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Je tiens également à remercier les professeurs du Centre Automatique et système, Jean
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encouragements que j’ai pu franchir ces étapes. Vos conseils et votre soutien m’ont été
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La théorie du contrôle quantique s’est largement développée au cours de ces trois
dernières décennies. Ce champ de recherche concerne le contrôle du comportement de
systèmes physiques qui obéissent aux lois de la mécanique quantique. La capacité à
contrôler des systèmes quantiques est en passe de devenir une étape essentielle dans
l’émergence de technologies liées à l’informatique quantique, la cryptographie quantique,
et la métrologie de haute précision. Comme ce domaine émergent comporte un grand
nombre d’applications en chimie quantique [81, 31, 105], information quantique [76, 106],
métrologie [94, 38], résonance magnétique nucléaire (RMN) [54, 89] et optique quan-
tique [110, 104], il rassemble autour de sujets communs des physiciens, des chimistes,
des mathématiciens et des ingénieurs.

Les phénomènes quantiques tels que la superposition ou l’intrication d’états ne se pro-
duisent pas dans la physique classique. Ces représentations non-classiques sont unique-
ment observables à des échelles de temps qui sont courtes en comparaison de celles qui
caractérisent les interactions dans un environnement classique.
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CHAPTER 1. INTRODUCTION

La manipulation de systèmes quantiques permet de réaliser des tâches qui sont hors de
portée des appareils classiques. Ceci repose intrinsèquement sur la nature de l’information
quantique : les ordinateurs quantiques dépasseraient significativement les machines clas-
siques dans la résolution de certains problèmes [75]. Cependant, même si des progrès
substantiels ont été réalisés récemment, de sérieuses difficultés restent à l’ordre du jour,
parmi lesquelles la décohérence est certainement la principale. Les systèmes complexes
constitués de nombreux qubits doivent être préparés dans des états quantiques fragiles
qui sont rapidement détruits suite à leur couplage inévitable avec leur environnement. En
effet, la décohérence est la perte d’information dans le système suite au couplage avec son
environnement. Le système en interaction avec son environnement obéit à l’équation de
Schrödinger. Si l’on trace sur l’environnement, la dynamique du système est irréversible,
c’est-à-dire qu’elle ne peut pas être décrite par une transformation unitaire, cependant
l’évolution du système total, c’est-à-dire, le système plus l’environnement, peut être décrit
par une transformation unitaire.

La préservation du système contre la décohérence est une tâche majeure pour mener
à bien les applications citées précédemment. Dans le domaine de l’information quantique,
des codes de correction d’erreur quantique ont été mis au point pour compenser de telles
pertes d’information au contact de l’environnement. Comme expliqué dans [75], de tels
codes combinent des transformations unitaires, suivies par des mesures de qubits dont les
issues conditionnent une transformation unitaire supplémentaire visant à compenser une
éventuelle décohérence affectant un qubit. Ainsi, les codes de correction d’erreur quantiques
reposent sur une boucle de rétroaction et sont liés à des questions portant sur la théorie du
contrôle des systèmes et la stabilisation en boucle fermée [1]. Dans cette thèse, nous-nous
pencherons sur la stabilisation en boucle fermée des systèmes quantiques, dans le but de
compenser la décohérence.

Pour ce qui est de l’introduction mathématique au contrôle des systèmes quantiques,
nous-nous référons au manuel récent [30]. Pour ce qui relève de la physique, nous renvoyons
à un autre manuel récent [112]. Un cours d’introduction générale à la mécanique quantique
(systèmes de spin demi-entier et oscillateur harmonique quantique) est référencé en [83]
et une exposition plus avancée est donnée dans [44]. Les notions de contrôle non-linéaires
sont introduites dans le manuel classique [53] dédié aux systèmes de dimension finie, et
dans [28] qui traite des systèmes de dimension infinie régis par des équations aux dérivées
partielles.

Quantum control theory has been widely developed through the last three decades. This
field is concerned with controlling the behavior of physical systems which obey the laws
of quantum mechanics. The ability to control quantum systems is becoming an essential
step towards emerging technologies such as quantum computation, quantum cryptography
and high precision metrology. As this emerging field has a wide range of applications in
quantum chemistry [81, 31, 105], quantum information [76, 106], metrology [94, 38], nuclear
magnetic resonance (NMR) [54, 89] and quantum optics [110, 104], it brings together
physicists, chemists, mathematicians, and engineers.

Quantum phenomena like superposition and entanglement never happen in classical
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CHAPTER 1. INTRODUCTION

worlds. However, these non-classical phenomena are only observable in time scales that
are short compared to those which characterize the coupling to the environment.

Manipulating quantum systems allows one to accomplish tasks far beyond the reach
of classical devices. Quantum information is paradigmatic in this sense: quantum com-
puters will substantially outperform classical machines for several problems [75]. Though
significant progress has been made recently, severe difficulties still remain, among which
decoherence is certainly the most important. Large systems consisting of many qubits
must be prepared in fragile quantum states, which are rapidly destroyed by their unavoid-
able coupling to the environment. In fact, decoherence is the loss of information from
the system coupled to its environment. The system of interest with its environment obey
to Schrödinger equation. If we trace out the environment, the system’s dynamic is irre-
versible, i.e., it cannot be described by a unitary transformation, meanwhile the evolution
of the total system, i.e., the system plus the environment, can be described by a unitary
transformation.

Fighting against the decoherence is a major task for all the mentioned applications. In
the domain of quantum information, quantum error correction codes have been developed
to compensate such loss of information into the environment. As explained in [75], such
codes combine unitary transformations, followed by qubit measurements whose outcomes
condition additional unitary transformation to compensate any qubit decoherence jump.
Thus quantum error correction codes rely on a feedback loop and lead to problems in
control system theory and feedback stabilization [1]. In this thesis, we will investigate
feedback stabilization of quantum systems, in order to compensate decoherence.

For a mathematical introduction to the control of quantum systems, we refer to the
recent textbook [30]. For a physical exposure, we refer to another recent textbook [112].
A general introduction course to quantum mechanics (spin-half system and quantum har-
monic oscillator) could be found in [83] and more advanced exposure is given in [44]. For
nonlinear control, we refer to the classical textbook [53] devoted to finite-dimensional sys-
tems and to [28] addressing infinite dimensional systems governed by partial differential
equations.

