. Ainsi, si on se focalise sur l'´ etape de remise en température, les conclusions de notré etude permettent d'imaginer d'appareiller, dans un premier temps, les cellules de remise en température de sondes capables d'enregistrer en temps réel l'´ evolution de la

A. L. Afchain, F. Carlin, C. Nguyen-the, A. , and I. , Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods, International Journal of Food Microbiology, vol.128, issue.1, pp.165-173, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.07.028

URL : https://hal.archives-ouvertes.fr/hal-01263592

S. H. Alavi, V. M. Puri, S. J. Knabel, R. H. Mohtar, and R. C. Whiting, Development and Validation of a Dynamic Growth Model for Listeria monocytogenes in Fluid Whole Milk, Journal of Food Protection, vol.62, issue.2, pp.170-176, 1999.
DOI : 10.4315/0362-028X-62.2.170

I. Albert and P. Mafart, A modified Weibull model for bacterial inactivation, International Journal of Food Microbiology, vol.100, issue.1-3, pp.197-211, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.016

A. Amezquita, C. L. Weller, L. Wang, H. Thippareddi, and D. E. Burson, Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham, International Journal of Food Microbiology, vol.101, issue.2, pp.123-144, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.041

N. Aran, The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a ???sous-vide??? beef goulash under temperature abuse, International Journal of Food Microbiology, vol.63, issue.1-2, pp.117-123, 2001.
DOI : 10.1016/S0168-1605(00)00412-8

J. C. Augustin, H. Bergis, G. Bourdin, M. Cornu, O. Couvert et al., Design of challenge testing experiments to assess the variability of microbial behaviors in foods, 6th International Conference Predictive Modeling in Foods, 2009.

J. C. Augustin and V. Carlier, Mathematical modelling of the growth rate and lag time for Listeria monocytogenes, International Journal of Food Microbiology, vol.56, issue.1, pp.29-51, 2000.
DOI : 10.1016/S0168-1605(00)00223-3

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, issue.3-4, pp.277-294, 1994.
DOI : 10.1016/0168-1605(94)90157-0

J. Baranyi and T. A. Roberts, Mathematics of predictive food microbiology, International Journal of Food Microbiology, vol.26, issue.2, pp.199-218, 1995.
DOI : 10.1016/0168-1605(94)00121-L

J. Baranyi, T. P. Robinson, A. Kaloti, and B. M. Mackey, Predicting growth of Brochothrix thermosphacta at changing temperature, International Journal of Food Microbiology, vol.27, issue.1, pp.61-67, 1995.
DOI : 10.1016/0168-1605(94)00154-X

G. Barker, P. Malakar, and M. Peck, Germination and growth from spores: variability and uncertainty in the assessment of food borne hazards, International Journal of Food Microbiology, vol.100, issue.1-3, pp.67-76, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.020

D. Bates, lme4 : Mixed-effects modeling with r. available at https ://rforge .r-project.org/projects, 2010.

F. Baty and M. L. Delignette-muller, Estimating the bacterial lag time: which model, which precision?, International Journal of Food Microbiology, vol.91, issue.3, pp.261-277, 2004.
DOI : 10.1016/j.ijfoodmicro.2003.07.002

F. T. Bauer, J. A. Carpenter, R. , and J. O. , Prevalence of Clostridium perfringens in Pork during Processing, Journal of Food Protection, vol.44, issue.4, pp.279-283, 1981.
DOI : 10.4315/0362-028X-44.4.279

N. Bemrah, H. Bergis, C. Colmin, A. Beaufort, Y. Millemann et al., Quantitative risk assessment of human salmonellosis from the consumption of a turkey product in collective catering establishments, International Journal of Food Microbiology, vol.80, issue.1, pp.17-30, 2003.
DOI : 10.1016/S0168-1605(02)00145-9

K. Bernaerts, K. P. Gysemans, T. N. Minh, and J. F. Van-impe, Optimal experiment design for cardinal values estimation: guidelines for data collection, International Journal of Food Microbiology, vol.100, issue.1-3, pp.153-165, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.012

W. Bigelow, The logarithmic nature of thermal death time curves, Journal of Infectious Diseases, vol.29, issue.5, pp.528-536, 1921.
DOI : 10.1093/infdis/29.5.528

L. C. Blankenship, S. E. Craven, R. G. Leffler, and C. Cluster, Growth of Clostridium perfringens in cooked chili during cooling, Applied and Environmental Microbiology, vol.54, pp.1104-1108, 1988.

R. Bovill, J. Bew, and J. Baranyi, Measurements and predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature, International Journal of Food Microbiology, vol.67, issue.1-2, pp.131-137, 2001.
DOI : 10.1016/S0168-1605(01)00446-9

R. Bovill, J. Bew, N. Cook, M. Dagostino, N. Wilkinson et al., Predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature, International Journal of Food Microbiology, vol.59, issue.3, pp.157-165, 2000.
DOI : 10.1016/S0168-1605(00)00292-0

S. Bréand, G. Fardel, J. P. Flandrois, L. Rosso, and R. Tomassone, Model of the influence of time and mild temperature on Listeria monocytogenes nonlinear survival curves, International Journal of Food Microbiology, vol.40, issue.3, pp.40185-195, 1998.
DOI : 10.1016/S0168-1605(98)00032-4

S. Bréand, G. Fardel, J. P. Flandrois, L. Rosso, and R. Tomassone, A model describing the relationship between regrowth lag time and mild temperature increase for Listeria monocytogenes, International Journal of Food Microbiology, vol.46, issue.3, pp.251-261, 1999.
DOI : 10.1016/S0168-1605(98)00200-1

B. Brooks, S. P. Gelman, and A. , General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, vol.7, pp.434-455, 1997.

P. Busschaert, A. H. Geeraerd, M. Uyttendaele, and J. F. Van-impe, Sensitivity Analysis of a Two-Dimensional Quantitative Microbiological Risk Assessment: Keeping Variability and Uncertainty Separated, Risk Analysis, vol.28, issue.2, p.no?no, 2011.
DOI : 10.1111/j.1539-6924.2011.01592.x

