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Chapter 1

Introduction

1.1 Nonlinear Optics

Nonlinear optical phenomena [1, 2] includes all these physal processes orig-
inating from the interaction of light with matter, that modi fy the incoming
electromagnetic eld creating a new radiation of di erent f requency and wave-
length. This is in contrast to linear optics, where the light-beam preserves its
frequency and is only deviated, re ected, di used or absorted by the material
and is described by the common laws of optics of Newton, SnelFresnel and
Maxwell. Nonlinear optics takes place when a material inteacts with an intense
light so that its response yields fundamentally di erent properties than the one
observed in the linear regime; actually an high photon densy is required in
order to allow three-body or higher order processes. As a cgequence, until
the development of laser in 1960, there was no way to accesseim, although
theoretical prediction have been formulated already in 193 [3]. The rst exper-
imental evidence of nonlinear phenomena has been observed1961 by Franken
et al. [4]. They detected the frequency doubling of a radiation pasing through
a nonlinear crystal; the process was interpreted as the genation of second
harmonic in visible light, a phenomenon previously known fo radio waves only.
Since the linear and nonlinear optics involve a di erent nunber of photons,
they can be distinguished with respect to the intensity of the eld (i.e., the
number of photons) that enters into their description. Consequently, while the
linear response of the material is proportional to the ampltude of the applied
eld, in nonlinear optics it is related to the square or the higher powers of this
eld. Formally, one can expand the polarization of the material in terms of the
eld as [2]:
P= WE+ QPEE+ OEEE +::: (1.1)

where the term @ determines the linear optical response and all the e ects de
scribed by the other terms are referred to as nonlinear. Obausly, this concerns
a variety of e ects and di erent order processes that have their own properties.
As an example, second order e ects are completely absent fonaterials with in-

version symmetry and a light source that can be described whin the dipole ap-

proximation. On the contrary, third order e ects (that are n ot dipole-forbidden)

are present. As a consequence, the susceptibilities) depend directly on the
material and their e ciency can be very di erent.

7
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Even within the same order there are processes that exhibit aompletely dif-
ferent nature. Second order phenomena indeed, comprise theecond-harmonic
generation together with the sum- or di erence-frequency @neration (i.e., the
creation of a beam from the sum/di erence of two incoming beans), the optical
parametric ampli cation (it consists in the splitting of on e incoming photon into
two outgoing ones that conserve the initial energy) or the opical recti cation
i.e., the creation of a DC eld from an intense AC eld [2]. Thi ngs are much
more complex to higher orders, so that at third order one has he two photon
absorption, the third harmonic generation, the self-focaization etc. or, through
a polarization of the system that breaks the inversion symméy, it can give
rise to second order e ects too as it happens in the electric eld induced sec-
ond harmonic (EFISH). Increasing the order of the process, tie cross section is
diminished and higher order e ects are smaller and less intese.

The intense light induces a nonlinear response in the mateal on a micro-
scopic level that in turn modi es the optical response. As a onsequence, any
nonlinear optical process can be described in two steps. Thest step is related
to the microscopic structure of the material and thus goverred by the quantum
mechanics, while the second step is described by Maxwell'sjeations in solids.
The process should hence be described both at the microscemnd macroscopic
level. As an example SHG has a microscopic origin but phase rnehing between
the macroscopic elds is a necessary condition to have a detéable signal.

1.2 Second Harmonic Generation

In this thesis | will exclusively consider the second-harmaic generation (SHG)
nonlinear process [1, 2, 5]. This is one of the most widely udenonlinear optical
e ects and one of the easiest to describe, involving only thee-body interaction.
The simpler picture to describe the process is to consider ahtee level system
(see Fig.1.1). One of the two incoming photons excites an et&ron of the system
which is promoted to an empty state. It is excited by the secom photon from
that level to the third one. Once it relaxes to the equilibrium ground-state (i.e.,
the rst level), it emits an unique photon that, because of energy conservation,
has twice the energy and the frequency of the original photos.

However, the steps are not independent and SHG is not a threstep pro-
cess as depicted above, but a single three-body interactiothat takes place in
a unique step. The intermediate states can be thought awirtual states and
they do not need to correspond to an energy level of the systemThis is of
course a simpli cation of what happens in the many-body eletron system of
the crystal, where all the particles are interacting and desribed by an unique
many-body wave function. As a consequence, although it is deribed by the
macroscopic second-order susceptibility tensor @ | this quantity includes the
many-body microscopic interactions such as the screeningaviations due to crys-
tal local- elds and the electron-hole interaction. As an experimental tool, second
harmonic generation has variety of applications that have é&veloped during the
last decades. The major use of the process is to double the soe frequency
in laser systems, obtaining an intense secondary beam at walength normally
unavailable [6{9]. Indeed one can use existing lasers to a@ve new frequencies
without the design and development of new lasing media, butisnply making the
beam pass through a nonlinear crystal. Nowadays it is widelyexploited in labo-
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Figure 1.1: Scheme of the Second Harmonic Generation proces

ratory and there exists also the rst commercial implementations of green-laser
pointer. In order to have an intense outgoing signal there a¢ some technical
conditions to be ful lled. The most important is the phase matching between
the k-vectors of the two radiations: k(2!') k(!) = 0. This allows to have

constructive interference of the SHG beam outside the mateal. Moreover the

medium should have a large second-order dielectric suscepility @ at the

desired frequency so that the signal is intense enough to beaussequently em-
ployed. These properties are material dependent and therera a lot of works

devoted to the research of high-e ciency nonlinear materids [6, 10{12]. Fur-

thermore, SHG is also interesting for the development of optelectronic devices
as frequency-doubling wave-guides [13].

The other great area of application of the SHG is its use as a mbe both
for spectroscopy and microscopy. Indeed, for centro-symntec systems SHG
is dipole forbidden and is consequently highly sensitive tasymmetry breaking.
This makes of it a selective probe for surfaces and interfaseof centro-symmetric
media, where the bulk will not contribute and the frequency-doubled signal is
therefore characteristic of the rst few atomic layers clos to the discontinuity. It
allows also a time-resolved in-situ monitoring of the surfae reconstruction, of its
chemistry, once molecules or other adsorbates are depositen it or can be used
for measuring the surface coverage [14, 15]. Its applicatits range over a great
variety of materials: metal surfaces, metal-electrolyte nterfaces, semiconduc-
tors, oxides, insulator surfaces/interfaces etc. (see [1617] and Refs. therein).
Also thermodynamical phase interfaces, such as liquid-ligid or liquid-air inter-
faces have been studied through SHG. In addition to the numeawus applications
of interface-SHG to the study of molecular adsorption, SHG &periments have
been frequently used to determine the average orientationfamolecules adsorbed
at surfaces, through measurements of the polarization depelence and phase of
the molecular SHG [16]. In the last decade it has a rmed as a skctive non-
destructive spectroscopy technique for the study of surfages [18], superlattices
[19{21] and interfaces [17, 22, 23].

Recently, second harmonic imaging microscopes (SHIM) haveeen employed
to the study and imaging of cells and biological membranes. ight is a non-
destructive probe that allows to study in-vivo biological systems in their envi-
ronment [24{26]. In particular the SHG process revealed to le very e cient, in
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particular for collagene.

1.2.1 SHG Theoretical Description

The theoretical description of the SHG process has been addssed by scientists
for several decades. It has represented indeed a dicult tals and nowadays
there is a large variety of approaches that treat this nonlirear optical process
at di erent level. In literature there are classical and semiclassical approaches
or semiempirical derivations [27{34] that tries to give an acurate description of

SHG, revealing useful particularly in the interpretation and analysis of exper-
imental results. There is instead a general lack of ab initiodescription of the

process.

Ab initio calculations, especially the ones based on DensjtFunctional The-
ory (DFT), Time-Dependent Density Functional Theory (TDDF T) or Many-
Body Perturbation Theory (MBPT), revealed to be useful both in the interpre-
tation and prediction of the materials properties. In parti cular, a great e ort
has been devoted to the description of the optical responsend latest results
shows an excellent agreement with the experiments. Their kel of accuracy and
the possibility of treating from rst principle (i.e., para meter free) the descrip-
tion of the systems, make of them a powerful spectroscopic t with respect to
semi-empirical methods. As an example, rst principle calalation allows to go
deep into the response of the materials, comparing the relate importance of
the microscopic e ects that are involved (e.g., the crystallocal elds, the quasi-
particle energy correction, excitonic e ects, the quantumcon nement etc.) with
the experimental results. This permits a direct investigation of the physical na-
ture of the system. Such a study is not always feasible in exgaments where all
these e ects are collected and mixed in the nal response. Mreover, due to the
high level of accuracy obtained, nowadays ab initio calculdons are used to get
informations on complex systems such as DNA, proteins, supkattices, defects,
nanowires, etc., or processes (from tribology to optics) tht present technical
di culties for direct experimental measurements. As an example, one can study
the unknown structure of the experimental sample through canparison of its
measured response function with the theoretical ones obtaed from a set of
candidate structures (as will be shown later in chapter 6). The accuracy of ab
initio calculations makes of them an ideal benchmark to predtct the behavior
and characteristics of new materials, guiding the design ohew devices.

Due to their relevance and possibilities, it is then of greatimportance to
improve SHG rst-principle description and our knowledge of the nonlinear op-
tical processes. The basic requirement is a comprehensivaderstanding of the
nonlinear microscopic physical mechanisms and the correspding macroscopic
relation with physical measurable quantities. This is a fomidable task and
considerable di culties have delayed accurate results formany years.

The rst description of second harmonic generation based orband-structure
theory was developed soon after its discovery. In 1962 Armsbng [35] and
Loudon [36] gave expressions for the microscopic second naonic susceptibility
in terms of the frequency spectrum i.e., the transitions amag electronic states
that originate the frequency doubling. However, the theordical results were
very poor once compared with experiments. The early calculdons have been
restricted to the static second harmonic coe cients (i.e. at ! = 0) [37, 38]
and with rough approximations for the band structure evaluations. Aspnes
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further analyzed the formulation in 1972 [39] in terms of di erent gauges for the
applied elds. The calculations however had to rely on empiical data. Fong

and Shen [40] developed the calculations of empirical pseogotentials showing
the importance of the k-dependence of the matrix elements in the calculation.
However, their results still underestimate the experimenal value of about 2
orders of magnitude. Meanwhile, in 1987 Moss and Sipe [41] jpnoved the

technique overestimating the value by a factor of 2-4 using asemi-empirical

tight-binding method, evaluating both static and frequency dependent SHG
coe cients for di erent semiconductors. Nevertheless the spectra exhibited a
lot of de ciencies. More or less in the same years appeared ¢hrst calculations

on more complex systems as the Si/Ge or GaAs/AlAs superlatttes [21, 42].

In the 90's, the evolution of computational methods as the Dasity Func-
tional Theory allowed the rst accurate ab initio calculati on of second har-
monic generation considering both quasi-particles e ectand crystal local elds
by Levine and Allan in 1991 [43{45] through the SHG descriptbn with a one-
electron band theory [46]. Quasi-particle corrections weg described by a scissor
shift of the conduction states to better describe the quasiparticle band gap
underestimated by density functional theory. Their static values were in very
good agreement with the experimental results. At the same tine Sipe and co-
workers [41, 47] developed a formalism for the calculation fothe second-order
optical response of crystals in the independent particle aproximations (a more
recent approach has been presented by Sipe and Shkrebtii [B8that allowed
calculation of the frequency spectra [47, 49{51] and not on of the static con-
stants. In particular Ref. [50] represents a milestone. Thandependent particle
formulation of the SHG process they gave in the length gaugeansidering the
optical limit is today widely used for the study of superlattices, several surface
and interface systems [22, 52{60] carbon and SiC nanotube$1{63]. They also
provided the rst formulation of the SHG computation includ ing a scissor non-
linear operator to recover the quasi-particle gap. An altenative formulation was
given by Dal Corsoet al. [64]. It is based on the 21 +1 theorem. They adopted
Time-Dependent Density Functional Theory and have been ab# to account for
self-consistent local- eld e ects.

These calculations improve the description of the SHG, in peticular because
of the improvements of the DFT description of the electronic states on which
the SHG derivation is based. However, the details of each appach show clearly
that the second-order optical susceptibility still remains a nontrivial task, and
the same accuracy obtained for linear optics has not been a@ved yet.

Only few attempts tried to go beyond the independent particle picture, and
quasi-particle e ects have always been accounted for by thescissor operator
approximation. Bechstedt and co-workers investigated thevalidity of this ap-
proach comparing results with the quasi-particle band striwcture and wave func-
tions with the ones obtained within the scissor correction 5] Moreover, only
few works exists on the inclusion of excitonic e ects in @ . Chang et al. [66]
proposed a method where wave functions were obtained from perposition of
pair excitations. Later, Leitsmann et al. [67] developed further this formalism
using the excitonic wave functions obtained from a Bethe-Skpeter calculation
to construct the many-body @ . This approach is clearly an improvement with
respect to IPA, since it includes many-body e ects in the wawe functions. BSE
demonstrated successful for linear optics and they found agasonable agreement
with experimental data in the static limit, while in a larger energy range the
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comparison was not satisfactory and only a qualitative agrement was found.
The question arises whether it is possible to use this appra# to describe exci-
tons for higher-energy calculations. Moreover the prelimmary BSE calculation
requires a great e ort that demonstrates prohibitive for bi g-size or complex sys-
tems. Still, in this approach the crystal local eld e ects are only accounted for
within the BSE calculation, which might be a limiting factor on the quality of
the result.

These problems arise once looking to crystal structures ordadid state physics,
whereas accurate formalisms and schemes exist for moleculaystems. There
are indeed important di erences between these calculatios and the correspond-
ing process in solids. In molecules, an accurate descriptioof the DFT ex-
change correlation functional (e.g. going beyond LDA) give usually accurate
results. This is not the case of solids. Furthermore, whereathe ALDA TDDFT
exchange-correlation kernel (the time-dependent extensin of LDA) revealed to
be accurate for molecules, it fails for solids optical propeies already in the
linear regime. It is therefore necessary to further improvethe accuracy of the
kernels and the ab initio description of the systems. Also tle relation with the
experiment is more complex in solids. Molecules indeed are ioroscopic and
their response is usually independent and non-coherent. CGsequently, a mi-
croscopic description is su cient to model experiments. This is not the case
for solids where the microscopic response (e.g. the local lawization inside the
material) does not correspond directly to the macroscopic ne and they should
be connected via an appropriate average procedure. This igue for linear op-
tics and much more once considering nonlinear processes. &tmain goal of this
thesis is to advance the description of the SHG process, gajnbeyond the stan-
dard approach for complex materials, evaluating the imporaince of many-body
e ects (crystal local elds and excitons) exploring an e ci ent formalism based
on TDDFT ! to make feasible large calculations normally unattainablewith the
methods previously presented in literature (as the BSE of [8]). This will allow
me to study more in detail the origin of the SHG process and howit is related
to the nature of the studied material.

The formalism, valid for any kind of classical eld (longitu dinal or transverse)
and systems (from solids down to molecules), connect the mioscopic nonlinear
response to the macroscopic second-order susceptibility®® according to the
original work of Del Sole and Fiorino [68]. | have then restrcted the theory
that has a general validity, to the calculation of the SHG process in the long
wavelength limit g ! 0 (see Ref [68]). In this limit, @ can be expressed in the
TDDFT framework, but the description of the response through second-order
perturbation theory allows to obtain the nal response from the DFT ground
state quantities accordingly to Ref. [69]. It revealed sucessful in a variety of
systems and in particular for Si surfaces [27, 70, 71]. ThisFA formalism has
hence been further developed by V. \eniard [72] improving he accuracy of the
response and the possibility of introducing straightforwadly many-body e ects
as crystal local elds and excitons in the macroscopic @ .

Starting from previous studies on semiconductors where thdormalism and
the code have been successfully applied to bulk cubic mateils (GaAs, AlAs,
SIiC [72{75]) or deformed centrosymmetric materials (straned Si [13]), | have

1For linear optics the many-body e ects are considered to be well understoo d. Local elds
in TDDFT are routinely calculated and also a connection with the MBPT Beth e-Salpeter
equation, that describe excitons, has recently been established.
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extended its application to the study of complex systems ashe interfaces and
surfaces, studying its accuracy and capabilities. This istie rst time the theory
and the code are applied to these kinds of systems and non-tiial problems
have been encountered both of theoretical and numerical natre. Surfaces and
interfaces, because of their low-dimensional structure, riginate a signal that
is localized in space, contrary to the bulk response. An acaate description
of this transition region and its properties introduces new tasks such as the
determination of its dimension and the contribution of the two materials to the
total signal. Also their ratio and their thickness a ects th e total response as
well as the interface con guration that need to be identi ed in according with
the experimental environment [76, 77]. Moreover, simulatbns of interfaces and
surfaces through a plane-waves DFT approach require to inclde vacuum into
the simulation cell using a supercell method. Being the respnse characteristic
of a small volume inside the cell, this introduces unphysiche ects making the
intensity dependent on the thickness of the vacuum consided. It has then been
necessary to study and de ne an appropriate normalization pocedure in order to
compare di erent systems. Moreover, an interface system isharacterized by an
hard discontinuity region. E ects that demonstrated negli gible in bulk materials
as the crystal local elds can become relevant. Our calculabns represent the
rst occasion to study their in uence and their properties, in comparison with
the independent particle response or the excitonic e ectspbtaining an insight
on their dependence on the nature of the system.

I have hence focused the work on the study of the Si(111)/Caf interface.
Silicon is a well known material that exhibits important opt ical properties. In
particular the possibility of designing its electronic and optical gap through
guantum con nement, makes of it a suitable material both for photovoltaic and
optoelectronic devices. The combination of this material vith CaF, that is
a large gap insulator completely transparent in the visibleand UV range has
produced a complex material whose electronic and optical mperties have been
investigated for more than a decade [78{87].

However, these properties depends directly on the geometal structure and
in particular on the interface con guration that introduce s new states into the
energy gap modifying the system response. Several works heavhen been ad-
dressed to the study of the interface geometry [82, 88, 89]ts dependency on
growth conditions [76, 77, 90] and the possibilities of obtaning an epitaxial, de-
fect free deposition. However, there was a great debate withalternative results
and only the latest experiments gave an almost conclusive awer, although
some discrepancies still exists. In this respect, SHG repsented a great spec-
troscopic tool to investigate directly the interface and in 1989 Heinzet al. [82]
studied the SHG spectra of the Si(111)/CaF, interface obtaining information
about the direct transition at characteristic of the inter face region. This in-
terface represents consequently a great opportunity both @ test our formalism
and our code and to compare the result with the experiment in vhich the in-
terface structure is unknown. The eventual matching of our pectra with the
experiment will also con rm the reliability of the proposed interface structure,
that | have guessed in consideration of the growth conditios [76].

Si(111)/CaF, represents hence an interestingase-studyfor my purpose, al-
lowing direct comparison with experiment, testing the accuacy of the developed
theory, and permitting to go deep into the analysis of the vaious microscopic
e ects involved in the SHG process. This will allow to achieve new informations
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both on the microscopic nature of the SHG signal and the preditive possibilities
of our description.

I will then study a new system, the Si/Ge superlattices [21, 9, 92] that
demonstrated to be SHG active. These superlattices show a tloof possible
applications and latest deposition techniques allow to emfoy these structures
in more complex con gurations as the multi-layers nanowires [93]. In the past
some studies have been performed however, they were limiteéd IPA. Theoreti-
cal achievements demonstrated to fail reproducing the exp@ments, particularly
because of di erences among the experimental and theoret&t con gurations.
The former indeed presents defects due to non-uniform moledtar beam epitaxy
layer deposition. For large Ge thicknesses the strain at thanterface creates
plane mismatch and big V-shape defects that enhance the SHGesponse of an
order of magnitude. The analysis of this phenomenon has nevdeen addressed
before, due to the theoretical and numerical di culties to simulate defects in
materials. Thanks to the e ciency of the TDDFT formalism and the improve-
ments of the 2light code performances, | will try to simulate these conditions.
I will investigate the possibility of establishing a link between the SHG and the
kind of defect present inside the structure. This work is in pogress and here |
will present some preliminary results.

The thesis is organized as follows: in chapter 2 | will introdice the many-
body problems and the density functional theory approach tothe solution and
the description of the ground state properties of a system. n chapter 3 the
derivation of the excitation properties of a material through TDDFT is pre-
sented, and the derivation of response function obtained wihin perturbation
theory developed up to the second order is shown. In chapter 4he deriva-
tion of the relation between the microscopic and macroscoji formulation of
the second-order response is presented, obtaining a geneexpression for the
macroscopic second-order susceptibility ) valid for any elds. This formu-
lation is then rewritten for practical implementation for | ongitudinal elds in
the long-wavelength limit. This allows to describe the prodem using TDDFT
theory. Chapter 5 brie y introduces the code 2light that implements the pre-
sented formalism, its possibilities and the di erent approximations that have
been implemented nowadays. | will also report the major modkations that |
have made in order to improve its computational e ciency and the new physical
tools, as the renormalization procedure, that | introducedin order to handle the
response of a cell containing vacuum. Finally, the formalism has been applied
to the calculation of the SHG spectroscopy for the Si(111)/GF; interface. The
results and the detailed study of the test system are reportd in chapter 6 (and
detailed discussion about the renormalization problem is yen in Appendix
G), whereas the preliminary results of the Si/Ge superlattices are presented in
chapter 7 and conclusion in chapter 8.



Chapter 2

Density Functional Theory

In the present thesis | have studied the nonlinear optical poperties of solids with
an ab initio technique. These properties are directly related to the dexiption

of the electronic states in a solid, the so-called many-bodyproblem, that can be
studied within the Density Functional Theory and the Time-D ependent Density
Functional Theory formalisms. The latter, that describes the excitations of the
medium, will be addressed in the following chapter. Here wedcus on DFT,
brie y introducing the milestones of the theory: the Hohenberg-Kohn theorems
and the basic ideas to solve the problem in the Kohn-Sham scinee. Finally |

will discuss some physical and numerical details.

2.1 The System of Many Interacting Electrons:
the Many-Body Problem

As previously illustrated, Second Harmonic Generation andmore generally the
linear and nonlinear optical processes, are directly relad to the electronic exci-
tations in solids. As a consequence the knowledge of the etesnic states of the
system represents the key to correctly describe the physicbehind these pro-
cesses and determine the optical and electronic quantitiesf interest (e.g. the
energy loss function, the optical absorption, the second hanonic generation
spectrum ...). In the quantum-mechanics frame the evolutim of these states is
governed by the time-dependent Schredinger equation that for non-relativistic

systems, can be written as:

i~@@{ >=Hj i: (2.1)

In solids and in a great variety of materials (in absence of ap external eld) H¥
is given by the kinetic term and the Coulomb interaction of the electrons and
nuclei provided that all the other interaction can be negleded:

X 2r2 X 2p2 X €? X zie¢ 1X  72zZ;€
|4= L+ Ly = - - - -+ — e E——
poo2me o 2My 2 n T i Rij 2 VR Ry)
(2.2)

where the indexes (i,j) run over electrons and (1,J) run overnuclei. For the
majority of the applications it is possible to reduce the conplexity of this

15
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equation decoupling the electronic and nuclei motion: thisis called the Born-
Oppenheimer (BO) approximation or adiabatic approximation.

Born-Oppenheimer approximation

The Born-Oppenheimer approximation [94] is based on the olevation that the

nuclei have masses of 3 or more orders of magnitude larger thahe electrons
(My m¢). This implies that their motion is slow compared with the faster
electron dynamics and takes place on a di erent time-scale.Therefore, while
solving the electronic problem, nuclear positionR, can be considered xed and
can be described as constant parameters. In this way the elgonic problem

is decoupled from the nuclear one reducing the degrees of &@om to the elec-
tronic variables only: a system of identical, indistinguishable particles. The new
electronic Hamiltonian in the BO approximation is given by:

X _,2ri2+}X €2 X Z, €

Lo 2me 2 dn ) i Rij

ﬁBo = (2.3)

The rst and second term are universal and independent of thesystem (they
are respectively the kinetic energy and Coulomb interactio between the elec-
trons), while the last one is characteristic of the studied gstem and contains
the interaction between the electrons and the nuclei. Neveheless, at this step
the Schredinger equation is still too complex to be solved.From now onwards
we will refer to Eq. (2.3) as the Hamiltonian describing the many-body problem
of Eq. (2.1), avoiding the speci cation of the BO label (1 Hgo).

Approaches to the Problem

A diagonalization of the Schredinger Eq. (2.1) would lead to a solution of the
problem obtaining the energy eigenvalues and the wave funans j i of the
system. Nevertheless, in the previous equations the wave figtion is contem-
porary functions of 3N variablesj ( rq;:::;ry)i that are all interconnected due
to the electron-electron interaction term of Eqg. (2.3). As a consequence the
Schredinger equation growths exponentially in complexity increasingN and the
problem, that is not exactly solvable already forN > 2, cannot be handled even
numerically when one deals with materials constituted of seeral tens of atoms.
Consequently it is impossible to threat the 1 particles of a macroscopic sys-
tem where the degrees of freedom multiply enormously, and ber paths should
be explored to solve the Schredinger equation of the system

Several approaches exists that try to nd an approximate soution of the full
many-body problem: the con guration interaction and the quantum Monte-
Carlo approach for example aim to describe the full many-bog wave function.
Nevertheless such solutions would contain informations abut every single elec-
tron of the system, and such a level of detail would be hard to mnage and
interpret. Instead, usually one looks for the expectation alues or macroscopic
guantities that does not involve directly the knowledge of the exact solution of
Eg. (2.1). With this consideration one can think to simplify the problem and
its Hamiltonian, reducing the number of variables of the sysem to the ones of
interest. This is in analogy with the Thermodynamic case whee one describe
the whole system in terms of the macroscopic average quantés, regardless of
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the real microscopic con guration. Between the variety of goproaches that have
been proposed in literature, Density Functional Theory and Time-Dependent
Density Functional Theory maybe represent the prominent examples of this
many-body problem simpli cation for treating respectivel y equilibrium ground-
state observables or dynamical properties. Other possiblapproaches that will
be briey introduced later are the Many-Body Perturbation T heory and the
dynamical mean- eld theory.

2.2 The Density Functional Theory Approach

Density Functional Theory allows to overcome the above menibned di culties
with the merit of being formally exact and numerically e cie nt for the study
of the geometry and ground-state electronic properties of agreat variety of
materials. Thanks to this, accurate results are obtained fo systems of di erent
nature going from molecules and nanostructures, to proteis or biological matter
up to solids, surfaces or interfaces.

The strength of this approach stands behind the idea of desdbing the entire
system through the electronic density distribution, a much simpler variable with
only 3 degrees of freedom with respect to the full many-body ave function. This
key quantity is independent of the size of the system and thezfore allows to treat
structures with hundreds of atoms without increasing the anount of data to be
stored in simulations as it happens in other methods based otthe full many-
body wave function. A possible solution of the DFT problem isthen represented
by the Kohn-Sham scheme. This genius approach exploits the gssibility of
mapping the many-body system into an easier independent-péicles problem
with a one-to-one correspondence that gives the same expetion value for the
observables of the real ground-state system. Hence each mrerty that depends
on the ground-state con guration can be obtained solving this new simpli ed
problem. In this section | brie y introduce DFT and the Kohn- Sham scheme
that underlie all our ground-state and relaxation calculations.

2.2.1 Hohenberg-Kohn Theorems

Target of DFT is the solution of a system of N electrons in its ground-state con-
guration, which experiment the presence of an external, ore-particle local po-
tential vex: not evolving in time. In the Born-Oppenheimer approximation this
external potential is represented by the interaction with the nuclei of Eq. (2.3)
that are xed. For this stationary system Eq. (2.1) reduces to the corresponding
time-independent Schredinger equation:

Bji=ji (2.4)

wherej i represents a many-body wave function and the corresponding eigen-
value. The ground-state of the system is then identi ed by the particular state
jOi of energy o. The Hamiltonian of the N -electron system can be expressed
as:

z

H="1T+0+Y¥y where Vex =  dr Vex (r)n(r) (2.5)
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with T and U respectively the kinetic and the electron-electron interaction en-
ergies andVey the interaction energy with the external potential:

X 2p2 X
t=" TrEogolt @
i 2me 2i§j jrioorji
z (2.6)
X zé
Vout = o= dr Ve (1)N()

L Ryj
As T and U have the same expression for all physical system, uniqueNey de-
termines the particular system of interest with its Hamilto nian, wave functions,
energies and all the other properties that descend from theiknowledge i.e. the
electron density of the system in a stateg] >:

n(r)y= Nh(rq;znrn)j (o ro)jCrgy o) (2.7)

and in particular the density no(r) of the ground-state whenj i = jOi. The
rst Hohenberg and Kohn theorem states that also the inverseassumption is
valid:

Theorem 2.1. (Hohenberg and Kohn |, 1964, Ref [95]). The ground-state
density n(r) of a system of interacting electrons subject to an externalgiential
Vext (I) uniquely determines this potential and hence the entire physal system.

Hence, for non-degenerate systems the Hamiltoniatd,, = T[n] + U[n] +
Vo[n] (corresponding to the system withvex: = Vo), its expectation value (the
electronic total energy) E,,[n] = h0; [n]jH,,jO; [n]i, and any observable become
unique functionals of the electron densityn. This one-to-one relation holds also
for the many-body wave functionj i = j[ n]i.

Consequently the solution of the Schredinger equation (24) is now functional
of n, a 3-variables quantity easier to handle with respect to thecomplete wave
function. The possibility of nding the ground-state density that corresponds to
the external potential vq is guaranteed by virtue of the Rayleigh-Ritz principle
through the second important

Theorem 2.2. (Hohenberg and Kohn I, 1964, Ref [95]). The energy func-
tional Ey,[n] is minimized by the ground-state densityny that corresponds to
the external potential vo: Ey,[n] Ey,[Nol.

