P. Coussot, L. Tocquer, C. Lanos, and G. Ovarlez, Macroscopic vs. local rheology of yield stress fluids, Journal of Non-Newtonian Fluid Mechanics, vol.158, issue.1-3, pp.1-385, 2009.
DOI : 10.1016/j.jnnfm.2008.08.003

URL : https://hal.archives-ouvertes.fr/hal-01172607

M. C. Bourne, Food texture and viscosity : concept and measurement, Academic Pr, 2002.

D. Lootens, P. Jousset, L. Martinie, N. Roussel, and R. Flatt, Yield stress during setting of cement pastes from penetration tests, Cement and Concrete Research, vol.39, issue.5, pp.401-408, 2009.
DOI : 10.1016/j.cemconres.2009.01.012

N. A. Park, Y. I. Cho, and T. F. Irvine, Steady shear viscosity measurements of viscoelastic fluids with the falling needle viscometer, Journal of Non-Newtonian Fluid Mechanics, vol.34, issue.3, pp.351-357, 1990.
DOI : 10.1016/0377-0257(90)80028-X

J. Lohrenz, F. Swift, and . Kurata, An experimentally verified theoretical study of the falling cylinder viscometer, AIChE Journal, vol.6, issue.4, pp.547-550, 1960.
DOI : 10.1002/aic.690060408

J. Lohrenz and F. Kurata, Design and evaluation of a new body for falling cylinder viscometers, AIChE Journal, vol.8, issue.2, pp.190-193, 1962.
DOI : 10.1002/aic.690080212

J. Pht-uhlherr, . Guo, C. Fang, and . Tiu, Static measurement of yield stress using a cylindrical penetrometer, Korea-Australia Rheology Journal, vol.14, issue.1, pp.17-23, 2002.

L. Zhu, N. Sun, K. Papadopoulos, and D. Kee, A slotted plate device for measuring static yield stress, Journal of Rheology, vol.45, issue.5, p.1105, 2001.
DOI : 10.1122/1.1392299

D. Kee, G. Turcotte, K. Fildey, and B. Harrison, NEW METHOD FOR THE DETERMINATION OF YIELD STRESS, Journal of Texture Studies, vol.6, issue.3, pp.281-288, 1980.
DOI : 10.1122/1.548959

D. Picart, R. Manceau, and J. Fauré, A PENETROVISCOSIMETER FOR NEWTONIAN AND VISCO-PLASTIC FLUIDS, Instrumentation Science & Technology, vol.33, issue.3, pp.169-184, 2001.
DOI : 10.1016/0377-0257(94)01282-M

D. De-kee, Y. D. Kim, and Q. D. Nguyen, Measuring rheological properties using a slotted plate device, Korea-Australia Rheology Journal, vol.19, issue.2, pp.75-80, 2007.

M. H. Zhang, C. F. Ferraris, H. Zhu, V. Picandet, M. A. Peltz et al., Measurement of yield stress for concentrated suspensions using a plate device, Materials and Structures, vol.38, issue.2, pp.47-62, 2010.
DOI : 10.1617/s11527-009-9469-z

URL : https://hal.archives-ouvertes.fr/hal-00494140

J. Tchamba, S. Amziane, G. Ovarlez, and N. Roussel, Lateral stress exerted by fresh cement paste on formwork: Laboratory experiments, Cement and Concrete Research, vol.38, issue.4, pp.459-466, 2008.
DOI : 10.1016/j.cemconres.2007.11.013

K. L. Johnson and K. L. Johnson, Contact mechanics, 1987.

L. Jossic and A. Magnin, Drag and stability of objects in a yield stress fluid, AIChE Journal, vol.194, issue.12, pp.2666-2672, 2001.
DOI : 10.1002/aic.690471206

R. W. Ansley and T. N. Smith, Motion of spherical particles in a Bingham plastic, AIChE Journal, vol.13, issue.6, pp.1193-1196, 1967.
DOI : 10.1002/aic.690130629

