

with a[z/x] = α ⊔ b and e′ ⊔ d[z/x] ⊔ a[z/x] = d′′1 ⊔ b.

Note that the active process generating this transition could be either an

ask or a tell. If it is generated by an ask then d′′1 = d[z/x] ⊔ e ⊔ α. If it

is generated by a tell, then α = true and d′′1 = d[z/x] ⊔ e′ ⊔ α. Thus in

both cases it is safe to assume that d′′1 = d[z/x] ⊔ e′ ⊔ α. Now, note that

x /∈ fv(a[z/x]) = fv(α ⊔ b), and thus x /∈ fv(α) ∪ fv(b). By Rule LR4’, we

have that

〈∃e
xQ, d〉

α[x/z]
−→ 〈∃e′

xQ
′, d ⊔ ∃xe

′ ⊔ α[x/z]〉.

From a[z/x] = α ⊔ b, we have that (a[z/x])[x/z] = (α ⊔ b)[x/z] that is

a = α[x/z] ⊔ b[x/z]. Now, take d′′ = d ⊔ ∃xe
′ ⊔ α[x/z]. We have that

d′′ ⊔ b[x/z] = d ⊔ ∃xe
′ ⊔ α[x/z] ⊔ b[x/z] that by the previous equivalence

is equal to d ⊔ ∃xe
′ ⊔ a, that is d′.�

Note that Proposition 2.1.1 is needed for the above proof in the case of Rule

R2. This is the reason why in Sec. 2.1.1 we have assumed (Con,⊑) to be well-

founded.

Corollary 2.3.1 〈P, d〉
true
−→ 〈P ′, d′〉 if and only if 〈P, d〉 −→ 〈P ′, d′〉.

By virtue of the above, we will write −→ to mean
true
−→.

2.4 Strong and Weak Bisimilarity

Having defined our labeled transitions for ccp, we now proceed to define an equi-

valence that characterizes ∼̇sb without the upward closure condition.

When defining bisimilarity over a labeled transition system (LTS), barbs are

not usually needed because they can be somehow inferred by the labels of the

transitions. For example in CCS, P ↓a iff P
a

−→. The case of ccp is different:

barbs cannot be removed from the definition of bisimilarity because they cannot

be inferred by the transitions. In order to remove barbs from ccp, we could have

inserted labels showing the store of processes (as in [SR90]) but this would have

betrayed the philosophy of “labels as minimal constraints”. Then, we have to

define bisimilarity as follows.

2.4. STRONG AND WEAK BISIMILARITY 35

Definition 2.4.1 (Syntactic bisimilarity) A syntactic bisimulation is a symmetric

relation R on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1
α

−→ γ′1 then ∃γ′2 such that γ2
α

−→ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are syntactically bisimilar, written γ1 ∼S γ2, if there exists

a syntactic bisimulation R such that (γ1, γ2) ∈ R.

We called the above bisimilarity “syntactic”, because it does not take into

account the “real meaning” of the labels. This equivalence coincides with the one

in [SR90] (apart from the fact that in the latter, barbs are implicitly observed by

the transitions) and from a more general point of view can be seen as an instance

of bisimilarity in [LM00] (by identifying contexts with constraints). In [BKM06],

it is argued that the equivalence in [LM00] is often over-discriminating. This is

also the case of ccp, as illustrated in the following.

Example 2.4.1 Let P = ask (x < 5) → Q and Q = tell(x < 5). The con-

figurations γ1 = 〈P | Q, true〉 and γ2 = 〈Q | Q | Q, true〉 are not equivalent

according to ∼S . Indeed γ1
x<5
−→ γ′1, while γ2 can only perform γ2

true
−→ γ′2. How-

ever γ1 ∼o γ2. �

To obtain a coarser equivalence (coinciding with ∼̇sb), we define the following

semi-saturated version.

Definition 2.4.2 (Strong bisimilarity) A strong bisimulation is a symmetric re-

lation R on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, d〉 and

γ2 = 〈Q, e〉 :

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1
α

−→ γ′1 then ∃γ′2 s.t. 〈Q, e ⊔ α〉 −→ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are strongly bisimilar, written γ1 ∼̇ γ2, if there exists a

strong bisimulation R such that (γ1, γ2) ∈ R.

2.4. STRONG AND WEAK BISIMILARITY 36

To give some intuition about the above definition, let us recall that in 〈P, d〉
α

−→

γ′ the label α represents minimal information from the environment that needs to

be added to the store d to evolve from 〈P, d〉 into γ′. We do not require the transi-

tions from 〈Q, e〉 to match α. Instead (ii) requires something weaker: If α is added

to the store e, it should be possible to reduce into some γ′′ that is in bisimulation

with γ′. This condition is weaker because α may not be a minimal information

allowing a transition from 〈Q, e〉 into a γ′′ in the bisimulation, as shown in the

previous example.

After the definition of this new notion of strong bisimilarity we can easily find

out a bisimulation relation R in example 2.4.1 fulfilling our new conditions, i.e.,

R, a symmetric relation where R = {(〈P | Q, true〉, 〈Q | Q | Q, true〉), (〈P, x <

5〉, 〈Q | Q, x < 5〉), (〈Q, x < 5〉, 〈Q, x < 5〉), (〈stop, x < 5〉, 〈stop, x < 5〉)}.

{(〈P | Q, true〉 〉, 〈Q | Q | Q, true〉)

stop

〉, 〈Q | Q, x < 5〉)

R

(〈P, x < 5〉,

R

, (〈Q, x < 5〉,

R

, (〈Q, x < 5〉,

〉 〈 | |

, (〈stop, x < 5〉

〉 〈 | |

, (〈stop, x < 5〉

where R

Figure 2.3: Strong Bisimulation for Example 2.4.1

Definition 2.4.3 (Weak bisimilarity) A weak bisimulation is a symmetric rela-

tion R on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, d〉 and

γ2 = 〈Q, e〉 :

(i) if γ1 ↓c then γ2 ⇓c,

(ii) if γ1
α

−→ γ′1 then ∃γ′2 s.t. 〈Q, e ⊔ α〉 −→∗ γ′2 and (γ′1, γ
′
2) ∈ R.

2.4. STRONG AND WEAK BISIMILARITY 37

We say that γ1 and γ2 are weakly bisimilar, written γ1 ≈̇ γ2, if there exists a weak

bisimulation R such that (γ1, γ2) ∈ R.

Example 2.4.2 We can show that tell(true) ≈̇ ask(c) → tell(d) when d ⊑ c.

Intuitively, this corresponds to the fact that the implication c ⇒ d is equiva-

lent to true when c entails d. Let us take γ1 = 〈tell(true), true〉 and γ2 =

〈ask(c) → tell(d), true〉. Their labeled transition systems are the following:

γ1
true
−→ 〈stop, true〉 and γ2

c
−→ 〈tell(d), c〉

true
−→ 〈stop, c〉. It is now easy to see

that the symmetric closure of the relation R given below is a weak bisimulation.

R = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉), (〈stop, c〉, 〈stop, c〉)}

where R

{(γ2 , γ1

, 〈stop, true〉)(〈tell(d), c〉,

〉, 〈stop, c〉) 〉, 〈stop, c〉

Figure 2.4: Weak Bisimulation for Example 2.4.2

The following lemmata will lead us to conclude that strong and weak bisim-

ilarity coincide, respectively, with ∼̇sb and ≈̇sb. Hence γ1 and γ2 in the above

example are also in ≈̇sb (and, by Theorem 2.2.1, also in ∼o). It is worth noticing

that any saturated barbed bisimulation (Definition 2.2.3) relating γ1 and γ2 is infi-

nite in dimension, since it has to relate 〈tell(true), a〉 and 〈ask(c) → tell(d), a〉

for all constraints a ∈ Con0. Instead, the relation R above is finite and it repre-

sents (by virtue of the following theorem) a proof also for γ1≈̇sbγ2.

We start by showing that strong bisimulation (∼̇) is preserved under parallel

context.

2.4. STRONG AND WEAK BISIMILARITY 38

Lemma 2.4.1 If 〈P, d〉∼̇〈Q, e〉, then ∀a ∈ Con0, 〈P, d ⊔ a〉∼̇〈Q, e ⊔ a〉.

Proof Let R = {(〈P, d⊔ a〉, 〈Q, e⊔ a〉) s.t. 〈P, d〉∼̇〈Q, e〉}. We show that R is a

strong bisimulation. We take (〈P, d⊔a〉, 〈Q, e⊔a〉) ∈ R and we prove that satisfy

conditions (i) and (ii) of Definition 2.4.2.

(i) By hypothesis 〈P, d〉∼̇〈Q, e〉. Since 〈P, d〉 ↓d then 〈Q, e〉 ↓d, that is, d ⊑ e.

For the same reason, e ⊑ d and thus d = e. So, trivially, 〈P, d ⊔ a〉 and

〈Q, e ⊔ a〉 satisfy the same barbs.

(ii) Suppose that 〈P, d ⊔ a〉
α

−→ 〈P ′, d′〉. We need to prove that there exist Q′

and e′ such that 〈Q, e ⊔ a ⊔ α〉 −→ 〈Q′, e′〉 and (〈P ′, d′〉, 〈Q′, e′〉) ∈ R.

By Lemma 2.3.1, we have that 〈P, d ⊔ a ⊔ α〉 −→ 〈P ′, d′〉. From this, we

can obtain a labeled transition of 〈P, d〉 by using Lemma 2.3.2: 〈P, d〉
α′

−→

〈P ′, d′′〉 and there exists b′ such that (1) α′⊔ b′ = a⊔α and (2) d′′⊔ b′ = d′.

From the labeled transition of 〈P, d〉 and the hypothesis 〈P, d〉∼̇〈Q, e〉, we

have that 〈Q, e⊔α′〉 −→ 〈Q′, e′′〉 (matching the transition) with 〈P ′, d′′〉∼̇

〈Q, e′′〉(3). Note that by (1) 〈Q, e ⊔ a ⊔ α〉 = 〈Q, e ⊔ α′ ⊔ b′〉 and that

〈Q, e⊔α′⊔b′〉 −→ 〈Q, e′′⊔b′〉, by monotonicity of the store. Finally, by the

definition of R and (3) we can conclude that (〈P ′, d′′⊔b′〉, 〈Q′, e′′⊔b′〉) ∈ R

and, by (2), 〈P ′, d′′ ⊔ b′〉 = 〈P ′, d′〉.�

Combining the Lemma above, Soundness (Lemma 2.3.1) and Completeness

(Lemma 2.3.2) we can proceed to prove that ∼̇sb = ∼̇. We split the two directions

of the proof in two lemmas.

Lemma 2.4.2 ∼̇ ⊆ ∼̇sb

Proof Let R = {(〈P, d〉, 〈Q, e〉) s.t 〈P, d〉 ∼̇ 〈Q, e〉}. We show that R is a satu-

rated barbed bisimulation. We take (〈P, d〉, 〈Q, e〉) ∈ R and we prove that they

satisfy the three conditions of Definition 2.2.2.

(i) Suppose 〈P, d〉 ↓c. Since 〈P, d〉 ∼̇ 〈Q, e〉 then 〈Q, e〉 ↓c.

(ii) Suppose that 〈P, d〉 −→ 〈P ′, d′〉. By Corollary 2.3.1 〈P, d〉
true
−→ 〈P ′, d′〉.

Since 〈P, d〉 ∼̇ 〈Q, e〉 then 〈Q, e ⊔ true〉 −→ 〈Q′, e′〉 with 〈P ′, d′〉∼̇〈Q′, e′〉.

Since e = e ⊔ true we have 〈Q, e〉 −→ 〈Q′, e′〉 and (〈P ′, d′〉, 〈Q′, e′〉) ∈ R.

2.4. STRONG AND WEAK BISIMILARITY 39

(iii) By 〈P, d〉 ∼̇ 〈Q, e〉 and Lemma 2.4.1, we have that ∀c′ ∈ Con0, (〈P, d ⊔

c′〉, 〈Q, e ⊔ c′〉) ∈ R.�

Lemma 2.4.3 ∼̇sb ⊆ ∼̇

Proof Let R = {(〈P, d〉, 〈Q, e〉) s.t. 〈P, d〉 ∼̇sb 〈Q, e〉}. We show that R is a

strong bisimulation. We take (〈P, d〉, 〈Q, e〉) ∈ R and we prove that they satisfy

the two conditions of Definition 2.4.2.

(i) Suppose 〈P, d〉 ↓c. Since 〈P, d〉 ∼̇sb 〈Q, e〉 then 〈Q, e〉 ↓c.

(ii) Suppose that 〈P, d〉
α

−→ 〈P ′, d′〉. Then by Lemma 2.3.1 〈P, d ⊔ α〉 −→

〈P ′, d′〉. Since 〈P, d〉 ∼̇sb 〈Q, e〉 then 〈Q, e⊔α〉 −→ 〈Q′, e′〉 with 〈P ′, d′〉 ∼̇sb

〈Q′, e′〉. Then (〈P ′, d′〉, 〈Q′, e′〉) ∈ R.�

Consequently, as a corollary we have shown that strong bisimilarity coincides

with the strong saturated barbed bisimilarity

Theorem 2.4.1 ∼̇sb = ∼̇.

Proof Using Lemma 2.4.2 and Lemma 2.4.3

In order to prove that ≈̇ = ≈̇sb, we essentially use the same proof-scheme of

the strong case (∼̇ = ∼̇sb). The main difference concerns two technical lemmata

(namely Lemma 2.4.4 and Lemma 2.4.6) stating that weak barbs are preserved by

the addition of constraints to the store (this was trivial for the strong case).

Lemma 2.4.4 Given 〈P, d〉 and 〈Q, e〉 such that 〈P, d〉 ≈̇ 〈Q, e〉, if ∀a ∈ Con0

〈P, d ⊔ a〉 ↓c then 〈Q, e ⊔ a〉 ⇓c.

Proof If 〈P, d ⊔ a〉 ↓c, then c ⊑ d ⊔ a. Since 〈P, d〉 ≈̇ 〈Q, e〉, then there exists

a 〈Q′, e′〉 such that 〈Q, e〉 −→∗ 〈Q′, e′〉 and d ⊑ e′. Moreover 〈Q, e ⊔ a〉 −→∗

〈Q′, e′ ⊔ a〉, because all reductions are preserved by the addition of constraints.

Finally c ⊑ d ⊔ a ⊑ e′ ⊔ a, that means 〈Q′, e′ ⊔ a〉 ↓c, i.e., 〈Q, e ⊔ a〉 ⇓c.

With the above lemma, we can use the same technique of Lemma 2.4.1 to

prove that ≈̇ is a congruence.

2.4. STRONG AND WEAK BISIMILARITY 40

Lemma 2.4.5 If 〈P, d〉 ≈̇ 〈Q, e〉 then ∀a ∈ Con0, 〈P, d ⊔ a〉 ≈̇ 〈Q, e ⊔ a〉.

Proof We take the relation R= {(〈P, d⊔a〉, 〈Q, e⊔a〉) s.t. 〈P, d〉 ≈̇ 〈Q, e〉} and

we prove that it is a weak bisimulation.

(i) Suppose 〈P, d ⊔ a〉 ↓c. Since 〈P, d〉 ≈̇ 〈Q, e〉, by Lemma 2.4.4, then 〈Q, e ⊔

a〉 ⇓c.

(ii) Suppose 〈P, d ⊔ a〉
α

−→ 〈P ′, d′〉.

By Lemma 2.3.1 〈P, d ⊔ a ⊔ α〉 −→ 〈P ′, d′〉.

By Lemma 2.3.2 〈P, d〉
β

−→ 〈P ′, d′′〉 and there exists b such that β⊔b = a⊔α

and d′′ ⊔ b = d′. Since 〈P, d〉 ≈̇ 〈Q, e〉, then 〈Q, e ⊔ β〉 −→∗ 〈Q′, e′′〉 with

〈P ′, d′′〉 ≈̇ 〈Q′, e′′〉. Note that all reductions are preserved when adding

constraints to the store, therefore from 〈Q, e⊔β〉 −→∗ 〈Q′, e′′〉 we can derive

that 〈Q, e ⊔ β ⊔ b〉 −→∗ 〈Q′, e′′ ⊔ b〉. This means that 〈Q, e ⊔ a ⊔ α〉 −→∗

〈Q′, e′′ ⊔ b〉. Now we have 〈P ′, d′〉 = 〈P ′, d′′ ⊔ b〉 and (〈P ′, d′′ ⊔ b〉, 〈Q′, e′′ ⊔

b〉) ∈ R, because 〈P ′, d′′〉 ≈̇ 〈Q′, e′′〉.

The following lemma extends Lemma 2.4.4 to the case of weak barbs.

Lemma 2.4.6 Given 〈P, d〉 and 〈Q, e〉 such that 〈P, d〉 ≈̇ 〈Q, e〉, if ∀a ∈ Con0

〈P, d ⊔ a〉 ⇓c then 〈Q, e ⊔ a〉 ⇓c.

Proof If 〈P, d ⊔ a〉 ⇓c, then there are two possibilities:

(i) 〈P, d ⊔ a〉 ↓c . The result follows by Lemma 2.4.4.

(ii) 〈P, d ⊔ a〉 6↓c and 〈P, d ⊔ a〉 −→ 〈P1, d1〉 −→∗ 〈Pn, dn〉 ↓c. From 〈P, d ⊔

a〉 −→ 〈P1, d1〉 and by Lemma 2.3.2 we have a = β⊔b such that 〈P, d〉
β

−→

〈P1, d
′
1〉 and d′1 ⊔ b = d1. Since 〈P, d〉 ≈̇ 〈Q, e〉, then 〈Q, e ⊔ β〉 −→∗

〈Q1, e
′
1〉 with 〈P1, d

′
1〉 ≈̇ 〈Q1, e

′
1〉. By Lemma 2.4.5, 〈P1, d1〉 = 〈P1, d

′
1 ⊔

b〉 ≈̇ 〈Q1, e
′
1 ⊔ b〉 and thus 〈Q1, e

′
1 ⊔ b〉 −→∗ 〈Qn, en〉 ↓c. By putting all our

pieces together, we have 〈Q, e⊔ a〉 = 〈Q, e⊔ β ⊔ b〉 −→∗ 〈Q1, e
′
1 ⊔ b〉 −→∗

〈Qn, en〉 ↓c, i.e., 〈Q, e ⊔ a〉 ⇓c.

We have now all the ingredients to prove that ≈̇ = ≈̇sb.

2.4. STRONG AND WEAK BISIMILARITY 41

Lemma 2.4.7 If 〈P, d〉 ≈̇ 〈Q, e〉, then 〈P, d〉 ≈̇sb 〈Q, e〉.

Proof We take the relation R= {(〈P, d〉, 〈Q, e〉) | 〈P, d〉 ≈̇ 〈Q, e〉} and we prove

that R is a weak saturated barbed bisimulation (Definition 2.2.3).

(i) Suppose 〈P, d〉 ⇓c. Since 〈P, d〉 ≈̇ 〈Q, e〉 then by Lemma 2.4.6, 〈Q, e〉 ⇓c.

(ii) Suppose 〈P, d〉 −→∗ 〈P ′, d′〉. By definition of −→∗, there exist 〈P1, d1〉,

〈P2, d2〉, . . . , 〈Pn, dn〉 such that

〈P, d〉 −→ 〈P1, d1〉 −→ 〈P2, d2〉 −→ . . . −→ 〈Pn, dn〉 −→ 〈P ′, d′〉

which means that

〈P, d〉
true
−→ 〈P1, d1〉

true
−→ 〈P2, d2〉

true
−→ . . .

true
−→ 〈Pn, dn〉

true
−→ 〈P ′, d′〉.

Now, since 〈P, d〉 ≈̇ 〈Q, e〉, then 〈Q, e〉 = 〈Q, e ⊔ true〉 −→∗ 〈Q1, e1〉 and

〈P1, d1〉 ≈̇ 〈Q1, e1〉. By iterating this reasoning one have that

〈Q, e〉 −→∗ 〈Q1, e1〉 −→
∗ 〈Q2, e2〉 −→

∗ . . . −→∗ 〈Qn, en〉 −→
∗ 〈Q′, e′〉

with 〈P ′, d′〉 ≈̇ 〈Q′, e′〉.

Summarizing 〈Q, e〉 −→∗ 〈Q′, e′〉 and (〈P ′, d′〉, 〈Q′, e′〉) ∈ R.

(iii) ∀a ∈ Con0(〈P, d ⊔ a〉, 〈Q, e ⊔ a〉) ∈ R, by Lemma 2.4.5.

Lemma 2.4.8 If 〈P, d〉 ≈̇sb 〈Q, e〉 then 〈P, d〉 ≈̇ 〈Q, e〉.

Proof We take the relation R = {(〈P, d〉, 〈Q, e〉) s.t. 〈P, d〉 ≈̇sb 〈Q, e〉} and we

prove that it is a weak bisimulation (Definiton 2.4.3).

(i) Suppose 〈P, d〉 ↓c. Then 〈P, d〉 ⇓c. Since 〈P, d〉 ≈̇sb 〈Q, e〉, then 〈Q, e〉 ⇓c.

(ii) Suppose that 〈P, d〉
α

−→ 〈P ′, d′〉. By Lemma 2.3.1 〈P, d ⊔ α〉 −→ 〈P ′, d′〉.

By Definition of −→∗, we can say that 〈P, d ⊔ α〉 −→∗ 〈P ′, d′〉. Since

〈P, d〉 ≈̇sb 〈Q, e〉 we have 〈Q, e⊔α〉 −→∗ 〈Q′, e′〉 with 〈P ′, d′〉 ≈̇sb 〈Q
′, e′〉.

Theorem 2.4.2 ≈̇sb = ≈̇.

Proof Using Lemma 2.4.7 and Lemma 2.4.8

2.5. SUMMARY OF CONTRIBUTIONS AND RELATED WORK 42

2.5 Summary of Contributions and Related Work

In this chapter we provided a labeled transition semantics and a novel notion of

labeled bisimilarity for ccp by building upon the work in [SR90, BGM09]. We

also establish a strong correspondence with existing ccp notions by providing a

fully-abstract characterization of a standard observable behaviour for infinite ccp

processes: The limits of fair computations. From [SRP91] this implies a fully-

abstract correspondence with the closure operator denotational semantics of ccp.

Therefore, this work provides ccp with a new co-inductive proof technique, coher-

ent with the existing ones, for reasoning about process equivalence. Furthermore,

our characterization in terms of bisimilarity of the standard observable behaviour

of ccp processes avoids complicated notions such as fairness and infinite elements.

In [BKM06, BGM09], it is argued that the standard notion of bisimilarity

is often too fine grained and an alternative, coarser, definition of bisimilarity is

provided. Intuitively, in the bisimulation game, each move (transition) P
C

−→ P ′,

has to be matched it with a move C[Q] −→ Q′.

The operational semantics of ccp is expressed by reductions between config-

urations of the form 〈P, d〉 −→ 〈P ′, d′〉 meaning that the process P with store d

may reduce to P ′ with store d′. From this semantics we derived a labeled transi-

tion system for ccp by exploiting the intuition of [Sew98, LM00]. The transition

〈P, d〉
e

−→ 〈P ′, d′〉 means that e is a “minimal constraint” (from the environment)

that needs to be added to d to reduce from 〈P, d〉 into 〈P ′, d′〉.

Similar ideas were already proposed in [SR90] but the recent developments

in [BGM09] enlighten the way for obtaining a fully abstract equivalence. Indeed,

the standard notion of bisimilarity defined on our labeled semantics can be seen as

an instance of the one proposed in [LM00]. As for the bisimilarity in [SR90], it is

too fine grained, i.e., it separates processes which are indistinguishable. Instead,

the notion of bisimulation from [BGM09] (instantiated to the case of ccp) is fully

abstract with respect to the standard observational equivalence given in [SRP91].

Our work can therefore be also regarded as a compelling application of the theory

of reactive systems.

Chapter 3

Partition Refinement for

Bisimilarity in CCP

Divide et impera.

– Gaius Julius Caesar.

Right, ok, let’s take out our scissors and refashion this.

– Paris C. Kanellakis.

