H. W. Kroto, J. R. Heath, S. C. O-'brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.196, issue.6042, pp.162-163, 1985.
DOI : 10.1038/318162a0

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

A. Nagashima, K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima et al., Two-dimensional plasmons in monolayer graphite, Solid State Communications, vol.83, issue.8, pp.581-585, 1992.
DOI : 10.1016/0038-1098(92)90656-T

T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Anomalous bond of monolayer graphite on transition-metal carbide surfaces, Physical Review Letters, vol.64, issue.7, pp.768-771, 1990.
DOI : 10.1103/PhysRevLett.64.768

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat Mater, vol.6, pp.183-191, 2007.
DOI : 10.1142/9789814287005_0002

P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

D. R. Cooper, B. D-'anjou, N. Ghattamaneni, B. Harack, M. Hilke et al., Experimental Review of Graphene, ISRN Condensed Matter Physics, vol.19, issue.6, 2012.
DOI : 10.1021/ja108127r

F. Schwierz and . Graphene, Graphene transistors, Nature Nanotechnology, vol.36, issue.7, pp.487-496, 2010.
DOI : 10.1038/nnano.2010.89

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, issue.5881, p.1308, 2008.
DOI : 10.1126/science.1156965

J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, vol.91, issue.16, pp.163513-163516, 2007.
DOI : 10.1063/1.2789673

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.72, issue.7065, pp.197-200, 2005.
DOI : 10.1103/PhysRevLett.79.3728

C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, pp.1191-1196, 2006.
DOI : 10.1126/science.1125925

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, issue.1, pp.16602-16606, 2008.
DOI : 10.1103/PhysRevLett.100.016602

X. Du, I. Skachko, A. Barker, and E. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, vol.146, issue.8
DOI : 10.1038/nnano.2008.199

L. Liao, Y. ?. Lin, M. Bao, R. Cheng, J. Bai et al., High-speed graphene transistors with a self-aligned nanowire gate, Nature, vol.29, issue.7313, pp.305-308, 2010.
DOI : 10.1038/nature09405

C. Thiele and R. Das, Transparent Conductive Films 2012?2022, Source: IDTechEx, 2012.

D. S. Hecht, L. Hu, and G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, vol.110, issue.13, pp.1482-1513, 2011.
DOI : 10.1002/adma.201003188

H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi et al., Effect of film thickness on the properties of indium tin oxide thin films, Journal of Applied Physics, vol.88, issue.10, pp.6021-6025, 2000.
DOI : 10.1063/1.1318368

S. Agrawal, M. J. Frederick, F. Lupo, P. Victor, O. Nalamasu et al., Directed Growth and Electrical- Transport Properties of Carbon Nanotube Architectures on Indium Tin Oxide Films on Silicon-Based Substrates, Advanced Functional Materials, vol.292, issue.12, pp.1922-1926, 2005.
DOI : 10.1002/adfm.200500165

C. Biswas and Y. H. Lee, Graphene Versus Carbon Nanotubes in Electronic Devices, Advanced Functional Materials, vol.2, issue.20, pp.3806-3826, 2011.
DOI : 10.1002/adfm.201101241

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nature Photonics, vol.10, issue.9, pp.611-622, 2010.
DOI : 10.1038/nphoton.2010.186

S. De and J. N. Coleman, Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?, ACS Nano, vol.4, issue.5, pp.2713-2720, 2010.
DOI : 10.1021/nn100343f

A. B. Kuzmenko, E. Van-heumen, F. Carbone, and D. Van-der-marel, Universal Optical Conductance of Graphite, Physical Review Letters, vol.100, issue.11, p.117401, 2008.
DOI : 10.1103/PhysRevLett.100.117401

A. Kumar and C. Zhou, The Race To Replace Tin?Doped Indium Oxide: Which Material Will Win? ACS Indicator in Early?Stage Cancer Using Functionalized Graphene?Based Peptide Sensors, Advanced Materials, vol.24, pp.125-131, 2011.

G. Mcalpine and M. C. , Graphene?based wireless bacteria detection on tooth enamel, Nat Commun, vol.3, p.763, 2012.

S. Alwarappan, S. Boyapalle, A. Kumar, C. Li, . ?z et al., Comparative Study of Single-, Few-, and Multilayered Graphene toward Enzyme Conjugation and Electrochemical Response, The Journal of Physical Chemistry C, vol.116, issue.11, pp.6556-6559, 2012.
DOI : 10.1021/jp211201b

D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, K. I. Bolotin et al., Graphene: Corrosion-Inhibiting Coating, ACS Nano, vol.6, issue.2, pp.1102-1108, 2008.
DOI : 10.1021/nn203507y

S. Chen, L. Brown, M. Levendorf, W. Cai, S. ?. Ju et al., Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy, ACS Nano, vol.5, issue.2, pp.1321-1327, 2011.
DOI : 10.1021/nn103028d

R. K. Singh-raman, P. Chakraborty-banerjee, D. E. Lobo, H. Gullapalli, M. Sumandasa et al., Protecting copper from electrochemical degradation by graphene coating, Carbon, vol.50, issue.11, pp.4040-4045, 2012.
DOI : 10.1016/j.carbon.2012.04.048

H. Du, J. Li, J. Zhang, G. Su, X. Li et al., Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane, The Journal of Physical Chemistry C, vol.115, issue.47, pp.23261-23266, 2011.
DOI : 10.1021/jp206258u

A. W. Hauser and P. Schwerdtfeger, He Separation, The Journal of Physical Chemistry Letters, vol.3, issue.2, pp.209-213, 2012.
DOI : 10.1021/jz201504k

A. P. Singh, M. Mishra, A. Chandra, and S. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application, Nanotechnology, vol.22, issue.46, p.465701, 2011.
DOI : 10.1088/0957-4484/22/46/465701

D. Cohen?tanugi and J. C. Grossman, Water Desalination across Nanoporous Graphene, Nano Letters, vol.12, issue.7, 2012.
DOI : 10.1021/nl3012853

H. ?. Cong, X. ?. Ren, P. Wang, S. Yu, and . ?h, Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process, ACS Nano, vol.6, issue.3, pp.2693-2703, 2012.
DOI : 10.1021/nn300082k

X. Wei, Y. Bando, and D. Golberg, Electron Emission from Individual Graphene Nanoribbons Driven by Internal Electric Field, ACS Nano, vol.6, issue.1, pp.705-711, 2012.
DOI : 10.1021/nn204172w

Z. ?. Wu, S. Pei, W. Ren, D. Tang, L. Gao et al., Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition, Advanced Materials, vol.44, issue.17, pp.1756-1760, 2009.
DOI : 10.1002/adma.200802560

