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ABSTRACT

The research theme of this dissertatiothis multiple-vehicles cooperative perception
(or cooperative perceptignapplied in the context of intelligent vehicle systems. The
general methodology of the presentedrks in this dissertation is teealize multiple-
intelligent vehicles cooperative perceptj which aims at providing better vehicle
perception result compared witkingle vehicle perception (onon-cooperative
perception. Instead of focusing our researalorks on the absolute performance of
cooperative perception, we focus on theneral mechanisms which enable the
realization of cooperativéocalization and cooperag mapping (and moving objects
detection), considering that localizatiand mapping are two underlying tasks for an
intelligent vehicle system. We also exploietpossibility to realize certain augmented
reality effect with the helpf basic cooperative perceptitumctionalities; we name this
kind of practice azooperative augmented realitilaturally, the contributions of the
presented works consist in three aspectmperative localizabh, cooperative local
mapping and moving objects detectiongaooperative augmented reality.

Description

We have used in this work several smtsensors, namely GPS-based GNSS, a laser
scanner, a camera, and a motion sensoichvhave been commonly used for single
intelligent vehicle operation. With these serss an intelligent vehicle can possess
fairly complete perception abilities towardtself and the environment. We have
reviewed the Bayesian filter framework tlngts been commonly used for recursive state
estimation; we have also reviewed sevegalirsive estimation mabds that are derived
from the Bayesian filter framework baken different kinds of approximations. We
have discussed in detail the fundamemadblems and the state-of-the-art methods
concerning the cooperative localizationpperative local mapping and moving objects
detection. Based on these discussions, wpqse a general architace of cooperative
localization using split covariance intersent filter (SCIF), an indirect vehicle-to-
vehicle relative pose estimation methodda new method for occupancy grid maps
merging to handle the fundamental peshs in cooperative localization, and
cooperative local mapping and moving objedétection. We finldy propose a brand



new idea of cooperative augmented reality Whitilizes cooperate perception results

to realize a special augmented effect.

We have provided a solution of multi-vehiclesoperativelocalization. We have
reviewed the concept of estimate consistency and the SCIF. We have presented several
forms of this filter together with their derivations and an original proof for the fusion
consistency of this filter. We have iattuced several basic functionalities as the
condition for realizing cooperative localizatidhgse functionalities are abstracted from
field practice based on their feasibility ireality. We have described a general
architecture of cooperativdocalization using the SCIFas the architecture is
decentralized, we have described from thesppective of an intelligent vehicle how it
can evolve its state estimate using itdioromeasurements, how it can update its state
estimate using its own absolute positionmgasurements, and how it can update its
state estimate with ¢hdata shared by neighbouringhicdes. We have presented the
indirect vehicle-to-vehicle fative pose estimation strategy.

We have provided a solution afooperative local mapping and moving objects
detection for laser scannerdedl intelligent vehicles. Weave reviewed the method of
occupancy grid based single vehicle lo8&lAM, including how touse laser scanner
based range measurements to incrementaljate the occupay@rid map estimate
according to the inverse measurement maael how to estimate current vehicle local
state (pose) with the lasttesate of the vehicle localate and occupancy grid map. We
have explained the different roles of vehicledbstate and vehicleapal state; we have
described how vehicle local state estimat8liiAM can be used to assist vehicle global
state estimation. We have presented the diaonk for occupancy grid maps fusion and
merging by generalizing and formalizing its essential part into an optimization problem.
We have proposed a new objective functioat ttneasures the consistency degree of
maps alignment based on occupancy likelihotle. have adopted the spirit of genetic
algorithms and designed a set of concretecedures to search the optimal maps
alignment. We have introduced the scheofemulti-vehicles cooperative moving
objects detection based on occupancyid gmaps merging; for a complete
implementation, we have reviewed twaasic moving objects detection methods,
namely the consistency-based detectioth the moving object map based detection.

We have extended the spirit of augmentlity to cooperativeerception, forming the
concept ofcooperative augmented reality the context of intelligent vehicle systems.
We have specified the front-following vehiclsesenario to which the proposed idea of
cooperative augmented realityapplied. We have reviewed the pinhole camera model
and described how to establish spatialationship between two views (easily



extendable to multi-views case) according to perspective geometry. We have described
several coordinates systems i.e. the camawordinates system, the laser scanner
coordinates system, the ground coordinatesesy, and the vehicle coordinates system
that are concerned in an intelligent vehiale have introduced te&chnique of utilizing

a 2D laser scanner to assssimono-camera in estimatirtige visual perception depth
approximately. We have presented how t@rttee visual percepin of a vehicle onto

that of another vehicle, abiding by the lthuiews perspective geometry described. We
have also introduced a nesxtrinsic calibration method foa camera and a 2D laser
scanner, which can reveal all the spateationships among the camera’s coordinates
system, the laser scannayocdinates system, the groundoodinates system, and the
vehicle coordinates system, based only anpbpular chessboard calibration practice
with few extra measurements.

We have presented the experimental coondgiand experimental results concerning
cooperative localization, coogaive local mapping and mimg objects detection, and
cooperative augmented reality. We have @nésd the results ai simulation based
comparative study which demonstrates #mvantage of the proposed cooperative
localization architecture using the lispcovariance intersection filter (th&CIFCL
approach), especially for intelligent vehicles with heterogeneous absolute positioning
ability. A prominent advantage of the BCL method is thatit enables good
localization results to be naturally spreaihin a vehicle netwde in connection while
always keeping a reasonable confidence for the state estimate of each vehicle. We have
also presented the results fedld tests (real-data) ocooperative localization, which
lead to similar conclusions as in tl@mulation based compative study. We have
demonstrated the performance of the pregosccupancy grid maps merging method
based on real-data tests. In spite of amimeally exaggerated initial error range, local
occupancy grid maps built by different vehicles can always be merged correctly using
the proposed method; besides, the propasedpancy grid maps merging method has
the potential to recover the merging result fronkidnapping situation. We have
demonstrated the performance of a propasethod coined as cooperative augmented
reality, which realizes a vivid and lifelikéfect of ‘seeing’ throughhe front vehicle for

the following vehicle in a froafollowing vehicles scenario.






RESUME

Le theme de recherche de cette these est la perception coopérative multi-véhicules
appliguée au contexte des systémes dacutes intelligents. L'objectif général des
travaux présentés dans cette these est deeehl perception coopative de plusieurs
véhicules (dite ¢erception coopérative), visant ainsi a fournir des résultats de
perception améliorés parpport a la perception dh seul véhicule (ou perception
non-coopérativer). Au lieu de concentrer nos recherches sur la performance absolue de
la perception coopérative, nous nous concentrons sur les mécanismes généraux qui
permettent la réalisation d& localisation coopérativeet de la cartographie de
'environnement routier (y compris la t@@étion des objets), considérant que la
localisation et la a#dographie sont les deux tachles plus fondamentales pour un
systeme de véhicule intelligent. Nous avégalement exploité la possibilité d’explorer

les techniques de la réalité augmen@amnbinées aux fonctionligs de perception
coopérative. Nous baptisoakrs cette approcheréalité augmentée coopérative

Par conséquent, nous pouvons d'ores et dgjioncer trois contsutions des travaux
présentés: la localisation cooptive, la cartographie localeoopérative, et la réalité
augmentée coopérative.

Description

Dans nos travaux, nous avons exploité plusiesortes de capteurs, a savoir un GNSS a
base de GPS, un télémétieser, une caméra, et deapteurs odométriques. Ces
capteurs sont souvent employés pourdecfionnement d’'un véhicule intelligent et,
grace a ceux-ci, un véhicule intelligent e®té d’'une capacité de perception assez
compléete lui permettant d’assurer sa prdpoalisation et la perception proprement dite
de I'environnement.

Afin d’assurer la localisatiodu véhicule, une architecturebase de filtre Bayésien a
été examinée ; celui-ci est couramment utips@r I'estimation d'état récursive. Ainsi,
un rappel des diverses méthodes d'estimatonrsives dérivées d&architecture de
filtre Bayésien est fait. Dans la suitsont discutés en détail les problémes
fondamentaux et les méthodes existantes Latas-of-the-art conceant la localisation

et la cartographie locale coopérativ€sapres ces réflexions, nous proposons une
architecture générale dechlisation coopérative en usint le « split covariance



intersection filter » (ou SCIFyne méthode de I'estimation indirecte de la localisation
relative Véhicule-a-Véhicule. De mémene nouvelle méthode de fusion de grilles
d’occupation est présentéecet, afin de traiter les problémes fondamentaux en matiére
de la localisation coopétive et de cartographie locale coopérative.

Nous avons fourni une solution pour la lbgation coopérative multi-véhicules. Nous
avons rappelé le concept densistance de I'estimation ainsi que le SCIF. Nous avons
présenté plusieurs formes de ce filtre avecd@érivations et ungreuve originale pour

la consistance de la fusion de filtre. Nous avons introdwlusieurs fonctionnalités de
base comme la condition pour réaliser la localisation coopérative. Nous avons introduit
une architecture générale de localisatmmopérative en utilisant un SCIF. Puisque
l'architecture est décentralisée, nous avdésliné I'approche dans le cadre de la
localisation d'un véhicule intelligent esiappuyant sur ses capteurs de mouvement.
Nous explicitons ainsi la magme dont il peut mettre ayo son estimation d'état en
utilisant ses propres mesuresmisitionnement absolu, aingile la mise a jour de son
estimation d'état avec les données partag&es les véhicules &ns. Nous avons
présenté la stratégie d’estimation indirecte de du positionnement relatif Véhicule-a-
Véhicule.

Nous avons fourni une solution de cartgguie locale coopératvpour les véhicules
intelligents fondée sur la télémétrie laddous avons décrit la méthode de SLAM local
fondée sur la grille d’'occupation. Nous faisdasdistinction entre état local et état
global puis nous décrivons corent les estimations de I'éfatal du véhicule obtenues

par le SLAM peuvent étre utilisées pour obtdeg estimations de I'état global de celui-

ci. Nous avons présenté l'aitgcture de fusion des grided’occupation en formalisant

le probleme dans un cadre généralisé de probléme d'optimisation. Nous avons proposé
une nouvelle fonction objective qui mesuredegré cohérence de l'alignement des
cartes fondé sur la probabilité d'occupatiEnsuite, nous avons proposé une approche
fondée sur un algorithme génétique dans kedaurechercher l'alignement optimal des
grilles. Nous avons enfin froduit I'architecture de la déction coopérative des objets

en mouvement, fondé sur la fusion deslegiloccupations. Powne mise en ceuvre
complete, nous avons adopté deux méthodes de base pour la détection des objets en
mouvement.

Nous avons exploité la notion de réaliégigmentée a la perception coopérative,
formalisant ainsi le concept deréalité augmentée coopérativappliquée au contexte

des systemes de veéhicules intelligents. Nooigs sommes intéressés particulierement
au scénario de véhicules « leader-suiveauguel I'approche de réalité augmentée est
appliguée. Pour cela, nous utilisons deapteurs : un télémetre laser et une caméra.

Vi



Nous avons décrit comment établir undatien spatiale entreleux vues selon la
géométrie perspective. Noawons introduit une technigue permettant a un télémétre
laser 2D de fournir a une caméra des donhégmermettant d’estimr la profondeur de
perception visuelle. Nous avons présent@daf de projeter la pgeption d'un véhicule
sur celle d'un autre véhicule, en respectagélamétrie perspective décrite. Nous avons
également introduit une nouvelle méthode dibgtion extrinseque pour une caméra et
un télémetre laser 2D.

Nous avons présenté les conditions expéntales et les résultats expérimentaux
concernant la localisation coopérative, latagraphie locale coopérative et la réalité
augmentée coopérative. Noasons présenté les résudtati’'une étude comparative
fondée sur la simulation qui démontre #atage de l'architecture de localisation
coopérative proposée utilisantfibre SCIF ('approcheSCIFCL), notamment pour les
véhicules intelligents avec des capacitéspdsitionnement absolu hétérogénes. Un
avantage important de la méthode SCIFCiLogelle assure une localisation améliorée
naturellement répartie au sein du réseawélecules, tout en gardant une consistance
raisonnable pour l'estimation de |'état deaque véhicule. Nous avons également
présenté les résultats de tests réels slacklisation coogrative, qui conduisent a des
conclusions similaires a I'étude compéara fondée sur la siulation. Nous avons
démontré les performances de la méthdedusion de grilles occupations, fondés sur
des tests effectués avec des données séell dépit d'une erreur initiale
intentionnellement exagéréégs cartes locales consties par différents veéhicules
peuvent toujours étre agrégées correctement en utilisant la méthode proposée. D'ailleurs,
la méthode de fusion des grilles d’occupata le potentiel de trouver une solution pour
le probleme dit de « kidnapping ». Noasons démontré les performances de la
méthode baptisée commeéalité augmentée coopérative qui réalise un effet vif de
‘voir’ a travers le véhicule bder pour le véhicule suivedans le scénario de véhicules
« leader-suiveur ».
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Résumé

Le theme de recherche de cette these est la perception coopérative multi-véhicules
appliguée au contexte des systémes dacutes intelligents. L'objectif général des
travaux présentés dans cette these est deeehl perception coopative de plusieurs
véhicules (dite ¢erception coopérative), visant ainsi a fournir des résultats de
perception améliorés parpport a la perception dh seul véhicule (ou perception
non-coopérative).



1.1 Context: Intelligent Vehicle Systems

Vehicles (automobiles, ground vehicles) hdween praised as one of the greatest
inventions in modern history, as theyvearevolutionized our living mode and have
contributed enormously to the development of modern society. Thanks to them, the
living range and the working range of humagings have been largely enhanced. For
example, we can take an exciting job in ¢on while enjoying a desirable habitation

in another town.

Since several decades ago, researchers haga making efforts on incorporating
various intelligent functions into traditional vehicles, with a goal of realimiteligent
vehicle systemthat make driving experience moreneenient, more efficient, and safer.
Take some scenarios as examples, as follows:

Imagine that you are driving to Paris for the first time and you intend to go to a given
destination whose location you dwmt know yet. In this @, an intelligent vehicle
localization system [Skog &andel 2009] can estimate curréocation of the vehicle,
match the location onto a pre-stored digitep, and computes an itinerary to guide you
from your current location to your destir@ti The localization stem will update the
estimate of vehicle location in real-timedaalways keep you on the correct itinerary.
During your trip, you are a bdistracted by the exotic arntdctures on road sides and
have not paid attention toagual deviation of your vehicléhen an intelligent vision
system that performs automatic lane detection [Li & Nashashibi 2011b] can monitor the
vehicle-lane relative position and signal adaleparture warning message in time. You
might have not paid attention to traffiglits or traffic speed gns either, then the
vision system that performs traffic lighetection [Charrette & Nashashibi 2009] and
traffic speed sign detection [Moutarde al. 2007] can also signaklevant message in
time and display the traffic information.



Figure 1.1 Vehicle navigation guidance with a digital map (modification on pictures from Google
maps)

You might get tired of adjusting the velactpeed; then an Adaptive Cruise Control
(ACC) system [Vahidi & Eskandarian 2008]ill liberate your foot from oil-pedal
control and adjust the vedte speed automatically. Suddenly, a pedestrian comes out
from no where and rush across the road; fr slndden event, a system of pedestrian
detection [Gatest al. 2009] will have rapid detectiomd recognition of the pedestrian
and send proper commands to the vehmbatrollers to avoid collision with the
pedestrian.

After a long driving, you finly arrive at your destinain, yet with a fatigued body. At
this moment, an automatic vehicle parking system ¢Kal. 2000] will take charge of
vehicle parking and save you from alkkfie last steps of vehicle maneuvering.

Besides the examples listed above, an ocd¢amsearch works omtelligent vehicle
systems can be found in literature. The reseacttiext of this dissertation is also the
field of intelligent vehicle systems. In nestib-sections, we will specify our research
focus in the context ahtelligent vehicle systems (IVS)

1.2 Vehicles Cooperation

Most research works in the field of intelligent vehicle systems focuSIbGLE
vehicle operation i.e. the intelligent vehicleperforms environment perception,
decision making, and action execution, based only on its own sensor information and its
own planning, without interactingithh other intelligent vehicles.

A typical example is vision badeautonomous navigation [Thorpet al. 1988]
[Pomerleau 1989], where the on-vehicle atsiprocessing module (based on either



mono-camera or stereo-camera) process tligitage data to generate vehicle control
law directly or generate usdfspatial information of thenvironment that can be used
to guide the behavior of the vehicle. Anet typical example isaser scanner based
simultaneous localization and mappin@LAM) [Wang et al. 2003], the vehicle
establishes spatially consistent redlagship among its sequence of observations,
generates a consistent environmeapresentation (the process wofapping, and
localizes itself with respecto this environment representation (the process of
localization). Moreover, other examples single intelligentvehicle operation can be
found in the applications of GPS-based e#hiocalization and negation [Kao 1991]
[Abuhadrouset al. 2003], pedestrian detection riEweiler & Gavrila 2009], vehicle
detection [Sunet al. 2006], general objects detem [Bertozzi & Broggi 1998]
[Labayradeet al. 2005], and vehicle lateral contrahd vehicle longitudinal control
[Rajamani 2005] etc.

The application background of intelligenehicle systems is the outdoor traffic
environment; a noticeable feature of outdoaffic environment is that thousands of
vehicles operate in the same environméie can make a fair analogy between the
outdoor traffic environment and our sogietwhere an intelligent vehicle can be
compared to an individual human being.

Each of us possesses the abitifysensing the environmemdathe ability of reacting to
the environment; one has the potential twviste by one’s own abity, as how Robinson
Crusoe did on a remote tropical island. Isogiety, however, weahys cooperate with
each other, instead of being totally indepenidéor example, when we arrive at a new
place and want to search a certain streetiend to consult some local passers-by for a
quick access to our desttian; without this cooperain, we might spend hours on
searching the destination and suddenly find ourselves back again to a place we have
passed by. When we want to enter into amiaewe form a queue based on certain rule
and pass the entrance orderly; without thooperation, we would bump into the
entrance randomly and might get stutdo a stalemate at the entrance.

In short, the cooperation among people in saciety makes our lives more convenient
and more efficient. Similarly, the coopgom among intelligentvehicle systems in
traffic environment would also bring convence and efficiency to traffic users.

Early motivation for performing vehiclesogperation lies in the idea of increasing
infrastructure capacity viacooperative platooning (or operative adaptive cruise
control) [Raza & loannou 1996] [Tsugawaal. 2000] [Tsugawaet al. 2001] [Bruinet

al. 2004]. For a highway segment, its capacity is limited by the safety interval distance
between neighboring vehiclethe smaller this distance, ishe larger the highway



capacity is. In cooperativglatooning, down-stream vehéckcan share its motion state
and motion intention with upstream vehiclekich can then take anticipatory actions
and avoid jerk movements; as a resule gap between neighbogrvehicles can be
reduced while string stable behaviors camzentained, as illustrated in Figure 1.2. In
other words, compared with non-coogem platooning, coopative platooning
requires smaller safety distance, which eahance highway capacity because vehicles
can pass the highway segment more tightly.
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Figure 1.2 Vehicles platooning: (top) non-cooperative platooning; (bottom) cooperative platooning

Another motivation for performing veh&s cooperation stems from the need to
guarantee navigation safety, which stimuldtes development of cooperative collision
warning-avoiding systems (CCWAS) [I& Wang 2006] [Farahmand & Mili 2009]
[Tan & Huang 2006]. Take an intersection sém as an example, as illustrated in
Figure 1.3. Vehicle A and VehilB move toward an integstion; they have several
possible motion modes at the intersection. Sormogon mode might mult in a collision



accident if the drivers of the two vehiclessjudge the situation. With inter-vehicle
communication, they can share the inforimatiof their position, motion state, and
motion intention etc; then they can evalu#tte possibility of ctision. If a risk of
collision exists, they can take proper actionsme to prevent collision from happening.
Besides intersection scenarios [ChamB&ugler 2005] [Li & Wang 2006], cooperative
collision warning-avoiding systems are alsduable for guaranteeing navigation safety
at lane changing scenarios [Ammaetral. 2007] [Li et al. 2005].
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Figure 1.3 Cooperative collision warning-avoiding at an intersection



Moreover, the philosophy of a&cles cooperation has beeppéied to diverse kinds of
scenarios, providing possible solutions for spedemands of the society. For example,
a new type of elderly driver assistance systems [Tsugdveh 2007] enables a host
vehicle (driven by an assisting driver) to assir escort the guesehicle (driven by an
elderly driver) through intevehicle communication. Eurog®s supported several large
projects such as I-WAY [Ruscoseit al. 2007], CVIS [Koenders & Vreeswijk 2008],
and COOPERS [Piao & McDonald 2008], whialtempt to integrat state-of-the-art
V2V and V2l communication technolas and cooperative philosophy into
comprehensive traffic scenarios.

1.3 Cooperative Perception

Generally speaking, singleehicle operation conaes two functionalitiesperception

and control. The vehicle perceives the environment and its own state, and then
determines how to react to the envir@mt) the vehicle repeatedly executes the
procedures of perception and cohtes illustrated in Figure 1.4.

=

Figure 1.4 Intelligent vehicle operation paradigm

Vehicles cooperation also aerns the functionalities of peeption and control by each
individual vehicle. Moreover, the vehicleas cooperation can share and fuse their
perceptions, which resulis the functionality oicooperative perception they can also
share their motion intentiongnd coordinate their aotis, which results in the
functionality of cooperative control Besides cooperative perception and cooperative
control, vehicles cooperation alsa@oncerns the functionality ofvehicular
communication which plays a fundamental role feehicles cooperation, as illustrated
in Figure 1.5.



Figure 1.5 Vehicles coperation paradigm

This dissertation will focsi on the functionality otooperative perception see the
hierarchy of research areas in Figure 1.6thie next sub-section, we will explain the
value of cooperative perception in the cohtxintelligent vehicle systems and specify
the problems and application§cooperative perception seerned in thiglissertation.

Figure 1.6 Hierarchy of research areas



1.3.1 Motivation

As mentioned above, most research workshia field of intelligent vehicle systems

focus on single vehicle operati; naturally, most researetorks on vehicle perception

focus on the perception performediependently by a single vehicle.

Compared with single vehicle pert¢m (or non-cooperative perception), the
motivation for developing cooperative perttep can be illustrated by a typical traffic

scenario, i.e. an overtaking scenariosaswn in Figure 1.7. A vehicle is overtaking
another vehicle while the overek vehicle (the first vehie) occludes the view of the

overtaking vehicle (the secongehicle). This scenaries potentially dangerous; for

example, in the case where a careless pedesgirushing across the road in front of
the first vehicle, then what might happen?

10
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Figure 1.7 Overtaking scenaio: potentially dangerous

For reasons of safety and efficiency, #exond vehicle always wants to know: what
objects are there occluded byetfront vehicle? If there arsome objects with risky
trajectories, the second vehicle can madertain anticipatory actions such as
deceleration or even braking-down. On the other hand, if there is no object, the second

11



vehicle can just keep going with high speed, this will be more efficient for the second
vehicle and possibly other vehiclisdlowing the second vehicle.

Unfortunately, the second vehicle can neweswer this question by itself, simply
because it cannot perceive the occludadironment. No matter how good sensors and
how good algorithms the second vehicle i;@sit can not havany inference about

the occluded environment. Then, a simpletivation for developing cooperative
perception is to help theesond vehicle answer this i®n. More specifically, the
basic idea of cooperative perception is tothe first vehicle share its perception with
the second vehicle, in order that thecend vehicle can “perceive” the occluded
environment.

Another traffic scenario that demonsémtthe value of coopative peception is
illustrated in Figure 1.8(top). Two vehiclesahd B navigate in the same area; each of
them has self-localization ability; they calso estimate the relative pose between them
using their perception components.

Concerning the localization for vehicle @imilar reasoning can be carried out for
vehicle A), the position of vehicle B can lestimated by vehicle B itself (shown in
Figure 1.8(middle)). Besides, the position of vehicle B can be estimated indirectly from
the perspective of vehicle A, as vehidlecan compound the estimate of relative pose
between the two vehicles and the estimate of its own position (shown in Figure
1.8(bottom)).
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Self-localization of A Self-localization of B

Self-localization of B

1

The location of vehicle B from
its own perspective

Self-localization of A

-5 -5 [ ]

The location of vehicle B from the
perspective of vehicle A

Figure 1.8 Multi-vehicles cooperative localization

In other words, vehicle B can be localizegised on two sources of data: one is of its
own; the other one is of vehicle A. Beattiecalization results might be achieved for
vehicle B, if we fuse the two sources of dathe advantage of this fusion is especially
noticeable for heterogeneous systemsagme that vehicle A has high-quality
positioning configuration whereas vehicle B has low-quality positioning configuration,
then the high-quality positioning result of vehicle A can significantly improve the

positioning results of vehicle B.
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1.3.2 Problem statement

The general methodology of the presénterks in this dissertation is tealize multi-
intelligent vehicles cooperative perceptionwhich aims at providing better vehicle
perception result compared with singlevehicle perception (or non-cooperative
perception).

Before further explanations for this thedology, we would liketo review several
underlying tasks of single vehicle pertiep. The essential purpose of vehicle
perception is to provide relevant infortime, based on which the vehicle can decide
how to react to the environment. For tipsrpose, first, the Vecle has to know its
spatial state (position and orientation) widspect to a global reference, or to a local
reference, or to both; the process of estingathis spatial state of the vehicle is usually
referred to awehicle localization (or localization for short). Second, the vehicle also
has to establish spatial representationtli@ environment objects. Some environment
objects are stationary, for example, buildingsad infrastructures etc; the process of
establishing spatial representation for the stationary objects is usually referred to as
mapping. Some environment objects are mmyi(or dynamic), for example, moving
vulnerable road users; the process of efaiblg spatial representation for the moving
objects is usually referred to asving objects detection The process of establishing
spatial representation for both stationaryesbs and moving objects in the environment
is referred to amapping and moving objects detectionAll these underlying tasks are
important for successful and safe navigation of the vehicle.