In the previous chapter we gave an overview of concurrency and present the

main insights of ccp, its operational semantics, and standard notion of bisimilarity

for this language. Furthermore, we introduced labeled semantics and a new notion

of labeled bisimilarity for ccp which is not over discriminative. In this chapter, we

implement an algorithm which automatically calculates the well-behaved notion

of bisimilarity for ccp presented in Definition 2.4.2 in Section 2.4.

When the state space of a system is finite, the ordinary notion of (strong)

bisimilarity can be computed via the well-known partition refinement algorithm,

but unfortunately, this algorithm does not work for our new definition of (strong)

bisimilarity for ccp. Thus, in this chapter we propose a variation of the par-

tition refinement algorithm for verifying ccp (strong) bisimilarity by borrowing

some concepts involved in the Minimization Algorithm for Symbolic Bisimilarity

[BM09].

43

3.1. BACKGROUND 44

3.1 Background

3.1.1 Partition Refinement

In this section we recall the partition refinement algorithm introduced in [KS83]

for checking bisimilarity over the states of an LTS. Recall that an LTS can be

intuitively seen as a graph where nodes represent states (of a computation) and

arcs represent transitions between states. A transition P
a

−→ Q between P and Q

labeled with a can be typically thought of as an evolution from P to Q provided

that a condition a is met. Transition systems can be used to represent the evolution

of processes in calculi such as CCS and the π-calculus [Mil80, Mil99]. In this

case states correspond to processes and transitions are given by the operational

semantics of the respective calculus.

Let us now introduce some notation. Given a set S, a partition of S is a set

of blocks, i.e., subsets of S, that are all disjoint and whose union is S. We write

{B1} . . . {Bn} to denote a partition consisting of non empty blocks B1, . . . , Bn.

A partition represents an equivalence relation where equivalent elements belong

to the same block. We write PPQ to mean that P and Q are equivalent in the

partition P .

The partition refinement algorithm (see Algorithm 3.1.1) checks the bisimilar-

ity of a set of initial states IS as follows. First, it computes IS⋆, that is the set

of all states that are reachable from IS. Then it creates the partition P0 where all

the elements of IS⋆ belong to the same block (i.e., they are all equivalent). After

the initialization, it iteratively refines the partitions by employing the function F,

defined as follows: for all partitions P , P F(P)Q if

• if P
a

−→ P ′ then exists Q′ s.t. Q
a

−→ Q′ and P ′PQ′.

The algorithm terminates whenever two consecutive partitions are equivalent. In

such partition two states belong to the same block iff they are bisimilar.

Note that any iteration splits blocks and never fuses them. For this reason if

IS⋆ is finite, the algorithm terminates in at most |IS⋆| iterations.

Proposition 3.1.1 If IS⋆ is finite, then the algorithm terminates and the resulting

partition equates all and only the bisimilar states.

3.1. BACKGROUND 45

Algorithm 3.1.1 Partition-Refinement(IS)

Initialization

1. IS⋆ is the set of all processes reachable from IS,

2. P0 := {IS⋆},

Iteration Pn+1 := F(Pn),
Termination If Pn = Pn+1 then return Pn.

Example 3.1.1 Let us take the following LTS:

A B

C

D

E

!!

!

!

A Labelled Transition System

According to Algorithm 3.1.1 after the initialization process IS⋆ = {A,B,C,D,E}

and the first partition P0 = {A,B,C,D,E}. Afterwards, it iteratively refines par-

titions by employing the function F(P) where the iteration proceeds as follows:

A B C D E

A B C D E

A B C D E

A B C D E

A B C D

A B C D E

A B C

A B C

D E
A B C D E

!

! !

!
!

!

!

!

!

Splitting the Blocks

3.2. IRREDUNDANT BISIMILARITY 46

Therefore, the algorithm terminates whenever two consecutive partitions are equiv-

alent, so finally Pn = {{A,B}, {C}, {D}, {E}}.

3.2 Irredundant Bisimilarity

For purposes related to the clarity of examples concerned with the way the mod-

ified partition refinement for ccp works (in particular, finding out redundant tran-

sitions), from now on we will consider a non-determinist fragment of ccp. (with

this operator we can find redundant transitions and at the same time avoid compli-

cated automata made from a parallel composition operator). Therefore we shall

take into account the following syntax and reduction and labeled rules for ccp

processes in this fragment:

Syntax for non-deterministic ccp. We extend the syntax in Definition 2.1.2 in

Section 2.1.2 with the summation process of the form P + Q, i.e., the syntax is

now given as P,Q ::= ... |P + Q

3.2.1 Reduction Semantics for Non-deterministic CCP

We use all rules in Table 2.1 plus the following rules:

R6 (a)
〈P, d〉 −→ 〈P ′, d′〉

〈P + Q, d〉 −→ 〈P ′ + Q, d′〉

R6 (b)
〈P, d〉 −→ 〈P ′, d′〉

〈Q + P, d〉 −→ 〈Q + P ′, d′〉

3.2.2 Labeled Semantics for Non-deterministic CCP

We recall all rules in Table 2.2 and we add the following rules:

3.2. IRREDUNDANT BISIMILARITY 47

LR6 (a)
〈P, d〉

α
−→ 〈P ′, d′〉

〈P + Q, d〉
α

−→ 〈P ′ + Q, d′〉

LR6 (b)
〈P, d〉

α
−→ 〈P ′, d′〉

〈Q + P, d〉
α

−→ 〈Q + P ′, d′〉

3.2.3 Saturated Bisimilarity in a Non-deterministic CCP Frag-

ment

As said in Section 2.2 an elegant solution to modify bisimilarity for obtaining a

congruence consists in saturated bisimilarity (see Definition 2.2.2 in the afore-

mentioned section). The basic idea is simple: saturated bisimulations are closed

w.r.t. all the possible contexts of the language. In the case of ccp, it is enough

to require that bisimulations are upward closed. Thus, now by introducing a non-

deterministic fragment of ccp we can present some new interesting, nicer and

much more simpler examples which are important for describing this particular

notion in the case of this language. We shall emphasize that there is no stan-

dard semantics. In this case, we must also punctuate that the closure operators

described in Section 2 only hold for the deterministic fragment of ccp.

Example 3.2.1 Take T = tell(true), P = ask (x < 7) → T and Q =

ask (x < 5) → T . You can see that 〈P, true〉 6 ∼̇sb〈Q, true〉, since 〈P, x <

7〉 −→, while 〈Q, x < 7〉 6−→. Consider now the configuration 〈P + Q, true〉

and observe that 〈P + Q, true〉∼̇sb〈P, true〉. Indeed, for all constraints e s.t.

x < 7 ⊑ e, both configurations evolve into 〈T, e〉, while for all e s.t. x < 7 6⊑ e,

both configurations cannot proceed. Since x < 7 ⊑ x < 5, the behaviour of Q is

somehow absorbed by the behaviour of P .

Example 3.2.2 Since ∼̇sb is upward closed, 〈P +Q, z < 5〉∼̇sb〈P, z < 5〉 follows

immediately by the previous example. Now take R = ask (z < 5) → (P + Q)

and S = ask (z < 7) → P . By analogous arguments of the previous example,

one can show that 〈R + S, true〉∼̇sb〈S, true〉.

3.2. IRREDUNDANT BISIMILARITY 48

Example 3.2.3 Take T ′ = tell(y = 1), Q′ = ask (x < 5) → T ′ and R′ =

ask (z < 5) → P + Q′. Observe that 〈P + Q′, z < 5〉 6∼̇sb〈P, z < 5〉 and that

〈R′ + S, true〉 6∼̇sb〈S, true〉, since 〈P +Q′, x < 5〉 and 〈R′ + S, true〉 can reach

a store containing the constraint y = 1.

3.2.4 Soundness and Completeness

The labeled semantics can be related to the reduction semantics via the two fol-

lowing lemmata, namely soundness and completeness. The first one deals with

the fact that if a process is able to perform an action using some (minimal) infor-

mation from the environment, then providing such information to the process (in

its store) will allow to perform a reduction instead.

Lemma 3.2.1 (Soundness of −→) If 〈P, c〉
α

−→ 〈P ′, c′〉 then 〈P, c ⊔ α〉 −→

〈P ′, c′〉.

Proof By induction on (the depth) of the inference of 〈P, d〉
α

−→ 〈P ′, d′〉. Here

we consider just the additional case for the non-deterministic choice and refer the

reader to Lemma 2.3.1 in Section 2.3 for further cases.

• Using rule LR6 (a) then P = Q + R and P ′ = Q′ which lead us to

〈Q, d〉
α

−→ 〈Q′, d′〉 by a shorter inference. By appeal to induction then

〈Q, d ⊔ a〉 −→ 〈Q′, d′〉. Applying Rule R6 (a) to the previous reduction we

get 〈Q+R, d〉 −→ 〈Q′, d′〉.1

Now completeness tries to do the opposite, if a process can perform a reduc-

tion then the idea is that one could use a piece of the store as a label, and the

process should be able to arrive to the same result by means of a labeled transi-

tion. In this case, such label might not be exactly the piece of information we took

from the store but something smaller, thus the result could also be smaller.

Lemma 3.2.2 (Completeness of −→) If 〈P, c ⊔ a〉 −→ 〈P ′, c′〉 then there exists

α and b s.t. 〈P, c〉
α

−→ 〈P ′, c′′〉 where α ⊔ b = a and c′′ ⊔ b = c′

1LR6 (b) and R6 (b) can be used instead.

3.2. IRREDUNDANT BISIMILARITY 49

Proof The proof proceeds by induction on (the depth) of the inference of 〈P, d ⊔

a〉 −→ 〈P ′, d′〉. As in Lemma 3.2.1 we consider just the case for the non-

deterministic choice.

• Using rule R6 (a) then P = Q + R and P ′ = Q′ which lead us to 〈Q, d ⊔

a〉 −→ 〈Q′, d′〉 by a shorter inference. Note that the active process gener-

ating the transition could be either an ask or a tell. Let suppose that the

constraint that has been either asked or told is c. If it is generated by an

ask then d′ = d ⊔ a and if it comes from a tell d′ = d ⊔ a ⊔ c. Thereafter,

by inductive hypothesis, we have that there exist α and b such that

〈Q, d〉
α

−→ 〈Q′, d′′〉

st a = α ⊔ b and d′ = d′′ ⊔ b. Now by rule LR6 (a), we have that

〈Q+R, d〉
α

−→ 〈Q′ +R, d′′〉2.

3.2.5 Syntactic Bisimilarity and Redundancy

Here, we first consider the notion of Syntactic Bisimilarity (see Definition 2.4.1

in Section 2.4) since it is the obvious adaptation of the ordinary notion of bisimi-

larity (see [Mil80]) for the labeled semantics in ccp, which itself can be computed

via the standard partition refinement algorithm [KS83].

Unfortunately syntactic bisimilarity, as we have already said in Section 2.4 in

Chapter 2, is over-discriminating. This definition is too fine-grained because of

some redundant transitions. Therefore we then try taking ∼̇sb. But in this case the

main problem for verifying this notion is the quantification over all contexts. This

problem is addressed following the abstract approach in [BM09]. More precisely,

we use an equivalent notion, namely irredundant bisimilarity ∼̇I , which can be

verified with the ccp partition refinement. As its name suggests, ∼̇I only takes into

account those transitions deemed irredundant. However, technically speaking, go-

ing from ∼̇sb to ∼̇I requires one intermediate notion, so-called symbolic bisimi-

larity. These three notions are shown to be equivalent, i.e., ∼̇sb = ∼̇sym = ∼̇I . In

2Both rules R6 (b) and LR6 (b) can be used instead in this proof

3.2. IRREDUNDANT BISIMILARITY 50

the following we recall all of them.

Let us first give some auxiliary definitions. The first concept is that of deriva-

tion. Consider the following transitions (taken from Figure 3.1):

(a) 〈P+Q, z < 5〉
x<7
−→ 〈T, z < 5⊔x < 7〉 (b) 〈P+Q, z < 5〉

x<5
−→ 〈T, z < 5⊔x < 5〉

Transition (a) means that for all constraints e s.t. x < 7 is entailed by e (formally

x < 7 ⊑ e), the transition (c) 〈P + Q, z < 5 ⊔ e〉 −→ 〈T, z < 5 ⊔ e〉 can be

performed, while transition (b) means that the reduction (c) is possible for all e

s.t. x < 5 ⊑ e. Since x < 7 ⊑ x < 5, transition (b) is “redundant”, in the sense

that its meaning is “logically derived” by transition (a).

The following notion captures the above intuition:

Definition 3.2.1 (Derivation) We say that the transition t = 〈P, c〉
α

−→ 〈P1, c
′〉

derives t′ = 〈P, c〉
β

−→ 〈P1, c
′′〉, written 〈P, c〉

α
−→ 〈P1, c

′〉 ⊢D 〈P, c〉
β

−→

〈P1, c
′′〉 (t ⊢D t′), if there exists e s.t. the following conditions hold:

(i) β = α ⊔ e (ii) c′′ = c′ ⊔ e

Figure 3.1 illustrates the LTSs of our running example 3.2.2.

3.2. IRREDUNDANT BISIMILARITY 51

T = tell(true)
T ′ = tell(y = 1)

P = ask (x < 7) → T
S = ask (z < 7) → P

Q = ask (x < 5) → T
Q′ = ask (x < 5) → T ′

R = ask (z < 5) → (P +Q)
R′ = ask (z < 5) → (P +Q′)

〈R+ S, true〉 〈S, true〉 〈R′ + S, true〉

〈P, z < 5〉 〈P +Q, z < 5〉 〈P, z < 7〉 〈P +Q′, z < 5〉

〈T, z < 5 ⊔ x < 7〉 〈T, z < 5 ⊔ x < 5〉 〈T, z < 7 ⊔ x < 7〉 〈T ′, z < 5 ⊔ x < 5〉

〈stop, z < 5 ⊔ x < 7〉 〈stop, z < 5 ⊔ x < 5〉 〈stop, z < 7 ⊔ x < 7〉 〈stop, z < 5 ⊔ x < 5 ⊔ y = 1〉

x < 7

z < 5z < 7z < 7z < 5 z < 7

x < 5x < 7x < 5x < 7x < 7

truetruetruetrue

Figure 3.1: The Labeled Transition System of a Running Example.

3.2. IRREDUNDANT BISIMILARITY 52

P0 = {〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉},

{〈P +Q′, z < 5〉, 〈P +Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉},

{〈T ′, z < 5 ⊔ x < 5〉, 〈T, z < 5 ⊔ x < 5〉, 〈stop, z < 5 ⊔ x < 5〉},

{〈T, z < 7 ⊔ x < 7〉, 〈stop, z < 7 ⊔ x < 7〉},

{〈T, z < 5 ⊔ x < 7〉, 〈stop, z < 5 ⊔ x < 7〉}, {〈stop, z < 5 ⊔ x < 5 ⊔ y = 1〉}

P1 = {〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉},

{〈P +Q′, z < 5〉, 〈P +Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉},

{〈T ′, z < 5 ⊔ x < 5〉}, {〈T, z < 5 ⊔ x < 5〉}, {〈stop, z < 5 ⊔ x < 5〉},

{〈T, z < 7 ⊔ x < 7〉}, {〈stop, z < 7 ⊔ x < 7〉}, {〈T, z < 5 ⊔ x < 7〉},

{〈stop, z < 5 ⊔ x < 7〉}, {〈stop, z < 5 ⊔ x < 5 ⊔ y = 1〉}

P2 = {〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉}, {〈P +Q′, z < 5〉},

{〈P +Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉}, {〈T ′, z < 5 ⊔ x < 5〉},

{〈T, z < 5 ⊔ x < 5〉}, {〈stop, z < 5 ⊔ x < 5〉}, {〈T, z < 7 ⊔ x < 7〉},

{〈stop, z < 7 ⊔ x < 7〉}, {〈T, z < 5 ⊔ x < 7〉}, {〈stop, z < 5 ⊔ x < 7〉},

{〈stop, z < 5 ⊔ x < 5 ⊔ y = 1〉}

P3 = {〈R′ + S, true〉}, {〈S, true〉, 〈R+ S, true〉}, {〈P +Q′, z < 5〉},

{〈P +Q, z < 5〉, 〈P, z < 5〉}, {〈P, z < 7〉}, {〈T ′, z < 5 ⊔ x < 5〉},

{〈T, z < 5 ⊔ x < 5〉}, {〈stop, z < 5 ⊔ x < 5〉}, {〈T, z < 7 ⊔ x < 7〉},

{〈stop, z < 7 ⊔ x < 7〉}, {〈T, z < 5 ⊔ x < 7〉}, {〈stop, z < 5 ⊔ x < 7〉},

{〈stop, z < 5 ⊔ x < 5 ⊔ y = 1〉}

P4 = P3

Figure 3.2: Partitions Computed by the CCP-Partition-Refinement Algorithm.

One can verify in the above example that (a) ⊢D (b), and notice that both

3.2. IRREDUNDANT BISIMILARITY 53

transitions arrive at the same process P ′: The difference lies in the label and the

store. Now imagine the situation where the initial configuration is able to perform

another transition with β (as in t′), and let us also assume that such transition

arrives at a configuration which is equivalent to the result of t′. Therefore, it is

natural to think that, since t derives t′, such new transition should also be derivated

by t. Let us explain with an example. Consider the two following transitions:

(e) 〈R + S, true〉
z<7
−→ 〈P, z < 7〉 (f) 〈R + S, true〉

z<5
−→ 〈P +Q, z < 5〉

Note that transition (f) cannot be derived by other transitions, since (e) 6⊢D (f). In-

deed, P is syntactically different from P+Q, even if they have the same behaviour

when inserted in the store z < 5, i.e., 〈P, z < 5〉∼̇sb〈P +Q, z < 5〉 (since ∼̇sb is

upward closed). Transition (f) is also “redundant”, since its behaviour “does not

add anything” to the behavior of (e). The following definition encompasses this

situation:

Definition 3.2.2 (Derivation w.r.t R, ⊢R) We say that the transition t = γ
α

−→

γ1 derives t′ = γ
β

−→ γ2 w.r.t. to R (written t ⊢R t′) if there exists γ′2 s.t.

t ⊢D γ
β

−→ γ′2 and γ′2Rγ2.

Then, when R represents some sort of equivalence, this notion will capture

the situation above mentioned. Notice that ⊢D is ⊢R with R being the identity

relation (id). Now we introduce the concept of domination, which consists in

strengthening the notion of derivation by requiring labels to be different.

Definition 3.2.3 (Domination ≻D) We say that the transition t = 〈P, c〉
α

−→

〈P ′, c′〉 dominates t′ = 〈P, c〉
β

−→ 〈P ′, c′′〉 (written t ≻D t′) if t ⊢D t′ and

α 6= β. In other terms: (i) β = α ⊔ e (ii) c′′ = c′ ⊔ e (iii) α 6= β

Similarly, as we did for derivation, we can define domination depending on a

relation. Again, ≻D is just ≻R when R is the identity relation (id).

Definition 3.2.4 (Redundancy and Domination w.r.t R, ≻R) We say that the tran-

sition t = 〈P, c〉
α

−→ 〈P ′, c′〉 dominates t′ = 〈P, c〉
β

−→ 〈Q, d〉 w.r.t. to R (written

t ≻R t′) if there exists c′′ s.t. t ≻D 〈P, c〉
β

−→ 〈P ′, c′′〉 and 〈P ′, c′′〉R〈Q, d〉. Also,

3.2. IRREDUNDANT BISIMILARITY 54

a transition is said to be redundant when it is dominated by another, otherwise it

is said to be irredundant.

Definition 3.2.5 We say that a relation R ⊆ Conf × Conf is closed under the

addition of constraints if whenever 〈P, c〉R〈Q, d〉 then for all e ∈ Con0 we have

that 〈P, c ⊔ e〉R〈Q, d ⊔ e〉

In other words, if a pair of configurations belong to the relation, then any pair

obtained by adding more information in both stores should also be in the relation.

We can now prove that under certain conditions ⊢R and ≻R are a partial order and

a strict partial order respectively.

Proposition 3.2.1 If R is reflexive and closed under the addition of constraints

then ⊢R is a partial order.

Proof We will proceed by showing that ⊢R is reflexive, transitive and antisym-

metric. Let t1 = 〈P, c〉
α1−→ 〈P1, c1〉, t2 = 〈P, c〉

α2−→ 〈P2, c2〉 and t3 = 〈P, c〉
α3−→

〈P3, c3〉 be transitions s.t. t1 ⊢R t2 and t2 ⊢R t3.

• (Reflexivity) We need to prove that t1 ⊢R t1. First notice that t1 ⊢D t1 just

by taking e = true and since R is reflexive then t1 ⊢R t1.

• (Transitive) We need to prove that t1 ⊢R t3. Since t1 ⊢R t2 we know there

exists t′2 = 〈P, c〉
α2−→ 〈P1, d1〉 s.t. t1 ⊢D t′2 and 〈P1, d1〉R〈P2, c2〉 which by

definition means that there exists an e1 s.t. α1 ⊔ e1 = α2 and c1 ⊔ e1 = d1.

Now from t2 ⊢D t3 we can deduce that there exists t′3 = 〈P, c〉
α2−→ 〈P2, d2〉

s.t. t2 ⊢D t′3 and 〈P2, d2〉R〈P3, c3〉 which in this case means that there exists

an e2 s.t. α2 ⊔ e2 = α3 and c2 ⊔ e2 = d2. To conclude, take e′ = e1 ⊔ e2

and t′ = 〈P, c〉
α1⊔e′−→ 〈P1, c1 ⊔ e′〉, we can check that t1 ⊢D t′ by taking e

equal to e′, we can also verify that since 〈P1, d1〉 = 〈P1, c1 ⊔ e1〉R〈P2, c2〉

and R is closed under the addition of constraints (Definition 3.2.5) then

〈P1, c1 ⊔ e1 ⊔ e2〉 = 〈P1, c1 ⊔ e′〉R〈P3, c3〉 and hence t1 ⊢R t3.

• (Antisymmetry) We need to prove that if t1 ⊢R t2 and t2 ⊢R t1 then α1 =

α2 and 〈P1, c1〉 R〈P2, c2〉
3. Since t1 ⊢R t2 we know there exists t′2 =

3Notice that we do not require that 〈P1, c1〉 is syntactically equivalent to 〈P2, c2〉 but that they
are related in R, this is due to the fact that R is said to contain configurations that are equivalent.

3.2. IRREDUNDANT BISIMILARITY 55

〈P, c〉
α2−→ 〈P1, d1〉 s.t. t1 ⊢D t′2 and 〈P1, d1〉R〈P2, c2〉 where there ex-

ists an e s.t. α1 ⊔ e = α2 and c1 ⊔ e = d1, therefore α1 ⊑ α2. Following the

same reasoning on t2 ⊢R t1 we can get that α2 ⊑ α1 hence α1 = α2. This

also means that α1 ⊔ e = α1 and so e ⊑ α1, now since α1 ⊑ c1 then e ⊑ c1

therefore c1 = d1 and finally 〈P1, d1〉 = 〈P1, c1〉R〈P2, c2〉.

Since id 4 is reflexive and is closed under the addition of constraints, the fol-

lowing proposition follows directly.

Proposition 3.2.2 ⊢D is a partial order.

Proof Follows from the fact that ⊢D is ⊢R when R = id , and since id is re-

flexive and is closed under the addition of constraints (Definition 3.2.5) then by

Proposition 3.2.2 we can conclude that ⊢D is a partial order.

Now regarding domination, we can prove a similar property, but in this case

we can see that requiring the two labels being different does not allow it to be

reflexive, therefore ≻R is a strict (irreflexive) partial order.

Proposition 3.2.3 If R is closed under the addition of constraints then ≻R is a

strict (irreflexive) partial order.

Proof In this case we will show that ≻R is irreflexive and transitive. Let t =

〈P, c〉
α1−→ 〈P ′, c′〉: We proceed to prove each characteristic separately.

• (Irreflexivity) Let us assume by means of contradiction that t ≻R t then this

would mean that there exists t′ = 〈P, c〉
α1−→ 〈Q, d〉 s.t. t ≻D t′ where

〈P ′, c′〉R〈Q, d〉. But for any such t′ the label is α1 and therefore t 6≻D t′

since its labels are not different, a contradiction. Hence, t 6≻R t.