L. Zhang, H. Zhang, R. Zhou, Z. Chen, Q. Li et al., A graphene oxide???carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials, Nanotechnology, vol.22, issue.38
DOI : 10.1088/0957-4484/22/38/385704

A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B, vol.64, issue.7, p.75414, 2001.
DOI : 10.1103/PhysRevB.64.075414

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim et al., Breakdown of the adiabatic Born???Oppenheimer approximation in graphene, Nature Materials, vol.75, issue.3, pp.198-201, 2007.
DOI : 10.1038/nmat1846

URL : https://hal.archives-ouvertes.fr/hal-00135075

. Dasa, . Pisanas, . Chakrabortyb, . Piscanecs, S. K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, vol.77, issue.4, pp.210-215, 2008.
DOI : 10.1038/nnano.2008.67

J. Shim, C. H. Lui, T. Y. Ko, Y. ?. Yu, P. Kim et al., Water-Gated Charge Doping of Graphene Induced by Mica Substrates, Nano Letters, vol.12, issue.2, pp.648-654, 2012.
DOI : 10.1021/nl2034317

M. Kalbac, A. Reina?cecco, H. Farhat, J. Kong, L. Kavan et al., The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene, ACS Nano, vol.4, issue.10, pp.6055-6063, 2010.
DOI : 10.1021/nn1010914

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. Wu, Interference enhancement of Raman signal of graphene, Applied Physics Letters, vol.92, issue.4, pp.43121-43124, 2008.
DOI : 10.1063/1.2838745

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, band in carbon materials, Physical Review B, vol.59, issue.10, pp.6585-6588, 1999.
DOI : 10.1103/PhysRevB.59.R6585

F. Tuinstra and J. L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, pp.1126-1130, 1970.
DOI : 10.1063/1.1674108

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nature Materials, vol.106, issue.6, pp.443-449, 2011.
DOI : 10.1038/nmat3010

R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler et al., Effects of Layer Stacking on the Combination Raman Modes in Graphene, ACS Nano, vol.5, issue.3, pp.1594-1599, 2011.
DOI : 10.1021/nn1031017

C. Cong, T. Yu, K. Sato, J. Shang, R. Saito et al., Raman Characterization of ABA- and ABC-Stacked Trilayer Graphene, ACS Nano, vol.5, issue.11, pp.8760-8768, 2011.
DOI : 10.1021/nn203472f

D. Zhan, L. Liu, Y. N. Xu, Z. H. Ni, J. X. Yan et al., Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges, Scientific Reports, vol.6, issue.1, 2011.
DOI : 10.1016/0927-0256(96)00008-0

C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus et al., Imaging Stacking Order in Few-Layer Graphene, Nano Letters, vol.11, issue.1, pp.164-169, 2011.
DOI : 10.1021/nl1032827

A. B. Kuzmenko, E. Van-heumen, F. Carbone, and D. Van-der-marel, Universal Optical Conductance of Graphite, Physical Review Letters, vol.100, issue.11, p.117401, 2008.
DOI : 10.1103/PhysRevLett.100.117401

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, issue.5881, p.1308, 2008.
DOI : 10.1126/science.1156965

L. J. Van-der-pauw, A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE
DOI : 10.1142/9789814503464_0017

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, vol.9, issue.12, pp.4359-4363, 2009.
DOI : 10.1021/nl902623y

F. Xia, V. Perebeinos, Y. Lin, Y. Wu, and P. Avouris, The origins and limits of metal???graphene junction resistance, Nature Nanotechnology, vol.5, issue.3, pp.179-184, 2011.
DOI : 10.1038/nnano.2011.6

B. Lebental, W. Moujahid, C. S. Lee, J. Maurice, . ?l et al., Graphene?based resistive humidity sensor for in situ monitoring of drying shrinkage and intrinsic permeability in concrete
URL : https://hal.archives-ouvertes.fr/hal-00857257

.. Metal-catalyzed-growth, 58 3.3.1. Surface vs Interface 58 3.3.2. Chemical Vapor Deposition, p.63

P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien, Zeitschrift für anorganische und allgemeine Chemie 316, pp.119-127, 1962.
DOI : 10.1002/zaac.19623160303

M. Eizenberg and J. M. Blakely, Carbon interaction with nickel surfaces: Monolayer formation and structural stability, The Journal of Chemical Physics, vol.71, issue.8, pp.3467-3477, 1979.
DOI : 10.1063/1.438736

J. C. Shelton, H. R. Patil, and J. M. Blakely, Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition, Surface Science, vol.43, issue.2, pp.493-520, 1974.
DOI : 10.1016/0039-6028(74)90272-6

S. Mouras, Synthesis of first stage graphite intercalation compounds with fluorides, p.572, 1987.

X. Lu, M. Yu, H. Huang, R. , and S. R. , Tailoring graphite with the goal of achieving single sheets, Nanotechnology, vol.10, issue.3, p.269, 1999.
DOI : 10.1088/0957-4484/10/3/308

Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Applied Physics Letters, vol.86, issue.7, pp.73104-73107, 2005.
DOI : 10.1063/1.1862334

K. Car, R. Saville, D. A. Aksay, I. Park, S. Ruoff et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide Chemical methods for the production of graphenes, The Journal of Physical Chemistry B Nat Nano, vol.110, issue.4, pp.8535-8539, 2006.

A. J. Van-bommel, J. E. Crombeen, and A. Van-tooren, LEED and Auger electron observations of the SiC(0001) surface, Surface Science, vol.48, issue.2, pp.463-472, 1975.
DOI : 10.1016/0039-6028(75)90419-7

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi et al., Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52, pp.19912-19916, 2004.
DOI : 10.1021/jp040650f

C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, vol.312, issue.5777, pp.1191-1196, 2006.
DOI : 10.1126/science.1125925

R. Sprinklem, . Huy, R. Hankinsonj, M. Roy, . Zhangb et al., Scalable templated growth of graphene nanoribbons on SiC, Nature Nanotechnology, vol.9, issue.10, pp.727-731, 2010.
DOI : 10.1038/nnano.2010.192

J. A. Rodríguez-manzo, C. Pham-huu, and F. Banhart, Graphene Growth by a Metal-Catalyzed Solid-State Transformation of Amorphous Carbon, ACS Nano, vol.5, issue.2, pp.1529-1534, 2011.
DOI : 10.1021/nn103456z

T. Kaplas, D. Sharma, and Y. Svirko, Few-layer graphene synthesis on a dielectric substrate, Carbon, vol.50, issue.4, pp.1503-1509, 2012.
DOI : 10.1016/j.carbon.2011.11.020

G. A. López and E. J. Mittemeijer, The solubility of C in solid Cu, Scripta Materialia, vol.51, issue.1, pp.1-5, 2004.
DOI : 10.1016/j.scriptamat.2004.03.028

