N. Comme and . Stürmel, il est souvent possible de répercuter ces post-traitements sur les images des sources, de manière à se ramener à 18.3.1. Dans ce cas, il est nécessaire de pouvoir prendre en compte ces répercussions dans le modèle de mixage, autre cas de figure particulièrement courant de modification du mélange après mixage est celui de sa compression par un codeur audio tel que MPEG-1-layerIII (MP3 [146]) ou

. Layeriii and . Aac, En effet, j'ai supposé partout qu'au décodeur, c'est le mélange original qui est observé. Or, il serait intéressant de pouvoir considérer qu'au lieu du mélange original, c'est une version compressée dont dispose le décodeur, Cette configuration est en effet importante dans les applications compte tenu de l'importance grandissante que prennent les formats numériques dans la diffusion de la musique

P. Abrahamsen, A review of Gaussian random fields and correlation functions, Tech. Report Norsk Regnesentral, vol.878, 1997.

S. Achard and C. Jutten, Identifiability of post-nonlinear mixtures, Signal Processing Letters, IEEE, vol.12, issue.5, pp.423-426, 2005.

R. J. Adler and J. E. Taylor, Random fields and geometry, 2007.
DOI : 10.1137/1.9780898718980

V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano, The CIPIC HRTF database, Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575), pp.99-102, 2001.
DOI : 10.1109/ASPAA.2001.969552

J. Allen, Short term spectral analysis, synthesis, and modification by discrete Fourier transform , Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.25, issue.3, pp.235-238, 1977.

J. B. Allen and L. R. Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proceedings of the IEEE, vol.65, issue.11, pp.1558-1564, 1977.
DOI : 10.1109/PROC.1977.10770

S. Arberet, A. Ozerov, N. Q. Duong, E. Vincent, R. Gribonval et al., Nonnegative matrix factorization and spatial covariance model for under-determined reverberant audio source separation, 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), pp.1-4, 2010.
DOI : 10.1109/ISSPA.2010.5605570

URL : https://hal.archives-ouvertes.fr/inria-00541436

N. Aronszajn, La th??orie des noyaux reproduisants et ses applications Premi??re Partie, Mathematical Proceedings of the Cambridge Philosophical Society, vol.39, issue.03, pp.133-153, 1944.
DOI : 10.1017/S0305004100017813

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.
DOI : 10.1090/S0002-9947-1950-0051437-7

C. Avendano, Frequency-domain source identification and manipulation in stereo mixes for enhancement, suppression and re-panning applications, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No.03TH8684), pp.55-58, 2003.
DOI : 10.1109/ASPAA.2003.1285818

R. Badeau, Gaussian modeling of mixtures of non-stationary signals in the Time-Frequency domain (HR-NMF), 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp.253-256, 2011.
DOI : 10.1109/ASPAA.2011.6082264

URL : https://hal.archives-ouvertes.fr/hal-00945270

R. Badeau, N. Bertin, and E. Vincent, Stability Analysis of Multiplicative Update Algorithms and Application to Nonnegative Matrix Factorization, Proc. IEEE Intl. Conf. Acoust. Speech Signal Processing (ICASSP'11), pp.105-108, 2009.
DOI : 10.1109/TNN.2010.2076831

URL : https://hal.archives-ouvertes.fr/inria-00555984

L. Barrington, A. B. Chan, and G. Lanckriet, Modeling Music as a Dynamic Texture, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.3, pp.602-612, 2010.
DOI : 10.1109/TASL.2009.2036306

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.8810

S. Beack, T. Lee, M. Kim, and K. Kang, An Efficient Time-Frequency Representation for Parametric-Based Audio Object Coding, ETRI Journal, vol.33, issue.6, pp.945-948, 2011.
DOI : 10.4218/etrij.11.0211.0007

A. Belouchrani, K. A. Meraim, J. F. Cardoso, and E. Moulines, A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing, vol.45, issue.2, pp.434-444, 1997.
DOI : 10.1109/78.554307

L. Benaroya, F. Bimbot, and R. Gribonval, Audio source separation with a single sensor, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.1, pp.191-199, 2006.
DOI : 10.1109/TSA.2005.854110

URL : https://hal.archives-ouvertes.fr/inria-00544949

L. Benaroya, L. Mcdonagh, F. Bimbot, and R. Gribonval, Non negative sparse representation for Wiener based source separation with a single sensor, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., pp.613-616, 2003.
DOI : 10.1109/ICASSP.2003.1201756

URL : https://hal.archives-ouvertes.fr/inria-00574784

N. Bertin, Les factorisations en matrices non-negatives. approches contraintes et probabilistes, application a la transcription automatique de musique polyphonique, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00472896

A. Bertinet and T. C. Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, 2004.

M. Bierlaire, Introduction à l'optimisation différentiable, Enseignement des mathématiques, Presses polytechniques et universitaires romandes, 2006.

