Regularization of inverse problems
in image processing

Khalid Jalalzai

CMAP, École Polytechnique

March 9, 2012
Introduction

Fine Properties of the Total Variation Minimization Problem

An Alternative for the Total Variation

Adapted Basis for Non-Local Reconstruction of Spectrum

Convex Optimization: The Primal-Dual framework
Introduction
Inverse problems in imaging

A damaged image $g : \Omega \subset \mathbb{R}^N \rightarrow \mathbb{R}$ is represented as:

$$g = Ag_0 + n.$$

Our aim: restore the image!
Restoring by minimizing an energy

Restoring by minimizing an energy

Various approaches: Partial Differential Equations, Statistical estimators, Sparse representations, **Variational methods**.

Often, one minimizes an energy of the form

\[\mathcal{E}(u) = \frac{1}{2} \| Au - g \|_2^2 + \lambda \mathcal{R}(u). \]

The first term behaves as a **data fidelity**, whereas \(\mathcal{R}(u) \) is a **regularization** term that reflects an *a priori* distribution on images.
Penalizing oscillations

The idea: highly oscillating images are less probable.

In 1963, Tychonov suggested to minimize the following

\[
\min_{u \in H^1(\Omega)} \frac{1}{2} \|Au - g\|_2^2 + \frac{\lambda}{2} \int_{\Omega} |\nabla u|^2.
\]

In 1992, Rudin, Osher & Fatemi proposed the model

\[
\min_{u \in BV(\Omega)} \frac{1}{2} \|Au - g\|_2^2 + \lambda TV(u), \quad \text{(ROF)}
\]

where \(TV(u) = \int_{\Omega} |Du| \).
Penalizing oscillations

The idea: highly oscillating images are less probable.

In 1963, Tychonov suggested to minimize the following

$$\min_{u \in H^1(\Omega)} \frac{1}{2} \|Au - g\|_2^2 + \frac{\lambda}{2} \int_\Omega |\nabla u|^2.$$

In 1992, Rudin, Osher & Fatemi proposed the model

$$\min_{u \in BV(\Omega)} \frac{1}{2} \|Au - g\|_2^2 + \lambda TV(u),$$ \hspace{1cm} (ROF)

where $TV(u) = \int_\Omega |Du|$.
TV minimization

\[\lambda = 10 \]

\[\lambda = 30 \]

\[\lambda = 100 \]
Fine Properties of the Total Variation Minimization Problem
ROF’s model

For simplicity we consider the denoising problem

$$\min_{u \in BV(\Omega)} \frac{1}{2} \|u - g\|_2^2 + \lambda \int_\Omega |Du|.$$

- The TV term regularizes images without smoothing the edges of the objects.
- TV produces an undesirable artifact: the staircasing phenomenon.

We are going to explore these properties further.
ROF’s model

For simplicity we consider the denoising problem

\[
\min_{u \in BV(\Omega)} \frac{1}{2} \|u - g\|_2^2 + \lambda \int_\Omega |Du|.
\]

- The TV term regularizes images without smoothing the edges of the objects.
- TV produces an undesirable artifact: the staircasing phenomenon.

We are going to explore these properties further.
Recently Caselles, Chambolle & Novaga (2008) showed that whenever $g \in L^\infty(\Omega) \cap BV(\Omega)$, the discontinuity set satisfy

$$J_u \subset J_g.$$

In a sense, no new objects are created.
An Anisotropic Energy

We generalized this result to energies of the form:

\[\mathcal{E}(u) = \int_{\Omega} \Phi(x, Du(x)) dx + \int_{\Omega} \Psi(x, u(x)) dx \]

where essentially

- \(\Phi \in C^2 \) out of \(\Omega \times \mathbb{R}^N \setminus \{0\} \), positively 1-homogeneous and elliptic in the second variable,
- \(\Psi \) measurable in the first variable, strictly convex and coercive in the second one.
Theorem