Solution of Kjoi = j0i is then transformed to a minimization problem of
Ev,[n] with respect to the variation of n(r)!. A trivial task if the energy func-
tionals T[n], U[n], Vo[n] were known. We should point out that the complexity
of the problem is now moved into the possibility of inverting the relation between
H and n (that is the determination of these functionals) or nding r easonable
and suitable approximations for them.

This procedure allows to obtain directly the ground state properties of the
system E,,[n], jOi,...) and study its equilibrium. Since the Hamiltonian is
functional of the ground state density, in principle all the other quantities like the

1Under the constraint of the total electron number N being xed, that is obtained via
the Lagrange multipliers method, where the parameter can be identi ed with the chemical
potential.
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excited states are achievable as functional of the densityNevertheless, knowing
the real dependence of i on n would correspond to a complete knowledge of
the system, i.e. the solution of the Schredinger equation.

The most successful approach demonstrated to be the one prsed by
Kohn-Sham in 1965, that will be described in the following. Qher approxi-
mations have been proposed e.g. by Thomas and Fermi in 1927 drcan be
found in literature [96{98]. In this work they substituted t he electron-electron
interaction U by the classical Hartree term and the kinetic energyT with a
local density approximation using the one of a homogeneoudextron gas. How-
ever the approach demonstrated to fail (for instance in repoducing the correct
shell structure of the atoms or the chemical bonding) becausT[n]+ U[n], that
constitute the large part of the total energy, is hard to approximate.

2.3 Kohn-Sham Equations

A possibility to determine the energy functional is to refer to the one of a known
simple system adapting it to the real problem. This is basic#ly the Kohn-Sham
(KS) approach, that starts from the

De nition 2.3.  (Kohn-Sham system, 1965, Ref [99]). Any system of interact-
ing particles in the external potential vo can be mapped to a system of ctitious,
non-interacting Kohn-Sham patrticles in the e ective, local potential vs such that
both have the same ground-state density,: H = T+ U+ 1" Hg = Tg+ Vs.

Where Vs[n] = Rdr vs(r)n(r) is a local, single-particle potential. As a
consequence the Hohenberg and Kohn theorems (Ths. 2.1 and2? hold also for
the KS system and show that it is possible to access the real gund-state density
no (and all the other quantities that derive from it through the orem 2.1), via the
minimization of the KS energy functional EXS [n] = Ts[n]+ Vs[n]. Ts[n] is the
kinetic energy for a system ofN independent particles whileVs corresponds to
the energy of the e ective potential vs determined as the one that makes the KS
ground-state density reproduce the real system ground-st& density ng. Given
vs the Schredinger equation for Hs reduces into a system of single-particle
non-interacting Schnsding%r equations?

2
% + drvs(r)n(r) j KSi= KSj ks 2.8)
where labels the state. The system can be easily solved through a ajonal-
ization, determining the single-particle wave functionsj XSi and the energy
eigenvalues KS of the KS problem i.e., the ground state solution of both the
KS and the real systems:

X

n(ry=j & (2.9)

=1
In this way the kinetic energy functional of a system of non-nteracting particles
is known and given by:

)ol KS - r 2 - KS -
Ts[n] = h i > i i (2.10)
=1

2|n the following | will adopt atomic units (  e= me = ~= 1) to simplify the notation.
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a much easier form with respect to the one of the real system. nl order to
obtain an expression for the e ective potential vs[n] we can rewrite the energy
functional of the interacting system E,,[n] adding and subtracting Ts[n] plus
an Hartree energy termVy [n]:3

Ev,[n] = Ts[n]+ Vi [n] + Vo[n] + Vxc [n]; (2.11)
where:
122
Vi [n] = 5 drdr®n(r)vy (r;rOn(r); (2.12)
Vxc [n] =T+U Wy Ts: (213)

vy = Rdr0 ;“fgj is the functional derivative of Vi with respect to the density,
while Vx¢c denotes the exchange-correlation energy that includes the part of
the energy functional that is not explicitly known (hamed Stupidity energy by
Feynmann [100]). Until Ts + Vy is rather close toT + U of the real systemVyc

is small and can be approximated in a rough way obtaining a god description
of the system. The energy functional of both systems, the intracting and the
auxiliary one, takes its minimum at the same densityng. As a consequence of the
second theorem of Hohenberg and Kohn (Th. 2.2) one can applyhe variational
principle to both functionals (under the constraint of n beingV -representablé)

obtaining the following relation:

Vs(r;[no]) = vo(r)+ vy (r;[nol) + vxc (r;[no]) (2.14)

XC
\Y; r;[no]) = ——jn,: 2.15

xc (;[No]) n(r)Jno ( )
It is possible to demonstrate that vxc is the local exchange correlation energy
per particle, that is the electrostatic interaction energy of a particle with its
DFT exchange-correlation holenyc ° and should ful Il the sum rule:

Z
dronyc (r;r%n)= 1 (2.16)

Egs. (2.8) and (2.14) represent the KS equations that satigf de nition 2.3. The
single-particle potential vs now depends on the density and this set of equation
has to be solved in a self-consistent procedure. Starting @m a guess density
Rk it is possible to determinevy and vxc (i.e., vs), and to calculate the new
wave functions and density solving the single-particle Sciedinger equations
(2.8). This process can be iterated until the di erences betveen the densities
at di erent steps vanishes or/and the energy converges to i minimum value.
This is guaranteed by the second theorem of Hohenberg and Koh(Th. 2.2).

The energy of the interacting systemE,y; is recovered through the total

3Vy [n] represents the classical electrostatic energy of interaction between the electron s.
4That is, to belong to the ensemble of physical potentials that have a no n-degenerate
ground-state. This hs a not trivial constraint to be imposed while v arying the density.

. 0.
. —_ in r;r-n
Svxe (ri[n)) = dr §mxegrmn),
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energy EXS of the non interacting one being:

KS X KS
Ewot = = Ts[n] + Vs[n]
tz 7z
=Ts+ drvo(r)n(r)+ drdr®n(r)vy (r;r9n(r) (2.17)
ya
+ dr vxe (1)n(r)in=n,

that substituted in Eq. (2.11) gives:
z

ES = ESS o dveOnM)+ Vie ] o ve (On0): (219)
In order to have the total energy of the entire system one shold add the term
due to the Coulomb nuclei interaction previously drawn out by the BO approx-
imation.

During the years the rst formulation of the HK theorems (Ths . 2.1 and 2.2)
and the KS scheme have been developed reducing the theoredl@onstraints i.e.
the possibility to apply KS-DFT to spin-polarized material s or the underlying
necessity of the density beingV -representable.

The latter problem has been overcome by Levy and Lieb proposg a min-
imization procedure with the new requirement of n(r) being N -representable
i.e., the density should correspond to an antisymmetric mag-body wave func-
tion with xed number N of electrons. This avoids the uniqueness minimum
problem and allows to apply DFT to V -degenerate ground-states.

Further improvements with respect to the original Kohn-Sham work (e.qg.
spin inclusion) have been developed during the years and a tiled introduction
can be found in [101].

2.3.1 Exchange and Correlation potential

All the previous equations have been formally exact, exceptfor the Born-
Oppenheimer approximation. However, the lack of an explidi functional for
Vxc obliges to take it in an approximated form.6 The majority of the calcula-
tions today are performed in the local-density approximation (LDA) introduced
by Kohn and Sham in 1965 [99]. Similar to the Thomas-Fermi appoximation,
the system is locally considered as an interacting homogenoes electron gas: the
density around a certain spatial point r is uniform and the vxc [n] functional
reduces to a mere function M of n(r):
Z Z

Ve [N]=  drvxe (Dn(r) 0 WA [n]= dr §(n(r)  (2.19)

where

3 3 1=3
Z —

hom _— hom + hom

. : hom _—
XC = X c ;o with 7" =

n'=3(r): (2.20)

In this particular approximation ™ (n) has an analytical solution for the ex-
change part (Eq. (2.20)) while exist reliable parametrizaions of the correlation

60ne notices that when the term is neglected the Hartree approximation i s recovered.
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function derived from quantum Monte-Carlo simulations of the homogeneous
electron gas [102, 103]. LDA demonstrated successful in thealculation of

ground-state properties of a variety of physical systems: rbm solids to nanos-
tructures and even molecules where the density signi canty deviates from the

homogeneous assumption. Typically the lattice parametersthe bond lengths

and the ground state energies are in excellent agreement witthe experimen-

tal results within few percents for covalent, metallic and ionic bonds. While

the same approximation works worse for weak bonding situatins as Hydrogen
bonds or Van der Waals forces.

However, the LDA energy functional does not cancel exactly he self-energy
interaction of the Hartree term resulting in a wrong asymptotic behavior of the
XC potential in nite systems. ’ There are other attempts that go beyond the
LDA describing in a more accurate way the exchange-correlation functional.
Examples are the generalized-gradient approximation(GGA) & [104], the opti-
mized e ective potential (OPM) [105] as the exact-exchange(EXX) where the
exchange part is exactly treated [106], or thehybrid functionals® [107, 108].

2.3.2 Kohn-Sham Bandstructure and Bandgap

The orbitals and eigenvalues of Eq. (2.8) do not have a direcphysical meaning.
As they have been derived they permit uniquely to construct the real electronic
density obtaining the ground-state properties. Hence, thg do not give any di-
rect access to informations about e.g. the excited state¥) The Kohn-Sham
energies XS and wave functions XS of the ctitious set of independent elec-
trons do not correspond to the ones of the real system and do h@eproduce its
quasi-particle band structure (which is measured e.g., in a photo-emissioaxper-
iment). In insulators or semiconductors only the energy of he highest occupied
state (HOMO) coincides with the exact ionization-energy of the system as shown
by Janak's theorem [109]*' Instead one can use TDDFT or Green's function
formalism to study quasi-particle energies and neutral/charged excitations. De-
spite this, LDA-KS energies and wave functions remain a goodtarting point for
these perturbative calculations (e.g. in GW-approximation calculations). More-
over, in a system where correlation e ects are small, LDA-KSenergies can be
considered as a rst approximation for the real quasi-particle band structure. In
many cases they demonstrated capable of well reproducing ¢hband dispersion
(k) of the valence and excited states, although the latter are nderestimated

1t presents an exponential decay whereas it should behave as Jri

81n GGA non-local corrections are introduced threating  vxc as function of both the density
and its gradient. In this case vyxc can describe also fast variations of the density, whereas in
LDA are approximated as negligible.

9Hybrid functionals incorporate part of the exact exchange as deriv  ed from Hartree-Fock,
together with XC from other sources (i.e. empirical or ab initio GW calcul ations). Some
parameters establish the reciprocal weight of these two components.

101t is wrong to assert that through DFT it is  formally not possible to know the excited
states of the system. As previously stated, the external potential and all  its derived quantities
as the many-body wave functions j i are functionals of the ground-state density. In principle
one can determine these functionals and j i corresponding to the excited states, although
this demonstrates very complicated.

11 Janak's theorem descends from the earlier Koopmans's theorem, enunciated i n 1934 by
Koopmans for molecules [110]. It states that in closed-shell Hartree-Foc k theory, the rst
ionization energy of a molecular system is equal to the orbital energy of t he highest occupied
molecular orbital (HOMO).
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Figure 2.1: LDA-KS (black solid line) and quasi-particle (red dashed line) band
structure of graphene (Reproduced from [111], Copyrightc 2008 by The Amer-
ican Physical Society).

by an almost k-independent amount with respect to the experimental measte-
ments (see Figs. (2.1) and (2.2)).  This discrepancy is intmsic of the KS
formalism [112{115] depending on the properties of the added XC kernel. In
insulating or semiconducting materials the fundamental erergy gap (hamed also
the quasi-particle gap) is de ned as the di erence between the largest addition
energy and the smallest removal energy of an electron (i.e.he electron a nity
Etwt (N) Ewt (N +1) and the ionization potential Ewt (N 1) E (N)):

Egap = [Etot (N 1) Ett (N)] [Ewt(N) Egor (N +1)] (2.21)

that corresponds to the di erence between the twoHOMO levels of theN and
N+1 particles systems. Thanks to Janak's theorem in exact DFT (o provided
that vxc is a good approximation for the real functional) these energes are

given by the highest occupied KS states ({{oy0 )

Egap = nNat (N +1)  KS(N): (2.22)

On the other hand, what one obtains within a single KS-DFT calculation with

N particles are the KS-eigenvaluesKS, and KS 12 of the ground state density,

and is immediate to recognize a discrepancy between the reahd the KS band
gaps [112{115]:

Egap = N1t (N)  n(N) (2.23)

Egap Egap= Naa(N+1) 31 (N)= xc: (2.24)

The latter quantity  xc is related to the non-analytic behavior i.e., the deriva-
tive discontinuity, of the real XC potential subjected to variation of the particles
number N. This is in contrast with LDA (or other approximations as GGA )
where Vxc is a continuous function of the electrons number. The discrpancy
between the Kohn-Sham and the quasi-particle energy gap ishewn in Fig. (2.3).
Further details can be found in [116].

12They correspond to the energies of the lowest unoccupied state (LUMO) and th e HOMO
state respectively.
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Figure 2.2: KS (blue line) and quasi-particle (red line) bard structure of bulk
silicon (Reproduced from http://exciting-code.org ).

Figure 2.3: On the left: Kohn-Sham band structure (HOMO and LUMO states)
of aN particles semiconductor; on the right: Kohn-Sham band stricture of the
N + 1 particles system. The shift xc due to the addition of an electron to
the conduction band is shown through the comparison of theirenergetic levels.
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2.4 lonic Contribution and Geometry Optimiza-
tion

As stated before, the solution of the KS equations allows to btain all the
information about the N-body electronic problem. According to the BO ap-
proximation the total energy of the system is obtained through the summation
of the electronic contribution and its interaction with the ionic potential (i.e.,
Egl given by Eq (2.18)) plus the nuclei interactionEy; = E&, + EO". The
latter is the classical Coulomb interaction of point-particles for nite systems
that can be obtained via the Ewald method [117] of in nite-charges summa-
tion in in nite materials like crystals. In the latter case t he divergent terms of
Ett arising from the Coulomb long range potential mutually cancel for neutral-
charge materials. However, it is always possible to imposenauniform charged
background to neutralize systems with non-zero charge (ahized molecules);
this does not a ect the dynamics or the physical quantities d interest as the
density distribution.

Accordingly to the results obtained so far, given the nucleiposition (i.e.,
the structure of the system) one can solve numerically the gsund-state prob-
lem in the DFT framework. Unfortunately the equilibrium geo metry is usually
unknown. One can still use the DFT informations to nd the str ucture that
i) minimize the total energy or ii) make forces vanish. The rst criterion can
be easily applied to simple systems i.e. in the determinatio of the bond length
of a bi-atomic molecule or the lattice parameters of a crysthobtained as the
values that minimize the energy. Despite this, if one handle complex structures
it becomes hard to consider all the degrees of freedom of thegstem and it is
usually more convenient to move each atoms accordingly to ta forces acting
on it looking for the equilibrium con guration. These forces can be computed
directly from the total energy:

FJ =T R; EtOI (225)

thanks to the Hellmann-Feynman theorem [118, 119].

The total energy Ei; has an explicit dependence on the position& ; and
an implicit one through the electronic density n determined in the BO approx-
imation Eq. (2.3). The latter dependence demonstrated uninportant since it
vanishes, as shown by Slater [120], and does not contributeotF;. Therefore,
I r, Ewot reduces to the derivation of the only terms depending diredy on the
variablesR ;: Vo of EZ, and E/9" . The former describes the interaction of the
electrons in the nuclei (of chargeZ,) potential:

A
Vo= dr vo(r)n(r)

Z x Z, (2.26)

= dr -n(r);

;T Ry ")

giving the force:
FYO =T ZRJVO

2.27
= dr Z, 7.0 Ry) n(r): (.27)

jr Ryj®
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It coincides also with the energy of the nucleus]! in the electric eld generated
by the electrons, according to the third principle of the dynamics!® The force
between the nuclei instead reads:

s =1 R, ER
_X 2,2, Ri_Ry). (2.28)
63 iRi Ryj®

giving the total force acting on nucleusJ™:

z (r Ry)

(Ri Ry)
F;= dr Z; - :
’ ir RyB

nr+ 2\ Ly ————=
(r) 2RTR

16J

(2.29)

This result is obtained considering the nuclei densityn® (r) = zZ; (r Ry)i.e.,
approximating the nuclei as point-particles. When a particular distribution is

employed (as in the case of the pseudopotential that will be pesented later)nion

can be determined fromV, of the J™ atom (Vo) using the Poisson equation
that gives:

ne" (r) = 2" Vo (1); (2.30)
with a nal force: 14
ZZ O)
Fjy = drdr®nin (ro)n(r) 53
27
X (2.31)
+ drdr®ni°" (rynion (r°) (r r°)3
16J rq

As a consequence no further calculations are required ona® and E o [No]
are known. Their knowledge allows a variety of applications structure relax-
ation, defect-induced deformation, surface reconstructin as well as the study of
phononic-modes. Looking for the equilibrium structure it is possible to proceed
through many algorithms that have been proposed in literatue. All of them
involve an iterative process where the electronic KS equatin is solved up to
self-consistency and subsequently the Hellmann-Feynmarofces are evaluated
from the new E [Ng]. Then nuclei's positions are adjusted via di erent criteria
that shall take into account the history of the iterations and try to optimize the
convergence making it faster.

2.5 Numerical Details

The numerical calculations have been performed using a plaawaves basis set
and norm-conserving pseudopotential for the description dthe ions. | have
used Ablnit -package [121] in order to determine the ground-state struttires

13|ndeed Eq. (2.27) has the same expression as the Coulomb force played by the electron
density n with electric eld E®(r)= dr® n(r°) (« rr) on a charge Z; in the position R .

14 Since the distribution of a single ion is always Iocahzed avoiding  overlaps among nuclei, for
the Gauss theorem the second term of this equation is equal to the one of th e point-particles
interaction of Eq. (2.29).
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and properties within DFT-LDA, and further the 2light -code [72] to calcu-
late the linear and nonlinear optical response functions othe materials. In the
following | will brie y address some numerical details and the necessary conver-
gence tests. For a detailed introduction to the practical implementation of the
DFT formalism one can refer to [121].

2.5.1 Plane-Waves Basis Set

The main task of the DFT-KS scheme is the solution of the sing-particle
Schredinger equation that permits to determine n(r). Once one refers to a
crystal lattice or a periodic system, equations and wave funtions are signi -
cantly simpli ed by means of Bloch's theorem. Moreover plare-waves become
the natural basis set to represent its states:

ikr —

i M= ki = k() = une(r) € ce (k)€ ek (232)

G

where can be identied by the band index and wave-vector n;k. k is a
continuous variable’® belonging to the 2 Brillouin Zone that identi es the
reduced momentum of the state andG are the discrete reciprocal lattice vectors.
The Schmdinger equation in this basis is represented by aecular equation where
the new variables are the coe cients ¢ (nk); the corresponding Hamiltonian is
obtained applying heé¢°'j to the KS equation wherej KS (r)i is replaced by its
Bloch's expansion (Eg. (2.32)). Itis:

Reoe o(k)cs (Nk) = ¢4 (nk)Ca (NK) (2.33)
G

ﬁGGo(k):%jk+Gj2G;Go+Vext(k+G;k+G°)+
Vi(G G+ VWxc (G GY:

This basis demonstrates to be very e cient and shows severaladvantages:
i) plane-waves are a complete set of orthogonalized functits where the quality
of the sampling can be easily improved increasing the numbeof considered
waves. ii) Its de nition is independent on the system but only depends on the
simulation cell, and does not require a knowledge of the atom orbitals in-
volved or the atomic positions. iii) The equations are condgierably simpli ed
in the reciprocal space, in particular the di erential term s as the kinetic energy
or the Hartree potential (evaluated from the Poisson equaton) reduce to sim-
ple products. iv) Passing through direct and Fourier space th plane-waves
is also computationally e cient thanks to the Fast Fourier T ransform (FFT)
algorithm.

Because of these advantages it is usually convenient to tréavith the same
basis also systems with one or more nite dimension i.e., sdiaces and nanowires
or alternatively bulk solids with point defects (that lack o f the correct lattice
symmetry) or superlattices. For con ned systems this can bedone by insert-
ing vacuum to cut the material and imposing the periodic Born-von Karman

(2.34)

15This is the case of Bloch's states where periodic boundary conditions  are applied resulting
in an in nite dimension material, whereas for real systems Kk is discrete and becomes continuous
only in the thermodynamic limit.
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boundary conditions at the edge of the simulation cell*® Instead, for treating

defects it is usually su cient to consider multiples of the p rimitive cell, so that

the periodic constraint is preserved by default. The methodtakes the name of
supercell technique In both cases the size along the con ned/multiple directions
must be increased in order to avoid interaction among the dierent replica. This
has to be checked through convergence tests.

Nowadays it is highly exploited since it demonstrated succssful even for
the simulation of small con ned systems as molecules, wher¢he states are
strongly localized and there is a complete lack of periodity. It permits also
accurate calculations of systems like surfaces or multi-cantum wells where the
translational invariance along one or more directions make other kind of basis
(i.e., localized basis sets) very ine cient.

As for the real space, the reciprocal coordinates determirteby k and G,
should be nite and discrete for practical implementation. This is achieved
1) considering the plane-waves up to a certain threshold vale of their modulus
and 2) using ak-point grid.

1) Plane-Wave Energy Cut-o0

As stated above the kinetic energy in reciprocal space assuraghe simpler
form:
!
2 2
It is therefore natural to de ne a cut-o energy Ey to truncate the in nite
expansion over theG vectors as:

2
rz, (k+G)" (2.35)

(k + G)?
2

This approximation is possible since the coe cients cg (kn) of Eq. (2.32)
vanish exponentially when increasing the associated kiné energy. As a
consequence the rst terms are typically the most important. Nevertheless
the approximation can be systematically improved including higher spatial-
frequency contributions by increasing the cut-o energy.

<Eou: (2.36)

Ecut is obviously dependent on the system of interest, but additbnally it
reveals to be dependent on the physical quantity that one inend to study.
Indeed, calculation of ground-state or formation energiesxeed very accurate
results and convergence is slow while increasing the cut-o because every
improvements in the basis will lower the total energy. At the same time re-
laxations, lattice parameters or molecular bond-length stidies converge very
quickly with respect to E¢; since one compares di erent system geometries.
In these cases the variations of the total energy related totie di erent atomic
con guration and density are always greater than the systenatic error that
is associated to the basis truncation.

There are other technical details related to this topic as the discontinuous
increase of the numbers of the plane waves that can be found qi21]”

16|t is not possible to describe nite systems with a nite set of plane-waves. Consequently,
imposing periodic boundary conditions becomes mandatory, in anal ogy to what is numerically
done to perform Fourier transformations of localized functions.

17Since we map the problem into a discrete G grid, increasing the sphere radius Egyt of



2.5. NUMERICAL DETAILS 29

2) k-point Grid

Evaluating the quantity of interest n(r) from the Bloch's states | ,k(r)i
we should perform an integration over the vectorsk that belong to the 15
Brillouin Zone ( ok):
X 1% : :
n(r) = o dk j nic(M)if ( nk) (2.37)

n 0k

where f ( k) represents the occupation number of the bandn at point k.
Again, it is not possible to treat numerically the continuum and the space
ok Should be discretized. Wave functions are usually slowly vaing in k
and can be considered constant for twdk points that are close together. This
makes the sample of the Brillouin Zone by a discrete set ok points a good
approximation to the integral. As for plane waves, the resuting error can be

systematically reduced increasing the density of thek-point grid.

The KS equations for a crystal (Eq. 2.33) should be solved foeach sam-
pling point k. In order to reduce the computational e ort there have been
several attempts to construct representative mesh with thefewest number
of points. Among these, Monkhorst-Pack [122] grids demonsated particu-
larly e cient: they are regular grids invariant under the po int symmetries
of the system. The calculation can then be restricted to poits belonging
to the Irreducible Brillouin Zone {fR that are symmetrically inequivalent,
while the other contribute only to the weight factor wy of the former in the
summation: X X

n(r) = Wij nik (NI (k) (2.38)

n IRR
0

The number of k-points is consequently considerably decreased. The sym-
metry of the cell may also be used to further reduce the numbenof needed
k-points. Moreover, shifting the origin of the grid may improve convergence
with k-points [123].

In the following we will study only insulating and semiconducting materials
at the temperature of OK . The occupations number will then restrict to the
value of 1 at eigenvalue below the Fermi energy € > ,«) and O above that
level, summation of Eqgs. (2.37), (2.38) is then performed oy on the core
and valence states.

2.5.2 Pseudopotential

Up to now we have considered all the electrons involved in thenany-body prob-
lem. However, onlyvalenceelectrons participate to chemical bonds and interac-
tions among the atoms in a material. They are responsible oft$ structural and

electronic properties hence should be accurately descride Until one does not
move to the high energy regime also the optical processes ¢e.absorption, sec-
ond harmonic generation ...) are determined entirely by thevalence electrons,

Eq. (2.36) or varying the grid (e.g. modifying the lattice para  meter) will change of a discrete
amount the number of plane waves. This sudden change can a ect the other quantities as the
total energy, introducing discontinuities. The problem is usually av  oided de ning smearing
and damping functions on un (G) close to jGj cut-o.
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whereas core electrons are con ned in a region close to the atomic nucleus
This consideration allows to neglect their direct involvement as a variable of the
many-body problem, regarding to their e ects as an externalcontribution 8.

As stated above, core wave functions and densitn. are almost independent
on the chemical environment and can be assumed to be equal tdeir atomic
con guration ( frozen-core approximation). Therefore they can be obtained from
an all-electron calculation for a single atom, and subsequely included together
with their e ects in the nuclei potential they surround, for ming a xed frozen-
ion.

The DFT calculation should then take into account only valence electrons
and density n,. Nevertheless the procedure demonstrates complex becausere
electrons are fermions indistinguishable from the valencenes with which they
interact. Consequently one should still impose the constrat to valence wave
functions to be orthogonal to the core states. In addition the XC functional
Vxc [ne + ny] is nonlinear and it becomes not trivial to separate the two ©ntri-
butions Vxc [n¢] + Ve [ny] without introducing further approximations. This
condition is ful lled when the two densities n. and n, are spatially separated
so that their overlap is zero and XC energy vanishes. It happes roughly when
core states form a close shell, as in the materials object ohis thesis (this is
obviously an approximation that may lead to errors e.g., in the estimation of
the total energy [124]).

The frozen-core approximation allows also to solve further problems related
to the plane waves basis set. Indeed the ion Coulomb intera@in presents a
singularity at the nucleus, that is not completely removed by the screening e ect
of the core electrons. As a consequence their wave functionapidly oscillate and
the same is induced by orthogonality on the valence states irthe core region.
An accurate description of the latter would then require high-frequency plane
waves with large cut-o energy.

Again, the observation of what is e ectively important to de scribe the prop-
erties of the materials shows that chemical bounds are lardg independent on
the behavior of valence wave functions inside the core regio The simple idea
that derives from this consideration is to replace the real KS eigenfunctions
with other pseudofunctions that have the same chemical properties and shape
outside a certain core region, while being smoother and nodiee inside it. This
would make the KS algorithm numerically simpler and faster,requiring a smaller
number of basis plane waves. The purpose can be obtained redag the ion-
potential (given by the nucleus and the core electrons from a all-electron calcu-
lation), with a pseudopotentialthat removes completely the core orbitals from
the simulation. It should con ne the strong changes within a cut-o radius and
eliminate the Coulomb singularity in order to soften the valence eigenfunctions.
Provided that some constraints are ful lled, as:

the preservation of the KS energies,

the conservation of the KS wave functions outside a sphere aut-o radius
re, together with their logarithmic derivative (the scatteri ng properties)
at the surface of the sphere,

the conservation of the total density inside the sphere-®

18 Similar to what has been done for ions within the BO approximatio  n.
19This is required only for norm-conserving pseudopotential.
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the pseudopotential V% must be a spherically symmetric hermitian linear
operator,

one can t the remaining parameters to soften the valence wag function inside
a core region of radiusr.. These pseudopotentials can be substituted directly
into the external potential in the KS equation.

The rst attempts (in the 1960's) of constructing these screened potential
where empirically designed to t experiments. Nowadays it «ists a variety of
ab initio pseudopotential satisfying additional requirements as nam conserving,
portability and the inclusion of nonlocal terms in order to correctly reproduce
the di erent phase shift and scattering properties for eachangular momentum
components of the wave function [125].

Among the schemes proposed in literature, we restricted ouapplications to
the Troullier-Martin type. Further details can be found in [ 126].
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Chapter 3

Time Dependent Density
Functional Theory

The theory based on the Runge-Gross Theorem gives the electnic density
of the system as function of an external perturbing potentid. Describing this
variation within the linear-response formalism allows to ddtain the physical
response quantities of interest that are related to the expements.

3.1 Study of the Excited States of a System

As discussed in the previous chapter DFT addresses the eqidlium ground-
state properties of the system. If one desires to obtain infomations on the
excited states (necessary to describe e.g. photoemissiopestroscopy, absorp-
tion, optical band gaps, transport etc.) the only possibility is to adopt a more
e cient Hamiltonian that can describe these processes. Sut an Hamiltonian
cannot depend on the simple variation of density in space (asn DFT) but
should depend on quantities able to describe dynamical vaations of the sys-
tem. There are two main approaches: i) by allowing the systemto follow a
time-dependent external potential and reproducing the dyramical properties of
the system through its evolution; ii) via the study of the correlation functions
of particles propagating through the system. The former appoach is based on
the Time Dependent Density Functional Theory and studies the excitations of
the system by linking variations in time of the electronic density with the cor-
responding variations of an external acting potential. The latter approach is
based on the Many-Body Perturbation Theory (MBPT). It descr ibes the prop-
agation of one or more particles in an interacting system though the Green's
functions: these are the so-calledjuasi-particles experimentally observed. As a
consequence the knowledge of the physics and the implemetitan of new ap-
proximations are more intuitive in MBPT. * On the contrary, in TDDFT as for
DFT, all the unknown quantities are condensed in a unique tem, the exchange-
correlation kernel which is more di cult to treat and approximate. Howev er it
has been demonstrated that it is possible to establish a linkbetween the two

1The advantage of MBPT methods and Green's functions is that one can sy stematically
improve the approximations taking into account particular phy  sical processes represented in
the form of Feynman diagrams.