P. Bofill and M. Zibulevsky, Underdetermined blind source separation using sparse representations, Signal Processing, vol.81, issue.11, pp.2353-2362, 2001.
DOI : 10.1016/S0165-1684(01)00120-7

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

J. Breebaart, S. Van-de-par, and A. Kohlrausch, High-quality parametric spatial audio coding at low bit rates, AES 116th convention, 2004.

J. Capon, High-resolution frequency-wavenumber spectrum analysis, Proceedings of the IEEE, pp.1408-1418, 1969.
DOI : 10.1109/PROC.1969.7278

J. Cardoso, Blind signal separation: statistical principles, Proceedings of the IEEE, vol.86, issue.10, pp.2009-2026, 1998.
DOI : 10.1109/5.720250

A. T. Cemgil, S. J. Godsill, P. H. Peeling, and N. Whiteley, The Oxford Handbook of Applied Bayesian Analysis, no. ISBN13 : 978-0-19-954890-3, ch. Bayesian Statistical Methods for Audio and Music Processing, 2010.

A. T. Cemgil, P. Peeling, O. Dikmen, and S. Godsill, Prior Structures for Time-Frequency Energy Distributions, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp.151-154, 2007.
DOI : 10.1109/ASPAA.2007.4393007

B. Cheng, C. Ritz, and I. Burnett, Encoding Independent Sources in Spatially Squeezed Surround Audio Coding, 8th Pacific Rim Conference on Multimedia (PCM'07) (Hong Kong, China), pp.804-813, 2007.
DOI : 10.1007/978-3-540-77255-2_96

J. Chilès and P. Delfiner, Geostatistics : Modeling Spatial Uncertainty, 2012.
DOI : 10.1002/9781118136188

W. C. Chu, Speech coding algorithms : foundation and evolution of standardized coders, 2003.
DOI : 10.1002/0471668850

A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative matrix and tensor factorizations : Applications to exploratory multi-way data analysis and blind source separation, 2009.
DOI : 10.1002/9780470747278

A. Cichocki, L. Zhang, and T. Rutkowski, Blind separation and filtering using state space models, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), pp.78-81, 1999.
DOI : 10.1109/ISCAS.1999.777515

W. S. Cleveland and S. J. Devlin, Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting, Journal of the American Statistical Association, vol.41, issue.810345, pp.596-610, 1988.
DOI : 10.1080/01621459.1988.10478639

P. Comon, Independent component analysis, A new concept?, Signal Processing, vol.36, issue.3, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

URL : https://hal.archives-ouvertes.fr/hal-00417283

R. Crochiere, A weighted overlap-add method of short-time Fourier analysis/synthesis, Acoustics , Speech and Signal Processing, IEEE Transactions on, vol.28, issue.1, pp.99-102, 1980.

G. Darmois, Analyse generale des liaisons stochastiques: etude particuliere de l'analyse factorielle lineaire, Revue de l'Institut International de Statistique / Review of the International Statistical Institute, vol.21, issue.1/2, pp.2-8, 1953.
DOI : 10.2307/1401511

A. P. Dempster, N. M. Laird, and B. D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, vol.39, pp.1-38, 1977.

L. Deng, H. Leung, N. Gu, and Y. Yang, Recognizing Dance Motions with Segmental SVD, 2010 20th International Conference on Pattern Recognition, pp.1537-1540, 2010.
DOI : 10.1109/ICPR.2010.380

O. Dikmen and A. T. , Gamma Markov Random fields for audio source modelling, 2009 IEEE 17th Signal Processing and Communications Applications Conference, pp.589-601, 2010.
DOI : 10.1109/SIU.2009.5136409

O. Dikmen and A. T. , Unsupervised single-channel source separation using Bayesian NMF, Proc, App. of Signal Proc. to Audio and Acoust. (WASPAA), pp.93-96, 2009.

N. Q. Duong, Modélisation gaussienne de rang plein des mélanges audio convolutifs appliquée à la séparation de sources, 2011.

N. Q. Duong, H. Tachibana, E. Vincent, N. Ono, R. Gribonval et al., Multichannel harmonic and percussive component separation by joint modeling of spatial and spectral continuity, Acoustics, Speech and Signal Processing, IEEE Conference on, issue.11, 2011.

N. Q. Duong, E. Vincent, and R. Gribonval, Under-determined convolutive blind source separation using spatial covariance models, Acoustics, Speech and Signal Processing, IEEE Conference, issue.10, pp.9-12, 2010.

N. Q. Duong, E. Vincent, and R. Gribonval, Under-determined reverberant audio source separation using a full-rank spatial covariance model, Audio, Speech, and Language Processing, IEEE Transactions on, vol.18, issue.7, pp.1830-1840, 2010.

N. Q. Duong, E. Vincent, and R. Gribonval, Under-Determined Reverberant Audio Source Separation Using Local Observed Covariance and Auditory-Motivated Time-Frequency Representation , Latent Variable Analysis and Signal Separation, 9th International Conference on, pp.73-80, 2010.

J. Durrieu, B. David, and G. Richard, A musically motivated mid-level representation for pitch estimation and musical audio source separation, Selected Topics in Signal Processing, IEEE Journal, vol.5, issue.6, pp.1180-1191, 2011.