1.1 Strategies for quantum control

We give now a brief introduction to some interesting issues from the control system point
of view. It is based on two surveys: the first one [65] presents various applications such
as NMR, trapped ions, cavity quantum electrodynamics (CQED); the second one is more
recent [35] and with a control systems perspective. Below, we will focus on the three
following strategies: open-loop control (coherent control), measurement-based feedback
and coherent feedback (autonomous feedback).
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CHAPTER 1. INTRODUCTION

1.1.1 Open-loop control

This type of control is related to motion planning, controllability, and optimal control
issues. The main goal is to steer a system, via a time-varying control input, from a known
initial state (usually a stable ground state) to a target state (usually an excited or entangled
state). Such control is purely in open-loop, since it avoids all feedbacks and measurements
(see e.g., [30]).

Here we give some important prototypes of such an open-loop strategy: the optimal
control approach is applied in physical chemistry [98, 19, 57] and in NMR experiments [54,
66, 84]; Lyapunov-based control approach is applied for bilinear Schrödinger equation [70];
different controllability issues have been studied in [58, 13, 17, 12].

Below we give a brief description of learning control, a type of control which is designed
as an open-loop strategy and is widely applied in the chemistry community.

Learning control is usually used in controlling the chemical reactions (see e.g., [80]).
Each iteration of learning control contains three steps: first, from a known initial state, one
applies an open-loop control input depending on tuning parameters; second, a population
measurement is performed on the final state; third, a learning algorithm exploiting the
actual and past population measurements updates tuning parameters of open-loop control
for the next iteration. The learning algorithm is designed in order to achieve some control
goals typically, for maximization of some specific population. The initial control input may
be a well-designed or a random control input.

1.1.2 Measurement-based feedback

Usually, closed-loop control involves two steps. The first step consists of extracting infor-
mation on the system state from the past control input values and measured output values.
This first step can be seen as the estimation, or filtering, step. For quantum systems, it
is known as quantum filtering, which corresponds to the best estimate of the system state
conditioned on the past measurement outcomes and control inputs [102, 22]. The second
step is devoted to the computation of the next control input value based on the current
filter state obtained in the first step. There are two strategies to design such feedback law:
stochastic optimal control as in [15, 23, 47]; Lyapunov-based control as in [71].

This type of feedback where the controller is classical, has been previously considered
for preparing squeezed states [95], for preserving entanglement [113], and for quantum state
reduction [103, 71].

Measurement-based feedback is difficult to implement in a digital way. The necessary
computations of the quantum filter and feedback law must be realized in real-time which
could be difficult, since the time scales are usually very short. Historically, such kinds
of controllers involving filtering and feedback are implemented in an analogue way via
classical electronic circuits [67].

Another difficulty of this type of feedback is purely attached to the quantum nature:
any measurement necessarily modifies the system state. This is due to the back-action of
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CHAPTER 1. INTRODUCTION

the measurement process.

In fact, one measures an observable of the system, which is a mathematical presentation
of a physical quantity (like momentum, position). Moreover, this observable is presented
by a Hermitian operator. In quantum mechanics literature [44], the following traditional
types of measurements are considered: projective measurements, positive operator valued
measure (POVM), and quantum non-demolition (QND) measurements. Let us now de-
scribe very briefly these types of measurements. Projective measurement respects the two
following properties: first, the result of the measurement is necessarily one of the eigenval-
ues of the observable; and second, the system is projected onto an eigenstate corresponding
to the observed eigenvalue. In practice, we do not measure directly the system of interest,
rather we consider a large system, which is composed of the system interacting with its
environment. Formally, we consider a large Hilbert space consisting of the system state and
the measurement apparatus (called meter) state. In such a way, the experimenter observes
the effect of the system on the environment by projective measurements of an observable
on the meter. Such measurement leads to a POVM. Now consider an observable for the
system, which is measured through its coupling with a meter and a projective measure-
ment of an observable on the meter. If an arbitrary eigenstate of such a physical observable
for the system has not been affected by measurements, one has a QND measurement. A
sufficient but not necessary condition for this is that the system observable and the total
Hamiltonian of the system with its meter commute. 1

In this thesis, we apply measurement-based feedbacks for stabilizing discrete-time quan-
tum systems subject to QND measurements. In fact, feedback stabilization of quantum
states is closely related to the concept of QND measurement. This is because one needs to
make sure that the measurement itself is not changing the desired target state.

1.1.3 Coherent feedback

A quantum controller is connected to the original quantum system to form a closed-loop
system, which is a composite system made up of the original system and the controller [60].
In other words, for coherent feedback: the sensor, controller, and actuator are quantum
objects that interact coherently with the original system to be controlled. The fact that
no real-time processing of the measurement output is needed can play an important role
to improve feedback performance.

In [73], a coherent feedback has been tested experimentally to transfer some previously
established correlations between two spins to an auxiliary spin. A coherent feedback scheme
based on the H-infinity control of linear quantum stochastic systems is proposed in [49].
It was experimentally tested in [61]. In [41, 48], a theory of quantum circuit and network
is addressed. The physical origin of this theory can be found in [37, Chapter 12].

Squeezing enhancement via coherent feedback has been studied in [42, 111]. This
type of feedback has recently led to new proposals for quantum memories, quantum error
correction, and ultra-low power classical photonic signal processing in the following series

1See Chapter 2 for more details about these types of measurements.
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of papers [51, 52, 64, 62, 63].

1.2 Contributions

In this section, we describe the contributions of this thesis. In Part I, we consider
measurement-based feedback to stabilize particular states of light called photon-number
states (Fock states) in a cavity quantum electrodynamics (CQED) setup developed at Ecole
Normale Supérieure (ENS) de Paris. This system is a discrete-time system. Quantum me-
chanics laws show that such a system is governed by a non-linear controlled Markov chain
where the state corresponds to the density matrix 2 of the cavity field. The feedback design
relies on stochastic Lyapunov techniques. Also, we study a stabilizing feedback applied
to more generic discrete-time quantum systems which are subject to QND measurements.
This part is based on the following publications [88, 5, 3] and preprint [6].

Part II is devoted to stability of continuous-time quantum filters. First, we prove the
stability of a continuous-time filter which is driven only by a Wiener process. This work
is based on the following publication [2]. Second, the dynamics of discrete-time optimal
filter taking into account classical measurement errors, introduced in Part I, will be used
to design heuristically the general continuous-time optimal filter. In the following work in
progress [4], we aim to make the heuristic rules, applied to obtain the general continuous-
time optimal filter, more rigorous. Furthermore, we also wish to prove the stability of such
an optimal filter.

