M. Ahn-1998-]-hyungsok-ahn, E. Dayal, G. Grannan, and . Swindle, Option replication with transaction costs: General diffusion limits, Ann. Appl. Probab, vol.8, issue.87, pp.676-707, 1998.

]. E. Alos, A. Eydeland, and P. Laurence, A Kirk's and a Bachelier's formula for three-asset spread options. Cutting Edge, risk.net/energy-risk, p.16, 2011.

]. M. Avellaneda and A. Paras, Optimal hedging portfolios for derivative securities in the presence of large transaction costs, Appl. Math. Finance, vol.2, pp.165-193, 1994.

]. Benhamou, E. Gobet, and M. Miri, Smart expansion and fast calibration for jump diffusions, Finance and Stochastics, vol.49, issue.1???2, pp.563-589, 2009.
DOI : 10.1007/s00780-009-0102-3

]. Benhamou, E. Gobet, and M. Miri, EXPANSION FORMULAS FOR EUROPEAN OPTIONS IN A LOCAL VOLATILITY MODEL, International Journal of Theoretical and Applied Finance, vol.13, issue.04, 2010.
DOI : 10.1142/S0219024910005887

URL : https://hal.archives-ouvertes.fr/hal-00325939

]. Benhamou, E. Gobet, and M. Miri, Time Dependent Heston Model, SIAM Journal on Financial Mathematics, vol.1, issue.1, pp.289-325, 2010.
DOI : 10.1137/090753814

URL : https://hal.archives-ouvertes.fr/hal-00370717

]. Benhamou, E. Gobet, and M. Miri, Analytical formulas for a local volatility model with stochastic rates, Quantitative Finance, vol.22, issue.2, pp.185-198, 2012.
DOI : 10.1007/BF01300558

J. Bernard-bensaid, H. Lesne, J. Pagès, and . Scheinkman, DERIVATIVE ASSET PRICING WITH TRANSACTION COSTS, Mathematical Finance, vol.15, issue.4, pp.63-86, 1992.
DOI : 10.2307/2328113

]. Bertsimas, L. Kogan, and A. W. Lo, When is time continuous?, Journal of Financial Economics, vol.55, issue.2, pp.173-204, 2000.
DOI : 10.1016/S0304-405X(99)00049-5

D. Bertsimas, L. Kogan, and A. W. Lo, When is time continuous? Quantitative analysis in financial markets. Collected papers of the New York University mathematical finance seminar, II. Singapore: World Scientific, pp.71-102, 2001.

]. P. Bjerksund and G. Stensland, Closed form spread option valuation . preprint, p.16, 2006.
DOI : 10.1080/14697688.2011.617775

URL : https://brage.bibsys.no/xmlui/bitstream/11250/164107/1/2006.pdf

]. R. Bompis and E. Gobet, Asymptotic and non asymptotic approximations for option valuation. Computational finance, p.2012, 2012.
DOI : 10.1142/9789814436434_0004

URL : https://hal.archives-ouvertes.fr/hal-00720650

]. P. Cattiaux and L. Mesnager, Hypoelliptic non-homogeneous diffusions, Probability Theory and Related Fields, vol.123, issue.4, pp.453-483, 2002.
DOI : 10.1007/s004400100194

]. C. Costantini, E. Gobet, and N. Karoui, Boundary Sensitivities for Diffusion Processes in Time Dependent Domains, Applied Mathematics and Optimization, vol.54, issue.2, pp.159-187, 2006.
DOI : 10.1007/s00245-006-0863-4

URL : https://hal.archives-ouvertes.fr/hal-00103259

H. A. Mark, . Davis, G. Vassilios, T. Panas, and . Zariphopoulou, European option pricing with transaction costs, SIAM J. Control Optimization, vol.31, issue.2, pp.470-493, 1993.

]. E. Denis, Modified Leland's strategy for constant transaction costs rate. preprint, p.31, 2010.

D. and Y. Kabanov, Mean square error for the Leland-Lott hedging strategy: convex pay-offs, Finance Stoch, vol.14, issue.80, pp.625-667, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00488278

]. J. Dieudonné, Eléments d'analyse Tome 1, (chapitres I à XI), Fondements de l'Analyse moderne, Jacques Gabay, 1990.

. Shreve, Robustness of the Black and Scholes formula, Math. Finance, vol.8, issue.85, pp.93-126, 1998.

]. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Singular perturbations in option pricing, SIAM J. Appl. Math, vol.63, issue.5, pp.1648-1665, 2003.

]. A. Friedman, Partial differential equations of parabolic type, 1964.