• (Transitivity) The proof follows the line of Proposition 3.2.1, where in this

case α1 6= α2 6= α3, notice that this fact does not affect the argument above.

Again, since id is closed under the addition of constraints, then the following

proposition is a consequence of the one above.

4The identity relation.

3.2. IRREDUNDANT BISIMILARITY 56

Proposition 3.2.4 ≻D is a strict partial order.

Proof Follows from the fact that ≻D is ≻R when R = id , and since id is closed

under the addition of constraints (Definition 3.2.5) then by Proposition 3.2.3 we

can conclude that ⊢D is a partial order.

As we pointed out for the entailment relation, another important property is

well-foundedness. It is obtained via Proposition 2.1.1 in Section 2.1.1 (⊑ is well-

founded).

Proposition 3.2.5 ⊢D and ≻D are well-founded.

Proposition 3.2.6 ⊢R and ≻R are well-founded.

3.2.6 Symbolic and Irredundant Bisimilarity

We are now able to introduce an equivalence called irredundant bisimilarity which

allows to compute bisimilarity and redundancy at the same time. This notion can

be used to efficiently compute ∼̇sb. As its name suggests, the idea is to consider

only the transitions that are irredundant (up to ∼̇sb itself). It is proven that both

notions coincide, and it is achieved via an intermediate notion called symbolic

bisimilarity that we will introduce below.

Intuitively, two configurations γ1 and γ2 are symbolic bisimilar iff (i) they

have the same barbs and (ii) whenever there is a transition from γ1 to γ′1 using

α, then we require that γ2 must reply with a similar transition γ2
α

−→ γ′2 (where

γ′1 and γ′2 are now equivalent) or some other transition that derives it. In other

words, the move from the defender does not need to use exactly the same label,

but a transition that is “stronger” (in terms of derivation ⊢D) could also do the job.

Formally we have the definition below.

Definition 3.2.6 (Symbolic Bisimilarity) A symbolic bisimulation is a symmet-

ric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and

γ2 = 〈Q, d〉:

(i) if γ1 ↓e then γ2 ↓e,

3.2. IRREDUNDANT BISIMILARITY 57

(ii) if 〈P, c〉
α

−→ 〈P ′, c′〉 then there exists a transition t = 〈Q, d〉
β

−→ 〈Q′, d′′〉

s.t. t ⊢D 〈Q, d〉
α

−→ 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉

We say that γ1 and γ2 are symbolic bisimilar (γ1 ∼̇sym γ2) if there exists a sym-

bolic bisimulation R s.t. (γ1, γ2) ∈ R.

Example 3.2.4 To illustrate the notion of symbolic bisimilarity (∼̇sym), we take

〈P+Q, true〉 and 〈P, true〉 from Example 3.2.1. We provide a symbolic bisimula-

tion R = {(〈P +Q, true〉, 〈P, true〉)}∪ id (relation R is shown in Figure 3.3) to

prove 〈P + Q, true〉∼̇sym〈P, true〉. We take the pair (〈P + Q, true〉, 〈P, true〉).

The first condition in Definition 3.2.6, concerning the barbs is trivial. For the

second one we take 〈P + Q, true〉
x<5
−→ 〈T, x < 5〉, and one can find transitions

t = 〈P, true〉
x<7
−→ 〈T, x < 7〉 and t′ = 〈P, true〉

x<5
−→ 〈T, x < 5〉 s.t. t ⊢D t′ and

〈T, x < 5〉R〈T, x < 5〉. The remaining transitions are trivially verified.

where R

〈 〉

{(〈P + Q, true〉,

stop

〉, 〈P, true〉

stop
, (〈T, x < 7〉, 〉, 〈T, x < 7〉

stopR

〉, 〈T, x < 5〉

prove

R

〉, 〈T, x < 5〉

prove{ 〈

, (〈stop, x < 7〉

{ 〈

, (〈stop, x < 7〉

〉 〈

, (〈stop, x < 5〉,

〉 〈

, (〈stop, x < 5〉,

Figure 3.3: Symbolic Bisimulation for Example 3.2.4

The following lemmata will lead us to conclude that symbolic bisimilarity

(Definition 3.2.6) is equivalent to saturated barbed bisimilarity (Definition 2.2.2

in Section 2.2.1).

Lemma 3.2.3 If 〈P, c〉∼̇sym〈Q, d〉 then 〈P, c〉∼̇sb〈Q, d〉.

3.2. IRREDUNDANT BISIMILARITY 58

Proof We will prove that R = {(〈P, c ⊔ a〉, 〈Q, d ⊔ a〉) | 〈P, c〉∼̇sym〈Q, d〉} is a

saturated barbed bisimulation.

(i) Since 〈P, c〉∼̇sym〈Q, d〉 then from condition (i) and by monotonicity we have

that for all e s.t. 〈P, c ⊔ a〉 ↓e then 〈Q, d ⊔ a〉 ↓e.

(ii) We need to prove that if 〈P, c ⊔ a〉 −→ 〈P1, c1〉 then there exists 〈Q1, d1〉

s.t. 〈Q, d ⊔ a〉 −→ 〈Q1, d1〉 and 〈P1, c1〉R〈Q1, d1〉. Now let us assume that

〈P, c ⊔ a〉 −→ 〈P ′, c′〉 (take P1 = P ′ and c1 = c′) then by completeness

(Lemma 3.2.2) we know that there exist α and b s.t. 〈P, c〉
α

−→ 〈P ′, c′′〉

where α ⊔ b = a and c′′ ⊔ b = c′, thus if such transition exists then by

〈P, c〉∼̇sym〈Q, d〉 we get that there exists a transition t = 〈Q, d〉
β

−→ 〈Q′, d′〉

s.t. t ⊢D 〈Q, d〉
α

−→ 〈Q′, d′′〉 and 〈P ′, c′′〉∼̇sym〈Q
′, d′′〉. Expanding the

definition of ⊢D there is a b′ s.t. β ⊔ b′ = α and d′ ⊔ b′ = d′′. We are

now able to apply soundness (Lemma 3.2.1) on t hence 〈Q, d ⊔ β〉 −→

〈Q′, d′〉, and by monotonicity we are able to add b ⊔ b′ to the store to obtain

〈Q, d⊔β⊔b⊔b′〉 −→ 〈Q′, d′⊔b⊔b′〉 which is equivalent to say (by using the

equations above) 〈Q, d⊔a〉 −→ 〈Q′, d′′⊔b〉. To conclude, take Q1 = Q′ and

d1 = d′′⊔b, therefore 〈Q, d⊔a〉 −→ 〈Q1, d1〉 and since 〈P ′, c′′〉∼̇sym〈Q
′, d′′〉

then 〈P1, c1〉 = 〈P ′, c′〉 = 〈P ′, c′′ ⊔ b〉R〈Q′, d′′ ⊔ b〉 = 〈Q1, d1〉.

(iii) By definition of R, it is already closed under the addition of constraints.

Lemma 3.2.4 If 〈P, c〉∼̇sb〈Q, d〉 then 〈P, c〉∼̇sym〈Q, d〉,

Proof We will prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉∼̇sb〈Q, d〉} is a symbolic

bisimulation.

(i) Since 〈P, c〉∼̇sb〈Q, d〉 then from condition (i) we have that if 〈P, c〉 ↓e then

〈Q, d〉 ↓e .

(ii) Let us start by assuming that 〈P, c〉
α

−→ 〈P ′, c′〉: Then we need to prove that

there exists a transition t = 〈Q, d〉
β

−→ 〈Q′, d′′〉 s.t. t ⊢D 〈Q, d〉
α

−→ 〈Q′, d′〉

and 〈P ′, c′〉R〈Q′, d′〉. By soundness we know 〈P, c ⊔ α〉 −→ 〈P ′, c′〉, now

since 〈P, c〉∼̇sb〈Q, d〉 by condition (ii) we obtain 〈Q, d ⊔ α〉 −→ 〈Q′, d′〉

3.2. IRREDUNDANT BISIMILARITY 59

where 〈P ′, c′〉∼̇sb〈Q
′, d′〉. From this transition and completeness we can de-

duce that there exist β and b s.t. 〈Q, d〉
β

−→ 〈Q′, d′′〉 (let us call this transi-

tion t) where β ⊔ b = α and d′′ ⊔ b = d′. Thus by definition of ⊢D we can

conclude that t ⊢D 〈Q, d〉
α

−→ 〈Q′, d′〉 and since 〈P ′, c′〉∼̇sb〈Q
′, d′〉 then

〈P ′, c′〉R〈Q′, d′〉

This notion, that does not quantify over all possible contexts, coincides with

∼̇sb.

Theorem 3.2.1 〈P, c〉∼̇sb〈Q, d〉 iff 〈P, c〉∼̇sym〈Q, d〉.

Proof Using Lemma 3.2.3 and Lemma 3.2.4

Since ∼̇sb is closed under the addition of constraints, then ∼̇sym should also

have this property.

Lemma 3.2.5 If 〈P, c〉∼̇sym〈Q, d〉 then ∀a ∈ Con0, 〈P, c ⊔ a〉∼̇sym〈Q, d ⊔ a〉.

Proof It follows directly from Theorem 3.2.1.

We now present the irredundant bisimilarity. As we mentioned before, the

idea is to focus on the transitions that are irredundant. It then follows the usual

bisimulation game where the defender is required to reply with the same label and

ends up in an equivalent configuration to the attacker’s move. Such irredundancy

can be computed along with the equivalence classes of ∼̇sb.

Definition 3.2.7 (Irredundant Bisimilarity) An irredundant bisimulation is a

symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1
α

−→ γ′1 and it is irredundant in R then there exists γ′2 s.t. γ2
α

−→ γ′2 and

(γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are irredundant bisimilar (γ1 ∼̇I γ2) if there exists an

irredundant bisimulation R s.t. (γ1, γ2) ∈ R.

3.2. IRREDUNDANT BISIMILARITY 60

Example 3.2.5 We can verify that the relation R in Example 3.2.4 is an irre-

dundant bisimulation to show that 〈P + Q, true〉∼̇I〈P, true〉. We take the pair

(〈P + Q, true〉, 〈P, true〉). The first item in Definition 3.2.7 is obvious. Then

take 〈P + Q, true〉
x<7
−→ 〈T, x < 7〉, which is irredundant according to Defini-

tion 3.2.4, then there exists a 〈T, x < 7〉 s.t. 〈P, true〉
x<7
−→ 〈T, x < 7〉 and

(〈T, x < 7〉, 〈T, x < 7〉) ∈ R. The other pairs are trivially proven. Notice

that 〈P + Q, true〉
x<7
−→ 〈T, x < 7〉 ≻R 〈P + Q, true〉

x<5
−→ 〈T, x < 5〉 hence

〈P + Q, true〉
x<5
−→ 〈T, x < 5〉 is redundant, thus it does not need to be matched

by 〈P, true〉.

This previous notion of irredundant bisimilarity turns out to be closed under

the addition of constraints, something we prove with the following lemma.

Lemma 3.2.6 If 〈P, c〉∼̇I〈Q, d〉 then for all a ∈ Con0, 〈P, c ⊔ a〉∼̇I〈Q, d ⊔ a〉.

Proof We need to prove that R = {(〈P, c⊔ e〉, 〈Q, d⊔ e〉) | 〈P, c〉∼̇I〈Q, d〉} is an

irredundant bisimulation.

(i) Since 〈P, c〉∼̇I〈Q, d〉 then from condition (i) and by monotonicity we have

that for all e s.t. 〈P, c ⊔ a〉 ↓e then 〈Q, d ⊔ a〉 ↓e.

(ii) Let us start by assuming that

〈P, c ⊔ a〉
α

−→ 〈P ′, c′〉 which is irredundant in R (3.1)

then we need to prove that there exists 〈Q′, d′〉 s.t. 〈Q, d〉
α

−→ 〈Q′, d′〉 and

〈P ′, c′〉R〈Q′, d′〉. Now by soundness on the transition from 〈P, c ⊔ a〉 we

know that 〈P, c ⊔ a ⊔ α〉 −→ 〈P ′, c′〉 and from completeness we get that

there exist b and β s.t.

t1 = 〈P, c〉
β

−→ 〈P ′, c′′〉 where β ⊔ b = a ⊔ α and c′′ ⊔ b = c′ (3.2)

Since ≻R is well founded then there exist an irredundant (not dominated by

the rest) transition t2 = 〈P, c〉
λ

−→ 〈P1, c1〉 that dominates t1 in R (t2 ≻R

t1), therefore

t2 ≻D 〈P, c〉
β

−→ 〈P1, c2〉 and 〈P1, c2〉R〈P ′, c′′〉 (3.3)

3.2. IRREDUNDANT BISIMILARITY 61

by definition of ≻D there exists b′ s.t.

λ ⊔ b′ = β, c1 ⊔ b′ = c2 and λ 6= β (3.4)

Now since 〈P, c〉∼̇I〈Q, d〉 and the irredundant t2, then there exists 〈Q1, d1〉

s.t.

〈Q, d〉
λ

−→ 〈Q1, d1〉 and 〈P1, c1〉∼̇I〈Q1, d1〉 (3.5)

using soundness 〈Q, d ⊔ λ〉 −→ 〈Q1, d1〉 and monotonicity we can obtain

〈Q, d ⊔

β
︷ ︸︸ ︷

λ ⊔ b′ ⊔b
︸ ︷︷ ︸

a⊔α

〉 −→ 〈Q1, d1 ⊔ b′ ⊔ b〉 and from the latter condition in

(3.5) we can also deduce that 〈Q1, d1 ⊔ b′ ⊔ b〉 R〈P1, c1 ⊔ b′
︸ ︷︷ ︸

c2

⊔b〉 therefore

by the second condition in (3.3) we know that 〈P1, c2 ⊔ b〉R〈P ′, c′′ ⊔ b
︸ ︷︷ ︸

c′

〉. Let

d′1 = d1 ⊔ b′ ⊔ b, we can summarize this part by saying that

〈Q, d ⊔ a ⊔ α〉 −→ 〈Q1, d
′
1〉 and 〈P ′, c′〉R〈Q1, d

′
1〉 (3.6)

Now let us reason on this transition, by completeness there exist α1 and b1

s.t.

t3 = 〈Q, d ⊔ a〉
α1−→ 〈Q1, d2〉 where α1 ⊔ b1 = α and d2 ⊔ b1 = d′1 (3.7)

By means of contradiction let us assume that α1 6= α, then by soundness (on

t3) 〈Q, d⊔ a⊔ α1〉 −→ 〈Q1, d2〉 and, by completeness on this transition, we

know there exist α2 and b2 s.t.

t4 = 〈Q, d〉
α2−→ 〈Q1, d

′
2〉 where α2 ⊔ b2 = a ⊔ α1 and d′2 ⊔ b2 = d2 (3.8)

By the well-foundedness of ≻R, we know there exists an irredundant transi-

tion t5 = 〈Q, d〉
α′

−→ 〈Q3, d3〉 s.t. t5 ≻R t4, namely,

t5 ≻D 〈Q, d〉
α2−→ 〈Q3, d

′
3〉 and 〈Q3, d

′
3〉R〈Q1, d

′
2〉 (3.9)

hence, there exists b3 s.t. α′ ⊔ b3 = α2, d3 ⊔ b3 = d′3 and α′ 6= α2. Now since

3.2. IRREDUNDANT BISIMILARITY 62

〈P, c〉∼̇I〈Q, d〉 then from the irredundant t5 we can deduce that

〈P, c〉
α′

−→ 〈P3, c3〉 and 〈P3, c3〉R〈Q3, d3〉 (3.10)

by soundness we get 〈P, c ⊔ α′〉 −→ 〈P3, c3〉 and by monotonicity

〈P, c ⊔

a⊔α1

︷ ︸︸ ︷

α′ ⊔ b2 ⊔ b3〉 −→ 〈P3,

c4
︷ ︸︸ ︷

c3 ⊔ b2 ⊔ b3〉, (3.11)

from the latter condition in (3.10) and by definition of R we have 〈P3, c3⊔b2⊔

b3〉R〈Q3, d3 ⊔ b2 ⊔ b3〉, and since d3 ⊔ b3 = d′3 and from the latter condition

in (3.9) then 〈Q3, d
′
3 ⊔ b2〉R〈Q1, d

′
2 ⊔ b2〉 and using d′2 ⊔ b2 = d2 we can

conclude that 〈P3, c4〉R〈Q1, d2〉. Going back to the transition in (3.11), we

can rewrite it as 〈P, c⊔ a⊔α1〉 −→ 〈P3, c4〉, then by completeness we know

there exist b4 and α′1 s.t.

t6 = 〈P, c ⊔ a〉
α′
1−→ 〈P3, c

′
4〉 where α′1 ⊔ b4 = α1 and c′4 ⊔ b4 = c4 (3.12)

Notice that if such transition exists then t6 ≻R (3.1), as we prove as follows

t6 ≻D 〈P, c ⊔ a〉
α′
1
⊔b4⊔b1
−→ 〈P3,

c4
︷ ︸︸ ︷

c′4 ⊔ b4 ⊔b1〉 (3.13)

and now it is left to prove that 〈P3, c4 ⊔ b1〉R〈P ′, c′〉, given that 〈P3, c4〉R

〈Q1, d2〉 then by definition of R we have 〈P3, c4 ⊔ b1〉R〈Q1, d2 ⊔ b1〉. Since

〈Q1, d2 ⊔ b1〉 = 〈Q1, d
′
1〉 and we have already proven that 〈P ′, c′〉R〈Q1, d

′
1〉

(latter condition in (3.6)), finally we can conclude that 〈P3, c4⊔ b1〉R〈P ′, c′〉

and therefore (3.1) is redundant, a contradiction. To conclude, α1 must be

equal to α, otherwise we would get an absurd as shown previously, thus we

can conclude our main result by using (3.6), (3.7) and assuming Q′ = Q1,

d′ = d′1,

〈Q, d ⊔ a〉
α

−→ 〈Q1, d
′
1〉 and 〈P ′, c′〉R〈Q1, d

′
1〉 (3.14)

Indeed 〈Q, d ⊔ a〉 can defend from the attacker’s move (the token game) by

using the same label and still remain in the relation.

3.2. IRREDUNDANT BISIMILARITY 63

As we had already done with Lemma 3.2.3 and Lemma 3.2.4 to prove that

〈P, c〉∼̇sb〈Q, d〉 iff 〈P, c〉∼̇sym〈Q, d〉, the following lemmata will help us find the

correspondence between symbolic bisimilarity (Definition 3.2.6) and irredundant

bisimilarity (Definition 3.2.7).

Lemma 3.2.7 If 〈P, c〉∼̇sym〈Q, d〉 then 〈P, c〉∼̇I〈Q, d〉

Proof We will prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉∼̇sym〈Q, d〉} is an irre-

dundant bisimulation.

(i) Since 〈P, c〉∼̇sym〈Q, d〉 it is direct result from condition (i).

(ii) Assume that 〈P, c〉
α

−→ 〈P ′, c′〉 (1) which is irredundant in R then we need to

prove that there exists 〈Q′, d′〉 s.t. 〈Q, d〉
α

−→ 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉.

Since 〈P, c〉∼̇sym〈Q, d〉 and from (1), we have that there exists t = 〈Q, d〉
β

−→ 〈Q′, d′′〉 s.t. t ⊢D 〈Q, d〉
α

−→ 〈Q′, d′〉 and 〈P ′, c′〉∼̇sym〈Q
′, d′〉, thus

by definition of ⊢D, there is b s.t. β ⊔ b = α and d′′ ⊔ b = d′. Now let us

assume by means of contradiction that β 6= α, then we can use t to reason

about what 〈P, c〉 can do, again from 〈P, c〉∼̇sym〈Q, d〉 and t we can say

that there exists a transition t′ = 〈P, c〉
λ

−→ 〈P1, c
′
1〉 s.t. t′ ⊢D 〈P, c〉

β
−→

〈P1, c1〉 and 〈P1, c1〉∼̇sym〈Q
′, d′′〉 (2). By definition of ⊢D, the last derivation

means that there is a b′ s.t. λ ⊔ b′ = β and c′1 ⊔ b′ = c1. Now we can use

Lemma 3.2.5 on (2) to get 〈P1, c1⊔b〉R〈Q′, d′′⊔b〉 therefore, given that d′′⊔

b = d′, then 〈P1, c1 ⊔ b〉R〈Q′, d′〉, which by definition of R means 〈P1, c1 ⊔

b〉∼̇sym〈Q
′, d′〉 (3). We can also conclude that since 〈P ′, c′〉∼̇sym〈Q

′, d′〉

then by transitivity 〈P1, c1 ⊔ b〉∼̇sym〈P
′, c′〉 and hence 〈P1, c1 ⊔ b〉R〈P ′, c′〉

(4). On the other hand, notice that now t′ is able to dominate our originally

irredundant transition, namely t′ ≻R (1), as follows

t′ ≻D 〈P, c〉

α
︷ ︸︸ ︷

β
︷ ︸︸ ︷

λ ⊔ b′ ⊔b
−→ 〈P ′,

c1
︷ ︸︸ ︷

c′1 ⊔ b′ ⊔b〉 and 〈P1, c1 ⊔ b〉R〈P ′, c′〉 from (4)

therefore if α 6= β then we would get an absurd since (1) would be redundant

in R, thus we can finally say that α = β which allow us to conclude that

〈Q, d〉
α

−→ 〈Q′, d′〉 and 〈P ′, c′〉∼̇sym〈Q
′, d′〉 then 〈P ′, c′〉R〈Q′, d′〉.

3.3. PARTITION REFINEMENT FOR CCP 64

Lemma 3.2.8 If 〈P, c〉∼̇I〈Q, d〉 then 〈P, c〉∼̇sym〈Q, d〉

Proof We will prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉∼̇I〈Q, d〉} is a symbolic

bisimulation.

(i) Since 〈P, c〉∼̇I〈Q, d〉 it is direct result from condition (i)

(ii) Take t = 〈P, c〉
α

−→ 〈P ′, c′〉 then since ≻R is well founded then there exists

an irredundant transition t′ = 〈P, c〉
β

−→ 〈P1, c1〉 s.t. t′ ≻R t,

t′ ≻D 〈P, c〉
α

−→ 〈P1, c
′
1〉 where 〈P1, c

′
1〉R〈P ′, c′〉 (3.15)

By definition of ≻D, there exists a b s.t. β ⊔ b = α, c1 ⊔ b = c′1 and

α 6= β. Now since 〈P, c〉∼̇I〈Q, d〉 and t′ then we know there is a transi-

tion t′′ = 〈Q, d〉
β

−→ 〈Q′, d′〉 and 〈P1, c1〉∼̇sym〈Q
′, d′〉. Thus, from Lemma

3.2.6 〈P1, c1 ⊔ b〉R〈Q′, d′ ⊔ b〉, equivalently 〈P1, c
′
1〉R〈Q′, d′ ⊔ b〉 and using

the latter condition in (3.15) then 〈Q′, d′ ⊔ b〉R〈P ′, c′〉. We can finally con-

clude that t′′ ≻D 〈Q, d〉
α

−→ 〈Q′, d′ ⊔ b〉 and 〈Q′, d′ ⊔ b〉R〈P ′, c′〉, therefore

the condition for being a symbolic bisimulation is proven.

And most importantly, it coincides with the symbolic one.

Theorem 3.2.2 〈P, c〉∼̇sym〈Q, d〉 iff 〈P, c〉∼̇I〈Q, d〉

Proof Using Lemma 3.2.7 and Lemma 3.2.8.

Finally, we can clearly see that the above-defined equivalences (Definition

3.2.6 and Definition 3.2.7) coincide with ∼̇sb.

Theorem 3.2.3 〈P, c〉∼̇I〈Q, d〉 iff 〈P, c〉∼̇sym〈Q, d〉 iff 〈P, c〉∼̇sb〈Q, d〉

Proof Using transitivity, Theorem 3.2.1 and Theorem 3.2.2.

3.3 Partition Refinement for CCP

Recall that we mentioned in Section 2.2 that checking ∼̇sb seems hard because of

the quantification over all possible constraints. However, by using the relations

3.3. PARTITION REFINEMENT FOR CCP 65

showed in Theorem 3.2.3 we shall introduce an algorithm for checking ∼̇sb by

employing the notion of irredundant bisimulation. In Figure 3.4 we show the

design of this algorithm.