F. Fumagalli, O. Kylián, L. Amato, J. Hanu?, and F. Rossi, Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination, Journal of Physics D: Applied Physics, vol.45, issue.13, p.135203, 2012.
DOI : 10.1088/0022-3727/45/13/135203

T. Suzuki, Y. Sawado, and Y. Fujii, Characterization of oxide films generated on stainless steel in water vapor and oxygen plasmas, Surface and Coatings Technology, vol.200, issue.1-4, pp.284-287, 2005.
DOI : 10.1016/j.surfcoat.2005.02.013

Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush et al., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Synthesis of Large Arrays of Well?Aligned Carbon Nanotubes on Glass, pp.1105-1107, 1998.
DOI : 10.1126/science.282.5391.1105

S. Jian and . ?r, Effects of H2 plasma pretreated Ni catalysts on the growth of carbon nanotubes, Materials Chemistry and Physics, vol.115, issue.2-3, pp.740-743, 2009.
DOI : 10.1016/j.matchemphys.2009.02.018

W. S. Choi, S. ?. Choi, B. Hong, D. ?. Lim, K. Yang et al., Effect of hydrogen plasma pretreatment on growth of carbon nanotubes by MPECVD, Materials Science and Engineering: C, vol.26, issue.5-7, pp.1211-1214, 2006.
DOI : 10.1016/j.msec.2005.09.037

S. ?. Jian, Y. ?. Chen, C. ?. Wang, H. ?. Wen, W. Chiu et al., The Influences of H2 Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition, Nanoscale Research Letters, vol.33, issue.68, pp.230-235, 2008.
DOI : 10.1007/s11671-008-9141-5

Y. Luo and . ?r, Comprehensive Handbook of Chemical Bond Energies, 2007.
DOI : 10.1201/9781420007282

B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. Wu et al., Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils, ACS Nano, vol.6, issue.3, pp.2471-2476, 2012.
DOI : 10.1021/nn204827h

Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen et al., Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, vol.93, issue.11, pp.113103-113106, 2008.
DOI : 10.1063/1.2982585

Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura et al., A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling, Applied Physics Letters, vol.96, issue.26, pp.263105-263108, 2010.
DOI : 10.1063/1.3458797

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu et al., Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu???Ni Alloy Foils, Nano Letters, vol.11, issue.9, pp.3519-3525, 2011.
DOI : 10.1021/nl201699j

Y. Qi, J. R. Eskelsen, U. Mazur, and K. W. Hipps, Fabrication of Graphene with CuO Islands by Chemical Vapor Deposition, Langmuir, vol.28, issue.7, pp.3489-3493, 2012.
DOI : 10.1021/la2048163

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus et al., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates, The Journal of Physical Chemistry C, vol.112, issue.46, pp.17741-17744, 2008.
DOI : 10.1021/jp807380s

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, pp.30-35, 2008.
DOI : 10.1021/nl801827v

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker et al., Toward Clean and Crackless Transfer of Graphene, ACS Nano, vol.5, issue.11, pp.9144-9153, 2011.
DOI : 10.1021/nn203377t

M. Ruoff, R. S. Wallace, and R. M. , The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO, Applied Physics Letters, vol.99, issue.2, pp.122108-122111, 2011.

Y. ?. Lin, C. ?. Lu, C. ?. Yeh, C. Jin, K. Suenaga et al., Graphene Annealing: How Clean Can It Be?, Nano Letters, vol.12, issue.1, pp.414-419, 2012.
DOI : 10.1021/nl203733r

J. J. Lander, H. E. Kern, and A. L. Beach, Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel???Carbon Alloys with Barium Oxide, Journal of Applied Physics, vol.23, issue.12, pp.1305-1309, 1952.
DOI : 10.1063/1.1702064

Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang et al., Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy, Small, vol.7, issue.2, pp.195-200, 2010.
DOI : 10.1002/smll.200901173

A. Gr?neis, C. Attaccalite, L. Wirtz, H. Shiozawa, R. Saito et al., Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene, Physical Review B, vol.78, issue.20, p.205425, 2008.
DOI : 10.1103/PhysRevB.78.205425

L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz et al., Probing the electronic structure of bilayer graphene by Raman scattering, Physical Review B, vol.76, issue.20, p.201401, 2007.
DOI : 10.1103/PhysRevB.76.201401

Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu et al., Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy, ACS Nano, vol.3, issue.3, pp.569-574, 2009.
DOI : 10.1021/nn900130g

C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Raman fingerprint of charged impurities in graphene, Applied Physics Letters, vol.91, issue.23, p.233108, 2007.
DOI : 10.1063/1.2818692

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

Z. Ni, Y. Wang, T. Yu, and Z. Shen, Raman spectroscopy and imaging of graphene, Nano Research, vol.92, issue.4, pp.273-291, 2008.
DOI : 10.1007/s12274-008-8036-1

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and E. , -Graphene Layer Films, Nano Letters, vol.6, issue.12, pp.2667-2673, 2006.
DOI : 10.1021/nl061420a

URL : https://hal.archives-ouvertes.fr/halshs-01157891

C. S. Lee, J. H. Ryu, H. E. Lim, K. Y. Min, I. O. Jeong et al., Electron Emission from Robust CNTs Grown by Resist?Assisted Patterning, J. Korean Phys. Soc, vol.53, p.2735, 2008.

K. B. Teo, M. Chhowalla, G. A. Amaratunga, W. I. Milne, G. Pirio et al., Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.1, pp.116-121, 2002.
DOI : 10.1116/1.1428281

X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon et al., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper, Journal of the American Chemical Society, vol.133, issue.9, pp.2816-2819, 2011.
DOI : 10.1021/ja109793s

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nature Materials, vol.106, issue.6, pp.443-449, 2011.
DOI : 10.1038/nmat3010

P. Jacobson, B. Stöger, A. Garhofer, G. S. Parkinson, M. Schmid et al., Disorder and Defect Healing in Graphene on Ni(111), Disorder and Defect Healing in Graphene on Ni, pp.136-139, 2012.
DOI : 10.1021/jz2015007

L. Liu, K. T. Rim, D. Eom, T. F. Heinz, and G. W. Flynn, Direct Observation of Atomic Scale Graphitic Layer Growth, Nano Letters, vol.8, issue.7, pp.1872-1878, 2008.
DOI : 10.1021/nl0804046

L. Baraton, C. S. Cojocaru, and D. Pribat, Process for controlled growth of graphene films, 2008.

Y. Zhang, Y. Chen, K. Zhou, C. Liu, J. Zeng et al., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology, vol.20, issue.18, p.185504, 2009.
DOI : 10.1088/0957-4484/20/18/185504