J. Durrieu, A. Ozerov, C. Févotte, G. Richard, and B. David, Main instrument separation from stereophonic audio signals using a source, Proc. 17th European Signal Proc. Conf. (EUSIPCO'09), pp.15-19, 2009.

J. Durrieu, G. Richard, and B. David, Singer melody extraction in polyphonic signals using source separation methods, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.
DOI : 10.1109/ICASSP.2008.4517573

J. Durrieu, G. Richard, and B. David, An iterative approach to monaural musical mixture de-soloing, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.105-108, 2009.
DOI : 10.1109/ICASSP.2009.4959531

J. L. Durrieu and J. P. Thiran, Musical Audio Source Separation Based on User-Selected F0 Track, Proc. of International Conference on Latent Variable Analysis and Signal Separation, 2012.
DOI : 10.1109/TSA.2005.860342

C. Duxbury, J. P. Bello, M. Davies, and M. Sandler, Complex domain onset detection for musical signals, Proc. Digital Audio Effects Workshop (DAFx, 2003.

V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, Subjective and Objective Quality Assessment of Audio Source Separation, IEEE Transactions on Audio, Speech, and Language Processing, vol.19, issue.7, 2011.
DOI : 10.1109/TASL.2011.2109381

URL : https://hal.archives-ouvertes.fr/inria-00567152

S. Essid, X. Lin, M. Gowing, G. Kordelas, A. Aksay et al., A multi-modal dance corpus for reseach into interaction between humans in virtual environments, 2012.

S. Ewert and M. Müller, Score-informed voice separation for piano recordings, Proceedings of the International Society for Music Information Retrieval Conference(ISMIR), pp.245-250, 2011.

. Zentrum-fuer-informatik and G. Dagstuhl, Using score-informed constraints for NMF-based source separation, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2012.

C. Falch, L. Terentiev, and J. Herre, Spatial audio object coding with enhanced audio object separation, 13th International Conference on Digital Audio Effects (DAFx-10), 2010.

G. Fant, J. Liljencrants, and Q. Lin, A four-parameter model of glottal flow, STL-QPSR, vol.4, pp.1-13, 1985.

M. Feder and E. Weinstein, Parameter estimation of superimposed signals using the EM algorithm, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.4, pp.477-489, 1988.
DOI : 10.1109/29.1552

C. Févotte, N. Bertin, and J. Durrieu, Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis, Neural Computation, vol.14, issue.3, pp.793-830, 2009.
DOI : 10.1016/j.sigpro.2007.01.024

C. Févotte and J. Cardoso, Maximum likelihood approach for blind audio source separation using time-frequency Gaussian source models, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005., pp.78-81, 2005.
DOI : 10.1109/ASPAA.2005.1540173

C. Févotte and J. Idier, Algorithms for Nonnegative Matrix Factorization with the ??-Divergence, Neural Computation, vol.11, issue.9, pp.2421-2456, 2011.
DOI : 10.1109/TASL.2009.2034186

C. Févotte and A. Ozerov, Notes on Nonnegative Tensor Factorization of the Spectrogram for Audio Source Separation: Statistical Insights and Towards Self-Clustering of the Spatial Cues, 7th International Symposium on Computer Music Modeling and Retrieval, 2010.
DOI : 10.1007/978-3-642-23126-1_8

D. Fitzgerald, Harmonic/percussive separation using median filtering, Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), 2010.

D. Fitzgerald and M. Cranitch, Sound Source Separation Using Shifted Non-Negative Tensor Factorisation, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, 2006.
DOI : 10.1109/ICASSP.2006.1661360

D. Fitzgerald, M. Cranitch, and E. Coyle, On the use of the beta divergence for musical source separation, IET Irish Signals and Systems Conference (ISSC 2009), 2008.
DOI : 10.1049/cp.2009.1711

. Flexcode, Deliverable D-1.1 : Baseline Source Coder, 2008.

B. Fuentes, G. Badeau, and . Richard, Blind Harmonic Adaptive Decomposition Applied to Supervised Source Separation, Proceedings European Signal Processing Conference, p.2012, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00945288

B. Fuentes, A. Liutkus, R. Badeau, and G. Richard, Probabilistic model for main melody extraction using Constant-Q transform, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.2012
DOI : 10.1109/ICASSP.2012.6289131

URL : https://hal.archives-ouvertes.fr/hal-00945290

H. Fujisaki and M. Ljungqvist, Proposal and evaluation of models for the glottal source waveform, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1605-1608, 1986.
DOI : 10.1109/ICASSP.1986.1169239

J. Ganseman, G. J. Mysore, J. S. Abel, and P. Scheunders, Source separation by score synthesis , International Computer Music Conference, 2010.

