Skip to Main content Skip to Navigation
Theses

Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectique

Abstract : In a first part, we develop the theory of symplectic homogenezation and its application to the Aubry Mather theory and also to symplectic rigidity. Spectral invariants are the main tool in this work. In a second part, we recall all the new applications from sheaves theoretic methods to the study of non-displacability problem . We formulate what we think to be the equivalent object to the lagrangian Floer homology and its spectral invariants. Then, using this tools, we prove non-displacability of non exact lagrangian submanifolds into the cotangent bundle. After, we discuss the applications to $C^0$ symplectic topology and to non smooth optimization.
Complete list of metadatas

Cited literature [39 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/pastel-00780016
Contributor : Nicolas Vichery <>
Submitted on : Tuesday, January 22, 2013 - 11:13:36 PM
Last modification on : Wednesday, March 27, 2019 - 4:10:22 PM
Document(s) archivé(s) le : Saturday, April 1, 2017 - 8:25:00 AM

Identifiers

  • HAL Id : pastel-00780016, version 1

Collections

Citation

Nicolas Vichery. Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectique. Géométrie symplectique [math.SG]. Ecole Polytechnique X, 2012. Français. ⟨pastel-00780016⟩

Share

Metrics

Record views

480

Files downloads

696