When we extend single vehicle perceptiomtolti-vehicles coopeteve perception, we
will naturally focus on th underlying issues oftooperative localization and
cooperative mapping and noving objects detectionfor cooperative perception.
Simply speaking, cooperative localizatioraiprocess where multiple vehicles perform
localization cooperative, i.e. ahiele can utilize the data ather vehicles to assist the
localization of the vehicle itself. Similg, cooperative mapping and moving objects
detection is a process where multiplehiedes perform mapping and moving objects
detection cooperatively, i.e. ahiele can utilize the data aither vehicles to assist its
tasks of mapping and moving objects detection.

It is worthy noting that the role of these cooperative perception functionalities is
optional instead of beingnandatory. A vehicle can choose to cooperate with other
vehicles or not, depending on its judgemartether it can benefit from others or
whether it can help others. For exampdeyehicle with high quality GPS (Global
Positioning System) and high quality IMU ériial Measurement Unit) might trust
largely in its own positioningesults and choose®t to fuse the positioning information
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of other vehicles. It is likevhen we visit a new country, wend to consult local people
about our destinations (as we think local people are likely to be familiar with the local
environment); if we find ourselves onlyitty other foreigners nearby, we might choose
to rely on ourselves to find our destinatigas we think these foreigners are unlikely to
be familiar with the local environment).

Since the role of cooperaéiViocalization and cooperativeapping and moving objects
detection is optional, then a question arises naturally: how to determine whether to
perform these cooperative functions or nblGwever, we will not discuss about this
issue in this dissettian, as this issue will deviatihe research focus of cooperative
perception. What we will tackle ieow to realize cooperative localizatiorandhow to
realize cooperative mapping and moving objects detecti@n

It is also worthy noting that cooperati®s NOT omnipotent and we had better NOT
expect that cooperative perception canimitédly make improvements over single
vehicle perception. For example, we can egpect that two vehies both with ten-
meter level positioning accuracy can achieve centimeter-level accuracy through
cooperative localizationThe performance of cooperatiperception largely depends on
the perception ability of each individual vela in cooperation. The better the single
vehicle perception is, thHeetter the cooperative peption tends to be.

Therefore, instead of focusing our research works on the absolute performance of
cooperative perceptiowye would rather focus on the general mechanisms which
enable the realization of above mentiorte cooperative perception functionalities
based on commonly used sensor configations; we would rather examine the
advantages of these cooperative perceptionriationalities relative to single vehicle
perception.

The final goal for developing intelligent vehecbystems in the longn is that all the
vehicles in our society camliably operate in full automated mode (or with only few
human interventions such assdmating the destation of the vehicle users). However,
there is still considerable gap between curtechnical ability and the ability to achieve
above goal. Before this fihgjoal becomes true, it woulde desirable that current
techniques can be adapted for drivesisgtance. Better visualization of vehicle
perception results would better assist the driver to judge the environhugmented
reality techniques can make therpeption visualization mordirect and more vivid,
which are commonly used in driver agance oriented appations. Concerning
cooperative perception, we will study the possibility taking advantage of
cooperative perception to generate augented reality effects that would be
valuable for drivers, which we name asooperative augmented reality
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1.4 Contributions

The contributions of the presented worksthis dissertation consist in three aspects:
cooperative localization, coogaive local mapping and namg objects detection, and
cooperative augmented reality.

1.4.1 Cooperative Localization

We provide a solution of multi-vehiclemoperativelocalization (CL). First, we make

an abstraction of the basic functionalitieatthre commonly available in the context of
intelligent vehicle systems. Based on thedstracted functionalities, we propose a
general architecture of coopgva localization using splitovariance intersection filter.
Second, concerning the functiomglof vehicle-to-vehiclerelative pose estimation that

is fundamental for realizing cooperatikealization, we propose a hew method fite
indirect vehicle-to-vehicle fative pose estimation methéal perform this functionality.

We carry out a simulation based congisse study among the proposed cooperative
localization architectureral several reference methods. Besides simulation, we also
carry out cooperative localizati in reality and present thesults of real-data tests.

1.4.2 Cooperative Local Mapping antMoving Objects Detection

We provide a solution aooperativelocal mapping andnoving objectsdetection for
laser scanner based intelligent vehiclese Thethod architecture is as follows: each
vehicle establishes in real-time a logacupancy grid map and performs moving
objects detection based on the estabtisloecupancy grid map. During vehicles
cooperation, the local occupancy grid mapdiferent vehicles are merged, so that
these different vehicles can be spatialliated to each other; then the moving objects
detection results of these vehicles casoabe merged. As part of this method
architecture, a new method for occupargiyd maps merging is proposed, which
consists in a new objective function thaeasures the consistency degree of maps
alignment and a genetic algorithm that searches for the optimal maps alignment.

We carry out real-data tests on the propasethod and demonstrate its performance.

1.4.3 Cooperative Augmented Reality

We will extend the spirit of augmented rigalto cooperative perception, forming the
concept ofcooperativeaugmentedeality (CAR) in the context of intelligent vehicle

systems. We provide a solution of coopemt@ugmented reality, which integrates the
techniques of cooperative local mappimgd augmented reality to generate an
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augmented reality effect déeeing through’ front vehicleAs part of the provided
solution, a new method is proposed for exidnco-calibration of a camera and a 2D
laser scanner.

We will demonstrate the ‘seeing througkffect of the introduced cooperative
augmented reality method, based on real-data tests.

1.5 Thesis Outline

This dissertation is organized as followschapter 2, we review in details the problems
and the state-of-the-art methods concdrrie the cooperater perception issues
discussed in this dissertation. From chaptey chapter 5, we respectively introduce our
solutions of cooperative localizationpaperative local mapping and moving objects
detection, and cooperative augmented reality chapter 6, wedescribe concrete
implementation and integration of the propdsmethods on ourxperimental vehicle
platforms and demonstrate experimental rasuift chapter 7, we summarize the works
presented in this dissertation and dssabout their future extensions.
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Résumé

Dans nos travaux, nous avons exploité plusiesortes de capteurs, a savoir un GNSS a
base de GPS, un télémétiaser, une caméra, et deapteurs odométriques. Ces
capteurs sont souvent employés pourdacfionnement d’'un véhicule intelligent et,
grace a ceux-ci, un véhicule intelligent emté d’'une capacité de perception assez
compléte lui permettant d’assurer sa prdpoalisation et la perception proprement dite
de I'environnement. Afin d’assurer la Idisation du véhicule, une architecture a base
de filtre Bayésien a été examinée ; celuest couramment utilisé pour I'estimation
d'état récursive. Ainsi, un rappel des diesrsnéthodes d'estimation récursives dérivées
de l'architecture de filtre Bayésien est fditans la suite, sont stutés en détail les
problemes fondamentaux et les méthodes exesadns I'état-of-the-art concernant la
localisation et la cartographie locale céogtives. D’apres ces réflexions, nous
proposons une architecture générale de ikmiidn coopérative entilisant le « split
covariance intersection filter » (ou SCIF), uméthode de I'estimation indirecte de la
localisation relative Véhicule-®éhicule. De méme, une nouvelle méthode de fusion de
grilles d’occupation est préseée et ce, afin deaiter les problemes fondamentaux en
matiere de la localisatiocoopérative et de cart@phie locale coopérative.
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2.1 Introduction

As we have stated in previous chapttre performance of cooperative perception
largely depends on the perception ability ezfch individual vehicle in cooperation;
instead of focusing our research works the absolute performance of cooperative
perceptionwe would rather focus on the geeral mechanisms which enable the
realization of previously mentioned coopertive perception functionalities based on
common used sensor configurations; waould rather examine the advantages of
these cooperative perception functionalitie relative to single vehicle perception.
Therefore, before going into detailed dission on the cooperaévperception issues,
we had better first give an introduction of state-of-the-art sensa@onfigurations that
are common for single intelligent vehicle ogigon. This can provide a baseline for our
research works: First, concerning imedology, we can judge whether the proposed
methods are generally applicable to w8 with common sensor configurations?
Second, concerning performance, we caman@re what benefits can cooperative
perception bring to vehicles witbmmon sensor configurations?

The execution of a perception task can bsidadly treated as a process of estimating
certain state of interest (vehicle pose, emwinent map etc) based on the measurements
of certain vehicle sensors. Following tiroduction of intelliggnt vehicle sensor
configurations, we would like to introdu@®me general mathematical foundations of
estimation theory, which have been widgbpked in real-time vehicle perception tasks.
Then, we study in details the problemsdathe state-of-the-art methods concerned
respectively in the issues of cooperatleealization, cooperate local mapping and
moving objects detection, and cooperative agigied reality, which have been briefly
introduced in previous chapter.

2.2 Intelligent Vehicle Sensor Configurations

We review several kinds of sensors thae commonly used in nowadays intelligent
vehicles.

2.2.1 Global Positioning System (GPS)

The Global Positioning System (GPS) is pafta satellite-based navigation system
developed by the United States Deparitngf Defense under its NAVSTAR satellite
program. More detailed description of thetbry and technologies of the GPS can be
found in an ocean oftérature on this topj refer to [Grewakt al. 2001] [Farrell &
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Barth 1998] for examples. Briefly speakirg,GPS receiver (with related processing
units) can provide information of its locati@and the GPS universal time, via analysis
of the signals transmitted by the GPS sagallwhose orbital information is known.
Several factors account for tipepularity of the GPS in thapplications of intelligent
vehicle systems: First, it can provide piosiing measurement with respect tglabal
reference (a reference fixed with the enviremtwhere the intelligent vehicles operate).
Second, it can provide the global positioning measureiesttly, without the need
for certain extra conditions such asequegistration works about the operation
environment. Third, it can providerror-bounded positioning measurement, without
suffering from accumulated positioning errors.

Although the U.S. America was the firstdevelop satellites-based global positioning
system, yet nowadays it is not the only pdaviof satellites-basleglobal positioning
services. Some other entities such asdi®y Europe, and China have also been
developing global positioning stems (in different names); for example, the GLObal
Navigation Satellite System (GLONASBY Russia, the GALILEO positioning system
by European Union, and the COMPASS (of Beu in Chinesehavigation system by
China. Therefore, in this diedation, the referring of the terngdobal positioning
system (GPS{loes not necessarilypdicate that specific symn developed by U.S.A,
but generally indicates any possible systghich performs the functionality of global
positioning based on satellites.
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Figure 2.1 Satellites-based global positioning systenisiodification on pictures from Huan Qiu Shi
Bao i.e. Global Times)

2.2.2 Laser Scanner

Laser scanner, or in other names suclaser rangefinderlaser telemeteris a kind of
device that can measure its distanceetwironment objects by emitting laser beams,
receiving the reflection of éhlaser beams, and computing the distance traversed by the
laser beams.

A laser scanner can rapidly provide reliatdage measurements with fairly small range
errors (centimeter level errors). In othgords, a laser scanner enables a vehicle to
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efficiently monitor the spal relationship between theehicle and the surrounding
objects. As a result, laser scanner plays an important role in guaranteeing vehicle
navigation safety, especially for the purpasenvironment objects collision avoidance
(avoiding collision onto vulnerable roadisers, other vehicles, environment
infrastructure etc).

|

Figure 2.2 Range measurements prided by a laser scanner

2.2.3 Camera

Cameras can provide a kind of sensing datt is related to the most important
perception system of human beings, i.e. ogiovi. As our vision provides the most part
of information for our reasoning about teavironment, cameras can also provide a
large amount of information fantelligent vehick systems to make inference about the
environment. For example, based on vidiata, on-vehicle vision systems can perform
tasks of lane marks detection and traffignsi detection that amdmost impossible for
other kinds of perceptive sas such as laser scannerssivin data provide plenty of
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clues for automatic recognition of enviroant objects (pedestna, vehicles etc).
Besides, camera data (original or with tagr visualization effects) can be easily
comprehended by human beings, which makes cameras valuable for the purpose of
driver assistance, human-machine interaction etc.

2.2.4 Motion Sensor

Motion sensors are a kind of proprioceptivexs®s (in contrast with exteroceptive
sensors such as cameras and laser scanners) that are usually equipped on an intelligent
vehicle to monitor vehiclamotion state (longitudinal motion and lateral motion).
Motion sensors used for intelligent vehiclexlude odometers r{cluding steering
encoders), accelerometers, gyroscopes etc.

Normally, motion sensors can output nootimeasurements at comparatively high
frequency (for example, 100 Hz). Thereforaption measurements can be used to
predict vehicle state when other sortsnoéasurements are temporarily unavailable.
Besides, motion measurements can be dus&h other sorts of measurements to
enhance the accuracy of vehicle state estimates.

2.2.5 Integration

We have briefly introduced sena sorts of sensors, namébPS, laser scanner, camera,
and motion sensor. For certain specific appilocg we might be able to resort to only
one sort of these sensors. For example)doe detection andre following, we only
need a vision system.

On the other hand, it has been a tendencyntorporate all thes sensors into an
intelligent vehicle, in order that the velagbossesses fairly complete perception ability
towards itself and the environment. The reasons are two-folds:

First, the functionality ofeach sort of these sensorsirgeplaceable by the others.
Without GPS, the vehicle has no error-bouhdeference about its global position.
Without camera, the vehicle has no visuagbdar computer-based image processing or
for human-oriented visualiian. Without laser scanner,eglvehicle can not have range
data of high reliability and accuracy. \Witut motion sensor, the vehicle can not have
direct monitoring of its motion state.

Second, the availability of all these sensas complement eachhar and facilitate the
functioning of each other. In other wordseyhare mutually beneficial. For example,
motion data can be used to facilitate pregss of range data and vision data; they can
be fused with global positioning measurements. Range data based processing results can
be used to correct motion data.
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An example of intelligent vehicle equippewnith GPS, laser scanner, camera, and
motion sensors is illustrated in Figure 2.3.

Figure 2.3 Intelligent vehicle sensor configurations (CyCab vehicle platform)

2.3 Recursive State Estimation

2.3.1 State, State Estimation, and Perception

The termstateis frequently adopted in a wide rangiedomains; the definition of state
depends on concrete research and applicatieas. In the context of intelligent vehicle
systems, we could generally think state &sdbllection of all propgies of the vehicles

and the environment. In reality, however, we oanhreally deal with all the properties,
because they are infinite. In fact, we do need to deal with all the properties; for
example, we do not need to care about dmaintelligent vehicle consists of how many
molecules. In other words, we need to selectively deal with partial properties of the
vehicles and the environment that are impdria certain sense; then we treat these
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partial properties astate As in this dissertation, we deal with thpatial propertiesof

the vehicles and the environntemmd treat them as state.

State estimatiomddresses the problem of estimating skate of interegthe properties
we care about) via analysis of sensor ddtae need for state estimation lies in two
aspects of reasons: First, certain state elesnmmght not be directly observable from
sensor data; they can only inéerred from sensor dat&or example, GPS only outputs
position measurement for the vehicle, whereas vehicle orientation can only be inferred
from the process of vehicle pose estimaiien vehicle localization. Second, for those
state elements directly observable froomsz data, techniques such as filtering and
data fusion in state estimation can reduceutieertainty of the rawensor data of these
state elements.

After a brief introduction ostateandstate estimationnow we could further specify the
meaning ofperception Literally, perceptionmeans 1) the abilitgf perceiving (sensing,
recognizing etc), 2) the process of peraggviand 3) the result gderceiving. In this
dissertation, th@erception when used in general manner, still conveys all these senses
of meaning. For examplesooperative perceptionmplies the ability of perceiving
cooperatively, the process of perceiving caapeely, and the results of perceiving
cooperatively.

Concerning the third sense of meanirgg the result of perceiving, thperceptiononly
implies current result of perceiving, as we focas real-time vehicle perception. In
other words, th@erceptionmeansurrent state estimatethat might be obtained based
(directly and indirectly) on analysis arfdsion of a temporal sequence of sensor
measurements. For example, when we espr‘a vehicle shares its perception with
another vehicle” or “associate the pegptions of two vehicles”, here, therceptionhas
such sense of meaning i.e. the current state estimate maintained by a vehicle.

2.3.2 Vehicle-Environment Interaction

During the operation of an intelligent vehicle, it gets sensor measurements about itself
and the environment. We can assign its sensor measurements into two categories:
vehicle proprioceptive measurements arghicle exteroceptive measurements. The
terms proprioceptive and exteroceptive haeen briefly mentioned in the introduction

of motion sensors; here we wollikke to explain their difference.

Vehicle proprioceptive measurementsthe proprio means “of one’s own”; vehicle

proprioceptive measurements are measureméatsonly concern the vehicle itself.
Vehicle motion measurements belong to such kind of measurements.
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As will be explained later, among the fdkinds of sensor measurements (GPS, laser
scanner, camera, and motion sensotjoduced previously, only vehicle motion
measurements are proprioceptive for the vehidels in this dissertation, the concepts
of vehicle proprioceptive measuremerasd vehicle motion measurements are not
distinguished from each other and they are used interchangeably.

We generally denote vehicle motion measurements asd use a subspt to denote
time. The vehicle motion measurements at tinvdl be denoted as

Ug

The notation

utl:tz utl'utl 1""’ut2

denotes the set of vehicle motion measurements front{itadimet,, for t;<t,.

Besides being proprioceptivanother feature for vehicle mon measurements is that
they are directly related teehicle control actions that csel vehicle state to change.
Therefore, the denotatianbears two aspects of indicatioffisst, it denotes the passive
measurements on vehicle motion; secondieihotes the motion &eons that actively
contribute to vehid state transition.

Vehicle exteroceptive measurements the extero means “exterior”; vehicle
exteroceptive measurements are measurements that concern the vehicle and the
environment. GPS measurements, fdasscanner measurements, and camera
measurements belong to such kind of measurements.

Sometimes, GPS measurements are regasi@doprioceptive measurements; however,

we would rather treat GPS measurementxasroceptive measurements, because what
GPS measures is not some properties ofvétecle itself, but te spatial relationship
between the vehicle and a group of satellites.

We could do an imaginary experiment to better understand the difference between
proprioceptive and exteroceptive: imagine thaover is always around the vehicle and

it absolutely cuts the veh&laway from environment. In this situation, GPS, laser
scanner, and camera will lose their functioning, because environment objects outside
the vehicle become totally “invisible”; sodbe sensors are exteroceptive. In contrast,
motion sensors can still function; sdwae motion sensors are proprioceptive.

We generally denote vehicle exteroceptive measuremenisad
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z, (for timet)
Zyv, Zy,Zy 1.2, (fromtimet; to timety, for ti<ty)

Vehicle-environment state currently, we do niodistinguish betweethe vehicles and
the environment; we generally denote theatest(i.e. their properties that we want to
estimate) together as

X; (for timet)
Xiot, Xy Xy 10X, (from timet; to timety, for ti<tp)

The purpose of vehicle perceptios to estimate the state based on vehicle
exteroceptive measuremergsand vehicle motion measurmenis as illustrated in
Figure 2.4.

Figure 2.4 General perceptiorprocess: State estimation

In probabilistic terms, the problem is taigste the posterior belief distribution of the
following form:

bel(xy.t)  P(Xyt 1211, Upt)
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Since we mainly focus on real-time perceptibat cares about state estimate at current
time, the problem of vehiclperception turns to estimateetiposterior distribution as
specified in (2-1):

bel(x;)  p(% |Z1¢,U1) (2-1)

2.3.3 Recursive Estimation: Bayesian Filter Framework

In reality, the operation of an intelligent vehicle is a dynamic process of interaction
between the vehicle and the environment;vitleicle has to perfam perception tasks in
dynamic way: the vehicle has to re-estimtte state of interest from time to time,
because both the vehicle and the environment are changeable.

Vehicle measurements accumulate as tpasses; for each round of state estimation,
we can not expect that the estimation isdahon all historical measurements, because
the huge amount of measurements willkmahe problem intractable neither at
computational level nor at storage level.mfore reasonable practice is to base a new
round of state estimation onethresults of last round aftate estimation and the new
measurements since last round of statemedion, in short words, to perform state
estimation irrecursive way.

We can derive a recursive formulism of state estimation from (2-1), using some fair
assumptions. Via Bayes rule we have

P(Z¢ [X¢,2Z5:¢ 1,U11) PO | 214 1,U7)
P(z¢ 123t 1,U14) (2-2)
I p(Z¢ [Xt:2Z0:¢ 1,U2:0) P(X¢ 1204 1,U1)

P(X¢ [ 214, Us:)

Where / is a normalization factor. The first terai the right side in above equation,
denotes the (conditional) probabilitpf current exteroceptive measurement
conditioned on the state, past exteroceptive measurements;, and vehicle motion
measurementsiy;. We can follow theMarkov assumption or the complete state
assumption [Thrun et al. 2005] i.e. the knowledge of is sufficient to predick; no
past exteroceptive measurements or alehimotion measurements would provide
additional information about. In mathematical termg; is conditionally independent
of z3.+1 andus
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P(Z¢ X523t 1,Uz)  P(Z¢ %) (2-3)

Using the theorem of total probability on tbecond term of the riglside in (2-2) and
we have:

P(X¢ [Z1¢ 1,Uzt) 30X [X¢ 1522 1,U30) PX¢ 11236 1,Ug0) A%

(2-4)
(X X 1,U) PX¢ 1123 1,Ug )X 1

During the derivation of (2-4), the Markassumption is used another time, keis

only dependent of.., andu;, whereas past exteroceptive measurements and past vehicle
motion measurements convey no information on the state

Substitute (2-3) and (2-4) into (2-2):

P(X¢ [Zyg,Upe) 1 P(Z¢ [%e) 30(Xe [X¢ 1,U ) P 1 1Zg¢ 1,U2e )OX; 1 (2-5)
Equation (2-5) describes how wan update the old distributiop(X; 1|2zt 1,Uyt 1 )
with new measurements and z. This recursive estimation process is the so-called

Bayesian filter in literature, which can be illustrated bdynamic Bayesian network
(DBN) [Murphy 2002], as in Figure 2.5.
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Figure 2.5 Dynamic Bayesian network: dramework for recursive state estimation

In real implementation, we can not stiycfollow the mathematical framework of
Bayesian filter given by (2-5), because inigrmally numerically intractable. We have
to make certain approximations on (2-5) tmgiify the original Bayesian filter into
tractable formulism.

Next, we are going to introduce several rsoze estimation methodbat are derived
from the Bayesian filter (2-5) bagen different kind®f approximations.

2.3.4 Kalman Filter

The Kalman filter was proposed by Rudolph Emil Kalman [Kalman 1960], as a
technique of state filtering and prediction for linear systems.
Given a linear state transition moder system evolution modelp(x; | X; 1,U; @S

X¢ AxXp 1 Bug Q
and a linear measurement mog¥k; |x; a9

zy Cix¢ ¢

32



If we follow Gaussiannoise assumption:
pOxc X 1.U) ———exp{ S04 AX 1 BUDTR x¢ AxX 1 Buy))
t t 1Mt \/ﬁ 2 t t1 t t t1 t

and

P ) el 5 Cx)TQ e Cx)
t

whereR; andQ; are respectively the covarianokthe zero-mean random variabl@s
and #.

Then the Bayesian filt§2-5) will become th&alman filter (KF) as:

Xi  AXi 1 B
¢ A A R
Ke GG S Q)Y
Xe Xp Ki(zy GXp)
¢ (1 KG) o

The estimated belief distribution algallows the Gaussian distribution

bel(x)

1 1 A 1 A
ex —(X X X X
\/r.zt p{ 2( t t) t ( t t)}

Detailed derivation of the Kalman filtean be referred to [Kalman 1960] [Thranal.
2005] [Grewal & Andrews 2000].

For nonlinear state transitianodel and measurement model

Xe 9%t 1.Up)  Q
z, h(x¢)
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We can linearize the nonlineéunctions with first-orderTaylor expansion and also
follow the Gaussian noise assumption. Then we get a set of estimation procedures
similar to KF, which is referred to &«tended Kalman Filter (EKF) in literature.

Xe 9% 1,Up)

¢ G G R

Ko “eHe (HO HE Q) t
X Xp Kz h(xt))

¢ (I KiHY)

The Gt is the Jacobian matrix of functianwith respect to:.1; the H; is the Jacobian
matrix of functionh with respect tc:..

The KF (or EKF) has been favored in a widege of applications, as it provides us a
convenient and efficient way tapproximate full posterior sliribution of the state by
estimating only a mean vector and avariance matrix. Although the Gaussian
assumption on which the KF (or EKF) is based gat be strictly satisfied in reality, yet
the KF (or EKF) normally gives desirabéstimation results for unimodal estimation
problem (for example, for fusing GPS mesmnents and vehiclaotion measurements
both of which are unimodal).

2.3.5 Incremental Maximum Likelihood Estimation

During recursive state estimation, the KF (or EKF) tries to maintain an estimate of full
posterior distribution ofhe state; however, this praeiwill soon become intractable as
the dimension of the state ieases to hundreds or even more.

In contrast, if we do not maintain an estimaf full posterior distbution of the state,

but only keeps the most likely statelua (with maximum lilkelihood), then the
Bayesian filter framework (2-5) will lm®me the incremental maximum likelihood
estimation framework:

X¢ argmax p(z; [X¢) p(X¢ [X¢ 1,Up)}
Xt

The advantage of the incremental maximiikalihood estimation framework lies in its

simplicity, as it does not need to maintain a full posterior distribution estimate. The
incremental maximum likelihood estimatioinamework is especially suitable for
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estimating large dimensional state, suchnathe process of siultaneous localization
and mapping (SLAM) [Gutmann & Knolige 1999] [Lu & Milios 1997a] [Vu 2009].