Now, we explain the contents of this section. Subsection 1.2.1 is devoted to a short
presentation of the cavity quantum electrodynamics (CQED) and some recent works related
to Fock states. In Subsection 1.2.2, we summarize the obtained results on the stabilization
of Fock states. Subsection 1.2.3 presents the construction of new families of Lyapunov
functions first for Fock states and then for generic discrete-time quantum systems, which
are subject to QND measurements. Finally Subsection 1.2.4 summarizes our stability
results of continuous-time quantum filter with classical measurement errors.

1.2.1 Cavity quantum electrodynamics (CQED)

Cavity quantum electrodynamics (CQED) is particularly suitable for handling and study-
ing the interaction of atoms and photons (see e.g., [44, Chapter 5] for a description of such
CQED systems). The light trapped in a cavity of high finesse, and the atoms interacting
with it, form a system virtually isolated from the environment. Moreover, for the exper-
imentalists, it is the strong coupling regime between photons and atoms that is of great
interest. In this regime, the cavity and atom decoherence becomes negligible at the scale
of the coupling between atoms and photons.

Under these conditions, particular states of the electromagnetic field could be prepared,
such as the photon-number states (Fock states). Unlike a classical field, these states contain

2See the definition of density matrix (density operator) in Chapter 2.
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a precise number of photons. Fock states are very fragile and it is difficult to protect them
from the environment.

In 2006, J. M. Geremia [39] proposed an experimental setup which prepares pho-
ton number states using continuous non-destructive indirect measurements, and applying
measurement-based feedback. In 2009, I. Dotsenko et al. [36] proposed a measurement-
based feedback scheme for the preparation and protection of photon-number states of light
trapped in a high-Q microwave cavity. This scheme has been considered to operate in the
same CQED setup presented in [32]. The form of such feedback is similar to the one pro-
posed in [71] but now, the QND measurements are monitored in a discrete-time manner.
The fact that the measurements are discrete in time provides enough time to calculate
a quantum filter. Such filter provides the complete information about the cavity state ρ
conditioned on the observation history.

Figure 1.1 shows the experimental setup considered in [36]. Let us now describe rapidly
this setup. The Rydberg atoms (which are considered as two-level atoms whose state is
generated by |g〉 and |e〉 corresponding resp. to the ground and the excited state) come out
of box B and cross the first low-Q Ramsey cavity R1. This causes a unitary transformation
of the states of the atoms. Then, these atoms come to enter in interaction with the cavity
C. This passage causes also a unitary transformation of the total state of the composite
system (cavity mode and atom). Here, it is assumed that the interaction between the
cavity and the atom is dispersive which is necessary to achieve QND measurements. These
atoms cross the low-Q Ramsey cavity R2 which causes another unitary transformation
of the atomic state. Finally, these Rydberg atoms will be detected in D. The control
corresponds to a coherent displacement of complex amplitude α that is applied via the
microwave source S between two atoms passages.

We note here that, unlike classical closed-loop control, the sensor is a quantum object,
meanwhile, the controller and the actuator are classical objects.

1.2.2 Stabilization of Fock states in a microwave cavity (photon
box)

In fact, the feedback proposed in [36] has been obtained after two following steps: the
first step consists in providing a state estimation through quantum filtering [22, 23] of the
observed outcomes of atomic measurements in the detector D. In the second step, the field
state is corrected, by applying a coherent field pulse of amplitude α which is a function of
the estimated state. This feedback law is based on Lyapunov techniques [71].

Let us now describe the mathematical model. The state to be stabilized is the cav-
ity state. The underlying Hilbert space is H = Cnmax+1 which is assumed to be finite-
dimensional (truncations to nmax photons). It admits (|0〉 , |1〉 , . . . , |nmax〉) as an ortho-
normal basis. Each basis vector |n〉 ∈ Cnmax+1 corresponds to a pure state, called Fock
state, with precisely n photons in the cavity, n ∈ {0, . . . , nmax}.

The state of the cavity C can be described by the density operator ρ which belongs to
the following set of well-defined density matrices:
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Figure 1.1: The ENS microwave cavity (photon box); atoms get out of box B one by one, undergo
then a first Rabi pulse in Ramsey zone R1, become entangled with electromagnetic field trapped
in C, undergo a second Rabi pulse in Ramsey zone R2 and finally are measured in the detector
D. The control corresponds to a coherent displacement of amplitude α ∈ C that is applied via
the microwave source S between two atom passages [36].

X =
{
ρ ∈ C(nmax+1)2 | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0

}
. (1.1)

If we take k as a time-index, the state of the cavity at step k is given by ρk. In an ideal
experiment, injecting a control input αk and a detection in |e〉 or |g〉 would actualize the
state estimate into the following state (see [87, 44] for the model construction):

ρk+1 = Mµk

(
Dαk(ρk)

)
. (1.2)

Here

• the superoperator Mµk is defined by Mµk(ρ) :=
Mµk

ρM†µk
Tr(Mµk

ρM†µk)
;

• µk denotes the random variable which corresponds to the outcomes of measurements
which take values g with probability Tr

(
Mg(Dαk(ρk))M

†
g

)
and e with the comple-

mentary probability Tr
(
Me(Dαk(ρk))M

†
e

)
;

• the atoms-field interaction is dispersive, the measurement matrices take the following
forms:

Mg = cos (ϕ011 + ϑN) and Me = sin (ϕ011 + ϑN) ,

where 11 is the identity operator, N = diag(0, 1, . . . , nmax) is the photon number
operator, and ϕ0 and ϑ are constant parameters;
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• the superoperator Dα is defined by Dα = DαρD
†
α, where the control operator is given

by the unitary transformation Dα = eαa
†−α∗a. The annihilation operator is given by

a |0〉 = 0, a |n〉 =
√
n |n− 1〉 for n = 1, . . . , nmax.

Suppose that the measurement operators Mg and Me satisfy the following assumption.

Assumption 1.1. The constant parameters ϕ0 and ϑ are chosen such that the mea-
surement operators Mg and Me are invertible and the spectrum of M †

gMg = M2
g and

M †
eMe = M2

e are non degenerate.

In open-loop case, when α = 0, the control operator is given by D0 = 11, where 11
denotes the identity operator. So ρk+1 is described through the following dynamics

ρk+1 =
MµkρkM

†
µk

Tr
(
MµkρkM

†
µk

) . (1.3)

Any Fock states |m〉 〈m|, with |m〉 = (δnm)n∈{0,...,nmax}, is a fixed point of the open-loop
dynamics. We prove the following theorem characterizing the open-loop behavior.