Assuming that for a countable set D dense in \mathbb{R},

$$\partial_t \Psi(\cdot, t) \in BV(\Omega) \cap L^\infty(\Omega), \forall t \in D,$$

one has

$$J_u \subset \bigcup_{t \in D} J_{\partial_t \Psi(\cdot, t)}$$

up to a set \mathcal{H}^{N-1} negligible.
One can adapt the proof of CCN provided:

- One can understand how our problem relates to a **minimal surface problem**: denoting \(E_s := \{ u > s \} \)

\[
\int_{\Omega} \Phi(x, Du(x))dx + \int_{\Omega} \Psi(x, u(x))dx \sim \int_s \left(P_\Phi(E_s, \Omega) + \int_{E_s} \partial_t \Psi(x, t)dx \right) ds.
\]

Two minimal surfaces:

- One can get the desired **regularity for the level sets** combining
 - the theory of regularity for quasi-minimal surfaces,
 - the Nirenberg’s method,
 - the regularity theory for elliptic PDEs in non-divergence form.
Refinement in the weighted case

Problem: What if the anisotropy is less regular?

For instance

$$\min_{u \in BV(\Omega)} \int_{\Omega} w|Du| + \frac{1}{2} \|u - g\|_2^2$$

with w merely Lipschitz continuous.

Creation of jumps with $w(x) = \sqrt{x} \chi_{\{x \leq 1\}} + x \chi_{\{x > 1\}} + 0.2$
Theorem

Let \(w : \Omega \to \mathbb{R} \) be positive, bounded, Lipschitz continuous with \(\nabla w \in BV(\Omega, \mathbb{R}^N) \) and \(g \in BV(\Omega) \cap L^\infty(\Omega) \).

Then the minimizer \(u \in BV(\Omega) \) satisfies

\[
J_u \subset J_g \cup J_{\nabla w}
\]

up to a \(\mathcal{H}^{N-1} \)-negligible set.

If in addition we assume that \(w \) is of class \(C^1 \) we get that at the discontinuity

\[
(u^+ - u^-) \leq (g^+ - g^-) \mathcal{H}^{N-1}-\text{a.e. on } J_u.
\]
Theorem

Let \(w : \Omega \to \mathbb{R} \) be positive, bounded, Lipschitz continuous with \(\nabla w \in BV(\Omega, \mathbb{R}^N) \) and \(g \in BV(\Omega) \cap L^\infty(\Omega) \).

Then the minimizer \(u \in BV(\Omega) \) satisfies

\[
J_u \subset J_g \cup J_{\nabla w}
\]

up to a \(\mathcal{H}^{N-1} \)-negligible set.

If in addition we assume that \(w \) is of class \(C^1 \) we get that at the discontinuity

\[
(u^+ - u^-) \leq (g^+ - g^-) \mathcal{H}^{N-1}-\text{a.e. on } J_u.
\]
This is quite surprising if one thinks of

\[g : \quad [0, 2\pi)^2 \quad \longrightarrow \quad \mathbb{R} \]

\[(x, y) \quad \longmapsto \quad \begin{cases}
2 + \cos(x) \text{ if } y > 0, \\
0 \text{ otherwise.}
\end{cases} \]

Level lines \(\{u = t\} \) for some values of \(t \in (1, 2) \).

Graph of \(u \) on one period.
Some level lines are represented in red.
Staircasing and discontinuities depend on λ

Not much can be said in general.

In 1D, Ring (2000) and Briani, Chambolle, Novaga, Orlandi (2011) show that the solutions $u(t)$ of

$$\min_{u \in BV(\Omega)} t \int_{\Omega} |Du| + \frac{1}{2} \|u - g\|_2^2.$$

form a semi-group.

Theorem

Let $\Omega = B(0, R) \subset \mathbb{R}^N$, $g \in L^2(\Omega)$ radial. Then $(u(t))_t$ form a semi-group.

Corollary

If $\lambda \leq \mu$, $J_\mu \subset J_\lambda$ and $S_\lambda \subset S_\mu$.