A. Beris, J. Armstrong, and . Tsamopoulos, Creeping motion of a sphere through a Bingham plastic, Journal of Fluid Mechanics, vol.6, issue.-1, pp.219-263, 1985.
DOI : 10.1017/S0022112057000105

J. Blackery and E. Mitsoulis, Creeping motion of a sphere in tubes filled with a Bingham plastic material, Journal of Non-Newtonian Fluid Mechanics, vol.70, issue.1-2, pp.59-77, 1997.
DOI : 10.1016/S0377-0257(96)01536-4

M. Beaulne and E. Mitsoulis, Creeping motion of a sphere in tubes filled with Herschel???Bulkley fluids, Journal of Non-Newtonian Fluid Mechanics, vol.72, issue.1, pp.55-71, 1997.
DOI : 10.1016/S0377-0257(97)00024-4

D. L. Tokpavi, A. Magnin, and P. Jay, Very slow flow of Bingham viscoplastic fluid around a circular cylinder, Journal of Non-Newtonian Fluid Mechanics, vol.154, issue.1, pp.65-76, 2008.
DOI : 10.1016/j.jnnfm.2008.02.006

URL : https://hal.archives-ouvertes.fr/hal-00340334

A. Putz and I. Frigaard, Creeping flow around particles in a Bingham fluid, Journal of Non-Newtonian Fluid Mechanics, vol.165, issue.5-6, pp.5-6263, 2010.
DOI : 10.1016/j.jnnfm.2010.01.001

D. Atapattu, P. Chhabra, and . Uhlherr, Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag, Journal of Non-Newtonian Fluid Mechanics, vol.59, issue.2-3, pp.245-265, 1995.
DOI : 10.1016/0377-0257(95)01373-4

O. Merkak, L. Jossic, and A. Magnin, Spheres and interactions between spheres moving at very low velocities in a yield stress fluid, Journal of Non-Newtonian Fluid Mechanics, vol.133, issue.2-3, pp.99-108, 2006.
DOI : 10.1016/j.jnnfm.2005.10.012

URL : https://hal.archives-ouvertes.fr/hal-00021925

H. Tabuteau, P. Coussot, and J. R. De-bruyn, Drag force on a sphere in steady motion through a yield-stress fluid, Journal of Rheology, vol.51, issue.1, pp.125-137, 2007.
DOI : 10.1122/1.2401614

B. Gueslin, L. Talini, and Y. Peysson, Sphere settling in an aging yield stress fluid: link between the induced flows and the rheological behavior, Rheologica Acta, vol.51, issue.1, pp.961-970, 2009.
DOI : 10.1007/s00397-009-0376-6

A. Putz, . Burghelea, D. Frigaard, and . Martinez, Settling of an isolated spherical particle in a yield stress shear thinning fluid, Physics of Fluids, vol.20, issue.3, p.33102, 2008.
DOI : 10.1063/1.2883937

D. L. Tokpavi, P. Jay, A. Magnin, and L. Jossic, Experimental study of the very slow flow of a yield stress fluid around a circular cylinder, Journal of Non-Newtonian Fluid Mechanics, vol.164, issue.1-3, pp.35-44, 2009.
DOI : 10.1016/j.jnnfm.2009.08.002

H. Schlichting, Boundary layer theory, p.612, 1968.
DOI : 10.1007/978-3-662-52919-5

F. M. White, Viscous fluid flow, 1991.

J. M. Piau and K. Debiane, The adhesive or slippery flat plate viscoplastic boundary layer for a shear-thinning power-law viscosity, Journal of Non-Newtonian Fluid Mechanics, vol.117, issue.2-3, pp.97-107, 2004.
DOI : 10.1016/j.jnnfm.2004.01.002