2.3.6 Sampling-based Method: Particle Filter

In KF, the Gaussian distribution assump makes an analytical (closed-form)
expression available for (2-5). If no specifistribution modeling is adopted, then (2-5)
can only be executed with numerical discretra The discrete form of the Bayesian
filter is expressed in (2-6) (where tk@andi denote the discretization index).

PXkt 1Z11:Ug) 1 P(Ze [Xe) i PKice X5t 2,U ) PR ¢ 2123t 15Uzt 1) (2-6)

A naive implement of the discrete Bayesifilber (2-6) might be computationally
expensive or even intractable. As a resdtnpling-based techniques have been utilized
to reduce the computational complexity (@8f6); a popular sampling-based method is
particle filter, or squential Monte Carlo method, whithes to approximate the state
distribution with a group oparticles and corresponding pel¢ weights. Instead of
updating the belief over all state space, théigarfilter only updates the particles and
their weights, thus largely reducing computational burden compared with naive
implementation of the discrete Bayesian filter.

One merit of the particle filter lies ithe ability of its paitles and corresponding
weights to generally represent arbitrargtstdistribution (especially for multi-modal
distribution). The more the particles areg thetter the representation ability is, and the
better the particle filter performs. On the other hand, the particle filter is not
computationally efficient compared withettKF (or EKF) for dealing with estimation
problem of the same state dimension. Besiages the state dimension increases, the
number of particles usually has to iease exponentially in order to keep the
representation ability of the particlesyhich will further cause explosion of
computational complexity. One can refer to [Doueetl. 2000] [Doucetet al. 2001]

for further knowledge on patrticle filter.

2.4 Cooperative Localization

2.4.1 Operation Architecture

For single vehicle localization, there isuafly only one fusion cdar (the on-vehicle
processing unit) which collects data from on-vehicle sensors (such as GPS [Redmill
al. 2001] [Rezaei & Sengupta 2007], cameras [Thagpel. 1988], laser scanners
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[Wanget al. 2003] [Lingemanret al. 2005], or hybrid sorts of sensors it al. 2010]),
processes these sensor datad outputs estimate of velacpose. In other words, the
operation architecture for singlehiele localization is usuallgentralized.

Concerning multi-vehicles coopenagilocalization, if the sizef a group of vehicles in
cooperation is small, then the centralizgdhitecture [Roumeliotis2002] [Howaed al.

2002] might be a possible stihn. In the centralized architecture, one fusion center
collects data from all the vehicles in coogdeon, computes a global state estimate and

distribute the global state estimate among al\bhicles, as illustted in Figure 2.6.
The fusion center can be situated at an itfuature site or one of the vehicles in

cooperation.

.
-
id e
e .
.

-

Figure 2.6 Centralized operation architecture

The advantage of centralized architecturéssconvenience for data processing, as in
single vehicle localization; all the datallected for the fusion are independent and
there is no issue of data correlation which will be explained later. However, the
centralized architecture suffers from largencounication burden and delay; besides, as
the number of vehicles increases, the computational burden will increase much faster
Moreover, the centralized atitdcture is inflexible in lghly dynamic vehicle networks

which are always the case in real traffic environment.
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Instead of a centralized architectuee,decentralized architecture where multiple
fusion centers exist and each of them handidg local information, turns out to be a
desirable solution in the long run. In the ddcaized (or distributedarchitecture, each
vehicle collects data from its local surroumglienvironment and fuses the collected data
for itself. The advantage of decentralizedhatecture lies in its flexibility for dealing
with dynamic vehicle networks and comaively low computational burden for each
fusion center.

Figure 2.7 Decentralized (or distibuted) operation architecture

2.4.2 How to Handle Inter-Estimates Correlation?

An important issue arises rfalecentralized architecture, i.e. how to handle inter-
estimates correlation, i.e. the correlatignterdependency) among different estimate
sources. Careless handling of this correlatihlead to circular reasoning [Howaet

al. 2003] which further leads to the ovesavergence problem, i.e. the estimates
quickly converge to inaccurate values oeeseverely diverged values while extremely
large confidence is given these inaccurate values.

A simple example of the circular reasoning and over-convergence is illustrated in
Figure 2.8. Here we haubree vehicles vehicle 1 (Y vehicle 2 (\4), and vehicle 3

(V3); the uncertainty degree of their pomn estimates is indicated by the ellipses
around them. Suppose at one moment, vehicle 1 gets a new positioning measurement;
the uncertainty degree of this new measurensegiso indicated by an ellipse. This new
measurement can help vehicle 1 to reduceitioertainty degree of its position estimate.
With better self-positioning result, vehicle can also have bettestimation of the
position of vehicle 2, which can reduce the posiestimate uncertainty of vehicle 2. In
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similar way, the position estimate uncertaiofyvehicle 3 can be deiced with the help

of vehicle 2. Then vehicle 3 might share updated estimate with vehicle 1, which
again can reduce the position estimate uncertahtehicle 1; so on and son on, such
kind of circular update can continues until gesition estimates of all the three vehicles
converge to certain oweonfident results.

The estimates of these vehicles might becaurate; as they have already established
over-confidence on the inaccurate estimategy can not correct these inaccurate
estimates in time even if some new measurements which bear brand new information
are available. As this unreasonable ciaculeasoning continues, the estimates might
diverge far and far away from the truth.
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Figure 2.8 Circular reasoning and over-convergence problem

Since the over-convergea problem is due to inter-estimates correlation, a natural idea
for avoiding this problem is to control imtestimates correlation, which is realized by
monitoring and controlling the data flow within vehicle networks. This practice is
popularly adopted for dealing with imtestimates correlation in cooperative
localization; here are some examples.
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Simple heuristic rules The authors in [Howardt al. 2003] propose a heuristic method
based on a dependency tree which establishes for each distribution only one parent
distribution and zero or morehild distributions. A distribution can not be used to
update its ancestors, but may be used toteptiadescendants. The relationship among
these distributions may change accordiogthe arrival of n& observations. The
authors in [Foxet al. 2000] propose some heuristic mikhich function similarly with

the idea of the dependency tree. The limitatiotheke heuristic miebds is that they do

not have complete monitoring or controllingdsdta flow; the risk of circular reasoning

and over-convergence may still exist.

Complicated data transfer schemeThe authors in [Leungt al. 2009] propose a data
transfer scheme which enables distributedots to obtain delayed estimates that are
comparable with centralized estimates; de¢ay length depends on the evolution of the
communication graph over time. One undddgaaspect of this method is the
uncertainty of the availability of the fused estimates, which might not satisfy real-time
requirements; besides, the communicatioqurement of this method is demanding,
due to the large pedigrees of data tieate to be relayed within the networks.

Independent estimates exchangéhe authors in [Kararet al. 2006a] [Karamet al.
2006b] propose state exchange based methachvamly allows independent estimate
(estimate maintained by each vehicle usingws sensor measurements) to be shared
within vehicle networks; thus the risk ofer-convergence can be thoroughly removed.
The method can achieve locally centralizeiformance. On the other hand, a major
disadvantage for this method is: a vehicle nahbenefit from other vehicles that are
outside its directly visibleeighborhood. Besides, one more set of estimate should be
maintained by each vehicle.

We can still strive in the déction of monitoringand controlling the data flow within
vehicle networks, with a goaif finding certain data trarsf scheme that can keep
desirable balance among its performandgiehcy, complexity, and feasibility.

On the other hand, we coutdflect a question: do we hat® monitor and control the
data flow for cooperative tmlization purpose? In above methods, the reason why we
have to monitor and contrdhe data flow is that the fusion methods used in above
methods, such as Kalman filter, can notrguaéee yielding consistent estimate when
fusing correlated data (simply speakimgnsistentmeans that the estimate should not
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be over-confident compared with the groundtir detailed explaation is postponed to
CHAPTER 3).

What if there exist fusion methods thaglg consistent estimate even facing unknown
degree of inter-estimates correlation?eTbovariance intersection filters [Julier &
Uhlmann 1997] [Julier & Uhlmann 2001] are such kind of fusion method.

Recently, we propose in [Li & Nashashibi 2012a] general architecture of
cooperative localization using splitcovariance intersection filter[Julier & Uhlmann
2001]. The basic idea is: each vehicle manstaan estimate of decomposed group
state and this estimate is shared withghleoring vehicles; # estimate of the
decomposed group state is updated with bathstmsor data of the ego-vehicle and the
estimates sent from other vehicles, based on the split covariance intersection filter.
Detailed description of this method will be presented in CHAPTER 3.

This proposed method has several mdotsimplementing cooperative localization:
First, the vehicles are exempted frotomplicated techniquesf monitoring and
controlling data flow within vehicle netwks and the programming architecture for
cooperative localization becomes simpler. $elcdhe risk of overanvergence can be
essentially removed, because the riskesioved directly by th estimation method
itself. Third, communication requirementeacomparatively low, because no pedigree
of information is needed to be eiquily relayed within vehicle networks.

2.4.3 Vehicle-to-Vehicle Relave Pose Estimation

An essential requirement for multiple vehictegealize cooperativiecalization is their
ability to estimate vehicle-to-vehicle 2¥) relative pose among them. In existing
cooperative localization mmbds, V2V relative pose estitiazn is usually performed
directly, i.e. a vehicle direlgt detects another vehiclenég computes their relative pose
from the detection result. The realizatioh a direct V2V reltive pose estimation
method requires dealing withree sub-problems: Hetection the vehicle should detect
and recognize the existence of other vehiflesh perceptive data (such as range data
and vision data); 20lata associationa detection result shoulae correctly associated
with a vehicle in cooperation; 3glative pose computatiomompute the relative pose
from the detection resultn indoor environment applications where the number of
cooperative vehicles is limited and theesario is comparatively static, certad hoc
patterns (with special colors, shapes etc) lbardesigned and iradled on vehicles to
facilitate dealing withthese sub-problems [Foat al. 2000] [Howardet al. 2003]
[Howardet al. 2006].
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Figure 2.9 Intelligent vehicles (robots) withspecial patterns (Lef picture from [Fox et al. 2000];
right picture from [Howard et al.2006])

On the other hand, these sub-problems faced by direct V2V relative pose estimation
methods are not easy to tackle in outdoor traffic environment which is dynamic,
unpredictable, and full of partial or colgfe occlusions caused by dynamic entities.
Reliable vehicle detection in outdoor enviramhis still a challenging problem which
deserves continuous research works. Ratociation is an even challenging problem,
especially when the vehicles have low-accuyrself-localization aibty (with a normal
GPS, the vehicle localizatiomrer can be a dozen of meterSpecial patterns might be
used to facilitate vehicle detection and dassociation, as in indoor environment.
However, there are thousands of vehicle eayst in traffic environment. The task of
designing proper patterns to distinguisktlsinuge number of vehicle systems is not
trivial; besides, occlusions might causess detection and fasdetection of these
patterns. Even if vehicle detection and dedaociation are performedrrectly, it is still
difficult to extract accurate geometric infaatron of the detected vehicle, because the
detection result always corpamnds to partial contour (sotmaes even irregular) of the
detected vehicle.

Recently, we propose in [Li & Nashashibi 2012bjimdirect vehicle-to-vehicle (V2V)
relative pose estimation methodThe basic idea is as foWs: each vehicle maintains

in real-time a dynamic local map [Waz§04] [Vu 2009] whose sial relationship

with respect to the vehicle can be rathexcggely computed. Whemo vehicles are in
cooperation, their locahaps are spatially associated via maps merging. As the spatial
relationship between each vehicle andlasal map has already been computed, the
relative pose between the two vehicles t& indirectly computed by compounding a
chain of transformations.
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In the indirect V2V relative pose estititm method, the challenging problems of
vehicle detection, data assaion, and relative pose computation in direct V2V relative
pose estimation methods are implicitly solvéwuring local maps merging. For local
maps of a scale such as 80 meters, largestatnde objects (buildings, infrastructures etc)
are usually the dominating factors, which ctntte to successflbcal maps merging.

Figure 2.10 The relative pose of one ticle with respect to another vehicle

2.5 Cooperative Local Mapping and Moving Objects
Detection

2.5.1 Perception Representation

By so far, we have been often using the tperceptionwhose meaning can be rather
general. As we briefly spea#fd in Introduction chapter, waeal with issues of vehicle
localization and locaénvironment mapping; in other wardwe mainly deal with the
perception concerning spdt@operties of the vehicles and the environment.
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Therefore, in this dissertation, weould fairly bear in mind that th@erception
concretely indicates certain localizatioasult and local n@ping result including
moving objects. If we discuss some issues general mannewe would continue
using the general terperception if we discuss some concrete practice, we would use
the specific termsehicle pos@ndlocal mapetc.

The representation for vehicle pose is rathed; normally, vehia pose is represented
by a triplet, two elements farehicle positionand one element farehicle orientation
(heading direction). In contrast, there is considerable flexibility for environment
representation. Here areveeal typical methods forn@ironment representation (we
usually only care about two-dimensional eowiment representation, as the vehicles
operate only in horizontal plane).

Direct representation the environment can be repretshby a registered list of raw
perception scans (or frames), for exampleegstered list of raw laser scans [Gutmann
& Schlegel 1996] [Lu & Milis 1997b]. Direct represetian exempts the perception
system from making conversion on raw gegtion measurements. On the other hand,
direct representation has several disadvastathe perception uncertainties are usually
not modeled. Besides, direct representatinly models the envenment part that the
sensor can directly measure; for examptege space can not be modeled by direct
representation. Moreover, management difect representation is comparatively
complicated; for example, how to deal wdherlapping part of rawcans that contains
redundant information (considering thatffelient scans have certain degree of
perception inconsistency about the overlapmagception part due to perception errors)?
How to organize the data (sttuce) in direct representati@o that we can conveniently
and efficiently access and use the data?
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Figure 2.11 Direct representation(from [Lu & Milios 1997b])

Features based representatianThe environment can also be represented by a sparse
map of features that are teacted from raw perceptiodata. The features can be
artificial landmarks [Montemerlet al. 2002]; they can be natl landmarks such as
trees outdoor [Guivargt al. 2000] or line segments indofZox 1991]; they can also be

of abstract form, picked out by certairesgiic detection algathms [Royer 2006] [Gil

et al. 2010]. An advantage of features basegresentation lies in its low memory
requirement and its flexibility to adjust its elements.

However, an apparent disadvantage for femtirased representation is that it lacks the
ability to represent general unstructuredissnment, because it requires extraction of
certain environment features and is only dbleepresent these features. Therefore, its
application is usually limited to rather static environment where certain features are
extractable.
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Figure 2.12 Features based representation (from [Guivarst al. 2000])

Occupancy grid based representationthe occupancy grifElfes 1989] is a two-
dimensional lattice which divides the envircemh space into rectanguilcells; each cell

is associated with a real valin the unit interval [0, 1where the cell value represents
the degree of the cell being occupied byree of object. The cell value 0.5 represents
the cell being in unknown state, neither occupiedfree. For cell value larger than 0.5,
the larger the cell value is, the more likéhe cell is occupied. For cell value smaller
than 0.5, the smaller the cell valisethe more likely the cell is free.

The occupancy grid based representation harakemerits: most importantly, it has the
ability to represent general unstructured environment. Heregeheral implies not
only the place with objects but also theqe free of objects. Besides, the occupancy
grid based representation is similar to daily-life maps, which makes it more suitable
to our normal thinking habit for dealingith maps. It can ab be directly and
conveniently visualized.

The occupancy grid based representatiora isort of dense representation for the
environment. If we aim at establishinggkbbal map for a large environment area, the
memory requirement increases quickly, whimight make the occupancy grid based
representation intractable. On the othandhaglobal mapping is not necessary for many
real-time vehicle operations; as the environmgmlways changing, even if the vehicle
stores the map of a passed place, this mayddaoe of little value for the vehicle when
it re-passes the same place in future. Instealbitter for a vehicle to maintain in real-
time a local map that the vehicle has to deih directly and immediately. For local
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mapping, the occupancy grid based represematan easily be controlled at tractable
size.

Figure 2.13 Occupancy grid based representation

2.5.2 Perceptions Association

The practice of cooperative ngeption is NOT simply therocess of data sharing
through inter-vehicle communication. For ahiae, besides receiving the perceptions
shared by other vehicles, it also has to He #@butilize the shared perceptions. For this
purpose, a most fundamental problem is the problemeofeptions association.e.
given two perceptions from difierent vehicles, how to estaish consistent (spatial)
relationship between the two perceptiorn?
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Figure 2.14 Perceptions association: the object yeee corresponds to what (or where) | see?

For example, given two vehiclg® and B) and two pedestriansi(Rnd B), as
illustrated in Figure 2.14. For vehicle A, pedestriansPoccluded by vehicle B, so it
can only perceive pedestrian, Rs represented by,Pin the bottom-left sub-figure.
Vehicle B can perceivboth pedestrian;Fand B, as represented by#fand R, in the
bottom-right sub-figure. Suppose velei@ share its perception (including:Rand Ry)
with vehicle A; how does vehicle A ebtsh between its own perception and the
perception of vehicle B a consistent telaship which can spatially associatg, Rnd
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Ps1 correctly? This belongs to what pertieps association handles. Without correct
perceptions association, vel@d\ can not have any meaningful inference from the data
shared by vehicle B.

On the whole, there are two categories methods for performing perceptions
association: vehicle pose estimation basethods, and perceptions consistency based
methods. These two categories of methodsheiltliscussed in following sub-sections.
Since perceptions are ankli of data, the scope perceptions associatiobelongs to a
more general scope afata association However, data do not necessarily mean
perceptions; for example, the short-termtimo intentions of the vehicles, their long-
term tasks planning, and the knowledge of spetiéffic rules in certiaa particular area,
they all are kinds of data. Therefore, the expressiopesteptions associatiors
preferred here in order toighlight and specify our caern on associating different
perceptions (especially different vehicles).

2.5.3 Vehicle Pose Estimation based Methods

If each vehicle can be piisely localized in a comon global reference, then
perceptions association is ordytrivial issue of transforming the local maps of different
vehicles into a common reference based enpitecise vehicle loGiaation results. In
reality, however, we can not expect everfiigl2 possessing precise localization ability.
For a vehicle equipped withwecost GPS, the global localization error can be as large
as ten meters in the position component. Even for a vehicle with high accuracy RTK-
GPS, it might encounter occasions of slgdagradation. Therefore, perceptions
association based on vehicleslgdl localization results is gerally impractical in real
implementation.

One possible practice for perceptions assmrias based on direatehicle-to-vehicle
relative pose estimation [Madhavah al. 2004] [Howard 2006] [Carlonet al. 2011]
[Nerurkaret al. 2009]. If a vehicle can determine thadative pose of another vehicle,
then it can spatially relate the perceptiortto$ other vehicle tits own perception. On
the other hand, as discussed in Section32.he realization of direct vehicle-to-
vehicle relative pose estimation method regmiidealing with th sub-problems of
detection data associationand relative pose computatioprwhich are NOT easy to
handle in outdoor traffic environment.
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2.5.4 Perceptions Consistency based Methods

Perceptions consistency based methods doauptire an accurate estimate of vehicle
pose or vehicle-to-vehicle Ie¢ive pose; they try to assate different perceptions
directly, according to certain consistermgasure between the perceptions themselves.
The idea of perceptions consistency basedgpions associatiomas been intensively
exploited in literature, from different pergpies according to conete applications. If
we treat the perception of a vehicle generallyone scan of data, then the process of
perceptions consistency based perceptiassociation becomes the processscdn
matching [Lu & Milios 1997a], which tries to find correct alignment of two scans by
maximizing certain consistency measure. If the perception concerned is a map, then the
process of perceptions consistency basedeptions association becomes the process
of maps merging[Birk & Carpin 2006], which tries to find correct alignment of two
maps also by maximizing certain consistency measure.

Various methods have beeroposed in literature. Weoald categorize these methods
according to different criteria; for exaneplconcerning environment representation,
some methods deal with direct represtote[Lu & Milios 1997a],some methods deal
with features based representation [Cox 198&f some methods deal with occupancy
grid based representation [Birk & Car@#006]. If we examine the procedure form of
these methods, we could roughly assthem into three main categoriefgatures
based methods iterative closest point (ICP) methods and overall-direct
optimization based methods

Features based methodFor applications in structureddoor environment, one can
fairly assume the existence of certain natégatures or artificially deposited features;
these features can be extracted first and then the association is carried out on these
features [Cox 1990] [Cox 1991] [Grossnma & Poli 2001] [Dedeoglu & Sukhatme
2000]. The availability of features woul€acilitate the proess of perceptions
association. However, similar to featurbased map representation, features based
methods are usually limited to the enviramh where certain features (concrete or
abstract) are extractable.

It is worthy noting that features basedthwls are not necesdarijuxtaposed with
features based map representation. For pl@noccupancy grid based representation
can be used, where features are extdadtem the occupancy grid map only for
association purpose [Saeedial. 2011] [Topalet al. 2010].
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Iterative closest point (ICP) method the ICP method is a popular architecture to
associate perceptions of general representawithout extractn and use of special
features. It was originally introduceid [Besl & McKay 1992] (similar idea was
introduced in [Chen & Medioni992]); a survey for the variants of the original ICP
method can be referred to [Rusinkiew&7 evoy 2001]. The ICP ntbod consists in
an iteration of two steps: first, a wieset of correspondences between the two
perceptions is estabhed tentatively based on tldosest point rule; second, the
estimate of the perceptions alignmenupdated by minimizing # overall distances
between the points in the ne&t of correspondences. Giveswatable initial value, the
estimate of the perceptions alignmenill normally convergeafter a number of
iterations of the two steps.

The core of the ICP method is the aptice of establishing point-to-point
correspondences based on the closest point oulginally, point-topoint distance is
computed using the Euclidean distance meadiater, more general distance measures
[Lu & Milios 1997a] [Minguezet al. 2006] have been incorpoeat in ICP to establish
correspondences, which might better capthectrue alignment of perceptions.

Overall-Direct optimization based method this kind of methodormally consists of
two parts: First, an objective function inres of the perceptions alignment variables is
defined as the measure to characterizeaverall consistency deee between the two
perceptions; second, the defined objestifunction is optimized using certain
optimization technique. For example, [Biber & Strasser 2003] propose a Normal
Distribution Transform to transform rawcan points into a collection of normal
distributions which serves dbe consistency measure; then the Newton’s algorithm is
used as the optimization technique.irkB& Carpin 2006] propose a method for
occupancy grid maps merging; in thmsethod, the consistency degree between two
occupancy grid maps is measured &y objective function consisting of similarity
term and dock term then random walk algorithm issed to search the optimum.

Despite that features based methods #DB methods also reflect the spirit of
optimization in terms of perceptions consigle, they are esseally different from
overall-direct optimization based methods irwhihey put this spit into practice. In
features based methods, each feature norrmladlyacterizes certalacal property of the
environment; when we associate the featusesactually deal witthocal consistency or
partial consistency between the perceptioims contrast, overall-direct optimization
based methods deal with overall consistdnetyveen the perceptions. ICP methods also
deal with overall consistency between gegceptions, yet their measure on perceptions
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consistency changes during the associationgasiavhen a new measure is established,
they have to re-execute an optimizatipmocess. In contrastin overall-direct
optimization based methods, once the measupemeptions consistency is established,
only one optimization process is needed; imeotwords, the optimization architecture is
more direct. Naturally, above expldioms also explain the meaning oYerall and
directin overall-direct optimization based methods.

We could also examine thgroblem sizenandled by the perceptions consistency based
methods. There are three levels of problem gimEblem at small, problem at middle,
andproblem at large, which are roughly classified according to the uncertainty level of
initial estimate.

Problem at smalt initial estimate of the perceptions association is available and the
initial estimate is close enoug the correct association.

Problem at middle: initial estimate of the perceptions association is available, yet the
initial estimate is not close to the corressaciation. According to the initial estimate,
we can know there is a correxdsociation betwedhe perceptions; what to do is to find
the correct association.

Problem at large No initial estimate of the perceptioassociation is available at all.
We even do not know whether there s/ aelationship between the perceptions. For
example, suppose two vehicles operate passted areas and share their perceptions,
then their perceptions have no relationshiplatnot to mention an association between
them.

Above categorization is not strjdt is difficult to give concete criteria to specify these
three levels of problem size. We coulshgeniently think them via an analogy between
perceptions association and a general optimization problem. For the optimization
problem, if the starting point is alma in the local uniradal neighborhood of the
global optimum, then it is problem at smdifl.the starting points not close to the
global optimum (not in the unimodal igeborhood of the global optimum) but we
know there is a global optimum in certain ramgth respect to the atting point, then it

is problem at middle. If wlave no idea about a possilsthnge for thglobal optimum

and even do not know whether thas a global solution, thehis problem at large.
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ICP methods are usually limited to problensatall, because they need initial estimate
that is good enough; otherwise, theyould easily suffer from the problem of
converging to a local optimum that is wrosglution. In contrast, features based
methods and overall-direct optimization baseethods have the potad to deal with

all levels of problem size.

2.5.5 Local Occupancy Grid Maps Merging

For our research context, we preféhhe occupancy grid based environment
representation for its ability to represegeneral unstructured outdoor environment.
Besides, as we deal with real-time \ai perception, each vehicle only needs to
maintain a local occupancy grid map. Thien two vehicles to perform cooperative
mapping, we have to solve the fundanaénproblem of associating their local
occupancy grid maps or local occupancy grid maps merging.