P. Busschaert, A. H. Geereard, M. Uyttendaele, and J. F. Impe, Estimating distributions out of qualitative and (semi)quantitative microbiological contamination data for use in risk assessment, International Journal of Food Microbiology, vol.138, issue.3, pp.260-269, 2010.
DOI : 10.1016/j.ijfoodmicro.2010.01.025

B. Byrne, G. Dunne, and D. J. Bolton, Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll, Food Microbiology, vol.23, issue.8, pp.803-808, 2003.
DOI : 10.1016/j.fm.2006.02.002

A. A. Candlish, S. M. Pearson, K. E. Aidoo, J. E. Smith, B. Kelly et al., A survey of ethnic foods for microbial quality and content aflatoxin, Food Additives and Contaminants, vol.74, issue.2, pp.129-136, 2001.
DOI : 10.1016/0021-9673(94)00841-V

M. H. Cassin, A. M. Lammerding, E. C. Todd, W. Ross, and R. S. Mccoll, Quantitative risk assessment for Escherichia coli O157:H7 in ground beef hamburgers, International Journal of Food Microbiology, vol.41, issue.1, pp.21-44, 1998.
DOI : 10.1016/S0168-1605(98)00028-2

G. Celeux, F. Forbes, C. P. Robert, and D. M. Titterington, Deviance information criteria for missing data models, Bayesian Analysis, vol.1, issue.4, pp.651-674, 2006.
DOI : 10.1214/06-BA122

URL : https://hal.archives-ouvertes.fr/inria-00071724

C. Alimentarius, Principles and guidelines for the conduct of microbiological risk assessment, 1999.

R. E. Collie, B. A. Mcclane, J. M. Bibliographie-farber, W. H. Ross, and J. Harwig, Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with Health risk assessment of Listeria monocytogenes in canada, International Journal of Food Microbiology, vol.30, pp.145-156, 1996.

P. M. Foegeding and F. F. Busta, Clostridium perfringens CELLS AND PHOSPHOLIPASE C ACTIVITY AT CONSTANT AND LINEARLY RISING TEMPERATURES, Journal of Food Science, vol.43, issue.4, pp.918-924, 1980.
DOI : 10.1111/j.1365-2621.1980.tb07479.x

T. Fujisawa, K. Aikawa, T. Takahashi, S. Yamai, and S. Ueda, Occurrence of Clostridia in Commercially Available Curry Roux., Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), vol.42, issue.6, pp.394-397, 2001.
DOI : 10.3358/shokueishi.42.394

A. H. Geeraerd, V. P. Valdramidis, and J. F. Impe, GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves, International Journal of Food Microbiology, vol.102, issue.1, pp.95-105, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.11.038

A. Gelman, Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, vol.1, pp.515-533, 2006.

A. Gelman, J. Carlin, H. Stern, R. , and D. , Bayesian Data Analysis, Boca Raton, 2004.

A. M. Gibson, N. Bratchell, and T. A. Roberts, Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature, International Journal of Food Microbiology, vol.6, issue.2, pp.155-178, 1988.
DOI : 10.1016/0168-1605(88)90051-7

N. J. Golden, E. A. Crouch, H. Latimer, A. R. Kadry, and J. Kause, Risk Assessment for Clostridium perfringens in Ready-to-Eat and Partially Cooked Meat and Poultry Products, Journal of Food Protection, vol.72, issue.7, pp.1376-1384, 2009.
DOI : 10.4315/0362-028X-72.7.1376

U. Gonzales-barron and F. Butler, The use of meta-analytical tools in risk assessment for food safety, Food Microbiology, vol.28, issue.4, pp.823-827, 2011.
DOI : 10.1016/j.fm.2010.04.007

C. N. Haas, J. B. Rose, and C. P. Gerba, Quantitative microbial risk assessment, 1999.
DOI : 10.1002/9781118910030

C. N. Haas, A. Thayyar-madabusi, J. B. Rose, and C. P. Gerba, Development of a dose response relationship for Listeria monocytogenes, Quantitative Microbiology, vol.1, issue.1, pp.89-102, 1999.
DOI : 10.1023/A:1010080428554

C. N. Haas, A. Thayyar-madabusi, J. B. Rose, and C. P. Gerba, Development of a dose-response relationship for Escherichia coli O157:H7, International Journal of Food Microbiology, vol.56, issue.2-3, pp.153-159, 2000.
DOI : 10.1016/S0168-1605(99)00197-X

H. E. Hall and R. Angelotti, Clostridium perfringens in meat and meat products, Applied Microbiology, vol.13, pp.352-357, 1965.

M. Hassani, P. Manas, J. Raso, S. Condon, and R. Pagan, Predicting Heat Inactivation of Listeria monocytogenes under Nonisothermal Treatments, Journal of Food Protection, vol.68, issue.4, pp.736-743, 2005.
DOI : 10.4315/0362-028X-68.4.736

M. Hassani, P. Manas, J. Raso, S. Condon, and R. Pagan, Induced thermotolerance under nonisothermal treatments of a heat sensitive and a resistant strain of Staphylococcus aureus in media of different pH, Letters in Applied Microbiology, vol.14, issue.6, pp.619-624, 2006.
DOI : 10.1016/S0740-0020(02)00088-6

A. Hauschild and F. Thatcher, Experimental Food Poisoning with Heat-Susceptible Clostridium perfringens Type A, Journal of Food Science, vol.14, issue.4, pp.467-471, 1967.
DOI : 10.1111/j.1365-2621.1967.tb09713.x

A. H. Havelaar, M. J. Nauta, and J. T. Jansen, Fine-tuning Food Safety Objectives and risk assessment, International Journal of Food Microbiology, vol.93, issue.1, pp.11-29, 2004.
DOI : 10.1016/j.ijfoodmicro.2003.09.012

N. L. Heredia, A. G. Garcia, R. Luevanos, R. G. Labbe, and J. S. Garcia-alvarado, Elevation of the Heat Resistance of Vegetative Cells and Spores of Clostridium perfringens Type A by Sublethal Heat Shock, Journal of Food Protection, vol.60, issue.8, pp.998-1000, 1997.
DOI : 10.4315/0362-028X-60.8.998