γ γ

(ccp)

γ γ′

sb ∼̇I

γ ∼̇sb γ′?

Figure 3.4: CCP Partition Refinement

The first novelty w.r.t. the standard partition refinement (Algorithm 3.1.1) con-

sists in using barbs. Since configurations satisfying different barbs are surely dif-

ferent, we can safely start with a partition that equates all and only those states sat-

isfying the same barbs. Note that two configurations satisfy the same barbs iff they

have the same store. Thus, we take as initial partition P0 = {IS⋆
d1
} . . . {IS⋆

dn
},

where IS⋆
di

is the subset of the configurations of IS⋆ with store di.

Another difference is that instead of using the function F of Algorithm 3.1.1,

we refine the partitions by employing the function IR defined as follows:

Definition 3.3.1 (IR) For all partitions P , γ1 IR(P) γ2 if

3.3. PARTITION REFINEMENT FOR CCP 66

• if γ1
α

−→ γ′1 is irredundant in P , then there exists γ′2 s.t. γ2
α

−→ γ′2 and

γ′1 Pγ′2.

It is now important to observe that in the computation of IR(Pn), there might be

involved also states that are not reachable from the initial states IS. For instance,

consider the LTSs of 〈S, true〉 and 〈R + S, true〉 in Figure 3.1. The state 〈P, z <

5〉 is not reachable but is needed to check if 〈R+ S, true〉
z<5
−→ 〈P +Q, z < 5〉 is

redundant.

For this reason, we have also to change the initialization step of our algorithm,

by including in the set IS⋆ all the states that are needed to check redundancy. This

is done by using the following closure rules.

(IS)
γ ∈ IS

γ ∈ IS⋆

(RS)
γ1 ∈ IS⋆ γ1

α
−→ γ2

γ2 ∈ IS⋆

(RD)
γ ∈ IS⋆ γ

α1−→ γ1 γ
α2−→ γ2 γ

α1−→ γ1 ≻D γ
α2−→ γ3

γ3 ∈ IS⋆

The rule (RD) adds all the states that are needed to check redundancy. Indeed, if

γ can perform both
α1−→ γ1 and

α2−→ γ2 s.t. γ
α1−→ γ1 ≻D γ

α2−→ γ3, then γ
α2−→ γ2

would be redundant whenever γ2 ∼̇sb γ3.

In Example 3.3.1 we can understand how ‘possibly’ redundant transitions are

found, in order to check redundancy. Likewise, we show how rule (RD) adds new

states to the set of reachable states IS⋆.

Example 3.3.1 Let us assume that we have an automaton generated by a ccp

program where 〈P0, true〉, 〈P1, x < 10〉, 〈P2, x < 5〉 ∈ IS⋆ and with transi-

tions 〈P0, true〉
x<10
−→ 〈P1, x < 10〉 and 〈P0, true〉

x<5
−→ 〈P2, x < 5〉. Therefore,

〈P0, true〉
x<10
−→ 〈P2, x < 5〉 is ‘possibly’ redundant, 〈P0, true〉

x<10
−→ 〈P1, x <

10〉 ≻D 〈P0, true〉
x<5
−→ 〈P1, x < 5〉 and we get 〈P1, x < 5〉 ∈ IR⋆.

Figure 3.2 shows the partitions computed by the algorithm with initial states

〈R′ + S, true〉, 〈S, true〉 and 〈R + S, true〉. Note that, as expected, in the final

3.3. PARTITION REFINEMENT FOR CCP 67

Algorithm 3.3.1 CCP-Partition-Refinement(IS)

Initialization

1. Compute IS⋆ with the rules (IS), (RS) and (RD),

2. P0 := {IS⋆
d1
} . . . {IS⋆

dn
},

Iteration Pn+1 := IR(Pn)
Termination If Pn = Pn+1 then return Pn.

partition 〈R+S, true〉 and 〈S, true〉 belong to the same block, while 〈R′+S, true〉

belong to a different one (meaning that the former two are saturated bisimilar,

while 〈R′ + S, true〉 is not). In the initial partition all states with the same store

are equated. In P1, the blocks are split by considering the outgoing transitions: all

the final states are distinguished (since they cannot perform any transitions) and

〈T ′, z < 5 ⊔ x < 5〉 is distinguished from 〈T, z < 5 ⊔ x < 5〉. All the other

blocks are not divided, since all the transitions with label x < 5 are redundant

in P0 (since 〈P, z < 5〉P0〈P + Q′, z < 5〉, 〈P, z < 5〉P0〈P + Q, z < 5〉 and

〈T ′, z < 5 ⊔ x < 5〉P0〈T, z < 5 ⊔ x < 5〉). Then, in P2, 〈P + Q′, z < 5〉 is

distinguished from 〈P, z < 5〉 since the transition 〈P + Q′, z < 5〉
x<5
−→ is not

redundant anymore in P1 (since 〈T ′, z < 5 ⊔ x < 5〉 and 〈T, z < 5 ⊔ x < 5〉

belong to different blocks in P1). Then in P3, 〈R′ + S, true〉 is distinguished

from 〈S, true〉 since the transition 〈R′ + S, true〉
x<5
−→ is not redundant in P2

(since 〈P + Q′, z < 5〉 6 P2〈P, z < 5〉). Finally, the algorithm computes P4

that is equal to P3 and return it. It is interesting to observe that the transition

〈R + S, true〉
x<5
−→ is redundant in all the partitions computed by the algorithm

(and thus in ∼̇sb), while the transition 〈R′+S, true〉
x<5
−→ is considered redundant

in P0 and P1 and not redundant in P2 and P3.

3.3.1 Termination

Note that any iteration splits blocks and never fuse them. For this reason if IS⋆ is

finite, the algorithm terminates in at most |IS⋆| iterations. The proof of the next

proposition assumes that ⊢D is decidable. However, as we shall prove in the next

section, the decidability of ⊢D follows from our assumption about the decidability

of the ordering relation ⊑ of the underlying constraint system and Theorem 3.3.2

3.3. PARTITION REFINEMENT FOR CCP 68

in the next section.

Proposition 3.3.1 If IS⋆ is finite, then the algorithm terminates and the resulting

partition coincides with ∼̇sb.

Proof Using Corollary 1 of [BM09] and the decidability of ≻D.

We now prove that if the set Config(IS) of all configurations reachable from

IS (through the LTS generated by the rules in Table 2.2) is finite, then IS⋆ is finite.

This necessary and sufficient condition is standard in all the partition refinement

approaches, like e.g. those in [KS83, PS96, MPLS] for CCS and π-calculus.

Although we lose expressiveness, this condition can be easily guaranteed by

imposing some syntactic restrictions on ccp terms, like for instance, by excluding

either the procedure call or the hiding operator.

Theorem 3.3.1 If Config(IS) is finite, then IS⋆ is finite.

Proof As a first step, we observe that a configuration γ ∈ IS⋆ only if γ = 〈P, d⊔

e〉 and 〈P, d〉 ∈ Config(IS). Then we prove that there are only finitely many

such constraints e.

Let Label(IS) be the set of all labels in the LTS of IS generated by rules in

Table 2.2. This set is finite (since Config(IS) is finite), and its downward closure

↓Label(IS) = {a | ∃b ∈ Label(IS) with a ⊑ b} is also finite (since ⊑ is well-

founded). The set of all e s.t. 〈P, d ⊔ e〉 ∈ IS∗ (with 〈P, d〉 ∈ Config(IS)) is a

subset of ↓Label(IS) and thus it is finite.

Indeed, observe that if 〈P, d⊔e〉
c1−→, then 〈P, d〉

c2−→ with c1 ⊑ c2. Therefore

Label(IS⋆) ⊆ ↓Label(IS). Moreover, if 〈P, d ⊔ e〉 is added to IS⋆ by the rule

(RD) then, by definition of ≻D (Definition 3.2.3), e ⊑ β for β being a label in

Label(IS⋆) (i.e., in ↓Label(IS)).

3.3.2 Complexity of the Algorithm

Here we give asymptotic bounds for the execution time of Algorithm 3.3.1. We

assume that the reader is familiar with the O(.) notation for asymptotic upper

bounds in analysis of algorithms–see [CLRS09].

3.3. PARTITION REFINEMENT FOR CCP 69

Our implementation of Algorithm 3.3.1 is a variant of the original partition re-

finement algorithm in [KS83] with two main differences: The computation of IS⋆

according to rules (IS), (RS) and (RD) (line 2, Algorithm 3.3.1) and the decision

procedure for ≻D (Definition 3.2.3) needed in the redundancy checks.

We assume ⊏ to be decidable. Notice that the requirement of having some e

that satisfies conditions (i), (ii) and (iii) in Definition 3.2.3 suggests that deciding

whether two given transitions belong to ≻D may be costly. The following theo-

rem, however, provides a simpler characterization of ≻D allowing us to reduce

the decision problem of ≻D to that of ⊏.

Theorem 3.3.2 〈P, c〉
α

−→ 〈P1, c
′〉 ≻D 〈P, c〉

β
−→ 〈P1, c

′′〉 iff the following con-

ditions hold: (a) α ⊏ β (b) c′′ = c′ ⊔ β

Proof (⇒) We assume 〈P, c〉
α

−→ 〈P1, c
′〉 ≻D 〈P, c〉

β
−→ 〈P1, c

′′〉 namely (i), (ii)

and (iii) in Definition 3.2.3 hold. Take e2 = e ⊔ α therefore we have α ⊔ e2 =

α ⊔ e ⊔ α = α ⊔ e that by condition (ii) is equal to β. Since α 6= β (iii), then

α ⊏ β, i.e., condition (a) holds.

Notice that α ⊑ c′ since labels are added to the stores when performing tran-

sitions. By condition (ii), we have that c′′ = c′ ⊔ e = c′ ⊔ α ⊔ e that, by condition

(i), is equal to c′ ⊔ β. Thus, (b) holds.

(⇐) Conversely, assume that (a) and (b) hold. Since α ⊏ β, there exists an

e2 s.t. β = α ⊔ e2 and α 6= β (the latter is condition (iii) in Definition 3.2.3).

Now to prove (i), (ii) we take e = e2 ⊔ α. Since β = α ⊔ e2, then β = α ⊔ e2 =

α ⊔ e2 ⊔ α = α ⊔ e, i.e., (i) holds. By (b), c′′ = c′ ⊔ β = c′ ⊔ α ⊔ e2 = c′ ⊔ e, i.e.,

(ii) also holds.

Henceforth we shall assume that given a constraint system C, the function fC

represents the time complexity of deciding (whether two given constraints are in)

⊏. The following is a useful corollary of the above theorem.

Corollary 3.3.1 Given two transitions t and t′, deciding whether t ≻D t′ takes

O(fC) time.

Remark 3.3.1 We introduced ≻D as in Definition 3.2.3 as natural adaptation of

the corresponding notion in [BM09]. The simpler characterization given by the

3.3. PARTITION REFINEMENT FOR CCP 70

above theorem is due to particular properties of ccp transitions, in particular

monotonicity of the store, and hence it may not hold in a more general scenario.

Complexity. The size of the set IS∗ is central to the complexity of Algorithm

3.3.1 and depends on topology of the underlying transition graph. For tree-like

topologies, a typical representation of many transition graphs, one can show by

using a simple combinatorial argument that the size of IS∗ is quadratic w.r.t. the

size of the set of reachable configurations from IS, i.e., Config(IS). For arbitrary

graphs, however, the size of IS∗ may be exponential in the number of transitions

between the states of Config(IS) as shown by the following construction.

Definition 3.3.2 Let P 0 = stop and P 1 = P. Given an even number n, define

sn(n, 0) = stop, sn(n, 1) = ask (true) → sn(n, 0) and for each 0 ≤ i <

n ∧ 0 ≤ j ≤ 1 let sn(i, j) = (ask (true) → sn(i, j ⊕ 1)j⊕1 + (ask (bi,j) →

stop) + (ask (ai) → sn(i + 1, j)) where ⊕ means addition modulo 2. We also

assume that (1) for each i, j : ai ⊏ bi,j and (2) for each two different i and i′ :

ai 6⊑ ai′ , and (3) for each two different (i, j) and (i′, j′): bi,j 6⊑ bi′,j′ .

Let IS = {sn(0, 0)}. Figure 3.5 shows the transitions for the states in Config(IS).

One can verify that the size of IS∗ is indeed exponential in the number of transi-

tions between the states of Config(IS).

Since Algorithm 3.3.1 computes IS∗ the above construction shows that on

some inputs Algorithm 3.3.1 take at least exponential time. We conclude by stat-

ing an upper-bound on the execution time of Algorithm 3.3.1.

Theorem 3.3.3 Let n be the size of the set of states Config(IS) and let m be

the number of transitions between those states. Then n× 2O(m) × fC is an upper

bound for the running time of Algorithm 3.3.1.

Proof Let N be the size of the set of states IS∗ and let M be the number of tran-

sitions between those states. One can verify that each state s in IS∗ corresponds

to a state of s′ in Config(IS) so that s and s′ have the same process and the store

of s results from some least upper bound of the stores in the transitions between

the states of Config(IS). Hence, N is bounded by O(n× 2m). Similarly, we can

conclude that M is bounded by O(m× 2m). Notice that we need to check for ≻D

3.4. SUMMARY OF CONTRIBUTIONS AND RELATED WORK 71

in each transition (between the states) in IS∗. With the help of Corollary 3.3.1 we

conclude that constructing IS∗ takes O(fC ×m× 2m) time.

Let N be the size of the set of states IS∗ and let M be the number of transitions

between those states. Following the implementation of [KS83] and taking into

account the checks for irredundacy we can obtain a O(NM3) time bound for the

overall executions of the iterations of Algorithm 3.3.1. From the above upper-

bounds for N and M it follows that n× 2O(m) × fC is indeed an upper bound for

the time execution of Algorithm 3.3.1.

true

a0

a1

an-1

b0,0

a0

a1

an-1

b0,1

b0,1 b1,1

true

true

true

bn-1,0 bn-1,0

sn(0,0)

sn(1,0) sn(1,1)

sn(0,1)

sn(n-1,0) sn(n-1,1)

sn(n,0) sn(n,1)

Figure 3.5: Transitions for sn(0, 0) as in Definition 3.3.2.

3.4 Summary of Contributions and Related Work

In this Chapter we introduced an algorithm to verify saturated barbed bisimilarity

for ccp, a new notion of strong bisimilarity for concurrent constraint program-

ming. To the best of our knowledge, this is the first algorithm for the automatic

verification of a ccp program equivalence. We do this by building upon the results

of [BM09], which introduces into the standard partition refinement algorithm a

new notion of behavioural equivalence which corresponds to the notion of satu-

rated barbed bisimilarity, namely irredundant bisimilarity, which allows this al-

3.4. SUMMARY OF CONTRIBUTIONS AND RELATED WORK 72

gorithm to calculate the new notion of strong bisimilarity for ccp which as said

before is non over-discriminative. We showed that the new algorithm terminates,

since any iteration splits blocks and never fuses them. This means that IS⋆ is

finite, and therefore the algorithm terminates in at most |IS⋆| iterations.

As said before, [BM09] studies the notion of saturated bisimilarity from a gen-

eral perspective and thus proposes an abstract checking procedure. Hence, one can

say somehow that our partition refinement algorithm for ccp can be regarded as

an instance of the one introduced in the aforementioned paper. As told all along

this chapter, even though the Minimization Algorithm for Symbolic Bisimilarity

focuses mainly on the symbolic semantics for interactive systems, it has a lot to

do with the core of our algorithm. More precisely, some notions such as saturated

and symbolic bisimilarity have been central for the development of our algorithm.

Likewise, regarding the practical point of view, the concept of redundant transi-

tions and the way Bonchi and Montanari compute redundancy and bisimilarity at

the same time, is the key to achieve our goal, that is to verify the well-behaved

notion of strong bisimilarity presented in Definition 2.4.2 in Section 2.4.

Chapter 4

Reducing Weak to Strong

Bisimilarity in CCP

’Think simple’ as my old master used to say - meaning reduce the

whole of its parts into the simplest terms, getting back to first

principles.

– Frank Lloyd Wright.

In Chapter 2 we presented weak bisimilarity, a central behavioural equivalence

in process calculi which is obtained from the strong case [SR90] by taking into ac-

count only the actions that are observable in the system. In Chapter 3 we gave an

algorithm based on the partition refinement one [KS83] to chek strong bisimilarity

for ccp (Definition 2.4.2 in Section 2.4). Typically, the standard partition refine-

ment algorithm can also be used for deciding weak bisimilarity simply by using

Milner’s reduction from weak to strong bisimilarity; a technique referred to as

saturation (Chapter 3, The algorithmics of bisimilarity in [San11]). In this chap-

ter we demonstrate that, because of its labeled transitions, the above-mentioned

saturation technique does not work for ccp. We give an alternative reduction from

weak ccp bisimilarity to the strong one that allows us to use the ccp partition

refinement algorithm for deciding this equivalence.

73

4.1. BACKGROUND 74

4.1 Background

4.1.1 Reducing Weak to Strong Bisimilarity

We shall briefly present the standard way for computing weak bisimilarity [Mil80]

by means of the partition refinement algorithm [KS83] and the saturation method

proposed by Milner [Mil80].

A major dichotomy among behavioural equivalences concerns the standard

notions of strong and weak equivalences. In strong equivalences, all the transitions

performed by a system are deemed observable. In weak equivalences, instead, in-

ternal transitions (usually denoted by τ) are unobservable. On the one hand, weak

equivalences [Mil80] are more abstract (and thus closer to the intuitive notion of

behaviour); on the other hand, strong equivalences [Mil80] are usually much eas-

ier to be checked (for instance, in [LPSS11], a standard strong equivalence which

is computable for a Turing complete formalism is introduced).

The standard notion of strong bisimilarity [Mil80] is one of the most stud-

ied behavioral equivalence and many algorithms (e.g., [VM94, Fer89, FGM+98])

have been developed to check whether two systems are equivalent up to this def-

inition of strong bisimilarity. Among these, the partition refinement algorithm

[KS83] is one of the best known.

Weak bisimilarity [Mil80] can be computed by reducing it to strong bisimilar-

ity [Mil80]. Given an LTS
a

−→, one can build
a

=⇒ as follows.

P
a

−→ Q

P
a

=⇒ Q P
τ

=⇒ P

P
τ

=⇒ P1
a

=⇒ Q1
τ

=⇒ Q

P
a

=⇒ Q

Since weak bisimilarity [Mil80] on
a

−→ coincides with strong bisimilarity [Mil80]

on
a

=⇒, then one can check weak bisimilarity with the algorithms for strong bisim-

ilarity on the new LTS
a

=⇒.

In this Chapter, first we show that the standard method for reducing weak to

strong bisimilarity (see Chapter 3 of [San11], [Mil80] or [Mil99]) does not work

for ccp and then we provide a way out of the impasse. Let us recall Section 2.3

4.1. BACKGROUND 75

where a ccp transition is:

γ
α

−→ γ′

where γ, γ′ are configurations and α is the label that represents a minimal infor-

mation (from the environment) that needs to be added to the store of configuration

γ to evolve from γ into γ′. Therefore, our solution can be readily explained by

observing that the labels in the LTS of a ccp agent are constraints (in other words,

they are “the minimal constraints” that the store should satisfy in order to make

the agent progress). These constraints form a lattice where the least upper bound

(denoted by ⊔) intuitively corresponds to conjunction and the bottom element is

the constraint true (as expected, transitions labeled by true are internal transi-

tions, corresponding to the τ moves in standard process calculi). Now, rather than

closing the transitions just with respect to true, we need to close them w.r.t. all

the constraints. Formally we build the new LTS with the following rules.

γ
a

−→ γ′

γ
a

=⇒ γ′ γ
true
=⇒ γ

γ
a

=⇒ γ′
b

=⇒ γ′′

γ
a⊔b
=⇒ γ′′

Note that, since ⊔ is idempotent, if the original LTS
a

−→ has finitely many tran-

sitions, then also
a

=⇒ is finite. This allows us to use the Algorithm 3.3.1 in

Section 3.3 to check weak bisimilarity on (the finite fragment) of concurrent

constraint programming. We have implemented this procedure in a tool that is

available at http://www.lix.polytechnique.fr/~andresaristi/

checkers/. To the best of our knowledge, this is the first tool for checking

weak equivalence of ccp programs.

Standard Reduction from Weak to Strong Bismilarity

As pointed out in the literature (Chapter 3 from [SR12]), in order to compute weak

bisimilarity [Mil80] we can use the partition refinement introduced in Section

3.1.1 . The idea is to start from the graph generated via the operational semantics

and then saturate it using the rules described in Table 4.1 to produce a new labeled

relation =⇒. Recall that −→∗ is the reflexive and transitive closure of the relation

http://www.lix.polytechnique.fr/~andresaristi/checkers/
http://www.lix.polytechnique.fr/~andresaristi/checkers/

4.1. BACKGROUND 76

−→. Now the problem whether two states are weakly bisimilar can be reduced

to checking whether they are strongly bisimilar w.r.t. =⇒ using the ccp-partition

refinement algorithm in Section 3.3. As we will show later on, this approach

does not work in a formalism like concurrent constraint programming. We shall

see that the problem involves the ccp transition labels which, being constraints,

can be arbitrary combined using the lub operation ⊔ to form a new one. Such a

situation does not arise in CCS-like labeled transitions.

MR1
γ

α
−→ γ′

γ
α

=⇒ γ′
MR2

γ
true
=⇒ γ

MR3
γ

true
=⇒ γ1

α
=⇒ γ2

true
=⇒ γ′

γ
α

=⇒ γ′

Table 4.1: Milner’s Saturation Method

Notation 4.1.1 When the label of a transition is true we will omit it. Namely,

henceforth we will use γ −→ γ′ and γ =⇒ γ′ to denote γ
true
−→ γ′ and γ

true
=⇒ γ′.

Recall that the labeled semantics in Section 2.3 can be related to the reduction

semantics in Section 2.1.3 via the lemmata: Lemma 3.2.1 (soundness) and Lemma

3.2.2 (completeness). (See Section 2.4). The first one deals with the fact that if a

process is able to perform an action using some (minimal) information from the

environment, then providing such information to the process (in its store) will al-

low to perform a reduction instead. Now completeness goes from reductions to

labeled transitions: if a configuration can perform a reduction then the idea is that

one could use a piece of its store as a label, and the process should be able to

arrive to the same result by means of a labeled transition. In this case, such label

might not be exactly the piece of information we took from the store but some-

thing smaller, thus the resulting store could also be smaller. We must mention

that Lemma 3.2.1 and Lemma 3.2.2 are essential for proving the correspondence

between the alternative notions of saturated strong barbed bisimilarity in ccp (see

Definition 2.2.2 in Section 2.2), symbolic bisimilarity (see Definition 3.2.6 in Sec-

tion 3.2.6) and irredundant bisimilarity (see Definition 3.2.7 in Section 3.2.6). As

a matter of fact there is an arising problem we must deal with. Completeness does

4.1. BACKGROUND 77

not hold when we reduce weak bisimilarity for ccp into the strong one by means

of using Milner’s saturation method, i.e., replacing −→ with =⇒ in Table 4.1.

Henceforth, we will show that the standard reduction from weak to strong does

not work.

Incompleteness of Milner’s Saturation Method in CCP

As mentioned at the beginning of this section, the standard approach for decid-

ing weak equivalences is to add some transitions to the original processes, so-

called saturation, and then check for the strong equivalence. In calculi like CCS,

such saturation consists in forgetting about the internal actions that make part of

a sequence containing one observable action (Table 4.1). However, for ccp this

method does not work. The problem is that the relation proposed by Milner is

not complete for ccp, hence the relation among the saturated, symbolic and irre-

dundant equivalences is broken. In the next section we will provide a stronger

saturation, which is complete, and allows us to use the ccp partition refinement to

compute ≈̇sb.

Let us show why Milner’s approach does not work. First, we need to introduce

formally the concept of completeness for a given relation.