J. Oldroyd, Two-dimensional plastic flow of a Bingham solid, Mathematical Proceedings of the Cambridge Philosophical Society, pp.383-395, 1947.
DOI : 10.1017/S0305004100023616

J. M. Piau, Viscoplastic boundary layer Journal of non-newtonian fluid mechanics, pp.193-218, 2002.

P. G. De-gennes, F. Brochard-wyart, D. Quéré, M. Fermigier, and C. Clanet, Gouttes, bulles, perles et ondes, 2002.

S. Rafaï, D. Bonn, and A. Boudaoud, Spreading of non-Newtonian fluids on hydrophilic surfaces, Journal of Fluid Mechanics, vol.513, issue.1, pp.77-85, 2004.
DOI : 10.1017/S0022112004000278

G. German and V. Bertola, The free-fall of viscoplastic drops, Journal of Non-Newtonian Fluid Mechanics, vol.165, issue.13-14, pp.825-828, 2010.
DOI : 10.1016/j.jnnfm.2010.03.012

B. Levich and L. Landau, Dragging of liquid by a plate, Acta Physiochim, vol.17, pp.42-54, 1942.

B. Levich and L. Landau, Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo-and motion picture film coating, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS, pp.13-16, 1943.

D. A. White and J. A. Tallmadge, A theory of withdrawal of cylinders from liquid baths, AIChE Journal, vol.12, issue.2, pp.333-339, 1966.
DOI : 10.1002/aic.690120223

J. Ro and G. Homsy, Viscoelastic free surface flows: thin film hydrodynamics of Hele-Shaw and dip coating flows, Journal of Non-Newtonian Fluid Mechanics, vol.57, issue.2-3, pp.203-225, 1995.
DOI : 10.1016/0377-0257(94)01329-G

D. Quéré, A. Ryck, and O. O. Ramdane, Liquid coating from a surfactant solution, Europhysics Letters (EPL), vol.37, issue.4, p.305, 1997.
DOI : 10.1209/epl/i1997-00147-6

A. De-ryck and D. Quéré, Fluid Coating from a Polymer Solution, Langmuir, vol.14, issue.7, pp.1911-1914, 1998.
DOI : 10.1021/la970584r

J. Ashmore, . Shen, H. Hp-kavehpour, G. Stone, and . Mckinley, Coating flows of non-Newtonian fluids: weakly and strongly elastic limits, Journal of Engineering Mathematics, vol.206, issue.11, pp.17-41, 2008.
DOI : 10.1007/s10665-007-9152-8

J. Piau, Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges, Journal of Non-Newtonian Fluid Mechanics, vol.144, issue.1, pp.1-29, 2007.
DOI : 10.1016/j.jnnfm.2007.02.011

URL : https://hal.archives-ouvertes.fr/hal-00352873

P. Coussot, Rheometry of pastes, suspensions, and granular materials, 2005.
DOI : 10.1002/0471720577

R. G. Larson, The structure and rheology of complex fluids, 1999.

A. and L. Goff, Figures d'impact : tunnels, vases, spirales et bambous, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00489654

I. Sodini, F. Remeuf, S. Haddad, and G. Corrieu, The relative effect of milk base, starter, and process on yogurt texture : a review. Critical reviews in food science and nutrition, pp.113-137, 2004.

G. Ovarlez, S. Rodts, X. Chateau, and P. Coussot, Phenomenology and physical origin of shear localization and shear banding in complex fluids, Rheologica Acta, vol.18, issue.IIB, pp.48831-844, 2009.
DOI : 10.1007/s00397-008-0344-6

URL : https://hal.archives-ouvertes.fr/hal-00454772

P. Coussot, Q. D. Nguyen, D. Huynh, and . Bonn, Avalanche behavior in yield stress fluids. Physical review letters, p.175501, 2002.