T. Gerber, M. Dutasta, L. Girin, and C. Févotte, Professionally-produced music separation guided by covers, Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), p.2012
URL : https://hal.archives-ouvertes.fr/hal-00807027

O. Gillet and G. Richard, Transcription and Separation of Drum Signals From Polyphonic Music, IEEE Transactions on Audio, Speech, and Language Processing, vol.16, issue.3, pp.529-540, 2008.
DOI : 10.1109/TASL.2007.914120

L. Girin, A. Liutkus, G. Richard, and R. Badeau, Procédé et dispositif de formation d'un signal mixé numérique audio, procédé et dispositif de séparation de signaux, et signal correspondant , Demande de brevet no, 2010.

P. Smaragdis and G. J. Mysore, Relative pitch estimation of multiple instruments, Proc. IEEE Intl. Conf. Acoust. Speech Signal Processing, pp.313-316, 2009.

T. Gneiting, Compactly Supported Correlation Functions, Journal of Multivariate Analysis, vol.83, issue.2
DOI : 10.1006/jmva.2001.2056

Z. Goh, K. Tan, and T. G. Tan, Postprocessing method for suppressing musical noise generated by spectral subtraction, IEEE Transactions on Speech and Audio Processing, vol.6, issue.3, pp.287-292, 1998.

S. Gorlow and S. Marchand, Informed source separation: Underdetermined source signal recovery from an instantaneous stereo mixture, 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp.309-312, 2011.
DOI : 10.1109/ASPAA.2011.6082312

URL : https://hal.archives-ouvertes.fr/hal-00646276

S. Gorlow and S. Marchand, Informed Audio Source Separation Using Linearly Constrained Spatial Filters, IEEE Transactions on Audio, Speech, and Language Processing, vol.21, issue.1, 2012.
DOI : 10.1109/TASL.2012.2208629

URL : https://hal.archives-ouvertes.fr/hal-00725428

R. M. Gray, Source coding theory, 1990.
DOI : 10.1007/978-1-4613-1643-5

R. M. Gray, Toeplitz and Circulant Matrices: A Review, Foundations and Trends?? in Communications and Information Theory, vol.2, issue.3, 2001.
DOI : 10.1561/0100000006

D. W. Griffin and J. S. Lim, Signal estimation from modified short-time Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.32, issue.2, pp.236-243, 1984.
DOI : 10.1109/TASSP.1984.1164317

T. Gustafsson, B. D. Rao, and M. Trivedi, Source localization in reverberant environments : modeling and statistical analysis, Speech and Audio Processing, IEEE Transactions on, vol.11, issue.6, pp.791-803, 2003.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

Y. Han and C. Raphael, Informed source separation of orchestra and soloist, Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), pp.315-320, 2010.

R. A. Harshman, Foundations of the PARAFAC procedure : Models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, p.84, 1970.

T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, Statistical Science, vol.1, issue.3, pp.297-310, 1986.
DOI : 10.1214/ss/1177013604

M. Helén and T. Virtanen, Separation of drums from polyphonic music using non-negative matrix factorization and support vector machine, Proc. 13th European Signal Processing Conference (EUSIPCO) (Antalaya, Turkey), 2005.

R. Hennequin, Décomposition de spectrogrammes musicaux informé par des modèles de synthèse spectrale, 2001.

R. Hennequin, B. David, and R. Badeau, Score informed audio source separation using a parametric model of non-negative spectrogram, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.
DOI : 10.1109/ICASSP.2011.5946324

URL : https://hal.archives-ouvertes.fr/hal-00945294

N. Henrich, C. , and B. Doval, Spectral correlates of voice open quotient and glottal flow asymmetry : theory, limits and experimental data, Proceedings of EUROSPEECH, p.1, 2001.

J. Herre, From joint stereo to spatial audio coding, Proc. Digital Audio Effects Workshop (DAFx, 2004.

J. Herre and S. Disch, New Concepts in Parametric Coding of Spatial Audio: From SAC to SAOC, Multimedia and Expo, 2007 IEEE International Conference on, pp.1894-1897, 2007.
DOI : 10.1109/ICME.2007.4285045

T. Hofmann, Probabilistic latent semantic analysis, Proc. of Uncertainty in Artificial Intelligence , UAI'99, pp.289-296, 1999.

R. Huber and B. Kollmeier, PEMO-Q—A New Method for Objective Audio Quality Assessment Using a Model of Auditory Perception, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.6, pp.1902-1911, 2006.
DOI : 10.1109/TASL.2006.883259

D. A. Huffman, A Method for the Construction of Minimum-Redundancy Codes, Proceedings of the IRE, vol.40, issue.9, pp.1098-1101, 1952.
DOI : 10.1109/JRPROC.1952.273898

A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis, 2001.

E. T. Jaynes and G. L. Bretthorst, Probability Theory : The Logic of Science, 2003.
DOI : 10.1017/CBO9780511790423

A. G. Journel and C. J. Huijbregts, Mining geostatistics, 1978.

T. Jung, S. Makeig, C. Humphries, T. Lee, M. J. Mckeown et al., Removing electroencephalographic artifacts by blind source separation, Psychophysiology, vol.37, issue.2, pp.163-178, 2000.
DOI : 10.1111/1469-8986.3720163

C. Jutten, Advances in nonlinear blind source separation, Proc. of the 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation (ICA2003, pp.245-256, 2003.