Definition 4.1.1 We say that a relation
β
 ⊆ Conf ×Con0 ×Conf is complete if

whenever (〈P, c⊔a〉, true, 〈P ′, c′〉) ∈
β
 then there exist α, b ∈ Con0 s.t. 〈P, c〉

α

〈P ′, c′′〉 where α ⊔ b = a and c′′ ⊔ b = c′.

Notice that −→ (see Table 2.1 in Section 2.1.3 for the definition of this rela-

tion) is complete (see Lemma 3.2.2). Now Milner’s method defines a new relation

=⇒ using the rules in Table 4.1, but it turns out not to be complete.

Proposition 4.1.1 The relation =⇒ defined in Table 4.1 is not complete.

Proof We will show a counter-example where the completeness for =⇒ does not

hold. Let P = ask α → (ask β → stop) and d = α ⊔ β. Now consider the

transition 〈P, d〉 =⇒ 〈stop, d〉 and let us apply the completeness lemma, we can

take c = true and a = α ⊔ β, therefore by completeness there must exist b and

λ s.t. 〈P, true〉
λ

=⇒ 〈stop, c′′〉 where λ ⊔ b = α ⊔ β and c′′ ⊔ b = d. However,

4.1. BACKGROUND 78

notice that the only transition possible is 〈P, true〉
α

=⇒ 〈ask β → stop, α〉,

hence completeness does not hold since there is no transition from 〈P, true〉 to

〈stop, c′′〉 for some c′′. Figure 4.1 illustrates the problem.

〈ask α → (ask β → stop), α ⊔ β〉

〈ask β → stop, α ⊔ β〉

〈stop, α ⊔ β〉

〈ask α → (ask β → stop), true〉

〈ask β → stop, α〉

〈stop, α ⊔ β〉

α

β

missing

α ⊔ β

Figure 4.1: Counterexample for Completeness using Milner’s Sat. Method.

(Cycles from MR2 are omitted). Both graphs are obtained by applying the rules

in Table 4.1

We can now use this fact to see why the method does not work for computing

≈̇sb (see Definition 2.2.2 in Section 2.2.1) using the ccp partition refinement algo-

rithm. First, let us redefine some concepts using the new relation =⇒. Because of

condition (i) in ≈̇sb, we need a new definition of barbs, namely weak barbs w.r.t.

=⇒.

Definition 4.1.2 (Weak barb w.r.t. =⇒) We say γ has a weak barb e w.r.t. =⇒

(written γ e) if γ =⇒∗ γ′ ↓e.

Using this notion, we introduce Symbolic and Irredundant bisimilarity w.r.t.

=⇒, denoted by ∼̇=⇒
sym and ∼̇=⇒

I respectively. They are defined as in Definition

3.2.6 and Definition 3.2.7 in Section 3.2.6, where in condition (i) weak barbs (⇓)

are replaced with and in condition (ii) the relation is now =⇒. More precisely:

Definition 4.1.3 (Symbolic Bisimilarity over =⇒) A symbolic bisimulation is a

symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 =

〈P, c〉 and γ2 = 〈Q, d〉:

(i) if γ1 e then γ2 e,

(ii) if 〈P, c〉
α

=⇒ 〈P ′, c′〉 then there exists a transition t = 〈Q, d〉
β

=⇒ 〈Q′, d′′〉

s.t. t ⊢D 〈Q, d〉
α

=⇒ 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉

4.1. BACKGROUND 79

We say that γ1 and γ2 are symbolic bisimilar over =⇒ (γ1 ∼̇
=⇒
sym γ2) if there exists

a symbolic bisimulation over a relation R which is a symbolic bisimulation over

=⇒ s.t. (γ1, γ2) ∈ R.

Definition 4.1.4 (Irredundant Bisimilarity over =⇒) An irredundant bisimula-

tion is a symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R:

(i) if γ1 e then γ2 e,

(ii) if γ1
α

=⇒ γ′1 and it is irredundant in R then there exists γ′2 s.t. γ2
α

=⇒ γ′2 and

(γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are irredundant bisimilar over =⇒ (γ1 ∼̇
=⇒
I γ2) if there ex-

ists an irredundant bisimulation over a relation R which is an irredundant bisim-

ulation over =⇒ s.t. (γ1, γ2) ∈ R.

One would expect that since ∼̇sb = ∼̇sym = ∼̇I then the natural consequence

will be that ≈̇sb = ∼̇=⇒
sym = ∼̇=⇒

I , given that these new notions are supposed to be

the weak versions of the former ones when using the saturation method. However,

completeness is necessary for proving ∼̇sb = ∼̇sym = ∼̇I , and from Proposition

4.1.1 we know that =⇒ is not complete hence we might expect ≈̇sb 6= ∼̇=⇒
sym 6=

∼̇=⇒
I . In fact, the following counter-example shows these inequalities.

Example 4.1.1 Let P, P ′ and Q as in Figure 4.3. The figure shows 〈P, true〉

and 〈Q, true〉 after we saturate them using Milner’s method. First, notice that

〈P, true〉 ≈̇sb 〈Q, true〉, since there exists a saturated weak barbed bisimulation

R = {(〈P, true〉, 〈Q, true〉)} ∪ id . However, 〈P, true〉 6∼̇=⇒
I 〈Q, true〉. To prove

that, we need to pick an irredundant transition from 〈P, true〉 or 〈Q, true〉 (after

saturation) s.t. the other cannot match. Thus, take 〈Q, true〉
α⊔β
−→ 〈tell(c), α ⊔ β〉

which is irredundant and given that 〈P, true〉 does not have a transition with α⊔β

then we know that there is no irredundant bisimulation containing (〈P, true〉,

〈Q, true〉) therefore 〈P, true〉 6∼̇=⇒
I 〈Q, true〉. Using the same reasoning we can

also show that ≈̇sb 6= ∼̇=⇒
sym.

4.1. BACKGROUND 80

〈P, true〉 〈P ′, α〉

〈tell(d), α〉

〈tell(c), α ⊔ β〉 〈stop, α ⊔ β ⊔ c〉

〈stop, α ⊔ d〉

α

β

〈Q, true〉

〈P ′, α〉

〈tell(d), α〉

〈tell(c), α ⊔ β〉 〈stop, α ⊔ β ⊔ c〉

〈stop, α ⊔ d〉

〈tell(c), α ⊔ β〉 〈stop, α ⊔ β ⊔ c〉

α

β

α ⊔ β

Figure 4.2: Transitions from 〈P, true〉 and 〈Q, true〉

〈P, true〉 〈P ′, α〉

〈tell(d), α〉

〈tell(c), α ⊔ β〉 〈stop, α ⊔ β ⊔ c〉

〈stop, α ⊔ d〉

α

β

α

α

β

〈Q, true〉 〈P ′, α〉

〈tell(d), α〉

〈tell(c), α ⊔ β〉 〈stop, α ⊔ β ⊔ c〉

〈stop, α ⊔ d〉

〈tell(c), α ⊔ β〉 〈stop, α ⊔ β ⊔ c〉

α

βα ⊔ β

α ⊔ β

α

α

β

Figure 4.3: Saturated Transitions from 〈P, true〉 and 〈Q, true〉.

Let P = ask (α) → P ′, P ′ = (ask (β) → tell(c))+ (ask (true) → tell(d))

and Q = P + (ask (α ⊔ β) → tell(c)). The figure represents 〈P, true〉 and

〈Q, true〉 after being saturated using Milner’s method (cycles from MR2 om-

mited). The red dashed transitions are the new ones added by the rules in Table

4.1. The blue dotted transition is the (irredundant) one that 〈Q, true〉 can take but

〈P, true〉 cannot match, therefore showing that 〈P, true〉 6∼̇=⇒
I 〈Q, true〉.

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 81

4.2 Defining a New Saturation Method for CCP

In this section we shall provide a method for deciding weak bisimilarity (≈̇) in

ccp. As shown in Section 4.1.1, the usual method for deciding weak bisimilarity

does not work for ccp. We shall proceed by redefining =⇒ in such a way that it is

sound and complete for this language. Then we prove that, w.r.t. =⇒, symbolic

and irredundant bisimilarity coincide with ≈̇sb, i.e. ≈̇sb = ∼̇=⇒
sym = ∼̇=⇒

I . We

therefore conclude that the partition refinement algorithm in Section 3.3 can be

used to verify ≈̇sb w.r.t. =⇒.

If we analyze the counter-example to completeness (see Figure 4.1), one can

see that the problem arises because of the nature of the labels in ccp, namely using

this method 〈ask α → (ask β → stop), true〉 does not have a transition with

α⊔β to 〈stop, α⊔β〉, hence that fact can be exploited to break the relation among

the weak equivalences. Following this reasoning, instead of only forgetting about

the silent actions we also take into account that labels in ccp can be added together.

Thus we have a new rule that creates a new transition for each two consecutive

ones, whose label is the lub of the labels in them. This method can also be thought

as the reflexive and transitive closure of the labeled relation (
α

−→). This relation

turns out to be sound and complete and it can be used to decide ≈̇sb.

4.2.1 A New Saturation Method

Formally, our new relation =⇒ is defined by the rules in Table 4.2. For simplicity,

we are using the same arrow =⇒ to denote this relation. Consequently the defi-

nitions of weak barbs, symbolic and irredundant bisimilarity are now interpreted

w.r.t. =⇒ (, ∼̇=⇒
sym and ∼̇=⇒

I respectively).

R-Tau

γ =⇒ γ

R-Label

γ
α

−→ γ′

γ
α

=⇒ γ′
R-Add

γ
α

=⇒ γ′
β

=⇒ γ′′

γ
α⊔β
=⇒ γ′′

Table 4.2: New Labeled Transition System.

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 82

We now prove that coincides with ⇓, given that a transition under the new

relation corresponds to a sequence of reductions.

Lemma 4.2.1 γ −→∗ γ′ iff γ =⇒ γ′.

Proof (⇒) We can decompose γ −→∗ γ′ as follows γ −→ γ1 −→ . . . −→

γi −→ γ′, now we proceed by induction on i. The base case is i = 0, then

γ −→ γ′ and by rule R-Label we have γ =⇒ γ′. For the inductive step,

first we have by induction hypothesis that γ −→i γi implies γ =⇒ γi (1),

on the other hand, by rule R-Label on γi −→ γ′ we can deduce γi =⇒ γ′

(2). Finally by R-Add on (1) and (2) γ =⇒ γ′.

(⇐) We proceed by induction on the depth of the inference of γ =⇒ γ′. First,

using R-Tau , we can directly conclude γ −→∗ γ. Secondly, using R-Label

, γ =⇒ γ′ implies that γ −→ γ′. Finally, using R-Add , we get γ =⇒

γ′′ =⇒ γ′ and by induction hypothesis this means that γ −→∗ γ′′ −→∗ γ′

therefore γ −→∗ γ′.

Using this lemma, it is straightforward to see that the notions of weak barbs

coincide.

Lemma 4.2.2 γ ⇓e iff γ e.

Proof First, let us assume that γ ⇓e then by definition γ −→∗ γ′ ↓e, and from

Lemma 4.2.1 we know that γ =⇒ γ′ ↓e, hence γ e. On the other hand, if γ e

then by definition γ =⇒∗ γ′ ↓e, if we decompose these transitions then γ =⇒

. . . =⇒ γ′, and from Lemma 4.2.1 γ −→∗ . . . −→∗ γ′, therefore γ −→∗ γ′ ↓e,

finally γ ⇓e.

An important property that the new labeled transition system defined by the

new relation =⇒ must fulfill is that it must be finitely branching, if −→ is also

finitely branching. We prove this next.

The following set represents the possible results after performing one step

starting from a given configuration γ and using a relation −→. Such set contains

pairs of the form [γ′, α] in which the first item (γ′) is the configuration reached

and the second one (α) is the label used for that purpose. Formally we have:

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 83

Definition 4.2.1 (Single-step Reachable Pairs) The set of Single-step reachable

pairs is defined as Reach(γ,−→) = {[γ′, α] | γ
α

−→ γ′}.

We can extend this definition to consider more than one step at a time. We will

call this new set Reach∗(γ,−→) and it is defined below.

Definition 4.2.2 (Reachable Pairs) The set of reachable pairs is defined as

Reach
∗(γ,−→) = {[γ′, α] | ∃α1, . . . , αn. γ

α1−→ . . .
αn−→ γ′ ∧ α = αn}.

For convenience, in order to project the first or the second item of such pairs

we will define the functions C and L which extract the configuration and the label

respectively (hence the name).

Definition 4.2.3 The functions C and L are defined as follows, C([γ, α]) = {γ}

and L([γ, α]) = {α}. They extend to set of pairs as expected, namely given a set

of pairs S = {p1, . . . } then L(S) =
⋃

pi∈S
L(pi) and similarly for C.

The first step to prove that =⇒ is finitely branching is to assume that its strong

version is indeed finitely branching.

Definition 4.2.4 We say that a relation is finitely branching if for any γ,

|Reach(γ,)| < ∞.

Now, under the assumption that −→ is finitely branching, we can observe that

if the amount of configurations that can be reached (in one or more steps) is finite,

then the amount of labels should also be finite.

Lemma 4.2.3 Suppose that −→ is finitely branching, then for any γ, if

|C(Reach∗(γ,−→))| < ∞ then |L(Reach∗(γ,−→))| < ∞.

Proof Fom the hypothesis we know that there are finite γ′ that can be reached,

and using the finitely branching assumption we can see that from each of those γ′

there are only finitely possible α, hence the conclusion.

Finally, the nature of the labels in ccp is one of the reasons why our new transi-

tion system works. The following Lemma illustrates the fact that when generating

new labels, with the rule R-Add we will not add an infinite amount of those. In the

following, C∗⊔ will represent the Kleene closure over ⊔ of the set of constraints

C.

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 84

Lemma 4.2.4 Given a set of constraints C, if |C| < ∞ then |C∗⊔| < ∞.

Proof Follows from the idempotency of ⊔ (c ⊔ c = c).

Using these elements, the finitely branching of =⇒ follows directly under the

assumption that −→ is finitely branching.

Lemma 4.2.5 Assume that −→ is finitely branching, then for any γ,

if |C(Reach∗(γ,−→))| < ∞ then for any γ, =⇒ is finitely braching.

Proof (1) One can verify that C(Reach∗(γ,=⇒)) = C(Reach∗(γ,−→)) hence

from the hypothesis, |C(Reach∗(γ,=⇒))| < ∞.

(2) From the hypothesis and from Lemma 4.2.3 |L(Reach∗(γ,−→))| < ∞.

(3) One can check that L(Reach(γ,=⇒)) ⊆ L(Reach∗(γ,−→))∗⊔ therefore from

Lemma 4.2.4 and (2) |L(Reach(γ,=⇒))| < ∞.

Finally, from (1) and (3) we can conclude that for any γ, =⇒ is finitely brach-

ing.

4.2.2 A Remark about our Saturation in CCS

We assume that the reader is familiar with CCS [Mil80]. In this section the tran-

sitions, processes and relations are understood in the context of CCS. It is worth

noticing that we could use the saturation method mentioned in the previous section

for other formalisms like CCS, but unlike in ccp it would not work as intended.

More precisely it will generate a transition system that is not finitely branching.

Now, the actions that a process can perform need to be sequences of actions.

Moreover, the rules we defined in Table 4.2 must be modified, and the result is in

Table 4.3. Essentially, the lub operation (⊔) is replaced by the concatenation of

actions given that now the labels used for are sequences of actions.

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 85

RCCS1

P
τ

=⇒ P

RCCS2

P
s

−→ P ′

P
s

=⇒ P ′
RCCS3

P
s

=⇒ P ′
s′

=⇒ P ′′

P
s.s′
=⇒ P ′′

Here s = a1 . . . an, is a sequence of observable actions, hence for the Rule RCCS3 we

will take s.τ = τ.s = s.

Table 4.3: New Labeled Transition System for CCS.

Using these rules we can now define weak bisimilarity in terms of the new

relation =⇒ as follows.

Definition 4.2.5 (CCS-Weak Bisimilarity) A symmetric relation R is a CCS-

weak bisimulation if for every (P,Q) ∈ R:

• If P
s

=⇒ P ′ then there exists Q′ s.t. Q
s

=⇒ Q′ and (P ′, Q′) ∈ R.

We say that P and Q are CCS-weakly bisimilar (P ≈ Q) iff there is a CSS-weak

bisimulation containing (P,Q).

This definition resembles the standard definition of strong bisimilarity, hence

we could use the procedure to verify the strong version under =⇒ in order to

verify the weak one.

Now the problem is that by applying the rules in Table 4.3, even for a finite

LTS, we could end up adding an infinite amount of transitions. I.e., =⇒ in Table

4.3.

The following example illustrates the problem.

Example 4.2.1 Let us take a very simple recursive CCS process:

P = a.P

We can easily see that this process is finitely branching because it just has one

transition from the same state P to itself labeled by a. (See Figure 4.4).

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 86

P

a

Figure 4.4: CCS Process P = a.P (finitely branching).

But if we apply the rules in Table 4.3, even for Example 4.2.1, we could end

up adding an infinite amount of transitions, i.e., infinitely branching (see Figure

4.5). Notice that this is not the case for our ccp transition =⇒ defined in Table 4.2

(see Lemma 4.2.5).

P

...

...

...

a

a.a

τ

a.a.a

a.a.a.a

a.a...

Figure 4.5: Saturated CCS Process P = a.P (infinitely branching).

4.2.3 Soundness and Completeness

As mentioned before, soundness and completeness of the relation are the core

properties when proving ∼̇sb = ∼̇sym = ∼̇I . We now proceed to show that our

method enjoys these properties and they will allow us to prove the correspondence

among the equivalences for the weak case.

In Definition 4.1.1 we have introduced the formal definition of completeness, now

we shall introduce the notion of soundness in Definition 4.2.6

4.2. DEFINING A NEW SATURATION METHOD FOR CCP 87

Definition 4.2.6 We say that a relation
α
 ⊆ Conf × Con0 × Conf is sound if

whenever 〈P, c〉
α
 〈P ′, c′〉 then 〈P, c ⊔ α〉

true
 〈P ′, c′〉.

After introducing Definition 4.1.1 and Definition 4.2.6 we prove these proper-

ties for the relation =⇒ .

Lemma 4.2.6 (Soundness of =⇒) The relation =⇒ defined in Table 4.2 is sound.

Proof We proceed by induction on the depth of the inference of 〈P, c〉
α

=⇒ 〈P ′, c′〉.

• Using R-Tau we have 〈P, c〉 =⇒ 〈P, c〉 and the result follows directly given

that α = true.

• Using R-Label we have 〈P, c〉
α

=⇒ 〈P ′, c′〉 then 〈P, c〉
α

−→ 〈P ′, c′〉. By

Lemma 3.2.1 we get 〈P, c ⊔ α〉 −→ 〈P ′, c′〉 and finally by rule R-Label

〈P, c ⊔ α〉 =⇒ 〈P ′, c′〉.

• Using R-Add then we have 〈P, c〉
β⊔λ
=⇒ 〈P ′, c′〉 then 〈P, c〉

β
=⇒ 〈P ′′, c′′〉

λ
=⇒

〈P ′, c′〉 where β ⊔ λ = α. By induction hypothesis, 〈P, c ⊔ β〉 =⇒ 〈P ′′, c′′〉

(1) and 〈P ′′, c′′ ⊔ λ〉 =⇒ 〈P ′, c′〉 (2). By monotonicity on (1), 〈P, c ⊔ β ⊔

λ〉 =⇒ 〈P ′′, c′′⊔λ〉 and by rule R-Add on this transition and (2) then, given

that β ⊔ λ = α, we obtain 〈P, c ⊔ α〉 =⇒ 〈P ′, c′〉.

Lemma 4.2.7 (Completeness of =⇒) Relation =⇒ defined in Table 4.2 is com-

plete.

Proof Assuming that 〈P, c ⊔ a〉 =⇒ 〈P ′, c′〉 then, from Lemma 4.2.1, we can say

that 〈P, c ⊔ a〉 −→∗ 〈P ′, c′〉 which can be written as 〈P, c ⊔ a〉 −→ 〈P1, c1〉 −→

. . . −→ 〈Pi, ci〉 −→ 〈P ′, c′〉, we will proceed by induction on i.

• (Base Case) Assuming i = 0 then 〈P, c ⊔ a〉 −→ 〈P ′, c′〉 and the result

follows directly from Lemma 3.2.2 and R-Label .

• (Induction) Let us assume that 〈P, c ⊔ a〉 −→i 〈Pi, ci〉 −→ 〈P ′, c′〉 then

by induction hypothesis there exist β and b′ s.t. 〈P, c〉
β

=⇒ 〈Pi, c
′
i〉 (1)

where β ⊔ b′ = a and c′i ⊔ b′ = ci. Now by completeness on the last

transition 〈Pi, c
′
i ⊔ b′〉 −→ 〈P ′, c′〉, there exists λ and b′′ s.t. 〈Pi, c

′
i〉

λ
−→

4.3. CORRESPONDENCE BETWEEN ≈̇SB, ∼̇SYM , ∼̇I 88

〈P ′, c′′〉 where λ ⊔ b′′ = b′ and c′′ ⊔ b′′ = c′, thus by rule R-Label we have

〈Pi, c
′
i〉

λ
=⇒ 〈P ′, c′′〉 (2). We can now proceed to apply rule R-Add on (1)

and (2) to obtain the transition 〈P, c〉
α

=⇒ 〈P ′, c′′〉 where α = β ⊔ λ and

finally take b = b′′, therefore the conditions hold α ⊔ b = β ⊔ λ ⊔ b′′ = a

and c′′ ⊔ b = c′′ ⊔ b′′ = c′.

4.3 Correspondence between ≈̇sb, ∼̇sym, ∼̇I

We show our main result of this chapter, a method for deciding ≈̇sb. Recall that

≈̇sb is the standard weak bisimilarity for ccp (see Section 2), and it is defined in

terms of −→, therefore it does not depend on =⇒. Roughly, we start from the

fact that the ccp partition refinement is able to check whether two configurations

are irredundant bisimilar ∼̇I . Such configurations evolve according to a relation

(−→), then we provide a new way for them to evolve (=⇒) and we use the same

algorithm to compute now ∼̇=⇒
I . Here we prove that ≈̇sb = ∼̇=⇒

sym = ∼̇=⇒
I hence

we give a reduction from ≈̇sb to ∼̇=⇒
I which has an effective decision procedure.

Given that the relation −→ is sound and complete (see Lemma 3.2.1 and

Lemma 3.2.2 in Section 3.2), then there exists a correspondence between the

symbolic and irredundant bisimilarity over −→ shown in Theorem 3.2.3 in Sec-

tion 3.2.6. From this statement and since we have proven that new relation =⇒

is sound and complete, a correspondence between the symbolic and irredundant

bisimilarity over =⇒ exists.

Corollary 4.3.1 γ ∼̇=⇒
sym γ′ iff γ ∼̇=⇒

I γ′

Finally, in the next two lemmata, we prove that ≈̇sb = ∼̇=⇒
sym.

Lemma 4.3.1 If γ ≈̇sb γ
′ then γ ∼̇=⇒

sym γ′

Proof We need to prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉≈̇sb〈Q, d〉} is a sym-

bolic bisimulation over =⇒. The first condition (i) of the bisimulation follows

directly from Lemma 4.2.2. As for (ii), let us assume that 〈P, c〉
α

=⇒ 〈P ′, c′〉 then

by soundness of =⇒ we have 〈P, c ⊔ α〉 =⇒ 〈P ′, c′〉, now by Lemma 4.2.1 we

obtain 〈P, c ⊔ α〉 −→∗ 〈P ′, c′〉. Given that 〈P, c〉≈̇sb〈Q, d〉 then from the latter

transition we can conclude that 〈Q, d⊔α〉 −→∗ 〈Q′, d′〉 where 〈P ′, c′〉≈̇sb〈Q
′, d′〉,

4.3. CORRESPONDENCE BETWEEN ≈̇SB, ∼̇SYM , ∼̇I 89

hence we can use Lemma 4.2.1 again to deduce that 〈Q, d ⊔ α〉 =⇒ 〈Q′, d′〉. Fi-

nally, by completeness of =⇒, there exist β and b s.t. t = 〈Q, d〉
β

=⇒ 〈Q′, d′′〉

where β ⊔ b = α and d′′ ⊔ b = d′, therefore t ⊢D 〈Q, d〉
α

=⇒ 〈Q′, d′〉 and

〈P ′, c′〉R〈Q′, d′〉.