M. Substrate and .. , 130 5.1.2.1. Carbon Solubility, Linear Thermal Expansion Coefficient, p.134

D. Results and P. , 136 5.3.1. Carbon Ion Implantation and, Carbon Out?Diffusion from Polycrystalline Ni, p.138

D. Results and P. , 145 5.4.1. Effect of Implantation Conditions, Investigation of Electrical Behavior, p.149

K. Colombo, L. Ruoff, and R. S. , Large?Area Synthesis of High?Quality and Uniform Graphene Films on Copper Foils, Science, vol.324, pp.1312-1314, 2009.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, pp.30-35, 2008.
DOI : 10.1021/nl801827v

S. Bae, H. Kim, Y. Lee, X. Xu, J. ?. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, pp.574-578, 2010.
DOI : 10.1038/nnano.2010.132

Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura et al., A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling, Applied Physics Letters, vol.96, issue.26, pp.263105-263108, 2010.
DOI : 10.1063/1.3458797

A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette et al., Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors, Carbon, vol.49, issue.13, pp.4204-4210, 2011.
DOI : 10.1016/j.carbon.2011.05.054

M. Okano, R. Matsunaga, K. Matsuda, S. Masubuchi, T. Machida et al., Raman study on the interlayer interactions and the band structure of bilayer graphene synthesized by alcohol chemical vapor deposition, Applied Physics Letters, vol.99, issue.15, pp.151916-151919, 2011.
DOI : 10.1063/1.3651325

B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. Wu et al., Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils, ACS Nano, vol.6, issue.3, pp.2471-2476, 2012.
DOI : 10.1021/nn204827h

X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk et al., Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process, Nano Letters, vol.10, issue.11, pp.4328-4334, 2010.
DOI : 10.1021/nl101629g

Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers et al., Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure, Chemistry of Materials, vol.23, issue.6, pp.1441-1447, 2011.
DOI : 10.1021/cm1028854

J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition, Nano Letters, vol.11, issue.11, pp.4547-4554, 2011.
DOI : 10.1021/nl201566c

L. Baraton, C. S. Cojocaru, and D. Pribat, International Patent 0805769?2008, Process forcontrolled growth of graphene films, 2008.

L. N. Large, Ion implantation :A new method of doping semiconductors???I, Contemporary Physics, vol.13, issue.3, pp.277-298, 1969.
DOI : 10.1080/00107516808220091

C. Fritzsche, Ion Implantation into Semiconductors, Angewandte Chemie International Edition in English, vol.17, issue.7, pp.496-505, 1978.
DOI : 10.1002/anie.197804961

J. H. Mun, S. K. Lim, and B. J. Cho, Local Growth of Graphene by Ion Implantation of Carbon in a Nickel Thin Film followed by Rapid Thermal Annealing, Journal of The Electrochemical Society, vol.159, issue.6, pp.89-92, 2012.
DOI : 10.1149/2.059206jes

L. Baraton, Z. He, C. S. Lee, J. ?. Maurice, C. S. Cojocaru et al., Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films, Nanotechnology, vol.22, issue.8, p.85601, 2012.
DOI : 10.1088/0957-4484/22/8/085601

URL : https://hal.archives-ouvertes.fr/hal-00557031

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, 1985.

P. R. Somani, S. P. Somani, and M. Umeno, Planer nano-graphenes from camphor by CVD, Chemical Physics Letters, vol.430, issue.1-3, pp.56-59, 2006.
DOI : 10.1016/j.cplett.2006.06.081

L. Baraton, Z. He, C. S. Lee, C. S. Cojocaru, M. Chatelet et al., On the mechanisms of precipitation of graphene on nickel thin films, EPL (Europhysics Letters), vol.96, issue.4, p.46003, 2011.
DOI : 10.1209/0295-5075/96/46003

URL : https://hal.archives-ouvertes.fr/hal-00601452

S. Kumar, N. Mcevoy, T. Lutz, G. P. Keeley, V. Nicolosi et al., Gas phase controlled deposition of high quality large-area graphene films, Chemical Communications, vol.13, issue.10, pp.1422-1424, 2010.
DOI : 10.1039/b919725g

W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition, Carbon, vol.49, issue.13, pp.4122-4130, 2011.
DOI : 10.1016/j.carbon.2011.05.047

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu et al., Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu???Ni Alloy Foils, Nano Letters, vol.11, issue.9, pp.3519-3525, 2011.
DOI : 10.1021/nl201699j

Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen et al., Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, vol.93, issue.11, pp.113103-113106, 2008.
DOI : 10.1063/1.2982585

C. Oshima and N. Ayato, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces, Journal of Physics: Condensed Matter, vol.9, issue.1, 1997.
DOI : 10.1088/0953-8984/9/1/004

G. A. López and E. J. Mittemeijer, The solubility of C in solid Cu, Scripta Materialia, vol.51, issue.1, pp.1-5, 2004.
DOI : 10.1016/j.scriptamat.2004.03.028

C. Mattevi, H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem., vol.466, issue.10, pp.3324-3334, 2011.
DOI : 10.1039/C0JM02126A

X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling, Nano Letters, vol.9, issue.12, pp.4268-4272, 2009.
DOI : 10.1021/nl902515k

A. Earnshaw and T. J. Harrington, The chemistry of the transition elements, 1972.

G. A. L?pez, E. J. Mittemeijer, Z. Sun, S. K. Hämäläinen, J. Sainio et al., The solubility of C in solid Cu, Scripta Materialia, vol.51, issue.1, pp.1-5, 2004.
DOI : 10.1016/j.scriptamat.2004.03.028

Y. Ding, P. X. Gao, and Z. L. Wang, Catalyst???Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:?? A Case of Sn/ZnO, Journal of the American Chemical Society, vol.126, issue.7, pp.2066-2072, 2004.
DOI : 10.1021/ja039354r

S. Reich, J. Maultzsch, C. Thomsen, and P. Ordej?n, Tight-binding description of graphene, Physical Review B, vol.66, issue.3, p.35412, 2002.
DOI : 10.1103/PhysRevB.66.035412

T. Chang, . ?m, and E. A. Carter, Structures and Growth Mechanisms for Heteroepitaxial fcc

A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, Controlling graphene corrugation on lattice-mismatched substrates, Physical Review B, vol.78, issue.7, p.73401, 2008.
DOI : 10.1103/PhysRevB.78.073401

I. Pletikosi?, M. Kralj, P. Pervan, R. Brako, J. Coraux et al., Dirac Cones and Minigaps for Graphene on Ir(111), Dirac Cones and Minigaps for Graphene on Ir, p.56808, 2009.
DOI : 10.1103/PhysRevLett.102.056808

