Etude de l'oxydation thermique du titane et du zirconium sous irradiation aux ions d'argon dans le domaine du MeV (E ≤ 15 MeV)

Abstract : We have shown that argon ion irradiation between 1 and 15 MeV produces damage on both titanium and zirconium surfaces, taking the form of accelerated oxidation and/or craterization effects, varying as a function of the projectile energy and the annealing atmosphere (temperature and pressure) simulating the environmental conditions of the fuel/cladding interface of PWR fuel rods. Using AFM, we have shown that the titanium and zirconium surface is attacked under light argon ion bombardment at high temperature (up to 500°C) in weakly oxidizing medium (under rarefied dry air pressure ranging from 5,7 10-5 Pa to 5 10-3 Pa) for a fixed fluence of about 5 1014 ions.cm-2. We observed the formation of nanometric craters over the whole titanium surface irradiated between 2 and 9 MeV and the whole zirconium surface irradiated at 4 MeV, the characteristics of which vary depending on the temperature and the pressure. In the case of the Ar/Ti couple, the superficial damage efficiency increases when the projectile energy decreases from 9 to 2 MeV. Moreover, whereas the titanium surface seems to be transparent under the 15-MeV ion beam, the zirconium surface exhibits numerous micrometric craters surrounded by a wide halo. The crater characteristics (size and superficial density) differ significantly from that observed both in the low energy range (keV) where the energy losses are controlled by ballistic collisions (Sn) and in the high energy range (MeV - GeV) where the energy losses are controlled by electronic excitations (Se), which was not completely unexpected in this intermediate energy range for which combined Sn - Se stopping power effects are possibly foreseen. Using XPS associated to ionic sputtering, we have shown that there is an irradiation effect on thermal oxidation of titanium, enhanced under the argon ion beam between 2 and 9 MeV, and that there is also an energy effect on the oxide thickness and stoichiometry. The study conducted using Spectroscopic Ellipsometry on the oxide films grown between 1 and 9 MeV confirmed these results and showed precisely that there is an oxidation peak as a function of the argon ion energy, found maximum at 3 MeV under present experimental conditions. The oxygen gain measurements obtained by NBS confirm the presence of this oxidation peak. Until now, the results obtained by NBS concerning the thermal oxidation of zirconium under argon irradiation at 4 and 9 MeV confirm the previous works done by the 'Aval du Cycle Electronucléaire' group of the 'Institut de Physique Nucléaire de Lyon', and strongly suggest the existence of the oxidation peak in the same projectile energy range, as for titanium.
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/pastel-00780772
Contributor : Ngoc Long Do <>
Submitted on : Thursday, January 24, 2013 - 5:46:27 PM
Last modification on : Wednesday, March 27, 2019 - 4:26:01 PM
Long-term archiving on : Thursday, April 25, 2013 - 3:56:07 AM

Identifiers

  • HAL Id : pastel-00780772, version 1

Collections

Citation

Ngoc-Long Do. Etude de l'oxydation thermique du titane et du zirconium sous irradiation aux ions d'argon dans le domaine du MeV (E ≤ 15 MeV). Science des matériaux [cond-mat.mtrl-sci]. Ecole Polytechnique X, 2012. Français. ⟨pastel-00780772⟩

Share

Metrics

Record views

839

Files downloads

6124