Here, the problem of local occupancy gridpmanerging belongs to problem at middle.
On one hand, initial estimate of the asation can be provided by GPS based global
vehicle localization results. Despite oPS positioning error which might be ten meters,
we can at least know whether the vehices in the common area and whether their
perceptions are associable.eféfore, the problem does not belong to problem at large.
On the other hand, as GPS positioning error loa as large as ten meters, the initial
estimate might not be close enough to the correct association; local optimization
techniques tend to failnad get stuck into a wrong ldcaptimum. Therefore, the
problem does not belong to problem at small either.

For occupancy grid maps merging, we cant rely on the ICP methods, as they are
limited to problem at small; we do not wantry either on extraction of certain map
features. Instead, we prefer to follow tnerall-direct optimizabn based methods. As
mentioned in previous sub-sectionsjriB& Carpin 2006] propose a framework for
merging different occupancy grid mapsrectly via optimization on an objective
function. In [Birk & Carpin2006], the objective functioR. consists of aimilarity term

and alock term: the similarity term which is based on a distance-map represents the
overall distances between the maps to-be-awrthe lock term is a part heuristically
added to counteract the over-fitting effect.

This objective function in [Bk & Carpin 2006] has two majalisadvantages: first, the
parameter gk in the heuristically added lock term has to be tuned empirically
according to concrete scenarios. Second,dhjsctive function is susceptible to maps
inherent inconsistency i.e. maps inconsisyetimat still exists even if the maps to-be-
merged are aligned correctly. Maps inmgranconsistency can be caused by dynamic
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entities which are common in outdoor enwimeent. Maps inherent inconsistency can
also be caused by the inconsistency ofc@etion poses at diffent vehicles; for
example, the same environment might appesdiceably different ifit is scanned by
laser scanners at different heights. B objective function ifBirk & Carpin 2006],
maps inherent inconsistency would causastic value change in the distance-map
based similarity term and false counting agfreementand disagreementn the lock
term.

Recently, we propose in [Li & Nashashi®12c] a new method for occupancy grid
maps merging: an objective function bésen occupancy likelihood is introduced to
measure the consistency degree of magsent; genetic algorithm implemented in a
dynamic scheme is adopteddptimize the objective functio The proposed objective
function only takes into account the consistemt pathe maps to-be-merged; thus it is
insensitive to maps inherent inconsistenEygr local maps of enough size, stable and
consistent objects (buildings, infrastructuretc) are usually the dominating factors,
which always contribute to successful local maps merging.

2.5.6 Moving Objects Detection

One motivation for performing cooperative pgpton is to better detect moving objects,
such as vulnerable road users, as illtstran Figure 1.7. Weare about moving objects
because it is them who are likelylie involved in a traffic accident.

Moving objects detection (and trackind)as been intensively and extensively
researched since several decades ago. Howseedo not intend tdiscuss much about
this subject. As we have stated previgusve would rather focus on the general
mechanisms which enable the realizatioin cooperative percéipn functionalities.
Perceptions association based on the localpatey grid maps merging is such kind of
general mechanism, through which the movingcis detection result of an intelligent
vehicle can be shared to and used by another intelligent vehicle, no matter what moving
objects detection method is concretely adopted.

To demonstrate a complete applicatiorcobperative detection on moving objects, we
incorporate two basic moving @uts detection methods, namelgnsistency-based
detectionand moving object map based detectipvang 2004] [Vu 2009]. More
sophisticated moving objects detien methods can also becarporated into the local
occupancy grid maps merging based schefmmoperative local mapping and moving
objects detection.
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2.6 Cooperative Augmented Reality

2.6.1 Augmented Reality Effect of ‘Seeing’ Through Front Vehicle

We propose in [Li & Nashashil##011a] a brand new idea oboperative augmented
reality which utilizes cooperative perceptionsu#ts to realize apecial augmented
effect. More specifically, in [Li & Nashashil@011a], we realize the effect of ‘seeing’
through front vehicle, as illustrated in Fig#el5. To realize this, first, the 2D range
data of the two vehicles is associatechgdhe iterative closest point method. Second,
3D perspective transform between the salsperceptions of # two vehicles is
performed, based on approximate estimatbrthe visual perceamn depth with the
help of 2D range perception.

Figure 2.15 Augmented reality: ‘see’ through the front vehicle

In [Li & Nashashibi 2011a], we used tlterative closest point method for perceptions
association, as the GPS used provided rather accurate positioning result which can
further provide good itial estimate of the associatiove improve the works in [Li &
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Nashashibi 2011a] by incorporating the pragabsocal occupancygrid maps merging
method for perceptions association, whican work even facing large GPS position
errors.

2.7 Summary

We have introduced several sorts of sensoasjely GPS, laser scanner, camera, and
motion sensor, which have been commonly udsedingle intelligent vehicle operation;
with these sensors, an intelligent vehicén possess fairly complete perception ability
towards itself and the environment. We have reviewed the Bayesian filter framework
that has been commonly used for recurstete estimation; we have also reviewed
several recursive estimation methods tlame derived from the Bayesian filter
framework based on differentrids of approximations. We hadescussed in details the
fundamental problems and the state-ofdine methods concerned in cooperative
localization, and cooperatiiecal mapping and moving agjts detection. Based on
these discussions, we propose a general aothie of cooperativéocalization using
split covariance intersection filter, an indireethicle-to-vehicle relative pose estimation
method, and a new method for occupancy graps merging to handle the fundamental
problems in cooperative localizationnda cooperative local mapping and moving
objects detection. We propose a brand neaa iof cooperative augmented reality which
utilizes cooperative percepti results to realize certaugmented effect. The proposed
methods (some of them have been publisheilpe detailed in the following chapters.
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Résumé

Nous avons fourni une solution pour la lbgation coopérative multi-véhicules. Nous
avons rappelé le concept densistance de I'estimation ainsi que le SCIF. Nous avons
présenté plusieurs formes de ce filtre avecdalérivations et ungreuve originale pour

la consistance de la fusion de filtre. Nous avons introdwlusieurs fonctionnalités de
base comme la condition pour réaliser la localisation coopérative. Nous avons introduit
une architecture générale de localisatmmopérative en utilisant un SCIF. Puisque
I'architecture est décentralisée, nous avdésliné I'approche dans le cadre de la
localisation d'un véhicule felligent en s’appuyant swes capteurs de mouvement.
Nous explicitons ainsi la masme dont il peut mettre ayo son estimation d'état en
utilisant ses propres mesuresmesitionnement absolu, aingiie la mise a jour de son
estimation d'état avec les d@ms partagées avec les wéies voisins.Nous avons
présenté la stratégie d’estimation indirecte de du positionnement relatif Véhicule-a-
Véhicule.
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3.1 Introduction

In this chapter, we describe in degaibur solution of multi-vehicles cooperative
localization. First, we review the splitovariance intersection filter that yields
consistent fusion estimates even facing umkmalegree of inter-estimates correlation.
Then we make an abstraction of the bdanctionalities that are commonly available

for intelligent vehicle systems; based on these abstracted functionalities, we introduce a
general architecture of coopéve localization using splitovariance intersection filter.
Afterwards, we present the indirect vehitbevehicle relative pose estimation strategy
which enables a feasiblealization of cooperative d¢alization in reality.

3.2 Consistent Fusion: Split Covariance Intersection Filter

3.2.1 Estimate Consistency

Given an estimateX, P} where X denotes the estimated state vector Rmuktnotes the
estimated covariance matrix. LBt denote the covariance tiie true errors of the
estimateX, i.e.

P* E[XX'] E[(X X)X X)]
Thenconsistencycharacterizes a property of an estimthat the estimated covariance

matrix is no smaller than the true covariance of the estimated state vector; in
mathematical terms:

P P tO
In simple words, an estimate is consistent if it is NOT over-confident.

3.2.2 Inconsistent Fusion of the Kalman Filter

Given two source estimateX{P}(i=1,2) to-be-fusedX; denotes the estimated state
vector andP; denotes the estimated covariance matrix. Both estimates are assumed
consistent:

P P tO
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P, P, tO

Let their fusion estimate be denoted a§H}. Normally, we hope that the fusion
estimate can also be consistent; we do not want to establish any extra confidence on the
fusion estimate than what the source estimates can convey.

Consider the Kalman filter which is popuiarmany applications; the basic formula of

the Kalman filter can be written as:

Pl !t pR!
X PRy Py 7Xp)

The effectiveness of the Kalman filter is based on the assumption that the two source
estimates are independent of each other. Wewaf there is correlation between them,

the Kalman Filter might yield inconsistent fusion estimate. For exampleXlg:$

and {X,,P2} are exactly two copies of the sarastimate; naturally, a reasonable fusion

of them will yield an estimate the rse to them, especially satisfyig=P;=P,. In
contrast, when they are fused with the Kalman filter, the fused covarRnei
become a half dP; (or P,), which is obviously inconsistent.

3.2.3 Split Covariance Intersection Filter (Split CIF)

The authors in [Julier & Uhlmann 1997]gmose a new data fusion method named
covariance intersectign which takes a convex combination of the means and
covariances of the source estimates in the information space. The covariance
intersection filter is theoretically guaranteed to yield consistent results. The formula of
the covariance intersection filter can be written as:

PL (/W) (P w)!t
X PUP/W) Xy (P W) TXp)

This original covariance intersection filtgCIF) has a drawback of yielding pessimistic
estimate, because it treat® thource estimates as beintplly correlated and neglects
possible independent information in thdm[Julier & Uhimann 2001] the generalized
form of the covariance intersection filter, i.e. thglit covariance intersection filter
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(Split CIF) is introduced, which provides thbility to incorporate and maintain known
independent information in the estimates.

Given two consistent source estimateX,{Piq+P1i} and {X;, P.gt+P2}, where the
covariance component3;4 and P,y represent the maximum degree to which these
estimates are possibly correlated with eattter or others; the covariance components
P1 and P, represent the known degree of theis@hte independence. Let the fusion
estimate be denoted aX {P4+P;}, also with its covariance separated as two p&tjs:
andP; respectively represent the correlated enedindependent part. The formula of the
split covariance intersection filter can be written as:

P, Py/w Py

Py Pyl W) Py

Pl pt p!

X P(PX P, X))

P PRIRRT P 'PaP )P
P, PP

(3-1)

Wherew belongs to the interval [0, 1] and any choicenoin this interval guarantees
the consistency of the fusion estimdsee the proof below). In practice, can be
determined by optimizing an agtive function in terms o such as the determinant of
the new covariance [Julier & Uhlmann 2001].

Proof: Let X1=XigtX1i and Xy=X,q+Xz, where X149 and X,4 correspond to the
correlated components{;; and Xy correspond to the independent components. For

each source estimatés correlated component ad independent component are
both consistent i.e.

S 3 Tq S ST
Py tE[X1gXag 1Py tE[X3 Xy ]
Pog tE[X59Xoq 1 Pai tE[X5X5"]

We examine the independent component of the fusion estknate
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P EXX"]
PP, PPt P PP, P EIXX ]
P(PL PP " P, 'PzP, HP
PP EIX Xy P Py E[X Xy 1P, 3P
PR (P E[XyXy DRt Py '(Py  E[XuXy'DP, P 0
We examine the correlated component of the fusion estihétm O<w<1):
Py E[XqXq']
P R E[P(P Xy P, Xpg)(Xeg Pt Xog' Py 1)P]
P PP PPt P PP HP PP TE[X g Xyq 1P Y Py TE[X 59 X0 1P
P E[X1qXoq 1P, & Py 'E[XpXyq' 1P P
PIPY PPiP Y PPyt PLTE[X Xy 1P T Py TE[X g X g 1P,
P E[X1qXoq IP2 & Py TE[X5gXyq' 1P P
PP PPP, Y PLPR T P PP, Y
P 'E[XygXyg TP Py TE[X X 0q 1P,
1erS S Tie 1 1erS 3 Tqp 1
P, "E[XgXoq [P, & Py "E[XpqXqq [P 3P
P P S S S S
P{P, 1%% 'R 1ﬁvpz VR EX Xy TP Py TE[X X g TP,
P E[X1qXoq 1P, & Py TE[X5gXyq' 1P P
1 s 1 - S
tP{P '(= DE[X;qXyg' 1P T Py ' DE[XpqXpg 1P, *
w 1 w
P E[X1qXoq 1P, & Py TE[X 59Xy 1P, P

1 25 1% ¢ Tip 1 1y ¥ Tip 1
P{(1 W)2P, E[X. X" 1P, T WPP, YE[Xi X0y P
W(lW){( )P "E[X1gXag |P > "E[XoqXoq P>

1S S Tim 1 1S S Tqp I
Wl WP, "E[X1gXoq P, & WL W)P, "E[ X5 X4 |P }P
1 ~ ~ ~ ~
Wil W) PE((1 WP, Xyg WP, Xpgll(X WP, Xpg WP, X5g]"}P t0

1
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In summary, the correlated component ane independent component of the fusion
estimate are also consistent. Ehd.

Note: originally in [Julier & Uhlmann 2001], no sict proof was given for the split CIF;
it was not mentioned eithéhe specification thathe correlated component and the
independent component of an estimate are consistent respect{ifeo, the whole
estimate is naturally consistent). Frometlproof that we give above, we think this
specification is what consistency indeed means for split CIF

Notice that the split covariance intersectiorefilin (3-1) is compatible with the Kalman
Filter: let theP14 andP,4 be zero and (3-1) will become the same to the Kalman Filter.
Therefore, the Kalman filter can be treatesl a special case of the split covariance
intersection filter where thisvo source estimates are knotwrbe totally independent.

3.2.4 Split CIF for Partial Observation Case

Given two source estimateX{, P1q+P1i} and {X;, P>¢+P,i} whose meanings have been
specified above, suppose tKe is complete observation i.&;=X,s+tnoise whereas
the X, is partial observation i.eX;=HXstnoise (H is not of full rank). The split
covariance intersection filtean be given as in (3-2):

P, Py/w Py
P, P/l w) Py

P Bt HTR, ™H

X PP, X; H'P, X,)

P PP PPt HTR, PP, TH)P
P, P P

(3-2)

Proof: ComplemenH with Hp to make an invertible matrida:
H o

Ha

ffT|O i}4

Augment X, to a complete observatiod,a with the covariance estimat@agt+Paai,
which satisfy:
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H o K0Py Py 09
~N
ff-_IO %/EZA ( 19/4(—(| 0 f1,

Then we have:
X2A H (>)>1 GXZ (>)>
fE'O Y ﬁ Va
Poad  Poai A il de Fa 0 ?EH i
0V = 0 fl}i"o%
T

T

H oty 0oH o H olp, Qo of

f'O 34 (_(,0 Oi}I_'OEZ fE‘O i}4 (ﬂ(o f %"01}4

P2ad Paai
We apply the split CIF (3-1) onX{;, P1gtPai} and {X2a, P2agtP2ai}:

Pl Pld/W Pli
o H olp, 0oH oT(P
SONED JPE /AN (NN v PE /AR
Pl Rt Pt
» K 1> » 0 "X >> »
fotico  flyflod, «0 Owpflo?,
Pt HTP, H

Py /(1 W) Py)

P

H olexzc:)
Fo0. 9 4,

@( [0}
PP, X, HTR, Y1 0,2 ) P@ X, HTR, 'X,)

f(j1/4

1 1 1 1
P P(PL PP~ Poa "PopiPoa )P

X PP Xy PopXon) PP X, H'P, H

P, 0030
P(Pl 1F):ijl ! HTPZ 1' O>«2I ) >E)2 1H)P
0 fifiy,

PP, PPt HTR, PP, 1H)P
P, P P
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So we have (3-2). End.

The split covariance intersection filter can also be given as in (3-3):

Py
P>
K
X

Py

P /W Py

Pog /1 W) Py
PHT(HPHT Pyt
X1 K(Xy HXy)

(I KH)P, (3-3)
(I KH)P;(I KH)T KPyKT
P PR

Proof: From (3-2) we have:

P

(Pt HTR 'H) P [P PHTR, TH)
(I PHTP H) 'Ry [1o( PHTP, *H)'IR
{t PHTLL (P HPHT)' IR, THYP

[ PHT(Q P,*HPHT) P, HIP,

[l PHT(P, HPHT) HIP

(I KH)P,

PP, X, HTP, 1X,) PP X, PHTP, X,
(I KH)X; PH'P, X,

Where
PH'P, ' [I PHT(P, HPHT) 'HIPHTP,?

PH'[I (P, HPHT) HPHTIP, !
PHT(P, HPHT) PP, PHT(P, HPHT) ! K

Therefore

X

(I KH)X; KX, X; K(X, HXj)

65



P PP, PPt HTP, PP, H)P
[(I KH)PI(P PP DI KH)PIT  (PHTP, )P, (PHTR, )T
(I KH)P;(I KH)T KPyKT

P, PP

End. '

In (3-3), let theP,4 andP4 be zero and the split covanice intersection filter (3-3) will
become the same to the Kalman filter of partial observation form.

3.3 Basic Functionalities forCooperative Localization

Suppose there are multiple vehicles and tie tmumber of vehicles is unknown— the
cooperative localization is rézed in decentralized manner: each vehicle can only and
need only to interact (pegiving and communicating) itk its neighbouring vehicles.
The following functionalities are assumed iafale; they are abstracted from field
practice based on thegdsibility in reality.

Absolute positioning function each vehicle is able to obtain a measurement on its
position in an absolute reference or glotedérence. Absolute positioning function can
be realized in different ways popular way is to useR® to provide global positioning
measurements.

Relative positioning function each vehicle is able toeasure the relative position of
neighbouring vehicles (vehicle-to-vele relative pose estimation). Henegighbour
indicates being within the perception rangerdality, perceptive sensors such as laser
scanner can realize rekai positioning function.

Motion monitoring function: each vehicle is equipped with motion sensors which
output measurements on its motion statndltudinal motion and lateral motion).
Motion data can be provideby sensors such as adeters (including steering
encoders), accelerometers, gyroscopes etc.

Communication function: data can be shared among neighbouring vehicles. Effective
communication range is usually larger theffiective perception range; so the term
neighbourmentioned above has an additionaaming of being able to communicate
with.

66



Time-stamping function: the vehicles are able to tintasp their data according to an
absolute time reference. In reality, thesteyn time of each intelligent vehicle can be
related to the GPS universal time; even a low cost GPS can provide timing information
with fairly high precision.

3.4 Cooperative Localization Using Split Covariance
Intersection Filter

The idea of using split covamce intersection filter for cooperative localization in the
context of intelligent vehicle systems was introduced in our previous works [Li &
Nashashibi 2012a]. However etlarchitecture presented origily in [Li & Nashashibi
2012a] has two implicit requiremss: first, direct vehid-to-vehicle relative pose
estimation (see Section 2.4.3) is perfodnauring cooperative localization; second,
vehicle localization (vehicle pose estimatiamgentangled with detected object tracking
(detected object velocity estimationh fact, these two requirements are NOT
NECESSARY for cooperative localizationfherefore, we improve this original
architecture and make it more general.

3.4.1 Decomposed Group State

The proposed method is of decentralizedh@ecture; the distributed formalism for
each vehicle is the same; therefore, themidism will be described just from the
perspective of one singleshicle (referred to asgo-vehiclg The ego-vehicle maintains
an estimate of its group stae:

Xe {Xg: X}

The group statX¢ consists of two parts: thée=[xe;ye, ¢ denotes the pose of the ego-
vehicle; theX, is used to generally denote the estimate for its local neighboring
environment. Thex(y) and respectively denote the position and the heading angle of
the vehicle in the absolute reference.

The termgroup statehere is similar to but is different from that in [Karatral. 2006b]:

the group state in our method (only onéreate for the group state) can be updated
with the estimates sent from other vehicled aan also be shared with other vehicles.
In [Karamet al. 2006b], each vehicle maintains twdiemtes for its group state: one
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estimate, which is updated only using the sedsta of the ego-vetie, can be shared
with other vehicles but can not be updatathwhe estimates sent from other vehicles;
the other one can be updated with the estisns¢at from other vehicles but can not be
further shared with other vehicles.

There is another difference: in [Karahal. 2006b], a large global covariance matrix is
maintained for the whole group state; on thieer hand, in our method, the covariance
matrix for the ego-vehicle state is segiad from the estimate for the neighboring
environment. In other words, the group stat our method is a decomposed group state,
denoted as:

Ec {Xe,Ps} {{ Xg,Pek X}
{{ Xe,Pee Pekh X}

where the subscriptl and i denote respectively the correlated component and the
independent component of the covariance.

3.4.2 State Evolution

The motion of the vehicles can be modeléxtording to kinematic bicycle model, as
illustrated in Figure 3.1:

Figure 3.1 Kinematic bicycle model
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X | %1 Odecos(yy G/2)
® | Y1 Wsin(y g
(o]

t t1 Uy

o o

(3-4)

Proof: Concerning vehicle motion during a shqreriod, we assume that vehicle

velocity and vehicle yawrate are both constant:

;dx/dt vcos()
®y/dt vsin()
d /dt w

Supposev is non-zero; we make integration ¥momponent:

dt
X X1 %‘ vcos dt X 1 v%t cosd —
t1 t1 d
sin sin 2 .
X 1 V—rt - tl %, vv—vsm(tTtl)cos%tl)

| % 1 v(--—"%)cos(! 2t Y % V(L T 1)C05%t1)
w
X1 Odicos(yy 0/2)
We make integration opcomponent:
. , dt
t t -
Vi Vi1 %1vsm dt vy 4 v%lsln d q

COS {, COS
w

tl)

2t tyaingt
y Yy 1 V—sin( )sin(
tl LW 2 2

v(-L—thgiptt1 v(T, T, ,)sin(-t—t1
|yt1(W)(2)yt1(ttl)(2)

Vo1 Wsin(y, 0/2)

If wis zero, we can verify #t (3-4) also holds. End.

The motion formula (3-4) is denoted inngpact form by the function G, as follows:
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%% K1
« » « » t
Jt» G( Jt 1y« t i)/

A
S ¥ %1¥

X G(X¢ 1.uq)

The state of the ego-vehicks can be evolved using its motion measuremeggs
(here, it can be the original motion senswasurements, or can tee data corrected
by perceptive sensors suah laser scanner).

Xewy OXew 1):Uew)) (3-5)

The ug(y is assumed to follow the Gaussian distributiol®,Ng). The evolution of the
ego-vehicle state covariance is given as:

T T
Peqy OxePet HGxe Gu uGu  Req

(3-6)
Pew GxePea 1)GXeT Gy 4Gy Rieq)

The Gxe andG, are respectively the Jacobian matrices of the fun@ienth respect to
the Xg andug; the Regy andRigy characterize the motion model error. Since the split
covariance intersection filter is used, not only the total covari®agebut also the
independent paRig) are evolved.

X ) 4 0 (dsin(y,; 0,/20°
u A A
Gye — Y 9 1 wdcos(yy 0,/2) )

W
&(X ) Tos(yq U/2) isin(y4, G/2)/20°

,u . A N ~
G, # Sin(yy 0(/2) Gdcos(yq G(/2/2°)

« 0 1 Y,

We can assuméd; and 0 ; are independent of eacdther, then we can set, to be the
diagonal matrix:
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alCdt 0 (o]

u « »
- 0 10 t Va

The traversed distancéd; and the yaw changdl ; are respectively the integral of
vehicle (longitudinal) velocity; and vehicle yawrate:

Y t

od, %1vtdt

0, %tlwtdt

If we assume that the errors of vehicldoegy and vehicle yavate follow Gaussian
white noise distribution, thetine diagonal elements of, are proportional to the period
ar or Ti-Teg i.e.

~ ~ ~~T ~
L E[(F Gdo(§F %do'] ar E[GY'] ar g,

Lo, EN(F Wdo(F ®d)'] ar E[ww'] ar 7,

The 1, and 1, are constantsna set empirically.

3.4.3 State Update with Absolute Positioning Measurements

Let the absolute positioning measuretien the ego-vehicle be denotedAs=(Xa,ya).
The measurement model can be described as (at)time

Zpyy HacwXew Ra
g 0 0o
H A(21B) f) 1 0 1}4

The measurement err@, is assumed to follow the Gaussian distributiord,Nf).
Notice that the absolute positioning measnent is completely independent of any
existing estimates or any other measuremehéssplit covariance intersection filter is
carried out as follows:

T T 1
K PemyHa (HaPemyH A A)
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Xewy Xew K@an HaXegw)
Pey (I KH A)Pg

(3-7)
Pey (I KHAPgm(l KHA)' K KT

Piey Pem Pew

3.4.4 State Update with Relative Pitisning Measurements and the
States of Other Vehicles

The ego-vehicle can share @gup state with its neighbogrvehicles via inter-vehicle
communication; vice versa, it can alseceive the group state estimates of its
neighboring vehicles. Without loss of generality, let the group state shared by a
neighboring vehicle (referred to asmmunicated ego-vehiglee denoted as:

Ece {Xce:Pecal {{ Xce Pceh XcL}
{{ Xce:Pace Piceb Xci}

The Xce=[xeeYee o' denotes the state of the communicated ego-vehicle andcthe
generally denotes its estimate for its local neighboring environment. The sutsorgt

I denote respectively the correlated comporand the independent component of the
covariance.