33
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theories [127{130]. This makes possible to take advantagef the improvements
and accuracy obtained within MBPT transferring them into th e more e cient

formalism of TDDFT. This is actually the method adopted in th is thesis. All the
results presented are obtained within TDDFT both for the lin ear and nonlinear
optical response functions.

Time Dependent Density Functional Theory is founded on the sime basic
ideas that make DFT a powerful and e cient formalism to treat the ground-
state properties. Generalizing the physical situation to the description of a
system subjected to atime-dependent external perturbation, it is possible to
follow its dynamics from the knowledge of its electronic desity n(r;t) (that now
depends on the time). The rst calculations have been perfomed by Peuckert
[131], Zangwill and Soven [132], but the rst rigorous formd justi cation of the
approach was provided by Runge, Gross and Kohn [133, 134] in984/85 and
will be briey introduced in the next paragraphs. A recent overview of the
current developments in TDDFT can be found in [130, 135{137]

3.1.1 Runge-Gross Theorem

The starting point is the time-dependentSchrmdinger equation (Eq. 2.1) in the
BO approximation, where the external potential (the nucleus plus an external
time-dependent perturbing scalar eld) and the wave functions vary with time:

i@@{( )i = Bj( bi: (3.1)

The Hamiltonian is de ned as .

=T+ 0+ Vor () Ve ()= 0 Vea (051 j( t0)i =] of (3.2)

in analogy with Eg. (2.5). Runge and Gross have shown that it § possible to
achieve a one-to-one connection between the time-dependeglectronic density
n(r;t) and the external potential Vey (t) that determines uniquely the systen?
and its eigenstatesj [ n(t)] >:

Theorem 3.1. (Runge and Gross |, 1984, Ref [133]). The densities(r;t) and
nYr;t) evolving from a common initial statej i at to under the in uence of the
two Taylor expandable potentialsvey (r;t) and v&, (r;t) dier, if and only if the

potentials di er by more than a time-dependent constantvey (r;t) v, (r;t) 6

c(t).

As a consequence the Hamiltonian is determined by the densijtup to a free
time-dependent function ¢(t). This function is unknown but demonstrates irrel-
evant for the calculation of the observables of the system.ddeed it introduces a
time-dependent phase-factor in the wave functions that caoels out when the ex-
pectation values of operators are calculated O([n];t) = h([ n];t)jOj ([ n];t)i.
Moreover any physical observable becomes functional of th&dme-dependent
density n.

The theorem is the equivalent of the rst Hohenberg and Kohn Th. 2.1; on
the other hand, it is not possible to establish a counterpartof the theorem 2.2

2In analogy with DFT: T and O are the same for all the physical systems and only Vet
distinguish among them determining the Hamiltonian.
3This is true until we are not considering derivative or integral op  erator on time t.
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based on the energy minimization. Indeed the total energyE; is no more con-
served and it does not exist a minimization principle forE. One should consider
instead the principle of stationary action applied to the quantum-mechanical ac-
tion. This principle asserts that the equation of motion for the system i.e. the
Schmdinger equation (Eq. 3.1) with solution j ( t)i that satis es the initial con-
dition j i at t = tg, is a stationary point of the quantum-mechanical integral
action A de ned as:*
Z,, @
A= dt h( t)ji—=, Hj( b)i: 3.3
(Diig, HI(Y (33)

to

Thanks to theorem 3.1 the action is now a functional of the desity too, which
can be found as solution of the Euler-Lagrange equations, astated by the

Theorem 3.2. (Runge and Gross Il, 1984, Ref [133]). For a given initial
statej oi at to, the action Ay, [n] becomes stationary at the density(r;t) that
corresponds to the external potentialo(r;t): [ Ay,[n]=n(r;t)]n, =0.

Now nding the density that makes stationary the action inte gral means to
nd the solution of the system since all the other observables are derived from
it accordingly to theorem 3.1.

3.1.2 Kohn-Sham Equations

Analogous to DFT, we do not have complete knowledge of the aabn functional

Al[n]. Again, it is useful to manage with known quantities. It can be introduced
a Kohn-Sham ctitious non-interacting system of N particles, that gives exactly
the same density under the e ect of an e ective potential vs(r;t), as proposed by
Gross and Kohn [134]. Once the/ -representability of n(r; t) has been provided

[138], for every electronic density exists a potentialvs functional of n. The

application of the stationary condition to the variation of the action implies that

the KS system should satisfy a set otime-dependent Kohn-Sham equations

i@@{ KS (t)i = ;+vs i kS ()i (3.4)

The density ng solution of both the real and ctitious system is given by:

n(r:t) = ks (r:t) % (3.5)
=1

4De nition (3.3) presents problems of causality violation since itis b adly de ned and lacks
of the ingredients necessary to construct orbital functionals and XC fun  ctionals with memory
[137]. E.g. neither the time-dependent Schiedinger equation can be r ecovered as stationary
point of this action when the constraint of n being V -representable is applied. The problem
can be overcome in the framework of Keldysh theory, declaring the varia ble t on the Keldysh
time-contour as proposed by van Leeuven in [137, 138].

5The Runge-Gross theorem has been demonstrated for vo(t) expandable around tqo. Pre-
vious demonstrations required periodic vo(t) or static potentials with a small time-dependent
perturbation (as in the linear response theory). Later Runge-Gross th  eorem has been demon-
strated valid also for Laplace transformable switch-on potentials  starting from the ground-
state. Nowadays people believe that the theorem has a more general vali dity, although there
is still no general proof.
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One should relate the e ective potential vs to the action of the real systemA,, .
Adding and subtracting the kinetic term Ts of the non interacting KS system
and the Hartree contribution Ay (similar to what has been done for the DFT
energy functional of Eq. (2.11)) it is possible to decompos¢he action as:

Av,[n] = Ts[n] + Ay [n] + Ao[n] + Axc [n]: (3.6)

Here Ag indicates the part of the action integral generated by the exernal
potential vo, while all the unknown terms have been isolated in the exchage-
correlation action Axc de ned as:

Axc[n]=T+U Ts A y: 8.7

In this way the variational principle applied to A,, and Ags © (the action of
the ctitious KS system) at the density distribution ng(r;t) that is a stationary
point for both the actions, allows to obtain an expression fo vs

Vs(r;t; [nol) = vo(r;t) + vy (r;t; [no]) + vxc (r;t; [No]) (3.8)

with the common Hartree potential (now for a time-dependent density) vy and
vxc de ned as:

va(r;t)y=  dr® jr:(r“,rt% (3.9)
Ve (Ft) = %_Er)'] (3.10)

No

The set of equations (3.4) and (3.8) here de ned is a coupledystem. Starting
from an initial condition and an approximated expression fa vxc the system
can be propagated substituting the new densityn(r; t) of Eq. (3.5) into Eq. (3.8).
Again, the KS wave functions do not have a direct physical meaing and are
only used to construct the true density distribution of the system.

3.1.3 Exchange-Correlation Functional

The exchange-correlation potentialvxc (r;t) is generally unknown and the in-
troduction of approximations becomes mandatory as in DFT. In TDDFT vxc
is much more complex than the ground state one: it is functioml of the whole
history of the density n(r;t) between fo;t1] as suggested by Eq. (3.3) and of
the initial conditions j oi and j §Si for the interacting and non-interacting
systemg. The latter dependence means that it is possible to nd more han
one initial wave function corresponding to an assignedyg. This would lead to
di erent vg for a given evolution. However, in the special case of non-denerate
ground state starting condition, the initial wave function s are functionals of the
density only and the initial-state dependence disappears by virtue of the rst

8For the non-interacting particle system Ags = Ts+ Ag with Ag the action corresponding
to the e ective potential vs.

"Indeed the Hartree and external terms inside vs are local in time because of the nature of
the Coulomb interaction in the non-relativistic limit; the same k inetic term is instantaneous.
Therefore these quantities are regardless of the initial condition or  the time-evolution of the
system, whose dependency is only contained in the vxc term.
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Hohenberg and Kohn theorem 2.1. This is the usual case for TDBT applica-
tions.

The XC potential still remains a complex quantity, especialy because of its
memory of the past con gurations of the system up totg, that makes it nonlocal
in time and di cult to treat. Several approximations have be en introduced, as
the Adiabatic Local Density Approximation (ALDA) [130, 139 ]. It describes
Vxc as a static kernel, local both in time and space (in analogy wh LDA). The
exchange-correlation functional becomes hence a mere fuian of the density
at a xed position and instant: v¢:PA (r;t; [n]) = Vi2A (n(r;t)). Although it
did not obtain such good successes as its ground state counpart, it is still
widely adopted. The independent particle random phaseand the alpha kernel
[130, 140] approximations used in this thesis will be preseed more in detail
later. The original work of Runge and Gross has been further dveloped and
extended in the last years and for a complete discussion reads can refer to
[137].

3.2 Time-Dependent Density Response Theory

The theory of the linear and nonlinear response function carbe applied to the
TDDFT in order to study the e ects of a small perturbation on t he system.
As previously stated n(r;t) represents the key quantity and all the physical
properties can be described in terms of the density, its vadtion and its response
functions. Here | present its derivation up to the second peturbative order and

its link with the KS independent-particles response functon.

3.2.1 Response Functions

The behavior of a system under the in uence of an external pewrbation is
called its response More accurately it can be de ned as the change in the
expectation values of a certain operator of the system when gerturbation
is applied (e.g. the total magnetization as function of an exernal magnetic
eld). Considering a small perturbation ' (t) to the unperturbed Hamiltonian
Ho, within the interaction picture, 8 one can formally expand an observabled

in orders of the interaction:
Z t1 V4 t2 2
A(l) A O

") o to @0

Z,
AL 1=AW)o+  d2

(2 3)
+ 1
(3.11)

where, for simplicity, we have adopted the notation ¢1;t;) (1) etc. Coe -
cients of this expansion are thei™ order response functions of the system 0.

A@) (2) A
@ L23= oy @

8The interaction picture is the most useful scheme in quantomechanics to  study the evo-
lution of a system subjected to the switching on of an external perturbati on. The total
Hamiltonian H is given by the unperturbed and the interacting ones: B = Ho + H (t).
B, (t) = O (t) depends on the particular coupling of the perturbation with the sy ~ stem (i.e.
the explicit expression of the force or the interaction) as obtained thr  ough the uctuation-
dissipation theorem in Kubo's response theory [69, 141, 142].

Pa2=

(3.12)
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These coe cients do not depend on the perturbing quantity in the limit * ! 0
and correspond to the variation of the operator A with respect to the pertur-
bation. For a physical system the causality condition holdsand A is function
of the time interval only and not of the absolute times:

1 1
(A)(flitl;rzitz): (A)(r1§f2;t1 ty) ty >ty (3.13)

with the condition (t; >t ;). In the case of homogeneous systems also its spatial

dependencei(1;r,) becomes function of their distancegr; r,j. Other properties

can be obtained for specic spatial symmetries or distributions, or depending

on the nature of the interaction (i.e. if it is local then  becomes local too:
Drurats )= Pt ) (2 ).

The applied perturbation ' usually does not coincide with theinteracting
Hamiltonian K, and Egs. (3.12) implies the derivation of a composite funcin
of the perturbation. Imagine this coupling is expressed though an operator®,
so that the Hamiltonian becomes:

)= Ao+ |il|(t);Z with (3.14)
Hi)= 6 @) ()= dr & (r;t)y (r;t): (3.15)

As an example, in the particular case of the interaction withan external electric
potential  ® H, is given by:
z
Bty = dr Ar;t) ©U(r;t);  with
1 (1) (r;t) = (r;t) (3.16)
Oi(rity=~(r); ' (rit)y= &(r;t):
It is then possible to derive a general form for X) depending only on the
coupling ®, and the observableA:

Q2= i (L t)HAL:S @) (3.17)
Po@23)= (b t) (i t)THAQ);O 16 @)li; (3.18)

with T the time-ordered product of the operators. These expressions have been
obtained originally by Kubo for the linear response theory B9, 141] and later
generalized to higher orders [143].

3.2.2 TDDFT Linear Density Response Function

As a consequence of theorem 3.1, once solved Eq. (3.4), thei&r charge density
and any derived quantity can be obtained. In the experimentad condition of a
system originally in its ground state to which is applied an external perturbing
eld at time tg, the physical description can pass through the study of its @nsity
in a DFT and TDDFT calculation. At time t <t the density ng and the
KS wave functionsj S (to)i are uniquely determined within DFT, while the
evolution of the system can hence be followed in TDDFT.

Nevertheless, when the external eld is small and can be coldered as a per-
turbation to the initial Hamiltonian, it is not even necessary to solve Eq. (3.4).
Accordingly to Eqg. (3.12) the response of the system becomeaadependent on
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the perturbation and can be derived directly from the ground-state expectation
values (by means of the uctuation-dissipation theorem [69 141]). In particular,
for the KS independent particles system can be easily evaluated leading to
an e cient formulation of the response (linear and nonlinear) in the TDDFT
framework. Let's see the derivation for the linear case andts generalization to
the second order.

Let's make the assumption of knowing the exact KS functionalvs of Eq. (3.8).
Hence the density and its variation in time coincides with the exact variation
of the real systemn(r;t). As a consequence the induced variation of the den-
sity at the rst order is the same whether one derives it as furction of the real
interacting potential or of the TD-KS one (see section 3.1.2or [133]):

Z
n®@)= d2 D12 vex (2 (3.19)
Z
= &2 PE2vs@: (3.20)
where 1 1
S B CE R ¢21

It is then possible to establish a link between the full respase function ,°
that describes the reaction of the system to the perturbing eld, and the non-
interacting KS response functions o. Sincevs is derived as function ofvey from
Eqg. (3.8) one can apply the chain rule in the de nition of the full polarizability

obtaining:

Z Z
N _ nl) vs@ _ @ ra. o Vs@3) .
Y= T Blgvae - @ W o
(3.22)

Recalling Eq. (3.8) the derivative of the KS potential with r espect to the external
perturbation can be further developed as

Vs (3) _ [Vext (3) + Vi (3) + vxc (3)]
Vext (2) 7 Vext (2)
. Vi (3) + vxc (3)] n(4)
(3:2) + , d4 @ @ (3.23)

(3;2)+  d4 [v(3;4)+ fye(3:4)] P (4;2);

with v the Coulomb potential that corresponds to the functional derivative of
the Hartree potential vy . 4 is the exchange-correlation kernelde ned as the
functional derivative of vyc :

Vxc (1)

fe(i2)= = 55

(3.24)
Substituting Eqg. (3.23) into Eq. (3.22) one nds the link bet ween the interacting

and non-interacting response functions under the form of a Pson equation:
z

O@2)= D@2+ d3dd P (L3)VE4) + Fe(34)] P (4;2); (3.25)

9Usually s called the full polarizability .
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or, in a simpli ed notation without indexes:
W= P+ Pvtte) @ (3.26)

Equation (3.26) can be solved by inversion and is exact in thramework of
the linear response theory (i.e. under the assumption of snibperturbing eld).
Provided that vxc and hencef,. are known, the physical quantities of interest,
as the response function , can be obtained directly from . Actually ¢ has a
formulation in terms of the ground state quantities only, as will be shown later.
All the in uence of the many-body e ects are contained into fc.

The Exchange-Correlation Kernel

The importance of the kernelf .. is crucial since it contains all the informations
about the response and the screening internal to the mediumWhen the external
eld perturbs the system, changes are induced in the intern& quantities like

the Hartree potential vy and the exchange-correlation potentialvxc . This

corresponds to the screening of the external potentialv ¢ due to the interaction

between the electrons given byvy + vxc in Eq. (3.23). The Hartree term

accounts for their classical Coulomb interaction while theexchange-correlation
term depends on their quantum nature.

The Dyson equation (3.26) incorporates directly all these slf-screening ef-
fects into  so that it could describe directly the total response of the gstem
in terms of the external eld only in Eq. (3.19). Therefore is much more
complex than the corresponding independent particle respase (. This can
also be seen in their di erent dependence on the shape of the aterial or their
behavior for nite and in nite systems [144, 145]. It is immediate to notice
that, being f4. the functional derivative of vxc , it is in practice unknown and
suitable approximations should be found.

3.2.3 TDDFT Nonlinear Density Response Function

What has been obtained for the linear response can be furthegeneralized to
higher orders [135]. Recalling Eg. (3.12) the second ordenteracting and non-
interacting density-susceptibilities @ are de ned as:

2 Da;
@ (1-9- 2 = n(1) SR CE)
? 1;23) = Vext (2) Vext (3) Y ext (3) (3.27)
@ ’n(1) 0 (1;2) |
@(1;2,3) = = :

vs(2 vs@B)  vs(3)

They can be interpreted as a perturbative variation of the r st order responses,
once the rst derivative has been identi ed with @ = él) respectively. Substi-
tuting the Dyson equation (3.25) into the rst of Egs. (3.27) and de ning for
simplicity v(1;2) + fyc(1;2) fuxc (1;2), one obtains:
Oy SwD T e [E LA 2]
Vext (3) Vext (3)

(3.28)
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Retaining only the second-order variations it reduces to:

0 (L2,
Vext (3)

@ .
d4ds 7\/0 (1-é;l.)fvxc 4;5) Y52+
7 ext (3.29)

dads E)l) (1:4) f yxc (4;5) @

@(1;2;3) =

7 Ver @ O
dads M (1;4)f e (4; 5)\/(1)(2)2):
ext

The functional derivative L—f in the third term of the previous summation

can be reduced to the exchange-correlation part only of the &rnel \ETX; sincev
corresponds to the Coulomb potential and is independent by ariations in Vey; .
This functional derivative can be further developed consiering f4. function of
Vext through the density as:

e@5) _ % o fe(5) n ()

Ve B) NE) Vex(d)

d6 g« (4;5,6) ¥ (6;3); (3.30)

where gy is the second functional derivative of the exchange-corration poten-
tial vxc and contains the higher orders three-body interactions.

Again, we want to establish a relation between the interactng and non-
interacting second-order response functions. Introducig the chain rule (di er-
entiating with respect to vs), substituting Egs. (3.23), (3.25) and considering
the de nition of gz) (3.27) one achieves the nal result (for a detailed derivaton
refers to Appendix A.1):

A
@D123)= PL23)+ dads (L4 (45) DG+
A
d4d5 P (152 A)f v (4:5) @ (5;3)+
A
2 (1. . ) (a- . @) (-
d4d5d6d7 7 (1;5;4)f vxc (5:6) 7 (6;2)f uxe (4:7) V) (7;3)+
Z
d4d5d6  § (1;4)g. (4:5:6) @ (6:3) @ (5;2)+
Z
d4d5  § (1;4)f vec (4:5) @ (5;2;3):

(3.31)

This is a second-order Dyson equation. This equation has a nmme complex
structure than the linear one, re ecting the nature of the physical process that
involves electron transitions between three levels. Staihg from the second-
order Kohn-Sham response E,Z) , that describes it neglecting any possible inter-
action among the electrons (the internal screening), the Heiree and exchange-
correlation interactions are added systematically by @, that modulates the
independent particle response. This means that its is necsary to know the
linear solution in order to solve the second-order Dyson ecation. The repeated
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occurrence of @ indicates also that the underlying interaction is mainly of lin-
ear nature, i.e. it can be decomposed in successive two banttansitions. Only
the gy kernel accounts for a real three-body interaction mixing ta@ether three
electronic states (this physical insight is more intuitive when the diagrammatic
representation of Feynman is adopted).

There is another way to write the previous equation expressig the interact-
ing solution @ as function of the other quantities. It reveals useful for futher
consideration on its physical meaning and properties. Cod#icting the terms con-
taining @ on the left and rearranging all the others on the right hand sile,
equation (3.31) can be rewritten in the nal form:

Z z
&5 (1,5  dd L5 @6:23)=
Y4 Z
dads ) (1;5:4) (2:5)+ dBfuc(5:6) @ (6:2)
Z (3.32)
G+ d7fuc@7) P(72) +
z

d4d5 (L 4)gc(4:5:6) @ (6:3) D (5:2);

or, using a compact notation as for the linear case, the expision can be sim-
pli ed as:
h i h ih i
i gl)fvxc @ = (()2) i + fvxc @ i + fvxc ) + (()1) Oxc @ @ :
(3.33)

The quantities [_AL f)l)fvxc] and [_“L+ fuxe ] can be expressed in terms of the
rst order response functions only via the rst order Dyson Eq.(3.26):

h i h i,

T Pl = & O (3.34)
h i h i,

e @ = B @, (3.35)

Substituting Eq. (3.34) and (3.35) into (3.33) and multiply ing by the inverse

term @] gl)] L on the left side of both the members of the equation, we nally
achieve the solution:

1 1

2 1h(1)i (Z)h(l)i 1h(1)i b a 1 ) @
@= @ ¢ @ ¢ @ M4 Wg, O O (336)

Alternatively, one can avoid inverse quantities and expres all in terms of the
fuxc and gy kernels:
h i h ih i
@ = 4+ Of, 82) Ytfpe @ T4fye @ + Dg @ @
(3.37)

where ] f)l)] ! has been obtained from Eq. (3.35) multiplying for the corree

inverse functions:
1

i h o i
_AL + 1) fVXC - @ (()1) : (338)
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Insight in the Nonlinear Solution

Eqg. (3.37) is useful because it allows to observe the role ohe internal screening
on the second-order response. First lets introduce the diettric function, de ned
in the linear approximation as the correlation function between the total e ective
potential and the external one:

VA

Vo= 2 ML2Wec@:  with  Mu2)= 0 (339)
ex

The inverse dielectric function ! acts as a screening for the external potential
and contains the many-body interaction of the material.

The total potential is given by the external perturbing one plus its inter-
action with the induced charge density displacementn® = @ v, (from
the de nition of the density response of Eq. (3.19)). The expession of the
latter interaction depends on the nature of the probe. If the probe can be con-
sidered as classical (e.g. an electromagnetic eld descrdnl by photons) then
Viot = Vext T Vi . One has the so-calledest-particle (TP) case:

V(D) Vi@ @
Vext (2) 7 NE3) Vext(2)

= (L,2)+ d3v(1;3) P (3:2)

Z
1p(L2)= (1;2)+ d3

(3.40)

=1+v ® (in the compact form):

Otherwise, if the probe is an electron, it can test also the seening of the
exchange-correlation interaction with the induced charge described by the po-
tential vxc . Therefore the total potential Vit = Vext + VH + Vxc corresponds
to the de nition of vs of Eq. (3.8). This is the case of thetest-electron (TE)

probe:

Vit (1) _ vs(1)

11,2 = = 3.41
e 0 T Ve (341
that has already been calculated in Eq. (3.23):
Z
1(1;2)= (1;2)+  d3 [V(L;3)+ fie] P (352
£(12)= (1;2) V(1;3) + fxe] 7 (3:2) (3.42)

=14 fye @ (in a compact form):

The screening function of the TE case is the one that occurs irthe Dyson
equation (3.37) that hence can be rewritten as:

@= Jle) " Penn ) A 20

(3.43)
WEge @G ) @) O):

Inverting the de nition in Eq. (3.41) so that vg = Té Vext , it becomes clear

that Té transforms the external perturbing potential vey into the KS potential

vs. This is exactly the role of the two terms on the right side of 52). Applying
1

an external eld vey is transformed by |z into a KS eld on which can act

the second-order independent particle susceptibility ((32) .
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The transposed term [T,%]T as well as thegy. kernel come both from the

second-order derivative ofW in the derivation of @ and do not have any

counterpart in the linear response. They can be identi ed asthe second-order
screening and the second-order three-body interaction ofite process.



Chapter 4

Second Harmonic
Generation

The second harmonic generation process involves the absdipn of two equal

photons and the emission of a third one with twice their energ due to energy
conservation. This mechanism is described by the polarizédon of the medium,

in particular by the second-order polarization when it is expanded through per-

turbation theory in term of the total electric eld. It is pos sible to relate this

macroscopic polarization to the microscopic one. Once it h&tbeen established
that the long wavelength limit holds, the latter is derived from the nonlinear

density response of TDDFT seen in the previous chapter.

Since its formulation is obtained as a function of the KS respnse function
from the Dyson equation, we provide the derivation of the ex&t expression for
the independent particles KS susceptibility in a periodic ystem using Bloch
states and a plane wave basis.

4.1 Microscopic Derivation

In section 3.2, | have brie y introduced the response theoryin a perturbative
approach and its derivation for the density response funcion in TDDFT. The
second harmonic process instead describes the interacticand the response of
the system to an external electromagnetic radiation. Formdly it can be identi-
ed with the (macroscopic) polarization of the material Py, . This polarization
can be expanded in term of the macroscopic total electric ell E:

PS) 1)+ Pﬁ) 1)+ PS) @+ :::

PW2E@+ DWL2IEQEE)+ §L2ZEREGEM@+
(4.1)

Pm (1)

where f\}l) are the optical responses being (,j) the linear term and the others
the nonlinear ones. \, is called the dielectric susceptibility of the material.
These response functions are characteristic of the obsemyesystem, therefore
they should be determined from its microscopic structure wihin a quantum-
mechanical approach.

45
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In the following | will show that it is possible, according to Ref. [146] and
[68], to determine the microscopic polarization up to the seond order from the
induced current, establishing a relation between the dieletric susceptibility and
the TDDFT density response function.

Usually one wants to compare with spectroscopy experimentsA system in
its equilibrium many-body state j ( to)i is stimulated starting from a certain
instant tp and its reaction is observed. Consequently one can think to @scribe
the system within perturbation theory, starting from an unp erturbed Hamil-
tonian ¥, and switching on att = ty the external eld that couples with the
system through an interaction Hamiltonian H; :

H = Ho+ B (t): (4.2)

This approach can be simply described in theinteraction picture, where the
wave functions and the operators are de ned as:

i Oi=ee O (4.3)
Ol(l) - eiH otél(s)e iH ot: (44)
and in particular

The convenient point is that the evolution operator dependsonly on the known
eigenvalue and eigenfunctions of the unperturbed Hamiltoran, while the Schredinger
equation and its solution become:

@ i

i Di=j O i tdtlH.‘”(tl)J O (ty)i: 4.7)

to

iH i O )i; (4.6)
Z

Substituting iteratively Eq. (4.7) into itself 2 in the right hand side integral, one
obtains the solution expressed as summation of di erent or@rs of the interaction
. Retaining only terms up to the second order we havé:

Z t
JCDi=j(to)i i dtg Hi(t1)j ( to)i
z, z¢ (4.8)
+ t dt; t dto Hy (t2)H (t2)j ( to)i + (3)

When one evaluates the expectation value of an operato(t) (I will indi-
cate it with the simpli ed notation hOi = h( 1)jOj ( t)i) adopting the solution
Eq. (4.8), also hOi is decomposed in dierent orders of the perturbation H, .
They can be collected and re-arranged through the Baker-Cambell-Hausdor

1Here the superscript () and (S) stand respectively for the interaction and Schredinger
pictures.

2Equation (4.7) is a Dyson Equation for | i, where j ( to)i represents the unperturbed
solution.

3From now on the superscript label of the interaction picture (1) will b e omitted.
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formula as [147]:

hO(t)i =hd(to)i + kzé(t)i(l) + MW@ + (3) =

t
=O(to)i i dty h( to)i[O(t); H (ta)]j ( to)i
Z t Otl

iodty dtz h( to)i[[O(t); K (t); M (t2)]j ( to)i + (3)
to to
(4.9)

where the expression has been truncated at the second order.

Starting from this general result one can obtain the dielectic susceptibility
and the polarization that arise when the system interacts wih a perturbing
electromagnetic eld described by its scalar and vector poéntials ( ”;AP). In

this particular case ¥ takes the form?#
Z

R)=Ho | %(r;t)AP(r;t) + dr (r;t) P(rt); (4.10)

where Ho, which is function of the current-density Ho(j) in the unperturbed
case, now becomes function gf % (r;)AP (r;t). Whereas, the free current-

density { and the density ~ of Eq. (4.10) are de ned as:
1
(r) = SLor roo] (4.11)
N =g nj? (4.12)

The free current-density j(r;t) has been substituted with the total current-
density jit (r;t) (the additional induced term originates from the interaction of
the electronic charge # in the presence of the vector potentialA " ):®

1
fo =T 2 (HDAP(r: (4.13)

At the same time the electronic charge of the system in the preence of the
electric potential P gives rise to the last term of Eq. (4.10). Working on this
equation it is then possible to isolate the interaction termsof the Hamiltonian

H, (I de ne fzor simplicity AP :Z%AP):

z h i s
A= a fDAP(D+ A0 P+ 5 dr 0 ARG
(4.14)
Eqg. (4.14) can be collected accordingly to the perturbativeorder into linear and
second-order terms:
z z
B® (t) = dr fO)AP(r;t)+ dr Ar) P(r;t);
1 z h iy (4.15)
ROM= 5 d ) APy
4] am always considering atomic units e= me = ~=1.

5From now on the density operator will be identied as *  and its expectation value will
be i = h j7 i instead of n. Indeed in the following *n could be confused with the operator
number that gives the occupation numbers of an electronic state and n with the band index
when the explicit expression of the KS response function is derived.