Theorem 1.1 (Theorem 3.1 (see page 57)). Consider the Markov process ρk obeying (1.3)
with an initial condition ρ0 ∈ X . Then

• for any n ∈ {0, . . . , nmax}, Tr (ρk |n〉 〈n|) = 〈n| ρk |n〉 is a martingale;

• ρk converges with probability 1 to one of the nmax + 1 Fock states |n〉 〈n| with n ∈
{0, . . . , nmax};

• the probability to converge towards the Fock state |n〉 〈n| is given by Tr (ρ0 |n〉 〈n|) =
〈n| ρ0 |n〉.

Indeed, the set {|m〉 〈m|}m∈{0,...,nmax} is invariant under measurements when the con-
trol is zero. As a result, to ensure the stability towards the state |n̄〉 〈n̄| , for some
n̄ ∈ {0, . . . , nmax}, the natural Lyapunov function would be the following

V (ρ) = 1− Tr (ρ |n̄〉 〈n̄|) ,

since Tr (ρ |n̄〉 〈n̄|) defines an open-loop martingale. In [36, 68], in order to stabilize de-
terministically the Fock state |n̄〉 〈n̄| , a feedback law was found in such a way that the
expectation value of the Lyapunov function V (ρ) decreases in average, i.e., it defines a
supermartingale.

The following theorem presents a feedback law which stabilizes the Markov chain (1.2)
towards the state |n̄〉 〈n̄| .
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Theorem 1.2 (Mirrahimi et al. [68]). Consider (1.2) and suppose that Assumption 1.1
is satisfied. Take the following switching feedback

αk =

{
εTr (ρ̄ [ρk, a]) if Tr (ρ̄ρk) ≥ ς
argmax
|α|≤ᾱ

(
Tr
(
ρ̄ DαρkD

†
α

))
if Tr (ρ̄ρk) < ς (1.4)

with ς, ε, ᾱ > 0 constants. Then for small enough ς and ε, the closed-loop trajectories
converge almost surely towards the target Fock state ρ̄ = |n̄〉 〈n̄| . 3

This feedback law was inspired from [71].

Taking delays into account

Theorem 1.2 ensures the convergence of the closed-loop system without any delay in the
feedback loop. However, in the experimental setup [36], there exists a delay of τ steps
between the measurement process and the feedback injection. Indeed, there are constantly,
τ atoms flying between the cavity C to be controlled and the atom-detector D (typically
τ = 5). Therefore, in our feedback design, we do not have access to the measurement
results for the τ last atoms.

The following dynamics describes the evolution of the cavity state taking into account
a delay of τ steps (see [36]):

ρk+1 = Mµk

(
Dαk−τ (ρk)

)
. (1.5)

In [3], we have considered this non-negligible delay in the design of a feedback law which
stabilizes the above dynamics towards the state |n̄〉 〈n̄|. Indeed, we propose an adaptation
of the quantum filter, based on a stochastic version of a Kalman-type predictor, which
takes this delay into account by predicting the actual state of the system without having
access to the result of the τ last detections. This compensation scheme was first introduced
in [36].

In the following, we define the Kraus map Kα(ρ).

Definition 1.1. The Kraus map Kα(ρ) is defined as follows,

Kα(ρ) := MgDαρD
†
αM

†
g +MeDαρD

†
αM

†
e .

Moreover, we have E [ρk+1|ρk, αk−τ ] = Kαk−τ (ρk).

In order to stabilize the dynamics (1.5) towards the Fock state |n̄〉 〈n̄| , we cannot use
the feedback law (1.4), since this is not causal. In fact, αk depends on the state ρk+τ .
However, one can define the following state (ρk, αk−1, . . . , αk−τ ) as the state at step k.
This state defines a Markov chain. More precisely, denoting by χ = (ρ, β1, . . . , βτ ), the
state where βl stands for the control α delayed by l steps. This Markov chain satisfies the
following dynamics

3The notation [A,B] refers to AB −BA.
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ρk+1 = Mµk(Dβτ,k(ρk))
β1,k+1 = αk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(1.6)

We prove the following theorem ensuring the convergence of the state χk towards the
target state χ̄ = (ρ̄, 0, . . . , 0).

Theorem 1.3 (Theorem 3.2 (see page 64)). Take the Markov chain (1.6) with the following
feedback

αk =

{
εTr (ρ̄ [ρpred

k , a]) if Tr (ρ̄ρpred

k ) ≥ ς
argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρpred

g,k )
)

Tr
(
ρ̄ Dα(ρpred

e,k )
))

if Tr (ρ̄ρpred

k ) < ς (1.7)

with {
ρpred

g,k = Kαk−1
◦ . . . ◦Kαk−τ+1

(MgDαk−τρkD
†
αk−τ

M †
g )

ρpred

e,k = Kαk−1
◦ . . . ◦Kαk−τ+1

(MeDαk−τρkD
†
αk−τ

M †
e ),

where ρpred

k = ρpred(χk) = E [ρk+τ | χk] = Kβ1,k
◦ . . . ◦Kβτ,k(ρk) and ᾱ > 0. Then, for small

enough ε > 0 and ς > 0, the state χk converges almost surely towards χ̄ = (ρ̄, 0, . . . , 0)
whatever the initial condition χ0 ∈ X × Cτ is (the compact set X is defined by (1.1)).

Moreover, in Proposition 3.2 (page 71), we study the convergence rate around the target
state |n̄〉 〈n̄|. To this aim, we show that the largest Lyapunov exponent (see Definition A.3
in Appendix A) of the linearized closed-loop system (1.6) is negative which proves the
robustness of the method.

Note that the feedback law (1.7) depends on the state χ = (ρ, β1, . . . , βτ ). However, we
do not always have access to the initial state ρ0. When the measurements are perfect and
we do not know the initial state, the natural estimation of the state consists of taking an
arbitrary initial estimate state ρe0 and leaving it evolve according to the jump dynamics
induced by the measurement results. So the dynamics becomes for the estimate state as
follows 

ρek+1 = Mµk(Dβτ,k(ρ
e
k))

β1,k+1 = αk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(1.8)

We consider now the joint system-observer dynamics defined for the state

Ξk = (ρk, ρ
e
k, β1,k, . . . , βτ,k) :
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ρk+1 = Mµk(Dβτ,k(ρk))
ρek+1 = Mµk(Dβτ,k(ρ

e
k))

β1,k+1 = αk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(1.9)

We prove the following theorem showing the convergence of the filter ρek and the physical
state ρk towards the target state ρ̄ , under an additional assumption ensuring a quantum
separation principle (see also [21]).