According to the relative positioning functiassumption, the relative pose between the
ego-vehicle and the communiedtego-vehicle can be obtained. This relative pose can
be revealed via analysis of the andXc.. For example, if the ego-vehicle can directly
detect the entire communicated ego-vehicld smcceed in associating the latter, then
the relative pose can be revealed fidm if the communicated ego-vehicle can directly
detect the entire ego-vehicle and succeedsoa@ating the latter, then the relative pose
can be revealed froc.. We can generally treat thielative pose between the ego-
vehicle and the communicated ego-vehicle (denotetkpas the output of a functional
Rin terms ofX_ andXc_ i.e.

af] 0o
Wr

K P

<R »

Q’JR274

ZR R(X, XcL)
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The error that affect&g is assumed to follow Gaussian distributiorONg). The state

of the ego-vehicle can be indirectly mmputed by compounding the relative pose
estimate and the state estimate of the communicated ego-vehicle; this indirect estimate
of the ego-vehicle ate is denoted axg with covariancePg. (Refer to the
compounding operation in Appendix 1)

Kee © BKR © AUKRCOS ¢ WRSIN o Xge ©
« » LA » (CON - ~ »
X El XCE Tz R <}'ce »T «WR » «UXR SIN e WRCOS ¢ Yee »

<—(|ce i74 gj R 274 & urg ce i74

X 4 WX WX
Pe | (- EDPee(—— BT (=BY) (=BT
X ce W ce W 7 g
4 W WX WX
EPee (—EN)T (=B g(=EHT
e X ce W g W g

Per | (

The "Xg/ "Xce and "Xg/ "Zr are respectively theadobian matrices ofg with respect
to theXce andZr.

4 0 IXKgSIN ¢ (YRCOS °
El ~ ~ . »
—EL 9 1 (xgcos o Oygsin g o

W

TOS o SN o 0°

K¢ »
Sin e cos g O

« 0 0 1y,

VXEI
\ER

ThenXg is fused withXg using the split covariance intersection filter as follows:

P Paeqy /W P
P, Paeiy /W) P

73



K PP Pt
Xewy Xewy KXeqy Xew)
Pey (I K)P (3-8)

Pey (I KPPy K)' KPgpK'
Piey Pem Pew

The w is determined by minimizing the determinant of the new covariance. Some
practical issues deserve further explanations:

Covariance of the relative pose estimategZ the covariance g for Zy is also divided

into two parts, the correlated pardr and the independent park. In practice, it might

be difficult to have a systematic way to analytically compute thér Zg; the r has

to be set empirically to characterize the uncertainty of the relative pose estimate. The
ratio of g (Or gr) in Zr has also to be set empirically. For simplicity, we can get

(or gr) to be a half 0.

Communication delay: In reality, when the communiaat ego-vehicle has a new state
estimate and shares it with the ego-vehittle,ego-vehicle can not use the shared state
immediately due to communication dglaincluding the time needed by the
communicated ego-vehicle to package the shared state into data format suitable for
transmitting, the time needed to transmit the data, the time needed by the ego-vehicle to
unpack the data so that it can use the wisblared state). As vehicular communication
technology has developedapidly, careful implementation can reduce the
communication delay to no more than dazehmilliseconds; the communication delay

will be further reduced in future. Thereeatwo ways to deal with the communication
delay. If the error caused by the comnuation delay makes up a small part of the
overall error, then the error can be simplated as random error. For example, if the
communication delay is 20maéthe vehicle velocity is 5t then this communication
delay will result in an error of 0.1m whiatan be fairly treated as random error. In
contrast, if the communication delay is 50ms #redvehicle velocity is 20m/s, then this
communication delay will result in an errorbbm, then the delayed state estimtg (
andPg) had better be compensated by the motida d& the ego-vehicle, as in (3-5)

and (3-6).

74



3.4.5 Cooperative Localization Architecture

Cooperative localization is realized in detahized (distributed) manner. From the
perspective of an intelligent vehicle, the localization procedures are as follows (the
procedures flow diagram ikustrated in Figure 3.2):

At each period, the vehicle evolves its state estimate (including covariance) using its
motion measurements, according to (3-5) and (3-6).

When the vehicle has absolute positioningsoeement of its own, it updates its state
estimate according to (3-7).

When the vehicle receives ddtom a neighbouring vehicle, it updates its state estimate

according to (3-8).

75



State
Evolution

Absolute Positioning
Measurement

State Update

Data from

eighboring Vehicl State Update

State Sharing

Figure 3.2 Distributed cooperative locéization procedures at one vehicle

As we can see, this distributed coopemtigcalization architecture is rather simple:
when the vehicle has some new data from itself or from another vehicle, it can use the
new data to evolve or updats state estimate; when the vehicle has new state estimate,
it can also share its data with other vehicles monitoring or comblling of data flow

within vehicle networks is needed. Despiteghd simplicity of this architecture, the risk
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of over-convergence can be essentially rerdpyecause the risk is removed directly
by the split covariance intersectiblter during estimates fusion.

3.5 Indirect Vehicle-to-Vehicle Relative Pose Estimation

In above introduced architecture of cooper localization, tlke functionality of
vehicle-to-vehicle (V2V) relative pose estitioa is assumed available. In reality, V2V
relative pose estimation is not a trivial issae,we have discussed in Section 2.4.3. In
this sub-section, we describe the indirgehicle-to-vehicle relative pose estimation
strategy.

The basic idea is as follows: each vehicle performs |I&aAM (Simultaneous
Localization and Mapping) [\hg 2004] [Vu 2009]. Here, ¢hpurpose of local SLAM

is not to build a global ensonment map, but to build ireal-time a dynamic local map
around the vehicle. As illustrated in Figuse3, when two vehicles A and B are in
neighborhood and need to estimate thetikeapose between therthis relative pose
can be indirectly inferred &ia chain of geometric relatiships among vehicle A, local
map of vehicle A, local map of vehicle Bnd vehicle B. The relative pose between
vehicle A and its local map can be ested by SLAM method; the relative pose
between vehicle B and its local map calso be estimated by SLAM method; the
relative pose between local map of Adalocal map of B can be estimated rogps
merging method. Then the relative pose betweshicle A and B can be indirectly
estimated by compounding the relative posesng vehicle A, local map of A, local
map of B, and vehicle B.

Let the pose of vehicle A iits local map be denoted ps; let the pose of vehicle B in
its local map be denoted pss; let the relative pose between the local map of vehicle B
and the local map of vehicle A be denoteggs If the estimates gb a, ps, andpsa

are available, then the relative pose betwesnicle B and vehicle A can be computed
as:

Pvea INV(PLA) TPBa TPLB (3-9)
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Figure 3.3 Indirect vehicle-to-vehiclerelative pose estimation strategy

SLAM suffers from accumulated error, especially when building a large and non-cyclic
global map; yet SLAM can achieve desirabteuracy and consistency when building a
local map of hundred meters scale [Wa@®4] [Vu 2009]. The local map built on-line

is not dedicated only to cooperative localizatid is also valuable for safe navigation
(such as collision avoidance) of a singlénigée system. In the indirect V2V relative
pose estimation method, the challenging probleim&hicle detectiongata association,
and relative pose computation in dire¢RV relative pose estimation method are
implicitly solved during local maps merging (local map of vehicle A and local map of
vehicle B as in Figure 3.3). For local mapsadafcale such as 80 meters, large and stable
objects (buildings, infrastructures etc)eausually the dominating factors, which
contribute to successful local maps merging.
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Detailed description of the local SLAM th@d and the maps merging method will be
postponed to CHAPTER 4. An example thie local SLAM results and the maps
merging results is illustrated in Figure 4.6.

3.6 Summary

We have reviewed the concept of estienatonsistency and ehsplit covariance
intersection filter; we have presented several forms of this filter together with their
derivations and an original proof for thesfon consistency of this filter. We have
specified the compounding notation for cooate transformation and explained some
properties of this compounding notationWe have introduced several basic
functionalities as the condition forealizing cooperative localization; these
functionalities are abstracted from field pree based on their feasibility in reality. We
have described a general architectureamperative localization using split covariance
intersection filter; as the architecture is decentralized, we have described from the
perspective of an intelligent vehicle how it aarolve its state estimate using its motion
measurements, how it can update its statienate using its own absolute positioning
measurements, and how it can update its state estimate with the data shared by
neighbouring vehicles. We have presented tigireéct vehicle-to-vehicle relative pose
estimation strategy; the concrete realizatiosahe components in this strategy will be
detailed in CHAPTER 4.
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Résumé

Nous avons fourni une solution de careqgie locale coopératvpour les véhicules
intelligents fondée sur la télémétrie laddous avons décrit la méthode de SLAM local
fondée sur la grille d’'occupation. Nous faisdasdistinction entre état local et état
global puis nous décrivons corent les estimations de I'éfatal du véhicule obtenues

par le SLAM peuvent étre utilisées pour obtdes estimations de I'état global de celui-

ci. Nous avons présenté l'aitgcture de fusion des gried’occupation en formalisant

le probléeme dans un cadre généralisé de probléme d'optimisation. Nous avons proposé
une nouvelle fonction objective qui mesuredegré cohérence de l'alignement des
cartes fondé sur la probabilité d'occupatiEnsuite, nous avons proposé une approche
fondée sur un algorithme génétique dans kedeurechercher l'alignement optimal des
grilles. Nous avons enfin froduit I'architecture de la déction coopérative des objets

en mouvement, fondé sur la fusion deslggiloccupations. Powne mise en ceuvre
compléte, nous avons adopté deux méthodes de base pour la détection des objets en
mouvement.
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4.1 Introduction

In this chapter, we describe in details @otution of multi-vehicles cooperative local
mapping and moving objects detection for lassanner based intelligent vehicles. The
method architecture is as follows: eachhieke establishes in real-time a local
occupancy grid map and performs moviigjects detection based on the established
occupancy grid map. During vehicles coopiera the local occupancy grid maps of
different vehicles are merged, so that the$erdint vehicles can be spatially related to
each other; then the moving objects detectiesults of these vehicles can also be
merged. First, we describe the methodootupancy grid basesingle vehicle local
SLAM (Simultaneous Localization And Mapg) and how local SLAM results can be
used to assist vehicle global localipat Next, we introduce a new method of
occupancy grid maps merging, which consista new objectiveunction that measures
the consistency degree of maps alignmentagénetic algorithm that searches for the
optimal maps alignment. Then, based oa pmoposed occupancy grid maps merging
method, we introduce the scheme of ltimeehicles cooperative moving objects
detection.

4.2 Occupancy Grid based Local SLAM

4.2.1 Occupancy Grid based Mappingith Known Vehicle States

For our research context, we preféhhe occupancy grid based environment
representation for its ability to represgeineral unstructured outdoor environment. The
occupancy grid [Elfes 1989] is a two-dimersl lattice which diides the environment
space into rectangular cells; eam#l is associated with aakvalue in the unit interval
[0, 1], which is calledbccupancy state The cell value or the oapancy state of the cell
represents the degree of the cell beingupad by or free of object. The cell value 0.5
represents the cell being in unknown staieither occupied nor free. For cell value
larger than 0.5, the larger the cell valuetiee more likely the cell is occupied. For cell
value smaller than 0.5, the smaller the galle is, the more likely the cell is free.

Let S=[xsYs, ' denotes the vehicle local st{@ pose) as in local SLAMNpte: in
order to be different from the detation for vehicle global stad¢; explanations will be
given later. In this sub-sectiomehicle local statés also generally referred to ashicle
statewithoutlocal); M denotes the occupancy grid map, andenotes a generic cell in
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the occupancy grid map; denotes vehicle motion datapenotes range measurements
that are used to build thexaronment map, and subscripdenotes the time index.
Suppose the occupancy states of grid aaksindependent of each other and suppose
vehicle poses are known. The purpose & tltcupancy grid based mapping is to
estimate the posterior probability of the occupancy fi@t¥s, 1, z11) for each celim.
Since we focus on real-time perception, we ga@a the Bayes rule to derive a recursive
scheme to estimafgm|S;+, 1), as in Section 2.3.3.

P(Z: |Sit, 22t 1, M) P(M| Sy, 234 1)
P ISy, 220) P(Z; |Set, 221 1)

Following the Markov assumption, we can traaas being independent of past vehicle
statesS; 1 and past range measurements;. Then, we simplify ®|S;+,z1+.1,m) and
use the Bayes rule again:

P(Zi |Set,211 1, P(Z¢ | S, m)
p(m| S, z) p(z: [St)
p(m|S;)

Then we have:

P(M|S:,z) p(z: |S) P(M|Syt,2Z1 1)
e TS P AT e
p(m|S;,z) Pz |S) P(M|Syt 1,251 1)

p(m) P(z; | Syts 211 1)

(4-1)

During above derivatiorthe assumption that thma and theS; is mutually independent
has been used, because they are mutually anargtive, as will bélustrated latter in
the Dynamic Bayesian Netwodhart of SLAM in Figure 4. Equation (4-1) computes
the probability of a cell bag occupied; in similar way, we can derive a formula to
compute the probability o& cell being free (wheren denotes a free cell in contrast
with mthat denotes an occupied cell):

e P(M|S;,z) p(z¢ [St) P(M[Syt 1,21t 1) 4-2
P 1Sz, 220) p(m) P(z; | Syt, 211 1) @2
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Divide (4-1) by (4-2) and we have:

P(M[Sy.2y)  P(MISt,2) p(M) P(MISy 1,23 1) (4-3)
P(M|Sy,z1e)  PM[S;,zy) p(m) p(M|Sy 1,21 1)

Notice that the probabilities fon and m are mutually complementing to 1. We define
the Oddsfunction as:

Odds(x) p(>_<) p(X)
p(x) 1 p(x)

Then (4-3) turns into:
Odd{m|Sy,2;) Odd{m|S;,z;) Oddgm) * Odd{m|Sy; 1,214 1) (4-4)

Thea priori probability ofm can be fairly assumed to Beb (unknown state); then (4-4)
turns into:

Odd{m|Sy;,zy;) Odd{m|S;,z;) Odd{m|Sy 1,234 1) (4-5)
We can easily recoverdlprobability from thé@ddsfunction:

Oddgx) 1
1 Odd{x) 1 Oddgx) !

P(X)

From (4-4) we have:

1 p(m|S;,z;) ~ p(m) 1 p(M|Sy 1,214 1) 1
z1) [0 4-6
PMISozi) b =020 1T pm) p(MISy 1z 1) | (4-9)

Similarly, whena priori probability ofm is assumed to be 0.5 (unknown state); then
(4-6) turns into:
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1 p(m|S,z) 1 p(Mm[Syt 1,234 1)
p(Mm[S;,z)  p(M|Syt 1,214 1)

p(m|Sy.z34) [1 ]t (4-7)

Equation (4-6) and (4-7) give a recursive way to update the old estimate of the
occupancy grid map with new vehicle st§@nd new range measurement

4.2.2 Inverse Measurement Model

As shown in (4-7), the inverse measurement me(lelS;,z) determines how we can
incrementally update the estimate for the occupancy grid map. ifherse
measurement mode$ in contrast withmeasurement model(z|S,m); inverse here
means the inverse reasoning from the effect to the cause. In reality, the environment is
the cause, whereas the measurement iseffext. In other words, we have the
environment and then we have the measuré&nitea not that we have the measurement
and then we have the environment.

In our case, laser scanner is useg@rovide the range measuremantA frame of range
measurement consists of a group of ldseam readings; a laser beam returns the
distance measurement of the closest objectithats along a specified direction with
respect to the laser scanner. Dermptes a set of distance measurements:

z; {zy|1dk dn}

We assume that each laser beam returns its distance measurement independently of the
operation of other laser beams. Then wasider one generiadividual laser beam

and consider the one dimensional grid cellsng this laser beam, as illustrated in
Figure 4.1.

Figure 4.1 A laser beam and the grid cells along it
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Suppose the laser scanner is situated at the origin and the laser beam hits an object at
distancezy, indicated by thébeam end poinin Figure 4.1. 8ppose the laser beam
measurement is ideally reliable and accuraten the can judge thain object exists at
the beam end point and the cell at the beanh point should becoupied. We can also
judge that the area before the beam end point i.entleg beam areas free of any
object; otherwise, the laser beam wouldthé closer object and return a measurement
smaller thargx. The cells in the inner beam arglaould be free. For the area after the
beam end point i.e. theuter beam areawe can not make anydgement whether any
object exists there. Concerning a cell in thiter beam area, it could be occupied by an
object or not. So the cells in the outeain area are in unknowrat. In summary, we
can set the inverse measurement mp@els;,z ) ideally as follows:

20 Im Sz«
PMIS.z) @l Im Sl zk
05 Im S|z«

In reality, a laser beam measurement hataitedegree of errors; besides, we do not
want to settle down the judgement basedoaty one frame of range measurement.
Therefore, we set soft thresholds for theerse measurement model: if a cell is in the
inner beam area, we set it to be 80% free (not completely free); if a cell is at the beam
end point, we set it to be 80% occupigwt completely occupied). The inverse
measurement model is illustrated in Figure 4.2.
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Figure 4.2 The inverse measurement mode(m|S;,z)

4.2.3 Incremental Maximum Likelihood SLAM

In Section 4.2.1, we have introduced htaincrementally update the occupancy grid
map estimate using range measurements,hicles states are already known. In real-
time applications, however, the vehicle (locstiates themselves are also some states
that need to be estimated recursivelye Tiverall process of incremental SLAM can be
represented by a Dynamic Bayesian Netwgrph model as illustrated in Figure 4.3.
The vehicle evolves from lastate to current state umdecent motion actions; range
measurements are generated accordingetoehicle state and the environment.

We might simply evolve vehicle state acaogdto motion measurements, for example,
odometer measurements (imding steering measurementsattiare commonly used in
intelligent vehicle systems. However, odometers suffer from accumulated errors; a
navigation distance of only sevetans of meters might result in considerable error in
vehicle state estimate and apparent inisd@scy in the mapping result. We had better
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use the inner spatial constraint among skquence of range measments to correct
odometer based vehicle statedliction. In other words, weely on the mapping result
to obtain more accurate vehicle stastimate. Meanwhile, the mapping process
depends on vehicle state estimation. Theegfare have to carry out a process where
vehicle state estimation and environment reapmation are juxtaposed together; this
accounts for the meaning simultaneousn SLAM.

L

Figure 4.3 Dynamic Bayesian Network of incremental SLAM
The objective of SLAM is to estimate theint posterior probability distribution

pP(S:M |zo4,U11). As in Section 2.3.3, we can use the Bayes rule to derive a recursive
estimation scheme for SLAM.
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P(St. M [Zgt,Ugs)
Ip(z¢ |S;, My,Zgy 1,U1) P(S, M | Zgy 1,U1)
Ip(z; [ S, M)
PSS M 1S .M 1,201 1,U) PS 1. My 11201 1,Ur)d(S; 1.M¢ 1)
P(z¢ 1S, M) (S Sy 1.U) P(S; 1.My 11204 1.Ure 1)AS; 1

update posterioratt 1

evolution(predictian)

During above derivation, we have used tarkov assumption agaend the static map
assumption i.eM=M¢,. Since the dimension of the occupancy grid map is huge, it is
difficult to maintain a full posterior disbution estimate during SLAM. We adopt the
incremental maximum likelihood estimation frawork as introduced in Section 2.3.5;
eat each period, we only keep the most yikestimate of vehiclstate and the map.
More specifically, tle incremental maximum likelihood SLAM is formulized as follows:

(S M) aggrhrﬂuaxp(zt 1S M) P(S M S 1M 1,up)} (4-8)

We follow the static map assumption again and then (4-8) turns into:

5 argmay p(z 1S.M PSS U} (4-9)

Once the vehicle stat§ is estimated, we can updatiee occupancy grid map by
appending new dat&(z;) into the old ma.1:

A

M Mt 1 *(ét’zt) (4-10)

Incremental maximum likelihood SLAM is apetition of executinghe steps (4-9) and
(4-10). In the step (4-10), we can update egrith cell according to (4-7) (For the cells

that are not influenced by the new frame laéer beams, we cagunst leave them
unchanged). In the step (4-9), we adopt the occupancy grid based scan matching method
as introduced in [Vu 2009] for its computational efficiency as well as its insensitiveness
to dynamic entities in the environment. The occupancy grid based scan matching
method is briefly reviewed as follows:
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Step I: We randomly generate a set of gehstate samples from last vehicle state
estimate and vehicle motion measurementssfgang the probabilistic vehicle motion
model p(S; |S; 1,U;) - More specifically, in each sampling, we generate a vehicle

motion sample from the vehicle motion meament according to a pre-defined motion
error model. From this vehicle motion sam@nd last vehicle state estimate, we can
generate a vehicle state sample accordingh® kinematic bicycle model specified in
(3-4). Let the set of vehicle state samples be denoted as:

St,samples {S[J |1 dj dsampl(a_N}

Step II: With a vehicle state sample, wan docalize the end point cells of the laser
beams in the occupancy mi&p.;. The sum of the occupancytsis of all the occupied
end point cells is used to measure the Iikedid value of this vehicle state sample i.e.:

Pz 1S, My 1) IR APS; Tz,)IS,; T2 isoccupied

We select the vehicle stasample with highest likbbod value computed above way
and treat it as the solution for thetopization problem in the step (4-9).

4.2.4 Vehicle Local State vs. Vehicle Global State

By so far, the incremental maximum likedod SLAM scheme presented in steps (4-9)
and (4-10) is generally applicable to SLANR matter global or local. As previously
discussed in Section 2.5.1, for real-time e&hpperations, it is oplneeded to maintain

a local map that the vehicle has t@lwith directly and immediately.

In local SLAM, we always maintain a locadap for the surrounding environment of the
vehicle. As presented in [Wang 2004] [Vu 2Q&ery time the vehicle arrives near the
boundary of the current local map, a new laoap is initializedthe pose of the new
map is computed according to vehicle pose thedcells inside the intersection area of
the two maps are copied from the old map to the new one.

A bit different from the practice in [Weay 2004] [Vu 2009], we do not store old local
maps and only keeps the current local nmeggause we have no intention to carry out
any task related to global mapping. Besida [Wang 2004] [W 2009], when the old
local map is transformed into new local mépe map is not only translated but also
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rotated so that the vehicle always starta éiked position with a fixed direction in the

new local map. In our practice, we do ndiate the map and ontyanslate the map by
times of grid cell side length, for the saeimplementation convenience. We always
keep the vehicle almost atetltenter of the local map. bther words, the local SLAM
is more like sliding a local map window alottge vehicle trajectory, as illustrated in
Figure 4.4. An example of local occupancidgnap built during SLAM is illustrated in

Figure 2.13.

Slide the localmap
with vehicle motion

1
!
!

I

N

Figure 4.4 Slide the local occupancgrid map with vehicle motion

As briefly mentioned in Section 4.2.1, theme two sorts of vehielstate (pose): vehicle

Translate by times of

cell side length

local state and vehicle global state. Vehicdeal state is concerned in local SLAM as
described in this section, whereas vehiglebal state is concerned in vehicle global
localization as described in St 3.4.2 and Section 3.4.3.
The reason for not mixing vetié global state rad vehicle local state during local
SLAM is that vehicle global state estimateght result in discontinuity of estimated
vehicle trajectory and inconsistent mappirgsult. For example, imagine that the
vehicle has no global (absolute) positionmgasurement for a long duration and has a
large deviation from its true position; at timethe vehicle suddenly gets an ideally
accurate global positioning measurement and update its state to the correct position
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Although the vehicle state estiredbecomes accurate at titpehere turns to be a large
discontinuity between the vehicle state estimate atttiinend that at timg which will
further result in spatially inconsistent mapping from tirdeto timet.

In fact, the essential function of local SLAIMg to establish consistent relative spatial
relationship among the vehicle states #mel surrounding environment at consecutive
time sequence. Whether or noe thehicle is globally registed is not so important in
local SLAM.

On the other hand, the vele local state estimat® in local SLAM can be used to
correct original motion sensor measurements:

~ ~ ~ 2 ~ & 2
(d,© \/(Xs(t) Xst 1) Ysy Vst 1))

N A

a tC s(t) s(t 1)

The corrected motion estimatasl® and 0 ¢ are then used to evolve vehicle global
stateX; for global localization.

For map representation convenience, theallomap coordinates system is always
attached to the local map. Let the local map coordinate system be dendtedvas
always sefl to be0. The local map window is transtat along the vehicle trajectory
by times of grid cell side length, i.e.

Nyr) ©
Tt Tt 1 ji]y(t) ;':c
«0

The nyy and nyy are the number of cells by which the local map is translated
respectively along the direction and theg direction; thel; is the grid cell side length.
The vehicle local stat in the local map is also traastd accordingly. In local SLAM,
when we estimat&; from S.; andM ., the S is actually represented in.;. As the local
map is slid taT;, we have also to transform tBeby subtracting from it the translation
betweenl.; andTy, i.e.

St St (Tt Tt 1)
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Given vehicle local stat§ and vehicle global stad€;, for a point, the transformation
between its coordinates in the local mpp) @nd its coordinates in the global reference
(po) is as follows:

P X; Tinv(§) tp.
pL S Tinv(X;) tpg

4.3 Occupancy Grid Maps Merging

In previous sub-section, weave described occupancyidgbased local SLAM method
for single vehicle operation. In thisuls-section, we introduce a new method of
occupancy grid maps merging, which are usedssociate the perceptions of different
intelligent vehicles.

4.3.1 Merging Framework

Given two vehicles A and B; following the deabbns used previously, let their global
states be denoted %) andXa), their local states be denoted@g) and Sgy, their
occupancy grid maps be denotedMsg: and Mgy, and their occupancy grid maps
coordinates systems be denoted &g andTgw. Without loss of generality, we neglect
the subscript of time index during following description. ThemM, and Mg are
intended to be merged.

The process of occupancy grid maps rmmeggcan be generalized as the following
optimization problem: Firstlesign an objective functiof. in terms of two arbitrary
occupancy grid mapM; and M, i.e. F((M1, M>), which is used to measure their
consistency degree. Secondarsd the optimal relative pog®sa that maximizes the
consistency measure betweédi andpga T Mg, i.e.