P. Sutter, J. T. Sadowski, and E. Sutter, Graphene on Pt(111): Growth and substrate interaction, Physical Review B, vol.80, issue.24, p.245411, 2009.
DOI : 10.1103/PhysRevB.80.245411

W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang et al., Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nature Nanotechnology, vol.76, issue.9, pp.562-566, 2009.
DOI : 10.1038/nnano.2009.191

J. J. Lander, H. E. Kern, and A. L. Beach, Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel???Carbon Alloys with Barium Oxide, Journal of Applied Physics, vol.23, issue.12, pp.1305-1309, 1952.
DOI : 10.1063/1.1702064

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

W. X. Wang, S. H. Liang, T. Yu, D. H. Li, Y. B. Li et al., The study of interaction between graphene and metals by Raman spectroscopy, Journal of Applied Physics, vol.109, issue.7, pp.7-501, 2011.
DOI : 10.1063/1.3536670

M. Lin, J. P. Tan, C. Boothroyd, K. P. Loh, E. S. Tok et al., Dynamical Observation of Bamboo-like Carbon Nanotube Growth, Nano Letters, vol.7, issue.8, pp.2234-2238, 2007.
DOI : 10.1021/nl070681x

S. Helveg, C. Lopez?cartes, J. Sehested, P. L. Hansen, B. S. Clausen et al., Atomic-scale imaging of carbon nanofibre growth, Nature, vol.427, issue.6973, pp.426-429, 2004.
DOI : 10.1038/nature02278

F. Abild?pedersen, J. K. Nørskov, J. R. Rostrup?nielsen, J. Sehested, and S. Helveg, density functional theory calculations, Physical Review B, vol.73, issue.11, p.115419, 2006.
DOI : 10.1103/PhysRevB.73.115419

Z. B. He, J. L. Maurice, C. S. Lee, A. Gohier, D. Pribat et al., Etchant-induced shaping of nanoparticle catalysts during chemical vapour growth of carbon nanofibres, Carbon, vol.49, issue.2, pp.435-444, 2011.
DOI : 10.1016/j.carbon.2010.09.040

URL : https://hal.archives-ouvertes.fr/hal-00525194

S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi et al., In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, situ Observations of Catalyst Dynamics during Surface?Bound Carbon Nanotube Nucleation, pp.602-608, 2007.
DOI : 10.1021/nl0624824

H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, K. Hata et al., Atomic-Resolution Imaging of the Nucleation Points of Single-Walled Carbon Nanotubes, Small, vol.1, issue.12, pp.1180-1183, 2005.
DOI : 10.1002/smll.200500200

J. A. Rodríguez?manzo, I. Janowska, C. Pham?huu, A. Tolvanen, A. V. Krasheninnikov et al., Growth of Single-Walled Carbon Nanotubes from Sharp Metal Tips, Small, vol.85, issue.23, pp.2710-2715, 2009.
DOI : 10.1002/smll.200900590

Z. He, J. ?. Maurice, A. Gohier, C. S. Lee, D. Pribat et al., C or Both?, Chemistry of Materials, vol.23, issue.24, pp.5379-5387, 2011.
DOI : 10.1021/cm202315j

URL : https://hal.archives-ouvertes.fr/hal-00752981

L. Baraton, Z. He, C. S. Lee, J. Maurice, C. Sorin-cojocaru et al., Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films, Nanotechnology, vol.22, issue.8, p.85601
DOI : 10.1088/0957-4484/22/8/085601

URL : https://hal.archives-ouvertes.fr/hal-00557031

A. E. Morgan and G. A. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface, Surface Science, vol.12, issue.3, pp.405-425, 1968.
DOI : 10.1016/0039-6028(68)90089-7

J. C. Shelton, H. R. Patil, and J. M. Blakely, Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition, Surface Science, vol.43, issue.2, pp.493-520, 1974.
DOI : 10.1016/0039-6028(74)90272-6

M. Eizenberg and J. M. Blakely, Carbon interaction with nickel surfaces: Monolayer formation and structural stability, The Journal of Chemical Physics, vol.71, issue.8, pp.3467-3477, 1979.
DOI : 10.1063/1.438736

S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects, Physical Review B, vol.75, issue.3, p.35427, 2007.
DOI : 10.1103/PhysRevB.75.035427

URL : https://hal.archives-ouvertes.fr/hal-00129683

H. Berger, Models for contacts to planar devices, Solid-State Electronics, vol.15, issue.2, pp.145-158, 1972.
DOI : 10.1016/0038-1101(72)90048-2

R. 1. Novoselov, K. S. Geim, A. K. Morozov, S. V. Jiang, D. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, vol.319, issue.5867, pp.1229-1232, 2008.
DOI : 10.1126/science.1150878

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi et al., Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52, 2004.
DOI : 10.1021/jp040650f

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, pp.30-35, 2008.
DOI : 10.1021/nl801827v

K. Colombo, L. Ruoff, and R. S. , Large?Area Synthesis of High?Quality and Uniform Graphene Films on Copper Foils, Science, vol.324, pp.1312-1314, 2009.

A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, vol.45, issue.10, pp.2017-2021, 2007.
DOI : 10.1016/j.carbon.2007.05.028

P. Hojati?talemi and G. P. Simon, Field emission study of graphene nanowalls prepared by microwave-plasma method, Carbon, vol.49, issue.8, pp.2875-2877, 2011.
DOI : 10.1016/j.carbon.2011.03.004

T. Yamada, M. Ishihara, J. Kim, M. Hasegawa, and S. Iijima, A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature, Carbon, vol.50, issue.7, pp.2615-2619, 2012.
DOI : 10.1016/j.carbon.2012.02.020

G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li et al., Graphene sheets via microwave chemical vapor deposition, Chemical Physics Letters, vol.467, issue.4-6, pp.361-364, 2009.
DOI : 10.1016/j.cplett.2008.11.059

R. Vitchev, A. Malesevic, H. P. Roumen, R. Kemps, M. Mertens et al., Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition, Nanotechnology, vol.21, issue.9, p.95602, 2010.
DOI : 10.1088/0957-4484/21/9/095602

G. Kalita, K. Wakita, and M. Umeno, Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application, RSC Advances, vol.23, issue.4, pp.2815-2820, 2012.
DOI : 10.1039/c2ra00648k

Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung et al., Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition, Applied Physics Letters, vol.98, issue.26, pp.263106-263109, 2011.
DOI : 10.1063/1.3605560

A. Kumar, A. A. Voevodin, D. Zemlyanov, D. N. Zakharov, and T. S. Fisher, Rapid synthesis of few-layer graphene over Cu foil, Carbon, vol.50, issue.4, pp.1546-1553, 2012.
DOI : 10.1016/j.carbon.2011.11.033