P. Coussot, H. Tabuteau, X. Chateau, L. Tocquer, and G. Ovarlez, Aging and solid or liquid behavior in pastes, Journal of Rheology, vol.50, issue.6, p.975, 2006.
DOI : 10.1122/1.2337259

G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot, J. Goyon et al., Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging, Physical Review E, vol.78, issue.3, p.78036307, 2008.
DOI : 10.1103/PhysRevE.78.036307

URL : https://hal.archives-ouvertes.fr/hal-00331834

R. Hohler and S. Cohen-addad, Rheology of liquid foam, Journal of Physics: Condensed Matter, vol.17, issue.41, p.1041, 2005.
DOI : 10.1088/0953-8984/17/41/R01

URL : https://hal.archives-ouvertes.fr/hal-00020039

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, Transient shear banding in a simple yield stress fluid. Physical review letters, p.208301, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00459317

A. Magnin and J. Piau, Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel, Journal of Non-Newtonian Fluid Mechanics, vol.36, pp.85-108, 1990.
DOI : 10.1016/0377-0257(90)85005-J

M. Cloitre, R. Borrega, F. Monti, and L. Leibler, Glassy dynamics and flow properties of soft colloidal pastes. Physical review letters, p.68303, 2003.

J. Salençon, Calcul à la rupture et analyse limite, 1983.

V. Bertola, F. Bertrand, H. Tabuteau, D. Bonn, and P. Coussot, Wall slip and yielding in pasty materials, Journal of Rheology, vol.47, issue.5, p.1211, 2003.
DOI : 10.1122/1.1595098

L. Cas-de, écoulement localisé autour de l'objet (zone rouge) Le reste du fluide est dans son état solide, p.23

D. Écoulement-autour, une plaque : solution proposée par Piau [30] Cisaillement localisé autour de la plaque dans une couche en forme de lentille (zone rouge) Le reste du fluide est dans son état solide, p.24

.. La-géométrie-du-problème-de-landau, décomposition du film entraîné par une plaque sortant d'un bain de fluide en trois zones : ménisque statique, ménisque dynamique et film d'épaisseur uniforme, p.37

G. Évolution-de, G. ??-pour-une-déformation-croissante, and .. , obtenue avec (a) le gel C5, (b) l'émulsion 82.5%, (c) la mousse et (d) le fromage blanc. La contrainte (? R ) est également représentée, le changement de pente nous fournit une information sur la déformation critique et la contrainte seuil, p.48

.. De-bingham, Les données de la plaque en déplacement représentées en termes de la contrainte de cisaillement ajustée par la contrainte seuil apparente en fonction du nombre, p.94

. Profil-de-la-vitesse-effective, le long de la plaque (à 6 cm de l'extrémité de plaque) au cours de sa pénétration à V=1 mm.s ?1 à travers une solution de carbopol (C6). La ligne en pointillée est située à v =-0.03 mm.s ?1, p.111

. Profils-de-vitesse, V y ) le long de la la plaque, extraits toujours à la même distance par rapport à la pointe (ici 5 cm) mais à des instants successifs au cours de la pénétration de la plaque à travers une solution de carbopol (C6), p.112

.. Force-mesurée-lors-du-premier-contact-entre-la-lame-et-un-liquide, Pour le glycérol et l'eau, mesures réalisées à l'aide d'une lame métallique (E = 0, 1 mm, L= 100 mm) et pour l'huile silicone à l'aide d'une lame de verre (E = 0, 13 mm, L= 70 mm), p.136

.. Étapes-de-la-mesure-en-arrachement-ménisque, ) : rapprochement de la lame de la surface du fluide) : premier contact lame/fluide et formation du ménisque, ) ménisque aligné avec la lame et (5) : rupture du, p.138

.. Nombres-adimensionnels-définis-dans-le-cas-d-'un-fluide-À-seuil, Nous désignons ici par 'effets visqueux' les effets additionnels au seuil d'écoulement (autrement dit le terme additionnel au seuil dans le modèle de Herschel Bulkley), p.131