Skip to Main content Skip to Navigation
Theses

Séparation de sources pour l’audition des robots

Abstract : This thesis proposes blind audio source separation algorithms using a microphone array. The final application of these algorithms is robot audition through the ROMEO project. In this thesis, we developed blind source separation algorithms based on a sparcity criterion. We show that l1 minimization using the natural gradient optimization technique has the same performance that the state of the art. We show that a criterion based on the parametrization of the quazi-norm lp, with 0
Keywords : HRTF Beamforming
Document type :
Theses
Complete list of metadata

Cited literature [87 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/pastel-00758370
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, November 28, 2012 - 4:02:12 PM
Last modification on : Tuesday, August 16, 2022 - 3:48:11 PM
Long-term archiving on: : Saturday, December 17, 2016 - 4:29:52 PM

File

these_Maazaoui.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : pastel-00758370, version 1

Collections

Citation

Mounira Maazaoui. Séparation de sources pour l’audition des robots. Autre. Télécom ParisTech, 2012. Français. ⟨NNT : 2012ENST0016⟩. ⟨pastel-00758370⟩

Share

Metrics

Record views

352

Files downloads

943