C. Geiss and S. Geiss, On approximation of a class of stochastic integrals and interpolation, Stochastics and Stochastics Reports, vol.76, issue.4, pp.339-362, 2004.
DOI : 10.1080/10451120410001728445

S. Geiss and A. Toivola, Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces, Bernoulli, vol.15, issue.4, pp.925-954, 2009.
DOI : 10.3150/09-BEJ197

S. Geiss and E. Gobet, Fractional smoothness and applications in finance Advanced mathematical methods for finance, pp.313-331, 2011.

S. Geiss, E. Geiss, and . Gobet, Generalized fractional smoothness and <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>-variation of BSDEs with non-Lipschitz terminal condition, Stochastic Processes and their Applications, vol.122, issue.5, pp.2078-2116, 2012.
DOI : 10.1016/j.spa.2012.02.006

]. V. Genon-catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré (Probab. Statist.), vol.29, pp.119-151, 1993.

]. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, p.144, 1977.

E. Gobet and E. Teman, Discrete time hedging errors for options with irregular payoffs, Finance and Stochastics, vol.5, issue.3, pp.357-367, 2001.
DOI : 10.1007/PL00013539

]. E. Gobet and A. Makhlouf, L 2 -time regularity of BSDEs with irregular terminal functions, Stochastic Processes and their Applications, pp.1105-1132, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00291768

]. E. Gobet and S. Menozzi, Stopped diffusion processes: Boundary corrections and overshoot, Stochastic Processes and Their Applications, pp.130-162, 2010.
DOI : 10.1016/j.spa.2009.09.014

URL : https://hal.archives-ouvertes.fr/hal-00446315

]. E. Gobet and A. Makhlouf, The tracking error rate of the Delta- Gamma hedging strategy. Forthcoming in Mathematical Finance, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00401182

]. E. Gobet and M. Miri, Weak approximation of averaged diffusion processes, revison for Stochastic Process and their Applications, pp.15-158, 2011.
DOI : 10.1016/j.spa.2013.08.007

URL : https://hal.archives-ouvertes.fr/hal-00618470

]. E. Grannan and G. H. Swindle, MINIMIZING TRANSACTION COSTS OF OPTION HEDGING STRATEGIES, Mathematical Finance, vol.15, issue.4, pp.341-364, 1996.
DOI : 10.1016/0022-0531(71)90038-X

T. Hayashi and P. A. Mykland, EVALUATING HEDGING ERRORS: AN ASYMPTOTIC APPROACH, Mathematical Finance, vol.80, issue.2, pp.309-343, 2005.
DOI : 10.1007/s004400050134

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. P. Henrotte, Transaction costs and duplication strategies. Working paper, 1993.

]. S. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs. Rev. Futures Mark, pp.222-239, 1989.

]. Hofmann, T. Muller-gronbach, and K. Ritter, Optimal approximation of stochastic differential equations by adaptive step-size control, Mathematics of Computation, vol.69, issue.231, pp.1017-1034, 2000.
DOI : 10.1090/S0025-5718-99-01177-1

A. Roger, C. R. Horn, and . Johnson, Matrix analysis. Reprinted with corrections. Cambridge etc, pp.68-130, 1990.

J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations, The Annals of Probability, vol.26, issue.1, pp.267-307, 1998.
DOI : 10.1214/aop/1022855419

J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, 2003.
DOI : 10.1007/978-3-662-02514-7

]. J. Jacod and P. Protter, Discretization of Processes. Stochastic Modelling and Applied Probability, pp.45-139, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00103988

M. Yuri, M. M. Kabanov, and . Safarian, On Leland's strategy of option pricing with transactions costs, Finance Stoch, vol.1, issue.3, pp.239-250, 1997.

L. Rajeeva and . Karandikar, Pathwise solutions of stochastic differential equations, Sankhya : The Indian Journal of Statistic, vol.43, pp.121-132, 1981.

L. Rajeeva and . Karandikar, On Métivier-Pellaumail inequality, Emery topology and pathwise formulae in stochastic calculus Sankhy¯ a: The Indian Journal of, Statistics, Series A, vol.51, issue.2, pp.121-143, 1989.

L. Rajeeva and . Karandikar, On almost sure convergence of modified Euler-Peano approximation of solution to an S.D.E. driven by a semimartingale, Lect. Notes Math, vol.1485, pp.113-120, 1991.

L. Rajeeva and . Karandikar, On pathwise stochastic integration, Stochastic Processes Appl, vol.57, issue.1, pp.11-18, 1995.

L. Rajeeva and . Karandikar, On almost sure convergence results in stochastic calculus In memoriam Paul-André Meyer. Séminaire de probabilités XXXIX, Lecture Notes in Mathematics, vol.1874, pp.137-156, 2006.

]. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 1988.
DOI : 10.1007/978-1-4612-0949-2

E. Steven and . Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, issue.470, 1991.

]. E. Kirk, Correlation in the energy markets. Managing Energy Price Risk (First Edition), pp.71-78, 1995.