Ppa argmaxF (M A,pga TMp) (4-11)

PBA

In fact, the process of occupay grid maps merging alsodindes a step of integrating
the two occupancy grid maps into one naffer they have been aligned correctly
according to the estimated relative ppgg. On the other hand, thiast step would be
comparatively trivial if the two occupancyigmaps can be aligned correctly. Besides,
we may not need to use the integrated naapiore general and more fundamental role
that the occupancy grid maps merging assumas spatially relate different intelligent
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vehicles to each other, so that one vehichn have meaningful inference about the
perception of another vehicle. Thereforghen we mention occupancy grid maps
merging, we do not necessarily indicate pinactice of integratig two occupancy grid
maps into one map; we would rather treatupancy grid mapsierging as a way to
perform perceptions association.

4.3.2 The Objective Function basedn Occupancy Likelihood

In [Birk & Carpin 2006], the objective functiofR. consists of aimilarity term and a
lock term: the similarity term which is based owmliatance-mapepresents the overall
distances between the maps to-be-merged; tietésm is a part heuristically added to
counteract the over-fitting effect.

EMuM,) 1 i eMin(mdmLmy) [Molme]
c-{oc(I; freg #e (M 1) (4-12)
Ciock (dis(M{,M,) agrM,M5))

This objective function in [Birk & Carpi2006] has two major dis@antages: first, the
parameter g« in the heuristically added lock term has to be tuned empirically

according to concrete scenarios. Second, this objective function is sensitive to maps

inherent inconsistency i.e. maps inconsisyetimat still exists even if the maps to-be-
merged are aligned correctly. Maps inlmtrenconsistency can be caused by dynamic
entities which are common in outdoor enwmimeent. Maps inherent inconsistency can
also be caused by the inconsistency ofc@gtion poses at diffent vehicles; for
example, the same environment might appesdiceably different ifit is scanned by
laser scanners at different heights. B objective function ifBirk & Carpin 2006],
maps inherent inconsistency would causastic value change in the distance-map
based similarity term and false counting agfreementand disagreementn the lock
term.

Here, we propose an objective function lohsa occupancy likdhood, similar to the
idea of the occupancy grid based scan hatras introduced in [Vu 2009] (see Section
4.2.3). Let the occupied cells with logabximum occupancy state (referred tdasl
maximum occupied ce)lsn M, and Mg be respectively dened as a set of two-
dimensional pointsda), Oa@), .-, Oana)} and another setdg), Og(2), .., On}—If

the range scan has no measurement errorssaalivays ideally situated in the same
scanning plane relative to the environmethien the occupancy grid map will be
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comprised of a group of fine occupied bardiees with only onecell width, which
correspond to the intersectiborder lines between the scamgy plane andhe surfaces
of environment objects. In aéty, however, an occupaypgrid map usually does not
have such fine object bordénes due to various sorts efrors. Therefore, we only
select those local maximum agied cells because they anest likely to be located on
true objects borders—Let the occupancy state of a paman occupancy-grid mag
be denoted asl(p); then the objective functiof is defined as in (4-13):

nb
' (4-13)

na
_ :1inv(pBA) toay 0caM ) 1M B (INV(PBA) TOAG))}
I

Equation computes the occupancy likelihoothaf the local maximum occupied cells
of Mg in M4 together with that oM s in Mg. TheOcc means the set of occupied cells,
which are selected by a threshold. Here,@loe threshold is not intended to determine
whether a grid cell is truly ocpied or not in realit; it is only used to select grid cells
that tend to be occupied or bieser to truly occupied cells. Soere is fair flexibility in
setting this threshold. We can set the shdd to be just above the unknown occupancy
state (i.e. 0.5), because according to itineerse measurement model introduced in
Section 4.2.2, a grid cell with occupancgtetabove 0.5 even mot truly occupied, yet

is at least no far away from truly aqued cells. For example, we can set @ec
threshold to be 0.6.

In practice, a simplification of (4-13)i,e. only computing the occupancy likelihood
sum of the local maximum occupied cellsarfe map in the other without computing
the converse part, would achieve fairly dasie performance as well, as in (4-14):

nb
1

The occupancy likelihood basethjective functionsn (4-13) and (4-14) only take into
account the consistent part of the occupagmy maps to-be-merged. In other words,
they are not influenced by maps inconsisteatt. For example, if an area in one map
tends to be occupied whereas ¢bunterpart in the other mégnds to be free, then this
area is not taken into accountthe proposed objectiverfation and naturally will not
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have influence on the output of the latterefidfore, the proposed objective function is
insensitive to maps inhent inconsistency.

For local maps of enough size, stable and istet® objects (builitgs, infrastructures
etc) are usually the dominating factoiBhese dominant consistent objects always
contribute to successful local maps mergihgcause the correct maps relative pose
which also aligns these castent objects corrély normally achieves distinguished
high value with the propesl objective function.

If we set the occupancy state space to be casmpf only three digete states O (free),
0.5 (unknown), and 1 (occupied), thélhe occupancy likeliood based objective
function is reduced to a simple formula similar to &ige term in the objective function
in [Birk & Carpin 2006] which discretely corapes the number of consistent cells, as
follows:

Fe(Ma.pga TMp) vagiM,M,) #p|M4(p) M, (p) - C}

However, we try to avoid any preliminaryeptof discretization othe occupancy state
space that is originally continuous, becaaseiscretization step is unnecessary and it
reduces the information origally contained in the occupancy grid map. Besides, the
practice of discretization, especially ethtriplet discretization, can worsen the
optimization structure and make it more difficult to search the correct solution.
Therefore, we prefer the occupancy likelod based objective functiaas in (4-13) or
(4-14) that is directly applicable to marg general occupancy grid maps whose state
spaces are continuous.

Thedistance-magpasedsimilarity term in (4-12) [Birk & Carpin 2006] might smoother
the value space of the objectiftenction; an idea is to incporate this similarity term
into (4-14) (or (4-13)) and we have (4-15):

1 nb
Fe(Ma,pga TMp) s | min{md(0p,pga T0g()) [0a *OcdM 4)}

' L (4-15)

Clock — 1 Pga Tosg *0caM 4){M A (Pea T0g())}
nb; 'y

As will be demonstrated inxperiments in Section 6.4.5, a larggy in (4-12) or (4-15)

would make the objective fution comparatively robust to rmpa inherent inconsistency
and always enables finding the correct alignin(if suitable optimization technique is
used, as will be introduced inetmext sub-section). With a larggc, the distance-map
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based similarity term has trivial contributi@and can be totally neglected for simplicity.
This is the reason why we propose to use dhjective function (4-13) (or (4-14) for
simplicity).

4.3.3 Optimization using Genetic Algorithm

The initial value ofpga can be computed with GPS based vehicle global localization
results, yet this initial value might be far away from the global optimal maps alignment.
For intelligent vehicle systems with loaccuracy GPS, the initial position errorpfa

can be twenty meters; initial orientation errorpgfa can also be large. Besides, the
value space of the objective function is nalljn multimodal and of irregular shape on
the whole. Therefore, local optimization sgang techniques such as gradient based
analytical techniques tend to fail whexting such large initial estimate error.

The strategy of evolutioma genetic algorithm [Mawet al. 1999] is adopt to solve the
optimization problem (4-11). One importambtivation for using genetic algorithm is
that it is independent of the objectiventtion value space antis ready to solve
multimodal, non-differentiable, or non-camiious problems. Anothenotivation lies in

its intrinsic parallelism architecture, whicimakes it directly suitable for parallel
computation framework if needed. Besidesaih be well implemented in a dynamic (or
recursive) scheme foraktime vehicle operation.

Genetic algorithm is rather a methodology @ast of being a list of concrete execution
procedures. As an analogy to species diwmiuunder the influence afatural selection,
the fundamental spirit of genetic algorithnasevaluate the fitres values of a group of
tentative solution individuals, vary them wittiologically inspired operations such as
crossover and mutation, and keep those betthviduals. The concrete procedures to
put this spirit into practice are problemiesited and can be specially designed and
modified. The concrete proceduresomr implementation are as follows:

1. Initialization: randomly generate an initial populationpgh:

(1-a) Compute the initial value pka with GPS based global localization results of the
two vehicles:

PeaGniy Sa Tinv(Xp) TXg Tinv(Sg)

(1-b) In a certain error range aroupghniy, randomly generate an initial population of
Pea i.€. {Peawlk=1,2,...n}. With an intention to examithe robustness of the method,
we deliberately exaggerate this initial error range to 3@ meters in position and3®
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degrees in orientation. The initial error rargga also be estimatdrom the covariance
estimates of the vehicles global states; eebettimation of the initial error range might
accelerate the optimization searching process.

Concerning the representati of a generic individuglgag in the population, we do not
makebit (binary) string encodingMan et al. 1999] onpgany as originally in genetic
algorithm; instead, we directly hawdithe real-value vector form obgag for
implementation convenience.

2. Evolution iteratively perform the following sub-steps as follows:

(2-a) Compute the likelihood value (Gtness valuen traditional genetic algorithm
terms) of each individual in the population, according to (4-14).

(2-b) Compute mean likelihood value dfe population. For armndividual, if its
likelihood value is above the mean likelihowalue, assign the individual to tledite
group; otherwise, assign it to theferior group {peawlk=1,2,...n}

S

Ik 1tFcM A.PBAK) TMB)

I:c(mean)

{PeaEite)} {PBaG) |Fc(M A PBAG) TMB) t Femean)
{Pea(nteriont {PBA(j) IFc(M A PBA(j) TMB)  Femeany

Categorizing the population aading to their mean likefiood value is a simple yet
effective way to decide which individuals are more likely to survive and more likely to
have influence on the following generation.

(2-c) Mutate the individualén the elite group. For amdividual, if its mutation has
higher likelihood value than its own, theaplace this individualvith its mutation;
otherwise, just keep this individuoriginally in the elite group.

FORpga(k) * {p BA(eIite)}
PBA(™  Mutate(Peac))

IF Fe(Peagy™ ! Fe(Peak)) THENDPgAK) Peak) ™
END FOR

Among the elite group, the best individuakis exception, which ¢& more times (for

example, 100 times) of mutation. If no ntida is better, then just keep the best
individual unchanged; otherwise, keep thest mutation to replace the original best
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individual. (Note: this is like a coarse-to-fine strategy executed for the best individual,
which is intended to refine the precisiontbé best individual omaps alignment. On
the other hand, a simple coarse-to-finetsgy for the overall optimization process
tends to fail, because of tisparsity of the individualsnal the irregularity of the value
space; the best individual in one evolatidoes not guarantee reducing the error range
largely)

(2-d) Replace the inferior group with new individuals; more specifically, replace each
individual in the inferiorgroup with a new nidividual that is geerated from old
individuals by applying the folleing genetic operations thi specified probabilities:

(2-d-i) Copy the best indidual (only performed once).

(2-d-ii) Randomly select an individual frothe elite group and mutate it to be the new
individual.

(2-d-iii) Randomly select two individuals frothe elite group, créa a new individual

by executingcrossoveron them and mutating the ssover result. Two sorts of
crossover are designed:

Crossover 1 Mix the position parts and orientatiparts of the two individuals. Let the
two elite individualsbe denoted apBA(el):[xBA(el), YBA(e1) BA(el)]T and pBA(ez):[XBA(ez),
Yeae2, Bae2]'; the new individual is generated as follows:

Peamew) Crossover_l (Pgage1),Peace2))

T T
[XBae1): YBAE1): BaE2) OF [Xsa(e2) YBAe2): BAED)

Crossover I Make a random linear combinai of the two individuals (the is a
randomly generated real value in [0, 1]:

Peamew) Crossover_ll (Dgae1)Peae2) Peaen (@ )PBae2)

TheCrossover landCrossover llare specially designed crosgr operations to directly
hand the real-value vector form pgany, yet we can make an analogy between them
and the traditional bit string basedssover operationsy adopting théuilding Block
Hypothesis[Man et al. 1999]. For a generic individugsaq, if we believe that its
position component and orieion component are basibuilding blocks which
contribute to its fitness, then the traditional crossover operation turngdmwbssover |

as demonstrated by Figure 4.5(top). If welieve that the proportion between its
position component and orientation component is basic building block which
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contributes to its fitness, then thaditional crossover operation turns to @essover
II, as demonstrated by Figure 4.5(bottom).

Individual A Individual B Crossover |
Position (LT \/ I [ TTTTT1]
Orientation ~ OOCOO0  ( ) 000000
Individual A Individual B Crossover Il

T T T |
Position : HENEEN _ : HE @

|
o L + | | =

Orientation 1COQOO0O) I e . . |

Figure 4.5 Crossover operation: (top) crossover I; (bottom) crossover I

It is worthy noting that th8uilding Block Hypothesis a theory which does not strictly
prove but heuristically expln the working mechanismof genetic algorithm. The

Building Block Hypothesisan be rather treated agyaide for designing the genetic
operations.

(2-d-iv) Re-initialization Create the new individual earding to GPS based vehicle
global localization results and the error rang®,in the initialization process. This re-
initialization practice is to keetine diversity of the population.

When two vehicles meet or re-meet, thiialization step is performed once and the
sub-steps irevolution are repeatedly performed. A dynamic scheme of the genetic
algorithm is used: the generationpgf individuals from last pgod is propagated to the
current period, according to the changelafal map coordinates systems, i.e. (for
k=1,2,...n):

Peagy) [MV(Tawy) TTae ] TPeAwe 1 TIINV(Tei 1) T Tl

As long as the vehiclesre in the neighborhoodd in cooperation, thevolutionstep
can be performed unceasingly. As a result, we only need to assign few times of
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evolution for each period (for examplence), which largely reduces computational
burden at one period; moreover, as the evolution continuous unceasingly, the dynamic
scheme of genetic algorithm will finallyooverge to the optimum. In our tests, the
genetic algorithm usually converges to dmtimum in only few periods (no more than

one second).

An example of the local occupancy grid maps merging result is illustrated in Figure 4.6.

Figure 4.6 (top) local SLAM results; (bottom-lef) maps alignment according to low-accuracy GPS
based localization results; (btiom-right) maps merging result
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4.4 Cooperative Moving Objects Detection

The purpose of this sub-section is notgmpose certain moving object detection
method, but to demonstrate a schemeamaiti-vehicles cooperative moving objects
detection: the occupancy grid maps mergimgthod is used to associate the perceptions
of different vehicles; baseon the perceptions assdma result, the moving objects
detected by a vehicle can be mapped inéoldical map of another vehicle and merged
with the moving objects detected by the latter.

Cooperative
—pp MOD - MOD
Vehicle A fm
Maps
SLAM Merging
=g  SLAM T

Vehicle B

—- MOD

Figure 4.7 Cooperative moving ohgcts detection (Coperative MOD)

To demonstrate a complete applicationcobperative moving objéx detection, we
incorporate two basic moving a@ugts detection methods, namedgnsistency-based
detectionand moving object map based detectipvang 2004] [Vu 2009]. More
sophisticated moving objects detien methods can also becorporated into the local
occupancy grid maps merging based schefmeoperative local mapping and moving
objects detection.

Consistency-based detectiggiven a new scan of range measurements and previously
constructed occupancy grid maps, the iddga fnd the inconsistent part between range
measurements and free space in the localmancy grid map. If a range point is
detected on a location of previously free spdleen it is regareld as a moving point.
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The range data are clustered into segmdotsa segment, if the number of moving
points is larger than a half of the total gsirthen the segment is identified as potential
moving object.

Moving object mapbased detectiana local moving object npais created to store
information about previously detectecbwing objects; each ceih the moving object
map stores a value indicatitige number of observationsatha moving object has been
observed at that cell locatiolf the cell value is above cemeathreshold, the range point
associated with this cell regarded as a moving point.

During multi-vehicles cooperation, a vehicle (referred tegs vehicle will merge the

local occupancy grid map of another vegiahto its own occupancy grid map, using
introduced occupancy grid maps mergimgthod. The detected moving objects of
another vehicle can also be transformed th® ego vehicle reference and fused with
the detected moving objects of the ego vehidla detected moving object of another
vehicle and a detected movigject of the ego vehicle haw least partial overlap,

then the two objects are regarded asstirae object and fused into one object.

For the ego vehicle, the merged occupancy grid map which incorporates the data of
another vehicle is only used for current time and will not be used during the following
SLAM. In other words, the ego vehicle performs SLAM only based on its own sensor
data. This is for guaranteeing the indegence among the occupancy grid maps
estimated by different vehiclesN@te: as we adopt the incremental maximum
likelihood estimation framework to handle Ib&.AM with large size occupancy grid
map, we do not maintain posterior estimate uncertainty; therefore, the strategy of
applying the split covariance intersection fileexrin CHAPTER 3 is not applicable here,

not to mention the large computational burdeapiplicable. On the other hand, in future,

it deserves finding a solution to enable digke to utilize the merged map during its
following process of SLAM and MOD. This future extension will be discussed in
details in the last chapter of this dissertation)

4.5 Summary

We have reviewed the method of occupagcid based single vehicle local SLAM,
including how to use laser scanner basedjeameasurements to incrementally update
the occupancy grid map estimate accordmthe inverse measurement model and how
to estimate current vehicle local state (poag#) last estimate of vehicle local state and
occupancy grid map. We have explained difeerent roles of vehicle local state and
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vehicle global state; we hawkescribed how vehicle local state estimate in SLAM can
be used to assist vehicle global state eston. We have presented the framework for
occupancy grid maps mergirty generalizing its essential part into an optimization
problem; we have proposed a new objecfwection that measures the consistency
degree of maps alignment based on occuphkeljhood. We have adopted the spirit of
genetic algorithm and designed a set of cargpeocedures to search the optimal maps
alignment. We have introduced the scheofemulti-vehicles cooperative moving
objects detection based on occupancyid gmaps merging; for a complete
implementation, we have reviewed awbasic moving objects detection methods,
namely the consistency-based detectiod he moving object map based detection.
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Résumé

Nous avons exploité la notion de réalidigmentée a la perception coopérative,
formalisant ainsi le concept deréalité augmentée coopérativappliquée au contexte
des systemes de véhicules intelligents. Nooigs sommes intéressés particulierement
au scénario de véhicules « leader-suiveausuel I'approche de réalité augmentée est
appliguée. Pour cela, nous utilisons deapteurs : un télémeétre laser et une caméra.
Nous avons décrit comment établir undatien spatiale entraleux vues selon la
géométrie perspective. Noawons introduit une technique permettant a un télémetre
laser 2D de fournir a une cana des données lui permettdigstimer la profondeur de
perception visuelle. Nous avopgesenté la facon de projetarperceptiord'un véhicule

sur celle d'un autre véhicule, en respectagelamétrie perspective décrite. Nous avons
également introduit une nouvelle méthode dibion extrinseque pour une caméra et
un télémetre laser 2D.
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5.1 Introduction

In this chapter, we introduce a brand nelea of cooperative augmented reality which
utilizes the results of cooperative logabpping to realize certain augmented reality
effect. More specifically, we realize augmented effect of ‘seeing’ through front
vehicle, based on the intelligent vehicle sermmfigurations described in Section 2.2.
First, we describe the mathematicalifdations of pinhole camera model and multi-
views perspective geometry. Then, we adiice a technique of utilizing a 2D laser
scanner to assist a mono-camera irtineding the visual perception depth
approximately. Next, we present the procesgealizing perspdive transformation
between the visual perceptions of two vedsclAs part of the prided solution, a new
method is proposed for extrinsic co-caliboatiof a camera and a 2D laser scanner; the
proposed calibration method reveals all gpatial relationshigp among the camera
coordinates system, the laser scanner coatés system, the ground coordinates system,
and the vehicle coordinates system.

5.2 Front-Following Vehicles Scenario

Given a scenario of two vehicles: the frdfitst) vehicle and the following (second)
vehicle; the front vehicle occludes the view of the following vehicle, as illustrated in
Figure 5.1. This front-following vehicles s@io is typical in traffic environment and
is potential dangerous, especially in sooeeasions such as the overtaking occasion
(see Figure 1.7).

For this front-following vehicles scenarithe idea of cooperative augmented reality is
to project the visual perception of the fragthicle onto that ofhe following vehicle,
abiding by perspective geometry. In other vgyntte patch the occluded part of the view
of the following vehicle with coesponding part of the view tie front vehicle. This is
not simply a process of partial view copgiand pasting between the two vehicles; we
have to transform the partial view dfie front vehicle according to perspective
geometry, in order to make a vivid and matueproduction of thipartial view for the
following vehicle, as if the following vehiclean directly see intthe occluded area, as
demonstrated in Figure 2.15.
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Figure 5.1 Front-following vehicles senario: (left) the view of the front vehicle; (right) the view of
the following vehicle (occlued by the front vehicle)

5.3 Camera Model and Multi-Views Perspective Geometry

5.3.1 Pinhole Camera Model

Camera model is used to characterize tlagisp(geometric) relationships between the
objects perceived by the caraeand their projections on the captured image. After
removal of image distortion (@mage distortion is negligi®), the ideal pinhole camera
model [Faugeras 1993] [Zhang 2000] can tepted, as illustrated in Figure 5.2.
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World
coordinates system

Figure 5.2 Pinhole camera model

There are three coordinates systems concerned in this model, namely the world
coordinates system, the camera coordingystem, and the image coordinates system.
The world coordinates systemO§,Xw,Yw,Zw} iS used to specify the location of
environment objects in our 3-Dimensional (3®Yrld; it is usually established iad

hoc way which facilitates the fulfilling of certain tasks. The camera coordinates system
{Oc,Xc, Yo Zo} is attached to the camera, which is used to specify the location of
environment objects relative to the camera; the on@inis situated on the virtual
pinhole by which each pregtion line passes; th&. is aligned with therincipal axis
which is perpendicular to the imageapk. The image coordinates system,,V} is
attached with the virtual 2D gital image plane in pixeld\pte: in a camera, there is a
physical image plane which captures envirenmlight; digital image data are then
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generated by digitizing the image (light) taqed by the physical image plane. We can
fairly imagine there is a virtual digital mge plane overlapped with the physical image
plane; the difference between them onlg lie a conversion beten physical unit and
pixel unit).

The transformation from the wid coordinates system todltamera coordinates system
is given by a rotatioR,. and a translatiof .

(0] 0]
aXC EXW
»

de 5 Rue Ju s Tue (5-1)
Ly Gy

The transformation from the camera cooedes system to the image coordinates
system is given as follows:

X Ye

u =& oy,
.z (5:2)
Ye

V — V,
ZC 0

The (o,vo) is the location of th@rincipal point(the intersection point of the principal
axis and the image plane); theand arescaling factorsn imageu andv axes; the
describes the skewness of two image awéscan represent (5-2) in matrix form:

40 o a Ug ©

« » « » »

I >» A Je » where A p Vo 5 (5-3)
4y, ¥, 9 0 1y,

The A is camera intrinsic matrixthe parameters in this matrix atamera intrinsic
parameterswhich can be calibrated using tbleessboard plane based method [Zhang
2000]. In many applications, we can faidgsume that the scaling factors along two
image axes are the same and the two imags are strictly orthogonal, in other words,
we assume that the image ais ideally fabricated, thefb-2) and (5-3) turn into a
simplified (yet effective) version, as in (5-4).
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u .= uo a 0 uyOoX °
Z < » XM
yz or 3(’» p - Vo e » (5-4)
g 4y, 9 0 1,

Combining (5-1) and (5-3), we obtain th@ansformation from the world coordinates
system to the image coordinates system, as in (5-5).

@( o
QJ ° ((W »
§” MY where M AR, Ty @ (5-5)

« » @ »
w

4y, < »

-1 v,

TheM is theperspective matrixThe transformation described by (5-5) is referred to as
perspective mapping-or a matrixM, we denote itk-th column vector ad/; for
example, the perspective mathk (always having four colun®) can be represented in
decomposed form aM=[M 1)y M 2) M 3) M (a)].

5.3.2 Multi-Views Perspective Geometry

Given two cameras (as illustrated in Figure 5.3) whose intrinsic matrixes are
respectively denoted a%; andA, and whose spatial relationships with the world are
respectively denoted afRfc: and Twci} and {Rwez and Twea}; Let their perspective
matrix be denoted dd1 andM ;:

My [Mygy Myp Myz Mypl AdRua Twal
My [May Moz Moz Moyl Ao[Ruce Tweol

Let Pw=[Xw:Yw,Z4] " denotes a 3D point in the world coordinates systm{u;,vi]" and
P2=[uz,v2]" denote the image points respectivelythie first image coordinates system
and the second image coordinatestay. For an arbitrary vectdf, letV s denotes its
augmented vector i.@’.(A):[V;l]T. Lete, e, e; respectively denotihe constant vectors
[1,0,0T, [0,1,0] and [0,0,1].
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(Xw:YwsZw)

World
coordinates system

Figure 5.3 Multi-views perspective geometry
Formula

Consider the perspective mappingsaecified in (5-5); given a knows,, thenx, can
be computed as:

T 1
e [My My z,Mg Myl "R
T 1
e [My My z,Mg Myl "R

Xw (5'6)

Proof: With a knowngz,, from (5-5) we have:
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P MTP,
My W M@ My

&, °
« »
Mgy M@ zWM@E M@l Yws,
& v,
Then
GXW o
& » 1
Jwy Mg Mg z,M@gG Myl R
& v,

Divide the first element by the third elemémiabove right-side expression and then we
have (5-6). End!

Formula II:
Given the perspective mappings for two cameras:

1Pi1a) M1 Pya
2Piaay M2 Pya)

For a 3D pointP,, if its X, coordinate is known, the geeiric relationship between its
projections on the two camerasage planes is given by;6 and »; are normalization
constants):

1Py My Myg XoMaygy MyplIM oo Mog X Mog Mol Py

2Py Moo Moz XeMogy MogliMyg Myay x,Mygy Myg] Pyay
(5-7)

Proof: With a knownx,, we have:
1Py M1 Pyiay XMy YaMyp) ZuMyz My
WW [0}
M) Mygy %Magy Myl gw
& y,
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2Pioay M2 Pyay XuMogy YuMop) zZuMog Mow
Y ©
« »
[Ma2) Moz XMooy Mgl gw
& v,
Then
1My Myg XMy Mya] *Pyay
Y ©
<« » 1
Gw s 2lMoo) Mog XyMony Mouy] "Poa)
& v,
By rearranging the terms in aboveuatjion and we can get (5-7). End.