C. Jutten and J. Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, vol.24, issue.1, pp.1-10, 1991.
DOI : 10.1016/0165-1684(91)90079-X

C. Jutten and A. Taleb, Source Separation : From Dusk Till Dawn, Proc. Int. Symp. Independent Component Analysis and Blind Signal Separation, pp.15-26, 2000.

M. Khadkevich, T. Fillon, G. Richard, and M. Omologo, A probabilistic approach to simultaneous extraction of beats and downbeats, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1-4, 2012.
DOI : 10.1109/ICASSP.2012.6287912

B. J. King and L. Atlas, Single-Channel Source Separation Using Complex Matrix Factorization, IEEE Transactions on Audio, Speech, and Language Processing, vol.19, issue.8, pp.2591-2597, 2011.
DOI : 10.1109/TASL.2011.2156786

D. E. Kirk, Optimal Control Theory : An Introduction, 2004.

W. B. Kleijn, A basis for source coding, 2008.

W. B. Kleijn and M. Y. Kim, Quantization with an adjustable codeword length penalty, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4228-4231, 2011.
DOI : 10.1109/ICASSP.2011.5947286

W. B. Kleijn and A. Ozerov, Rate Distribution Between Model and Signal, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp.243-246, 2007.
DOI : 10.1109/ASPAA.2007.4393033

R. Kompass, A Generalized Divergence Measure for Nonnegative Matrix Factorization, Neural Computation, vol.39, issue.3, pp.780-791, 2007.
DOI : 10.1162/089976602320264033

J. Kornycky, B. Günel, and A. M. Kondoz, Comparison of subjective and objective evaluation methods for audio source separation, pp.1-10, 2008.

D. G. Krige, A statistical approach to some basic mine valuation problems on the Witwatersrand, Journal of the Chemical, Metallurgical and Mining Society, vol.52, pp.119-139, 1951.

J. , L. Roux, E. Vincent, Y. Mizuno, H. Kameoka et al., Consistent Wiener filtering : Generalized time-frequency masking respecting spectrogram consistency, Proc. 9th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2010), pp.89-96, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00544072

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems (NIPS), pp.556-562, 2001.

M. Li, J. Klejsa, and W. B. Kleijn, Distribution Preserving Quantization With Dithering and Transformation, IEEE Signal Processing Letters, vol.17, issue.12, pp.1014-1017, 2010.
DOI : 10.1109/LSP.2010.2087749

A. Liutkus, R. Badeau, and G. Richard, Informed Source Separation Using Latent Components, 9th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA'10) (St Malo, 2010.
DOI : 10.1007/978-3-642-15995-4_62

URL : https://hal.archives-ouvertes.fr/hal-00945298

A. Liutkus, R. Badeau, and G. Richard, Gaussian Processes for Underdetermined Source Separation, IEEE Transactions on Signal Processing, vol.59, issue.7, pp.3155-3167, 2011.
DOI : 10.1109/TSP.2011.2119315

URL : https://hal.archives-ouvertes.fr/hal-00643951

A. Liutkus, R. Badeau, and G. Richard, Multi-dimensional signal separation with Gaussian processes, 2011 IEEE Statistical Signal Processing Workshop (SSP), 2011.
DOI : 10.1109/SSP.2011.5967715

A. Liutkus, A. Dremeau, D. Alexiadis, S. Essid, and P. Daras, Analysis of dance movements using gaussian processes, Proceedings of the 20th ACM international conference on Multimedia, MM '12, 2012.
DOI : 10.1145/2393347.2396492

URL : https://hal.archives-ouvertes.fr/hal-00718791

A. Liutkus, S. Gorlow, N. Sturmel, S. Zhang, L. Girin et al., Informed source separation : a comparative study, Proceedings European Signal Processing Conference, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00809525

A. Liutkus and P. Leveau, Separation of music+effects sound track from several international versions of the same movie, Audio Engineering Society Convention 128, 2010.

A. Liutkus, A. Ozerov, R. Badeau, and G. Richard, Spatial coding-based informed source separation, Proceedings European Signal Processing Conference, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00869618

A. Liutkus, J. Pinel, R. Badeau, L. Girin, and G. Richard, Informed source separation through spectrogram coding and data embedding, Signal Processing, vol.92, issue.8, pp.1937-1949, 2012.
DOI : 10.1016/j.sigpro.2011.09.016

URL : https://hal.archives-ouvertes.fr/hal-00643957

A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, and G. Richard, Adaptive filtering for music/voice separation exploiting the repeating musical structure, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1-4
DOI : 10.1109/ICASSP.2012.6287815

URL : https://hal.archives-ouvertes.fr/hal-00945300

H. Lodhi, C. Saunders, J. Shawe-taylor, N. Cristianini, and C. Watkins, Text classification using string kernels, Journal of Machine Learning Research, vol.2, pp.419-444, 2002.