Theorem 1.4 (Theorem 3.3 (see page 72)). Consider any closed-loop system of the
form (1.9), where the feedback law αk is a function of the quantum filter: αk = g(ρek, β1,k, . . . , βτ,k).
Assume moreover that, whenever ρe0 = ρ0 (so that the quantum filter coincides with the
closed-loop dynamics (1.6)), the closed-loop system ρk and estimate state ρek converge al-
most surely towards a fixed pure state ρ̄. Then, for any choice of the initial state ρe0, such
that kerρe0 ⊂ kerρ0, the trajectories of the system ρk and also the estimate state ρek converge
almost surely towards the same pure state: ρk → ρ̄ and ρek → ρ̄ .

Moreover, we linearize the dynamics (1.9) around the target state Ξ̄ = (ρ̄, ρ̄, 0, . . . , 0),
and in Proposition 3.3 (page 75), we express that the largest Lyapunov exponent of the
linearized closed-loop dynamics is negative.

Extensions to discrete-time systems subject to QND measurements are presented in
next subsection.

1.2.3 Feedback stabilization under discrete-time QND measure-
ments

In this section, we consider two types of dynamics. The first one corresponds to non-
linear Markov chains whose structure is similar to (1.2), i.e., the control operator and the
measurement operator are separated. In the aim of stabilizing some predetermined pure
states, we have designed a strict control-Lyapunov function. This work has been published
in [5].

The second type of dynamics is described by a non-separable Markov chain, i.e., the
measurement operators depend on the control inputs u, this type of measurements are
also called adaptive measurements (see e.g., [108]). We stabilized these non-linear Markov
chains towards some fixed pure states in presence of measurement imperfections and delays.
This work is subject to a preprint [6]. This feedback has been experimentally tested at
LKB [87, 88].

Design of strict control-Lyapunov function for separable Markov models

In [5], we consider a finite-dimensional quantum system belonging to the Hilbert space
H = Cd which is being measured (for the photon box, we have d = nmax + 1) through a
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generalized measurement procedure. Between two measurements, the system undergoes
a unitary evolution depending on the scalar control input u ∈ R. The system state is
described by the density operator ρ belonging to D, defined as follows:

D := {ρ ∈ Cd×d | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0}.

The evolution of the system is described by the following non-linear Markov chain:

ρk+1 = Uuk(Mµk(ρk)). (1.10)

Here

• uk ∈ R is the control at step k;

• Uu is the superoperator

Uu : D 3 ρ 7→ UuρU
†
u ∈ D,

with the control operator Uu = exp(−iuH), whereH ∈ Cd×d denotes the Hamiltonian
which is a Hermitian operator H† = H (for the photon box, we have H = i(a†− a));

• µk is a random variable taking values µ ∈ {1, . . . ,m} (with m > 0) with probabilities
Tr
(
MµρkM

†
µ

)
(for the photon box, we have µk ∈ {g, e});

• for each µ, Mµ is the superoperator

Mµ : ρ 7→ MµρM
†
µ

Tr(MµρM
†
µ)
∈ D

defined for ρ ∈ D such that Tr
(
MµρM

†
µ

)
6= 0.

• the Kraus operators Mµ ∈ Cd×d satisfy
∑m

µ=1 Mµ
†Mµ = 11.

The goal is to design a feedback law that globally stabilizes the Markov chain (1.10) to-
wards a chosen target state |n̄〉 〈n̄| , for some n̄ ∈ {1, . . . , d}. We suppose also two following
crucial assumptions.

Assumption 1.2 (Assumption 4.1 (see page 83)). The measurement operators Mµ are di-

agonal in the same orthonormal basis { |n〉 | n ∈ {1, . . . , d}}, therefore Mµ =
∑d

n=1 cµ,n |n〉 〈n|
with cµ,n ∈ C.

Assumption 1.3 (Assumption 4.2 (see page 83)). For all n1 6= n2 in {1, . . . , d}, there ex-
ists a µ ∈ {1, . . . ,m} such that |cµ,n1|2 6= |cµ,n2|2.

In [3, 36, 68] the feedback laws were obtained by maximizing the fidelity, Tr (ρ |n̄〉 〈n̄|) ,
with respect to the target state at each time-step. This means that the feedback strategy
was based on the same Lyapunov function given by the fidelity between the current and
the target state. In [5], we propose a systematic and explicit method to design a new

25



CHAPTER 1. INTRODUCTION

family of control-Lyapunov functions. The main interest of these new Lyapunov functions
relies on the crucial fact that whenever ρk does not coincide with the target state, the
expectation value of such Lyapunov functions increases by a strictly positive value from
step k to k+1. In closed-loop, these Lyapunov functions become strict and the convergence
analysis is notably simplified since the application of Kushner’s invariance principles [55]
is not necessary. The construction of these strict Lyapunov functions is based on the
Hamiltonian H underlying the controlled unitary evolution and relies on the connectivity
of the graph attached to H. They are obtained by inverting a Laplacian matrix derived
from H and the quantum states that are stationary under the QND measurements.

We prove the following theorem. It gives a feedback law stabilizing the Markov chain (1.10)
towards the pure state ρ̄ = |n̄〉 〈n̄| .

Theorem 1.5 (Theorem 4.2 (see page 88)). Consider the controlled Markov chain of state
ρk obeying (1.10). Take n̄ ∈ {1, . . . , d} and assume that the graph GH associated to the
Hamiltonian H is connected and that the Kraus operators satisfy Assumptions 1.2 and 1.3.
Then there exists a vector σ = (σn)n∈{1,...,d} of Rd such that −RHσ = λ, where λ is a vector
of Rd of components λn < 0 for n 6= n̄ and λn̄ = −

∑
n6=n̄ λn, and RH is a Laplacian matrix

defined in (4.6) (see Lemma 4.1 (page 86)). Denote by ρ
k+

1
2

= Mµk(ρk) the quantum state

just after the measurement outcome µk at step k. Take ū > 0 and consider the following
feedback law

uk = K(ρ
k+

1
2
) = argmin

u∈[−ū,ū]

(
Vε
(
Uu

(
ρ
k+

1
2

)))
, (1.11)

where the control-Lyapunov function Vε(ρ) is defined by

Vε(ρ) =
d∑

n=1

(
σn 〈n| ρ |n〉 − ε

2
(〈n| ρ |n〉)2) (1.12)

with the parameter ε > 0 not too large to ensure that

∀n ∈ {1, . . . , d} \ {n̄}, λn + 2ε
(
(〈n|H |n〉)2 − 〈n|H2 |n〉

)
> 0.