Discontinuities vanish, staircasing increases.
Staircasing

Level lines of a TV-minimizer

By looking at the level sets we prove that staircasing occurs

- at global extrema of g.
- at all extrema of u.
Some perspectives

Our work paved the way for future researches:

- Staircasing occurs a.e. for a noisy image.
- For a general g, do we have $J_\mu \subset J_\lambda$?
- Study the regularity of the minimizers in the anisotropic setting.
An Alternative for the Total Variation
A variant of TV

The idea: replace TV by

$$J(u, \Omega) = \inf_{P\varphi = Du} \int_\Omega |\varphi|,$$

where P is the “projection on gradients”.

Remark that

$$J(u) \leq TV(u).$$

Motivates the use of J in image processing.
Dual formulation

Using Riesz’s duality and some **convex analysis**:

Proposition
If $\Omega \subset \mathbb{R}^N$ is a convex open set then for any $u \in BV(\Omega)$,

$$J(u, \Omega) = \sup_{w \in C^1_c(\Omega)} \int_{\Omega} \nabla w \cdot Du,$$

with $\|\nabla w\|_\infty \leq 1$

Second order approach to reduce staircasing.
Theorem

Let $\Omega \subset \mathbb{R}^N$ open and $u = \chi_E$ the characteristic function of a set of finite perimeter E in Ω, or more generally $u \in BV(\Omega)$ with Du concentrated on the jump set J_u. Then,

$$J(u, \Omega) = \int_{\Omega} |Du|.$$

J coincides with TV on “cartoon” images.

The idea:

- If $u = \chi_E$ with ∂E a $C^{1,1}$ manifold.
 Consider the **signed distance** $w = d(x, \Omega \setminus E) - d(x, E)$.
 A classical result asserts that:

 w is $C^{1,1}$ near $\text{supp}(Du) = \partial E$ and $\nabla w = \nu$.

 Thus,

 $$J(u) \geq \int_{\Omega} \nabla w \cdot Du = \int_{\partial E} \nu \cdot Du = \int_{\Omega} |Du|.$$
In the general case, we use some tools of **geometric measure theory** to:

- localize the problem,
- build \(w \) from scratch using the **rectifiability** of \(J_u \).
ROF revisited

Given Ω open and $g \in L^2(\Omega)$, consider the problem

$$\min_{u \in L^2(\Omega)} \mathcal{F}(u) = \frac{1}{2} \|u - g\|_2^2 + \lambda J(u).$$

Proposition

\mathcal{F} has a unique minimizer $u_\lambda \in L^2(\Omega)$.

Proposition (An explicit solution)

Let $g = C\chi_{B(0,1)}$ and $\lambda \geq 0$. Then, if $C \geq \lambda N$, the minimizer of \mathcal{F} is

$$u_\lambda = (C - \lambda N)\chi_{B(0,1)}.$$
Numerical simulations: a noisy image

\[\sigma = 20 \quad TV\text{-minimizer, } \lambda = 25 \quad \tilde{J}\text{-minimizer, } \lambda = 25 \]

PSNR=22.1 \quad PSNR=29.4 \quad PSNR=29.3
Numerical simulations: absence of staircasing

Initial g \hspace{1cm} TV-minimizer, $\lambda = 100$ \hspace{1cm} J-minimizer, $\lambda = 100$
Motivations and perspectives

- J behaves mostly like TV without creating homogeneous regions.