D. Mackay, Gaussian processes -a replacement for supervised neural networks ?, Neural Information Processing Systems (NIPS), 1997.

D. J. Mackay, Introduction to Gaussian processes, Neural Networks and Machine Learning, pp.133-165, 1998.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, J. Mach. Learn. Res, vol.11, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

T. Masahiro and N. Masahide, Evaluation method for dance action based on motion capture analysis, Eizo Joho Media Gakkai Gijutsu Hokoku, vol.29, pp.33-36, 2005.

G. Matheron, The intrinsic random functions and their applications, Advances in Applied Probability, vol.98, issue.03, pp.439-468, 1973.
DOI : 10.1017/S0001867800039379

A. Melkumyan and F. Ramos, A sparse covariance function for exact gaussian process inference in large datasets, IJCAI'09 : Proceedings of the 21st international joint conference on Artifical intelligence, pp.1936-1942, 2009.

M. Nakano, H. Kameoka, J. Le-roux, Y. Kitano, N. Ono et al., Convergenceguaranteed multiplicative algorithms for non-negative matrix factorization with betadivergence, Proc. IEEE International Workshop on Machine Learning for Signal In Processing, 2010.

M. Nakano, J. Le-roux, H. Kameoka, N. Ono, and S. Sagayama, Infinite-state spectrum model for music signal analysis, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1972-1975, 2011.
DOI : 10.1109/ICASSP.2011.5946896

H. Niessner and K. Reichert, On computing the inverse of a sparse matrix, International Journal for Numerical Methods in Engineering, vol.6, issue.10, pp.1513-1526, 1983.
DOI : 10.1002/nme.1620191009

J. Nikunen and T. Virtanen, Object-based audio coding using non-negative matrix factorization for the spectrogram representation, 128th Audio Engineering Society Convention, 2010.

J. Nikunen, T. Virtanen, and M. Vilermo, Multichannel audio upmixing based on non-negative tensor factorization representation, 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2011.
DOI : 10.1109/ASPAA.2011.6082296

R. K. Olsson and L. K. Hansen, Linear state-space models for blind source separation, Journal of Machine Learning Research, vol.7, pp.2585-2602, 2006.

A. Ozerov and C. Févotte, Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures for Audio Source Separation, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.3, pp.550-563, 2010.
DOI : 10.1109/TASL.2009.2031510

A. Ozerov, C. Févotte, R. Blouet, and J. Durrieu, Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.257-260, 2011.
DOI : 10.1109/ICASSP.2011.5946389

URL : https://hal.archives-ouvertes.fr/inria-00564851

A. Ozerov and W. B. Kleijn, Flexible Quantization of Audio and Speech based on the Autoregressive Model, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007.
DOI : 10.1109/ACSSC.2007.4487270

. Acoust, Speech Signal Processing, pp.2497-2500, 2009.

A. Ozerov, A. Liutkus, R. Badeau, and G. Richard, Informed source separation: Source coding meets source separation, 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2011.
DOI : 10.1109/ASPAA.2011.6082285

URL : https://hal.archives-ouvertes.fr/inria-00610526

A. Ozerov, A. Liutkus, R. Badeau, and G. Richard, Coding-Based Informed Source Separation: Nonnegative Tensor Factorization Approach, IEEE Transactions on Audio, Speech, and Language Processing, vol.21, issue.8, 2012.
DOI : 10.1109/TASL.2013.2260153

URL : https://hal.archives-ouvertes.fr/hal-00869603

A. Ozerov, P. Philippe, R. Gribonval, and F. Bimbot, One microphone singing voice separation using source-adapted models, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005., pp.90-93, 2005.
DOI : 10.1109/ASPAA.2005.1540176

URL : https://hal.archives-ouvertes.fr/inria-00564491

A. Ozerov, E. Vincent, and F. Bimbot, A general flexible framework for the handling of prior information in audio source separation, Audio, Speech, and Language Processing, IEEE Transactions on PP, vol.1, issue.99, 2011.

L. Parra and C. Spence, Convolutive blind separation of non-stationary sources, Speech and Audio Processing, IEEE Transactions on, vol.8, issue.3, pp.320-327, 2000.

M. Parvaix, Séparation de sources audio informée par tatouage pour mélanges linéaires instantanés stationnaires, 2010.

M. Parvaix and L. Girin, Informed source separation of underdetermined instantaneous stereo mixtures using source index embedding, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010.
DOI : 10.1109/ICASSP.2010.5495983

URL : https://hal.archives-ouvertes.fr/hal-00486804

M. Parvaix, L. Girin, and J. Brossier, A watermarking-based method for single-channel audio source separation, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.101-104, 2009.
DOI : 10.1109/ICASSP.2009.4959530

URL : https://hal.archives-ouvertes.fr/hal-00361713

M. Parvaix, L. Girin, and J. Brossier, A Watermarking-Based Method for Informed Source Separation of Audio Signals With a Single Sensor, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.6, pp.1464-1475, 2010.
DOI : 10.1109/TASL.2009.2035216