6This derives from the substitution of the free linear momentum of the R €lectronic system
with the additional term arising from the perturbing eld: pl p % dr (r;t)AP(r;t).
The current-density is its local form.
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One can now use the results of Eq. (4.9) to obtain the correctins at each
order in ( P;AP) given a certain operator A. From Maxwell equations the
microscopic polarization of the medium, the quantity of interest, is de ned as:

fon (110 =GP0 (@16)
that in frequency-space domain becomes:
Tor(r;t)=it P(r;1): (4.17)

It is then possible to establish a direct link among the linea (and nonlinear)
optical response of the systenP () and its microscopic current-density response
functions at every order.

4.1.1 Current-Density Derivation

The total current-density because of Eq. (4.17) becomes th&ey quantity of the
microscopic SHG process. It can be evaluated accordingly t&q. (4.9) choosing
O = fit and substituting Eq. (4.14) into Eq. (4.9):
z t
Hiot (15 0)i =Hioe (Ft0)i 1 dta o (15 8); Ay (ta)]i
z, z, ° (4.18)
dt; dtz Ml (75 t); By (6] B (0211 + 220
to to
The rst order correction of the total current rfmt i® in a simpli ed notation
is: 7 .
t1 h |
Hiot )I® = h AQIAP@Q) i dt, hf@): AP @) i; (4.19)
to
where the rst term comes from the zero-order (since the pertirbation is already
present in the de nition of ftot) and the other from the rst order interaction.
Further developing the terms substituting ,q|<1> of Eq. (4.15) one gets"
Z  Zy h i
Hot (DI = h ADIAP )+ i dro  dt; h(2):7(2) 1A7(2)
z z., n i (4.20)
i dr,  dt, hf@Q);N2) i P@):
to
These terms can be identi ed according to Egs. (3.11) and (3.2) as the rst
order response functions of the system. In order to nd an expession that is
cansistentdvith our de nition of Eq. (3.17), let's introduc e the step function
(Jdp= 0 dp (1 t))
Z Z, h i
Hot (DI® = h ADIAP D)+ dr;  dty (i )h{(1):52) iA7 Q)
z z, “h i
i dr; dty (i )h (1)) i P ():

to

(4.21)

RR7Since | hgve adopted the simplied notation ( ri;t1) = (1) | represent the integrals
dridt; as d1, making explicit the extremes if necegsary. When the integpation is per-
formed upon only one of the variables r or t, | will use drj or alternatively  dt;.
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It is now immediate to identify the response functions j(jl) and j(l) in the form
of Eq. (3.17):
z Z,
Mo (DI® = h ADIAP@Q)  drp  d (P (12A°(@2)
z zZ, fo (4.22)
+ dp  de P12 P@:

to

Time-Fourier transforming these quantities in the frequercy space (choosing the
arbitrary variable to = 1 , see App. B for the conventions adopted for Fourier
transforms) it takes the form:

Z

Bt (11 )i® = h Ar)iAP (1) dra P (roras AP (rast)
Z (4.23)
+ dry D@t Plrat):

This expression can be further modi ed using gauge invariane (see [146] and
appendix D for the complete derivation) and one gets:

Fioc (130 = LAIER (i )+ — dre O (rasrai )EP (it )
' ' (4.24)

where the electric perturbing eld EP determined by the external potentials
( P;AP)is de ned as:

P . - P . 1@ P )
E"(r;t)=r (r;t) E@'ﬁ (r;t)

( (4.25)
EP(r:1)=1r1 , P(r;1)+ %Ap(r;! E
De ning the quasi-susceptibility? ~ as:
Drirat) ST pnnat) N (o) (4.26)
Eq. (4.24) can be rewritten as: ,
Mot (ra;1)i® =it drg ~® (ry;rg;)EP (1231 ); (4.27)

The linear correction to the polarization P® is then given in real and re-
ciprocal space by®

PO(ry;t)= dry ~O(ryrg 1 )EP (ra!); (4.28)

X
PB(gi+ Gy!) = ~D (g1 + G1;a1+ G )EP (g + Goil ) (4.29)
G2

81t is called quasi-susceptibility or quasi-polarizability because itis  related to the perturbing
eld EP. The polarizability is the one related to the total eld E.

9For the reciprocal space the expression is obtained through a Fourier tra nsform over the
spatial variable r considering a periodic medium. This is the case of crystal lattices but th e
assumption can be extended also to non periodic systems as presented in section 2. 5.1, where
constructing a supercell allows to impose boundary conditions for the  usage of a plane waves
basis set.
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The same calculation can be performed for the second-ordeuorent-density
(which is linked to P®). Collecting all the second-order terms of Eq. (4.18)
and recognizing the response functions of Eq. (3.18), one tdins the nal form:

12 h i
B (Di® = 5 d2 (1,2 A7)
z i
A2 Q@2APWATR  Dw2At@) @)
2z h i (4.30)

d2d3 P (1,23AP AP E)+ P (1:23) P2 PE)

+
/]

27

NI~ NI -

h i
d2d3 (123872 PE)+ P@23) P(QAP@)

Using the same kind of argument, through gauge invariance fdations (see
Appendix D for a complete derivation) one gets:

7 7
Hio (1! 1)i@ = drodrg  diodig (11 1o la)
l EP(r.l )EP(r.| ) } (2)(rrr| | ) 431
10 2,2 3,' 3 5 i Ff2ilst2’s (4.31)
1
Druraita) (1 ra) > Drarala+13) (12 r3) -

Now one has a direct link betweenP®@ and EP, that can be expressed
through the second-order quasi-susceptibility~?® as:

7 7
P@(ry;lq) = dradrs diodlz (Y1 '2 !3) (4.32)
~@ (ry;ra;ra;1 251 3)EP (r2;1 2)EP (r3; ! 5)
where <@ has been de ned from Eq. (4.31) as
@ (r oropon] - i Lo,
e GH P ERIPHEE T a(la+15) 2 i (risrairs;la! g)+
Cen el ' (4.33)

1
+ D@rurato) (i ra)+ > Droirata+13) (12 ra)

In the momentum space Eq. (4.32) becomes:

P@(gqy+ Gy;l1)=
X X £
diy ~@(qu+ G1;q2+ G2;q1 Q2+ Gailoaily 1)) (4.34)
q2G2 G3

EP(g2+ G2;!12)EP (a1 g2+ Gajly o)

4.2 Longitudinal Perturbation

As | have shown in the previous derivations, the current-desity variation al-
lows to get the complete knowledge of the polarization of a mdium at each
perturbative order. Although it exists an ab-initio formal ism that describes the
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system in terms of the current, the Time Dependent Current-Density Functional
Theory (TDCDFT), so far it has proved to be premature for practical appli-
cation on ab-initio optical calculations. TDCDFT indeed, h as not yet reached
a level of development comparable to the TDDFT. Calculation methods and
algorithms are still improving and, more important, the development of approx-
imated forms for the f,; kernel that goes beyond the LDA nowadays represents
an open task. Because of these reasons, one may want to rely well established
TDDFT, which demonstrated to be e cient especially treatin g an perturbing
eld in a perturbative approach (see section 3.2).

In this perspective it is possible to pass from the current-énsity to the
density through the continuity equation

r @t = @Nr;t); (4.35)

that shows a correlation between the two quantities. This dierential equation
takes a useful linear expression in the space of frequenciasd reciprocal vectors:

q Pa;t) =it Na;!) (4.36)
that holds at each order:

q H@!)i® =it yg;!)i®: (4.37)

This equation establish a direct link between the density “and the current f
More precisely, it is the longitudinal component of the induced currentq fthat
is proportional to the density. It is a general condition and shows how TDDFT
and theories that describe the system in terms of the densityonly cannot man-
age in principle transverse electromagnetic perturbatios. However, under the
constraint that the perturbing eld is longitudinal this co rrespondence permits
to describe the longitudinal component oﬁ\ and henceP in terms of the density
response functions only. It represents a good approximatio for SHG even if the
external electromagnetic eld is not longitudinal, since for optical excitations
in the visible range, one can assume that the system undergeeonly vertical
transitions g = 0.1° This can be easily seen in the real space considering that
the typical wavelength  of a photon in the visible range is around 18 10* A.
Hence the long wavelength limit ( ! 1 ) with respect to the characteristic
dimension of the system (i.e., the lattice parameter) holdsand the eld is seen
by the system as constant. Therefore it can be locally approxated as uniform.
In this case it does not have any meaning distinguishing beteen longitudinal
and transverse perturbations [148], sincégj' 0 and no propagation direction is
de ned. The problem can therefore be treated in the hypothess of longitudinal
eld without loss of generality. However, ¢ will describe the polarization of the
electromagnetic eld that is still de ned. Under this assumption TDDFT can
be applied rigorously to every perturbation. From now on | will always consider
the limit g! 0O in all the demonstrations and calculations.

4.2.1 Density Derivation

Because of the continuity equation the important quantities are now the linear
and nonlinear response functions of the density, that can bebtained with an

10photons are massless particles. Their wavenumber k is proportional to the frequency
k = 2- and for frequency around the visible range the exchanged vector with t he system is

k 10 3 A ! and can be neglected.
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approach similar to that used for the current. The rst order density correction
MWyt (1)iD derived developing Eq. (4.9) is:
Z Z
Mot (1)@ = 2 Y@2aP@+ d2 ©(L2) @) (4.38)

With the same kind of calculation as for the current, expresing he (1)i® as
function of the electric eld EP in the frequencies and reciprocal spaces one has
[146]:

. Z
. i
Mot (re;! )i = drp (lj)(rl;rz;! YEP (ro;1):
NI IR et b
Mot (Qu+ G )it == i A1+ G1ig1+ Go! )E" (g1 + Gl ):
o,

(4.39)

In the case of the density it is interesting to notice that for neutral exci-
tations, e.g. the absorption of one or more photon without enission of any
electron (this is the case we are interested in); the total carge is conserved.
Therefore, the overall variation of the density dr h (r)i has to be zero for
each perturbative order, in particular from Eq. (4.39):

Z Z Z

dry Mo (ris!)i® = dry dry @ (rrait)EP(r1) =0 (4.40)

Because this holds in general, independently on the appliegierturbation EP
acting in a generic pointr,, it means that the other term should be identically
zero:
Z
dry (?(rl;rZ;! )=0  8r;
(4.41)
Q0:621)=0  8G:

The last equation shows that (1]-) vanish because of charge conservation in
neutral excitations.
The second-order density correction instead reads:
z

Ma i@ = 5 a2 O@2A"EP
ZZ h i

+% d2d3 @ (1:23AP@A%E) D ®23A%Q) PE) (442
7 h i

+ % d2d3 @ (1;23) (2 P@) Y23 PEAPQ :

Using gauge invariance and expressinghy;i® as function of EP, Eq. (4.42)
can be rewritten in a form that will be useful in the following (see App. D.3):
z
- 1 JEPj(92:! 2) IJEPj(g3;! 3)
@ - = @ o] e .
Mot ()i 5 d2d3 (91;92;03;! 2;! 3) 190] 19s] :
(4.43)

The last equation holds in general because of gauge invarian.
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4.2.2 Optical Limit Considerations

As explained above, for SHG the long wavelength limit constiutes a good ap-
proximation. Its consequences can be further developed. &ng q ! O the
linear response j vanishes!! whereas | is zero because of charge conserva-
tion in neutral excitations. Then the quasi-susceptibilities of Egs. (4.26), (4.33)

depend only on the response functionsj(-l) and J-(f) that can be derived from the
density ones, achieved via the TDDFT description of the sysem (see Egs. (3.26)

and (3.33)). In particular from the continuity equation [14 9, 150] one has:

a ) (audz!) gz= 17 W(anaz!) (4.44)

!2
j(jl)"L (0;9;!) = r W(g;a;!) (4.45)

Where the superscript (L) stands for the longitudinal component (here is double,
both in the perturbation and the response). At the second orcr instead it
becomes (see Appendix D.3 for a complete derivation):

!3
j(ij)LLL (a;q;0q;20;1 ) = iq—3 @ (g;9;9;25! ): (4.46)

A problem still exists connected with the limit g ! 0 of the latter response
function when inserted into the quasi-susceptibilities, wvhich is vanishing and
should be handled in a perturbative approach. However in thefollowing section
I will suppose the limits exists, handling this problem in a scond time.

4.3 Response Function Derivation

Now, all the required knowledge for the determination of the polarization in

terms of the response functions depend on the possibility dfiaving an explicit

form for Egs. (3.17) and (3.18). These quantities have beernxpressed as function
of the real wave functions and energies in the interaction giture. For an easier
physical understanding | divide O, the coupling of the eld with the system in

Egs. (3.17) and (3.18), into its components “and | that couples with * P and

AP respectively (see Eq. (4.14)). | derive then an explicit fom of the linear
and second-order response functions considering two geatoperatorsB and €,

that can be identi ed at the occurrence with the particular i nteraction terms (#,

f) that are involved. As an example, the linear case Eq. (3.17ran be rewritten

as:

W @2)= ity t) KROOBO@i h BOQAD@)I :  (4.47)

1 j is obtained from gauge invariance calculation and vanish in the lo  ng wavelength limit.
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Developing the two formula (the linear and nonlinear case) ad translating them
into the frequency domain one obtains the following results'?

X h oJAS)j nih jBE Q)] oi

53; (ry;ra;t)=Ilim

I o+ ' (En Eo)+i
" ! (4.48)
h 0B 2)j nih njAS1)j o
| +(En Eg)+i
or in a simpli ed notation where h {jA(®)(1)j ;i = A (1):
O ey dim . Ao(DBo) Bon (1)Ano(2)
AB AT Tert ' o ' (En Eo)+i P +(En Eg)+i
(4.49)
The second-order term instead become®
X
VN CHPH I PHPHINE lim (1 2 la)

nm
AOn (1)Bnm (Z)Cmo(?’)
(Eo Em+!3+i )Eo En+!2+!3+2i
BOn (l)Anm (Z)CmO(‘?’)
(Eo Em+!sz+i )En Em+!z+!3+2i (4.50)
. Con (1)Ann (2)Bmo(3)
(En E0+!3+i)(En Em+!2+!3+2i
COn (1)Bnm (Z)Am0(3)
(En Eo+!s+i )Em Eo+!2+!3+2i
+(2$ 3):

One can immediately notice that there are only two independat frequencies.
I'1, the one of the response, is given by the summation of the two grturbations
I, and ! 3. This process, calledfrequencies summation in the particular case
of ' 1 = I', reduces to the second harmonic generation. While the rst neds
two di erent electromagnetic elds, the latter can take pla ce in the presence of
a single external perturbation. At the linear order the frequency is unique!
and there is no possibility of frequency composition. Fregency modi cation
are always related to nonlinear e ects.

4.3.1 TDDFT plane waves Independent Particle Deriva-
tion

Forms (4.49) and (4.50) are useful only once the real wave furtions and energies
are known. As discussed in chapters 2 and 3, this is not the casand one has
to rely on the response functions of the independent KS systa. In a second
time the linear and nonlinear total response can be deducedodving the Dyson

equations (3.26) and (3.33), as achieved in the TDDFT-respose theory.

121 the following the operators A, B and € are in the Schiedinger picture, that correspond
to the same operators in the interaction picture at t = tg.

3The last term (2 $ 3) means that the previous terms should be considered in the addition
also with the indexes (2) and (3) swapped.
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The independent response functions are obtained in secondugntization
starting from the previous results. For the linear expressbn it becomes:

@ ()= (f fy)hl) (rlzlij(f?)L!Jirzi)J)ﬁ(rz)J (r2)i

1]

(4.51)

with the lower-case lettersd B and é (in the following equation) that indicates

the corresponding single particle operators used to expre®, B and € in second
quantization.4

For the second-order response instead one has:

X hi(ro)iara)j j(ra)i

2 . . . . . _
(('J)ABC (re;rosra;l o+ 1a;lolg)=

i;j;k(i ptltatla+2i)
f, )h P (r2)ifXr2)j k(ra)ih «(ra)ié(ra)i i(ra)i
bl (i «*tlati) (4.52)

h i (ra)je(ra)i k(ra)in w(r2)ib(r2)j i(fz)i+

(fl fk) (k j+!3+i)

2% 3):

The derivation is general and holds for the eigenfunctions ad eigenenergies
i, i of a single particle basis (i.e., an independent particle sstem). In the
particular case of interest, they represents the KS wave fuctions and energies
ks ks f A= B = € =~ Egs. (4.51) and (4.52) correspond to the responses

of the independent particles KS system (()l), E,Z) of Egs. (3.21), (3.27).
Substituting to /8, B, & the density single particle operator (i.e.,&r1) = (r;

r)) and developing the two formula Egs. (4.51), (4.52) in the kasis of Bloch's

states, the two independent particles susceptibilities t&e the expressions:

X i (ra) j(ra) ;(r2) i(r2)
E)l) (risras!) = ' (fi  fj) (li : jl+: +2i ) : (4.53)
doaa X i (r1) j(ra)
<()2) (riira;rst o+ ailails) = " (i + !12-:!;+2i )
i (r2) k(r2) (ra) i(rs)
(fi - (i k+!k3+i) *

¢ 1 i (ra) «(rs) k(rZ)- i(ra) (4.54)
i kt+tlat+i)
f) j (ra) «(rs) (r2) i(f2)+
“ (k j+la+i)
i (r2) «(r2) (rs) i(rs)
(k j+12+i)
Rl“ln second quantization the single particle operator A is expressed as A =

dr Y(r)a(r) (r) where Y, are the eld operators that create or annihilate a particle
in r. In the particular case of the denésity Na(ri)= (r1 r)and

(f;

(f;  fx)

hii(roja(ra)j j(ra)i= dr(ra) (ra 1) j(ra) = (ra) j(ra):
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At the same time one has (withp = ir the linear momentum operator):
X i (r1) j(ra) ;(r2)p i(r2)
1) . . _ . ) i 1) j 1 i 2 i 2
o j(rurzt)= (fi f;) TEETIEED (4.55)

ij

So far the equations have been expressed for two incoming @$ of frequency
I, and ! 3 with the general constraint that the second-order responseéhas the
frequency component! ;1 = ! , + I 3. The same holds in reciprocal spaceq; =
g2+ qs. Itis a general condition valid for the sum frequencies gemation process.
However now | want to restrict to the SHG case de ned by! , = ! 3. From now
on | will pose them equal to! . Due to all these relations that subsist among
the variables | will also use a shorter notation for the suscgtibility:

(()2) (d2+ g3+ G1;02+ G2;q3+ G, 2+ 131 251 3) ! ff)elezes(qzqs;! ):
The KS response functions are then obtained using the KS basi ; = XS,

i = KS | and expressing them on the Bloch state$ y,i of Eq. (2.32) the nal
form for SHG reads:
E)z)G 6,6,(02;03;!) = 2 X h nacje (@27 am e nk.i
122 nn oo Nk n°k+q2+q3+2! +2i
nh _ S _ i
h ks gz q2J€ 93 C92) noncs g, i noace g, €927 G i

(fnk fn°°k+q2) + (fn°k+q2+q3 fn00k+q2)
h nk no%+q, T P+ no%+ g n%+q,+qs T P+ i
e'(Q2+G2)|’2j noo,(+q3ih n00k+q3j€‘|(q3+G3)r3j ki

+  (4.56)

h noce g+ sl

(Frk frox+qs) i (Frok+gz+qs frok+qs)
nk nok+qy + 1 H no% + q nok+qa+qs ¥ ! F

As stated before, it is not immediate to obtain the limit g ! 0 since g”
vanishes. As a consequence one cannot substitute directty = 0 but has to ex-
pand the Bloch functions in q using perturbation theory up to the second order
both for the energies and the wave functions (I am considerig semiconductors
and insulators for which fn.x+q = fn.x and is k-independent).*®

4.3.2 Optical Limit through Perturbation Theory

j nkli is solution of the Bloch Hamiltonian [151]:
. 1, . S
A nii = 512+ Vo J ok = ok i (4.57)

with V, a generic nonlocal periodic lattice potential, that can be denti ed
with the total potential Vex or the ionic pseudopotential. Decomposing the

15This corresponds considering all the terms in gz) = that are proportional to  jqj3,
the higher non-vanishing order. Indeed because of equation (4.46) and the nite limit for
](”2) L (g ! 0), once one expands 82) in powers of q the terms up to jqj? must vanish
and the one proportional to jqj is the only one that remains in Eq. (4.46) when the limit is
performed.
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wave functions on the Bloch states of Eq. (2.32), the periodi term juni is
solution of the equation:1

hijuni %kz ikr %r 2+ e MR juni = nkjUnki: (4.58)
Accordingly to Eq. (4.56), the Bloch functions and energiesdepends on the

linear momentum k + q. The periodic part of j «+gni, junk+qi, becomes the
solution of the corresponding Hamiltonian hy. 4:

Nk+qjUnk+ql = nk+qlUnk+ql (4.59)

hevq = Skt @7 (k) Jr 2+ e oy, g

(4.60)

It is possible to identify Eq. (4.59) with Eq. (4.58) where the variable k is
substituted with k ! k + g. In the long wavelength limit g ! 0 one can
think hg+ 4 and its eigenvalues/eigenvectors being the perturbed Hanttonian
of the unperturbed hy.'”. Rearranging the terms of Eq. (4.59) according to
their respective order of q, the perturbation Hamiltonian can be written as
hk+q = hg + hpg + hoy + (3), with:

hix = kg igr + e KV, e"igr ; (4.61)

h2;k %qz +qre ikr an eikr qr %(qr)ze ikr an eikr
(4.62)

1 . )

Ee ikr an elkr (qr)Z:
These perturbations and the relative corrections to the eignstatesjunki can
be obtained also for the complete wave functiong nxi. Indeed, considering
Hik+q = Hk + Hyx + Ha + (3) one has:

. F— k . .
hikjunki = € " Hyxj nki

o : o (4.63)
haxjunki = € " Howj nii;
that gives
Hix = igr +[Vyigr]=iq[Hg;r
1:k q [V ;iqr] g[H;r] (4.64)
:qv
1 1 1
Hok = qu + qr Vi qr E(qr)zvm SVn (qr)?
1 1
= qu + Slars Vo ar]] (4.65)

o
= é[qr,qv],

where the velocity operatorv is given byv = q+ i [V, ;r]. One can notice that
Vn enters through its commutator with the position operator r. Therefore only

161t is obtained developing the Hamiltonian for the full Bloch states ek juni and then
dividing by the exponential term X . It results that hy = e K H.
17Here the perturbation is identi ed with the exchanged linear momentu m q.
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its nonlocal part, that does not commute, contributes to these Hamiltonians.
H1.x and Hz. allow to obtain the energy and wave functions corrections wthin
Time-Independent Perturbation Theory.

The energy corrections (see Appendix C for a complete deriweon) developed
up to the second order become:

1) _ i i i
@ =h ndH k] nid (4.66)
= h nkjavj ki
X jh miiHakd nkij 2 T
51212 _ J kak 1;kJ knkJ +h kiHaki okl
n m
m)’z‘(Dn (4.67)

jh mquvj nkij2 L

T Sh adlariavi
n m

m2D,

With neeq = nk+ ) + & + (3). The wave functions instead are given by:

j ﬁlk)i _ mkll( 1,|<Jkn|<|j i
n m
e (4.68)
h mkjaQvj nki.
m2D, nk mk
@~ X X h mkiHik) pkih pkiH1k] nki
J nkI - ( )( ) J mk!
m2D, p2D, nk pk nk mk
. . . h jH1xj i .
h nkJHlmJ nk! “mﬁl‘i&l‘ggl] mk!
maD, (nk mk)
L X homkiHawd i
——— ) mkl
m2D, (nk mk)
12X M oeli?
2rn2Dn (nk mk)2 A
X X (4.69)

— h mquvj pkih pquVj nki-

i
m2D, p2D, (nk  p)(nk mk) ] mk
L . X h igVvi i .
h nkjavi nkl %J -
m2D, nk mk
X i h midlar;avlj ok
2 ( ) ] mkl!
m2D, nk mk

1 X jh midavi nkii?,

2Jnk|
m2D, (nk mk)

with D,, the degenerate subspace of the eigenvectors with energy efuo .
In the particular case of ,x being non-degenerateD, n.

The wave function is given by: j nk+qi = €U () ki +j f]lgi + ﬁﬁzi +
(3)). These formulas, substituted in Eq. (4.56) gives the desired KS second-

order density response f)z) , that I will not present here because of the lengthy
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expression. The matrix elements are here evaluated in theelocity gauge but
the nal result can be demonstrated to be in agreement with the one of Hughes
and Sipe [48, 50, 152] evaluated in thdength gauge[153] More informations
about the correspondences between the two gauges can be fauim appendix
D.4.

4.4 Macroscopic Derivation

In the previous sections | have shown the microscopic derivan of the second-
order response function. This has been achieved applying perbation theory
to the TDDFT formalisms. Nevertheless, it is not su cientin order to compare
with experimental results. Experiments on semiconductingmaterials as the ones
of interest are usually performed on macroscopic samples ithe laboratory en-
vironment. Also the optical phenomena (re ection, propagation, transmission)
can be quanti ed by a number of parameters that determine the properties of
the medium at the macroscopic level. Therefore the macrosgic response of the
system that is measured must be linked to the microscopic on¢hat has been
derived so-far. This process corresponds to a spatial avega over a distance
that is large with respect to the lattice parameter, as shownby Ehrenreich in
Ref. [146]. It is obtained by averaging the parts of the micr@copic quantities
that are periodic with respect to the lattice. The two responses (macroscopic
and microscopic) generally di er because of the microscogiinhomogeneities of
the system that make the induced polarization locally di erent. Di erences can
arise also from the microscopic order that di ers from the macroscopic one (an
example is given by anti-ferromagnetic materials, where tle microscopic order
given by well de ned alignment of the electronic spins is aveaged to zero at a
macroscopic level). The starting point is again the de nition of the polariza-
tion®

Pu@)=PP@+PP@+

@ @ (4.70)
= v @L2AE@+ (1, 23)ERER)+
whereE corresponds to thetotal macroscopic electric eld, given by the external
and the induced ones. The SHG process is then de ned by the sewd-order
macroscopic polarization:

P@1)= ¥ (1;2,3)EQEM); (4.71)

with the constraint that the two frequencies of the elds E(! ;), E(! 3) are equal:

o= 13, f\,'l), as well as other optical quantities as y (the dielectric function
responsible of the linear response), cannot be obtained dictly by averaging
the microscopic expressions oP® and P@ Egs. (4.28) and (4.32). These are
function of the external perturbing eld EP and should be rst reformulated
in terms of E. The average is then performed by taking theG = 0 component

(this is a general theorem that holds for periodic functiong.

18This de nition holds for materials that lack of an intrinsic pol  arization when EP =0.
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4.4.1 Derivation of the Perturbing Field as Function of
the Total Field

The dielectric susceptibility is obtained from the polarization as seen before.
An useful derivation of the dierent P() orders can be obtained considering
the displacement vectorD in Maxwell's equations. Let's now introduce their
microscopic form in the usual c.g.s units!®

r D=4 (4.72)
r E= %)B (4.73)
rH= %D + %jext (4.74)

r B=0 (4.75)

where &;j® are the sources of the external eld
roE™ =4 (4.76)
and E is the total eld given by the external and the induced one:
r E=r E®+r EM =
=4 ety ind _y tot. (4.77)

The last equation, together with Maxwell's equation (4.72) and the de nition
of the polarization vector r P = " gives the displacement vectorD :

D=E+4 P: (4.78)

I will not consider the magnetization of the material (M =0, so that B = H +
M = H). The previous equations can be transformed from the di eretial form
into a linear one in the frequencies-momenta space through Bourier transform.
Maxwell's equations then read:

i(g+ G) D(g+ G;!)=4 = (q+ G;!) (4.79)
(@+G) E(@+Gil)= -B(q+Gil) (4.80)
@+6) B@+Gi)= D *Lit@gren) (s
i(g+ G) B(g+G;!)=0: (4.82)

Equation (4.78) for the microscopic electric displacementvector becomes:
D(q+G;!)=E(q+ G;!)+4 P(q+G;!) 4.8
=E(@@+G:i)+4 (PU(q+ G+ PP+ Gil)

where P has been developed up to the second order.
D can be related toE®! thanks to equations (4.76) and (4.79), that give:

r D=r E®
(+G) D(q+ G;!)=(q+G) E*(q+ G;!) (4.84)
D (a+ G;!)= E®" (q+ G;!):

19The velocity of light is expressed by ¢, while ¢; o =1.
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Combining the Egs. (4.80) and (4.81) instead one has:

(@+G) [(a+G) E(@+G;l)]=

12 4il (4.85)
?D(Q"‘G;!) =) g+ G;t)

[(a+G) E(q+G;!)l(a+G) j q+ G°E(q+ G;!) =

12 4i (4.86)
CTD(q+ G:!) TJeXI(Q‘* G;');

where the relationa (b c¢)=(a c)b (a b)c. In the absence of external
currents (j®t = 0), projecting Eqg. (4.86) on both hand-sides on the transvese
component gives:

1 2

Tq+G;!)= 5——=5D"(q+ G;!): :
The last equation in the case of long wavelengthg; ! 0 so that 1, one
has!E 1 that makes all the terms with G 6 0 vanish being their limit G%.

As a consequence only the macroscopic component of the trarerse total eld
remains.

4.4.2 Macroscopic response

The derivation of the second-order macroscopic response & nontrivial task,
because one wants to pass from the induced microscopic ucttions obtained
in the response theory to the knowledge of the macroscopic ferization of
equation (4.1). The most di cult goal is to pass from the external eld E®*
that is macroscopic, to the total electric eld E that is microscopic since it
contains also the contribution of the microscopic induced elds i.e., the crystal
local elds e ects.

The total eld E can be considered in general as the sum of the perturbing
eld EP and the response eldER.