B. C. Hobbs, M. E. Smith, C. L. Oakley, G. H. Warrack, and J. C. Cruickshank, Clostridium welchii food poisoning, Journal of Hygiene, vol.23, issue.01, pp.75-101, 1953.
DOI : 10.1017/S002217240002800X

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1873913

N. T. Hobbs and R. Hilborn, Alternatives To Statistical Hypothesis Testing In Ecology: A Guide To Self Teaching, Ecological Applications, vol.16, issue.1, pp.5-19, 2006.
DOI : 10.1038/nature00830

D. L. Holcomb, M. A. Smith, G. O. Ware, Y. C. Hung, R. E. Brackett et al., Comparison of Six Dose-Response Models for Use with Food-Borne Pathogens, Risk Analysis, vol.10, issue.29, pp.1091-1100, 1999.
DOI : 10.1086/401873

L. Huang, GROWTH KINETICS OF CLOSTRIDIUM PERFRINGENS IN COOKED BEEF, Journal of Food Safety, vol.57, issue.4, pp.91-105, 2003.
DOI : 10.1111/j.1365-2621.1978.tb02333.x

L. Huang, NUMERICAL ANALYSIS OF THE GROWTH OF CLOSTRIDIUM PERFRINGENS IN COOKED BEEF UNDER ISOTHERMAL AND DYNAMIC CONDITIONS, Journal of Food Safety, vol.57, issue.1, pp.53-70, 2004.
DOI : 10.1016/0168-1605(94)00140-2

I. Europe, Impact of microbial distributions on food safety, ILSI, 2010.

S. Jaloustre, M. Cornu, E. Morelli, V. Noël, and M. L. Delignette-muller, Bayesian modeling of Clostridium perfringens growth in beef-in-sauce products, Food Microbiology, vol.28, issue.2, pp.311-320, 2011.
DOI : 10.1016/j.fm.2010.04.002

URL : https://hal.archives-ouvertes.fr/hal-00697962

V. K. Juneja, M. L. Bari, Y. Inatsu, S. Kawamoto, and M. Friedman, Control of Clostridium perfringens Spores by Green Tea Leaf Extracts during Cooling of Cooked Ground Beef, Chicken, and Pork, Journal of Food Protection, vol.70, issue.6, pp.1429-1433, 2007.
DOI : 10.4315/0362-028X-70.6.1429

V. K. Juneja, J. E. Call, B. S. Marmer, and A. J. Miller, The effect of temperature abuse on Clostridium perfringens in cooked turkey stored under air and vacuum, Food Microbiology, vol.11, issue.3, pp.187-193, 1994.
DOI : 10.1006/fmic.1994.1022

V. K. Juneja, H. Marks, and H. Thippareddi, Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef, Food Microbiology, vol.25, issue.1, pp.42-55, 2008.
DOI : 10.1016/j.fm.2007.08.004

V. K. Juneja and H. M. Marks, Predictive model for growth of Clostridium perfringens during cooling of cooked cured chicken, Food Microbiology, vol.19, issue.4, pp.313-327, 2002.
DOI : 10.1006/fmic.2002.0486

V. K. Juneja and B. S. Marmer, Growth of Clostridium perfringens from spore inocula in sous-vide turkey products, International Journal of Food Microbiology, vol.32, issue.1-2, pp.115-123, 1996.
DOI : 10.1016/0168-1605(96)01111-7

W. A. Moats, R. Dabbah, and V. M. Edwards, INTERPRETATION OF NONLOGARITHMIC SURVIVOR CURVES OF HEATED BACTERIA, Journal of Food Science, vol.42, issue.3, pp.523-526, 1971.
DOI : 10.1085/jgp.13.4.395

M. J. Nauta, Separation of uncertainty and variability in quantitative microbial risk assessment models, International Journal of Food Microbiology, vol.57, issue.1-2, pp.9-18, 2000.
DOI : 10.1016/S0168-1605(00)00225-7

M. J. Nauta, Modelling bacterial growth in quantitative microbiological risk assessment: is it possible?, International Journal of Food Microbiology, vol.73, issue.2-3, pp.297-304, 2002.
DOI : 10.1016/S0168-1605(01)00664-X

M. J. Nauta and A. H. Havelaar, Risk-based standards for Campylobacter in the broiler meat chain, Food Control, vol.19, issue.4, pp.372-381, 2008.
DOI : 10.1016/j.foodcont.2007.04.016

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.
DOI : 10.1093/comjnl/7.4.308

J. H. Noble, Meta-analysis: Methods, strengths, weaknesses, and political uses, Journal of Laboratory and Clinical Medicine, vol.147, issue.1, pp.7-20, 2006.
DOI : 10.1016/j.lab.2005.08.006

S. Notermans, J. Dufrenne, P. Teunis, R. Beumer, M. Te-giffel et al., A risk assessment study ofBacillus cereuspresent in pasteurized milk, Food Microbiology, vol.14, issue.2, pp.143-151, 1997.
DOI : 10.1006/fmic.1996.0076

S. Notermans, M. J. Nauta, J. Jansen, J. L. Jouve, M. et al., A risk assessment approach to evaluating food safety based on product surveillance, Food Control, vol.9, issue.4, pp.217-223, 1998.
DOI : 10.1016/S0956-7135(97)00086-8

J. S. Novak, M. H. Tunick, and V. K. Juneja, Heat Treatment Adaptations in Clostridium perfringens Vegetative Cells, Journal of Food Protection, vol.64, issue.10, pp.1527-1534, 2001.
DOI : 10.4315/0362-028X-64.10.1527

J. S. Novak and J. T. Yuan, Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes Surviving Mild Heat or Aqueous Ozone Treatment on Beef Followed by Heat, Alkali, or Salt Stress, Journal of Food Protection, vol.66, issue.3, pp.382-389, 2003.
DOI : 10.4315/0362-028X-66.3.382

