Attosecond light pulse generation on relativistic plasma mirrors - Archive ouverte HAL Access content directly
Theses Year : 2012

Attosecond light pulse generation on relativistic plasma mirrors

Génération d'impulsions attosecondes sur miroir plasma relativiste

(1)
1

Abstract

When an ultra intense femtosecond laser ($I>10^{16}W.cm^{-2}$) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called " plasma mirror ". When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of attosecond pulses. The goals of my PhD were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated attosecond pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated attosecond on plasma mirrors. This brand new approach is based on a totally new physical effect: "the attosecond lighthouse effect". Its principle consists in sending the attosecond pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despites its simplicity, this technique is very general and applies to any high harmonic generation mechanisms. Moreover, the attosecond lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to attosecond pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the attosecond lighthouse effect and get isolated attosecond pulses. At very high intensities, the plasma mirror dents and gets curved by the inhomogeneous radiation pressure of the laser field at focus. The plasma mirror surface thus acts as a curved surface, which focuses the harmonic beam in front of the target and fixes its spatial properties. We developed a fully analytical and predictive model for the surface deformation, thanks to which we are now able to calculate very easily the spatial properties of the generated harmonic beams. we validated this model through hundreds of 1D and 2D PIC simulations.
Lorsqu'on focalise un laser femtoseconde ultraintense [$I>10^{16}W.cm^{-2}$] à très haut contraste sur une cible solide, le champ laser au foyer est suffisant pour ioniser complètement la surface de la cible durant le front montant de l'impulsion et former un plasma. Ce plasma est très dense [densité supérieure à la densité critique pour la fréquence laser] et réfléchit le faisceau laser dans la direction spéculaire: c'est ce que l'on appelle un "miroir plasma". Lorsque l'intensité laser est suffisamment élevée, la réponse de ce miroir plasma devient non-linéaire, ce qui conduit à la génération d'harmoniques d'ordres élevés dans le faisceau réfléchi. Dans le domaine temporel, ce spectre d'harmoniques est associé à un train d'impulsions attosecondes. Les objectifs de ma thèse étaient d'arriver à une meilleure compréhension des propriétés des faisceaux harmoniques produits sur miroir plasma, et de mettre au point de nouvelles méthodes pour contrôler ces propriétés, notamment en vue de générer des impulsions attosecondes isolées au lieu de trains. Ainsi, nous avons tout d'abord imaginé et analysé, la première technique réaliste de génération d'impulsions attosecondes isolées sur miroir plasma. Cette approche entièrement nouvelle repose sur un tout nouvel effet physique: "l'effet phare attoseconde". Son principe consiste à envoyer les impulsions attosecondes du train dans des directions différentes, puis à sélectionner une seule de ces impulsions en champ lointain à l'aide d'une fente. En plus de sa simplicité d'implémentation sur une chaîne laser de type CPA, cette technique est très générale et s'applique non seulement aux miroirs plasma, mais plus généralement à n'importe quel mécanisme de génération d'harmoniques d'ordres élevés. Au delà de la génération d'impulsions attosecondes isolées, cet effet a plusieurs autres applications que nous discutons en détail. Ensuite nous nous sommes intéressés aux propriétés spatiales de ces harmoniques, dont la caractérisation et le contrôle sont cruciaux pour pouvoir utiliser cette source dans de futures expériences d'application. Par exemple, la réalisation de l'effet phare attoseconde nécessite de contrôler précisément la divergence des impulsions attosecondes. Ces propriétés spatiales sont imposées par la courbure du miroir plasma sous l'effet de la pression inhomogène du laser sur la cible. Nous avons développé un modéle complet de cette déformation du miroir plasma, qui permet de calculer analytiquement les propriétés spatiales du faisceau harmonique. Ce modèle a été validé par des simulations numériques approfondies.
Fichier principal
Vignette du fichier
manuscrit.pdf (25.45 Mo) Télécharger le fichier
Loading...

Dates and versions

pastel-00787281 , version 1 (11-02-2013)

Identifiers

  • HAL Id : pastel-00787281 , version 1

Cite

Henri Paul Vincenti. Génération d'impulsions attosecondes sur miroir plasma relativiste. Physique des plasmas [physics.plasm-ph]. Ecole Polytechnique X, 2012. Français. ⟨NNT : ⟩. ⟨pastel-00787281⟩
554 View
724 Download

Share

Gmail Facebook Twitter LinkedIn More