If one chosesEP = E® so that ER = EM as done by Ehrenreich [146] for
cubic crystal, the results is more physically intuitive. Nevertheless, it demon-
strated extremely di cult to treat a general crystal lattic e and another choice of
the elds presented by Del Sole and Fiorino [68] should be admted. Other de -
nitions of EP and ER are formally exact and possible in the response theory: It
means moving part of the response already into the unperturked Hamiltonian,
i.e. in the linear case rede ning

H=Ho+H = HI+ A (4.88)

with di erent unperturbed states, but keeping the same total Hamiltonian.
Hence it has the same behavior of the system subjected to thexternal per-
turbation. ?2° According to Ref. [68] for a general crystal symmetry it revels
convenient to split the induced part of the total electric e Id into its longitudi-
nal and transverse components:

Eind — Eind;L + Eind;T : (489)

200ne can nd an analogy in Many-Body Perturbation Theory in the arb itrariness of the
choice of the Go Green's function. E.g., one can include or not the Hartree term intot he
unperturbed Hamiltonian so that Gg ! Gy . The quantities into the Dyson equation (the
self-energy ) will change, but the full-interacting G will be the same in both the cases.
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The perturbing eld EP as considered before, should then be rede ned in or-
der to have a complete knowledge of the two main quantities: e unperturbed
Hamiltonian, 2 and the perturbing eld EP as obtained from the Kubo response
theory [69]. If one considers as Ref. [146F" = E® then E contains both
EidL  given by the instantaneous Coulomb interaction between theelectrons
and E4T  that originates from their retarded Coulomb interaction [68]. The
latter is extremely complicated and for noncubic crystals pecludes the knowl-
edge of the unperturbed states, making this particular chote of EP unuseful.
On the contrary, including the induced transverse responsalirectly in the per-
turbing eld i.e.,

EP = E&X + Eind;T - E Eind;L : (490)

permits to have a simpler non-retarded Hamiltonian whose sates (including the
longitudinal perturbation) can be more easily evaluated. h addition it has the
advantage that the perturbing eld is macroscopic as both its componentE®*
and EM®T | This makes easier its macroscopic average, that is preseitt the
subsequent derivation.

Further developing this general assumption | can now nd the expression of
P\ passing from the perturbing eld EP to the total eld E. From the de nition
of the displacement vector Eq. (4.83), looking at its longitudinal component one
has:

D (q+ G;!)= E"(q+ G;!)+4 P-(q+ G;!)
= E® (q+ G;!1)+ E™ (q+ G;!l)+4 P-(q+ G;!)

(4.92)
and substituting D~ from Eq. (4.84), one obtains that
EMEL (g+ G;1)= 4 P (gq+ G;!)
- + G (4.92)
EML (q+ Gil)= 4 42 plg+ G;l):
(9 ) q+oj’ )

From Egs. (4.90) and (4.92) the total eld in its microscopic and macroscopic

formulation becomes:

qa+G

jg+ Gj
E(@:)= E7(@;1) 4 oPh(@i!) (4.94)

where the macroscopic component of the eld Eq. (4.94) has ben obtain from

the microscopic average posings = 0.

According to the formulation of the rst order microscopic p olarization as
it has been obtained in Eq. (4.29), its macroscopic componerbecomes:

PO (q;1)=~®(a;a;! )EP (a;!): (4.95)
Substituting E as obtained from Eq. (4.94) into (4.95)

E(q+ G;!)= EP(q+ G;!) Pt(q+ G;!) (4.93)

PO (q;1) = ~W(g;q;1 )E(q;1)+4 D (q;q;! )%PL(q;! ) (4.96)

211t gives access to the unperturbed states ad as a consequence to all the observab le one is
interested in, as the dielectric susceptibility. see section 3.2.1.
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and expanding Pt = ia; P up to the second order inP = PO + PO@ itis
then possible to get a relation between the polarization andthe total electric
eld only:

PW(a;!)=~®(a;a;! )E(a;!)
4 “O(qg)L 9 pO g1+ PO(q;
(a9 )]q”ql (a;!) (a;!)
Further manipulating the equation, adding P® to both hand sides and then
collecting (P® + P®@) at the left member, one has:

(4.97)

1 4 -O@qn) 29 pwg)+ PO@Q) =
(a;q )qujqj (a;!) (a;!) (4.99)

~® (@;a;1)E(a;! ) + P@(a;!):
It is then possible to obtain the value of P = PM + p@:
P(gq;!)= PO (q;!)+ PA(q;!)

= AR(a;!)~® (q;q;1)E(a;! ) + AR(q;1 )PP (g;!); (499)
where the tensorAR is de ned from Eq. (4.98) as
AR(@:1)= 1 4 “O(qq) L9 1 (4.100)
jq))aj
=1+4 P@at) 4.9, (4.101)

1 4 ~OM(g;0;1) jajjaj’
and comes from theright-hand longitudinal contraction of the quasi-susceptibility
tensor ~ , whereas Wt corresponds to its longitudinal-longitudinal contrac-
tion. It is possible to de ne an analogous tensorA® for its left-hand longitudinal

contraction:

Limepy — 94949 @/yan- !
A-(gq;!)= 1 4 o 7] (9;9;!) (4.102)
q 9 ~B(g;q;!)
jgijai 1 4 ~Ott(g;q;!)
Now P as it has been derived can be substituted in the de nition of the
macroscopic electric displacement vector Eq. (4.83) obtaing:

D(a;!) = E(q:!)+4 (PW(aq:!)+ PP (q;!))

= E(q;!)+4 AR(g;1)~D (a0 )E(a;! ) +4 A R(q;1)P@ (g;!):
(4.104)

The terms that are linear in the electric eld correspond to the linear response
of the system i.e., the tensor of the macroscopic dielectrifunction y :%?

m(a!)=1+4 AR(q;!) ~P(a;a;!);
=1+4 ~O(qq;!) A(a:!)

where all is expressed in terms of average@ = 0 macroscopic quantities.

(4.103)

(4.105)

22This derives from its de nition for linear materials D = E and holds also for nonlinear
systems, where all the other contributions are included into the nonli  near optical coe cients:
D= E+4 @EE + (3).
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Second Order Macroscopic Response

Equation (4.104) of the former section contains an additioral term, that ac-
counts for the second-order nonlinear response of the syste?® This nonlinear
part that | will call for simplicity D® is given by:

D@ (q;1)=4 A% (a1 )PP (a:t): (4.106)

It is the macroscopic second-order displacement vector, obtained from the av-
erage of the microscopic polarizationP ? . This term can be expressed also as
function of the macroscopic polarization, as de ned in Eq. @.78)):

D(a;!)= E(@1)+4 PR(@!)+PP(a!) +  (4.107)
D@(q;1)=4 PO (q;1) (4.108)

Imposing the two de nition to be equal, the macroscopic secod-order polariza-
tion Pﬁ) of Eq. (4.71) becomes:

Again, as done for the linear case one should express the misrcopic polarization
as function of the total eld to obtain an expression for the macroscopic second-
order susceptibility (,\j). Since the microscopic polarizationP @ is already
second order in the perturbing eld EP it is su cient to use the linear relation
between the total and the perturbing elds to have a second oder expression
in E. With this consideration Eqg. (4.97) can be truncated to the rst order

retaining only P24 and reduces to:

a9

< 1 p@(qg:!): (4.110
jaj jaj SH )

PW(g;!)=~W(a;a;)E(a;!)+4 ~W(g;a;t)

Substituting the averaged microscopic polarizationP® with Eq. (4.95) and
collecting E and EP on the opposite sides of the equation one obtains:

E@!)= 1 4 0 ®(ga) EP(q;!)

jaj jaj (4.111)
=AY N )EP(a;1);
EP(q;!)= A" (q;! )E(a;! ): (4.112)

Once this equivalence is introduced in the expression of thenicroscopic second-
order polarization (see Eq. (4.34)),P@ can be written as?®
x Z
P@(q;!)= dt®~@(g;q%a %t 19
q0 (4.113)

AL @31 9AN (@ o%t 19E(@@U!9E(@@ o%t 1O

230ne should have further developed the polarization in order to includ e and study higher
corrections.

24p (@ would give rise to higher order corrections.

25Being G = 0 equation (4.34) is considerably simpli ed. The link is immediate, identifying
(q1;! 1) with ( ;! ) and (qgz;! 2) with ( g%! 9.
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The macroscopic polarization is then:
(2 X z 0 AR @) 0. 0.1 0.

Py (a;!) = d'°AR(q;!)~P (q;9%q %1% 19
q0 (4.114)

AL (@%!19A (@ %! !9E(Q%!9E(@ q%! 19
and from the de nition of the macroscopic second-order diedctric susceptibility

@ in the reciprocal space?®
z
2 (- X 0 (@ (q- O 0.1.1] O 0. 0.
Py (a;!)= d % & (a;9%q g%t Gt 19E(Q%! 9E(@ %! 19
qO

(4.115)
One has nally the relation between the microscopic (<2 ) and the macroscopic

nonlinear polarization of matter. In addition, it allows to link (,\? with the
microscopic response @ :

@(q;q%q g5 %1 19=

AR(@:1)~P(@;a%a a%t% 19AN@@%I9AN (@ o%t 1)
(4.116)

In the particular case of second harmonic generationn =217

(2) . ~0. O.2|.| =
v (d:a59  g525!) (4.117)
AR@:1)~@(q;q%q %11 )AL )AL (g q°%!):

Link to TDDFT

The last equation presented in the previous section is not yeuseful. Before
one should express the second-order microscopic quasi-saptibility ~ @, as
obtained in Eq. (4.33) from the TD-Response Function Theory in terms of the
TDDFT density response . The quasi-susceptibility ~? contains three re-
sponse functions: ](“2) (? and ®. The last two vanish in the limit q! Oas
seen in section (4.2),Whereas-(-2) is related to @ through its longitudinal com-
ponent in Eq. (4.46) via the continuity equation. Consequenly from TDDFT

one does not have the knowledge of the complete® and (,\f) , but only of their
longitudinal elements (they are tensor whose elements canébdecomposed into

directions perpendicular or parallel with respect to the pdarizations vectors q).

Considering only the longitudinal component of the dielectic susceptibility

(,j) means projecting it along the directions ofqg, + g3, g2, qs.2’ For sim-

plicity of notation I will call Py the projection operator along §: Py = %%

261t has been obtained Fourier transforming Eq. (4.71).
27As ~@ has been derived, one should project on left for the outgoing polarizat ion q1 =
g2+ q3 and on right for the two incoming electric elds g2, q3. The projection along a certain
direction ¢ of atensor T (e.g. itcanbe ~ or )isgivenasusualby Tqq=(T §)=T %%.
This projection operator % % correspond to a3 3 matrix in space, whose elements are given
by 0 1
1
jaj?

0 1

O 1% Yy G

@yA o« o & = —@ya ¢ @gA:
0% 97 o ke ¢
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What one is interested in is the second-order macroscopic perization Pﬁ) of
EqQ. (4.1). In particular, because of the limits of TDDFT that can describe only
the longitudinal response to a longitudinal perturbation, one restricts to the

calculation of va,z) L once assumedE being longitudinal (E = EL).28 va,z) s
then given by
PP “(q2+ gsi2) =
— 2 . —
=P P +q32) =
a+qs Py (d2+03;2') (4.118)

=Pg,+q, (,\?(QZ’r 0s;02;093;25! ) E(gz;!) E(gs;!)=
=P+ qs (hf)(OI2+ Q3;02;03; 2! ) Pg,E(az;!) Pg,E(qs;!):

The quantity that is then needed is the longitudinal seconderder susceptibility
ﬁ) "L that reads:

(,\i) " (g2 + gs;02:93;2! ) =

=Pq,+qs (ni) (g2 + ds;02;03; 2! ) Pq, Pgs
=Pg,+qs AR(02+ d3;!)~@ (A2 + g3;02;03; 2! )
At (q2:1) quAL (as;!) Pgs:

Projections of the tensorsARL takes a simple form considering the expressions
Egs. (4.101), (4.103):

(4.119)

Py AR(g;!)= A(q;!) Pq

_ ~®(g;q;!)
=Pq+4Pyq 1 4 - (q:q:!) Pq (4.120)

w (051 )Pg:

Where i (g;!) correspond to the longitudinal longitudinal contraction of the
dielectric function:

w(d!')= Py wm(a!) Pq
_ Pq _ (4.121)
1 4~k (g;q;!)

The longitudinal second-order susceptibility then reads:

W G2+ 050203250 ) =4 i (dz+ dai2!) i (02!) i (dsit)

Pq,+qs ~@ (g2 + 93;92;93; 21! ) Pg, Pqs:
(4.122)

As previously pointed out, the condition deriving from the continuity equation
(4.36) links the current longitudinal projection to the density (see Appendix

28 As stated above, in the long wavelength limit this assumption does not  represent a con-
straint since it holds the equivalence of longitudinal and transverse  elds for vanishing wave
vector. Indeed the eld does not propagate and the only light polari  zation de nes . Under
this assumption E can be written as

E=E" PqE:
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D.3). This equation can then be exploited in order to obtain an expression for
Pq J(”Z) = P4~®@ as functions of @ :
g ;) =it Na;!)

A , (4.123)
jaiPq J(a;t) =it Ma;!)

The microscopic quasi-susceptibility ¥ of Eq. (4.33) when Fourier trans-
formed in reciprocal space takes the form:

i 1
~@ (g2 + 03102 03; 1 251 3) = 3027132 J(”z) (02 + 93;02;03;! 25! 3)
(4.124)

where (Zj) is zero and 1_(2) vanish in the long wavelength limit. Using then

Eq. (4.123) allow to obtain the longitudinal projection of ~@ as:

Pasrqs ~2(d2+ Q3;02;93; 25! ) Pg, Pg, =
i1
2j02 + 43jp0s

(4.125)
@ (g2 + 93;92;93; 2! )

giving then

(@) LLL +03:02:03: 25! Y= 2 #
Y (02 + d3;92;03 ) id2 + qzjteos (4.126)
w(02+ ds;20) b (az2:!) w(asit) @ (g2 + gs;02:03; 25! ):

Itis clear that the TDDFT response is modulated in frequencyby three di erent
dielectric functions at frequency! and 2! . Moreover it is evident that only
(,j) "L can be evaluated from the density response, although in theirhit
g ! O valid for optical processes this does not represent a limdttion for the
applicability of TDDFT.
(2 LLL

The scalar quantity constitute only one element of the whole ten-

sor ﬁ) , identi ed by the polarization vectors ( qz; q3). It is however possible to
reduce the independent elements through symmetry considation on the crys-
talline structure, and nding relations between the remaining components. In
this way ﬁ) ‘L can provide more information than the ones strictly conneced
to the particular choice of (q2; q3) when necessary. This will be addressed more
in detail once the speci ¢ structures | present in this work will be analized. As
an example | present here the nal result for the cubic symmety, whose tensor

has only one independent element, @Z that reads:
i
Qo= 5 62) i) @) @ eayizant ) (4.127)

The module of these tensor elements is the quantity experintgally measured.
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Chapter 5

The 2light code

The 2light code [72, 73] has been written by the European Theoretical Sjz-
troscopy Facility (ETSF) group of Palaiseau and it implements the ab-initio

calculation of the SHG process. The code is based originallgn DP [154], an-
other ETSF code for the linear optic calculation in solids. During my PHD

research activity | have developed the code at many di erentlevels: i) intro-
ducing new features as the possibility of renormalization bthe results when
vacuum is inluded in the simulation cell, ii) optimizing the code for better per-
formances also reducing the memory requirements, and iiiyniplementing a
parallel version of the latter in order to make calculationsfaster. All this work,

that constituted the majority of my activity, was necessary in order to simulate
the system of interest, for which ab initio SHG calculationsdemonstrated to be
expensive both in terms of memory and cpu-time requirement.

SHG computation in practice

The practical calculation of the SHG response function @ | accordingly to the
formalism presented in this thesis, is performed in two step:

the solution of the KS system (wave functions and eigenvalug) through a
DFT calculation,

the computation of the KS and full response functions 82), @ via the
developed SHG formalism.

The rst calculation exploits the existing open-source coce ABINIT [121]. It
is apackage whose main program allows one to nd the total energgharge den-
sity and electronic structure of systems made of electronsral nuclei (molecules
and periodic solids) within Density Functional Theory, using pseudo-potentials
and a plane waves or wavelet basi#ABINIT also includes options to optimize
the geometry according to the DFT forces and stresses, or toepform molecular
dynamics simulations using these forced,..]. ABINIT is a project that favours
development and collaboratior?.

1Laboratoire des Solides Irrades, Ecole Polytechnique, Palaiseau ( France).
2This introduction has been taken from the  ABINIT package's presentation at
http://www.abinit.org

69
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DFT calculations on a converged and relaxed system obtainedith ABINIT
constitute the starting point of the subsequent SHG calculdion. The latter is
performed with the code 2light that will be presented more in detail in the
following section. Input quantities are the DFT Kohn-Sham wave functions

KS (r) and the respective single particle energiesks (as seen in chapter 4
equation (4.56)) that are stored in an unique ABINIT 's output le with the
\ KSS extension.

The linear and SHG spectra can be obtained from the KS respomsfunctions
of Eq. (4.54) and (4.53), introducing them into the Dyson equations (3.26),
(3.33) providing a suitable f,. kernel.

Further details on ABINIT , a description of the input parameters and its
usage can be found in [121] and on the code's websitgtp://www.abinit.org
where tutorials are also provided. In the following | will give only the neces-
sary numerical details concerning the calculation variabés of physical meaning
presented in section 2.5.

5.1 2light Input Description

The KSS le, where the Kohn-Sham wave functions and eigenvales are stored,
constitutes the main input of the calculation from which 2light gets also the
informations about the cell geometry (its dimension, the number, position and
species of the atoms) and the set of parameters upon which thealculation
is performed (e.g., thek-mesh, the maximum band index and the planewaves
used to describe the wave functions). These quantities arexed in the DFT
simulation while the SHG parameters are then chosen seekinfpr convergence
in the following 2light calculation.

5.1.1 Numerical Details

Input quantities are provided on a plane wave basis, obtaind imposing periodic
boundary conditions at the cell's border and describing thesystem in terms of its
Bloch's states. As | have brie y introduced in section 2.5 sane approximations
and truncations of the basis have to be imposed in order to hay a limited
number of quantities to be stored in memory by the calculator, making the
calculation feasible in reasonable time. This of course camot be regardless
of the convergence of the results as discussed previouslyndtests are always
necessary. Only where meaningful | will present convergec studies, while
elsewhere | will give the technical details of the calculathn and its convergence
parameters.

As for the DFT calculation, there are technological and pradical limitations
that do not allow calculations on the complete basis and seds the main quan-
tities have been expressed on (i.e., the in nite vacuum stag¢s or the plane wave
basis). Here | provide a list of the parameters that have to be set in a SHG
calculation performed with the 2light code, and their relative description.

3Some of the parameters are identical to the ones of DP [154], especially the structure of
the input les.
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Numerical Approximations to Physical Quantities:

I range: it is the frequency range within the calculation of @ s
performed. It is identied by three parameters omegai, omegae and
domega that represent respectively the start, end and step values bthe
frequency grid on which the spectrum is evaluated.

npwwfn : the parameter establishes the number of plane waves to be
used in the description of the KS single particle states. By éfault it is
reduced to be equal to the number of plane waves in the last cked shell
Alternatively one can choose the number of closed shellspwsh .

nbands : it represents the maximum band index to be considered in the
construction of the KS susceptibilities. To obtain the whole @ at each

frequency one would require all the empty states. Neverthass, reducing
into a certain frequency range the transitions that are far avay from the

band gap are not involved, contributing to the higher frequency spectrum

only.® It is then possible to truncate the summation to N nbands .

lomo : this parameter is the counterpart of nbands for the occupied
states. If one is looking at low energies only the highest vaihce states
are involved (or the correspondingpseudostates if pseudopotentials are
used).

npwmat : it is the number of G vectors to be considered in the represen-
tation of the microscopic KS response functions matrices. (()1) (G1;Go 1)
is then represented in the reciprocal space as a two dimensial matrix of
range npwmat npwmat , while 82) (G1;G2;G3; 251 ) will be a three-
dimensional matrix.

Code Optimizations and Developments:

There are other parameters internal to the code, that can be st up in order
to improve the speed of the calculation. | do not report here heir detailed
description because they have no physical meaning, nevergtess they are fun-
damental for the computation. In order to pursue the studies here presented,
and improving the performance of 2light , they have been necessary various
modi cations and developments. This has constituted a proninent part of my
activity, and in the following | will brie y present my work o n the code.

() Restart capabilities . In 2light are implemented two restart possibili-

ties: one on the transitions-cycle i.e., the summations thagive él) and

2)2) in Egs. (4.53) and (4.54), and another one on thes vectors of these
matrices. The rst permits to reload an interrupted calcula tion storing in-
termediate results. The last one instead allow to improve tle calculation

4As described in sec. 2.5 the number of plane waves np, does not vary continuously
increasing the cuto energy Ecut . If npwwfn does not match one of these npy values, the
last shell is not closed. It means that along di erent directions in the reci  procal space one
is considering a dierent cuto and plane waves, loosing the symmetry and consequently
impoverishing the accuracy of the result.

5This can be directly seen in the summations of Eqgs. (4.53) and (4.54), w here contribu-
tions from transitions that are too far in energy from the frequenci es of interest give large
denominators making their terms negligible.
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using a largernpwmat parameter to describe the susceptibility matrices
starting from a previous calculation on a smaller matrix's dimension. This
is particularly useful during convergence tests ovenpwmat . Indeed the

gz) matrix dimension is proportional to (npwmat )2 and calculations be-
come quickly very long and memory consuming. Hence it reveat useful
to avoid double counting of the elements that are already avdable from

a previous calculation.

(1) Grid separation . The principal summation of Eqgs. (4.53) and (4.54) are
performed respectively on 2 and 3 band indexes for eadfipoint belonging
to the grid over which one samples the Brillouin Zone® Since terms be-
longing to di erent k-points are independent, the grid can be decomposed
in smaller sub-grids diminishing computational requirements both for the
DFT and SHG calculations. Subsequently, through an appropiate set-
ting of the input parameters it is possible to collect the various responses
over the di erent grids in a total response function. During this operation
the required memory is not increased and calculation resu#t faster. In
addition the convergence over the chosek-points set can always be im-
proved adding new grids to the nal results. This feature avads time and
resources wasting that are present if convergence is studleon a single
k-points grid.”

(1) Division of f)i) matrices for memory saving . The microscopic KS

response functions f)l) and 82) are matrices of order fipwmat )? and
(npwmat )3 inthe G vectors. The memory required to store the second
one can be signi cant when local elds (they will be de ned later in
this chapter) are important and slowly converging. This translates in
high values of npwmat . In order to reduce this bottleneck that did
not allow big calculations, | have modi ed the code 2light rede ning
the algorithm and subroutines for the calculation of (()2). Now the cubic
matrix can be divided into layers, storing data and performing calculation
on several fipwmat )? matrices, that are allocated and used separately,
consequently saving memory.

(IV) Re-de nition of the transitions cycle. | have implemented a new
procedure for the evaluation of the second-order KS respoesfunction.
The original cycle over the transition elements in Eq. (4.54 (i.e., the
sum over the states identi ed by the band index and the k-point) has
been reorganized without loosing of speed performance. Thmemory
requirements relative to the calculation of 82) are now independent of the
total number of transitions. This means that the computatio nal resources
are independent of the size and complexity of the system andxed a priori

8For computational needs one has to approximate the integration o ver the full Brillouin
Zone with a nite summation over a sampling grid of reciprocal k-points.

“This improvement was mandatory to perform studies on big size systems suc h as the
Si/CaF ; interface presented below, where already DFT calculations need a large amo unt of
resources and time. Hence every unnecessary double-counting or re-calculation sh ould be
avoided. Before, converging over the k-mesh meant running various calculations each time
increasing the grid and solving the KS secular equation for all its poi nts. Now one can retain
the old grid running the calculation for the new added points only
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by the user® Before the cange, this represented a great bottleneck of
the code, preventing the simulation of the large-size systas as the ones
presented in this thesis. Indeed the memory previously redgued to store
all the transitions involved, could easily pass e.g. the 12@GByte available
on a typical computing node where calculations have been pérmed.®
This because of the nonlinear increase of the transitions,hat in rst
approximation can be related to (nbands ) since the SHG process and
more generally 82) involves combinations of three-bands indexes (see
section 4 EqQ. (4.56)). When the dimension of the system is ineased
(e.g. using supercell methods) this number rapidly increas too. As an
example, on the smaller Si/CaF, interface system presented in chapter 6,
the memory requirement for a converged result has been dimished from
80 GBytes down to 4 GBytes with the new procedure, without locsing
speed in the overall calculation.

(V) Parallelization of the code. The other limitation | have encountered
during the simulations corresponds to the large amount of tine required
to evaluate the linear and especially the nonlinear respores This time is
roughly proportional to the number of transitions and to the dimension
of the 8) matrices. To improve the performances of the code, making
feasible simulations that would else be too long, a paralleVersion of the
code has been implemented. This work has been done during my HH
activity thanks to the support and resources of the HPC-Eurgpa?2 project,
in collaboration with the GENCI-CINES HPC center in Montpel lier. The
parallelization strategy has been focused on two part of thecode where
the majority of the time is spent. At rst the calculation of t he transition
elements i.e.,h nxjH1.2 «j nki Of Egs. (4.66)-(4.69) when perturbation
theory is applied to the limit g ! 0. Secondly | have parallelized the
cycles for the evaluation of §”, gz) , where the summation over the dif-
ferent transition elements is performed. This has been ackved through a
shared memory paradigm, using OpenMP. The code is not entilg paral-
lel hence one does not expect a linear scaling. Neverthelesse e ciency
of these two parallel parts is almost linear especially if aplied to big size
systems where the time spent in the creation of the parallel mvironment
becomes negligible with respect to the one spent in the caldation.

5.2 Available Approximations

So far, | have introduced the numerical approximations that are intrinsic to the
possibility to perform a nite calculation of the SHG response of the system
(e.g., the npwwfn and npwmat parameters). Other approximations instead
arise from the unknown response of the system (the exchangeicelation terms)
that have be included into the functional derivative vxc of the DFT potential
and the TDDFT kernel f,.. The rst has been exhaustively treated in chapter 2

8For this purpose it has been introduced a new computation ag named  nt2 _elements
that x the number of iteration to be stored at each calculation step.

9The majority of the results here presented have been obtained thanks to t he resources of
the CINECA-HPC center. In particular calculations have been performed on the sp6 cluster
with 32 cores per node and 120 GBytes of RAM per node. Therefore it represents the limit
of the available memory for the serial calculation.
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while the second will be deepened in this section describintpe several levels of
approximation implemented in 2light

The main characteristic of adopting TD Perturbation Theory to TDDFT is
that the nal response can be obtained through a Dyson equatn both for the
linear (Eq. (3.26)) and the nonlinear case (Eq. (3.33)):

W= @4 D,y () 51
h Lo 02 hoo V) i 1)
T Pl @= P trfue @ Y4t @ + Pge @ O
(5.2)
In the usual frequency-momenta space it becomes [47,50,76REQ]: 1°
" #
X X @
G;G» 0:GG 1(2q;2q;2! fuxe:6.6,(20;29;2!)
G, G,
(2 ...._X(Z)
Grcogo(20;9;d; 255! ) = 0:6:6,:65(20;0;0;25! )
" G1G3
#
X 1)
GG, T fVXC;G3G4 G4goo(q;q;!)
" Ga (53)
#
X (1)
GoGg, t fvxc;G162 ngo(q;q;!) +
G2

él;)GGl(Zq;Zq;Z! )%c:616,65(20;0;0; 25! )

G1G,G3
9 eolaa!) & salarat):

One should notice that { are the KS density response functionsand () the
full density response functions @ @ The latter should be substituted into
Eq. (4.126) thanks to its relation with the density-current response - to get
the desired second-order dielectric susceptibility (,\f) .

Thanks to the form the second-order response takes, it is sightforward to
improve the accuracy of the results when necessary. Indeeche can use more
sophisticatedf xc, g« kernels and better describe the tensors increasing thé -
vectors expansion (i.e., the dimension of the 8) matrices) before the nal result
is averaged atG = 0. Up to now there are dierent levels of approximation

that have been implemented into 2light

10The tensors @ (q1 + G1;q2+ G2;! ) depends on q + G, where the vectors G belong to
the reciprocal lattice. Hence they are a discrete variable and (' can then be represented as
a matrix over G indexes:

(1)

M1+ G102+ G2l )= ¢ g, (A1i02:! )

The same holds for the KS response function that can be represented as E)l)e 1G> and the

; 2 ® ; ; ;
nonlinear responses 0:G1G 2G5’ G1G2G3" This compact notation makes clearer the meaning

of G -vectors basis expansion and its numerical truncation, showing thatt he Dyson equations
consists of matrices products. The macroscopic average G = 0 is then performed once the
nal microscopic result @, @ are evaluated from the Dyson equation retaining all the
G -vectors.
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Here | present the ones adopted in this thesis. Higher orderariations of
the exchange-correlation kernels are neglected in the faWing, imposing gy =
Zvxe = 0. | will now describe in details the approximations to the second-
order Dyson-like equation (5.2). They are adopted at the sare time in the

linear response of Eq. (5.1).

5.2.1 Independent Particle Approximation in the SHG
spectrum

Independent Particle Approximation (IPA) is the simplest a pproximation to
Eqg. (5.2) and represents the standard approach used in litexture so far [13, 22,
50, 54, 57, 70, 152]. It is obtained treating the electrons ason-interacting parti-
cles. This means that all the many-body e ects are neglectegosingf. = 0.1*
At the same time also local elds e ects are not considered retricting the G-
vector expansion to the onlyGi; G,; G3 = 0 elements. This means to consider
the macroscopic average of 8) when the Dyson equation is evaluated. All the
involved quantities become scalar objects. Hence the o -digonal elements, that
enter in the matrices products or inversions, are here negted (the meaning
will be treated more in detail in the local eld approximatio n).