URL : https://hal.archives-ouvertes.fr/hal-00486809

M. Parvaix, L. Girin, L. Daudet, J. Pinel, and C. Baras, Hybrid coding/indexing strategy for informed source separation of linear instantaneous under-determined audio mixtures, Proceedings of 20th International Congress on Acoustics, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535684

R. Pasco, Source coding algorithms for data compression, 1976.

J. Pinel, L. Girin, and C. Baras, A high-capacity watermarking technique for audio signals based on mdct-domain quantization, Proceedings of the 20th International Congress on Acoustics (Sydney), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00534502

J. H. Plasberg and W. B. Kleijn, The Sensitivity Matrix: Using Advanced Auditory Models in Speech and Audio Processing, IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.1, pp.310-319, 2007.
DOI : 10.1109/TASL.2006.876722

J. Quiñonero-candela, C. E. Rasmussen, and R. Herbrich, A unifying view of sparse approximate Gaussian process regression, The Journal of Machine Learning Research, vol.6, pp.1939-1959, 2005.

Z. Rafii and B. Pardo, A simple music/voice separation method based on the extraction of the repeating musical structure, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.221-224, 2011.
DOI : 10.1109/ICASSP.2011.5946380

C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning (adaptive computation and machine learning), 2005.

R. Renner and U. Maurer, About the mutual (conditional) information, Proceedings IEEE International Symposium on Information Theory,, 2002.
DOI : 10.1109/ISIT.2002.1023636

J. J. Rissanen, Generalized Kraft Inequality and Arithmetic Coding, IBM Journal of Research and Development, vol.20, issue.3, pp.198-203, 1976.
DOI : 10.1147/rd.203.0198

M. N. Schmidt, Function factorization using warped Gaussian processes, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553492

M. N. Schmidt and H. Laurberg, Non-negative matrix factorization with Gaussian process priors, Computational Intelligence and Neuroscience ID, p.361705, 2008.

M. N. Schmidt and M. Morup, Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation, 06 : Proc. of the 8th Int. Conf. on Independent Component Analysis and Signal Separation, 2006.
DOI : 10.1007/11679363_87

B. Scholkopf and A. J. Smola, Learning with kernels : Support vector machines, regularization, optimization, and beyond, 2001.

M. Seeger, GAUSSIAN PROCESSES FOR MACHINE LEARNING, International Journal of Neural Systems, vol.14, issue.02, pp.69-106, 2004.
DOI : 10.1142/S0129065704001899

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

M. Shashanka, B. Raj, and P. Smaragdis, Sparse overcomplete latent variable decomposition of counts data, Neural Information Processing Systems (NIPS), 2007.

T. Shiratori and K. Ikeuchi, Synthesis of Dance Performance Based on Analyses of Human Motion and Music, IPSJ Online Transactions, vol.1, pp.80-93, 2008.
DOI : 10.2197/ipsjtrans.1.80

T. Shiratori, A. Nakazawa, and K. Ikeuchi, Detecting dance motion structure through music analysis, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings., pp.1-6, 2004.
DOI : 10.1109/AFGR.2004.1301641

U. Simsekli and A. T. , Score guided musical source separation using generalized coupled tensor factorization, Proceedings European Signal Processing Conference, 2012.

P. Smaragdis, Non-negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs, 04 : Proc. of the 8th Int. Conf. on Independent Component Analysis and Signal Separation, 2004.
DOI : 10.1007/978-3-540-30110-3_63

P. Smaragdis and J. C. Brown, Non-negative matrix factorization for polyphonic music transcription, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No.03TH8684), pp.177-180, 2003.
DOI : 10.1109/ASPAA.2003.1285860

P. Smaragdis and G. J. Mysore, Separation by “humming”: User-guided sound extraction from monophonic mixtures, 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp.69-72, 2009.
DOI : 10.1109/ASPAA.2009.5346542

P. Smaragdis, M. Shashanka, B. Raj, and G. J. Mysore, Probabilistic factorization of nonnegative data with entropic co-occurrence constraints, 09 : Proc. of the 8th Int. Conf. on Independent Component Analysis and Signal Separation, 2009.

E. Snelson, Local and global sparse gaussian process approximations, Proceedings of Artificial Intelligence and Statistics (AISTATS), vol.2, pp.524-531, 2007.

E. Snelson and Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs, Neural Information Processing Systems (NIPS), pp.1257-1264, 2006.

P. Sollich, M. Urry, and C. Coti, Kernels and learning curves for Gaussian process regression on random graphs, Advances in Neural Information Processing Systems, vol.22, pp.1723-1731, 2009.