Lemma 4.3.2 If γ ∼̇=⇒
sym γ′ then γ ≈̇sb γ

′

Proof We need to prove that R = {(〈P, c⊔ a〉, 〈Q, d⊔ a〉) | 〈P, c〉∼̇=⇒
sym〈Q, d〉} is

a weak saturated bisimulation. First, condition (i) follows from Lemma 4.2.2 and

(iii) by definition of R. Let us prove condition (ii). Assume 〈P, c⊔a〉 −→∗ 〈P ′, c′〉

then by Lemma 4.2.1 〈P, c ⊔ a〉 =⇒ 〈P ′, c′〉. Now by completeness of =⇒ there

exist α and b s.t. 〈P, c〉
α

=⇒ 〈P ′, c′′〉 where α ⊔ b = a and c′′ ⊔ b = c′. Since

〈P, c〉∼̇=⇒
sym〈Q, d〉 then we know there exists a transition t = 〈Q, d〉

β
=⇒ 〈Q′, d′〉

s.t. t ⊢D 〈Q, d〉
α

=⇒ 〈Q′, d′′〉 and (a)〈P ′, c′′〉∼̇=⇒
sym〈Q

′, d′′〉, by definition of ⊢D

there exists b′ s.t. β ⊔ b′ = α and d′⊔ b′ = d′′. Using soundness of =⇒ on t we get

〈Q, d⊔ β〉 =⇒ 〈Q′, d′〉, thus by Lemma 4.2.1 〈Q, d⊔ β〉 −→∗ 〈Q′, d′〉 and finally

by monotonicity

〈Q, d ⊔

a
︷ ︸︸ ︷

β ⊔ b′
︸ ︷︷ ︸

α

⊔b〉 −→∗ 〈Q′,

d′′

︷ ︸︸ ︷

d′ ⊔ b′ ⊔b〉 (4.1)

Notice that the initial transition 〈P, c⊔a〉 −→∗ 〈P ′, c′〉 can be rewritten as 〈P, c⊔

a〉 −→∗ 〈P ′, c′′ ⊔ b〉, therefore using the transition in (4.1), 〈Q, d ⊔ a〉 −→∗

〈Q′, d′′ ⊔ b〉, it is left to prove that 〈P ′, c′′ ⊔ b〉R〈Q′, d′′ ⊔ b〉 which follows from

(a).

Using Lemma 4.3.1 and Lemma 4.3.2 we obtain the following theorem.

Theorem 4.3.1 〈P, c〉∼̇=⇒
sym〈Q, d〉 iff 〈P, c〉≈̇sb〈Q, d〉

From the above results, we conclude that ≈̇sb = ∼̇=⇒
I . Therefore, given that

using the ccp partition refinement in combination with =⇒ (and ⇓) we can decide

∼̇=⇒
I , then we can use the same procedure to check whether two configurations

are in ≈̇sb.

4.4. ALGORITHM FOR THE WEAK NOTION OF THE CCP PARTITION

REFINEMENT ALGORITHM 90

4.4 Algorithm for the Weak Notion of the CCP Par-

tition Refinement Algorithm

In Section 3.3 introduced Definition 3.3.1 and the closure rules to change the

initialization step of the algorithm in order to be able to calculate the weak bisim-

ilarity (≈̇) for ccp (we have to change −→ by =⇒ in both cases).

Therefore instead of using the function IR of Algorithm 3.3.1, we refine the

partitions by employing the function WIR defined as follows:

Definition 4.4.1 (WIR) For all partitions P , γ1 WIR(P) γ2 if

• if γ1
α

=⇒ γ′1 is irredundant in P , then there exists γ′2 s.t. γ2
α

=⇒ γ′2 and

γ′1 Pγ′2.

In the computation of WIR(Pn) also states that are not reachable from the initial

states IS might be needed (these are the ones needed to check redundancy: Read

the comment after Definition 3.3.1 in Section 3.3).

Thus we need to change the initialization step (prerefinement) of the algorithm

by including in the set IS⋆, i.e., all the states that are needed to check redundancy.

In this particular case, this is done by using the the following closure rules:

(WIS)
γ ∈ IS

γ ∈ IS⋆

(WRS)
γ1 ∈ IS⋆ γ1

α
=⇒ γ2

γ2 ∈ IS⋆

(WRD)
γ ∈ IS⋆ γ

α1=⇒ γ1 γ
α2=⇒ γ2 γ

α1=⇒ γ1 ≻D γ
α2=⇒ γ3

γ3 ∈ IS⋆

In Figure 4.6 we design the ccp-weak partition refinement algorithm.

4.4. ALGORITHM FOR THE WEAK NOTION OF THE CCP PARTITION

REFINEMENT ALGORITHM 91

γ γ

(ccp)

γ γ′

SATURATION

sb ∼̇I

? γ ≈̇sb γ′?

model for concurrenc

Figure 4.6: CCP-Weak Partition Refinement

Now, in Algorithm 4.4.1 we show the way to calculate the weak notion for

ccp.

Algorithm 4.4.1 CCP-Partition-Refinement-Weak(IS)

Initialization

1. Compute IS⋆ with the rules Wis, Wrs and Wrd,

2. P0 := {IS⋆
⇓d1

} . . . {IS⋆
⇓dn

},

Iteration Pn+1 := WIR(Pn)
Termination If Pn = Pn+1 then return Pn

4.5. SUMMARY OF CONTRIBUTIONS AND RELATED WORK 92

4.5 Summary of Contributions and Related Work

In this Chapter we showed that the relation given by Milner’s saturation method

is not complete for ccp. Thus, we pointed out that weak saturated barbed bisim-

ilarity ≈̇sb introduced in Section 2.2 cannot be computed immediately by using

the ccp partition refinement algorithm for (strong) bisimilarity ccp w.r.t. to this

last relation. Because of this problem, we then introduced a new relation, which

is finitely branching, using a different saturation mechanism, which we showed

to be complete for ccp. As a consequence we also showed that the ccp partition

refinement can be used to compute ≈̇sb using the new relation we have reached by

using this new saturation method. Likewise, we have shown that although this new

saturation method elaborated for ccp could be used for any other formalisms such

as CCS, it would not work as desired because it would generate an infinite branch-

ing. To the best of our knowledge, this is also the first approach to verifying weak

bisimilarity for ccp in an automatic way by means of any kind of algorithm. As

future work, we plan to analyze different calculi with similar transition systems.

Ccp is not the only formalism where weak bisimilarity cannot be naively re-

duced to the strong one. Probably the first case in literature can be found in

[VM94] that introduces an algorithm for checking weak open bisimilarity of π-

calculus. This algorithm is rather different from ours, since it is on-the-fly [Fer89]

and thus it checks the equivalence of only two given states (while our algorithm,

and more generally all algorithms based on partition refinement, check the equi-

valence of all the states of a given LTS).

Analogous problems to the one discussed in this chapter arise in Petri nets

[Sob10, BMM11], in tile transition systems [GM00] and, more generally, in the

theory of reactive systems [Jen06] (the interested reader is referred to [Sob12] for

an overview). In all these cases, labels form a monoid where the neutral element

is the label of internal transitions. Roughly, when reducing from weak to strong

bisimilarity, one needs to close the transitions with respect to the composition of

the monoid (and not only with respect to the neutral element). However, in all

these cases, labels composition is not idempotent (as it is for ccp) and thus a finite

LTS might be transformed into an infinite one. For this reason, this procedure

applied to the afore mentioned cases is not effective for automatic verification.

Chapter 5

Conclusions

I think and think for months and years. Ninety-nine times, the

conclusion is false. The hundredth time I am right.

– Albert Einstein.

In this PhD thesis we introduced labeled semantics and bisimilarity for ccp.

Our equivalence characterizes the observational semantics introduced in [SRP91],

which is based on limits of infinite computations, by means of a co-inductive def-

inition. It follows from [SRP91] that our bisimilarity coincides with the equiva-

lence induced by the standard closure operators semantics of ccp. Therefore, our

weak bisimulation approach represents a novel sound and complete proof tech-

nique for observational equivalence in ccp.

Our work is also interesting for the research programme on “labels derivation”.

Our labeled semantics can be regarded as an instance of the one introduced at an

abstract level in [LM00]. Syntactical bisimulation (Definition 2.4.1) as an instance

of the one in [LM00], while strong and weak bisimulations (Definition 2.4.2 and

Definition 2.4.3) are instances of those in [BGM09]. Furthermore, syntactical

bisimulation intuitively coincides with the one in [SR90], while saturated barbed

bisimulation (Definition 2.2.2) with the one in [MPSS95]. Recall that syntactical

bisimilarity is too fine grained, while saturated barbed bisimulation requires the

relation to be upward closed (and thus, infinite in dimension). Instead, our weak

bisimulation is fully abstract and avoids the upward closure. Summarizing, the

framework in [BGM09] provides us an abstract approach for deriving a novel

93

94

interesting notion of bisimulation.

It is worth noticing that the restriction to the summation-free fragment is only

needed for proving the coincidence with [SRP91]. Theorem 2.4.1 in Section 2.4

still holds in the presence of summation. Analogously, we could extend all the

definitions to infinite constraints without invalidating these theorems.

Bisimilarity for novel languages featuring the interaction paradigms of both

ccp and the π-calculus has been defined in recent work [BM08, JVP10, JBPV10].

Bisimilarity is defined starting from transition systems whose labels represent

communications in the style of the π-calculus. Instead we employ barbs on a

purely unlabeled semantics. We have shown a correspondence with our seman-

tics, although defining it is not trivial as seen in the completeness and soundness

proofs in Section 2.3.

In this dissertation we provided an algorithm for verifying (strong) bisimilar-

ity for ccp by building upon the work in [BM09]. That is, we include into the

standard partition refinement algorithm a new behavioural equivalence, namely,

irredundant bisimilarity. By showing that this notion corresponds to saturated

bisimilarity we are able to prove that this modified partition refinement algorithm

indeed verifies our well-behaved approach of strong bisimilarity. We showed that

the transition relation given by Milner’s saturation method is not complete for ccp

(in the sense of Definition 4.2.7 and as show in Figure 4.1). As a consequence we

also showed that weak saturated barbed bisimilarity ≈̇sb (see Section 2.2) cannot

be computed using the ccp partition refinement algorithm for (strong) bisimilarity

for ccp w.r.t. to this transition relation. We then presented a new transition rela-

tion using another saturation mechanism and showed that it is complete for ccp.

We also showed that the ccp partition refinement can be used to compute ≈̇sb,

an equivalent relation to ≈̇ as shown in Chapter 2, Theorem 2.4.2, using the new

transition relation. This is an important issue, since the same piece of code works

correctly with both transition relations. To the best of our knowledge, this is the

first approach to verifying weak bisimilarity for ccp.

As shown in [MPSS95] there are strong connections between ccp processes

and logic formulae. As future work we would like to investigate whether our

present results can be adapted to provide a novel characterization of logic equi-

valence in terms of bisimilarity. Preliminary results show that at least the propo-

95

sitional fragment, without negation, can be characterized in terms of bisimilarity.

Likewise, we plan to investigate other calculi where the nature of their transitions

systems gives rise to similar situations regarding weak and strong bisimilarity, in

particular tcc [SJG], ntcc [PV01], utcc [OV08] and eccp [KPPV12].

Appendix A

Implementation and Experiments

for the CCP Partition Refinement

Perfection (in design) is achieved not when there is nothing more to

add, but rather when there is nothing more to take away.

– Antoine de Saint-Exupery.

In this Appendix we give a brief review about the main insights of the imple-

mentation and execution of the algorithm for verifying a well-behaved notion of

(strong and weak) bisimilarity for ccp. We shall briefly present the programming

language used, give a summary of some of the most relevant auxiliary procedures

and functions, and present and analyze some examples of families of automata

generated by pairs of ccp processes. We present just a brief sample with important

information with the purpose of getting an idea of which details affect the perfor-

mance of the ccp partition refinement algorithm. The cs we are able to handle

under this implementation involves the following simple constraints of the form

var oper num, where var ∈ variables, represents a set of variables in the prob-

lem; oper ∈ {<,>,≤,≥,=}, represents a set of operators; and num ∈ [0..99],

represents the domain of the variables.

96

A.1. PROGRAMMING LANGUAGE 97

A.1 Programming Language

As very well said in [JKOK98, Fer89], several data structures are required to rep-

resent states, transitions, classes, splitters, etc. Therefore, in order to implement

Algorithm 3.3.1 and Algorithm 4.4.1 the most adequate programming language is

an object oriented one. Moreover, the use of classes is important to model ccp,

since we can abstract each component of the cs into a class, i.e., constraint, store,

configuration, etc. Thus, we choose C++, a very well-known and vastly used

language with several application domains. Although Java was another nice can-

didate, C++ was the the chosen one because of several benefits. It is an efficient

compiler to native code, exposes low-level system facilities rather than running

in a virtual machine, supports pointers, references, and pass-by-value, has an ex-

plicit memory management and provides cross-platform access to many different

features available in platform-specific libraries.

Also, due to its longevity and popularity, it has several libraries useful enough

to integrate its code with other languages. It is important to stress that this lan-

guage also has a combination of high and low level language features. Another

important characteristic of this language, is that it is implemented in a wide va-

riety of hardware and operative systems. Taking into account our future work,

its compatibility with PHP (user interface), JSON (parser) [Wil11] and obviously

Gecode (library for solving constraint satisfaction problems) [Gec06] is an impor-

tant issue.

A.2 Abstract Data Types

As mentioned before, we have selected an object oriented language to implement

the partition refinement algorithm. This language seems appropriate for modeling

all the parts and methods needed. Summing up, we implemented the following ab-

stract data types: store, configuration, transition, automaton, and redundant class.

In addition, our tool includes simple constraints, more precisely, in our case, en-

capsulation is an important issue because it allows hiding information in order

to ensure that data structures and operators are used as intended and to make the

model more obvious to the developer.

A.2. ABSTRACT DATA TYPES 98

A.2.1 Implementation Layout

In this section we present as figures the general layouts of the main abstract data

types. Moreover, we introduce the general overview of the proposed tool (for this

layout we include future elements such as the user interface, parser and converter).

A.2.2 Layout of the Automaton

In Figure A.1 we show the design of the automaton used in our algorithm.

AUTOMATON

CONFIGURATION

STOREPROCESS ID ,〈 〉

STORE

CONFIGURATION

STOREPROCESS ID ,〈 〉

(LABEL)

CONFIGURATION

STOREPROCESS ID ,〈 〉

STORE (LABEL)

CONFIGURATION

STOREPROCESS ID ,〈 〉

INITIAL STATE

Figure A.1: A Design of an Automaton Class

A.2.3 Layout of the Redundant Class

In Figure A.2 we display a design of the redundant class we use to save the ’pos-

sibly’ redundant transitions, i.e., the dominated ones.

A.2. ABSTRACT DATA TYPES 99

REDUNDANT CLASS

CONFIGURATION

STOREPROCESS ID ,〈 〉

CONFIGURATION

STOREPROCESS ID ,〈 〉
STORE

(LABEL)

CONFIGURATION

STOREPROCESS ID ,〈 〉

CONFIGURATION

STOREPROCESS ID ,〈 〉
STORE

(LABEL)

CONFIGURATION

STOREPROCESS ID ,〈 〉

CONFIGURATION

STOREPROCESS ID ,〈 〉
STORE

(LABEL)

CONFIGURATION

STOREPROCESS ID ,〈 〉

CONFIGURATION

STOREPROCESS ID ,〈 〉

TRANSITION1

TRANSITION2

TRANSITION3

STATE1

STATE2

Figure A.2: A Design of a Redundant Class

A.2.4 Layout of a Tool to Verify Bisimilarity in CCP

In Figure A.3 we introduce the design of how the tool would work to verify Strong

Bisimilarity in ccp.

A.2. ABSTRACT DATA TYPES 100

CCP Formula CCP Formula

USER INTERFACE

PARSER

CONVERTER

AUTOMATON

REDUNDANT

CLASS

AUTOMATON

REDUNDANT

CLASS

VERIFYING STRONG BISIMILARITY

OUTPUT: STRONG BISIMILAR OR NOT

Figure A.3: Layout of a Tool to Verify Strong Bisimilarity in CCP

Now, In the Figure A.4 we present the way in which the tool would verify

Weak Bisimilarity in ccp

A.3. PROCEDURES AND FUNCTIONS 101

CCP Formula CCP Formula

USER INTERFACE

PARSER

CONVERTER

AUTOMATON

REDUNDANT

CLASS

SATURATED

AUTOMATON

REDUNDANT

CLASS

VERIFYING WEAK BISIMILARITY

OUTPUT: WEAK BISIMILAR OR NOT

SATURATED

AUTOMATA

SATURATION

Figure A.4: Layout of a Tool to Verify Weak Bisimilarity in CCP

A.3 Procedures and Functions

A.3.1 Calculating Irredundancy

Calculating the notion of irredundancy is crucial to our algorithm. It is the central

modification used on the partition refinement algorithm so it can be used to verify

bisimilarity equivalence for ccp. Calculating this notion depends on two defini-

A.3. PROCEDURES AND FUNCTIONS 102

tions. The first one of these that calculates redundant transitions (see Definition

3.2.4 in Section 3.2) and the second one, the irredundant bisimilarity (see Defi-

nition 3.2.7 in Section 3.2.6). As a previous step we define a class and a way of

storing information related to ’possibly’ redundant transitions. Now, as related in

Section 3.2, instead of using the function F of Algorithm 3.1.1 in Section 3.1.1,

we refine the partitions by employing the function IR in Definition 3.3.1 in Sec-

tion 3.3 (this new function is based upon irredundant bisimilarity). However to use

this function (see Algorithm A.3.1 to briefly understand how irredundancy can be

checked) we might need to get involved also states that are not reachable from

the initial states. This is not a difficult task since we have previously saved those

artificial sates in the redundant class. We receive as an input the actual partition,

the redundant classes, and the transition to be checked. We start by iterating over

the redundant classes (see line 1). While doing the cycle we check two properties

by means of two functions. First, if the transition belongs to the ’possibly’ redun-

dant transitions (we use findTranRed(), line 4). Second, if the related transitions

we take out from the redundant class belong to the same partition, i.e., if they are

in the same equivalent bisimilar equivalence class (line 4). If they do, then they

are redundant (line 5), otherwise, we continue looping until the end (lines 1-7),

therefore, if the two statements are not fulfilled, the transition is not redundant

(line 8).

Algorithm A.3.1 isredundant(partition,reds,tran)

1: for (each rd ∈ reds) do

2: state1 ← getState1 (tran, rd);

3: state2 ← getState2 (tran, rd);

4: if (findTranRed(tran, rd) and inSameBlock(partition, state1 , state2)) then

5: return true;

6: end if

7: end for

8: return false;

A.3.2 Strong Prerefinement

This function is another change we have made to the standard partition refinement

algorithm so it can be suited to verify bisimilarity in ccp. This method makes

A.3. PROCEDURES AND FUNCTIONS 103

a first partition of a block of all configurations, those reachable from the initial

states of the labeled transitions and the other ones created artificially to check re-

dundancy. We call it a strong prerefinement because it divides the only block into

several blocks conformed of configurations which satisfy the same strong barb. In

this way we guarantee the first item stated in the definition of irredundant bisim-

ilarity, and then, let the new partition function IR deal with the token game in

Definition 3.2.7 in Section 3.2.6.

Algorithm A.3.2 depicts the barbcutS() algorithm. It receives a set of states

named states and loops two times over each state so each and every state belonging

to this set can be compared with the rest of them. During this cycle if the two

states, st , st ′′ are the same, then the former, st , will go to the the temporal set

sameBarbs (see line 10) and so another cycle will start over the states. In that

case, if the actual state taken as the loop starts, st ′, is the same as the one from

the first loop, st (line 12), the first state st will be sent into the set of repeated

states states ′′ (see line 13). Otherwise, the algorithm will loop through the set

of repeated states and it will verify if the actual state st′′ is already a member of

states′ (lines 15-19). If it does not and it satisfies the same strong barb as st , then

states ′′ add st and st ′ (since from then on they will be already repeated) and add

st ′ to sameBarbs (lines 21-23). After getting out from the third loop sameBarbs

will be the set of all states satisfying the same strong barb, so we will add it into

the set of sets result (line 28) and we will clear the temporal set sameBarbs to be

used for another set (line 29), and we continue the same iterations until result has

all its components and can be returned.

A.3. PROCEDURES AND FUNCTIONS 104

Algorithm A.3.2 barbcutS(states)

1: value, value1 ← true;

2: for each st ∈ states do

3: for each st ′′ ∈ states do

4: if st ′′.id = st .id and entails(st ′′.store, state.store) and entails(st .store(), st ′′.store) then

5: value ← false;

6: end if

7: end for

8: if value and st .id 6= ∅ then

9: value ← true;

10: sameBarbs ← sameBarbs ∪ {st};

11: for each st ′ ∈ states do

12: if st .id = st ′.id and entails(st .store, st ′.store) and entails(st ′.store, st .store) then

13: states′′ ← states′′ ∪ {st};

14: else

15: for each st ′′′ ∈ states′′ do

16: if (st ′′′.id = st ′.id and entails(st ′′′.store, st ′.store) and entails(st ′.store, st ′′′.store) then

17: value1 ← false;

18: end if

19: end for

20: if value1 and entails(st .store, st ′.store) and entails(st ′.store, st .store) then

21: states′′ ← states′′ ∪ {st ′};

22: states′′ ← states′′ ∪ {st};

23: sameBarbs ← sameBarbs ∪ {st ′};

24: end if

25: value1 ← true;

26: end if

27: end for

28: result ← result ∪ {sameBarbs};

29: sameBarbs ← ∅

30: else

31: value ← true;

32: end if

33: end for

34: return result;

A.3.3 Weak Prerefinement

As well as in the previous section here we present the function which prerefines

the first block, but instead of refining according to the strong barbs, it does it with

relation to the weak barbs. Algorithm A.3.3 works similar to Algorithm A.3.2,

however, instead of using the function entails(), it uses de weakEntailsAuts().

A.3. PROCEDURES AND FUNCTIONS 105

Algorithm A.3.3 barbcutW(states, auts)

1: value, value1 ← true;

2: for each st ∈ states do

3: for each st ′′ ∈ states do

4: if st ′′.id = st .id and entails(st ′′.store, st .store) and entails(st .store, st ′′.store) then

5: value ← false;

6: end if

7: end for

8: if value and st .id 6= ∅ then

9: value ← true;

10: sameBarbs ← sameBarbs ∪ {st};

11: for each st ′ ∈ states do

12: if st .id = st ′.id and weakEntailsAuts(st , st ′.store, auts) and weakEntailsAuts(st ′, st .store,

auts) then

13: states′′ ← states′′ ∪ {st};

14: else

15: for each st ′′′ ∈ states do

16: if st ′′′.id = st ′.id and entails(st ′′′.store, st ′.store) and entails(st ′.store, st ′′′.store) then

17: value1 ← false;

18: end if

19: end for

20: if value1 and weakEntailsAuts(st , st ′.store, auts) and weakEntailsAuts(st ′, st .store, auts)

then

21: states′′ ← states′′ ∪ {st ′} ∪ {st};

22: sameBarbs ← sameBarbs ∪ {st ′};

23: end if

24: value1 ← true;

25: end if

26: end for

27: result ← result ∪ {sameBarbs};

28: sameBarbs ← ∅;

29: else

30: value ← true;

31: end if

32: end for

33: return result ;

A.3.4 Final Algorithm

In this section we explain the Partition Refinement algorithm for ccp.

bisimilarity_check() receives as an input, a set of of states S, a set of Transitions T,

and a type which will be used to see if we are using this algorithm to check weak

bisimilarity or strong bisimilarity. This is important because if we are checking

weak bisimilarity we need to reduce weak into strong bisimilarity by means of

the saturation method. Finally it receives as an input a predicate which will either

A.3. PROCEDURES AND FUNCTIONS 106

be a function barbcutS() which will make a strong prerefinement or a function

barbcutW() which will make a weak prerefinement.