With this particular choice only the Coulomb potential f, = v remains, and
solving the Dyson equations one has:

m= i O, O 54
0 0 h ih i 64
@= 1+ Dy @ 14y @D 14y @ ; (5.5)

Now, recognizing that

L togyy W14 @y (5.6)

because they are scalar quantities in IPA, @ becomes:

1 (2 1 1
2 - LL g) LL LL (5.7)

The latter substituted to @ in Eq. (4.126) gives:

@ (g, + 302 qs; 2151 ) =

1
2 (@B + B)BE Wo(a2+ g3 2)

[H @2+ as;2)] * (a2 + g3;02;98: 25! ) (5.8)
[o @) 1w (@D (as )] (gss!)
1 @
= 2 - - + 03;02;Q3;2! ):
i02 + Qo O (d2* G3i02i0s )

Thus, in the IPA the macroscopic susceptibility correspond to the microscopic
response of the non-interacting system. This is physicallyntuitive since one is
neglecting the many-body interaction posing the exchange&orrelation potential

1] remind that fyxc = fy + fxc where the Hartee functional f, coincides with the bare
Coulomb potential f, = YH = v and fy. = “XC is the exchange-correlation functional.
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equal to zero. Nevertheless it is not trivial because everyting pass through two
Dyson equations and is modulated by three dielectric functbns in Eq. (4.126).

Itis immediate to notice that this approximation is simple since no particular
knowledge off,; is required and from a computational point of view is the
less time and memory consuming since th& expansion series are reduced to
one point. For this reason it represents the standard approeh in literature
to the study of complex and big-size systems, as the ones cddered in this
thesis. The IPA, although is a drastic simpli cation, can however get some
important features of the real response and reveals a good atiing point. Its
validity and accuracy depend mainly on the physical nature d the system under
investigation, as | will show later in the results. Therefore, in materials where
local elds and many-body e ects are small, already IPA can provide a trustful
description of the material.

5.2.2 Local Fields in the Random Phase Approximation

This approximation is obtained retaining only the microscopic variation in the
induced Hartree potential, thus still neglecting the exchaage and correlation
interaction between the electrons: fyx. = fy = v. This is called the Random
Phase Approximation (RPA) [130]. With respect to IPA the mic roscopic quan-
tities are described on theG-basis? keeping their G dependence. Retaining
higher G vectors means that density variation up to the atomic scale ae con-
sidered. The following microscopic induced eld, in turn, can then polarize the
material nearby, contributing to the overall perturbation . Since these elds are
rapidly varying as the underlying microscopic density fromwhich they are origi-
nated, the response depends locally on the lattice structuer and these e ects are
called crystal local elds e ects (LF). Depending on how much rapid variations
are, the G basis should be improved to correctly describe it.

Contrary to IPA, all these microscopic induced polarization e ects are taken
into account when solving the linear and nonlinear Dyson eqation:

X X

(1) v (2 _
G;G2 0;GG , VG 1G22 G,;GoGoo —
" G 1
X X 2 %1 X #
(2 + v (1) + V. (1)
0:G;G.1;G3 G%G3 G3Gs4 G,G© G0G, G1G2 G,GoO
Gj_Gg G4 GZ

(5.9)

The macroscopic average is then performed at the end of the aulation posing
G =G%= Gg%=0.

A more intuitive example of the di erent behavior of the IPA a nd RPA re-
sponses is provided by the dielectric function y, (! ) [155]. It is connected to the
inverse of the microscopic dielectric function ¢g o(q: ) through the macroscopic
average:

1
m()=limg o . (5.10)
T 5do(a;! )is= om0
In IPA e o(g;!) = o00(9;!) is a scalar quantity and one gets y (! ) =

lim g1 o0 00(q;! ). In RPA instead one should invert the full matrix gg o(Q;!)

12 As previously stated, for practical reason one restrict the calculation to a converged set
of G-vectors i.e, one represents as square (or cubic) matrices.
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before averaging. In the inversion process all the o -diagoal terms of g o
describing the microscopic nonlocal elds are mixed with tre diagonal ones. In
particular they enter in Gé o(0; ! )je = co=0 mModifying the macroscopic averaged
response.

At the second order, formulas are more complex and many termsveight
in the nal response, just remembering that the dielectric susceptibility @ is
obtained from Eq. (4.126) where the result of the Dyson equabn is modulated
by three dielectric functions. It is therefore di cult to pr edict how they modify
the IPA response or understand through which quantities of K. (5.9) they have
the major contribution. | will show a detailed analysis in chapter 6.

As LF e ects have been described, it is immediate to notice tat their impor-
tance depends entirely on the nature of the system. In partialar they revealed
essential when the material presents inhomogeneities, datts or other character-
istic that give rise to rapid variations in the microscopic polarization, whereas
they demonstrated negligible for highly homogeneous systaes. This holds also
for sharp macroscopic discontinuities, as in the presencefa@n interface or a
surface, or for nite system where LF could give rise to depddrization e ects
[145]. This is in agreement also with the outcomes of the maascopic E ective
Medium Theory [145, 156]. Their importance will be treated nmore in detail later
while presenting the results. In general one should expect gedistribution of the
oscillator strength that leads to shift the peaks in the linear and SHG spectra
towards higher energies, decreasing the overall intensityn order to preserve
the f-sum rule [157, 158]. However their in uence is generally unpredictale
especially in the case of sharp discontinuity materials lile interfaces or surfaces.

Tests should always be performed to check the relative impdance of LF
e ects inclusion when possible. Up to now only few ab initio $udies that include
LF have been presented in literature [64, 66, 67], while the mjarity of the
studies are performed in the IPA. This is because of the greadi culty to
develop a theory as the one proposed here, where LF can be dgsdenti ed
in the formalism and equations. Moreover their inclusion geatly a ects the
computational e ort increasing both the memory ( ® matrices are proportional
to (npwmat )3) and time requirements.

5.2.3 Adiabatic Local Density Approximation

This particular kernel has been already presented in sectio 3. It provides a
rst approximation to the exchange and correlation kernel that is neglected in
the previous cases. It is the time-dependent generalizatioof the LDA in DFT.
Assuming the LDA exchange correlation potential vxc (r;t; [ ]) being local in
space and instantaneous in time (this approximation takes he name of Adia-
batic Local Density Approximation ALDA) [135]:

vied (6D = vt ((rn); (5.11)
the TDDFT kernel named TDLDA takes the form

V>L<|(D:A ( (rate))
(ra;t2)
& ((ra;!))

v
(r1 r2) (tn tp) —%€ ) !:01

frh (rira;taits) (ry r2) (t1 t2)

(5.12)
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Because of its instantaneous nature it neglects the memory ects (it is a static
kernel) while its locality get rid of the nonlocal XC density interaction. It is
a rst drastic approximation to the unknown f,. nevertheless, as LDA demon-
strated successful in a variety of systems, even TDLDA worksvell e.g. for exci-
tation properties of nite systems or electron energy loss pectroscopy (EELS)
and ion X-ray scattering spectroscopy (IXSS) in extended mé#er. However it
fails in the calculation of optical (q = 0) spectra of solids [130, 159, 160] due
to the wrong asymptotic behavior of the exchange-correlabn kernel [159]. In
particular for this kind of system it only slightly improves the RPA optical
absorption [159, 161] or the second harmonic generation spiea [72{74] with
minor modi cations. For this reason it is not appreciated as a good candidate
for optics and SHG spectroscopy going beyond the RPA, and otlr ways should
be followed.

5.2.4 Quasi-Particles Corrections

In chapter 2 | have presented in detail the problem of the gap anderestimation
that arise in DFT, especially if LDA is adopted. Dierences among the KS
eigenenergies (« mk) as the ones present at the denominators of E,') in
Egs. (4.66)-(4.69), can give rise to deviations from the caect results. One
should then provide a correction to the non-interacting bard-structure in order
to consider the exactquasi-particle energies, determined by the screening of the
hole the electron lefts behind.
Indeed one can see the neutral excitation process in three eps:

(I) the electron is excited from its initial state and leaves a hole behind it.

(1) This hole interacts both with the system and the promoted electron. In
the rst case it is seen as a positive charge that attracts theneighboring
electrons, surrounding itself of a cloud of opposite charge This rear-
rangement of the system density is a screening e ect, that méiates the
interaction of the bare excited particle with the KS system. The union of
the particle together with its screening takes the name ofjuasi-particle.®
This can be thought as a single particle process and is well aounted for
in MBPT Hedin's equations [162, 163], in particular by the r st order
Green's function. The Green's function describes the propgation of the
guasi-particle and allows to obtain information about the quasi-particle's
energies (from its poles) and wave functions. This set of veconnected
equations is usually solved in the GW Approximation for the Self-Energy,
where eigenfunctions are supposed not to vary from the intihLDA-KS
and one cycle of Hedin's equations provides thguasi-particle energy cor-
rections. For further details please refer to [162, 164{168

(1) The last step is represented by the direct interaction of the hole with the
promoted electrons. Both of them are interacting with the medium, hence
locally modifying the surrounding environment, i.e., they can be thought

13This can be interpreted as a reorganization of the system once the electron h as been
promoted from state n to state m in order to get the minimum energy con guration. Indeed
the KS ground state of a DFT calculation with N 1 electrons does not correspond to
the ground state of a N independent particles system where the topmost electron has been
eliminated.
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as quasi-particles. However, these quasi-particles are handependent
and propagate during their lifetime interacting each other by Coulomb
attraction. This two-body interaction between the electron and the hole
is called the exciton, and its in uence on the nal optical response is
identi ed as the excitonic e ects. Later in this chapter these e ects will

be treated more in detail.

In the Kohn Sham system the non-interacting nature of the paticles shifts
all these dynamical informations in the exchange correlattn kernel. However
they are lost in the LDA and this lack translates in a general $ift of the peaks
position.

The third step is complicated involving two-particle e ect s that should be
accounted in thef,; kernel. The second one is instead a single-particle process
whose e ects can be directly included in the KS system modifing the energies
and wave functions at the basis of the KS response calculativinstead of con-
sidering later them into f,..'* This means toprovide the exactquasi-particles
structure e.g., using more sophisticated XC potentials in he DFT calculation.
However, it turns out that in many semiconducting materials the e ect of quasi-
particles consists in a almost constant shift of the condudbn states in the band
structure. This justi es the scissor operator (SO) correction here adopted. For
the wave functions instead the KS states are usually very clee to the real
ones. In MBPT approaches, and GW Approximation, usually corections are
neglected and KS eigenstates are used.

Scissor Operator Correction

Real quasiparticle band structure can be approximated via arigid shift of the

KS conduction bands, avoiding a longer and expensive MBPT daulation of

the quasiparticle states. This is a rough approximation jugi ed by experience

in many materials (e.g. for silicon Fig. (2.2), GaAs, graphae Fig. (2.1) etc.,
although it does not work in general), that demonstrated to be valid also for
second-order response [72{74, 152, 169], being able to reduce the spectra and
in particular the correct position of the peaks.

Shift of the conduction states however introduces non-trival implications to
the calculation of SHG [57] because of the non-locality of th scissor operator.
This in particular creates new terms when the optical limit g ! 0 is performed
modifying the perturbed and unperturbed Hamiltonians.'® The scissor operator
$ takes the form: X
S= (L fn)i nih o (5.13)

n
being the constant energy shift, f, the occupation number so that (1 f,)
makes the correction acts to the only empty states (I am suppsing an insulating

14 Here | am considering the response of the system in TDDFT. Hence the true fyc is
expected to give the real response and correctly reproduce the conduction stat es although
starting from a less accurate initial guess as the KS-LDA. Nevertheless, the better is the
starting point and the reproduction of the excited levels, the more  fyc and its e ects can be
negligible.

15 As seen in Egs. (4.64) and (4.65) and derived, expanding the Bloch's sta tes on q it appears
a commutator between the potential and the density [ Vy ;r]. As a consequence the nonlocal
part of V, give a nonvanishing term. In this case also the scissor operator that does not
commute with r will contribute.
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or semiconduting material), andj i the KS states!® This formula corresponds
to the hypothesis that the real eigenstateg ni are really close to the KS ones (so
that their di erence can be neglected) and only the energiesof the conduction
bands are incremented by the constant positive factor . App lying perturbation
theory in order to develop the states and energies correctits at di erent or-
ders forq ! 0, the ground-state SO-corrected unperturbed Hamiltonian(Hso )

becomes:

1
Hso = S 24 Vy + S (5.14)

Whereas without considering the SO it was (cfr. Eq. (4.57)):
1 2
Ay = 5r 2 Vi (5.15)

that is the usual Hamiltonians whose wave functions and enegies are obtained
from the DFT(-LDA) ground state calculations expressed on the Bloch's states.
Because of the non-locality of$, the velocity operator v = q + [Vy ;r] that

appears through the commutator [gr; qv] in the second order corrections fﬁz

] ,(ﬁzi of Egs. (4.67) and (4.69) has a new term:
Vso = 0 +[(Vm + S)irl: (5.16)

consequently one nds that (see derivation in Appendix E)

SO SO
h njvsoj mi = h pjvj mi-E—mk: (5.17)
nk mk
Supposing = 0 one recovers the original result, while important changes can
be introduced with increasing that appears in the form [ r;[$;r]] into the
second order corrections.

In linear optics the contribution of the scissor operator can be identi ed
with an almost rigid shift of the spectra to higher energies & a quantity .
In nonlinear processes as second harmonic generation it ke the function of
shift but in a more convoluted way. Indeed an unequal mixing d increased and
unmodi ed energies in the transitions'’ makes it di cult to predict the real
e ect of the SO At rst approximation it correspond to a rough shift of - of
the whole SHG spectra.

It is important to remark that the possibility of including a scissor operator
has been straightforwardly demonstrated for SHG [152] derxiing the correction
to the equations. There is instead no justi cation to the dir ect substitution of
GW eigenvalues avoiding the modi cation of the Hamiltonian.'® The assump-
tion that LDA and GW (or SO) wave functions are equal and are bah eigenfunc-
tion of their respective Hamiltonian, does not imply that th e two Hamiltonian

16 Here for simplicity | avoid to put the  k dependence since and hence $ are the same for
each k-vector.

17The easiest way to comprehend it is to remember that SHG is described by many ter ms, be-
tween which there are also three-bands transitions given by valence-val ence-conduction states
or valence-conduction-conduction states. Hence the corrections enters twice i n some terms
and once in the others. As a result the shift is dierent and mixed in a non trivial way.
Moreover @ s following multiplied by three dielectric functions with their ow n shifts.

18 As it has been done for the SO correction, with the introduction of ~ § in Eq. (5.14).
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are equivalent, so that their eigenvalues x; SV can be straightforwardly ex-
changed in the response expressiofl. Indeed, H'°A is local whereasH W
contains the GW-self energyterm “that is nonlocal. So, there should be a cor-
rection term (as found for the SO) that arises from the [V + 3 ;r] commutator
and change the calculation of the optical matrix elements [, 68, 152, 170]. As a
consequence, one cannot substitute the GW (or SO) energiethat stem from a
nonlocal Hamiltonian, to i into Egs. (4.66-eq:bloch-k-wf-corr2) and Eq. (4.56)
without introducing the correction term. 2° This substitution will neglect some
terms giving wrong results. People in the past have misundestood and have
made mistakes on this.

GW corrections are then di cult to be implemented, increasi ng the complex-
ity of the SHG calculation and are not yet available in the 2light code. The
possibility of using a SO correction instead, has been implaented in 2light
(it is described by the soenergy input variable), and can then be used in every
SHG calculation as it is independent of the subsequent chogof f,..?! All the
approximations presented in this chapter can then be perfamed on top of the
SO one. Remembering that for semiconductors DFT-LDA is far fom the ex-
perimental gap, it becomes important to apply this energy carection, although
it is a very basic approximation.

5.2.5 MBPT-TDDFT link

The great simpli cation that one achieves condensing all the informations in a
unique variable, the density (r;t), makes the link with other physical quantities
complex and of di cult interpretation. This applies also to f,. and gy.. These
kernels contain all the dynamical exchange and correlatiore ects that acts on
the response of a system to an external perturbation. As stad above, they are
generally unknown quantities and one should provide approknated expressions
as the ones considered in this chapter in order to study the rgponse. However,
going beyond RPA becomes soon very di cult not only for computational lim-
its but also for theoretical analysis. Indeed, given a physial approximation,
because of the complexity of the XC functional it is usually hard to derive an
expression forf ... The same holds for the opposite i.e., starting from a desiged
approximated expression and understanding the physics behd it as the e ects
that have been included or neglected.

With this regard it demonstrated useful to establish a link between TDDFT
and Many-Body Perturbation Theory, where the physics of the system is more
intuitively expressed in terms of the correlations Green'sfunctions. They are
more complex quantities that at the rst order describe the propagation in space
and time of a particle/hole inside the material, at second oder depicts the evo-
lution of two interacting particle and so on. Green's functions are useful since
one considerquasi-particles and their reciprocal interaction while propagding.
They contains more informations about the system than the dasity at the cost

19That is, considering the GW hamiltonian ~HCGW an operator of the same form and nature
of the LDA one HPA  but only more accurate, giving the correct eigenstates energy values.
In that case, direct substitution of  , with &% would be justi ed, improving the ~ HPA
reasults only.

201n Eq. (4.56) it is also evident that LDA-DFT energy di erences are requi red toghether
with the corrected (GW or SO) ones in the response calculation.

21This is true unless fy. does not contain any information about the quasiparticle energy
correction i.e., the screening of the system.
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of the simplicity of equations and formulas. In particular T DDFT has the great
advantage to represent low dimensional quantities i.e. (r;t) = (1) while the
rst order Green's function is a two-point quantity G(r;t;r%t% = G(1;2)) and
the second order is a four-point quantity G,(1; 2; 3;4), while f,. that describes
the same second-order e ects depends on only two points:,. (1; 2). This trans-
late in more e cient numerical algorithms for TDDFT, provid ed an exchange
correlation kernel able to get the same informations contaied in the Green's
functions formalism.

Excitonic E ects and the Alpha Kernel

Following this line there are many works devoted to the trander of knowledge
achieved in MBPT to TDDFT. The prominent examples are provided by the

NANO-QUANTA kernel, derived from the contraction of the Bet he-Saltpeter
Equation (BSE) [127, 171, 172], and thelong range alpha-kernel[140]. Both

of them aim to include excitonic e ects. They are a two particle process de-
scribing the mutual interaction of the excited electron-hde pair created by the
interaction with the external eld (i.e. through the absorp tion of photons). In

semiconductors for example, once the electron is promoteddm the valence to
the conduction state it lefts behind itself an empty state: the hole. They feel the
reciprocal Coulomb attraction and the screening provided ly the surrounding

electronic density, modifying the evolution of the system ad its response. Their
importance is linked to the nature of the material. In generd excitonic e ects

demonstrated important in a variety of systems, in particular for optical neutral

excitations e.g. in the absorption (see Ref. [127]). Literture has systematically
improved their description for linear optical processes, bt there is still a lack

in the application to nonlinear optics and in the SHG only few attempts have

been proposed [64, 67, 72, 73].

Excitons are correctly described by BSE in MBPT and the derived NANO-
QUANTA kernel contains the same information describing exadtonic e ects at
the same level of accuracy. However, it requires a computatinal e ort close to
the one needed to solve BSE due to the complex structure of th&ernel, and
for this reason it reveals inadequate for practical applicéions and has not been
yet implemented into the code 2light

The alpha kernel here adopted [140, 171] instead has demonstrated to be a
good simpli cation able to catch the e ects of moderate eledron-hole interac-
tions, as the ones characteristic of silicon. This static kenel is obtained from
the intuition [159] that failure of TDLDA are related to the w rong behavior of
its long-range contribution that is missing due to the locality of the approxima-
tion. This interaction is mainly given by the Coulomb partic le-hole attraction,
mediated and softened by the screening of the other electran At rst approxi-
mation it can then be thought as a Coulomb interaction whose educed strength
is given by a multiplicative factor . fLRC 22 has then been de ned [140, 171]
as:

focRc (risry) = ——
4.jri 1o (5.18)

LRC _ )
fre (@+G)= m

22| RC superscript stands for Long-Range Correlation kernel.
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Figure 5.1: Material dependence of the parameter with respect to the inverse
of the dielectric constant. Filled circles: tted to reproduce BSE optical

spectra; solid line: linear t (using Eq. (5.19)) for ( ;1) on lled circles; empty

circles calculated from Eq. (5.19). (Reproduced from [140Q]Copyright ¢ 2004
by The American Physical Society).

In general is a parameter that represents the average of the dynamicalepen-
dence of the realf .. kernel for a given frequency range. This physical intuition
is also motivated by the NANO-QUANTA kernel once is averagedover the fre-
quency and considering the limitq ! 0, that gives the trend . Moreover,
according to its derivation the kernel has been supposed to %e equal to the
attractive screened-Coulomb interactionW =  1v. This shows that f,. hence

should be negative and roughly proportional to the inverse 6the static di-
electric function ; . In particular for linear optics it has been shown that exists
a well respected general trend for semiconducting material given by [140]:

=4:615,' 0213 (5.19)

as can be seen in gure (Fig. 5.1). This law allows to guess reanable values
also for other materials unless ; ! is small, i.e. one is considering semiconduc-
tors with a large screening that makes exciton's interactim weak. Unless this
trend is good it provides the possibility of estimating the excitonic correction®?
to the optical spectra of new materials without adding computational complex-
ity beyond the RPA where ; is evaluated: that is, without solving the BSE or
evaluating more complicated expressions fof ... Indications presented in the
work of Botti et al. [140] show that the range of materials wheref \R¢ works
well coincide to materials dominated by continuum excitons®* Di erences be-
tween BSE and thealpha kernel become evident instead when studying strongly

23The validity of this correction has been proven for absorption spectrai n a large variety
of materials through a comparison of the results with BSE calculation s [140].
241t means the material has small to moderate electron-hole interaction
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bound excitons, because of its static approximatio® (e.g., in solid argon that
exhibits a strongly localized Frenkel exciton) or when the eal f,. is no more
well reproduced by the screened-Coulomb interactionV .2

It has been observed for linear optics that the general e ectof the alpha
kernel is to redistribute oscillator strength. This can lead as a consequence to
an apparent shift of peaks. For second harmonic generatioryp to now excitons
have shown an almost constant increase of the total responsef the system
Refs. [72{74]. Is however more di cult to predict their e ec ts that are mixed
through all the quantities appearing in Eq. (4.126).

All the results presented in this thesis regarding exciton¢ e ects have been
obtained using the long rangealpha kernel.

25Indeed it becomes mandatory to keep the dynamic frequency dependency in order to
reproduce the dierent excitonic peaks of the experimental spectra, while gives only an
average that ts all these features together into an unique single-excita tion model.

26)e., it is no more a good approximation the one adopted for the d erivation of the kernel
fxe = W.



Chapter 6

The Si/CaF 2 Interface

As discussed in the introduction, second-harmonic gener&n has been largely
used for materials characterization [13{15, 17, 71, 82, 1731t can give multiple
information on the structural [22, 27, 58, 59, 70, 92, 174, 15] and electronic
properties of materials by detecting the modi cations induced by the presence
of adsorbates [14], stress [13] or external perturbing eleomagnetic elds [176]
and also permitting an in situ monitoring of dynamical processes [14, 15].

Sensitivity of SHG to the symmetry of the system is at the bass of all these
di erent applications. Since SHG is dipole forbidden in cerro-symmetric mate-
rials [2], a distinctive structural and electronic characterization of complex mate-
rials such as interfaces, surfaces, nanostructures or defs can be obtained from
the signal originated by the symmetry-broken regions [2, 1727, 70, 71, 175].
Meanwhile, the surrounding bulk environment (if possessig the inversion sym-
metry) does not contribute. This makes of SHG a great selectie spectroscopic
tool.

An example is provided by the Si/Ge superlattices where SHG 17, 92] ex-
hibits an increase of about one order of magnitude with resp& to the crystalline
system if the structure presents defects. Even the atomic agle and bond-length
distortion inside materials as bulk silicon can be detectedand measured thor-
ough SHG as function of an applied external stress, as it hasden shown in
[13].

Moreover, SHG demonstrated sensitive not only to microscojg deviations
from the centro-symmetric structure, but also to the macrosopic breaking of
the symmetry due to surfaces and interfaces. Fig. (6.1) shosvthat the SHG
signal originates in the interface between two centro-symmieic materials. It
is characteristic of their contact region, whereas elsewhe it cannot take place
because of selection rules. With this regard, SHG has been investigated both
experimentally and theoretically for a large variety of interfaces [17].

1Silicon has a small bulk contribution to the SHG process arising from  higher-order term
as the electric-quadrupole and the magnetic-dipole [2]. An example is provided by the third-

order dielectric susceptibility (,\i) once an external static eld Egc is applied. It polarize the
system breaking the inversion symmetry and allowing SHG. This process is called electric eld
induced second harmonic (EFISH) generation and give rise to frequency doubling: Pg (2! )=

S) E(! )E(! )Eq4c. The intensity of these higher-order processes is usually smaller with respect
to the second-order one and can be detected only when the second-order vanish. In interfaces

(,j) dominates; because of this, hereafter | will neglect the higher-order contri  butions.
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Figure 6.1: Second-Harmonic Generation process in the Si/&F, interface. The
two bulk materials cannot generate the double-frequency gjnal because of their
inversion-symmetry. The SHG signal is genertated by light nteraction with the
interface region where the symmetry is broken.

Here | present an ab initio study of the Si/CaF, interface [82]. In this
contest, Si/CaF, interface is a suitable material because of its optical andlec-
tronic properties, being a well-controlled semiconductofinsulator interface with
potential technological importance [177{179]. Indeed, tlanks to the small mis-
match between the two lattice parameters, it is possible to gow epitaxially Si-
CaF; nanostructures by superimposing semiconducting and insating slabs in a
multi-quantum well [180, 181]. It consents to exploit the relation between opti-
cal properties and quantum con nement e ects of Si [86, 87, X7{179, 181, 182]
whereas CaFk, plays the role of an excellent insulator. In fact, its 12 eV errgy
gap makes this material transparent in a wide frequency rang.

Because of these two factors i.e., i) the possibility of techologically design
the energy gap via the silicon quantum con nement, and ii) the complete trans-
parency of Cak; into the window of visible light, the interface demonstrates use-
ful for photovoltaic and optoelectronic applications. In particular in solar cells,
a di erent opening of the electronic and optical gaps, that can be achieved de-
positing Si slabs of various thickness in a multi-quantum wé structure, 2 would
enlarge the devices absorbtion frequency-range increagjrthe e ciency. Mean-
while CaF, provides that sunlight propagates deep into the material wihout
loss of intensity, so that an higher number of Si slab can be querimposed.

However, these optical properties, in particular in the low-energy region (i.e.
visible light), strongly depend on the interface electronc-states [85{87, 181]. In
fact, interface states enters into the electronic gap varymg its dispersion along
the wave vectorsk and generally reducing the gap. Moreover crystal local- etl
e ects become important around that region due to the sharp \ariation of the
potential inside the lattice, consequently modifying the nal optical response.

As a result, the interface is a competing e ect with respect b the quantum-
con nement. Understanding the in uence of this competition on the nal re-
sponse has become then a mandatory task for practical appktions of Si/CaF,

2In the present case | am considering multi-layers structures. Also in 2- and 3  -dimensional
con ned structures, such as nano-wires and nano-dots, one can observe the quantum con ne-
ment e ect playing on silicon and opening its electronic gap. In these cases th e gap opening
depends respectively on the width or the diameter of the structure [183]
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and the interfaces in general [21, 22, 54, 67]. Therefore, aent e ort has been
devoted to analyze these states. In particular, literaturepresents a lot of works
focused on the understanding of the possible geometrical n@uration that de-
termines them [85, 88, 89, 182], and its dependency on the grth conditions
[76, 77]. This represented an open question for a decade ina90's, animating
a long discussion with several experimental and theoretidastudies. Nowadays
there is general agreement about the crystalline structure although some con-
troversies are still opened [76, 77].

Besides the linear optics, the Si/Cak, interface has also important nonlin-
ear optical properties which have been investigated expementally by Heinz et
al. [82] in 1989. They used optical second harmonic to probe thelectronic
transitions in order to understand the distinctive nature of the interface region.

In linear optics, at these frequencies, interface e ects a hidden by the
intense bulk response of Si (e.g. in absorption spectra). Térefore, SHG spec-
troscopy revealed an useful technique to investigate the sae system in the
absence of the underlying bulk contribution, thanks to it symmetry-broken se-
lectivness. In fact, both silicon and calcium uoride are centro-symmetric and
do not contribute to the SHG signal that becomes distinctive of the insulator-
semiconductor discontinuity (see Fig. (6.1)). Through SHGHeinz, Himpsel and
Palange [82] observed directly the interface electronic tnsitions. In particular
they achieved information from the peaks of the SHG spectrumon the direct
electronic transition between the HOMO-LUMO states at the special point .

This experimental work constitutes then an opportunity for comparison with
our calculated spectra, allowing the test and study of sevel topics object of
this thesis.

I) Itis the rsttime the code 2light and the formalism presented in chap-
ter 4 are applied to a complex system as the Si/Cak interface. Only bulk
systems with a limited amount of atoms were studied before [3, 72{75].
As a consequence, the comparison with the experiment represt an ideal
test for the accuracy of the method once applied to complex mizrials.

I) Knowledge of the accuracy of the calculation can give inbrmations on the
capabilities of SHG ab initio simulations, ever for predictive application
to unknown interfaces3

I11) As for linear optics, ab initio studies of SHG allow to gain knowledge on the
di erent e ects contributing to the nal response e.g., the crystal local- eld
or the excitonic e ects. This is not always possible in expeiments where
one collects their resulting total response. Comparison amay di erent
level of approximations and the experiments indeed, allowsne to estimate
their importance, obtaining informations both on the natur e of the system
and on the second-harmonic generation process.