Then for any ρ0 ∈ D, the closed-loop trajectory ρk converges almost surely to the pure state
|n̄〉 〈n̄|.

When the measurement process is perfect, the Markov process (1.10) represents a natu-
ral choice for estimating the hidden state ρ. Thus, the estimate ρe of ρ satisfies the following
dynamics

ρek+1 = Uuk(Mµk(ρ
e
k)), (1.13)

where the measurement outcome µk is driven by (1.10). We prove the following theorem
which is the analogue of Theorem 1.4.

Theorem 1.6 (Theorem 4.3 (see page 90)). Consider the Markov chain of state ρk obey-
ing (1.10) and assume that the assumptions of Theorem 1.5 are satisfied. For each mea-
surement outcome µk given by (1.10), consider the estimate ρek given by (1.13) with an
initial condition ρe0.
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Set uk = K(ρe
k+

1
2

), where K is given by (1.11). Then for all ε ∈
]
0,minn6=n̄

(
λn
RHn,n

)]
(where

the Laplacian matrix RH is defined in Equation (4.6) (see page 86)), ρk and ρek converge
almost surely towards the target state |n̄〉 〈n̄| as soon as ker(ρe0) ⊂ ker(ρ0).

Feedback design for non-separable Markov models including delays and imper-
fections

In [6], we consider a finite-dimensional quantum system belonging to the Hilbert space
H = Cd, which is being measured by a discrete-time sequence of Positive Operator Valued
Measures (POVMs), and which is not fixed but is a function of some classical control
signal u, similarly to [108]. The random evolution of the state ρk ∈ D is given through the
following non-linear Markov chain:

ρk+1 = Muk−τ
µk

(ρk), (1.14)

where

• uk−τ is the control at step k, subject to a delay of τ > 0 steps. This delay is usually
due to delays in the measurement process that can also be seen as delays in the
control process,

• µk is a random variable taking values µ in {1, . . . ,m} with probability

puk−τµ,ρk
= Tr

(
Muk−τ

µ ρkM
uk−τ
µ

†) ,
• for each µ, Mu

µ is the superoperator

Mu
µ : ρ 7→ Mu

µρM
u
µ
†

Tr(Mu
µρM

u
µ †)
∈ D (1.15)

defined for ρ ∈ D such that puµ,ρ = Tr
(
Mu

µρM
u
µ
†) 6= 0.

In addition, for each u, the Kraus operators Mu
µ = Cd×d satisfy

∑m
µ=1 M

u
µ
†Mu

µ = 11. We

assume that the Kraus operators Mu
µ cannot be decomposed as follows: Mu

µ = UuM
0
µ, with

U0 = 11.
Now we define the Kraus map Ku.

Definition 1.2. The Kraus map Ku is defined as follows

D 3 ρ 7→ Ku(ρ) =
m∑
µ=1

Mu
µρM

u
µ
† ∈ D.

Our aim is to design a feedback law that globally stabilizes the Markov chain (1.14)
towards a chosen target state |n̄〉 〈n̄| , for some n̄ ∈ {1, . . . , d}. We suppose the following
assumptions.
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Assumption 1.4 (Assumption 4.3 (see page 91)). For u = 0, the measurement operators
M0

µ are diagonal in the same orthonormal basis { |n〉 |n ∈ {1, . . . , d}}, therefore M0
µ =∑d

n=1 cµ,n |n〉 〈n| with cµ,n ∈ C.

Assumption 1.5 (Assumption 4.4 (see page 91)). For all n1 6= n2 in {1, . . . , d}, there ex-
ists µ ∈ {1, . . . ,m} such that |cµ,n1|2 6= |cµ,n2|2.

Assumption 1.6 (Assumption 4.5 (see page 91)). The measurement operators Mu
µ are

C2 functions of u.

In [6], we propose a stabilizing feedback law based on a set of Lyapunov functions
made of linear combinations of the martingales attached to these QND measurements.
These Lyapunov functions define a “distance” between the target state and the current
one. The parameters of these Lyapunov functions are given by inverting Metzler matrices
characterizing the impact of the control input on the Kraus operators defining the Markov
processes and POVMs. The (graph theoretic) properties of the Metzler matrices are used
to construct families of open-loop supermartingales that become strict supermartingales in
closed-loops. This fact provides directly the convergence to the target state without using
Kushner’s invariance principle in contrast to the proof given in previous works [3, 68].

As explained in previous subsection, in order to take the delays into account, we can
take (ρk, uk−1, . . . , uk−τ ) as the state at step k. More precisely, we consider the state χ =
(ρ, β1, . . . , βτ ), where βl stands for the control input u delayed l steps. Then the state form
of the delay dynamics (1.14) is governed by the following Markov chain

ρk+1 = Mβτ,k
µk (ρk)

β1,k+1 = uk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(1.16)

We can now state our main result.

Theorem 1.7 (Theorem 4.7 (see page 97)). Consider the Markov chain (1.16) with
Assumptions 1.4, 1.5 and 1.6. Take n̄ ∈ {1, . . . , d} and assume that the directed graph G
associated to the Metzler matrix R defined in Lemma 4.3 (page 93) is strongly connected.
Take ε > 0, σ ∈ Rd

+ the solution of Rσ = λ with σn̄ = 0, λn < 0 for n ∈ {1, . . . , d} \ {n̄},
λn̄ = −

∑
n6=n̄ enλn (see Lemma 4.4 (page 93)) and consider

Vε(ρ) =
d∑

n=1

σn 〈n| ρ |n〉 − ε
2
(〈n| ρ |n〉)2.

Take ū > 0 and consider the following feedback law

uk = argmin
ξ∈[−ū,ū]

(
E [Wε(χk+1)|χk, uk = ξ]

)
=: f(χk), (1.17)
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where Wε(χ) = Vε(Kβ1(Kβ2(. . . . . .Kβτ (ρ) . . .))).

Then, there exists u∗ > 0 such that for all ū ∈]0, u∗] and ε ∈
]
0,minn 6=n̄

(
λn
Rn,n

)]
, the

closed-loop Markov chain of state χk with the feedback law (1.17) converges almost surely
towards (|n̄〉 〈n̄| , 0, . . . , 0) for any initial condition χ0 ∈ D × [−ū, ū]τ .