The algorithm starts by filling the automaton aut with the transitions trans and

the set of states states via the methods: changeTransitions() and changeStates()

(see lines 1 and 2). By means of the type (line 3) we now know which way to

take. Therefore, if we deal with the weak case, we take automaton aut and we do

the first part of our new saturation method. We do this by adding new transitions

to the old automaton. These new transitions are made out of two nodes which are

not the same. Neither of them must be related by a previous transition, but a path

shall exists between the nodes. The last item of these transitions is the label, made

out of the least upper bound of all actions from all the transitions in the path (line

4). Afterwards, to finish the saturation method we add silent cycles to each node

in automaton aut (line 5).

Now we have a saturated automaton, by which we are able to start the par-

tition refinement in order to verify weak bisimilarity. We already know that the

standard partition refinement does not work for this notion. Therefore, we need

to calculate the possibly redundant transitions and their correspondent possible

evolutions. These will take the form of a new automaton. Functions allreds() and

constructAuts() generate the first redundant classes reds and the first automata

auts respectively (lines 6 and 7). Afterwards, changeAllAuts (line 8) changes the

automata to its final state auts while getAllReds() does the same for reds (line 9).

Finally, we add the first automaton aut to the set of states auts (line 10). If we are

dealing with the strong case we do not saturate the automaton and skip that part.

A.3. PROCEDURES AND FUNCTIONS 107

Algorithm A.3.4 bisimilarity_check(states, trans, type,

pred)

1: aut .changeStates(states);

2: aut .changeTransitions(trans);

3: if type = ”weak” then

4: addWeakTransitions1 (aut);

5: addTau(aut);

6: reds ← allReds(aut);

7: auts ← constructAuts(aut , reds);

8: changeAllAuts(auts);

9: reds ← getAllReds(auts, reds);

10: auts ← auts ∪ {aut};

11: tmp ← appendStates_Auts(auts);

12: else

13: reds ← allReds(aut);

14: auts ← constructAuts(aut , reds);

15: changeAllAuts(auts);

16: reds ← getAllReds(auts, reds);

17: auts ← auts ∪ {aut};

18: tmp ← appendStates_Auts(auts1);

19: end if

20: w ← pred(tmp, auts);

21: p ← pred(tmp, auts);

22: acts ← getAlphabet(aut);

23: while w 6= ∅ do

24: assign an element from w to block ;

25: for each act ∈ act do

26: for each part ∈ p do

27: if inter(part , pIR(act , auts, reds, p, block , part)).size 6= 0 and ¬sbset(part , pIR(act , auts,

reds, p, block , part)) then

28: Iab ← lab ∪ {part};

29: end if

30: pIR ← pIR(act , auts, reds, p, block , part);

31: for each lb ∈ Iab do

32: Iab1 ← lab1 ∪ inter(pIR, lb));

33: end for

34: for each lb ∈ lab do

35: Iab2 ← lab2 ∪ difference(lb, pIR));

36: end for

37: p ← appending2 (difference2 (p, Iab), appending2 (Iab1 , Iab2));

38: w ← appending2 (difference2 (w , Iab), appending2 (Iab1 , Iab2));

39: if ¬w .empty then

40: block ← act ;

41: end if

42: if ¬Iab.empty() then

43: Iab, lab1 , lab2 ← ∅;

44: end if

45: end for

46: end for

47: erase assigned element to block from w

48: end while

49: return p;

A.3. PROCEDURES AND FUNCTIONS 108

A.3.5 Final Strong Algorithm

In this Section we show how we manage to take the final algorithm to verify the

new notion of bisimilarity for ccp described in Section A.3.4. To this end, we

define Algorithm A.3.5 which uses the output of Algorithm A.3.4 to check the

strong notion of bisimilarity for ccp. Summing up, this algorithm checks whether

the first nodes or states from both automata belong to the same set of states inside

the bigger set. If it does, then they are strongly bisimilar. If not, they are not

behavioural equivalent.

Algorithm A.3.5 check_strong(p,s1,s2)

1: for each part ∈ p do

2: if isitin(s1 , part) and isitin(s2 , part) then

3: print “They are strongly Bisimilar”:

4: return ;

5: end if

6: end for

7: print “They are not strongly Bisimilar”;

A.3.6 Saturation

In this section we show how we saturate the automaton to reduce it from weak

bisimilarity to strong. The first step is to construct all possible paths which may

take several steps into one single step. This is achieved by following Algorithm

A.3.6. The algorithm receives an automaton and adds all the possible weak paths

it can take (as a single step), except the one where it stays still. It takes out all

the states from the automaton and assigns them to a set of states. It goes over

the set and inside this cycle it goes over the same set. Then, it checks if there

is a path between the state from the first loop and the one from the second loop.

Also, it verifies if they are not equal and they are not involved in a transition in

the automaton. If this is fulfilled, a new transition is created where the initial state

of the transition is the state from the first set; the final state of the transition is

the state of the second set and the action/Store is: first the least upper bound of

all the Stores collected during the path between the States and second, that result

trimmed by the store of the first State, because if the Store has already information

A.3. PROCEDURES AND FUNCTIONS 109

asked in the label it cannot be, therefore the Store/label must be modified taking

out this information, and this is done by the function mixminus1().

Algorithm A.3.6 addWeakTransitions1(aut)

1: listSt ← aut .getAllStates();

2: for each st1 ∈ listSt do

3: for each st2 ∈ listSt do

4: if path(st1 , st2 , aut) and !equalStates(st1 , st2) and ¬isTransition(st1 , st2 , aut) then

5: pathmix ← pathMixStr(st1 , st2 , aut);

6: lab ← mixminus1 (st1 .store, pathmix);

7: temp ← temp ∪ {createTransition(st1 , st2 , lab))};

8: end if

9: end for

10: end for

11: for each tran ∈ temp do

12: aut .AddTransition2 (tran);

13: end for

14: return aut ;

But this is not the final function needed to reduce a weak automaton into a

strong automaton. There is the issue of a weak bisimilarity been able to stay still,

therefore not moving through a transition to another state. We simply model this

as a transition which has the same initial and final state. We follow the function in

Algorithm A.3.7. This function adds the tau transitions to the automaton, the ones

which go from a State to itself resembling the staying still action. It receives the

automaton and takes all the states from it, creates a True Store and iterates over

each State. Meanwhile it adds to the automaton a transition with the considered

State as the initial and initial State of the created Transition and with the Store

true as its label.

Algorithm A.3.7 addTau(aut)

1: listSt ← aut .getAllStates();

2: sil .AddTrue();

3: for each st ∈ listSt do

4: aut .AddTransition(st , st , sil);

5: end for

6: return aut ;

A.4. RESULTS AND EXAMPLES 110

A.3.7 Final Weak Algorithm

Here we follow the same path as in Section A.3.5, Therefore we just present a

few lines of code which allows us to give out a final result about the two ccp

programs we are comparing, that is, if they are weakly bisimilar or not. So as

stated before we use the result given by Algorithm A.3.4 but specifically stating

at the beginning of the algorithm by means of a string, given as a parameter, that

we are checking the weak case. So therefore the algorithm will know that it needs

to apply additional procedures to saturate the automata so it can be ready to apply

the weak notion between the two ccp programs. As pointed out before, Algorithm

A.3.8 is similar to Algorithm A.3.5.

Algorithm A.3.8 check_weak(p,s1,s2)

1: for each part ∈ p do

2: if isitin(s1 , part) and isitin(s2 , part) then

3: print “They are weakly Bisimilar";

4: return ;

5: end if

6: end for

7: print “They are not weakly Bisimilar";

A.4 Results and Examples

In this Section we present families of generated automata resembling ccp config-

urations in order to analyze the behavior in time of the ccp partition refinement

algorithm. We select several variables from the automata which we consider to be

relevant regarding the algorithm’s execution, i.e., those which will directly affect

the behavior of the algorithm in relation to execution time. In order to do this we

choose the following variables: transitions (Section A.4.1), nodes (Section A.4.1),

percentage of transitions with the same label (Section A.4.2), percentage of con-

figurations satisfying the same barb (Section A.4.3) and number of branches (we

consider our automata as trees, therefore this name) (Section A.4.5). This analy-

sis shall help us explain the relevance and the insights of how the main algorithm

for checking bisimilarity works (in terms of execution time) with respect to the

characteristics of the LTS. The examples to be used in this section are simple and

satisfy all the properties of any automaton generated by a ccp program. In order

A.4. RESULTS AND EXAMPLES 111

to analyze the different and interesting variables that may influence the execution

time of the ccp partition refinement algorithm, we shall generate preferably the

same family of automata. We consider this as just changing the value of the vari-

able to be studied in each instance of the family, and turning the other properties

which are themselves variables into constants. With this procedure we isolate the

variable in order to measure the real influence it has on the algorithm.

The machine used to carry out the experiments has a processor of 2.4 GHz

Intel Core 2 Duo with ram memory of 4GB 1067 MHz DDR3 .

In order to make things simpler and not overfill the reader with more graphs

than needed, in this chapter we will mostly constraint to the analysis of the algo-

rithm for checking strong bisimilarity for ccp, since the result given by the weaker

equivalence somehow give us the same feedback (See Chapter 4). Although that

does not mean we will not take into account the execution of weak bisimilarity

to check some examples. Actually, in Section A.4.5 checking this weaker notion

is needed. Therefore, in that case we shall present the saturated automata of the

examples. We must remark that although we study several examples per each case,

we just give two diagrams of the examples for each of the analyzed properties.

A.4.1 Transitions/Nodes

Here we give several examples where the automata are almost the same. In this

case we shall have two properties that variate, the number of transitions and the

number of nodes. These two characteristics are the ones that we study along this

section. Figure A.5 and A.6 shows a sample of the family of automata that will be

used in this first case.

〈P0, true〉

〈P1, x < 5〉

〈P2, x < 5〉

〈P3, x < 2〉

〈P4, x < 2〉

x < 5

x < 5

true

true

〈Q0, true〉 〈Q1, x < 5〉 〈Q2, x < 2〉
x < 5 true

Figure A.5: Example 1 Transitions/Nodes

A.4. RESULTS AND EXAMPLES 112

〈P0, true〉

〈P1, x < 5〉

〈P2, x < 5〉

〈P3, x < 5〉

〈P4, x < 5〉

〈P5, x < 5〉

〈P6, x < 5〉

〈P7, x < 5〉

〈P8, x < 5〉

〈P9, x < 5〉

〈P10, x < 5〉

〈P11, x < 5〉

〈P12, x < 5〉

〈P13, x < 2〉

〈P14, x < 2〉

〈P15, x < 2〉

〈P16, x < 2〉

〈P17, x < 2〉

〈P18, x < 2〉

〈P19, x < 2〉

〈P20, x < 2〉

〈P21, x < 2〉

〈P22, x < 2〉

〈P23, x < 2〉

〈P24, x < 2〉

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

x < 5

true

true

true

true

true

true

true

true

true

true

true

true

〈Q0, true〉

〈Q1, x < 5〉

〈Q2, x < 5〉

〈Q3, x < 5〉

〈Q4, x < 2〉

〈Q5, x < 2〉

〈Q6, x < 2〉

x < 5

x < 5

x < 5

true

true

true

Figure A.6: Example 2 Transitions/Nodes

Now we have shown the several automata which are constrained to have al-

most the same constants and just two elements which variate.

Graphs and Analysis

From now on, we limit our attention to the execution time of the previous exam-

ples. Taking this into account, Table A.1 shows the total number of transitions and

nodes vs time. These two tables and Figures A.7 and A.8 help us to understand

the importance of these particular variables in relation to the execution time of the

ccp partition refinement algorithm.

A.4. RESULTS AND EXAMPLES 113

Processes Nodes Transitions Time

Process 1 8 6 11 ms

Process 2 10 8 18 ms

Process 3 6 4 6 ms

Process 4 12 10 26 ms

Process 5 14 12 42 ms

Process 6 18 16 78 ms

Process 7 22 20 131 ms

Process 8 20 18 109 ms

Process 9 24 22 172 ms

Process 10 34 32 380 ms

Process 11 16 14 58 ms

Process 12 28 26 222 ms

Process 13 30 28 281 ms

Process 14 32 30 320 ms

Process 15 50 48 970 ms

Process 16 682 680 5960420 ms

Process 17 170 168 66947 ms

Process 18 426 424 2570960 ms

Process 19 218 216 522674 ms

Process 20 274 272 896211 ms

Table A.1: Time vs. Transitions/Nodes

A.4. RESULTS AND EXAMPLES 114

Figure A.7: Time vs. Transitions

In FigureA.7 it can be observed that the execution time increases (linearly)

as the number of transitions increase. Actually, this is reasonable since the main

goal of the algorithm is to partition set of states in order to refine, and it does

that by means of the relations between states or configurations and the transitions.

Hence, if there exist more transitions, while the execution of the algorithm, the

current splitter (which is the set of states chosen to divide and refine iteratively

the set or sets of states) must verify if all the possible existing transitions can be

able to separate one or more states from the current set of states in each step.

Therefore, if in each step, the splitter needs to check more transitions in order to

refine each set of states, the algorithm will take more time to finish its execution.

A.4. RESULTS AND EXAMPLES 115

Figure A.8: Time vs. Nodes

Regarding Figure A.8 we can state that as Figure A.7 the graph resembles

a linear growth which shows us that if there are more nodes in the automata,

the algorithm will take longer to finish. This is feasible since most of the times

if they are more nodes there are more transitions. Thus we could use the the

same analysis used for the amount of transitions. Moreover, since there are more

configurations or nodes in order to refine, during the algorithm run, the splitter

must go over each set which will have more components. This, in order to see

which of these states can be separated so the partition can be refined. Hence, if

the quantity of this nodes is bigger then the execution time will be higher.

A.4.2 Percentage of Same Labels

As already seen in Section A.4.1 we shall present and analyze some examples in

order to study one particular property regarding the automata generated by the ccp

processes. We take the percentage of transitions with the same labels (to refer to a

percentage we must include in the examples just one label, in this particular case,

the label true that can be repeated over the transitions of the automata). Mean-

A.4. RESULTS AND EXAMPLES 116

while the other labels shall remain constant. This in order to guarantee that the

graphical result will resemble only the impact of the actual variable in the execu-

tion of the algorithm).

The following figures show the automata that will be used as our case of study:

〈P0, true〉

〈P1, x < 60〉

〈P2, x < 50〉

〈P3, x < 59〉

〈P4, x < 57〉

〈P5, x < 39〉

〈P6, x < 45〉

〈P7, x < 53〉

〈P8, x < 49〉

〈P9, x < 30〉

〈P10, x < 40〉

〈P11, x < 53〉

〈P12, x < 49〉

〈P13, x < 30〉

〈P14, x < 40〉

x < 60

x < 50

x < 59

x < 57

x < 39

x < 45

x < 53

x < 49

x < 30

x < 40

true

true

true

true

〈Q0, true〉 〈Q1, x < 27〉

〈Q2, x < 17〉

〈Q3, x < 22〉

〈Q4, x < 13〉

〈Q5, x < 16〉

〈Q6, x < 13〉

〈Q7, x < 16〉

x < 27

x < 17

x < 22

x < 13

x < 16

true

true

Figure A.9: Example 1 % of Same Labels

A.4. RESULTS AND EXAMPLES 117

〈P0, true〉

〈P1, x < 60〉

〈P2, true〉

〈P3, x < 60〉

〈P4, x < 60〉

〈P5, true〉

〈P6, true〉

〈P7, x < 60〉

〈P8, x < 60〉

〈P9, true〉

〈P10, true〉

〈P11, x < 60〉

〈P12, x < 60〉

〈P13, true〉

〈P14, true〉

x < 60

true

true

true

true

true

true

true

true

true

true

true

true

true

〈Q0, true〉 〈Q1, x < 27〉

〈Q2, x < 17〉

〈Q3, x < 22〉

〈Q4, x < 17〉

〈Q5, x < 22〉

〈Q6, x < 17〉

〈Q7, x < 22〉

x < 27

x < 17

x < 22

true

true

true

true

Figure A.10: Example 2 % of Same Labels

A.4. RESULTS AND EXAMPLES 118

Graphs and Analysis

Processes % of same labels Time

Process 1 29% 43514 ms

Process 2 33% 37644 ms

Process 3 38% 28849 ms

Process 4 43% 26187 ms

Process 5 48% 24290 ms

Process 6 52% 22527 ms

Process 7 62% 8952 ms

Process 8 71% 3245 ms

Process 9 81% 2423 ms

Process 10 100% 118 ms

Table A.2: Time vs % of Same Labels

Figure A.11 shows the results after introducing the examples and running them

using our ccp partition refinement algorithm.

A.4. RESULTS AND EXAMPLES 119

Figure A.11: Time vs Percentage of Same Labels

As expected, the graph shows a decreasing line. This happens since, the high-

est the percentage of transitions with the same labels the least partitions the al-

gorithm must need in order to refine the blocks. Thus, the time will decrease.

Therefore, the execution time is inversely proportional to the percentage of tran-

sitions with the same labels.

A.4.3 Percentage of Configurations Satisfying the Same Barb

As in Section A.4.2 we study a property related to the automata generated by the

ccp processes. This property is also a percentage, but in this case, the amount of

configurations satisfying the same barb. As well as in the aforementioned sec-

tion, we shall use just only one barb which can be repeated on the automata’s

configurations, while the other barbs must be different and constant in number of

occurrences. In this case the barb we have selected is x < 55.

A.4. RESULTS AND EXAMPLES 120

〈P0, x < 55〉

〈P1, x < 55〉

〈P2, x < 55〉

〈P3, x < 55〉

〈P4, x < 55〉

〈P5, x < 55〉

〈P6, x < 55〉

〈P7, x < 55〉

〈P8, x < 55〉

〈P9, x < 55〉

〈P10, x < 55〉

〈P11, x < 55〉

〈P12, x < 55〉

〈P13, x < 55〉

〈P14, x < 55〉

〈P15, x < 55〉

〈P16, x < 55〉

〈P17, x < 55〉

〈P18, x < 55〉

〈P19, x < 55〉

〈P20, x < 55〉

〈P21, x < 55〉

〈P22, x < 55〉

〈P23, x < 55〉

〈P24, x < 55〉

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

〈Q0, x < 55〉

〈Q1, x < 55〉

〈Q2, x < 55〉

〈Q3, x < 55〉

〈Q4, x < 55〉

〈Q5, x < 55〉

〈Q6, x < 55〉

〈Q7, x < 55〉

〈Q8, x < 55〉

〈Q9, x < 55〉

〈Q10, x < 55〉

〈Q11, x < 55〉

〈Q12, x < 55〉

〈Q13, x < 55〉

〈Q14, x < 55〉

〈Q15, x < 55〉

〈Q16, x < 55〉

〈Q17, x < 55〉

〈Q18, x < 55〉

〈Q19, x < 55〉

〈Q20, x < 55〉

〈Q21, x < 55〉

〈Q22, x < 55〉

〈Q23, x < 55〉

〈Q24, x < 55〉

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

Figure A.12: Example 1 % of Configurations Satisfying the Same Barb

A.4. RESULTS AND EXAMPLES 121

〈P0, x < 85〉

〈P1, x < 55〉

〈P2, x < 55〉

〈P3, x < 65〉

〈P4, x < 77〉

〈P5, x < 69〉

〈P6, x < 63〉

〈P7, x < 56〉

〈P8, x < 82〉

〈P9, x < 80〉

〈P10, x < 55〉

〈P11, x < 55〉

〈P12, x < 55〉

〈P13, x < 50〉

〈P14, x < 51〉

〈P15, x < 33〉

〈P16, x < 29〉

〈P17, x < 18〉

〈P18, x < 54〉

〈P19, x < 53〉

〈P20, x < 52〉

〈P21, x < 44〉

〈P22, x < 10〉

〈P23, x < 8〉

〈P24, x < 20〉

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

〈Q0, x < 55〉

〈Q1, x < 55〉

〈Q2, x < 55〉

〈Q3, x < 55〉

〈Q4, x < 55〉

〈Q5, x < 55〉

〈Q6, x < 55〉

〈Q7, x < 55〉

〈Q8, x < 55〉

〈Q9, x < 55〉

〈Q10, x < 55〉

〈Q11, x < 55〉

〈Q12, x < 55〉

〈Q13, x < 24〉

〈Q14, x < 32〉

〈Q15, x < 27〉

〈Q16, x < 22〉

〈Q17, x < 7〉

〈Q18, x < 6〉

〈Q19, x < 4〉

〈Q20, x < 3〉

〈Q21, x < 2〉

〈Q22, x < 15〉

〈Q23, x < 5〉

〈Q24, x < 17〉

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

Figure A.13: Example 2 % of Configurations Satisfying the Same Barb

Graphs and Analysis

Table A.3 presents the data obtained by the automata while studying the influence

of the % of configurations satisfying the same barb on the ccp partition refinement

algorithm.

A.4. RESULTS AND EXAMPLES 122

% of configurations

Processes satisfying the same barb Time

Process 1 100% 752 ms

Process 2 96% 1694 ms

Process 3 86% 4084 ms

Process 4 72% 7998 ms

Process 5 64% 10736 ms

Process 6 60% 10743 ms

Process 7 56% 12206 ms

Process 8 52% 12324 ms

Process 9 36% 13184 ms

Process 10 20% 14266 ms

Table A.3: Time vs % of Configurations Satisfying the Same Barb

Now, we switch our attention to Figure A.14. This figure shows the results

from Table A.3.

A.4. RESULTS AND EXAMPLES 123

Figure A.14: Time vs Percentage of Configs. Sat. Same Barbs

As in Section A.11 the line shown in the graph is decreasing. This is due to the

time the algorithm takes to make the prerefinement, which can be regarded as the

first item of the definition of bisimilarity (either strong or weak) (see Definitions

2.4.2 and 2.4.3 in Section 2.4). If the percentage of configurations satisfying the

same barb is higher, then the prerefinement will not need to partition many amount

of blocks. (See Algorithm A.3.2 for the strong case or Algorithm A.3.3 for the

weak notion).

A.4.4 Percentage of Dominated Transitions

In Definition 3.2.3 in Section 3.2.5 we first present the notion of domination. Later

on, in that section we show the importance of this dominated transitions or so

called possible redundant transitions, in order for the algorithm to calculate the

notion of irredundant bisimilarity (see Definition 3.2.7 in Section 3.2.6) which

itself depends on the notion of redundant transitions (see Definition 3.2.4 in Sec-

tion 3.2.5) . This is important for the execution of the algorithm since dealing with

redundancy takes a significant part of time in the execution of the algorithm.