A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Letters, vol.8, issue.7, pp.2012-2016, 2008.
DOI : 10.1021/nl8011566

A. Dato and F. Michael, Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors, New Journal of Physics, vol.12, issue.12, p.125013, 2010.
DOI : 10.1088/1367-2630/12/12/125013

A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang et al., Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition, Nanotechnology, vol.19, issue.30, p.305604, 2008.
DOI : 10.1088/0957-4484/19/30/305604

S. M. Wang, Y. H. Pei, X. Wang, H. Wang, Q. N. Meng et al., Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition, Journal of Physics D: Applied Physics, vol.43, issue.45, p.455402, 2010.
DOI : 10.1088/0022-3727/43/45/455402

B. ?. Lee, H. Yu, . ?y, G. Jeong, and . ?h, Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application, Nanoscale Research Letters, vol.93, issue.11, pp.1768-1773, 2010.
DOI : 10.1007/s11671-010-9708-9

G. Kalita, M. S. Kayastha, H. Uchida, K. Wakita, and M. Umeno, Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices, RSC Advances, vol.115, issue.8, pp.3225-3230, 2012.
DOI : 10.1039/C2RA00648K

T. Terasawa and K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition, Carbon, vol.50, issue.3, pp.869-874, 2012.
DOI : 10.1016/j.carbon.2011.09.047

J. Kim, K. Tsugawa, M. Ishihara, Y. Koga, and M. Hasegawa, Large-area surface wave plasmas using microwave multi-slot antennas for nanocrystalline diamond film deposition, Plasma Sources Science and Technology, vol.19, issue.1, p.15003, 2010.
DOI : 10.1088/0963-0252/19/1/015003

Y. Woo, D. ?. Kim, D. ?. Jeon, H. ?. Chung, S. ?. Shin et al., Large-grained and Highly-ordered Graphene Synthesized by Radio Frequency Plasma-enhanced Chemical Vapor Deposition, ECS Transactions, pp.111-114, 2009.
DOI : 10.1149/1.3119534

J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa et al., Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition, Applied Physics Letters, vol.98, issue.9, pp.91502-91505, 2011.
DOI : 10.1063/1.3561747

B. ?. Lee, T. ?. Lee, S. Park, H. ?. Yu, J. Lee et al., Low-temperature synthesis of thin graphite sheets using plasma-assisted thermal chemical vapor deposition system, Materials Letters, vol.65, issue.7, pp.1127-1130, 2011.
DOI : 10.1016/j.matlet.2011.01.045

S. Kumar, I. Levchenko, Q. J. Cheng, J. Shieh, and K. Ostrikov, Plasma enables edge-to-center-oriented graphene nanoarrays on Si nanograss, Applied Physics Letters, vol.100, issue.5, pp.53115-53119, 2012.
DOI : 10.1063/1.3681782

J. L. Qi, W. T. Zheng, X. H. Zheng, X. Wang, and H. W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition, Applied Surface Science, vol.257, issue.15, pp.6531-6534, 2011.
DOI : 10.1016/j.apsusc.2011.02.069

J. ?. Lee, H. ?. Chung, J. Heo, S. Seo, I. H. Cho et al., Reliability of bottom-gate graphene field-effect transistors prepared by using inductively coupled plasma-chemical vapor deposition, Applied Physics Letters, vol.98, issue.19, pp.193504-193507, 2011.
DOI : 10.1063/1.3589120

G. Nandamuri, S. Roumimov, and R. Solanki, Remote plasma assisted growth of graphene films, Applied Physics Letters, vol.96, issue.15
DOI : 10.1063/1.3387812

C. S. Lee, L. Baraton, Z. He, J. ?. Maurice, D. Pribat et al., Graphene growth directly on functional substrate, p.525357, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525357

C. S. Lee, C. S. Cojocaru, W. Moujahid, B. Lebental, M. Chaigneau et al., Synthesis of conducting transparent few-layer graphene directly on glass at 450?????C, Nanotechnology, vol.23, issue.26, p.265603, 2012.
DOI : 10.1088/0957-4484/23/26/265603

URL : https://hal.archives-ouvertes.fr/hal-00753309

L. Baraton, C. S. Cojocaru, and D. Pribat, Process for controlled growth of graphene films, International Patent No, pp.805769-2008, 2008.

L. Baraton, Z. He, C. S. Lee, J. ?. Maurice, C. S. Cojocaru et al., Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films, Nanotechnology, vol.22, issue.8, p.85601, 2011.
DOI : 10.1088/0957-4484/22/8/085601

URL : https://hal.archives-ouvertes.fr/hal-00557031

L. Baraton, Z. B. He, C. S. Lee, C. S. Cojocaru, M. Châtelet et al., On the mechanisms of precipitation of graphene on nickel thin films, EPL (Europhysics Letters), vol.96, issue.4, p.46003, 2011.
DOI : 10.1209/0295-5075/96/46003

URL : https://hal.archives-ouvertes.fr/hal-00601452

J. J. Lander, H. E. Kern, and A. L. Beach, Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel???Carbon Alloys with Barium Oxide, Journal of Applied Physics, vol.23, issue.12, pp.1305-1309, 1952.
DOI : 10.1063/1.1702064

L. Zhang, Z. Shi, Y. Wang, R. Yang, D. Shi et al., Catalyst-free growth of nanographene films on various substrates, Nano Research, vol.3, issue.3, pp.315-321, 2011.
DOI : 10.1007/s12274-010-0086-5

G. Lippert, J. Dabrowski, M. Lemme, C. Marcus, O. Seifarth et al., Direct graphene growth on insulator, physica status solidi (b), vol.95, issue.11, pp.2619-2622, 2011.
DOI : 10.1002/pssb.201100052

H. Bi, S. Sun, F. Huang, X. Xie, and M. Jiang, substrates and their photovoltaic applications, J. Mater. Chem., vol.22, issue.2, pp.411-416, 2012.
DOI : 10.1039/C1JM14778A

S. K. Jerng, J. H. Lee, D. S. Yu, Y. S. Kim, J. Ryou et al., Graphitic Carbon Growth on MgO(100) by Molecular Beam Epitaxy, The Journal of Physical Chemistry C, vol.116, issue.13, pp.7380-7385, 2012.
DOI : 10.1021/jp210910u

J. Sun, N. Lindvall, M. T. Cole, K. B. Teo, and A. Yurgens, Large?area uniform graphene?like thin films grown by chemical vapor deposition directly on silicon nitride, Applied Physics Letters, vol.98, pp.252107-252110, 2011.