H. Ozkaynak, H. C. Frey, J. Burke, and R. W. Pinder, Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: A PM2.5 case study, Atmospheric Environment, vol.43, issue.9, pp.1641-1649, 2009.
DOI : 10.1016/j.atmosenv.2008.12.008

J. Pafumi, Assessment of the Microbiological Quality of Spices and Herbs, Journal of Food Protection, vol.49, issue.12, pp.958-963, 1986.
DOI : 10.4315/0362-028X-49.12.958

E. Parent and J. Bernier, Le raisonnement bayésien : modélisation et inférence, 2007.

M. Peleg and M. Cole, Reinterpretation of Microbial Survival Curves, Critical Reviews in Food Science and Nutrition, vol.38, issue.5, pp.353-380, 1998.
DOI : 10.1080/10408699891274246

C. Pin, G. D. De-fernando, J. A. Ordonez, and J. Baranyi, Analysing the lag???growth rate relationship of Yersinia enterocolitica, International Journal of Food Microbiology, vol.73, issue.2-3, pp.197-201, 2002.
DOI : 10.1016/S0168-1605(01)00649-3

A. Pinon, M. H. Zwietering, L. Perrier, J. M. Membré, B. Leporq et al., Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products, Applied and Environmental Microbiology, vol.70, issue.2, pp.1081-1087, 2004.
DOI : 10.1128/AEM.70.2.1081-1087.2004

R. Pouillot, Appréciation quantitative des risques enhygì ene des aliments : développements et mise en oeuvre pour la prise en compte des recommmandations internationales, Thèse de doctorat, 2006.

R. Pouillot, I. Albert, M. Cornu, D. , and J. B. , Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes, International Journal of Food Microbiology, vol.81, issue.2, pp.87-104, 2003.
DOI : 10.1016/S0168-1605(02)00192-7

URL : https://hal.archives-ouvertes.fr/hal-01263599

R. Pouillot and M. L. Delignette-muller, Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages, International Journal of Food Microbiology, vol.142, issue.3, pp.330-340, 2010.
DOI : 10.1016/j.ijfoodmicro.2010.07.011

URL : https://hal.archives-ouvertes.fr/hal-00539487

R. Pouillot, V. Goulet, M. L. Delignette-muller, A. Mahé, and M. Cornu, in French Cold-Smoked Salmon: II. Risk Characterization, Risk Analysis, vol.24, issue.2, pp.806-819, 2009.
DOI : 10.1111/j.1539-6924.2008.01200.x

URL : https://hal.archives-ouvertes.fr/hal-00428352

R. Pouillot, N. Miconnet, A. Afchain, M. L. Delignette-muller, A. Beaufort et al., Quantitative Risk Assessment of Listeria monocytogenes in French Cold-Smoked Salmon: I. Quantitative Exposure Assessment, Risk Analysis, vol.62, issue.3, pp.683-700, 2007.
DOI : 10.1016/S0168-1605(97)00057-3

URL : https://hal.archives-ouvertes.fr/hal-00434713

E. Powers, R. Lawyer, and Y. Masuoka, Microbiology of Processed Spices, Journal of Milk and Food Technology, vol.38, issue.11, pp.683-687, 1975.
DOI : 10.4315/0022-2747-38.11.683

R. Development and C. Team, R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2010.

J. Rabi, J. Guilpart, E. Derens, and A. Duquesnoy, Thermal modeling of catering meals under blast-cooling, 1st IIR Conference on Sustainability and the Cold Chain, 2010.

J. Ranta, P. Tuominen, and R. Maijala, Estimation of True Salmonella Prevalence Jointly in Cattle Herd and Animal Populations Using Bayesian Hierarchical Modeling, Risk Analysis, vol.25, issue.1, pp.23-37, 2005.
DOI : 10.1111/j.0272-4332.2005.00564.x

D. A. Ratkowsky, R. K. Lowry, T. A. Mcmeekin, A. Stokes, C. et al., Model for bacterial culture growth rate throughout the entire biokinetic temperature range, Journal of Bacteriology, vol.154, pp.1222-1226, 1983.

D. A. Ratkowsky, J. N. Olley, T. A. Mcmeekin, and A. Ball, Relationship between temperature and growth rate of bacterial cultures, Journal of Bacteriology, vol.149, pp.1-5, 1982.

S. W. Raudenbush and A. S. Bryk, Hierarchical Linear Models, 2002.

C. Robert, The Bayesian Choice, 2001.
DOI : 10.1007/978-1-4757-4314-2

T. P. Robinson, M. J. Ocio, A. Kaloti, and B. M. Mackey, The effect of the growth environment on the lag phase of Listeria monocytogenes, International Journal of Food Microbiology, vol.44, issue.1-2, pp.83-92, 1998.
DOI : 10.1016/S0168-1605(98)00120-2

L. A. Rodriguez-romo, N. L. Heredia, R. G. Labbe, and J. S. Garcia-alvarado, Detection of Enterotoxigenic Clostridium perfringens in Spices Used in Mexico by Dot Blotting Using a DNA Probe, Journal of Food Protection, vol.61, issue.2, pp.201-204, 1998.
DOI : 10.4315/0362-028X-61.2.201

H. Rosenquist, N. L. Nielsen, H. M. Sommer, B. Norrung, and B. B. Christensen, Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens, International Journal of Food Microbiology, vol.83, issue.1, pp.87-103, 2003.
DOI : 10.1016/S0168-1605(02)00317-3

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, Convenient model to describe the combined effects of temperature and ph on microbial growth, Applied and Environmental Microbiology, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

R. J. Roy, F. F. Busta, and D. R. Thompson, Thermal Inactivation of Clostridium perfringens After Growth at Several Constant and Linearly Rising Temperatures, Journal of Food Science, vol.42, issue.11, pp.1586-1591, 1981.
DOI : 10.1111/j.1365-2621.1978.tb02333.x

S. K. Sagoo, C. L. Little, M. Greenwoodb, V. Mithania, K. A. Granta et al., Assessment of the microbiological safety of dried spices and herbs from production and retail premises in the United Kingdom, Food Microbiology, vol.26, issue.1, pp.39-43, 2009.
DOI : 10.1016/j.fm.2008.07.005

Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike Information Criterion Statistics, 1986.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

M. X. Sanchez-plata, A. Amezquita, E. Blankenship, D. E. Burson, V. K. Juneja et al., Predictive Model for Clostridium perfringens Growth in Roast Beef during Cooling and Inhibition of Spore Germination and Outgrowth by Organic Acid Salts, Journal of Food Protection, vol.68, issue.12, pp.2594-2605, 2005.
DOI : 10.4315/0362-028X-68.12.2594

M. R. Sarker, R. P. Shivers, S. G. Sparks, V. K. Juneja, and B. A. Mcclane, Comparative Experiments To Examine the Effects of Heating on Vegetative Cells and Spores of Clostridium perfringens Isolates Carrying Plasmid Enterotoxin Genes versus Chromosomal Enterotoxin Genes, Applied and Environmental Microbiology, vol.66, issue.12, pp.3234-3240, 2000.
DOI : 10.1128/AEM.66.12.5549-5549.2000

D. W. Schaffner, Application of a statistical bootstrapping technique to calculate growth rate variance for modelling psychrotrophic pathogen growth, International Journal of Food Microbiology, vol.24, issue.1-2, pp.309-314, 1994.
DOI : 10.1016/0168-1605(94)90128-7

J. Schlundt, Comparison of microbiological risk assessment studies published, International Journal of Food Microbiology, vol.58, issue.3, pp.197-202, 2000.
DOI : 10.1016/S0168-1605(00)00273-7

D. J. Schroder and F. F. Busta, GROWTH OF CLOSTRIDIUM PERFRINGENS IN MEAT LOAF WITH AND WITHOUT ADDED SOYBEAN PROTEIN, Journal of Milk and Food Technology, vol.34, issue.4, pp.215-217, 1971.
DOI : 10.4315/0022-2747-34.4.215

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

S. P. Shoemaker and M. D. Pierson, 'phoenix phenomenon' in the growth of Clostridium perfringens, Appl. Environ. Microbiol, vol.32, issue.6, pp.803-807, 1976.

J. P. Smelt and S. Brul, Modelling microorganisms in food, chapter Modelling lag-time in predictive microbiology with special reference to lag phase of bacterial spores, pp.67-81, 2007.

A. M. Smith, D. A. Evans, and E. M. Buck, Growth and Survival of Clostridium perfringens in Rare Beef Prepared in a Water Bath, Journal of Food Protection, vol.44, issue.1, pp.9-14, 1981.
DOI : 10.4315/0362-028X-44.1.9

L. D. Smith, Microbiological Quality of Foods, chapter Clostridium perfringens food poisoning, pp.77-83, 1963.

S. Smith, V. K. Juneja, and D. W. Schaffner, Influence of Several Methodological Factors on the Growth of Clostridium perfringens in Cooling Rate Challenge Studies, Journal of Food Protection, vol.67, issue.6, pp.1128-1132, 2004.
DOI : 10.4315/0362-028X-67.6.1128

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

Z. Sosa-mejia, R. R. Beumer, and M. H. Zwietering, Risk evaluation and management to reaching a suggested FSO in a steam meal, Food Microbiology, vol.28, issue.4, pp.631-638, 2011.
DOI : 10.1016/j.fm.2010.08.012

D. Spiegelhalter, N. Best, B. Carlin, and A. Van-der-linde, Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.93, issue.4, pp.583-639, 2002.
DOI : 10.1002/1097-0258(20000915/30)19:17/18<2265::AID-SIM568>3.0.CO;2-6

N. J. Strachan, M. P. Doyle, F. Kasuga, O. Rotariu, and I. D. Ogden, Dose response modelling of O157 incorporating data from foodborne and environmental outbreaks, International Journal of Food Microbiology, vol.103, issue.1, pp.35-47, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.11.023

D. O. Stram, Meta-Analysis of Published Data Using a Linear Mixed-Effects Model, Biometrics, vol.52, issue.2, pp.536-544, 1996.
DOI : 10.2307/2532893

S. C. Stringer, S. M. George, and M. W. Peck, Thermal inactivation of Escherichia coli o157 :h7, Journal of Applied Microbiology, vol.29, pp.79-89, 2000.

S. C. Stringer, M. D. Webb, S. M. George, C. Pin, and M. W. Peck, Heterogeneity of Times Required for Germination and Outgrowth from Single Spores of Nonproteolytic Clostridium botulinum, Applied and Environmental Microbiology, vol.71, issue.9, pp.4998-5003, 2005.
DOI : 10.1128/AEM.71.9.4998-5003.2005

S. C. Stringer, M. D. Webb, and M. W. Peck, Contrasting Effects of Heat Treatment and Incubation Temperature on Germination and Outgrowth of Individual Spores of Nonproteolytic Clostridium botulinum Bacteria, Applied and Environmental Microbiology, vol.75, issue.9, pp.2712-2719, 2009.
DOI : 10.1128/AEM.02572-08

D. H. Strong, J. C. Canada, and B. B. Griffiths, Incidence of Clostridium perfringens in american foods, Applied Microbiology, vol.11, pp.42-44, 1963.

D. H. Strong, C. L. Duncan, and G. Perna, Clostridium perfringens type a food poisoning ii. response of the rabbit ileum as an indication of enteropathogenicity of strains of Clostridium perfringens in human beings, Infection and Immunity, vol.3, pp.171-178, 1971.

A. J. Sutton, K. R. Abrams, and D. R. Jones, An illustrated guide to the methods of meta-analysis, Journal of Evaluation in Clinical Practice, vol.13, issue.19, pp.135-148, 2001.
DOI : 10.1046/j.1365-2753.2001.00281.x

M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. Van-'t-riet, Modeling of the bacterial growth curve, Applied and Environmental Microbiology, vol.56, pp.1875-1881, 1990.