Formula lII:
For a 3D poinP,, if [|Puw|| &£’ , the geometric relationship tweeen its projections on the
two cameras image planes is given by:

1Py [Magy My My lIM o Moz Mo 1 P (5.8)

21P2a)  [M gy Moy My M gq) Mgz Mgz ] Pa

Proof: We can verify that the followingquation asymptotically holds &gincreases to
infinite:

leirg]f My My XMygy MygylIM oo Moz XMooy Mol

[M gy Mgz Myg) M o0y M) Moz 1t

This is verified by brutal expansion ofetmatrixes elements in above equation and
comparison among corresponding terms. We ccagbkort to software with symbolic
operation functionality to perform the vedétion; the piece of code for MATLAB is
listed here:

%% CODE BEGIN

x=sym('x’);
for r=1:3

116



for c=1:4

mOne(r,c) = sym('mOne' num2str(r) num2str(c)]);
mTwo(r,c) = sym(['mTwaium2str(r) num2str(c)]);

end

end

mOneX=[mOne(:,2), mOne(:,3}}mOne(;,1)+mOne(:,4)];
mTwoX=[mTwo(:,2), mTwo(:,3x*mTwo(:,1)+mTwo(:,4)];
T = simple( mOneX*inv(mTwoX) );

Tx = simple( limit(T,x,inf) );

R = simple( mOne(:,1:3inv(mTwo(:,1:3)) );

simple( Tx-R)

%% The output should be a matrix of zero.

%% CODE END

From Formula Il we can know that (5-8) asy A . Since the form of (5-8) is
symmetrical, we can verifthat (5-8) also holds ag, &£’ orz, A& . End."*

The meaning oformula Ill can be interpreted in this wagiven a 3D point which is
far away enough from the two cameras, ttlengeometric relationship between its two
image projections only depends on the perspectigtrixes of the two cameras. In other
words, given a pixel on one camera imag#hef corresponding 3D poinf this pixel is
known to be far away from the two cameréisen even withoutiny exact spatial
information of this 3D point, the corqgsnding pixel on the otlhecamera image can
still be determined (suppose thegmective matrixes are known).

5.4 Approximate Estimation of the Visual Perception Depth
using a 2D Laser Scanner

A prerequisite for performing the peesgive transformationbetween the visual
perceptions of the two vehicles is the kiedge of the visual perception depth. This
knowledge can be estimated by stereo-visiboprrect correspondee is established
(yet a challenging process)theen the images pair ineseo-vision. Unfortunately, by
so far, stereo-vision is not available in @hicle sensor configurations. In spite of the
absence of stereo-vision, appimate estimate of the visupkrception depth can be
obtained with the help of 2D range peption. Although the perspective transformation
based on this approximate estimate mightbeprecise, its performance could still be
lifelike enough for driver assistance, as will be shown later.
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5.4.1 Coordinates Systems in an Intelligent Vehicle

Before further introduction of the amximate estimation method, we give some
explanations on several coordinates systemsatteatoncerned in an intelligent vehicle,

namely the camera coordinates system (C@& laser scanner coordinates system
(SCS), the ground coordinates system (G@8J, the vehicle coordinates system (VCS),
as illustrated in Figure 5.4.

Camera Coordinates System its origin and coordirte axes are denoted by
{OcXc, Y, Zd}; the origin O is situated at the virtug@inhole by which a projection line
passes; th®- XY plane is parallel to the image plane.

Laser Scanner Coordinates Systemits origin and coordirta axes are denoted by
{OsXs,Ys,Zs}; the origin Os is situated at the laser emitting point; the plZge0 is the
scanning plane of the 2D laser scanner.

Vehicle Coordinates System(Let the vehicle be stationary on the ground plane) its
origin and coordinate axes are denoted ,,X,,Y\,Z\,}; the coordinate axes
{X\,Y\,Z,} are respectively established alonge longitudinal diection (pointing
forward), along the lateral direction (pommgi left), and along the vertical direction
(point upward) of tharehicle; the originO, is at the projection afhe rear wheel axle
center on the ground.

Ground Coordinates System (Let the vehicle be statary on the ground plane) its
origin and coordinate axes are denoted KB,Xq,YqZg}; the origin Oy is at the
projection ofO. on the ground, the axi&; points fromOgy to O i.e. the ground plane is
the planeZ4=0, and the axiXy is along the projection of the axfs on the ground.

It is worthy noting that thescoordinates systems might é&tablished differently; they

are established inbave way mainly for the conveniem of calibratbon process and
applications associated with intelligent vehicles.

The camera coordinates system, the laser scanner coordinates system, the ground
coordinates system, and the vehicle camaths system, are always fixed with the
vehicle (so they are also mutually fixed wéhch other). The ridispatial relationships
among them are calibrated off-line; a caltima method which reveals all these spatial
relationships will be introdred in latter sub-section.
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Figure 5.4 Coordinates systems in an intelligent vehicle

It is assumed that th@g-X Y4 plane and th©,-X,-Y, plane are always situated on the
ground surface during intelligent vehicle opeafii.e. the pitch-roll movements of the
vehicle are assumed negligibAthough this assumption is nstrictly correct, yet it is
reasonable in practices.

5.4.2 Approximate Estimation of the Visual Perception Depth

The visual perception depth is approately estimated in the following way.

First step, compute the depth i.e. #a&alue of the ground paoin the visual perception

using theformula 1in Section 5.3.2. Suppose all the iraggart below the vanishing line
corresponds to ground surface; then compute the depth of this part according to (5-6),
considering thatz,=0. The vanishing line is deterneid by finding the solution (the set

of P;) which makes the denominator in (5-6) be zero, i.e.

.
&'Mgy My zMg Mgl'R 0
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Second step, compute the depth of the imagetipat can be associated with 2D range
perception. Given a range paqirtransformed into the ¥cle coordinates system,
denoted asx;yvi;z]'- It is assumed that the detection of this point is caused by a
vertical column which contains this poirthe bottom part and ¢éhtop part of this
vertical column are respectively assumed to be situated on the ground surfade and
meters (for example, léd, be 2) above the ground surfatee width of this vertical
column is chosen according to the range perception error. These assumptions are based
on the following considerationgredestrians, i.e. the environment objects that we care
most concerning navigation safety, havetieal column-like shape normally within 2
meters height; besides, many other envirortnodjects also have vertical shape, such
as vehicles, traffic gns, building and trees.

The depth of all the image part that corresponds to this vertical column (determined
through perspective mapping) is set toxg. When the image pregtions of two such

kind of vertical columns overlap with eachther, the overlapping part will have two
depth estimates, then only the smaller degstimate is kept for the overlapping part. In
other words, if an image part can be assediatith two range perception points, then it

is associated only with the paicloser to the vehicle.

Third step, the image parts whose depth hastebeen determined yet are assumed to
correspond to far-away objects and their depth is set lardpe This assumption seems
rude but is reasonable: normally, these ienpgrts either correspond to the objects that
are beyond the detection rangkthe laser scanner or rtespond to the objects high
above the ground. If the former case holds ttiis, directly means that the objects are
far away because the detectiamge of the laser scanner daa 80 meters. If the later
case holds true, these objects high above the ground are anyway of less interest; the
perspective transformation of these objeet®n inaccurate, does not matter so much.
One example of the visual perceptiatepth estimated through above steps is
demonstrated in Figure 5.5, where the coloresafrom red to blue as the depth varies
from small to large. In practice, it is noecessary to estimate the depth of the whole
visual perception; the depth information oflyothe occluded paris needed. Besides,

the Gaussian filtering is performed on the estimate of the visual perception depth in
order to smooth visualization effect.
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Figure 5.5 Approximate estimateof the visual perception depth

5.5 Perspective  Transformaton between the Visual
Perceptions of Two Intelligent Vehicles

Let the relative pose between the front vehiahd the following vehicle be denoted as
[x12y12, 12]". This relative pose is obtained using thdirect vehicle-to-vehicle relative
pose estimation method introduced in S\ttB.5). Suppose the perspective mappings
between the vehicle coordinates systemsthadmage coordinates systems at the front
vehicle and the following vehicle are restively given by (cibrated off-line):

Vehicle 1. 1Pjyay Myq Pyya)
Vehicle 2: 2Pi2(A) M 2 va(A)

The Piyg=[us,v1,1]" and P =[uV2,1]" denote the augmented coordinates in the
image coordinates systems respectivelythaf front and the follwing vehicles. The
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Puiay=[XviYv1,21,1]" andPyaay=[xv2,Yv2,2:2,1]" denote the augmented coordinates in the
vehicle coordinates systems respectivelythed front and the ttowing vehicles. The
relationship betweeB,1x) andPy2) is given by:

Pvaay  RTiz Puya

®0S 1o SN 1o 0 X0

RT Sinj, cosgp; 0 vy,
12«0 0 1 0 »
<o 0 0 11,

The visual perceptions of the two vehictas be related to a common spatial reference
which is chosen to be the second vehicle coordinates system:

L 1
Vehicle 1: 1Pya)y (M1 RTi; T)Pyya)
Vehicle 2: 2Pi2(A) M, pVZ(A)

Following the previous sub-section, the \abyerception consistef two parts: the
depth estimate of one part is determinge depth estimate of the other partage
which means that this part correspondsfdao-away objects. For the former part,
perspective transformation between the viggateptions of the tweehicles is carried
out based oformula Il'in section 5.3.2. For the latterrpgerspective transformation is
carried out based dormula Ill.

5.6 Extrinsic Co-Calibration of a Camera and a 2D Laser
Scanner

For the previously introduced method to tealized, the extrinsic parameters which
characterize the (rigid) spatial relationshiamong the camera coordinates system, the
laser scanner coordinates system, theugd coordinates system, and the vehicle
coordinates system, have to be calibratBdirme. In this subsection, we introduce a
COMPREHENSIVE extrinsic calibration nied which reveals ALL these spatial
relationships, based only on the popular cheggbcalibration practice [Zhang & Pless
2004] with few extra measurements.
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5.6.1 Mathematical Fundaments and Denotations

In Section 5.4.1, we have introduced the eeamcoordinates system (CCS), the laser
scanner coordinates system (SCS), theugd coordinates system (GCS), and the
vehicle coordinates system (VCS) concernig intelligent vehicle. As we use a
chessboard for the calibration, we would ltkeintroduce one morsort of coordinates
system, i.e. the chessboard coordinates system (PCS), as illustrated in Figure 5.6.

Xe
ZS |
I | YYe
| I
XS | |
| I
Os |
Ys > | Zg Zy
|
X X
’ Oy O,

Figure 5.6 Coordinates systems concerned in the calibration

Given a pose of the chessboard plane, theroaigd the coordinate axes of the PCS are
denoted by ©,,X,,Y,Zp}, Where the plan&,=0 is situated on the chessboard plane,
the originOy, is situated at the left-bottom m@r of the chessboard, the aXisis along

the bottom edge of the chessboard, and the “¥xiss along the left edge of the
chessboard, as illustrated in Figure 5.6. Thesshoard is placed with several different
poses in the perception field of the camana the 2D laser scanner; for each pose, a
sub-script )’ is used to distinguisthe PCS. Thus the different chessboard poses that
are used for calibration @rdenoted by &et of PCg, i.e. {Opa),Xpw) Y papZp}s
{Op@)Xp@,Y p21Zp(2)} €tC

The {Xa,Ya,Za} also denote the unit vectors along corresponding coordinate aXes (

S, 0,V, p(1), p(2), ...}). The capitalized letterandT generally denote a 3x3 rotation
matrix and a 3x1 translamm vector respectively. ThR,, and T, respectively denote
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the rotation and translation from the coordinates sys®@gx{,Y.,Za} (a={c, s, g, Vv,
p(1), p(2), ...}) to the coordinate syster®{,Xy,Yn,Zp} (b={cC, s, g, v, p(1), p(2), ...}).

For exampleR¢s and T.s denote the transformation from the CCS to the SCS. The
capitalized letteM generally denotes a point aNth=[xa,Ya,z:] " denotes the coordinates
of M in the coordinate systen©§,X,,Ya,Za} (a={c, s, g, v, p(1), p(2), ...}). Thus the
following relationships hold:

M b Rabl\/I a Tab
Dualrelationslip R,; R abT Toa R abTTab (5-9)
ChainrelationSﬁp Rab be Raf Tab be Taf be

Thea,b,f={c, s, g, v, p(1), p(2), ...}. The spatieelationships among the CCS, the SCS,
the GCS, and the VCS are fixed; the objectifehe extrinsic calibration is to reveal
these spatial relationships, i.e. the extrinsic paramBigrandT 5, (a,b={c, s, g, V}).

In the CCS, theNy' is used to denote the pemdicular vector from th® to the
chessboard plane PGSOy, Xpa, Ypa), Zpi}, Where the magnitudeNjc|| equals the
distance from th®. to the PC§. The Ny  is used to denote ¢hperpendicular vector
from the Oc to the ground plane. LeNlg:=[Ng',ng" and let the ground plane be
represented by equatidis. [M.',1]"=0.

Let ey, &, e3 respectively denote tteonstant vectors [1,0,0][0,1,0] and [0,0,1]. The
norm ‘||.||’ denotes the L2-norie. given an arbitrary vectd, |V|f=V'V.

5.6.2 Comprehensive Extrinsic Calibtgon Method: Basic Version

The proposed calibration method consists ofdhparts: 1) the calibration between the
CCS and SCS, using the method introducefZivang & Pless 2004] that is based on

the chessboard calibration practice; 2 talibration between the CCS and the GCS,
based on the same chessboard calibratiantioe; 3) the calibration between the GCS
and the VCS, with the help of few extra measurements in addition to the chessboard
calibration practice.

Part I: the calibration between the CCS and the SCS

Assume that the intrinsic parameters of the camera are already calibrated using the
method introduced in [Zhang 2000]; given seechessboard poséisat are used for
calibration: PC&){ Op1),Xp@), Y pa)pZpw} PCS2){ Op2):Xp2), Y p2)Zp2)} €tc For a pose
PCSi{ Opi). Xpii), Y pi):Zpiy}, @ 3-vector Nppyc that is perpendicular to the chessboard
plane is computed as:

124



T T
Npiye (€3 Rpgiye

Tome)Rp(i)ces

where the rotation matriR,i;c and the translation vectdr,;. are computed based on
the homography between the plafyg=0 of the PC§ and the 2D image coordinates
system [Zhang 2000].

According to the geometric constraintathlaser points should be located on the
chessboard plane, the relative poseRgandT s between the camera and the 2D laser
scanner are optimized by minimizing the suedsquare of distances (SSD) of all the
laser points to corresponding chessboard planes:

{Res, Tegh  argminky
RCS’TCS

N (5-10)

1 2

B E[Wi:;z” Res Mgijy Tes) [Npeive ll]

i
where the rotation matriR.s is parameterized by a 3-vector using the Rodrigues
formula [Faugeras 1993W s, is thej-th laser point on the P@SThe initial value of
ResandT s are estimated by solving a linear equation problem [Zhang & Pless 2004]:

Initial Estimation of R sand T¢s
According to the geometric constraintathlaser points should be located on the
chessboard plane, thdltawing relationship holds:

1 2
Npiye XRes (Mgipy  Tes) [INpeiye

Since all the laser points are on the plage0Zin the SCS, above equation can be
rewritten as follows:

M.\ O
Npeiye H § ) g NGy IF
A

H Rcs ! € & Tcs> @

Where theH is a 3x3 transform matrix from tHeCS to the CCS; for each laser point
Msij and corresponding chessboard pose @2GSElinear equation of the unknown
parameters oH can be formed. For all the lagawints and correspdimg chessboard
poses, a linear equation group of the unknown parametétscah be formed and can
be solved with linear least squares method. Oncekl tisecomputed, th&.s andT s can

be estimated as follows:
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Res He He (H7%) uH %)
Tes He He (He) uH %)Y (H %)
The computed matriR.s might not satisfy the dmbnormal condition of a rotation

matrix; it can be approximated by a rotation mai¢ which minimizes the Frobenius
norm ofR.s*—Rs (details can be referred to [Golub & Loan 1996]). Ehd.

TheRscandT. can be computed using the dual relationsRig=Rcs ; Ts=-Rcs Tes

Part II: the calibration be tween the CCS and the GCS

We introduce how to reveal the spatial relationship between the CCS and the GCS,
based on the same chessboard calibratiantipe (as used for the calibration between
the CCS and the SCS) withouttyaextra calibration practice.

In the original chessboard calibration pree as in [Zhang & Rss 2004], one can hold
the chessbhoard either on the ground othim air, only if the caera and the 2D laser
scanner can both perceive the chessboged;it is more conw@ent to hold the
chessboard on the ground than in thetdaiding the chessboard on the ground will not
have essential influence on tbalibration results; the reason can be understood in this
way: suppose one holds theessboard in the air, imagnthat the chessboard is
extended onto the ground, thus holding the sihesrd in the air igist like holding an
extended chessboard on the ground.

A calibration field where the ground is faidlat could always bdound; for example,

on the floor in a garage roomr, on a locally flat road. Tém, posing the chessboard on
the ground brings one more geometrmstraint, which is referred to gsound plane
constraint here; it means that the bottom edgetlué chessboard is situated on the
ground plane, or in geometric terms, the @+ X, ( is a scalar) is situated on the
ground plane. The ground plane doamt not only helps revedhe spatiatelationship
between the CCS and GCS, but alsipsieefine the calibration results.

Let | be the length of the chessboard bottom edge; the pOpgisand O+ -Xp),
which represent the two corner points the chessboard bottom edge, are chosen as
control points. The relative pose between the (P@&d the camera, i.8pgpc andT pgc

can be computed, as mentioned in g&cB.1; in the CCS, the coordinates(y; and

Xpi) are respectivelyl ,ic and Rppcer. As the ground plane is denoted by equation
Nac' [Mc',1]'=0, a linear equation nabe established:
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GNge O

a s 0

« T Ty

« To(i)e 1> (5-11)
G « T - T T 1 »

dpiye | 1 Rpgiye »

The solution of this homogeaes linear equation, i.&g. is the eigenvector associated
with the smallest eigenvalue 6f G. Let Ng; be decomposed MGE[NQCT,no]T; the 3-
vectorNgc is perpendicular to the ground pladecording to the gablishment of the
GCS as specified in Section 5.4.1, the ispa¢lationship between the CCS and GCS i.e.
Rgc andT g, is computed as follows:

No

T N
gc gc
INge I
N Te3 N Te3
Rgeer  ( ”[\TC P Ngec e3)/ll ”[\E:C P Ngc €3l (5-12)
gc gc

Rgce3 Tgc/”Tgc ||

R gceZ (R gces) U(R gcel)

Lemma: Given a plane denoted &&'[M',1]'=0, whereN,=[N",ng]" andN is a 3-
vector; for an arbitrary poirll ,, the projection oM, on this plane, denoted &), is
computed as:

NTM
—aZnON M,
[IN]
Proof: As the 3-vectoiN is perpendicular to the plane, the projectMgy, is in the
form M,p=Mat N where is a scalar to-be-computed. SubstitMigp,=Ma+ N for M
in the equatio,'[M",1]'=0, i.e.N"(M .+ N)+no=0, and compute the
N'™M, n, N'M, ng

N'N NI

Substitute the into M =M+ N and the lemma is done.

M ap)
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Proof of (5-12): In the CCS, let theground plane be denoted by equation
Nac [Mc',1]"=0 and theNg=[Ngc',no]". According to the estéishment of the GCS as
specified in section 2, th®q (i.e. T4 in the CCS) is the projection of ti@. (i.e. 0 in
the CCS) on the ground plane; thiega can be computed via the lemma:
NgCTO no nO
—E = Nge

INge I INge I
As the axisZgy points fromQq4 to O, the unit vectorZy (i.e. Ryes in the CCS) is
computed as:
RgceS Tgc/”Tgc ”
Select a point on the ax# (let it bees in the CCS) and compute its projection on the
ground plane:

T

gc N gc

NgcTe3 No
2
[INge I
As the axisXy is along the projection of the axds on the ground, the unit vect
(i.e.Ryee1 in the CCS) is computed as:
Rgcel (Pz Tgc)/ ”Pz Tgc ”

T T
e N,. e
gc =3 gc ©3
Ngc €3)/||

INge 1P INge 1P
According to the right-hand rule, the unit vecky (i.e. Ry in the CCS) is computed
as:

Rgcez (RgceS) U(Rgcel)
End.

z gc €3

Ngc &l

The Rey and T can be computed using the dual relationsRig=Rgc'; Tc=-Rgc' Tge
The spatial relationship between the SCStaedGCS can be computed using the chain
relationshipRsg=RcgRse Tsg=RegT sct T cg-

Part Ill: the calibration between the GCS and the VCS

The chessboard calibration practice is endiaghrevealing spatial relationships among

the CCS, the SCS, and the GCS as introduced previously. In order to further relate the
CCS, the SCS, and the GCS to the VCS, draestep of registering few control points

in the VCS is needed and it is carried out by manual measurements.
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According to the establishment of the GGfsl ahe VCS as mentioned in Section 5.4.1,
the transformation between the GCS and \C§iven by a rotatin around the axis¢Z
and a translation along the ground plane, as follows:

%, ° x®os sin 00%g° %, °

& O» K- »E P« »

(yV » <§In cos 0 »(yg » I<y »
< »

€, v, «0 0 1 1749 - 9 174

Given a chessboard pose RC3he originOpg; is chosen as a ntrol point, which is
called theground control point The coordinates dDy in the GCS is computed as:
Opi)g=RcgT pi)ctTcg. Choose a set @fround control point®p (it is NOT necessary to
choose the origins of lla chessboard poses), mopute their coordinates
Op()g=[Xogi).Yogn]| in the GCS, and manuallymeasure their coordinates
Opinv=[Xow)Yow)] " in the VCS. Since,=z, always holds here, the third coordinate is
omitted.

The objective is to reveal the parameterg,d,} from the set of coordinates pairs
{[ XogyYogi] T [Xowy.Yowiy] '}; €ach coordinates pair corresponds to a ground control point.
Two coordinates pairs are enoughdetermine the parameters,tty}, while more
available coordinates pairs might be expedtegield more accurateesults. The initial

value of { ,t.ty} is estimated by solving the following linear equation:
a. ... .. %%xps o 2, 0
(<4 K. » K »
Zogiy Yoy 1 08N Koui)
< . . MK » < »
Jogi) Xogiy 0 1 L Jovi) 2

Afterward, an iteration paess is carried out. At each iteration step, the non-linear
function ‘cos’ and ‘sin ’ are locally line@ized with last estimate of, the increment of
and new {.t,} are computed by solving a linear equation:

a, 0 a,. 0
« R0 Kk ° « »
« Xog(i)SM k1 Yogi)COS k1 1 0« ~» Zowi) Xog(i)COS k1 Yog(i) SIN k 14

(Xog(i) COS | 1 yog(i) sin k 1 0O 1”» >

Jov(i) Xog(i)SIN k 1 Yog(i) COS k 1 >

»
« Ly Ya
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Normally, the results of {tty} will converge after several iterations; then the rotation
Rgv and the translatiofy, are obtained. Since the siatelationships among the CCS,

the SCS, and the GCS have already bealibrated using the method described
previously, by so far, all the spatial relationships among the CCS, the SCS, the GCS,
and the VCS can be derived using the de#dtionship and the @m relationship in

(5-9). Therefore, the comprehensive exterelibration of the camera and the 2D laser
scanner is performed.

5.6.3 Comprehensive Extrinsic Calibradin Method: Improved Versions

The basic version of the comprehensiveiagic calibration method introduced in the
previous sub-section. Its performance defseon the accuracy ¢iie camera intrinsic
parameters which are notgaisely known in practiceConcerning the calibration
between the camera and the 2D laser scaasién [Zhang & Pless 2004], besides the
basic method as reviewed iart | in Section 5.6.2, [Zhang & Pless 2004] further
proposes global optimizatiorstrategy which optimizes not only thR4, T.¢ but also
the {A, Ryge, Tpayct (A is the camera intrinsic matjiin a joint objective function:

{RCS’TCS’ A, Rp(i)c ) Tp(i)c} argmin F2
RCSvTcstiRp(i)clTp(i)c
F, 10 Noie 1m T.) [IN 2 3
> 1l Res Mgijy Tes) [INpgiyell] (5-13)
i § IINpce |l

- k: IMa  MARpiyer Tpaye:M p(i,k))ll2
|

wheremg ) is the extracted image coordinates of ki@ control point for the PGS
M(A,Rpie: Tpi)e:Mpik) IS its projected image coordites. This global optimization
strategy can be used to redi the calibration results as presented in [Zhang & Pless
2004]; it can be incorporateitito the basic version ahe comprehensive extrinsic
calibration method to refine the estimateslbthe spatial relationships among the CCS,
the SCS, the GCS, and the VCS. Therefareimproved version of the comprehensive
extrinsic calibration method #®rmed, which is called thenproved version in this
dissertation.