IV) So far, SHG ab initio calculations have been restricted b the independent
particle approximation and eventually to small-size systens when more
accurate approximations have been adopted. Therefore, the is still a
need to deepen our knowledge of the physics behind the prossxtending

3Experimentally SHG measurements represent a nontrivial task and it is no  t always pos-
sible to perform accurate studies [17].
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the rst-principle studies to a larger variety of materials, as the interface
here proposed.

V) Finally, the comparison will permit to con rm experiment al analysis con-
cerning the nature of the interface with respect to the growng conditions.
The interface structure of [82] is indeed experimentally uknown, contrary
to the studied ab initio system. Because of the high sensitity of SHG,
matching of the spectra would then represent a con rmation d the cor-
respondence between the two structures. All these considations justify
the use of ab initio SHG simulations not only on the interpretation and
study of structures, but also as a theoretical predictive tml that could
guide both new experiments and the design of innovative mateals.

6.1 The 1989 Experiment

In the 80's Himpselet al. dedicated part of their work to the study of the epitax-
ial interface of Si/CaF, [78, 79, 81{83]. In particular in Ref. [82] they studied its
resonant second-harmonic and sum-frequency (SF) spectralhese three-wave-
mixing signals have been obtained by exposing the sample tas$er radiation
from a tunable source. In the rst case tunable laser light isemployed and after
spectral ltering of the frequency-doubled re ected radiation coming from the
interface, the SHG signal is collected. In SF generation intead, the spectrum
is obtained mixing the tunable source with another laser opeating at xed fre-
qguency (of 1.17 eV). Again, re ected radiation pass thoroudn a frequency lter
and is following ampli ed by a photomultiplier. The tunable radiation is pro-
duced from a dye laser pumped by second harmonic radiation ceing from a
Q-switched Nd-doped yttrium aluminum garnet (Nd:YalG) laser. Its radiation
constitutes also the xed frequency laser employed in SF mesurements.

They obtained a signi cant signal, easily measurable, withweakly focused
laser beam (diameter 1 mm) and a laser uence far below the damage threshold
(1 mJ), in the range of [22 2:5]eV. Pulses of 5 ns where employed and
using a parallel optical path they registered possible va@tions in the intensity
of the pump radiation* that have been considered and compensated in the SHG
spectrum (obtained as function of the incoming radiation intensity).

They detected p-polarized three-wave mixing radiation praluced by excita-
tion with a p-polarized beam incident on the sample with an argle of 80 from

the interface normal. In this con guration it is obtained th e (,\f)m element
of the second-order dielectric susceptibility tensor. Thecontributions from the
topmost CaF, and the underlying Si surfaces demonstrated to be negligilel
together with higher-order terms (magnetic-dipole and eletric quadrupole mo-

ments) arising from bulk Si (cfr. [82]). Figure (6.2) shows he mesured SHG
and SF spectra for the @ component in the Si(111)/CaF, interface of [82].

M zzz

The SHG and SF spectra are plotted as function of the dye lasephoton energy
i.e., the varying ingoing radiation. The two spectra preseit the same resonant

4When the dye laser frequency is modi ed, the outgoing frequency can have a dierent
intensity. It is therefore necessary to account for it i.e., considering the r  atio between the SHG
(Isne ) and the laser (1) intensities 'S:*IG instead of the bare SHG signal while analyzing
the spectrum.
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. . .. . . . )
Figure 6.2: Resonant three-wave-mixing signals associadewith }’,,, as a

function of the energy of a photon from the tunable dye laser.(a) Results for
the SHG process and (b) the SF generation mixing the dye laseoutput with

a photon of xed energy (1.17 eV). The lled simbols refer to sgnals from the
Si(111)/CaF, sample. The open symbols refers to a Si(111) surface covered
by native oxide showing the contribution of the underlying Si surface being
negligible. The solid curve in (a) is a t to theory presented in [82] (Reproduced
from [82], Copyright ¢ 1989 by The American Physical Society).
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Figure 6.3: Band-gap structure of the Si(111)/CaF, interface. (Reproduced
from [82], Copyright ¢ 1989 by The American Physical Society).

peak at the same fundamental frequency (the one of the dye las).> This
made the authors conclude that the peak arises from a directransition at the
Si(111)/CaF, interface. They associate the strong peak at about 2.4 eV tolte
vertical gap (HOMO-LUMO) transition at the point Fig (6.3) [81, 83]. ltis
originated by the bonding and anti-bonding matching of the Ca* (4s) and the
hybridized Si(sp3) orbitals at the interface [78].

6.2 The Si(111)/CaF , Structure

6.2.1 Experimental Sample

The Si(111)/CaF, samples studied in [82] consisted of a layer of about 508 of
CaF, grown epitaxially on top of Si(111) crystal surface. This isallowed by
the similar crystal structures of the two materials and the small lattice mis-
match of 0:6% at room temperature. CakF, has been grown with molecular-
beam epitaxy (MBE) technique on an initial Si(111) substrate at a temperature
of [700 750] C. The silicon presented a clean (7 7) surface reconstruction
[81, 82]% After the rst layers growth, MBE deposition can continue at lower
temperature, diminishing the lattice mismatch. This improves the growing con-
ditions and increases the achievable Cafthickness.

The electronic con guration (and consequently the SHG spetrum) is di-
rectly related to the geometrical one. The latter has represnted an open ques-

50ne can considers as an example the peak at 2.42 eV as an example. In SHG spectrum
the second harmonic photon has an energy that is twice the one of the d ye laser i.e., 4.84 eV.
In SF instead the nal photon possesses an energy of 1 :17 +2:4 = 3:59 eV.

61t has been obtained through a previous annealing at higher temperatu re and a subse-
quent slow cooling. The surface cleanness and reconstruction has been veried b y LEED and
photoelectron spectroscopy.
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Figure 6.4: Top view of the Si surface unit cell (left). The two possible adsorp-
tion sites T4 and H 3 for the Ca atom in the CaF layer at the interface are shown
by shaded atoms. The basis vectors of the hexagonal unit celire indicated.
Frontal view of the T, and H3 interfaces are compared on the right.

tion [76, 77, 79, 84, 85, 89, 90, 182], particularly because @s dependence on
the growing conditions of the sample. In particular, the geanetrical structure
of the experimental sample [82] is unknown.

Experimental Studies on the Interface Geometry

The match between the latest studies on the e ects of growth mrameters on
the structural interface features [76, 77] and the sample sythesis conditions
described by [82], allow to predict for the experimental inierface aT, con gura-
tion (see Fig. (6.4)) with B-type orientation [77, 85] Fig. (6.5). In this particular
con guration Ca atoms at the interface are in T4 high symmetry sites Fig. (6.4)
while one uorine of the rst layer is lost at the interface af ter the dissociation of
the CaF, molecule [76, 79], and the other occupies thel; sites (see Fig. (6.4)).

In Ref. [89], Zegenhagen claims, for the interface grown atemperature close
to the one of Heinzet al.,” a mixture of domain structures characterized by both
the T4 and Hz bonding sites for calcium. This appears in the sub-monolayecov-
erages [89], and depends on the cleanness of the surface angassible nonuni-
form growth, as following discussed in [76], whereas there ino evidence of that
mixture for clean substrate and thicker coverages [76] as ithe experiment of
Ref. [82]. Therefore, | am con dent that T4 is the correct interface geometry
that reproduce the experimental sample.

Formation Energy study

In addition to the above considerations, as further check | lave performed a

study of the formation energy of the two interfaces (see Fig(6.6)). A comparison

between the multi-quantum wells structure where the two materials match in the

T4 and Hs con gurations respectively, show that the rst is energetically favored

with respect to the latter. Evaluating the formation energy of a particular

interface as the di erence between its total energy and the hemical potential
of its single components Ny is the number of X species atoms)

Eform = Etot Nca ca Nr F Nsi si (6.1)

7Samples of Ref. [89] has been grown at temperatures between [450 770] C.
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Figure 6.5: Two types of epitaxial relations of the Si(111)/CaF, interface: for
type-A (left) and for type-B (right). Interlayer spaces a1, d, a are dierent
among the two materials and the interface.

| obtained:

Eform (H3) Eform (T4) =47Ha

Eform (H 3) >E form (T4): (62)

These studies have been performed with thé\binit code, on a Si(111)/Cak,
interface where 5 double layers of Si and 4/5 layers of Cafalternates in a multi-
quantum well structure presenting a particular matching face (cfr. Fig. (6.6)).8
These test structures have been studied in analogous work86, 87, 177, 184]
on Si/CaF, and constituted a good starting point. In particular, relax ation of
the cell dimension allows to obtain the ;y) inplane lattice parameters that
minimize the interface stress between the two materials. Tis value of a,y, '
5:40A is the one | adopt in the following also in the single interface structure.

The formation energy result, together with the experimentd studies pre-
viously presented [76, 77], identify T, as the most probable structure for the
experimental samples | am comparing with.

6.2.2 Simulation Cell Structure

| have studied the T, B-type con guration of Si/CaF , in Density-Functional
Theory within Local-Density Approximation using the plane -wave pseudopo-
tential method as implemented in the ABINIT package [121].

Si/CaF , Pseudopotentials

For Si | have adopted the pseudopotential used in [72]. It is hilt in a Troullier-
Martin scheme and has been already tested in literature forihnear and nonlinear
calculations [13, 72, 74]. Whereas, for Caj-they do not exists tested pseudopo-
tentials for nonlinear optics. | have chosen Fritz-Haber Irstitute (FHI) pseu-

8The adopted pseudopotential and the parameters of these test-systems are t he same of
the single interface system presented in the next section, to which | remand fo r further details.



6.2. THE SI(111)/CAF , STRUCTURE 93

Figure 6.6: H3 interface multilayers system (left) and T, interface multilayers
system (right). Five double layers of silicon (yellow ball§ have been considered
for both the structures, while calcium uoride (Ca is shown in red and uorine
in grey) has a di erent thickness to recover the periodicity along z.

dopotentials obtained in a Troullier-Martin scheme presert in the Abinit pack-
age (seéhttp://www.abinit.org/downloads/psp-links ). The linear optical spectra
of bulk CaF, and multi-quantum well test structures have been compared \ith
[87, 184], obtaining a reasonable agreement. Calcium corutes with one 4s
electron to the interface states [78, 82, 83, 86, 182], togeér with an unpaired
Si electron in the sp3 hybridized orbital. Spatial separation and the negligible
exchange-correlation interaction between 4 and core/semi-core electrons in the
underlying closed shells, make possible to consider onlys4salence electrons.

Bulk CaF, system is well described when looking at its structural progrties,
as obtained by comparing the lattice parameter with the expeimental one or
the interface bond-lengths that will be presented in the folowing. The optical
response of bulk CaF; instead, could be in uenced by the semi-core electrons
(as observed for other compounds). However, for the experinmal energies of
interest [82], CaF, is completely transparent being a large gap insulator. As a
consequence its bulk states do not contribute to the nal linear and nonlinear
spectra and one can freeze semi-core electrons in the psepdtential approxi-
mation.

Fluorine does not contribute directly to the interface. It d esorbs far away
from it after the molecule dissociations, and the one which emains links to Ca
atoms only.

Performing a relaxation of the silicon and calcium uoride bulk systems and
of their lattice parameters, | have obtained respectivelyacar, = 5.410 A and as;
=5.389 A, with a lattice mismatch of 0.4%. These theoretical valuescalculated
at 0 K well reproduce the experimental valuesacar, = 5.447 A and ag =
5.430A at 6.4 K [185].
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Single Interface Structure

The experiment has been performed on a single interface beéen a Si substrate
and a 500A thick CaF ; insulating slab. Because of computational limits it is
prohibitive to reproduce that size, and | have proceeded steing from a smaller

system of about 5A of silicon and 6 A of CaF,, then increasing their thickness
up to convergence of the SHG spectra. Since the insulating ahsemiconducting
slabs assume rapidly the bulk structure below the interfacei.e., the centro-

symmetry, one expects that the SHG signal originates from a egion of few
angstrom around the interface.

The system has been built aligning the growth direction with the z axis, so
that the interface lies in the xy plane. In order to have a single-interface systefh
| have built a supercell introducing vacuum into the simulation cell on top of
the CaF,. It avoids interaction between the dierent replica and breaks the
multi-layer structure created by the periodic-boundary conditions in absence of
the vacuum. The dangling-bonds of the external surfaces hasbeen passivated
with hydrogen atoms.*?

The experimental thickness of Cak, makes it possible a modi cation of the
substrate lattice parameter close to the interface due to tke stress, although the
mismatch betweenacasr, and as; is very small. Choosing the in-plane lattice
parameter as the one of Si, Cak or values within, should be negligible. However,
| take the relaxed in-plane lattice parameter ofa,, ' 5.40 A to diminish this
stress!?

To further reduce the required computational resources, | lave considered
the unitary cell given by the basis vectors K; Y ; Z):

0 1

X = l,X + %y b
Z= z

where x; y are the basis vector of the Si(Cak) FCC cell and z is the total
height of the interface plus the vacuum. The cellC is obtained passing from
the FCC cell to the tetragonal unitary cell C%

0 1
— 1 1
c= @yO: ix + 1yA (6.4)
7= Z

and then rotating the y° axis to 120 from x (i.e. considering the unitary
hexagonal cell of the Si(111) interface):

0y - o 1
C=0Qy = %x°+073y°A (6.5)
Z= z

90ne cannot use the multilayer structure because it generate spurious contr ibutions to the
SHG process arising from the interferences between the various layers in th e superlattice, as
it happens e.g., in Si/Ge superlattices [21].

10For hydrogen | have used a FHI Troullier-Martin pseudopotential obt  ained from [121].

11 This has been done through a DFT relaxation on the multy-layer T 4 system. The Si/CaF »
interface is easier relaxed in a multi-layers structure [86, 87, 177]. | n the single interface,
because of the vacuum, the stress is partially redistributed along z, interfering with the in-
plane relaxation. One should then use thicker slabs to have the inter nal part of the system
resembling the bulk, but this would require a greater computational eort.



6.3. SHG CALCULATION 95

(b)

Figure 6.7: Relation among the primitive vectors of the simdation cell C =
(X;Y;Z) Eqg. (6.3) and the silicon FCC cell C = (x;y;z) Eq. (6.5) passing
through C°= (x%y%z9% Eq. (6.4). Top view of the interface-plane on the right.

as seen in Fig. (6.7). The last transformation is useful wherde ning the atomic
positions in terms of the reduced coordinates (i.e., with rgpect to the primitive
vectors) for the silicon crystal structure.*?

6.3 SHG Calculation

The in-plane structure presents 120 symmetry-rotation angle around the nor-
mal to the interface, as observed by the experiment [82]. It orresponds to a
primitive hexagonal symmetry, as con rmed by the results of the DFT relax-
ation.

To compare with the experiment | have calculated] @Zj which corresponds
to light polarized along the z direction i.e., perpendicular to the interface (as
discussed in [82] and in section 6.1). In the formalism presged in chapter 4,
considering hexagonal geometry @, is related to the second-order response
function @ as follows?3

Q@)= Lit@2) @ uzzan @)@ 66

77z

where the polarization vectorsq have been identi ed with z.

12The (X; Y) axis forms an angle of 120 . In this coordinate system the ( x;y) reduced
atomic coordinates assume the simple values of 0; %; %
L3 Full derivation can be found in Appendix F.1.
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6.3.1 SHG Spectra Normalization

The systems | have studied contains a vacuum slab that breakshe structure
along the z direction. The response of the system, as discussed in chast4 gives
a signal that is characteristic of the whole simulation cell In bulk materials this
coincide to a signal normalized to the volume. Varying the ste of the cell does
not modify the nal response.**

For surfaces, interfaces and similar structures, built infoducing the vac-
uum instead, the empty part of the simulation cell does not catribute to the
response, although entering in the normalization factor ofthe equations.

E.g., the integrals deriving from the proqgcts h nkj nokoi are all performed
on the volume of the simulation cell V: Vi v dr. As a consequence also the
vacuum part is considered when evaluating the linear and thesecond-order re-
sponses. This can be seen directly in Eq. (4.56) where the ter Vi appears in
front of the summation that gives the contribution of all the two- and three-
bands transitions. It is immediate to notice that for a given system, dier-
ent thicknesses of the surrounding vacuum will give dieren responses (see
App. G.1.3 for a detailed discussion). Consequently, it is ot clear which is the
real physical situation that reproduces the experiment.

Let's start from analogous consideration on a similar systen: a surface.
The surface is determined by its nature as the region betweetwo semi-in nite
media: the material and the vacuum?® This is justi ed once looking to the ex-
perimental environment (e.g. in absorption spectroscopy,) The probe (the light)
examines a region de ned by the substrate and the vacuum insie the experi-
mental chamber. Both the sample and the chamber are macrospic therefore
the probe see them as in nite.

With this assumption the surface is the matching between twosemi-in nite
dielectric media. Reporting this idea into the nite dimension of the simulation
cell, it means considering the surface composed of an equaiaunt of vacuum
and material: Vsys = Wac. Vsys is the volume of the material and Vi, the void
inside the simulation cell.

This interpretation holds also for interfaces, as the matcling between two
semi-in nite medium (regarding the vacuum as a medium of didectric function

= 1, even the surface can be considered as an interface betweenatter and
vacuum).

In the Si(111)/CaF, samples of [82], Si and Caf have both a great size
compared with the interface region probed by the light. Therefore, accordingly
to the previous considerations it can be thought as de ned bytwo semi-in nite
media. Consequently an equal amount of both should be consited. However,
in my simulation cell | have a di erent con guration. Actual ly, three dielectrics
materials are present: the silicon, the calcium uoride andthe vacuum.

The essential nature of the Si(111)/CaF, system is characterized by the
interface between the semiconductor and the insulator. In prticular calcium
uoride at the frequency | am looking at is completely transparent. Therefore,
optically it behaves exactly as the vacuum on top of it and they can be thought
together as forming an unique Cak, insulating slab. | decide then to consider the
vacuum and the CaF, as the semi-in nite insulator, and the silicon as the semi-

14This holds for processes that are proportional to the volume i.e., t he linear optics or SHG
in bulk materials as GaAs.
15Here | suppose the sample is micrometric so that can be considered macroscopic.
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in nite semiconductor. The results here proposed are then btained considering
almost an equal amount of these two media.

Renormalization

Considering the same amount of insulating and semiconduatig material in the
Si(111)/CaF; interface is usually a waste of resources. One of the two slab
could indeed converge within a smaller thickness. Therefa;, in order to contain
the calculation, it is useful to de ne a renormalization procedure that allows to
pass from the response of a system to another one with a di erg insulator-
semiconductor ratio (see Appendix G.1.3 for further detaik). For practical
reasons | have then simulated smaller systems converting #ir response to the
adopted convention of 50%/50% silicon/insulator percentaye. In particular,
the SHG response has been renormalized keeping xed the ibn volume and
renormalizing the CaF,-vacuum thickness to the one of silicon. This because a
larger silicon region contributes to the signal with respetto the calcium uoride
one (as | will show later).

6.4 Studied Systems and Convergence Tests

| have studied di erent systems, increasing respectively:
I) the vacuum thickness to avoid interaction among the replica,
I) the insulating CaF ; slab and

I11) the silicon thickness.

| tested the convergence of the various systems looking at #IPA-SHG signal.
Because of its simpler equations, the independent-partiel reveals to be the best
approximation for comparison among di erent systems. In IPA indeed, peaks
are uniquely identi ed by the two- and three-bands transiti on of Eq. (4.56) at
the corresponding denominator energies. On the contrary, mce LF or excitonic
e ects are introduced, transitions at di erent energies are mixed both in the
second-order Dyson equation (Eqg. (3.31)) and in the nal reponse Eq. (4.126)
where @ s further convoluted with three dielectric functions at di erent fre-
guencies. One loses the direct peak-transition correspoedice and consequently
the identities of the peaks. Therefore, peaks close to the s@ energies can have
di erent origins while going beyond IPA. 16 IPA reveals then the best choice for
comparison among di erent structures while testing convegence.

In the particular case of testing the thickness of the silicm slab, also the
scissor operator correction to the DFT energies has to be tadn into account.
Indeed for silicon, the quantum con nement e ects due to the nite height of
the semiconductor opens the gap. As studied elsewhere [18@fie gap opening
is di erent depending on the size of silicon and tends to the lilk value while
increasing its thickness. The di erent con nement hence reects in a di erent
shift of the peaks position, that have to be corrected applyng the SO correction.
In particular, the SO energy correction (cfr. Eq. (5.13)) h as been taken to
reproduce the experimental gap of 2.4 eV at the point [82].

16 Moreover, in the particular case of the Si(111)/CaF » interface, introduction of the LF
generally soften the spectra making less clear and more di cult to identify di erences.
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For each of these systems | will then provide the convergencgarameters of
the DFT and SHG calculations.!’

6.4.1 Vacuum Convergence
Si(111)(3dl)/CaF  ,(4l)

| started from a system composed of 3 double layers (dl) of SI(11) and 4 layers
(I) of insulating CaF ,, see Fig. (6.8). The total height of the cell is 50.3A.
The equilibrium con guration of the system has been obtainal thorough a DFT
relaxation of the atomic positions with the Abinit code. The DFT convergence
parameters are:

1. Equ represents the energy cuto over the plane waves (i.e., the mximum
module of the G vectors). | have chosen this cuto in order to converge
the total energy within 5 10 5%.

2. toldfe establishes the threshold value for DFT convergence. Whenhte
di erence of the total energy between two following step is snaller than
this value, the self-consistent KS cycle is considered to beonverged.

3. k-grids; it gives the number of points along the three recipreaal-space di-
rections that de ne the grid over which the KS Hamiltonian is solved. The
grids here presented are all Monkhorst-Pack grids, centerein (3; 3; 3).
| considered a grid (N;N; M ) to be converged once di erences in the to-
tal energy between it and the nest one N +2;N +2;M + 2) is below
7 10 5 %18

4. tolmxf is the force threshold for the relaxation cycle. Only if the force
acting on each atom is belowtolmxf relaxation is considered as converged.

5. told is the force threshold considered byAbinit while converging the
KS self-consistent cycle for the electronic density duringthe relaxation
procedure.

| have always performed a convergence test of th&., value and the k-grids,
testing also values beyond the desired accuracy in order toébcon dent of their
convergence. After the relaxation of the system withtold , | have always
performed a DFT cycle in order to improve and better convergethe electronic
density, choosing a more stringentoldfe threshold parameter. Using it directly
into the relaxation procedure, where numerous self-condisnt DFT cycle are
performed, would have increase the computational e ort without signi cantly
improving the ion dynamics. For the Si(111)(3dl)/CaF ,(4l) system and the ones
presented in the following, | have adopted the parameters offab. (6.1).1°

17 Since nonlinear optical properties requires more accurate parameters t hen the linear ones,
| perform both the calculation with the same values converged for the S HG spectrum. Indeed
the linear response is a necessary ingredient to obtain the nonlinear one t hrough the second-
order Dyson equation. Convergence of the latter implies necessary convergence of the former.
The linear quantities are given in output by  2light together with the nonlinear ones.

18Because of the dierent dimension along the z component M can be smaller than the
number of points along the x;y direction in reciprocal space.

19These values are over-converged for the smaller systems therefore revealed accur ate also
for the bigger structures presented in the following.
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Figure 6.8: Si(111)(3dl)/CaF,(4l) B-type, T, single interface system. The sil-
icon (yellow) and the calcium uoride (respectively Ca in red and F in grey)

slabs are terminated both with H atoms (light-blue).

E cut 100 Ha
toldfe 10 ¥ Ha
k-grid 8§ 8 1
tolmxf 5 10 5 Ha/bohr
told 5 10 6 Ha/bohr

Table 6.1: DFT parameters for the Si(111)/CaF, systems.
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Figure 6.9: Band structure of the Si(111)(3dl)/CaF,(4l) interface along the
L X path. The zero has been taken as the valence maximum.

The nal structure is composed of 8:4 A of CaF, and 122 Aof Si.?° The
vacuum present into the cell is 30 A. Afterwards, | have evaluated the band
structure of the system along thelL X special points path, Fig. (6.9).
It presents an indirect-gap of 0.92 eVat L and X and a direct gap at
of 1.59 eV. The smalles direct transition take place at thel; X special points.

The IPA-SHG spectra has been obtained considering a scissaperatore
dened as =0 :81 eV, correcting the DFT gap at in order to recover the
experimental one. The input density has been taken from the pevious DFT
calculation. Due to the small energy range | am looking at (tke experiment has
been performed in a 0.4 eV energy window) it is necessary to hieve an high
accuracy of the second-harmonic calculation. The tested cwerged parameters
used in the 2light code are reported in Tab. (6.2) whereas the IPA result is
presented in Fig. (6.10).

The silicon slab is smaller if compared with the insulating me (the vac-
uum plus the CaF,). Therefore, spectra have been normalized according to the
renormalization procedure presented in Appendix G.1.3 to he 50%/50% semi-
conductor/insulator ratio (as discussed in section 6.3.1)keeping the Si height
as reference. The same has been applied to all the other systs presented in
the following onceVs; 6 Vcar, + Wac-

Vacuum Convergence Test on Si(111)(3dl)/CaF 2(4)

The SHG response of the same system has been evaluated ingegta vacuum
of respectively 20 and 40A into the simulation cell. The DFT and SHG pa-

rameters used in the previous calculation (Tabs. 6.1, 6.2) emonstrated to be
converged even for these two systems. IPA-SHG responses oietthree systems

20The height of a slab is evaluated from its surface (identi ed as the mid  dle point between
the Si-H/Ca-H bond) and the interface (identi ed as the middle of the Si-Ca bond).
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IPA
npwwfn 2997
nband 90
lomo 34
npwmat 1
k-grid 1152
SO 0.81
domega | 0.004
broad 0.013

Table 6.2: Parameters of the2light calculation on Si(111)(3dl)/CaF ,(4l). k-
grid indicates the number of random k-points used in the calculation to better
sample the rst Brillouin Zone. | have applied a gaussian bradening (broad )
of 0.013 eV to the theoretical results.

T T T T T T
1500— -

—— Si (3 dl)/CaF2

1200

900

27z

600

K® | (pmiv)

300

T E@Ev)

Figure 6.10: IPA-SHG spectrum of the Si(111)(3dl)/CaF,(4l) system with
30 A of vacuum into the simulation cell.
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Figure 6.11: Comparison among the IPA second harmonic genation spectra
for the Si(111)(3dl)/CaF ,(4l) with respectively 20 A (blue curve), 30 A (red
curve) and 40 A (green curve) of vacuum into the simulation cell. The resuts
have not been renormalized.

are compared in Fig. (6.11) and the same spectra are reporteth Fig. (6.12)
once an appropriate renormalization factor has been applig¢ to make the three
systems coincide to a cell with a 50%/50% insulator/semicoductor ratio (the Si
height has been taken as reference). As can be seen®0epresents an accurate
choice of the height of the vacuum slab. It permits to avoid irterference among
the Si and CaF, surfaces of di erent replica in the SHG response. From now
on, all the following systems are constructed inserting 30A of vacuum on top
of the CaF, slab.

6.4.2 Insulator Thickness Convergence
Si(111)(edly/CaF  ,(4l)

| started from a system composed of 6 dl of Si(111) and 4 layersf insulating

CaF,; the height of the simulation cell is 59.6 A (see Fig. (6.13)). Again,
the equilibrium con guration of the system has been obtainal through a DFT

relaxation of the atomic positions with the DFT convergence parameters of
Tab. 6.1. The total thickness of the silicon slab is 17:7 A and the one of
the insulating CaF, is 122 A. In Fig. (6.14) is plotted the band dispersion
along the L X path. The systems present an indirect gap of 0.70 eV
between the and L points and a direct gap of 1.14 eV at theL and X points.

The DFT-LDA direct gap at of 1.47 eV in the following SHG-IPA calculation
corrected through a scissor operator of = 0:93 eV to recover the experimental
value. The converged SHG parameters are reported in Tab. (8).

The same calculation has been performed on the system wheréé insulat-
ing slab has been doubled up to 21.& of thickness (i.e. 7 layers of calcium
uoride). The height of the cell has been consequently incrased to 68.8A and
the geometry has been relaxed with the DFT parameters of Tab6.1. For com-
pleteness the band structure has been reported in Fig. (6.5 The converged
SHG parameters are reported in Tab. (6.3).

The two spectra are compared in Fig. (6.16), where the Si(1DICaF »(7I)
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Figure 6.12: Comparison among the IPA second harmonic genation spectra
for the Si(111)(3dl)/CaF ,(4l) with respectively 20 A (blue curve), 30 A (red
curve) and 40 A (green curve) of vacuum into the simulation cell. The resuts
have been renormalized to a simulation cell composed of an egl amount of
insulator and semiconductor material, keeping the silicorthickness as reference.

Figure 6.13: Si(111)(6dl)/CaF,(4l) system (left) and Si(111)(6dl)/CaF ,(7I) sys-
tem (right). The silicon (yellow) thickness is xed whereas the calcium uoride

(respectively Ca in red and F in grey) slab is varied. Both the surfaces are
terminated with H atoms (light-blue).
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Figure 6.14: Band structure of the Si(111)(6dl)/CaF,(4l) interface along the
path. The zero has been taken as the valence maximum.
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Figure 6.15: Band structure of the Si(111)(6dl)/CaF,(7l) interface along the
path. The zero has been taken as the valence maximum.
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@n | (@
npwwfn 2997 | 3989
nband 105 120
lomo 34 55
npwmat 1 1
k-grid 960 960
SO 0.93| 0.93
domega | 0.004 | 0.004
broad 0.013| 0.013

Table 6.3: Parameters of the IPA 2light calculation on Si(111)/CaF,(4l) and
Si(111)/CaF,(7l) systems.