M. H. Zwietering, C. M. Stewart, and R. C. Whiting, Validation of control measures in a food chain using the FSO concept, Food Control, vol.21, issue.12, pp.1716-1722, 2011.
DOI : 10.1016/j.foodcont.2010.05.019

A. L. Afchain, F. Carlin, C. Nguyen-the, and I. Albert, Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods, International Journal of Food Microbiology, vol.128, issue.1, pp.165-173, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.07.028

URL : https://hal.archives-ouvertes.fr/hal-01263592

A. Amezquita, C. L. Weller, L. Wang, H. Thippareddi, and D. E. Burson, Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham, International Journal of Food Microbiology, vol.101, issue.2, pp.123-144, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.041

N. Aran, The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a ???sous-vide??? beef goulash under temperature abuse, International Journal of Food Microbiology, vol.63, issue.1-2, pp.117-123, 2001.
DOI : 10.1016/S0168-1605(00)00412-8

J. Augustin, H. Bergis, G. Bourdin, M. Cornu, O. Couvert et al., Design of challenge testing experiments to assess the variability of microbial behaviors in foods, 6th International Conference Predictive Modeling in Foods, 2009.

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, issue.3-4, pp.277-294, 1994.
DOI : 10.1016/0168-1605(94)90157-0

J. Baranyi and T. A. Roberts, Mathematics of predictive microbiology, International Journal of Food Microbiology, vol.26, 1995.

F. Baty and M. Delignette-muller, Estimating the bacterial lag time: which model, which precision?, International Journal of Food Microbiology, vol.91, issue.3, pp.261-277, 2004.
DOI : 10.1016/j.ijfoodmicro.2003.07.002

K. Bernaerts, K. P. Gysemans, T. Nhan-minh, and J. F. Van-impe, Optimal experiment design for cardinal values estimation: guidelines for data collection, International Journal of Food Microbiology, vol.100, issue.1-3, pp.153-165, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.012

L. C. Blankenship, S. E. Craven, R. G. Leffler, and C. Custer, Growth of Clostridium perfringens in cooked chili during cooling, Applied and Environmental Microbiology, vol.54, 1988.

S. Bréand, G. Fardel, J. P. Flandrois, L. Rosso, and R. Tomassone, A model describing the relationship between regrowth lag time and mild temperature increase for Listeria monocytogenes, International Journal of Food Microbiology, vol.46, issue.3, pp.251-261, 1999.
DOI : 10.1016/S0168-1605(98)00200-1

S. P. Brooks and A. Gelman, General Methods for Monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, pp.434-455, 1998.

S. E. Craven, C. L. Blankenship, and J. L. Mcdonel, Relationship of sporulation, enterotoxin formation and spoilage during growth of Clostridium perfringens type A in cooked chicken, Applied and Environmental Microbiology, vol.41, issue.4, p.1191, 1981.

A. Crépet, V. Stahl, and F. Carlin, Development of a hierarchical Bayesian model to estimate the growth parameters of Listeria monocytogenes in minimally processed fresh leafy salads, International Journal of Food Microbiology, vol.131, issue.2-3, p.119, 2009.
DOI : 10.1016/j.ijfoodmicro.2009.01.028

E. Crouch and N. Golden, A Risk Assessment for Clostridium perfringens in Ready- To-Eat and Partially Cooked Meat and Poultry Products. USDA, Food Safety Inspection Service, 2005.

P. Dalgaard, Modelling of microbial activity and prediction of shelf life for packed fresh fish, International Journal of Food Microbiology, vol.26, issue.3, pp.305-317, 1995.
DOI : 10.1016/0168-1605(94)00136-T

M. L. Delignette-muller, F. Baty, M. Cornu, and H. Bergis, Modelling the effect of a temperature shift on the lag phase duration of, International Journal of Food Microbiology, vol.100, issue.1-3, pp.77-84, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.021

URL : https://hal.archives-ouvertes.fr/hal-00427854

M. L. Delignette-muller, M. Cornu, R. Pouillot, and J. B. Denis, Use of Bayesian modeling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon, International Journal of Food Microbiology, vol.106, 2006.

M. L. Delignette-muller, R. Pouillot, J. Denis, and C. Dutang, fitdistrplus: help to fit of a parametric distribution to non-censored or censored data Available at: http://cran.r-project, 2009.

A. E. De-jong, F. M. Rombouts, and R. R. Beumer, Behavior of Clostridium perfringens at low temperatures, International Journal of Food Microbiology, vol.97, issue.1, pp.71-80, 2004.
DOI : 10.1016/j.ijfoodmicro.2004.03.030

D. Jong, A. E. Beumer, R. R. Zwietering, and M. H. , Modeling Growth of Clostridium perfringens in Pea Soup During Cooling, Risk Analysis, vol.18, issue.1, pp.61-73, 2005.
DOI : 10.1006/fmic.1998.0245

R. J. Evans, N. J. Russell, G. W. Gould, and P. J. Mcclure, The germinability of spores of a psychrotolerant, non-proteolytic strain of Clostridium botulinum is influenced by their formation and storage temperature, Journal of Applied Microbiology, vol.83, issue.3, pp.273-280, 1997.
DOI : 10.1046/j.1365-2672.1997.00225.x

F. Who, Food Safety Risk Analysis. A Guide for National Food Safety Authorities, FAO Food and Nutrition. FAO/WHO, 2006.

F. Who, Exposure Assessment of Microbiological Hazards in Food: Guidelines. FAO Food and Nutrition, 2008.

A. Fapohunda, K. W. Mcmillin, D. L. Marshall, and W. M. Waites, Growth of Selected Cross-Contaminating Bacterial Pathogens on Beef and Fish at 15 and 35??C, Journal of Food Protection, vol.57, issue.4, pp.337-340, 1994.
DOI : 10.4315/0362-028X-57.4.337

P. Fildes, Tetanus. VIII. The positive limit of oxidation-reduction potential required for the germination of spores of B. tetani in vitro, British Journal of Experimental Pathology, vol.10, pp.151-175, 1929.