G. Hong, Q. ?. Wu, J. Ren, S. Lee, and . ?t, Mechanism of non-metal catalytic growth of graphene on silicon, Applied Physics Letters, vol.100, issue.23, pp.231604-231609, 2012.
DOI : 10.1063/1.4726114

P. ?. Teng, C. ?. Lu, K. Akiyama?hasegawa, Y. ?. Lin, C. ?. Yeh et al., Remote Catalyzation for Direct Formation of Graphene Layers on Oxides, Nano Letters, vol.12, issue.3, pp.1379-1384, 2012.
DOI : 10.1021/nl204024k

A. Scott, A. Dianat, F. Borrnert, A. Bachmatiuk, S. Zhang et al., The catalytic potential of high-?? dielectrics for graphene formation, Applied Physics Letters, vol.98, issue.7, pp.73110-73113, 2011.
DOI : 10.1063/1.3556639

T. Ohba and H. Kanoh, Intensive Edge Effects of Nanographenes in Molecular Adsorptions, The Journal of Physical Chemistry Letters, vol.3, issue.4, pp.511-516, 2012.
DOI : 10.1021/jz2016704

A. Salehi?khojin, D. Estrada, K. Y. Lin, M. ?. Bae, F. Xiong et al., Polycrystalline Graphene Ribbons as Chemiresistors, Advanced Materials, vol.96, issue.1, pp.53-57, 2012.
DOI : 10.1002/adma.201102663

P. T. Araujo, M. Terrones, and M. S. Dresselhaus, Defects and impurities in graphene-like materials, Materials Today, vol.15, issue.3, pp.98-109, 2012.
DOI : 10.1016/S1369-7021(12)70045-7

H. Terrones, R. Lv, M. Terrones, and S. D. Mildred, The role of defects and doping in 2D graphene sheets and 1D nanoribbons, Reports on Progress in Physics, vol.75, issue.6, p.62501, 2012.
DOI : 10.1088/0034-4885/75/6/062501

L. Gao, W. Ren, J. Zhao, L. ?. Ma, Z. Chen et al., Efficient growth of high?quality graphene films on Cu foils by ambient pressure chemical vapor deposition, Applied Physics Letters, vol.97, pp.183109-183112, 2010.

I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene, ACS Nano, vol.5, issue.7, pp.6069-6076, 2011.
DOI : 10.1021/nn201978y

. Mob, 10 8707 4584 cs0801.lee@samsung.com cslee0801@gmail.com Personal Information Work Address Graphene Center, Samsung Advanced Institute of Technology (SAIT) San 14-1, Korea Nationality Rep. of Korea, issue.0, pp.446-712

*. France and . Khu, Dual degree Bachelor of Physics, Information Display, 2003.

P. Th-blaise, *. Korea, and . Kisti, Managing by France-Korea Government Scholarship by President of graduate school from KHU ** Scholarship from MEST *** Scholarship from MEST *** Scholarship for Outstanding Students from KHU ** Work Experience * SAIT: Samsung Advanced Institute of Technology, Korea Institute of Science and Technology Information, 2011.

S. *. and G. R. Center, Korea GTB(Global Trends Briefing) Reporter operating by KISTI ** SAIT Europe Internship at LPICM, Ecole Polytechnique High quality CNT/CNF Growth using water vapor chemistry Participation in Project (Directed by Prof. Park Hun-Kuk) " Nano-Technology based Novel Radiographic System Research Center, Senior Research Scientist NNPC(National Nanotechnology Policy Center), 2008.

C. Seok-lee, W. Cojocaru, B. Moujahid, M. Lebental, M. Chaigneau et al., François Le Normand and Jean-Luc Maurice Synthesis of conducting transparent few-layer graphene directly on glass at 450 o C, Nanotechnology, vol.23, p.265603, 2012.

Z. B. He, J. Maurice, A. Gohier, C. Seok-lee, D. Pribat et al., C or Both?, Chemistry of Materials, vol.23, issue.24, pp.5379-5387, 2011.
DOI : 10.1021/cm202315j

URL : https://hal.archives-ouvertes.fr/hal-00752981

Z. B. He, C. S. Lee, J. Maurice, D. Pribat, P. Haghi-ashtiani et al., Cojocaru Vertically oriented nickel nanorods/carbon nanofibers core/shell structures synthesized by plasmaenhanced chemical vapor deposition Carbon, pp.49-4710, 2011.

L. Baraton, Z. B. He, C. S. Lee, J. Maurice, C. Cojocaru et al., Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films, Nanotechnology, vol.22, issue.8, p.85601, 2011.
DOI : 10.1088/0957-4484/22/8/085601

URL : https://hal.archives-ouvertes.fr/hal-00557031

Z. B. He, J. Maurice, C. S. Lee, A. Gohier, D. Pribat et al., Etchant-induced shaping of nanoparticle catalysts during chemical vapour growth of carbon nanofibres, Carbon, vol.49, issue.2, pp.435-444, 2011.
DOI : 10.1016/j.carbon.2010.09.040

URL : https://hal.archives-ouvertes.fr/hal-00525194

Z. B. He, J. Maurice, C. S. Lee, C. S. Cojocaru, A. Caillard et al., Pribat Nickel catalyst faceting in plasma-enhanced direct current chemical vapor deposition of carbon nanofibers AJSE C-Theme Issues, p.19, 2010.

K. S. Je-hwan-ryu, Y. Y. Kim, C. Yu, Y. S. Seok-lee, J. Lee et al., Chang Park Enhanced Electron Emission of Carbon Nanotube Arrays Grown Using the Resist-Protection-assisted Positioning Technique, Journal of Information Display, vol.9, issue.4, p.30, 2008.

C. Seok-lee, J. Hwang-ryu, H. E. Lim, K. Min, O. Jeong et al., KyuChang Park and Ki Seo Kim Electron Emission from Robust CNTs Grown by Resist-Assisted Patterning J, p.2735, 2008.

J. Hwang-ryu, K. S. Kim, C. Seok-lee, J. Jang, and K. , Chang Park Effect of electrical aging on field emission from carbon nanotube field emitter arrays, J. Vac. Sci. Technol. B, vol.26, p.856, 2008.

S. Manivannan, O. Jeongg, J. Hwang-ryu, C. Seok-lee, K. S. Kim et al., Dispersion of single-walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization, Journal of Materials Science: Materials in Electronics, vol.5, issue.3, p.223, 2009.
DOI : 10.1007/s10854-008-9706-1

K. S. Kim, J. H. Ryu, C. S. Lee, H. E. Lim, J. S. Ahn et al., Park Study on enhanced electron emission current of carbon nanotube by thermal and HF treatments, Journal of the Korean Vacuum Society, vol.17, issue.2, 2008.