E. Peter, E. Kloeden, and . Platen, Numerical solution of stochastic differential equations. 4th corrected printing, Applications of Mathematics, vol.23, 2010.

]. H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms Ecole d'Eté de Probabilités de St-Flour XII, 1982 -Lecture Notes in Math, pp.144-305, 1984.

A. Takahashi, The asymptotic expansion approach to the valuation of interest rate contingent claims, Math. Finance, vol.11, issue.1, pp.117-151, 2001.

G. Thomas, P. Kurtz, and . Protter, Wong-Zakai corrections, random evolutions, and simulation schemes for SDE's. Stochastic analysis, Proc. Conf. Honor Moshe Zakai 65th Birthday, pp.331-346, 1991.

G. Thomas, P. E. Kurtz, and . Protter, Weak convergence of stochastic integrals and differential equations Probabilistic models for nonlinear partial differential equations. Lectures given at the 1st session of the Centro Internazionale Matematico Estivo, Lect. Notes Math, vol.1627, pp.1-41, 1995.

]. S. Kusuoka and D. Stroock, Applications of the Malliavin calculus II, J. Fac. Sci. Univ. Tokyo, vol.32, issue.74, pp.1-76, 1985.

]. E. Lenglart, Relation de domination entre deux processus, Ann. Inst. Henri Poincaré, Sect. B, vol.13, issue.2, pp.171-179, 1977.

S. Levental and A. V. Skorohod, On the possibility of hedging options in the presence of transaction costs, The Annals of Applied Probability, vol.7, issue.2, pp.410-443, 1997.
DOI : 10.1214/aoap/1034625338

C. Martini and . Patry, Variance optimal hedging in the Black- Scholes model for a given number of transactions. INRIA Rapport de recherche, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00072895

]. G. Milstein, Numerical integration of stochastic differential equations . Transl. from the Russian Mathematics and its Applications (Dordrecht ). 313, p.13, 1994.

T. Muller-gronbach and K. Ritter, Minimal errors for strong and weak approximation of stochastic differential equations Monte Carlo and quasi-Monte Carlo methods Selected papers based on the presentations at the 7th international conference 'Monte Carlo and quasi-Monte Carlo methods in scientific computing, pp.53-82, 2006.

]. M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, 2000.
DOI : 10.1007/978-3-662-22132-7

]. A. Pascucci, PDE and martingale methods in option pricing, 2011.
DOI : 10.1007/978-88-470-1781-8

]. S. Pergamenshchikov, Limit theorem for Leland's strategy, The Annals of Applied Probability, vol.13, issue.3, pp.1099-1118, 2003.
DOI : 10.1214/aoap/1060202836

URL : http://projecteuclid.org/download/pdf_1/euclid.aoap/1060202836

E. Philip and . Protter, Stochastic integration and differential equations, pp.118-127, 2004.

]. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 1999.

]. H. Rootzen, Limit distributions for the error in approximations of stochastic integrals. The Annals of Probability, 1980.

]. M. Rosenbaum and P. Tankov, Asymptotically optimal discretization of hedging strategies with jumps, The Annals of Applied Probability, vol.24, issue.3, p.39, 2011.
DOI : 10.1214/13-AAP940

URL : https://hal.archives-ouvertes.fr/hal-01009756

]. J. Sekine and J. Yano, Hedging errors of Leland's strategies with time-inhomogeneous rebalancing, 2008.

]. J. Simon, Differentiation with Respect to the Domain in Boundary Value Problems, Numerical Functional Analysis and Optimization, vol.24, issue.7-8, pp.649-687, 1980.
DOI : 10.1016/0045-7825(78)90024-5

]. H. Soner, S. E. Shreve, and J. Cvitani?, There is no Nontrivial Hedging Portfolio for Option Pricing with Transaction Costs, The Annals of Applied Probability, vol.5, issue.2, pp.327-355, 1995.
DOI : 10.1214/aoap/1177004767

W. Daniel, S. R. Stroock, . Srinivasa, and . Varadhan, Multidimensional diffusion processes. Reprint of the 2nd correted printing (1997) Classics in Mathematics, p.69, 2006.

]. Uchida and N. Yoshida, Asymptotic Expansion for Small Diffusions Applied to Option Pricing, Statistical Inference for Stochastic Processes, vol.7, issue.3, pp.189-223, 2004.
DOI : 10.1023/B:SISP.0000049093.20850.11

]. A. Whalley and P. Wilmott, An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs, Mathematical Finance, vol.7, issue.3, pp.307-324, 1997.
DOI : 10.1111/1467-9965.00034

]. P. Wilmott, J. Dewynne, and S. Howison, Option pricing: mathematical models and computation, 1994.