P. M. Foegeding and F. F. Busta, Clostridium perfringens CELLS AND PHOSPHOLIPASE C ACTIVITY AT CONSTANT AND LINEARLY RISING TEMPERATURES, Journal of Food Science, vol.43, issue.4, pp.918-924, 1980.
DOI : 10.1111/j.1365-2621.1980.tb07479.x

I. Holtby, G. M. Tebbutt, K. A. Grant, J. Mclauchlin, J. Kett et al., A Clostridium perfringens food poisoning outbreak associated with consumption of chicken curry supplied by a home caterer, Public Health, vol.122, issue.12, 2008.
DOI : 10.1016/j.puhe.2008.05.013

L. Huang, GROWTH KINETICS OF CLOSTRIDIUM PERFRINGENS IN COOKED BEEF, Journal of Food Safety, vol.57, issue.4, pp.91-105, 2003.
DOI : 10.1111/j.1365-2621.1978.tb02333.x

L. Huang, NUMERICAL ANALYSIS OF THE GROWTH OF CLOSTRIDIUM PERFRINGENS IN COOKED BEEF UNDER ISOTHERMAL AND DYNAMIC CONDITIONS, Journal of Food Safety, vol.57, issue.1, pp.53-70, 2004.
DOI : 10.1016/0168-1605(94)00140-2

V. K. Juneja, B. S. Marmer, and A. J. Miller, Growth and Sporulation Potential of Clostridium perfringens in Aerobic and Vacuum-Packaged Cooked Beef, Journal of Food Protection, vol.57, issue.5, pp.393-398, 1994.
DOI : 10.4315/0362-028X-57.5.393

V. K. Juneja, J. E. Call, B. S. Marmer, and A. J. Miller, The effect of temperature abuse on Clostridium perfringens in cooked turkey stored under air and vacuum, Food Microbiology, vol.11, issue.3, 1994.
DOI : 10.1006/fmic.1994.1022

V. K. Juneja, R. C. Whiting, H. M. Marks, and O. P. Snyder, Predictive model for growth of Clostridium perfringens at temperatures applicable to cooling of cooked meat, Food Microbiology, vol.16, issue.4, pp.335-349, 1999.
DOI : 10.1006/fmic.1998.0245

V. K. Juneja and H. M. Marks, Predictive model for growth of Clostridium perfringens during cooling of cooked cured chicken, Food Microbiology, vol.19, issue.4, pp.313-327, 2002.
DOI : 10.1006/fmic.2002.0486

V. K. Juneja, H. Thippareddi, L. Bari, Y. Inatsu, S. Kawamoto et al., Chitosan Protects Cooked Ground Beef and Turkey Against Clostridium perfringens Spores During Chilling, Journal of Food Science, vol.66, issue.6, pp.236-240, 2006.
DOI : 10.1046/j.1444-2906.2002.00404.x

V. K. Juneja, H. Thippareddi, and M. Friedman, Control of Clostridium perfringens in Cooked Ground Beef by Carvacrol, Cinnamaldehyde, Thymol, or Oregano Oil during Chilling, Journal of Food Protection, vol.69, issue.7, 2006.
DOI : 10.4315/0362-028X-69.7.1546

V. K. Juneja, M. L. Bari, Y. Inatsu, S. Kawamoto, and M. Friedman, Control of Clostridium perfringens Spores by Green Tea Leaf Extracts during Cooling of Cooked Ground Beef, Chicken, and Pork, Journal of Food Protection, vol.70, issue.6, 2007.
DOI : 10.4315/0362-028X-70.6.1429

V. K. Juneja, H. Marks, and H. Thippareddi, Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef, Food Microbiology, vol.25, issue.1, pp.42-55, 2008.
DOI : 10.1016/j.fm.2007.08.004

A. In-press-jaloustre and S. , Bayesian modeling of Clostridium perfringens growth in beef-in-sauce products, Food Microbiology, 2010.

C. K. Kang, M. Woodburn, A. Pagenkopf, and R. Cheney, Growth, sporulation and germination of Clostridium perfringens in media of controlled water activity, Applied Microbiology, vol.18, pp.798-805, 1969.

R. G. Labbé and C. Chang, Recovery of heat-injured spores of Clostridium perfringens types B, C and D by lysozyme and an initiation protein, Letters in Applied Microbiology, vol.275, issue.5, pp.302-306, 1995.
DOI : 10.1016/0769-2609(87)90138-4

R. G. Labbé and T. H. Huang, Generation times and modeling of enterotoxinpositive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground beef, Journal of Food Protection, vol.58, 1995.

L. Marc, Y. Plowman, J. Aldus, C. F. Munoz-cuevas, M. Baranyi et al., Modelling the growth of Clostridium perfringens during the cooling of bulk meat, International Journal of Food Microbiology, vol.128, issue.1, pp.41-50, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.07.015

H. S. Levinson and M. T. Hyatt, Effect of sporulation medium on heat resistance, chemical composition and germination of Bacillus megaterium spores, Journal of Bacteriology, vol.87, issue.876, 1964.

R. C. Mckellar, A heterogeneous population model for the analysis of bacterial growth kinetics, International Journal of Food Microbiology, vol.36, issue.2-3, pp.179-186, 1997.
DOI : 10.1016/S0168-1605(97)01266-X

R. C. Mckellar and K. Knight, A combined discrete???continuous model describing the lag phase of Listeria monocytogenes, International Journal of Food Microbiology, vol.54, issue.3, pp.171-180, 2000.
DOI : 10.1016/S0168-1605(99)00204-4

P. S. Mead, L. Slutsker, and V. Dietz, Food-Related Illness and Death in the United States, Emerging Infectious Diseases, vol.5, issue.5, pp.607-625, 1999.
DOI : 10.3201/eid0505.990502

J. M. Membré, T. Ross, and T. Mcmeekin, under combined chilling processes, Letters in Applied Microbiology, vol.56, issue.3, pp.216-220, 1999.
DOI : 10.1046/j.1365-2672.1999.00499.x

J. M. Membré, B. Leporq, M. Vialette, E. Mettler, L. Perrier et al., Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food, International Journal of Food Microbiology, vol.100, issue.1-3, pp.179-186, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.10.015