1250~ | === Si/CaF2 (4 layers
L |=— . Si/CaF2 (7 layers

RN

E (eV)

Figure 6.16: Comparison of the IPA-SHG spectra for the Si(11)(6dl)/CaF ,(4l)
system (blue straight line) and the Si(111)(6dl)/CaF,(7l) system (red dashed
line). doubling the thickness of the insulating slab the spetra is almost unaf-
fected.

response has been renormalized to the volume of the Si(1110AF,(4l) system.

They agree within a good accuracy. The peaks of both the systas have the
same energy positions and the shape of the two spectra coimg. This shows
that only the rst interface layers of the CaF , contributes to the interface SHG
optical signal. Adding new insulator layers will introduce bulk states that are
far from the energy gap (calcium uoride possesses an energyap of about 8 eV
for the used pseudopotentials). Because of the inversion symetry they do not
contribute to the SHG spectrum. Moreover, already for the linear optics where
the transition are allowed, they enter only in the high part of the spectrum,
far from the studied energies because of the large energy gagf CaF,. In
conclusion, the CaF, after the rst layers does not enter in the interface SHG
signal. Adding new states does not modify the response. Thiss due to its
transparency that makes it behave as the overhanging vacuumjustifying the
assumption of considering vacuum and Caf as an unique transparent insulating
slab.

From now on | will consider only four layers of CaF,.
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6.4.3 Semiconductor Thickness Convergence

As done for Cak,, | have studied the active region of silicon contributing to the
interface SHG response. Silicon should give the most impoant contribution to
the spectrum with respect to CaF,. Its states are indeed close to the energy gap,
describing transitions in the low energy part of the optical signal. Moreover, the
e ects of the interface propagates deep in the volume. This &an be se from the
relaxation of the layers beyond the interface. Whereas Cafis almost una ected
and achieve soon the bulk geometry, the distance among the st Si layers is
reduced close to the interface and increases progressivedpnverging after the
rst four double layers to the bulk con guration. One expect s hence that all that
region, where the centro-symmetry is lost, originates the 8G process. The high
sensitivity of SHG to the symmetry can even go deeper into thesubstrate being
related to the electronic con guration (i.e. the deformation of the electronic
orbitals) more than to the nuclei geometry. As a consequencsilicon thickness
has to be increased until the bulk con guration is recovered This de ne the
active region of silicon.

The surface, as a symmetry-broken region, can contribute tadhe nal SHG
process. It becomes then mandatory to keep the same con gutian (i.e., the
same surface SHG-signal) in order identify and distinguistit from the interface
spectrum, as will be later presented in section 6.5. Therefe, each time |
increase the cell, | add 3 double layers of silicon, that coespond to the Si(111)
unit of repetition keeping the same surface con guration.

sSi(111)(odly/CaF  ,(4l)

| keep 122 A of CaF; increasing the Si thickness up to 9 double layers achiev-
ing a semiconducting slab of 27.Q\ (for a total height of 68.9 A of the simulation
cell). The parameter of the DFT relaxation are the ones of Tah 6.1. Fig. (6.17)
shows the relaxed geometry while Fig. (6.18) shows the bandrsicture of the
system. The relaxation do not modify anymore the interface ad surface ge-
ometry. That is, the distances among the silicon layers fornng these regions
is unchanged. All the new Si inserted into the cell increasethen the bulk slab
inside the semiconductor i.e., the geometry of the interfae and the surface are
both converged within 9dI-27.0 A of silicon.

Whereas the maximum of the valence band (HOMO) continues to le posi-
tioned at the point, the minimum of the conduction band is cl ose to the X
point slightly shifted. The system presents an indirect gapof 0.60A whereas the
optical gap is still at the X and L points, with a value of 1.12A. The DFT-LDA
direct gap at of 1.41 eV has been then corrected introducinga scissor operator
of =0 :99 eV to the whole band structure. The converged SHG paramets
are given in Tab. 6.4 and the renormalized spectra is repori in Fig. (6.19).

Si(111)(12dly/CaF  (4)

The system has been then increased to 12 double layers of sin, obtaining a
thickness of 36.3A and a simulation cell height of 78.1A. Relaxing the system
after the introduction of 3dl of bulk Si inside the semiconductor, | have veri ed

that the maximum force acting on the ions is already below theforce-threshold of
tolmxf =5 10 5 Ha/bohr, without performing any relaxation cycle. Again, the
DFT parameter are the ones of Tab. 6.1, whereas in Fig. (6.17and Fig. (6.20)
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Figure 6.17: Si(111)(9dl)/CaF,(4l) system (left) and Si(111)(12dl)/CaF ,(4l)
system (right). The silicon (yellow) thickness is increasé while the calcium
uoride (respectively Cain red and F in grey) is is kept xed. Both the surfaces

are terminated with H atoms (light-blue).
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Figure 6.18: Band structure of the Si(111)(9dl)/CaF,(4l) interface along the
L X path. The zero has been taken as the valence maximum.
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Figure 6.19: IPA  second harmonic generation spectra for the

Si(111)(9dl)/CaF ,(4l) system. The spectrum has been normalized to
50%/50% silicon/insulator ratio.

9d | 12dl | 15 dI
npwwfn 3989 | 3989 | 4493
nband 110 115 130
lomo 45 55 60
npwmat 1 1 1
k-grid 960 640 608
SO 0.099| 1.03| 1.065
domega | 0.004 | 0.004| 0.004
broad 0.013| 0.013| 0.013

Table 6.4: Parameters of the IPA 2light calculation on Si(111)(9dl)/CaF ,,
Si(111)(12dl)/CaF, and Si(111)(15dl)/CaF, systems.

they are reported respectively the geometry and the band sticture of the sys-
tem.

The indirect gap is given by the same HOMO-LUMO transition of the
Si(111)(9dl)/CaF ,(4l) system, with a value of 0.55 eV. The DFT-LDA opti-
cal gap at X reads 1.11 eV whereas the one at the points is equal to 1.37 eV
In the optical simulation | have therefore adopted a scissoroperator identi ed
by =1 :03 eV. The others SHG parameters are listed in Tab. 6.4 and the
spectrum is reported in Fig. (6.21).

Si(111)(15dl)/CaF  (4l)

The last studied system is the single interface of Si(111)/@F;, with 15 double
layers of silicon, for a total thickness of 45.6A of the semiconductor, 12.2A of
CaF; insulator, 30 A of vacuum and a simulation cell of 87.4A height (see
Fig. (6.22))

The maximum force acting on the ions are below the force-thrghold of
tolmxf =7 10 5 Ha/bohr. For the self-consistent DFT cycle the parameter d
Tab. 6.1 demonstrated to be su ciently accurate accordingly to the total energy
threshold of 5 10 5% chosen in section 6.4.1. Biggek-grids or values ofE .y
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Figure 6.20: Band structure of the Si(111)(12dl)/CaF,(4l) interface along the
L X path. The zero has been taken as the valence maximum.
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Figure 6.21: IPA° second harmonic generation spectra for the

Si(111)(12dl)/CaF ,(4l) system. The spectrum has been normalized to
50%/50% silicon/insulator ratio.
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Figure 6.22: Si(111)(15dl)/CaF,(4l) system (left). On the right is shown the
interface region and the two surfaces.

give rise to corrections that are below that value. The geomeical con guration
at the interface is in good agreement with the atomic distanes measured by
Tromp et al. [88].

The direct gap at (Fig. (6.23)) measures 1.335 eV, consequ&ly the scissor
operator has been chosen as = 1065 eV. The others SHG parameters are
listed in Tab. 6.4. Since the insulating silicon reached thesame height of the
CaF; plus vacuum volume, the signal does not require to be renornized. The
spectrum is shown in Fig. (6.24) and the convergence paramets are listed in
Tab. (6.4).

Comparison of the results

In Figs. (6.25-6.28) the second harmonic spectra of the di eent single-interface
system presented in section 6.4.3 are compared. Convergenof the spectra,
as seen in 6.4.2, is mainly motivated by the position of the man peaks and by
the overall shape of the spectra in the interesting energy nage. Therefore, the
scissor operator revealed necessary in order to correct theFT-LDA underes-
timation of the quasi-particle gap, positioning at the correct energy value the
peaks arising from the resonant transitions.

In order to make clearer the comparison among the systems, llptted only
two systems at a time. As can be seen in Fig. (6.27), already &6.3 A of silicon
(12dI) there is convergence in the shape of the spectra withaspect to the former
9dl system.

The form of the peaks around 2.4 eV (the energy of the experim#al mea-
surements) becomes more de ned and the SHG spectra is well seerged. How-
ever, there is an important structure present both in the 9d|, 12dl systems at
about [1:8 1:9] eV that is decreasing and disappears only when 15dl are cen
sidered. This big resonance arises from the bottom siliconusface, as will be
shown in the next section 6.5 and as obtained in previous work presented in
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Figure 6.23: Band structure of the Si(111)(15dl)/CaF,(4l) interface along the
L X path. The zero has been taken as the valence maximum.
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Figure 6.24: IPA

second harmonic generation
Si(111)(15dl)/CaF ,(4l) system.

spectra for the
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Figure 6.25: Comparison of the IPA second harmonic generath spec-
tra between the Si(111)(3dl)/CaF,(4l) (blue straight line) and the
Si(111)(6dl)/CaF ,(4l) (red dashed line) systems.
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Figure 6.26: Comparison of the IPA second harmonic generabin
spectra between the Si(111)(6dl)/CaF,(4l) (red dashed line) and the
Si(111)(9dl)/CaF »(4l) (green continuous line) systems.

literature [70].?* Consequently | have chosen the Si(111)(15dl)/Cak(4l) system

as the converged structure, where the surface contributiorbecomes negligible
with respect to the interface signal that dominates. The acive silicon region
beyond the interface demonstrated to go deep into the substate, more than

what suggested by the structure relaxation that involves the rst 3-4 double

layers underlying the interface.

21Ref. [70] evaluates the contribution of an monohydride-terminated ~ Si(111)(1 1)-H surface
and the theoretical result corrected with a scissor operator shows an analogo us peak at about
3.8 eV for the outgoing signal i.e., 1.9 eV for the input laser. Thisi s exactly the peak found in
our calculation. They found another peak at higher energy ( 2.25 eV), but in our system that

structure is suppressed because of the presence of the interface and the di erent geometry, as
will be shown later.
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Figure 6.27: Comparison of the IPA second harmonic generath spec-
tra between the Si(111)(9dl)/CaF,(4l) (green continuous line) and the
Si(111)(12dl)/CaF »(4l) (magenta dashed line) systems.
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Figure 6.28: Comparison of the IPA second harmonic generatn spec-
tra between the Si(111)(12dl)/CaF,(4l) (magenta dashed line) and the
Si(111)(15dl)/CaF »(4l) (light-blue continuous line) systems. The two spectra
are converged in the energetic region of the interface (shadl area). The sur-

face peak at about 1.9 eV is vanishing with respect to the inteface signal that
dominates.
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Figure 6.29: Energy-gap band structure for the Si(111)(3dl/CaF , system (left).

The projected density of states has been plotted (right) forthe interface Ca
(blue continuous line), Si (light-blue continuous line) atoms and the surface
Ca (orange dashed line), Si (red dashed line) atoms. Silicosurface states are
present into the energy gap.

6.5 Surface Signal

As observed in the previous section (Sec. 6.4.3), the two sfaces that appears
in the simulation cell can have a proper SHG signal that mix wih the one
characteristic of the interface. Looking a the density of sates for the Cak,
hydrogenated surface (see Fig. (6.29)), one does not expeitto contribute
to the SHG spectra at these low energies being far away from # considered
energy. On the contrary, Si surface states enters directlyri the gap region
(and determines the HOMO state at X , the optical gap), and their contribution
cannot be neglected.

Consequently further analysis should be performed to evalate the contri-
bution of the Si(111)-H surface. | studied the Si(111) slabspassivated on one
surface with the H atoms as for the interface case, and on thetber side with P
and As atoms that saturates the dangling-bonds of silicon. have then increased
the Si thickness looking to the surfaces SHG spectra and thebehavior. These
do not coincide with real observed surface reconstructionput are simple and
useful for our purpose of determining the spurious featureslue to the presence
of the Si(111)-H surface in our simulation cell.

H/Si(111)/As systems

The systems have been constructed in the usual way, substiting the topmost
Si layer with an As atoms that bonds with its three dangling-bonds to the three
underlying Si atoms. A vacuum height of 30A has been introduced into the
simulation cell while the (x;y) lattice parameters have been taken to be the
same of the former calculation. | have considered 6, 9 and 12odble layers of
Si (see Fig. (6.30)).

Convergence parameter for the DFT calculation are presentgin Tab. (6.5) |
have performed both a relaxation of the cell parameter and a nal self-consistent
calculation of the ground state density of the system. In thesilicon slab there
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Figure 6.30: H/Si(111)(6dl)/As (left) H/Si(111)(9dI)/As (center) and
H/Si(111)(12dl)/As (right) systems. The silicon (yellow) thickness is increased.
The bottom surface is terminatd with hydrogen atoms (light-blue) while the

upper surface is terminated with As atoms (white).

Ecut 60 Ha
toldfe 10 2 Ha
k-grid 9 9 1

tolmxf 5 10 5 Ha/bohr

told 5 10 6 Ha/bohr

Table 6.5: Parameters of the DFT Abinit

relaxation and following self-

consistent density calculation for the H/Si(111)/As systems.
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Figure 6.31: Band structure of the H/Si(111)(6dl)/As inter face along thelL

X path. The zero has been taken as the valence maximum. The bad
dispersion around the gap is di erent with respect to the corresponding interface
system (Fig. (6.14)).

are new surface states originating from the Si-As bond that nodify the gap
states dispersion, whereas the interface ones are not prage As an example,
the optical gap due to band-folding is positioned at (see Figs. (6.31-6.33)) con-
trary to what has been observed for the interface systems. As consequence,
the energy gap is no more the one of the interface for which thdirect transition
at has been experimentally measured, and the SHG gap openig should be
di erently evaluated. Considering that the silicon quantu m con nement is char-
acteristic of the height of the silicon slab only, | decided b adopt the same SO
correction of the corresponding Si(111)/Cak, interfaces. The SHG parameters
for the H/Si(111)(6dl)/As, H/Si(111)(9dl)/As and H/Si(11 1)(12dl)/As systems
are reported in Tab. (6.6) whereas the spectra are comparechiFig. (6.34).
Convergence is achieved at 12 double layers of silicon. On&ds the same struc-

6dl odl | 12dl
npwwfn 2489 | 2489 | 2493
nband 50 70 90
lomo 10 15 20
npwmat 1 1 1
k-grid 576 800 640
SO 093] 0.99| 1.03
domega | 0.004 | 0.004 | 0.004
broad 0.013| 0.013| 0.013

Table 6.6: Parameters of the IPA 2light calculation on H/Si(111)(ndl)/As
systems.
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Figure 6.32: Band structure of the H/Si(111)(9dl)/As inter face along thelL
path. The zero has been taken as the valence maximum.
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Figure 6.33: Band structure of the H/Si(111)(12dl)/As inte rface along thelL
path. The zero has been taken as the valence maximum.
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Figure 6.34: Comparison of the IPA second harmonic generatih spectra be-
tween the H/Si(111)/As systems composed of 6 (blue straightine) 9 (red dashed
line) and 12 double layers of silicon (green dashed-dottedrie). The spectra are
well converged already for 9dl. The peak at about 1.9 eV is caequently a
characteristic of the silicon H-terminated surface.

ture at about 1.9 eV of the corresponding Si(111)/CaF, systems. In the present
case the interface states are missing, substituted by a domoAs atoms. The
Si/As surface does not present dangling bonds and the Si swate is terminated
with As atoms that links to the underlying three Si atoms. In t he interface
system instead, the Si slab is terminated with a unique Si-Cébond. Therefore,
the similarities between the two systems should arise fromhe hydrogenated
Si(111) surface that, in conclusion, is responsible of the.2 eV peak.

H/Si(111)/P systems

The same test has been performed considering a P atom insteadf As to satu-
rate the surface silicon dangling-bonds. The bottom surfaes is again hydride-
terminated Si(111) and | have considered 6 and 9 double laysr composing
the silicon slab (see Fig. g:cellaSiP). Convergence paraeter of Tab. (6.5)
demonstrate to give results within the desired accuracy. InFigs.(6.36,6.37) are
shown the band structures of the two systems. The SHG paramets for the
H/Si(111)(6dI)/P and H/Si(111)(9dl)/P calculations are r eported in Tab. (6.7)
and the corresponding IPA-SHG spectra are shown in Fig. (6.8). Both of
the systems show the same surface peak at about 1.9 eV altholudn this case
H/Si(111)(6dI)/P is still converging. For my purpose the 9 d ouble layers struc-
ture is su ciently converged to compare with the previous results.

A comparison among the Si(111)(12dl)/CaF, and the H/Si(111)(12dl)/As
and H/Si(111)(9dl)/P SHG spectra is shown in Fig. (6.39). The peaks around
1.9 eV is present in all the systems con rming to be characteistic of the hydro-
genated surface, whereas the structures at higher energi@se dependent on the
topmost termination of silicon (i.e., the interface or the P/As surfaces).

The higher intensity of the interface signal around 2.4 eV slows that the
interface signal is dominating over the surface response. his is clearer in
Fig. (6.28) where increasing the Si thickness up to 15 dI thernterface peaks
are almost constant whereas the surface signal decrease. ditefore | consider
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Figure 6.35: H/Si(111)(6dI)/P (left) H/Si(111)(9dl)/P (r ight). The silicon (yel-
low) thickness is increased. The bottom surface is terminat with hydrogen
atoms (light-blue) while the upper surface is terminated wih P atoms (white).

T

Figure 6.36: Band structure of the H/Si(111)(6dl)/P interf ace along thelL
X path. The zero has been taken as the valence maximum.
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Figure 6.37: Band structure of the H/Si(111)(9dl)/P interf ace along thelL
X path. The zero has been taken as the valence maximum.

6dl odl
npwwfn 2489 | 2489
nband 50 70
lomo 10 15
npwmat 1 1
k-grid 960 800
SO 0.93| 0.99
domega | 0.004 | 0.004
broad 0.013| 0.013

Table 6.7: Parameters of the IPA 2light calculation of the H/Si(111)(6dI)/P
and H/Si(111)(9dl)/P systems.
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Figure 6.38: Comparison of the IPA second harmonic generatin spectra be-
tween the H/Si(111)/P systems composed of 6 (blue straight ine) and 9 (red
dashed line) double layers of silicon. Again, the peak at alat 1.9 eV reveals to
be characteristic of the Si/H surface.

IPA | LF-RPA EXC
npwwfn 4493 4993 4993
nband 130 130 130
lomo 60 60 60
npwmat 1 11 11
k-grid 608 608 608
SO 1.065 1.065 1.065
alpha 0.0 0.0 | -0.22355
domega | 0.004 0.004 0.004
broad 0.013 0.013 0.013

Table 6.8: Parameters of the IPA and LF-RPA 2light calculation on
Si(111)(15dl)/CaF ,(4l) system. Maximum values of npwmat have been tested
up to 57 G-vectors per dimension of the () matrices. Variations from npw-
mat = 11 demonstrated to be negligible in the present energy rane.

the SHG signal of the Si(111)/CaF, interface to be converged with a silicon
thickness of 45.6A and | chose the Si(111)(15dl)/CaF,(4l) system for further
analysis of the second harmonic generation process in the/SiaF ; interface.

6.6 Analysis of the SHG Spectrum

Once convergence in the IPA spectrum is achieved, | have stied the second-
harmonic generation process at the Si(111)/Cak interface introducing both
the LF e ects in the random phase approximation and the excitonic e ects us-
ing the alpha-kernel according to the formalism and the equations preseed
in chapter 5.2. The SHG convergence parameter for the calcations are pre-
sented in Tab. (6.8). In Fig. (6.40) | report the calculated SHG spectra together
with experimental data [82]. The experimental spectrum [82, originally in ar-
bitrary units, has been reproduced for an easy comparison \h our theoretical
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Figure 6.39: Comparison of the IPA second harmonic generath spectra of
the Si(111)(12dl)/CaF, interface (blue stright line) and the response arising
from the 12dl silicon slab passivated with As (green dashedotted line) and
the 9dI slab whose upper surface has been passivated with Pgd dashed line).
The latter has been normalized to the silicon thickness of 12l for consistency
in order to better compare with the other systems. The low enegy peak is
characteristic of the Si/H surface shared among the three stictures, whereas
the di erences above 2.1 eV arise from the di erent termination of the silicon
top-surface.

results. In the IPA response the energy position of the threemain experimental
peaks (2.26, 2.33 and 2.42 eV) are recovered but their relate intensities are
wrong. In particular, the intensity of the second peak is strongly overestimated.
When LF are included the energy position of the peaks remaingractically un-
changed while their height is in general diminished in this bw energy region
of the spectrum. The same trend has been observed for SiC andaBs bulk
semiconductors [72]. Nevertheless, with respect to theseomogeneous systems,
for Si/CaF , interface the SHG reduction and hence its dependence on LF &f
fects is more important because of the discontinuity region This behavior (i.e.,
the signi cant in uence of LF on the spectrum) also occurs in the linear op-
tic outcomes but with some noticeable di erences. In fact, vhile IPA and LF
absorption spectra almost coincide in that energy range, aart for a constant
factor (Fig. (6.41)), IPA and LF SHG spectra present a di erent intensity mod-
ulation for each peak. This is the consequence of the specilocal environment
that surrounds the interface discontinuity where the SHG process is generated.
In particular, in IPA the SHG peak at 2.33 eV seems to be the mosimportant
feature in the spectrum while with the inclusion of the LF thi s peak is drastically
diminished with respect to the others.

Moreover the peaks at 2.26 and 2.42 eV substantially keep the relative
intensity with the inclusion of the LF which also contribute s to atten out the
peaked structure above 2.5 eV. Comparing with the experimenit is evident
that only including the LF e ects one can obtain a good agreenent in terms of
both energy positions and relative intensity of the peak stuctures.
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Figure 6.40: Second-harmonics generation spectra Zzz)z) calculated in IPA (blue
line) and including LF (orange line). The experimental SHG gpectrum from [82]
is also reported (black line and circles) on the lower part ofthe graphic.
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Figure 6.41: Absorption spectra (Im( mzz )) in the z direction calculated in IPA
(blue continuous line) and with inclusion of LF e ects (orange continuous line).
For a clearer comparison the LF curve has been multiplied by afactor of 10
(orange dashed line).
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Figure 6.42: Absorption spectra (Im( m2z )) in the z direction calculated in
IPA (blue continuous line) and with inclusion of LF e ects (o range continuous
line). The energy range goes up to 7 eV including silicon bulkransitions. The
depolarization e ect caused by the sharp discontinuity shits the IPA intensity
at energies below the studied range. For a clearer comparieche LF curve has
been multiplied by a factor of 10 (orange dashed line).
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Figure 6.43: Absorption spectra (Im( mxx )) evaluated with IPA (blue-
continuous line) and with the inclusion of local- elds e ects (orange-dashed
line). The IPA curve of the Im( wm.zz ) component has been reported for com-
parison (light-blue-continuous line).
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6.6.1 Local Field E ects

In our approach, the e ects of the crystal local elds enter through \ of
Eqg. (4.126) and through @ obtained from the second-order Dyson equation
(Eg. (3.33)). In order to estimate the magnitude of these e ects | have per-
formed a comparative study with the linear absorption spectoscopy which is
proportional to the imaginary part of \ (Eq. (4.121)).

The linear optical-absorption spectra for light polarized along the z direction
are shown in Fig. (6.42). The presence of the LF strongly in tences the linear
optical properties of the system. In the IPA spectrum, at enegy above 3.5
eV the silicon-bulk transitions start to be optically allow ed and are much more
numerous than the ones that take place at the interface, due d the di erent
sizes of the two competing regions. As a result the latter arecompletely cov-
ered up. This becomes clear comparing e.g. the intensity ofhe Independent
Particle Approximation (IPA) response (Fig. (6.42)) in the low energy part of
the spectrum (i.e. where the bulk signal is absent, around 3¢) with the total
signal around 5 eV (where the curve is the sum of the bulk and tk interface
contributions): the former is 2 orders of magnitude smaller

As a consequence, one can directly compare the linear and ndimear optical
behaviors of the interface in the low part of the energy specum (Fig. (6.41))
only. LF e ects strongly in uences the absorption spectra in this energetic
region: the whole intensity is lowered by about 10 times withrespect to the
independent particle response. However, the main featuresf the spectrum like
the position of the peaks, the shape and the relative intensies are only slightly
modi ed.

However, this is not an unexpected result. In a nite silicon structure (like
the silicon slab of our calculations) or close to a surfacefiterface, the response
at low energies along the con ned direction is practically 2ro due to a depolar-
ization e ect [145, 187{189] while the main bulk peaks (i.e. the critical point
energies E1 and E2) are shifted to higher energies. This e @ds not present
in the IPA calculation that cannot describe rapid variation of the potential in
small regions and emerges when LF are introduced. Fig. (6.32hows in fact the
IPA bulk structure shifted 2> even out of the range of the calculation for the LF
response. This depolarization e ect arising from LF has aleady been studied
in literature on similar Si-based systems like nanowires [45] surfaces [189] and
nanodots [187, 188].

As suggested in Ref. [145], it is possible to compare and stydheir e ects on
the dielectric function along a direction where the system $ in nite (in our case
X ory). Here the system is homogeneous and one nds (Fig. (6.43)hat LF are
almost negligible and the spectrum is not modi ed by the depdarization e ect,
as explained in Ref. [145]. As a consequence, this drastictensity reduction is
characteristic of the discontinuous directionz and negligible for the other more
homogeneous componentsy.x and .y (Fig. (6.43)).

These LF e ects start to become relevant speci cally for the calculation of

the SHG coe cient @ (as seen in Fig. (6.40)) i.e., when light is polarized

M zzz
along the z direction where the system is discontinuous. Similar to y, one

nds that their relevance is not true in general. Fig. (6.44) shows the SHG

22This is not a shift of the transition, hence a real shift of the IPA peak . It coincides with a
remodulation of the oscillator strength that shifts the intensities (a ~ nd consequently the peak)
at higher energies.
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Figure 6.44: SHG spectra of the ((,j)xxx ) component calculated in the indepen-
dent particle (IPA, blue line) and local elds (LF, orange li ne) approximations.

LF e ects are negligible along the homogeneous; y directions.

fj)xxx = (,j)yyy spectra for light polarized in the x direction evaluated both

in the independent particle approximation and introducing local elds. It is
immediate to notice that because of the interface the signatoes not vanish?®
then the e ects of LF demonstrated to be negligible with respect to IPA accu-
racy. In fact, along this direction the system is continuousand homogeneous
and the SHG shares the same behavior of the linear response.

Analysis of the Local Field E ects

A direct study of the transitions contribution to the SHG pro cess is possible

only at the IPA level because, accordingly to our formalism,when LF are intro-

duced 2, is obtained through a second-order Dyson equation (Eq. 4.1) that

mix linear and non-linear coe cients at di erent frequenci es. Moreover, in the
velocity-gaugeseveral terms mixing two- and three-bands transitions contibute
to the nal response. As a consequence, it is not possible talentify particular
transitions contributing to the nal spectrum. Considerin g the length-gaugein-
stead, Eqg. (4.56) takes a simpler form in terms of three-sta¢s excitations and
one can distinguish between transitions where the intermeidte electronic state
is a valence state (vvc transition) or a conduction one (vcc tansition). The
Si(111)/CaF, interface however show that the three major peaks of the IPA
response contain both the two components Fig. (6.45). Sincéoth contribute
with the same order of magnitude to the main optical SHG peaks it is not
possible to relate the drastic decrease of the IPA peak at 238eV when LF are
included, with the suppression of a particular set of transtions, or the di erent
nature of that peak.

Consequently, | developed another analysis method in ordeto understand
which are the quantities that are mostly a ected by the intro duction of LF and

23For a pure hexagonal symmetry (as the one of Si(111)) the SHG compo nent (hf)xxx =
(2)

M yyy is identically zero because of symmetry selection rules (see App. F.1). In this case
the interface breaks the symmetry and even these terms can exhibit a non-va nishing value.
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Figure 6.45: SHG-IPA spectra of the ( (,j)m) component calculated in the
length-gauge. The VCC transitions (blue continuous line) and the VVC ones
(red dashed line) signals are compared. Both the signal coributes to the main

peaks of the total IPA spectrum (grey area).

which are responsible of the di erences between the linearrad non-linear cases.
From Eq. (4.126) its is clear that the nal response depends o the product of
the dielectric function ., with the density response function 2

From Figs. (6.41) and (6.42) it is evident that going beyond IPA the dielec-
tric function is generally diminished by one order of magniude, whereas the
consequent decrease (about 1¢ arising from the three dielectric function that
appear in Eq. (4.126)) is not observed in the SHG-LF result. A consequence
LF produce a great enhancement of @ with respect to IPA that compensate
the reduction.

Secondly | have investigated the non-uniform decrease of :1SHG-IPA peaks
when LF are included. It can be consequence of both the vari&n of the
dielectric functions L (z;1), - (z;20) or of @ (z;z;z;1;1 ). Therefore, |
combined the di erent results:

(A) substituting in Eq. (4.126) the dielectric function  as obtained within the
independent particle approximation, while including the local- eld e ects

inthe @ description (Fig. (6.46)).

(B) Studying the contribution of the single - (z;!) or - (z;2!) quantities.
The latter indeed contains frequencies where the bulk silion is optically
active in IPA and because of the depolarization e ects LF drastically lower
these structures (cfr. Fig. (6.42)). Results are reportedm Fig. (6.47).

(C) Inasimilar way | have then evaluated the nonlinear optical spectra treating

@ at the IPA level, while including LF e ects into the dielectr ic functions
(see Fig. (6.48)).

Comparison among these spectra and the ones of the IPA and LFafcula-
tion can give useful informations about the nal form of the signal to which |
am interested. Fig. (6.46) (A) show that when [ is threat at the IPA level,






























































































































































































