When the measurements are perfect, a natural state estimate ρe follows the following
dynamics

ρek+1 = Muk−τ
µk

(ρek) (1.18)

where the measurement outcome µk is driven by (1.14).
We now state the following separation principle type theorem which ensures the con-

vergence of the physical state ρ and estimated state ρe.

Theorem 1.8 (Theorem 4.8 (see page 102)). Consider the Markov chain of state ρk obey-
ing (1.14) and assume that the assumptions of Theorem 1.7 are satisfied. For each mea-
surement outcome µk given by (1.14), consider the estimation ρek with an initial condition
ρe0.
Set uk = f(ρek, uk−1, . . . , uk−τ ), where f is given by (1.17). Then, there exists u∗ > 0 such

that for all ū ∈]0, u∗] and ε ∈
]
0,minn 6=n̄

(
λn
Rn,n

)]
, ρk and ρek converge almost surely towards

the target state |n̄〉 〈n̄| as soon as ker(ρe0) ⊂ ker(ρ0).

In Theorem 4.9 (page 104), we prove the convergence of a feedback law which takes
into account the measurement errors and delays. It relies on measurements that can
be corrupted by random errors with conditional probabilities described by a known left
stochastic matrix. This imperfect measurement model is introduced in [90]. 4 Also, we
will recover the quantum separation principle in Theorem 4.10 (page 104). This separation
principle implies that the feedback may be designed only knowing the state of the quantum
filter and measurement outcomes in spite of not knowing the actual state of the system
due to the imperfections in measurement.

Closed-loop simulations (Figures 4.3 (page 111) and 4.4 (page 113)) corroborated by
experimental data illustrate the interest of such nonlinear feedback scheme for the photon
box.

1.2.4 Stability of continuous-time quantum filters

The lack of knowledge about the initial state of the system lead to use quantum filtering
theory to estimate the real state of the system. The key issues are concerned with the
stability and the convergence of the quantum filter. Few convergence results are available
up to now, except the sufficient conditions established in [101]. We focus here on stability
issues.

Indeed, the convergence means the independence of the filter, after a long time, from
the initial state estimate. In [101], necessary conditions for asymptotic stability of the

4See Theorem 2.2 (page 47).

29



CHAPTER 1. INTRODUCTION

quantum filter is given. They are related to observability of the system. The observability
means that there do not exist two different initial states which give rise to measurement
outcomes with the same probability. The stability of the quantum filter is a problem which
can be defined in discrete-time as well as in continuous-time.

Similarly to the last subsection, we can consider the following discrete-time dynamics
together with filter:

ρk+1 =
MµkρkM

†
µk

Tr
(
MµkρkM

†
µk

) , (1.19)

ρek+1 =
Mµkρ

e
kM

†
µk

Tr
(
Mµkρ

e
kM

†
µk

) , (1.20)

where µk is a random variable which takes values µ ∈ {1, . . . ,m}, with probability Tr
(
MµρkM

†
µ

)
.

Stability of the quantum filter can be proven by showing that the distance between the
physical state ρk and its associated quantum filter ρek decreases in average. The distance
between two density matrices can be defined by one minus the fidelity between these two
density matrices. In [75, Chapter 9], the fidelity between two arbitrary density matrices ρ
and σ is defined as follows:

F (ρ, σ) = Tr2

(√√
ρσ
√
ρ

)
. (1.21)

This is a real number between 0 and 1. Moreover, F (ρ, σ) = 1 means ρ = σ, and
F (ρ, σ) = 0 means that the support of ρ and σ are orthogonal. F (ρ, σ) coincides with their
inner Frobenius product Tr (ρσ) when at least one of the states ρ or σ is pure.

The following theorem, based only on Cauchy-Schwartz inequalities, proves that the
Frobenius inner product between the estimate and physical state is always a submartingale
whatever the purity of the estimate and physical state are.

Theorem 1.9 (Mirrahimi et al. [68]). Consider the process (1.2) and the associated
filter satisfying ρek+1 = Mµk(Dαk(ρ

e
k)), for any arbitrary control input (αk)

∞
k=1. We have

E [Tr (ρkρ
e
k)] ≤ E

[
Tr
(
ρk+1ρ

e
k+1

)]
, ∀k.

Now we announce the following theorem which generalizes Theorem 1.9 by proving that
the fidelity defined in (1.21) is a sub-martingale for any arbitrary purity of the states.

Theorem 1.10 (Rouchon [82]). Consider the Markov chain of state (ρk, ρ
e
k) satisfying (1.19)

and (1.20). Then the fidelity F (ρk, ρ
e
k) defined in (1.21) is a submartingale:

E
[
F (ρk+1, ρ

e
k+1)|(ρk, ρek)

]
≥ F (ρk, ρ

e
k).

In [33], the convergence of the continuous-time estimate to the physical state is discussed
for a generic Hamiltonian and measurement operator. The analysis relies on the fact that,

30



CHAPTER 1. INTRODUCTION

for pure states, the fidelity between the real state and its estimate is proved to be a
submartingale. Also, the convergence issues are discussed.

In [2], we have extended this result by providing the stability of the quantum filter
attached to a stochastic master equation driven only by a Wiener process. In fact, we
show that for any arbitrary purity, the fidelity defined in (1.21) is a submartingale.

Let us now state more precisely this problem. We consider quantum systems of finite
dimensions 1 < d < ∞. If ρt designs the state of the system at time t, the time-evolution
characterized by a diffusive equation has the following form (cf., [16, 20, 103])

dρt = L(ρt) dt+
(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt
)
dWt , (1.22)

where

• dWt is the Wiener process which is the following innovation

dWt = dyt − Tr
(
(L+ L†) ρt

)
dt , (1.23)

where yt is a continuous semi-martingale with quadratic variation 〈y, y〉t = t (which
is the observation process obtained from the system) and L is an arbitrary matrix
which determines the measurement process (typically the coupling to the probe field
for quantum optics systems) ;

• the superoperator L is the Lindblad operator given by

L(ρ) := −i[H, ρ]− 1

2
{L†L, ρ}+ LρL†,

where H = H† is a Hermitian operator. 5

The evolution of the quantum filter of state ρet associated to (1.22) is described by the
following stochastic master equation. It depends on the continuous-time measurement yt
which is function of the true quantum state ρt via (1.23) (see e.g., [7]):

dρet = L(ρet ) dt+
(
Lρet + ρetL

† − Tr
(
(L+ L†)ρet

)
ρet
) (
dyt − Tr

(
(L+ L†)ρet

)
dt
)
. (1.24)

We state now our main result.