N. Sturmel and L. Daudet, Informed Source Separation Using Iterative Reconstruction, IEEE Transactions on Audio, Speech, and Language Processing, vol.21, issue.1
DOI : 10.1109/TASL.2012.2215597

N. Sturmel, A. Liutkus, J. Pinel, L. Girin, S. Marchand et al., Linear mixing models for active listening of music productions in realistic studio conditions, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00790783

A. Taleb and C. Jutten, Source separation in post-nonlinear mixtures, IEEE Transactions on Signal Processing, vol.47, issue.10, pp.2807-2820, 1999.
DOI : 10.1109/78.790661

Y. W. Teh and M. I. Jordan, Hierarchical Bayesian nonparametric models with applications, Bayesian Nonparametrics : Principles and Practice, 2010.

H. Valpola, A. Honkela, and J. Karhunen, An ensemble learning approach to nonlinear dynamic blind source separation using state-space models, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), pp.460-465, 2002.
DOI : 10.1109/IJCNN.2002.1005516

S. Van-de-par, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen, A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration, EURASIP Journal on Advances in Signal Processing, vol.2005, issue.9, pp.1292-1304, 2005.
DOI : 10.1155/ASP.2005.1292

J. Vanhatalo and A. Vehtari, Modelling local and global phenomena with sparse gaussian processes, Proc. of 24th Conference on Uncertainty in Artificial Intelligence (UAI), pp.571-578, 2008.

J. E. Vila-forcen, O. Koval, and S. Voloshynovskiy, Distributed single source coding with side information, IS&T/SPIE16th annual symposium : electronic imaging, 2004.

E. Vincent, S. Araki, and P. Bofill, The 2008 Signal Separation Evaluation Campaign: A Community-Based Approach to Large-Scale Evaluation, 09 : Proc. of the 8th Int. Conf. on Independent Component Analysis and Signal Separation, pp.734-741, 2009.
DOI : 10.1109/TASL.2007.899176

URL : https://hal.archives-ouvertes.fr/inria-00544168

E. Vincent, S. Araki, F. J. Theis, G. Nolte, P. Bofill et al., The signal separation evaluation campaign Achievements and remaining challenges, Signal Processing, issue.8, pp.92-1928, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00579398

E. Vincent, S. Arberet, and R. Gribonval, Underdetermined Instantaneous Audio Source Separation via Local Gaussian Modeling, Lecture Notes in Computer Science, vol.52, issue.7, pp.775-782, 2009.
DOI : 10.1109/TSP.2004.828896

URL : https://hal.archives-ouvertes.fr/hal-00482223

E. Vincent, N. Bertin, and R. Badeau, Adaptive Harmonic Spectral Decomposition for Multiple Pitch Estimation, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.3, pp.528-537, 2010.
DOI : 10.1109/TASL.2009.2034186

URL : https://hal.archives-ouvertes.fr/inria-00544094

E. Vincent, R. Gribonval, and C. Févotte, Performance measurement in blind audio source separation, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.4, pp.1462-1469, 2006.
DOI : 10.1109/TSA.2005.858005

URL : https://hal.archives-ouvertes.fr/inria-00544230

E. Vincent, R. Gribonval, and M. Plumbley, Oracle estimators for the benchmarking of source separation algorithms, Signal Processing, vol.87, issue.8, 1933.
DOI : 10.1016/j.sigpro.2007.01.016

URL : https://hal.archives-ouvertes.fr/inria-00545156

E. Vincent, G. M. Jafari, A. Abdallah, D. M. Plumbley, and E. M. Davies, Probabilistic modeling paradigms for audio source separation, Machine Audition : Principles, Algorithms and Systems, IGI Global, pp.162-185, 2010.

T. Virtanen, Algorithm for the separation of harmonic sounds with time-frequency smoothness constraint, Proc. of the 6th Conf. on Digital Audio Effects (DAFx-03), pp.35-40, 2003.

G. K. Wallace, The JPEG still picture compression standard, Communications of the ACM, vol.34, issue.4, pp.30-44, 1991.
DOI : 10.1145/103085.103089

N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series with engineering applications, p.1949

C. K. Williams, Prediction with Gaussian processes : From linear regression to linear prediction and beyond, Learning and Inference in Graphical Models, Kluwer, 1999.

C. K. Williams, Computation with Infinite Neural Networks, Neural Computation, vol.2, issue.5, pp.1203-1216, 1998.
DOI : 10.1109/5.58326

J. W. Woods, Multidimensional signal, image, and video processing and coding, 2006.

O. Yilmaz and S. Rickard, Blind Separation of Speech Mixtures via Time-Frequency Masking, IEEE Transactions on Signal Processing, vol.52, issue.7, pp.1830-1847, 2004.
DOI : 10.1109/TSP.2004.828896

R. Zamir, The rate loss in the Wyner-Ziv problem, IEEE Transactions on Information Theory, vol.42, issue.6, pp.2073-2084, 1996.
DOI : 10.1109/18.556597

S. Zhang, Informed source separation by local inversion, Projet ANR DReaM, 2012.

D. Y. Zhao, J. Samuelsson, and M. Nilsson, On entropy-constrained vector quantization using gaussian mixture models, IEEE Transactions on Communications, vol.56, issue.12, pp.2094-2104, 2008.
DOI : 10.1109/TCOMM.2008.070357