- Some open issues: Poincaré inequality, canonical space?
Adapted Basis for Non-Local Reconstruction of Spectrum
Non-Locality in images

Images have non-local features:
Non-Localty in images

Recently developed models take into account this structure:

- Denoising proposed by Buades, Coll, Morel (2005):

\[
NLMean(g)(x) = \frac{1}{C(x)} \int_{\Omega} g(y)w(x, y)dy
\]

- Other inverse problems:

\[
\min_u \frac{1}{2}\|Au - g\|^2 + \lambda \int_{\Omega \times \Omega} \|p_u(x) - p_u(y)\|w(x, y)dxdy
\]

A key step is the computation of the similarity measure:

\[
w(x, y) = \exp\left(-\frac{\|p_g(x) - p_g(y)\|_2}{h}\right).
\]
Spectrum reconstruction

The problem:

\[g = \mathcal{F}^{-1}(\chi_M \mathcal{F}(g_0)) \]

Different masks \(M \) for various applications:

Spatial imaging

Zoom

Inverse Acoustic Scattering

Tomography

The aim: restore the spectrum.
In general, \(\delta(x, y) = \| p_g(x) - p_g(y) \|_2 \):

Can we do better?

The aim: design a similarity measure \(\delta(x, y) \) that is adapted to the problem of spectrum reconstruction.
Adapted Atoms

The idea: design test functions \((\phi_\alpha)_\alpha\) such that

\[g * \phi_\alpha = g_0 * \phi_\alpha, \quad \forall \alpha. \]

One can compute an orthogonal basis iteratively

\[\phi_\alpha = \operatorname{argmin} \left\{ \int_\Omega |\phi(x)|^2 |x|^p dx, \supp(\mathcal{F}\phi) \subset M, \|\phi\|_2 \geq 1, \phi \perp \text{Span}\{\phi_{\alpha'}, \alpha' < \alpha\} \right\} \]
Similarity measure comparison

We define the following similarity measure:

\[
\delta(x, y) = \left(\sum_{\alpha \leq \alpha_0} |g * \phi_\alpha(x) - g * \phi_\alpha(y)|^2 \right)^{\frac{1}{2}}.
\]

Here \(\alpha_0 \) sets how localized the considered atoms are.

Performance of this new similarity measure

The 13 best matches (in red) for a fixed patch (in green).
Numerical simulations: a toy example
Numerical simulations: acoustic inverse scattering

Thanks to the Born approximation

\[u_\infty(\hat{x}, d) \approx \int_{\mathbb{R}^N} \chi_D(y)e^{-ik(\hat{x}-d)\cdot y} dy, \]

we can use the data that comes out of the direct problem. In a sense, we add noise.
Numerical simulations: closely located objects

Original \(g_0 \)

Corrupted \(g \)

NLMeans

NL-Atom

TV restored

PSNR=8.2

PSNR=8.4

PSNR=14.5

PSNR=9.6
Numerical simulations: Weight recomputation

PSNR=12.1 PSNR=9.27 PSNR=8.9
Numerical simulations: Tomography problem

Original g_0 Spectrum of g_0 Corrupted g Spectrum of g

PSNR=22.4

NLMeans NL-Atom NL-Atom then TV restored

1× NLMeans 20× NLMeans

PSNR= 23.8 24.9 25.8 24.8 23.6
Advantages

- Performs much better in some cases.
- The weight computation is faster.
- The weight recomputation is not mandatory.
Convex Optimization: The Primal-Dual framework
Non-smooth minimization

Usually minimization is carried out by using gradient algorithms.

As far as we are concerned, we are interested in the **minimization of non-smooth energies** of the form

\[\min_{x \in X} F(Ax) + G(x). \]

- \(F \) lsc convex.
- \(G \) lsc uniformly convex with parameter \(\gamma_0 \).

New algorithms should be designed for such problems.
The Primal-Dual framework

The idea: consider a dual variable y.