K. Kim, J. Hwang-ryu, C. Seok-lee, and J. Jang, Enhanced and stable electron emission of carbon nanotube emitter arrays by post-growth hydrofluoric acid treatment, Journal of Materials Science: Materials in Electronics, vol.122, issue.S1, p.120, 2009.
DOI : 10.1007/s10854-007-9463-6

S. Manivannan, J. H. Ryu, I. O. Jeong, C. S. Lee, K. S. Kim et al., Park Dispersion and preparation of transparent conductive carbon nanotube films IDW '07, Proc. 14 TH International Display Workshops, pp.1-3, 2007.

N. Y. Song, K. H. Kim, K. S. Kim, C. S. Lee, J. H. Ryu et al., Jang Growth of regular CNT array using ink-stamping process IDW '07, Proc. 14 TH International Display Workshops, pp.1-3, 2007.

K. W. Min, J. H. Ryu, K. S. Kim, C. S. Lee, N. Y. Song et al., Park Growth of carbon nanotubes on glass substrate for electronic devices IDW '07, Proc. 14 TH International Display Workshops, pp.1-3, 2007.

K. S. Kim, J. H. Ryu, C. S. Lee, S. Manivannan, J. S. Ahn et al., Park Enhanced electron emission properties of carbon nanotube by post growth treatment IDW '07, Proc. 14 TH International Display Workshops, pp.1-3, 2007.

K. S. Kim, J. H. Ryu, C. S. Lee, J. S. Ahn, J. Jang et al., Park Enhanced electron emission current of carbon nanotubes emitter arrays after constant bias-aging IEEE 20 TH IVNC Book Chapter 01 Pribat Study of Graphene Growth Mechanism on Nickel Thin Films Selected papers from the Workshop on Fundamentals and Applications of Graphene: GRAPHITA, DOI: 10.1007/978-3-642-20644-3_1 Edited by L. Ottaviano and V. Morandi Contributions to Conferences 01. Chang Seok Lee Le Normand, and Jean-Luc Maurice * Synthesis of conducting transparent graphene layers directly on insulator at 450 o C International Conference on Nanoscience + Technology 2012(ICN+T2012) 02. B. Lebental * , W. Moujahid, C. S. Lee, J.-L. Maurice, and C.S. Cojocaru, pp.169-170, 2007.

E. Vinod-sandana, C. Seok-lee, W. Cojocaru, B. Moujahid, M. Lebental et al., François Le Normand, and Jean-Luc Maurice Synthesis of conducting transparent few-layer graphene directly on glass at

C. S. Lee, J. Maurice, F. L. Normand, *. , M. Châtelet et al., Low-temperature growth of microcrystalline graphene at the interface between Ni and functional insulating substrate by PECVD

C. Speisser, C. Sorin, C. Growth, C. S. Cojocaru, A. Study et al., Iron catalysts for the growth of carbon nanofibers: Fe, Fe 3 C or both? (Poster) NanoteC'11 Pribat HRTEM Study of Graphene Growth Mechanism on Nickel Thin Films (Oral) GraphITA, 15-18 in Assergi-L'Aquila, Italia 11, ) Annual GDR-I GNT meeting, pp.7-11, 2011.

F. 1. In-ecole-polytechnique, *. He, C. S. Lee, J. Maurice, D. Pribata et al., Cojocaru Vertically aligned cabon nanofibers filled with nickel nanorods by plasma-enhanced chemical vapor deposition The 17th International Microscopy Congress (IMC17, Pribata, and C. S. Cojocaru Dual graphene growth behavior connected to inter-graphite pillars and its electrical characteristics, pp.19-24, 2010.

E. Lim, T. Byung-son, S. Manivannan, and J. Jang, SYMPOSIUM P: Science and technology of nanotubes, nanowires and graphene 21 K-04 : Growth of the Carbon Nanotips with Resist- Assisted Patterning Process Growth of the carbon nano-tip with resist assisted-patterning process, Spring Conference 17 Mar The 21 st International Vacuum Nanoelectronics Conference (IVNC), pp.8-10, 2008.

J. Jang and K. Park, Enhanced Electron Emission with Robust CNTs Grown by

S. Park, *. Manivannan, J. H. Ryu, I. O. Jeong, C. S. Lee et al., Conducting and Transparent Electrodes from Single-Walled Carbon Nanotubes FMCp-25 : Dispersion and Preparation of Transparent Conductive Carbon Nanotube Films, The 14 th International Display Workshops (IDW 07), 2007.

K. Kim, *. , J. Hwang-ryu, C. Seok-lee, S. Manivannan et al., FED3-4 : Enhanced electron emission properties of carbon nanotube by post growth treatment, The 14 th International Display Workshops (IDW '07), 2007.

J. Manivannan, K. Jang, and . Park, FED3-3 : Growth of carbon nanotubes on glass substrate for electronic devicesThe 14 th International Display Workshops, pp.5-7

C. Park and J. Jang, MEMS5-2 : Growth of regular CNT array using ink-stamping processThe 14 th International Display Workshops (IDW '07), pp.5-7, 2007.

C. Park, Fr2-NAN-11 : Purification and Preparation of Single-Wall Carbon Nanotube Films, The 5 th International Conference on Advanced Materials and Devices, pp.12-14, 2007.

C. Seok-lee, *. , J. Hwang-ryu, K. S. Kim, K. Woo-min et al., Fr2-NAN-26 : Electron emission from robust CNT grown by resist-assisted patterning process, The 5 th International Conference on Advanced Materials and Devices, pp.12-14, 2007.

C. Park, K-15 : Enhanced Electron Emission Current of as grown CNT by Post-Treatments, 2007.

C. Seok-lee, *. , J. Hwang-ryu, K. S. Kim, O. Jeongg et al., P2-105 : Growth of Carbon Nanotubes on Metal Substrate for Electronic Devices, The 7 th International Meeting on Information Display, pp.27-31, 2007.

K. Kim, *. , J. Hwang-ryu, C. Seok-lee, S. Manivannan et al., P1-79 : Effect of Current-Aging on Field Emission from Carbon Nanotube Field Emitter Arrays The 7 th International Meeting on Information Display P2-103 : Dispersion of Single-Walled Carbon Nanotubes for Display Applications, The 7 th International Meeting on Information Display, pp.27-31, 2007.

K. Kim, *. , J. Hwang-ryu, C. Seok-lee, K. Woo-min et al., Stable electron emission of carbon nanotubes grown by RAP processThe 10 th Field Emission Workshop (FEW 07, pp.9-11, 2007.

J. Hwang-ryu, *. , K. S. Kim, K. Woo-min, C. Seok-lee et al., Aa-P.011 : Growth of Carbon Nanotubes on Substrate with RAP Process for Flat Lamp, The 10 th Asia Pacific Physics Conference (APPC), p.2007