On one hand, the global optimization stggten [Zhang & Ples 2004] refines the
estimates of A, Ry, Tpi)c}; 0N the other hand, it over-adijts the estimates slightly to
fit them to the sensor measurements thatks® affected by noises. To make the global
optimization strategy more reasonable, gneund plane constrainntroduced inPart
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Il in Section 5.6.2 is proposed to be takato account as a term of the objective
function, i.e. the last term &f;, which stands for the summeduare of distances of all
the Op andOp)+ -Xpe to the ground plane, as follows:

{Rc51Tcs1AaRp(i)c1Tp(i)c,NGc} argmin F3
RCS'TCS'A’Rp(i)C‘Tp(i)C

1 Np)e 1 2
Fs i jl[lle(i)clchs Mgijy  Tes) 1INpgiye |l

, (5-14)
- k: Mgy MARpive: Togiye: M pa o) Il
|

I”[Tp(i)c;l]NGcllz ITpie | Rpger:INge IF
]

[ 2
I INGc |l

During the optimization, the initial value of th&s. is computed according to the initial
estimates of A, Rpic, Tpic}, using the method described in section 3.2. The
Levenberg-Marquardt method [More 1977] is ussdhe optimization technique for all
above optimization processes. Thes a scalar weight which normalizes the relative
contribution of the laser error term atite camera error term [Zhang & Pless 2004].
The is a scalar weight which in practice daa set to a comparatively large value; in
our implementation, it is set to be 10rhis proposed optimization strategy with the
ground plane constraint is incorporated itb@ basic version of the comprehensive
extrinsic calibration method, thus fommg another improved version of the method
which is called themproved version lin this dissertation.

5.7 Summary

We have specified the front-following vehiclssenario to which the proposed idea of
cooperative augmented reality is appliéde have reviewed the pinhole camera model
and described how to establish spatialationship between two views (easily
extendable to multi-views case) according to perspective geometry. We have described
several coordinates systems i.e. the camewordinates system, the laser scanner
coordinates system, the ground coordinatessesy, and the vehicle coordinates system
that are concerned in an intelligent vehiale have introduced technique of utilizing

a 2D laser scanner to assssimono-camera in estimatirige visual perception depth
approximately. We have presented how tqrttee visual percepmin of a vehicle onto

that of another vehicle, abiding by the muiws perspective geometry described. We
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have also introduced a nesxtrinsic calibration method foa camera and a 2D laser
scanner, which can reveal all the spatedationships among the camera coordinates
system, the laser scannayocdinates system, the groundoodinates system, and the
vehicle coordinates system, based onlytlom popular chessboard calibration practice
with few extra measurements.
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Résumé

Nous avons présenté les conditions expéntales et les résultats expérimentaux
concernant la localisation coopérative, latagraphie locale coopérative et la réalité
augmentée coopérative. Noasons présenté les résudtat’'une étude comparative
fondée sur la simulation qui démontre #atage de l'architecture de localisation
coopérative proposée utilisantfibre SCIF ('approcheSCIFCL), notamment pour les
véhicules intelligents avec des capacitéspdsitionnement absolu hétérogénes. Un
avantage important de la méthode SCIFClLoeelle assure une localisation améliorée
naturellement répartie au sein du réseawélecules, tout en gardant une consistance
raisonnable pour l'estimation de |'état deaque véhicule. Nous avons également
présenté les résultats de tests réels slacklisation coogrative, qui conduisent a des
conclusions similaires a I'étude compara fondée sur la sintation. Nous avons
démontré les performances de la méthdedusion de grilles occupations, fondés sur
des tests effectués avec des données séelln dépit d'une erreur initiale
intentionnellement exagérédégs cartes locales consties par différents véhicules
peuvent toujours étre agrégées correctement en utilisant la méthode proposée. D'ailleurs,
la méthode de fusion des grilles d’occupata le potentiel de trouver une solution pour
le probleme dit de «kidnapping ». Noasons démontré les performances de la
méthode baptisée commeéalité augmentée coopératiwe qui réalise un effet vif de
‘voir’ a travers le véhicule Bder pour le véhicule suivedans le scénario de véhicules
« leader-suiveur ».
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6.1 Introduction

In this chapter, welescribe concrete implementatiand integration of the proposed
methods on our experimental vehicle fdans and demonstrate the experimental
results concerning cooperative localipati cooperative local mapping and moving
objects detection, and cooptiva augmented reality.

6.2 Cooperative Localization wusing Split Covariance
Intersection Filter

6.2.1 Simulation Based Comparative Study

We carried out simulatiorbased experiments on thgroposed architecture of
cooperative localization usinglgpovariance intersection filter. Simulation was chosen

for the tests mainly for two reasons: First, simulation, we can examine the pure
performance of a cooperative localizatiorcharecture, which is exempted from the
influences ofad hocimplementation factors. Second,dmulation, we can easily tune

the tests conditions, some of which are not easy to be satisfied in real-data tests. For
example, we can set the number of vehicldset@s many as we like. It is true that the

gap between the simulation performance #mal performance in reality does always
exist, yet simulation can demonstrate teasonableness and potential of a method and
serve as a guide for real implementation.

As the experiments are carried out in dation, a comparative study could be more
meaningful than only demonstrating ethperformance of the proposed method.
Therefore, the proposed cooperative lo@lan method and several other methods are
executed simultaneously on the same synthetic data and their respective performances
are compared. The methods under tests are as follows:

Single Vehicle Localization Method [Rezaei & Sengupta 2007] (SL):

Each ego-vehicle performs localizationngsionly its own sensor data and using the
EKF for data fusion. More specifically, ataaperiod, the ego-vetie evolves its state
estimate using its motion measurements; wihenego-vehicle has absolute positioning
measurement of its own, it updates its state estimate according to the EKF.

Naive Gooperative Localization Method (NCL):
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Each ego-vehicle performs single vehidtealization as desdyed above; besides,
when the ego-vehicle receives the data feoneighboring vehicle, it treats the received
data as new independent information and it tgxlas state estimate also using the EKF.

State Exchange based_Goperative Localization Method [Karam et al. 2006b]
(SECL):

Each ego-vehicle maintains two state estimalée first estimate is maintained as in
single vehicle localization. When the egehicle receives the data from neighboring
vehicles, it forms the second estimate byhngshe EKF to fuse itBrst estimate and the
received data. The second estimate (i.e. te®furesult of the data of the ego-vehicle
and other vehicles) will neither be furthesed in the localizain process of the ego-
vehicle nor shared with other vehicles.

Cooperative Localization Method using the_9lit Covariance Intersection Hlter
(SCIFCL):
The proposed cooperative ldization method as desbed in Section 3.4.

6.2.2 Simulation Scenario

A main scenario for comparative study is desid based on abstraxt of real traffic
scenarios and is illustrated in Figure 6.Xchain of vehicles (for example, 8 vehicles)
move on the same road in the same directitath vehicle is onlable to observe its
immediate neighbouring vehicldas illustrated by # two-direction aows), i.e. its
immediate front vehicle and itemediate following vehicle.

Figure 6.1 Simulation scenario: a chain of vehicles

The simulation conditions have been set according to the availability of the
functionalities specified irBection 3.3 and can be changed. Experiments have been
carried out under different simulation condits; the condition which mainly affects the
performance of each method is the absobasitioning error level. Therefore, without
loss of generality, we tested the perforgamf the methods under different absolute
positioning error level while fixing other simulation conditions.
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The different absolute positioning error levels used for tests will be specified
respectively in later subestions. Concerning other sitation conditions, we set the
number of vehicles to be 8; the interd&tance between neighboring vehicles to be 20
meters; the velocity of each vehicle to %&km/sec; the motion measurement standard
errors to be 0.1 m/sec inleeity and 0.005 rad/sec in yaate; the absolute positioning
measurement period to be Icsrd; the system period to be 0.1 second; the relative
positioning standard errors to be 0.1 méterelative position and 0.005 rad in relative
orientation. We temporarily neglect innailation the issue of communication delay,
considering that the commuaition delay is usually short (no more than dozens of
milliseconds) and that the errors caused by communication delay can be compensated
by motion data as described in Section 3.4.2.

6.2.3 Homogeneous Systems: All Vehed with the Same Absolute
Positioning Ability
In this experiment, we let all the vehicles have the same absolute positioning ability; the
absolute positioning standard error for each vehicle is set to be 5 meters. The simulation
is carried out in the following way: atelfirst stage, each vehicle only uses the SL
method until its own state estimate converglesn at the second stage, the SL method,
the NCL method, the SECL method arile SCIFCL method are executed
simultaneously and vehicle localization err@ssociated respectively with all these
methods are collected for comparison.
The vehicle localization error one round of test are deménaged in Figure 6.2 as an
example. There are several digures; a sub-figure displayke localization errors of a
vehicle using the different localization rhets in comparison. The localization errors
associated with these methods are distinguidby different types dine with different
colours. The vertical codmates indicates the posiioerror and the horizontal
coordinates indicatethe time sequence. As we cagesthe estimate obtained by the
NCL method severely diverges, whiclmosvs that careless handling of the inter-
estimates correlation in cooperative locafian will easily ircur the over-convergence
problem.
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Figure 6.2 Performance of the SL method, th&ICL method, the SECL method and the SCIFCL
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On the other hand, both the SECL metltoo®l the SCIFCL method achieve better
performance (in terms of localization acacy) than the SL method on the whole,
which shows that cooperative localizationthusls, if well designed, can considerably
improve the performance of vehicle localization.

The result shown in Figure 6.2 gives atuitive comparison among the performance of
the four methods. Furthermore, a large nundbeests (totally fifty rounds of test) have
been carried out to have quantitative comparison anwprthese methods. In every
round of test, the RMS (Root Mean Square}ha position errors of all the vehicles,
associated with each of the SL metho@, #ECL method and the SCIFCL method (the
NCL method is excluded for comparison because it usually leads to severely diverged
result), is computed. The results are dentratsd in Figure 6.3, where the vertical
coordinates indicates the computed RMfsl @ahe horizontal coordates indicates the
indices of the round of test.
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Figure 6.3 RMS of the localization error associateavith the SL method, the SECL method and the
SCIFCL method (homogeneous absolute positioning ability)
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As we can see in Figure 6.3, the GEmethod and the SECL method always
outperform the SL method, which shows #uvantage of cooperative localization over
single vehicle localization. The SCIFCL thed also outperforms slightly the SECL
method (the RMS errors of the 50 roundgesit for the SCIFCL and SECL method are
respectively 0.71 meter and 0.92 meter).

6.2.4 Heterogeneous Systems: Oné&/ehicle with High-Accuracy
Absolute Positioning Ability

In this experiment, we let all the velasl have the same low-accuracy absolute
positioning ability, except the first vehiclehé left-most vehicle in Figure 6.1) which
has high-accuracy absolute pims ability. More speciftally, the absolute position
standard error for the first vehicle is seb® 0.1 meter, whereas that for other vehicles
(the second vehicle to thegbth vehicle) is set to be 15 meters. The simulation is
carried out in the same way as in the last experimeidarogeneous Systems

The vehicle localization errorf one round of test are demanaged in Figure 6.4 as an
example. As in Figure 6.2, each sub-figurepthys the localization errors associated
with one vehicle; the verticaloordinates indicasethe position error and the horizontal
coordinates indicates th@me sequence. The estimatbtained by the NCL method
severely diverges; especially, we can paynditte to the first vehicle. In spite of the
high-accuracy absolute positing measurements the firgehicle has, yet its state
estimate diverges far and far away from the ground-truth.

The SECL method still achieves better perfance than the SL method on the whole.
For the second vehicle, its localization fdessi largely improvedoy the high-accuracy
localization result of the first vehicle tugh cooperative localization. However, in the
SECL method, an estimate obtained by fusing data of different vehicles is not
allowed to be further used, which limiise improvements thahe SECL method can
bring to the localization of thihird to the eighth vehicles.

The performance of the SCIFCL method ididguished compared to that of the SECL
method and the SL method;etHocalization results of lathe vehicles are largely
improved, especially for the third to tlegghth vehicles. The ason can be understood
as follows: through cooperative localizati using the SCIFCL method, the high-
accuracy localization result of the first veleidan improve the localization result of the
second vehicle; the improveldcalization result of the second vehicle can further
improve the localization result of the third vehicle and so on. This is like the “good”
localization result originated from the firgehicle can be propagated to the second
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vehicle, then to the third vehicle, then ttee next vehicle untithe eighth vehicle.
Although the third to the eighth vehiclesarot in the immediate neighborhood of the
first vehicle, they can still indirectly benefrom the “good” data of the first vehicle.

It is worthy reminding that NO monitoring amdntrolling of data flow is performed in
the SCIFCL method. We do not deliberately cohthe data to flow successively from
the first vehicle to the eigh vehicle; the localizatiomesults of two neighbouring
vehicles are mutually influencing. €hSCIFCL method enables good localization
results to be naturally spread withinvahicle network in connection while always
keeping a reasonable confidence fa $tate estimate of each vehicle.
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Figure 6.4 Performance of the SL method, th&ICL method, the SECL method and the SCIFCL

method (heterogeneous absale positioning ability)



Fifty rounds of tests have been carried tmuhave a quantitative comparison among the
SL method, the SECL method and the SCIR@&thod. As in the last experiment for
Homogeneous Systems every round of test, the meles position error RMS of each
method is computed. The results are demateddrin Figure 6.5, where the vertical
coordinates indicates the computed RMt8l ahe horizontal coordates indicates the
indices of the round of test.
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Figure 6.5 RMS of the localization error associateavith the SL method, the SECL method and the
SCIFCL method (heterogeneousbsolute positioning ability)

As we can see in Figure 6.5, the SCIF@kthod always yields apparent performance
improvement over the SL method and t8ECL method, which demonstrates the
effectiveness and the advantage of the prefpaoperative localization architecture
using split covariance intersection filter.
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6.2.5 Discussion

Two kinds of experiments have beensdgbed in previous sub-sections. The
experiment for homogeneous systemsingended to demonstrate the statistical
advantage of cooperative locaton using the SCIFCL methobh reality, each vehicle
usually has few neighbary vehicles to cooperate withoffexample, just the front one
and the following one); as a consequences #tatistical advaage might be quite
limited for intelligent vehicles with homogeneous absolute positioning ability in
practical applications.

On the other hand, cooperative localizatiomre valuable and pracal for intelligent
vehicles with heterogeneous absolute igpmsng ability, as demonstrated in the
experiment for heterogeneous systemgréminent advantage of the SCIFCL method
is that it enables good localization resuits be naturally spread within a vehicle
network in connection while always keeping a reasonable confidence for the state
estimate of each vehicle.

The significance of coopera@ localization demonstrated by the experiment for
heterogeneous systems can be interpretéallas/s: Suppose there are several vehicles
in neighborhood; each vehicle might randondgde their accurate absolute positioning
ability. During cooperative lalization, if only one Meicle can possess accurate
absolute positioning ability, then other hidles can also obtain rather accurate
localization results. From gtstical viewpoint, at a certaitime, although some vehicles
might temporarily loose their accurate salute positioning ability, it is very
UNLIKELY that all the vehicles loose the@rccurate absolute positioning ability. We
can do a simple statisticallcalation: Suppose there ag=8 vehicles and each vehicle
has accurate absolute positioning ability during only half ti;mgg&50%), then the
percentage of time when all these vehiates maintain ratheaccurate localization
results would be as high q:g;oupzl-(l-psingm)N":QQ.G%, i.e. almost all the time.

6.3 Field Tests on Cooperative Localization

6.3.1 Experimental Conditions

Real data were logged in INRIA campus &nown in Figure 6.6), based on two CyCab
vehicle platforms developed by INRIA-IMAR£am. Each CyCab vehicle is equipped
with a RTK-GPS, an IBEO laser scannand odometer senso(including steering
encoder). A RTK-GPS can achieve centimé¢eel positioning accuracy. The vehicle
trajectory registered by a RT&PS (interpolated with correxd motion data) is used as
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the ground-truth for results comparison; example is illustrai@ by the red line in
Figure 6.6. The time of the two vehicle ®ysis are related to the GPS universal time.
Real data experiments werarried out on the cooperatil@calization methods (the SL
method, the NCL method, the SECL thhed and the proposed SCIFCL method),
similar to the simulation experiments demonstrated in Section 6.2. In the real data tests,
the RTK-GPS outputs were delia¢ely degraded with randoerrors and were used as
the absolute positioning measurementse Thotion data (speed and yawrate) were
provided (or indirectly computed) by the odoerstand were corrected by laser scanner
based local SLAM. The vehicle-to-vehicle relative poses (relative positioning) were
estimated using the method described in Se@i6. As in simulation experiments, we
have also carried out two sets of expenitseone for homogeneous systems, the other
for heterogeneous systems.

Figure 6.6 Experimentation field and the ground-truth of one vehicle trajectory

6.3.2 Homogeneous Systems: All Vehed with the Same Absolute
Positioning Ability

As in the simulation experiments for homogeneous systems (Section 6.2.3), we let all

the vehicles have the same absolute positioning ability; the standard error used to

deliberately degrade the RTK-GPS outputsdasto be 5 meters. The experiments were

carried out in the same way as in the datian experiments, i.e. the SL method, the

NCL method, the SECL method and thelBCL method are executed simultaneously

on the same data and vehiglesition errors associategspectively with all these
methods are collected for comparison.
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The vehicle position errors of one round of s demonstrated in Figure 6.7. We can
see that the estimate obtained by the NCL oek#everely diverges, same to the result
in simulation tests.
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Figure 6.7 Performance of the SL method, th&CL method, the SECL method and the SCIFCL

method (homogeneous absolute positioning ability)

Fifty rounds of tests have been carried mubhave a quantitative comparison among the
SL method, the SECL method and the SCIR@Gethod. In every round of test, the

vehicles position error RMS of each metho@asnputed. The results are demonstrated
in Figure 6.8, where the xecal coordinatesndicates the computed RMS and the
horizontal coordinates indicatédse indices othe round of test. As we can see, there is

moderate statistical

advantage oboperative

localization over single vehicle

localization; the limited statistical advanéags due to the fewehicle number (only
two).
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Figure 6.8 RMS of the localization error associateavith the SL method, the SECL method and the
SCIFCL method (homogeneous absolute positioning ability)

Certain special cases can highlight thdvamtage of cooperative localization; For
example, when the bias errqsee the discussion in trssib-section later) of different
GPS happen to counteract each other. We have carried out a test to demonstrate the
apparent advantage of cooperative locélra in such kind of special case. We
degraded the GPS output of one vehicle witlexna bias error of (7, -8) meters (in the
vehicle moving plane); we degredi that of the other vehicleith an extra bias error of

(-6, 9) meters; the localization results of aoend of test is illustrated in Figure 6.9.
For the first vehicle, the root mean squéRdS) of its self-locakation error is 10.24m

and the RMS of its cooperative localization error is 2.98m. For vehicle 2, the RMS of
its self-localization gor is 10.64m and the RMS of it®operative localization error is
2.93m. In such kind of special case, muogtter localization results are achieved via
cooperative localization.
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Figure 6.9 Localization results at the exitence of counteracing GPS bias errors

6.3.3 Heterogeneous Systems:

Absolute Positioning Ability

Oné&/ehicle with High-Accuracy

As in the simulation experiments for hetgeneous systems (Section 6.2.4), we let one
vehicle has comparatively high-accuracy absolute positioning ability; the standard error
used to degrade its GPS outjmtset to be only 1.0 meter. The standard error used to
degrade the GPS output of the other vehigleet to be 15 meters. The experiments
were carried out in the same way aspgrevious experiments demonstrated.

The vehicle position errors of one round dfttare demonstrated in Figure 6.10; The
guantitative results of fiftyaunds of tests are demonstratedrigure 6.11. Thanks to
cooperative localization which enables the seogtucle to take advantage of the data
of the first vehicle, the kmalization errors of the send vehicle are largely reduced.
Since we only had two vehicles for expeentation, we could not arrange certain
experimental scenarios where some vehictsnot directly cooperate with the vehicle
with better absolute positioning ability. Tleéore, we can not demonstrate the apparent
advantage of the proposed SCIFCL method dve SECL method, as demonstrated in
the simulation experiments for hedgeneous systems (Section 6.2.4).
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method (heterogeneous absale positioning ability)
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Figure 6.11 RMS of the localization error associad with the SL method, the SECL method and
the SCIFCL method (heterogeneouabsolute positioning ability)

When GPS bias errors exist, the auege of cooperative localization for
heterogeneous systems is also apparentd@é¢gaded the GPS output of one vehicle
with Gaussian noise of standard error 7 medei an extra bias error of (-6, 9) meters.
The standard error used to degrade the GP@ubof the other vehicle is still set to be
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only 1.0 meter. The estimated vehicle trajeae®using different methods are illustrated
in Figure 6.12. As we can sethe estimated vehicle tegtory (the second vehicle)
using the SCIFCL method is mucloser to the ground-truth.

Ground-truth
SL
SCIFCL

Ground-truth
SL
SCIFCL

Figure 6.12 Estimated vehicle trajectories usigp the CL method and theSCIFCL method at the
existence of GPS bias errors: (topthe first vehicle, with better absdute positioning ability; (bottom)
the second vehicle, with low-accuracy absolute positioning accuracy

6.3.4 Discussion

According to some research works [Laneatital. 2005], it seems that GPS errors can
be modeled by a white Gaussian noise combined with a slowly-changing bias vector.
Since in above experiments (synthetic datareal data), the absolute positioning
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measurement error is assumed to followozamean Gaussian distribution, a question
arises naturally: what is the perforncanof the proposed cooperative localization
method?

In fact, when GPS accuracy is low, the GPS errors might had better be modeled as a
combination of a slowly-changing bias vectind a white noise as in [Laneugit al.

2005]. On the other hand, for high-accura@®S (with sub-meter level precision),
according to our experience, the GPS rercan be fairly modeled by a zero-mean
Gaussian. Therefore, the proposed cooperdticalization method would be expected

to bring benefits for multiple vehicles at least one of which has rather accurate absolute
positioning ability, as demonstrated in the experimenthéberogeneous systenfss

we have discussed in Section 6.2.5, coajpee localization ismore valuable and
practical for intelligent vehicles witheterogeneous absolute positioning ability.

6.4 Cooperative Local Mapping and Moving Objects
Detection

6.4.1 Experimental Conditions

Real data experiments were carried ioutNRIA campus, based on two CyCab vehicle
platforms developed by INRIA-IMARA teanitach CyCab vehicles equipped with a
RTK-GPS, an IBEO laser scanner, andradter sensors (includ steering encoder).

A RTK-GPS can achieve centimeter-level positioning accuracy; however, we do not
assume in our method that an intedlg vehicle should possess such high-quality
configuration. In reality, an intelligemehicle might be equipped not with a RTK-GPS
but with a normal low-cost GPS, out of economical considerations. Even the availability
of a RTK-GPS can not always guarantamtimeter-level positioning accuracy; the
RTK-GPS positioning accuracy might be degm@do ten meters level due to signal
blocking. Therefore, in order to simulatetaligent vehicles with low-cost GPS, we
deliberately degraded the GBStputs of both vehicles wittandom errors. The time of

the two vehicle systems are iteld to the GPS universal time (a low-cost GPS can also
obtain accurate GPS universal time).

More specifically, the random error useddegrade a RTK-GPS is comprised of a bias
error of 10 meters and a white noise of standard error 7 meters; the bias error vector is
initialized randomly and assumed to be tenapity constant for each vehicle in a round

of test (Note: according to s® research works [Laneuet al. 2005], GPS errors could

be modeled by a combination of a whiteuSsian noise and slowly-changing bias
vector).
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6.4.2 Occupancy Grid Maps Merging: Ground-Truth

Both CyCab vehicles perform local SLAM sittaneously; at each time, a pair of local
occupancy grid maps from the two vehictes be obtained—For maps merging itself,
the generation of the two local maps do not need to be well synchronized or time-
stamped accurately, because a map refer@ucany time, build by any vehicle) is
always fixed with the environment. This different from vehicle references which
might move and whose motion should bellviiene-stamped—for edc pair of local
occupancy grid maps, we do not know t@und-truth of their correct alignment.
Although we can measure the ground-truthvehicles positions using RTK-GPS, we
do not know the ground-truth of the relatipese between eachhiele and its local
environment. The relative pose between the two local ma@sd B can only be
inferred indirectly (the meamg of the denotations ieferred to Section 3.5):

PeaRTK-GPS) PLa TPvearTK-GPS) TINV(P ) (6-1)

ThepyearTk-cps)can be computed from tiRETK-GPS based estimates; {he andp.s
can only be obtained from the local SLAM results. The estin@aiggrk-cps) pPLa and
pe still have certain level of errors, especially the orientation error. After the
compounding operation in (6-1), the errorstiiem will be propagated and amplified.
As a result, if we align the two local maps using plagrTk-cps) computed in (6-1),
there will be slight inconsistency betweee tiligned maps, as illustrated in the bottom-
right sub-figure in Figure 6.13.

In order to determine the correct alignrhéthhe ground-truth), we carry out a dense
searching in a small rangeoand of this initial alignmenpgarTk-cps) and choose the
one with highest fitness value as the grotnuth, the merging mault using the correct
alignment is demonstrated in thgtoght sub-figure in Figure 6.13.
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Figure 6.13 Ground-truth of local maps alignment:(Left) the two local occupancy grid maps; (Top-
Right) the ground-trut h; (Bottom-Right) Slight inconsistency

6.4.3 Occupancy Grid Maps Merging: Experiment |

The occupancy grid maps merging methodoidiced in Section 4.3 is tested on totally
1155 pairs of local occupancy grid magpsr each pair, we randomly generated an
initial maps alignment in a deliberatelyaggerated error rangeound the ground-truth;

the error range is 30 meters in position (both hooatally and vertically) and 30
degrees in orientation (see Section 4.3.3); then we used the proposed occupancy grid
maps merging method to mertpe pair of local maps.
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Figure 6.14 Occupancy gridmaps merging effect

Figure 6.15 Occupancy gridmaps merging effect
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Figure 6.16 Occupancy gridmaps merging effect

Figure 6.17 Occupancy gridmaps merging effect
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