A recently developed algorithm aims to find a saddle point (\hat{x}, \hat{y}) of the problem

$$\min_{x \in X} \max_{y \in Y} \langle Ax, y \rangle + G(x) - F^*(y)$$

and is inspired by the following

Algorithm 1 Arrow-Hurwicz’s scheme

- **Iterations:** For $n \geq 1$ update as follows:

 $$x^{n+1} = (I + \tau \partial G)^{-1}(x^n - \tau A^*y^n),$$

 $$y^{n+1} = (I + \sigma \partial F^*)^{-1}(y^n + \sigma Ax^{n+1}).$$
Adaptive stepsizes

Chambolle, Pock (2010) propose the following modification:

Algorithm 2 Primal Dual with adaptive stepsizes

- **Initialization:** $\sigma_0 \tau_0 \|A\|^2 \leq 1$, $\gamma \leq \gamma_0$.
- **Iterations:** For $n \geq 1$, consider the updates:

 \[
 \begin{align*}
 y^{n+1} &= (I + \sigma_n \partial F^*)^{-1}(y^n + \sigma_n A\bar{x}^n), \\
 x^{n+1} &= (I + \tau_n \partial G)^{-1}(x^n - \tau_n A^* y^{n+1}), \\
 \theta_n &= 1/\sqrt{1 + 2\gamma \tau_n}, \quad \tau_{n+1} = \theta_n \tau_n, \quad \sigma_{n+1} = \sigma_n/\theta_n, \\
 \bar{x}^{n+1} &= x^{n+1} + \theta_n(x^{n+1} - x^n).
 \end{align*}
 \]

Converges as $O\left(\frac{1}{n^2}\right)$.
Surprisingly the complexity depends on γ:

Error $\|x^n - \hat{x}\|^2$ for different values of γ
A first explanation

Algorithm 3 Primal Dual with adaptive stepsize

- **Initialization:** $\sigma_0 \tau_0 \|A\|^2 \leq 1$, $\gamma \leq \gamma_0$.
- **Iterations:** For $n \geq 1$, consider the following updates:

\[
\begin{align*}
y^{n+1} &= (I + \sigma_n \partial F^*)^{-1}(y^n + \sigma_n A \bar{x}^n), \\
x^{n+1} &= (I + \tau_n \partial G)^{-1}(x^n - \tau_n A^* y^{n+1}), \\
\theta_n &= \frac{1}{\sqrt{1 + 2\gamma \tau_n}}, \quad \tau_{n+1} = \theta_n \tau_n, \quad \sigma_{n+1} = \frac{\sigma_n}{\theta_n}, \\
\bar{x}^{n+1} &= x^{n+1} + \theta_n (x^{n+1} - x^n).
\end{align*}
\]
A first explanation

Algorithm 3 Primal Dual with adaptive stepsize

- **Initialization:** $\sigma_0 \tau_0 \|A\|^2 \leq 1$, $\gamma \leq \gamma_0$.
- **Iterations:** For $n \geq 1$, consider the following updates:

\[
\begin{align*}
 y^{n+1} &= (I + \sigma_n \partial F^*)^{-1}(y^n + \sigma_n A\bar{x}^n), \\
 x^{n+1} &= (I + \tau_n \partial G)^{-1}(x^n - \tau_n A^* y^{n+1}), \\
 \theta_n &= 1 / \sqrt{1 + \gamma \tau_n}, \quad \tau_{n+1} = \theta_n \tau_n, \quad \sigma_{n+1} = \sigma_n / \theta_n, \\
 \bar{x}^{n+1} &= x^{n+1} + \theta_n (x^{n+1} - x^n).
\end{align*}
\]
One proved

Theorem

Let $\tau_0, \sigma_0 > 0$ such that $\sigma_0 \tau_0 \|A\|^2 \leq 1$ then the sequence $(x^n)_{n \in \mathbb{N}}$ converges to \hat{x} and

$$\sum_n n \|\hat{x} - x^n\|^2 < +\infty.$$

Complexity beyond $O\left(\frac{1}{n^2}\right)$: **best theoretical rate of convergence** for this class of problems.
Comparison for ROF’s denoising problem

Minimizer error $\|x^n - \hat{x}\|^2$

PSNR(x^n, g_0)
Some perspectives

- Prove that the dual variable converges for the adaptive Primal-Dual algorithm.
- Devise the optimal uniform convexity parameter γ that gives the best rate and prove that it is beyond $o\left(\frac{1}{n^2}\right)$.
Merci !