A.4. RESULTS AND EXAMPLES 124

〈P0, true〉

〈P1, x < 75〉

〈P2, x < 75〉

〈P3, x < 65〉

〈P4, x < 65〉

〈P5, x < 55〉

〈P6, x < 55〉

〈P7, x < 45〉

〈P8, x < 45〉

〈P9, x < 35〉

〈P10, x < 35〉

〈P11, x < 25〉

〈P12, x < 25〉

〈P13, x < 15〉

〈P14, x < 15〉

〈P15, x < 45〉

〈P16, x < 45〉

〈P17, x < 35〉

〈P18, x < 35〉

〈P19, x < 25〉

〈P20, x < 25〉

〈P21, x < 15〉

〈P22, x < 15〉

x < 75

x < 75

x < 65

x < 65

x < 55

x < 55

x < 45

x < 45

x < 35

x < 35

x < 25

x < 25

x < 15

x < 15

true

true

true

true

true

true

true

true

〈Q0, true〉

〈Q1, x < 75〉

〈Q2, x < 75〉

〈Q3, x < 65〉

〈Q4, x < 65〉

〈Q5, x < 55〉

〈Q6, x < 55〉

〈Q7, x < 45〉

〈Q8, x < 45〉

〈Q9, x < 35〉

〈Q10, x < 35〉

〈Q11, x < 25〉

〈Q12, x < 25〉

〈Q13, x < 15〉

〈Q14, x < 15〉

〈Q15, x < 45〉

〈Q16, x < 45〉

〈Q17, x < 35〉

〈Q18, x < 35〉

〈Q19, x < 25〉

〈Q20, x < 25〉

〈Q21, x < 15〉

〈Q22, x < 15〉

x < 75

x < 75

x < 65

x < 65

x < 55

x < 55

x < 45

x < 45

x < 35

x < 35

x < 25

x < 25

x < 15

x < 15

true

true

true

true

true

true

true

true

Figure A.15: Example 1 % of Dominated Transitions

A.4. RESULTS AND EXAMPLES 125

〈P0, true〉

〈P1, x < 80〉

〈P2, x < 75〉

〈P3, x < 70〉

〈P4, x < 65〉

〈P5, x < 60〉

〈P6, x < 55〉

〈P7, x < 50〉

〈P8, x < 45〉

〈P9, x < 40〉

〈P10, x < 35〉

〈P11, x < 30〉

〈P12, x < 25〉

〈P13, x < 20〉

〈P14, x < 15〉

〈P15, x < 50〉

〈P16, x < 45〉

〈P17, x < 40〉

〈P18, x < 35〉

〈P19, x < 30〉

〈P20, x < 25〉

〈P21, x < 20〉

〈P22, x < 15〉

x < 80

x < 75

x < 70

x < 65

x < 60

x < 55

x < 50

x < 45

x < 40

x < 35

x < 30

x < 25

x < 20

x < 15

true

true

true

true

true

true

true

true

〈Q0, true〉

〈Q1, x < 80〉

〈Q2, x < 75〉

〈Q3, x < 70〉

〈Q4, x < 65〉

〈Q5, x < 60〉

〈Q6, x < 55〉

〈Q7, x < 50〉

〈Q8, x < 45〉

〈Q9, x < 40〉

〈Q10, x < 35〉

〈Q11, x < 30〉

〈Q12, x < 25〉

〈Q13, x < 15〉

〈Q14, x < 15〉

〈Q15, x < 50〉

〈Q16, x < 45〉

〈Q17, x < 40〉

〈Q18, x < 35〉

〈Q19, x < 30〉

〈Q20, x < 25〉

〈Q21, x < 15〉

〈Q22, x < 15〉

x < 80

x < 75

x < 70

x < 65

x < 60

x < 55

x < 50

x < 45

x < 40

x < 35

x < 30

x < 25

x < 15

x < 15

true

true

true

true

true

true

true

true

Figure A.16: Example 2 % of Dominated Transitions

Graphs and Analysis

We give the data taken by the execution of the previous examples. This infor-

mations is used to show the influence of the % of dominated transitions on the

execution time of the algorithm. Thus, Table A.4 shows the collected data from

the execution of the examples and Figure A.17 depicts the description of the result

in the aforementioned table.

A.4. RESULTS AND EXAMPLES 126

Processes % of derived Transitions Time

Process 1 0% 20993 ms

Process 2 5% 36781 ms

Process 3 9% 59620 ms

Process 4 14% 82748 ms

Process 5 18% 130387 ms

Process 6 23% 188745 ms

Process 7 25% 288459 ms

Process 8 27% 296968 ms

Process 9 30% 351186 ms

Process 10 32% 354227 ms

Table A.4: Time vs % of Dominated Transitions

A.4. RESULTS AND EXAMPLES 127

Figure A.17: Time vs Percentage Dominated Transitions

Figure A.17 confirms that checking irredundancy is quite expensive and re-

quires an important amount of time. For this reason, increasing the number of

’possible’ redundant transitions might also increase the overall execution time.

A.4.5 Time vs Branches

The following two examples aim at studying the impact of the total number of

branches in the execution time of the algorithm. We recall that we refer to branches

because the automata we use as an input for our algorithm have always a form of

a tree.

A.4. RESULTS AND EXAMPLES 128

〈P0, true〉 〈P1, x < 5〉 〈P2, x < 5 ⊔ y < 7〉
x < 5 true

true true true

x < 5

〈Q0, true〉 〈Q1, x < 5〉 〈Q2, x < 5 ⊔ y < 7〉
x < 5 true

true true true

x < 5

Figure A.18: Saturated Example 1 Branches

〈P0, true〉

〈P1, x < 5〉

〈P2, x < 5〉

〈P3, x < 5 ⊔ y < 7〉

〈P4, x < 5 ⊔ y < 7〉

x < 5

x < 5

true

true

true

true

true

true

true

x < 5

x < 5

〈P0, true〉

〈P1, x < 5〉

〈P2, x < 5〉

〈P3, x < 5 ⊔ y < 7〉

〈P4, x < 5 ⊔ y < 7〉

x < 5

x < 5

true

true

true

true

true

true

true

x < 5

x < 5

Figure A.19: Saturated Example 2 Branches

Graphs and Analysis

Table A.5 shows the results of the execution of the above-mentioned examples.

They show the time it takes for the strong and weak algorithm to check their

respective notion of bisimilarity. It is important to notice that we compare both

execution times (weak and strong) so we can understand how much the amount

A.4. RESULTS AND EXAMPLES 129

of branches influence the saturation process, in particular the addition of paths of

transitions as a single step transition (see Algorithm A.3.6 and rules R-Label and

R-Add in Table 4.2 in Section 4.2.1).

Processes Branches Time Strong Case Time Weak Case

Process 1 2 8 ms 65 ms

Process 2 4 24 ms 295 ms

Process 3 6 69 ms 874 ms

Process 4 8 97 ms 1827 ms

Process 5 10 172 ms 3901 ms

Table A.5: Time vs Branches

Now we intend to interpret the results in a graphical way.

Figure A.20: Time vs Branches

A.5. SUMMARY OF CONTRIBUTIONS AND RELATED WORK 130

After analyzing Figure A.20, it can be observed that if we have more branches

per automata then the execution time of the algorithm with the weak approach in-

creases considerable with respect to the strong one. We can find an interesting and

feasible answer by taking into account the notion of saturation, i.e., the method

used by us to reduce the weak bisimilarity into the strong notion. Since we have

more branches, there is the need of adding new transitions (those which represent

a long path of transitions as a single step transition). Recall that we must assume

that the branches must have 3 consecutive nodes because if they have less nodes,

then the saturation method will not add more transitions at all.

A.5 Summary of Contributions and Related Work

In this Chapter we presented the main aspects of the implementation of the al-

gorithm for verifying (strong and weak) bisimilarity for ccp. We presented the

C++ programming language and its object orientation as the main tool for im-

plementing the partition refinement algorithm for ccp. We briefly described the

main benefits from this language to be able to implement the partition refinement

algorithm for ccp. We gave some examples and analyze by means of graphs how

the algorithm behaves according to several properties we have considered central

for the execution time of the algorithm. We must stress the fact that even if our

worst running case is exponential, the line graphs A.7 and A.8 show us that the

execution time of the algorithm has a linear growth with respect to the amount

of transitions and nodes. We realized that while using a lesser amount of nodes

or transitions the line graph would resemble an exponential line, but while using

a much bigger sample of nodes or transitions, in reality, the graph had a linear

growth.

We believe that our work represents a very first step to resemble The Concur-

rency Workbench [CPS93], that is, creating a robust and friendly tool for those

who want to automatically check different properties about ccp programs.

As future work, we plan a much more robust implementation of the ccp par-

tition refinement algorithm in order to increase its power, efficiency, performance

and scalability. As a short and medium term goal, we intend to include several

modifications into the code so the execution time of the algorithm could be de-

A.5. SUMMARY OF CONTRIBUTIONS AND RELATED WORK 131

creased. Therefore, one of the most important modifications shall be related with

the data structures we must use. Lists are the most used classes to access the data

from the constraint system, the labeled transition system and other information

needed for the algorithm to work. Therefore we shall take into account their im-

plementation in order to increment the efficiency of the algorithm. Thus, rather

than using the lists included by default in C++, we must choose a better imple-

mentation or a more efficient class to access the needed data. We shall propose

two options, implement a doubly linked list or make use of hash tables. Another

alternative for implementing the LTS in a way that the information included in it

could be accessed faster, is to represent it as a directed graph implemented as an

indexed set of adjacency lists and for each vertex having an inverse adjacency list

[JKOK98]. An interesting approach to reduce the complexity of our algorithm is

to, instead of modifying the partition refinement algorithm in [KS83], use a better

algorithm of the same sort, regarding its complexity, that is, the one in [PT87].

Although we have already said that our worst running case is exponential, we can

take ideas of [JKOK98] in order to cope with a growing amount of data. As in

the latter cited paper, we can reduce the cost of the algorithm by means of a bet-

ter implementation, in this case by using a parallel algorithm based on multiway

splitting.

As longer term aim we plan to implement a user interface, a parser and a

converter so we can create a real tool which could be easily used. We intend to

analyze other programming languages that can be more useful than the one we

have used, in terms of portability, user friendliness and particularly, execution

time. Also we may want to take into account different and more elaborated types

of Constraints systems by using libraries such as Gecode [Gec06], choco [cho08],

etc.

Bibliography

[ABP+11a] A. Aristizabal, F. Bonchi, C. Palamidessi, L. Pino, and F. Valen-

cia. Deriving labels and bisimilarity for concurrent constraint pro-

gramming (extended version). Technical report, INRIA-CNRS,

2011. Available at: http://www.lix.polytechnique.fr/

~luis.pino/files/FOSSACS11-extended.pdf.

[ABP+11b] Andres Aristizabal, Filippo Bonchi, Catuscia Palamidessi, Luis Pino,

and Frank D. Valencia. Deriving labels and bisimilarity for concur-

rent constraint programming. In FOSSACS, pages 138–152, 2011.

[ABPV12a] A. Aristizabal, F. Bonchi, L. Pino, and F. Valencia. Partition re-

finement for bisimilarity in ccp (extended version). Technical re-

port, INRIA-CNRS, 2012. Available at: http://www.lix.

polytechnique.fr/~andresaristi/sac2012.pdf.

[ABPV12b] Andres Aristizabal, Filippo Bonchi, Luis Pino, and Frank D. Valen-

cia. Partition refinement for bisimilarity in ccp. In SAC, pages 88–93,

2012.

[ABPV12c] Andres Aristizabal, Filippo Bonchi, Luis Pino, and Frank D. Valen-

cia. Reducing weak to strong bisimilarity in ccp. In ICE, EPTCS,

2012.

[ACS96] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On

bisimulations for the asynchronous pi-calculus. In Proc. of CON-

CUR, volume 1119 of LNCS, pages 147–162. Springer, 1996.

132

http://www.lix.polytechnique.fr/~luis.pino/files/FOSSACS11-extended.pdf
http://www.lix.polytechnique.fr/~luis.pino/files/FOSSACS11-extended.pdf
http://www.lix.polytechnique.fr/~andresaristi/sac2012.pdf
http://www.lix.polytechnique.fr/~andresaristi/sac2012.pdf

BIBLIOGRAPHY 133

[AJ94] Samson Abramsky and Achim Jung. Domain theory. In Handbook

of Logic in Computer Science, pages 1–168. Clarendon Press, 1994.

[Ari10a] Andres Aristizabal. Bisimilarity in concurrent constraint program-

ming. In ICLP (Technical Communications), pages 236–240, 2010.

[Ari10b] Andres Aristizabal. Bisimilarity in concurrent constraint program-

ming. In 2nd Young Researchers Workshop on Concurrency Theory

(YR-CONCUR 2010), 2010.

[BGM09] Filippo Bonchi, Fabio Gadducci, and Giacoma Valentina Monreale.

Reactive systems, barbed semantics, and the mobile ambients. In

FOSSACS, pages 272–287, 2009.

[BJPV09] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn

Victor. Psi-calculi: Mobile processes, nominal data, and logic. In

LICS, pages 39–48, 2009.

[BKM06] Filippo Bonchi, Barbara König, and Ugo Montanari. Saturated se-

mantics for reactive systems. In LICS, pages 69–80, 2006.

[BM08] Maria Grazia Buscemi and Ugo Montanari. Open bisimulation for

the concurrent constraint pi-calculus. In ESOP, pages 254–268,

2008.

[BM09] Filippo Bonchi and Ugo Montanari. Minimization algorithm for

symbolic bisimilarity. In ESOP, pages 267–284, 2009.

[BMM11] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A con-

nector algebra for p/t nets interactions. In Joost-Pieter Katoen and

Barbara König, editors, CONCUR, volume 6901 of Lecture Notes in

Computer Science, pages 312–326. Springer, 2011.

[BZ10] Massimo Bartoletti and Roberto Zunino. A calculus of contracting

processes. In LICS, pages 332–341. IEEE Computer Society, 2010.

[cho08] choco Team. choco: an open source java constraint programming

library, 2008. http://choco.emn.fr.

BIBLIOGRAPHY 134

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The con-

currency workbench: A semantics-based tool for the verification of

concurrent systems. ACM Trans. Program. Lang. Syst., 15(1):36–72,

1993.

[dBPP95] Frank S. de Boer, Alessandra Di Pierro, and Catuscia Palamidessi.

Nondeterminism and infinite computations in constraint program-

ming. Theor. Comput. Sci., 151(1):37–78, 1995.

[EK04] Hartmut Ehrig and Barbara König. Deriving bisimulation congru-

ences in the dpo approach to graph rewriting. In FoSSaCS, pages

151–166, 2004.

[Fer89] Jean-Claude Fernandez. An implementation of an efficient algorithm

for bisimulation equivalence. Sci. Comput. Program., 13(1):219–

236, 1989.

[FGM+98] G.L. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. Ver-

ifying mobile processes in the hal environment. In CAV, pages 511–

515, 1998.

[FGMP94] Moreno Falaschi, Maurizio Gabbrielli, Kim Marriott, and Catuscia

Palamidessi. Confluence and concurrent constraint programming. In

GULP-PRODE (1), pages 140–154, 1994.

[FGMP97] Moreno Falaschi, Maurizio Gabbrielli, Kim Marriott, and Catus-

cia Palamidessi. Confluence in concurrent constraint programming.

Theor. Comput. Sci., 183(2):281–315, 1997.

[Gec06] Gecode Team. Gecode: Generic constraint development environ-

ment, 2006. http://www.gecode.org.

[GHL08] Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa. Rpo,

second-order contexts, and lambda-calculus. In FoSSaCS, pages

334–349, 2008.

BIBLIOGRAPHY 135

[GM00] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon D.

Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,

and Interaction, pages 133–166. The MIT Press, 2000.

[HT71] J.D. Monk L. Henkin and A. Tarski. Cylindric Algebras (Part I).

North-Holland, 1971.

[HY95] Kohei Honda and Nobuko Yoshida. On reduction-based process se-

mantics. Theor. Comput. Sci., 151(2):437–486, 1995.

[JBPV10] Magnus Johansson, Jesper Bengtson, Joachim Parrow, and Björn

Victor. Weak equivalences in psi-calculi. In LICS, pages 322–331,

2010.

[Jen06] O. H. Jensen. Mobile Processes in Bigraphs. PhD thesis, University

of Cambridge, 2006.

[JKOK98] Cheoljoo Jeong, Youngchan Kim, Youngbae Oh, and Heungnam

Kim. A faster parallel implementation of the kanellakis-smolka al-

gorithm for bisimilarity checking. In In Proceedings of the Interna-

tional Computer Symposium, 1998.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and

(co)induction. EATCS Bulletin, 62:62–222, 1997.

[JVP10] Magnus Johansson, Björn Victor, and Joachim Parrow. A fully ab-

stract symbolic semantics for psi-calculi. CoRR, abs/1002.2867,

2010.

[KPPV12] Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and

Frank D. Valencia. Spatial information distribution in constraint-

based process calculi (extended version). Technical report, INRIA,

2012. Available at: http://www.lix.polytechnique.fr/

~fvalenci/papers/eccp-extended.pdf.

[KS83] Paris C. Kanellakis and Scott A. Smolka. Ccs expressions, finite

state processes, and three problems of equivalence. In PODC, pages

228–240, 1983.

http://www.lix.polytechnique.fr/~fvalenci/papers/eccp-extended.pdf
http://www.lix.polytechnique.fr/~fvalenci/papers/eccp-extended.pdf

BIBLIOGRAPHY 136

[LM00] James J. Leifer and Robin Milner. Deriving bisimulation congru-

ences for reactive systems. In CONCUR, pages 243–258, 2000.

[LPSS11] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt.

On the expressiveness and decidability of higher-order process cal-

culi. Inf. Comput., 209(2):198–226, 2011.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of

Lecture Notes in Computer Science. Springer-Verlag New York, Inc.,

1980.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus.

Cambridge University Press, 1999.

[MPLS] Ugo Montanari, Marco Pistore, Insup Lee, and Scott Smolka. Check-

ing bisimilarity for finitary π-calculus, pages 42–56. Springer Berlin

/ Heidelberg.

[MPSS95] N. P. Mendler, Prakash Panangaden, Philip J. Scott, and R. A. G.

Seely. A logical view of concurrent constraint programming. Nord.

J. Comput., 2(2):181–220, 1995.

[MS92a] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In ICALP,

pages 685–695, 1992.

[MS92b] Ugo Montanari and Vladimiro Sassone. Dynamic congruence vs.

progressing bisimulation for ccs. FI, 16(1):171–199, 1992.

[OV08] Carlos Olarte and Frank D. Valencia. Universal concurrent constra-

int programing: symbolic semantics and applications to security. In

SAC, pages 145–150, 2008.

[PS96] Marco Pistore and Davide Sangiorgi. A partition refinement algo-

rithm for the pi-calculus (extended abstract). In CAV, pages 38–49,

1996.

BIBLIOGRAPHY 137

[PSVV06] Catuscia Palamidessi, Vijay A. Saraswat, Frank D. Valencia, and

Björn Victor. On the expressiveness of linearity vs persistence in

the asychronous pi-calculus. In LICS, pages 59–68, 2006.

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement

algorithms. SIAM J. Comput., 16(6):973–989, 1987.

[PV01] Catuscia Palamidessi and Frank D. Valencia. A temporal concurrent

constraint programming calculus. In CP, pages 302–316, 2001.

[RS08] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural

theories of mobility. In IFIP TCS, pages 507–520, 2008.

[RSS07] Julian Rathke, Vladimiro Sassone, and Pawel Sobociński. Semantic

barbs and biorthogonality. In Proceedings of FoSSaCS’07, volume

4423 of LNCS, pages 302–316. Springer, 2007.

[San09] Davide Sangiorgi. On the origins of bisimulation and coinduction.

ACM Trans. Program. Lang. Syst., 31(4), 2009.

[San11] Davide Sangiorgi. An introduction to Bisimulation and Coinduction.

Cambridge University Press, 2011.

[Sew98] Peter Sewell. From rewrite to bisimulation congruences. In Proc.

of CONCUR ’98, volume 1466 of LNCS, pages 269–284. Springer,

1998.

[SJG] Vijay Saraswat, Radha Jagadeesan, and Vineet Gupta. Foundations

of timed concurrent constraint programming.

[Sob10] Pawel Sobocinski. Representations of petri net interactions. In Paul

Gastin and François Laroussinie, editors, CONCUR, volume 6269 of

Lecture Notes in Computer Science, pages 554–568. Springer, 2010.

[Sob12] Pawel Sobocinski. Relational presheaves as labelled transition sys-

tems. In In proceedings CMCSâ 2012, To appear in Lecture Notes in

Computer Science, 2012.

BIBLIOGRAPHY 138

[SR90] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint pro-

gramming. In POPL, pages 232–245, 1990.

[SR12] Davide Sangiorgi and Jan Rutten. Advanced Topics in Bisimulation

and Coinduction. Cambridge University Press, 2012.

[SRP91] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Se-

mantic foundations of concurrent constraint programming. In POPL,

pages 333–352, 1991.

[SS05] Vladimiro Sassone and Pawel Sobocinski. Reactive systems over

cospans. In LICS, pages 311–320, 2005.

[V.A89] V.A.Saraswat. Concurrent Constraint Programming. PhD thesis,

Carnegie-Mellon University, 1989.

[VM94] Björn Victor and Faron Moller. The mobility workbench - a tool for

the pi-calculus. In CAV, pages 428–440, 1994.

[Wil11] John W. Wilkinson. Json spirit: A c++ json parser/genera-

tor implemented with boost spirit, 15 Sep 2011. Available

at: http://www.codeproject.com/Articles/20027/

JSON-Spirit-A-C-JSON-Parser-Generator-Implemented.

http://www.codeproject.com/Articles/20027/JSON-Spirit-A-C-JSON-Parser-Generator-Implemented
http://www.codeproject.com/Articles/20027/JSON-Spirit-A-C-JSON-Parser-Generator-Implemented

Index

Abstract Data Type, 96

Algebraic Lattice, 13

Barbed Bisimilarity, 24

Barbed Equivalences, 23

Barbs, 24

Bisimilarity, 2

C++, 95

CCP Configuration, 19

CCP Syntax, 17

Complete Lattice, 13

Completeness, 33, 48

Concurrency, 2

Concurrent Constraint Programming, 2,

18

Congruence, 24

Constraint System, 13

Constraint Systems, 13

Cylindric Constraint System, 14

Derivation, 50

Domination, 53

Fairness, 22

Finite Element, 13

Finite Processes, 18

Infinite Processes, 18

Irredundancy, 96

Irredundant Bisimilarity, 56, 58

Irredundant Bisimilarity over =⇒, 78

Labeled Transitions, 28

Observational Equivalence, 26

Partition Refinement, 45

Partition Refinement for CCP, 65

Reduction Semantics for CCP, 19, 20

Redundant Transition, 52

Saturated Barbed Bisimilarity, 25

Saturated Bisimilarity, 23

Saturation, 75, 103

Soundness, 33, 48

Strong Bisimilarity, 36

Strong Prerefinement, 97

Symbolic Bisimilarity, 56

Symbolic Bisimilarity over =⇒, 77

Syntactic Bisimilarity, 35, 49

Syntax for non-deterministic ccp, 46

Weak Bisimilarity, 37

Weak Partition Refinement for CCP, 90

Weak Prerefinement, 99

Weak Saturated Barbed Bisimilarity, 25

139

	Abstract
	Acknowledgments
	Introduction
	Bisimilarity for CCP
	Labeled Semantics
	Algorithms
	From Weak to Strong Bisimilarity
	Summary of Contributions and Organization
	Publications from this Dissertation

	Deriving Labels and Bisimilarity for CCP
	Background
	Constraint Systems
	Syntax
	Reduction Semantics
	Observational Equivalence

	Saturated Bisimilarity for CCP
	Saturated Barbed Bisimilarity
	Correspondence with Observational Equivalence

	Labeled Semantics
	Strong and Weak Bisimilarity
	Summary of Contributions and Related Work

	Partition Refinement for Bisimilarity in CCP
	Background
	Partition Refinement

	Irredundant Bisimilarity
	Reduction Semantics for Non-deterministic CCP
	Labeled Semantics for Non-deterministic CCP
	Saturated Bisimilarity in a Non-deterministic CCP Fragment
	Soundness and Completeness
	Syntactic Bisimilarity and Redundancy
	Symbolic and Irredundant Bisimilarity

	Partition Refinement for CCP
	Termination
	Complexity of the Algorithm

	Summary of Contributions and Related Work

	Reducing Weak to Strong Bisimilarity in CCP
	Background
	Reducing Weak to Strong Bisimilarity

	Defining a New Saturation Method for CCP
	A New Saturation Method
	A Remark about our Saturation in CCS
	Soundness and Completeness

	Correspondence between sb, sym, I
	Algorithm for the Weak Notion of the CCP Partition Refinement Algorithm
	Summary of Contributions and Related Work

	Conclusions
	Implementation and Experiments for the CCP Partition Refinement
	Programming Language
	Abstract Data Types
	Implementation Layout
	Layout of the Automaton
	Layout of the Redundant Class
	Layout of a Tool to Verify Bisimilarity in CCP

	Procedures and Functions
	Calculating Irredundancy
	Strong Prerefinement
	Weak Prerefinement
	Final Algorithm
	Final Strong Algorithm
	Saturation
	Final Weak Algorithm

	Results and Examples
	Transitions/Nodes
	Percentage of Same Labels
	Percentage of Configurations Satisfying the Same Barb
	Percentage of Dominated Transitions
	Time vs Branches

	Summary of Contributions and Related Work