M. Meyer and J. L. Tholozan, A new growth and in vitro sporulation medium for Clostridium perfringens, Letters in Applied Microbiology, vol.109, issue.2, pp.98-102, 1999.
DOI : 10.1046/j.1365-2672.1999.00494.x

M. J. Nauta, Modelling bacterial growth in quantitative microbiological risk assessment: is it possible?, International Journal of Food Microbiology, vol.73, issue.2-3, pp.297-304, 2002.
DOI : 10.1016/S0168-1605(01)00664-X

A. Pinon, M. Zwietering, L. Perrier, J. M. Membré, B. Leporq et al., Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products, Applied and Environmental Microbiology, vol.70, issue.2, 2004.
DOI : 10.1128/AEM.70.2.1081-1087.2004

M. Plummer, JAGS Version 1.0.9 Manual. International Agency for Research on Cancer, 2009.

R. Pouillot, I. Albert, M. Cornu, and J. B. Denis, Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes, International Journal of Food Microbiology, vol.81, issue.2, 2003.
DOI : 10.1016/S0168-1605(02)00192-7

URL : https://hal.archives-ouvertes.fr/hal-01263599

R. Development and C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2009.

C. R. Rey, H. W. Walker, and P. L. Rohrbaugh, The Influence of Temperature on Growth, Sporulation, and Heat Resistance of Spores of Six Strains of Clostridium perfringens, Journal of Milk and Food Technology, vol.38, issue.8, pp.461-465, 1975.
DOI : 10.4315/0022-2747-38.8.461

T. P. Robinson, M. J. Ocio, A. Kaloti, and B. M. Mackey, The effect of the growth environment on the lag phase of Listeria monocytogenes, International Journal of Food Microbiology, vol.44, issue.1-2, pp.83-92, 1998.
DOI : 10.1016/S0168-1605(98)00120-2

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

M. X. Sanchez-plata, A. Amezquita, E. Blankenship, D. E. Burson, V. K. Juneja et al., Predictive Model for Clostridium perfringens Growth in Roast Beef during Cooling and Inhibition of Spore Germination and Outgrowth by Organic Acid Salts, Journal of Food Protection, vol.68, issue.12, 2005.
DOI : 10.4315/0362-028X-68.12.2594

D. W. Schaffner, Application of a statistical bootstrapping technique to calculate growth rate variance for modelling psychrotrophic pathogen growth, International Journal of Food Microbiology, vol.24, issue.1-2, pp.309-314, 1994.
DOI : 10.1016/0168-1605(94)90128-7

D. J. Schroder and F. F. Busta, GROWTH OF CLOSTRIDIUM PERFRINGENS IN MEAT LOAF WITH AND WITHOUT ADDED SOYBEAN PROTEIN, Journal of Milk and Food Technology, vol.34, issue.4, pp.215-217, 1971.
DOI : 10.4315/0022-2747-34.4.215

J. P. Smelt and S. Brul, Modelling lag-time in predictive microbiology with special reference to lag phase of bacterial spores Modelling Microorganisms in Food, pp.67-81, 2007.

S. Smith, V. K. Juneja, and D. W. Schaffner, Influence of Several Methodological Factors on the Growth of Clostridium perfringens in Cooling Rate Challenge Studies, Journal of Food Protection, vol.67, issue.6, 2004.
DOI : 10.4315/0362-028X-67.6.1128

D. Spiegelhalter, N. Best, B. Carlin, and A. Van-der-linde, Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.93, issue.4, pp.583-639, 2002.
DOI : 10.1002/1097-0258(20000915/30)19:17/18<2265::AID-SIM568>3.0.CO;2-6

S. C. Stringer, M. D. Webb, S. M. George, C. Pin, and M. W. Peck, Heterogeneity of Times Required for Germination and Outgrowth from Single Spores of Nonproteolytic Clostridium botulinum, Applied and Environmental Microbiology, vol.71, issue.9, pp.4998-5003, 2005.
DOI : 10.1128/AEM.71.9.4998-5003.2005

S. C. Stringer, M. D. Webb, and M. W. Peck, Contrasting Effects of Heat Treatment and Incubation Temperature on Germination and Outgrowth of Individual Spores of Nonproteolytic Clostridium botulinum Bacteria, Applied and Environmental Microbiology, vol.75, issue.9, 2009.
DOI : 10.1128/AEM.02572-08

H. Thippareddi, V. K. Juneja, R. K. Phebus, J. L. Marsden, and C. L. Kastner, Control of Clostridium perfringens Germination and Outgrowth by Buffered Sodium Citrate during Chilling of Roast Beef and Injected Pork, Journal of Food Protection, vol.66, issue.3, pp.376-381, 2003.
DOI : 10.4315/0362-028X-66.3.376

D. Vose, Risk Analysis: a Quantitative Guide, 2000.

M. D. Webb, C. Pin, M. W. Peck, and S. C. Stringer, Historical and Contemporary NaCl Concentrations Affect the Duration and Distribution of Lag Times from Individual Spores of Nonproteolytic Clostridium botulinum, Applied and Environmental Microbiology, vol.73, issue.7, 2007.
DOI : 10.1128/AEM.01744-06

R. C. Whiting and M. Cygnarowicz-provost, A quantitative model for bacterial growth and decline, Food Microbiology, vol.9, issue.4, pp.269-277, 1992.
DOI : 10.1016/0740-0020(92)80036-4

R. R. Willardsen, F. F. Busta, C. E. Allen, and L. B. Smith, GROWTH AND SURVIVAL OF Clostridium perfringens DURING CONSTANTLY RISING TEMPERATURES, Journal of Food Science, vol.37, issue.2, pp.470-475, 1978.
DOI : 10.1111/j.1365-2621.1978.tb02333.x

R. R. Willardsen, F. F. Busta, and C. E. Allen, Growth of Clostridium perfringens in Three Different Beef Media and Fluid Thioglycollate Medium at Static and Constantly Rising Temperatures, Journal of Food Protection, vol.42, issue.2, pp.144-148, 1979.
DOI : 10.4315/0362-028X-42.2.144

M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. Van-'t-riet, Modeling of the bacterial growth curve, Applied and Environmental Microbiology, vol.56, 1990.