Theorem 1.11 (Theorem 5.1 (see page 121)). Consider the Markov processes (ρt, ρ
e
t )

satisfying stochastic master Equations (1.22) and (1.24) respectively with ρ0, ρe0 in D.
Then the fidelity F (ρt, ρ

e
t ), defined in Equation (1.21), is a submartingale, i.e.,

E [F (ρt, ρ
e
t )|(ρs, ρes)] ≥ F (ρs, ρ

e
s), ∀t ≥ s.

Roughly speaking, this result implies the stability of the quantum filter ρet . Indeed, we
show that the distance between the real state and its associated quantum filter decreases
in average. This means that if F (ρ0, ρ

e
0) is near one, then in average, the fidelity F (ρt, ρ

e
t )

is closer to one, since E [F (ρt, ρ
e
t )] ≥ F (ρ0, ρ

e
0).

5The notation {A,B} refers to AB +BA
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Stability and filter design in presence of imperfections

Another type of stochastic master equation is driven by a Poisson process:

dρt = L(ρt) dt+

(
CρtC

†

Tr (CρtC†)
− ρt

) (
dNt − Tr

(
CρtC

†) dt) .
Here

• dNt is the following process dNt = N(t+ dt)−N(t), where N(t) is a Poisson process
taking values one with probability Tr

(
CρtC

†) dt and zero with the complementary
probability;

• the superoperator L is the Lindblad operator defined by,

L(ρ) := −i[H, ρ]− 1

2
{C†C, ρ}+ CρC†;

• and C is an arbitrary matrix.

More general stochastic master equations are called jump-diffusion stochastic master equa-
tions which are driven by both multidimensional Poisson and Wiener processes. In Chap-
ter 6, through some heuristic arguments, we will obtain a generic form of the jump-diffusion
stochastic master equations, in presence of classical measurement imperfections. To our
knowledge, this problem has not been treated elsewhere. Our heuristic result, Equa-
tion (6.16) (page 141) is an extension of [90, Theorem III.1] to continuous-time. The
jump-diffusion stochastic master equation of the estimated state, in presence of measure-
ment errors will be given in Equation (6.19) (page 141)). Also, we claim the stability of
such generalized estimate optimal filter in Conjecture 1 (page 142).

We believe that it is possible to extend the approach of [77], in order to make these
heuristic arguments more rigorous. This will be done in a future work.

1.3 Outline

Here is a brief description of the contents of this thesis.

Chapter 2 contains an introduction to discrete-time open quantum systems. The aim
of this chapter is to provide most of the necessary quantum notations and the essential
theorems that we need for the remaining chapters.

Chapter 3 is concerned with the feedback scheme which stabilizes an arbitrary photon-
number state in a microwave cavity. The quantum non-demolition (QND) measurement of
the cavity state allows a non-deterministic preparation of Fock states. Here, by the mean
of a controlled field injection, we desire to make this preparation process deterministic.
The system evolves through a discrete-time Markov process and we design the feedback
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law applying Lyapunov techniques. Also, in our feedback design we take into account
an unavoidable pure delay and we compensate it by a stochastic version of a Kalman-
type predictor. After illustrating the efficiency of the proposed feedback law through
simulations, we provide a rigorous proof of the global stability of the closed-loop system
based on tools from stochastic stability analysis. A brief study of the Lyapunov exponents
of the linearized system around the target state gives a strong indication of the robustness
of the method. The results of this chapter are based on [3].

Chapter 4 develops the mathematical methods underlying a recent measurement-based
feedback experiment [88] stabilizing photon-number states. It considers a controlled system
whose quantum state, a finite-dimensional density operator, is governed by a discrete-time
nonlinear Markov process. This chapter generalizes the previous chapter to any discrete-
time quantum systems under QND measurements. This generalization will be done in
three steps: first, when the measurement operator and the control operator are separable;
second, when the measurement operator and the control operator are non-separable (the
measurement operator depend on the control input); third, when the imperfections and
delays are added. Indeed, we design the new families of Lyapunov functions for each
Markov model which facilitate the convergence proof. Also, the feedback laws obtained by
these Lyapunov functions are more efficient in practice.

Closed-loop simulations and experimental data [88, 87] confirm the efficiency of such
nonlinear feedback scheme for the photon box. The results of this chapter are based
on [5, 6, 88].

Chapter 5 proves that the fidelity between the quantum state governed by a continuous-
time stochastic master equation driven by a Wiener process and its associated quantum-
filter state is a submartingale. This result is a generalization to non-pure quantum states
where fidelity does not coincide in general with a simple Frobenius inner product. This
result implies the stability of such filtering process but does not necessarily ensure its
asymptotic convergence. This chapter results from our work published in [2].

Chapter 6 presents more general stochastic master equations which are driven by multi-
dimensional Poisson or/and Wiener processes. Heuristically, we obtain the form of stochas-
tic master equations driven by both multidimensional Poisson and Wiener processes when
the measurement processes are not perfect. We conjecture the stability of such optimal
filter.

Conclusion proposes some natural extensions to the results described in the chapters
mentioned above.

Appendix A provides the different notions of stability and some stability theorems for
stochastic processes.
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Discrete-time open quantum system

35





Chapter 2

Models of discrete-time open
quantum systems

Contents
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2.5.3 Quantum non-demolition (QND) measurement . . . . . . . . . . 41

2.6 Perfect measurement . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Stochastic process attached to POVM . . . . . . . . . . . . . . . 42

2.6.2 Stability of discrete-time quantum filters . . . . . . . . . . . . . . 43

2.7 Imperfect measurement . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.1 Measurement model . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 Stability with respect to initial condition . . . . . . . . . . . . . 47

Pour un système quantique, être ouvert signifie être en interaction avec son environ-
nement. En particulier, la mesure d’un observable physique requiert une interaction entre
un instrument de mesure et le système. Cette interaction modifie l’état du système quan-
tique (effet secondaire de la mesure). En effet, la récupération d’une information sur l’état
quantique est uniquement possible à condition d’ouvrir le système sur son environnement.

Dans ce chapitre, nous introduisons brièvement les notations nécessaires et les types
de mesures que nous utiliserons dans les prochains chapitres. Nous décrivons également le
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processus stochastique derrière des opérateurs positifs de mesure (POVM) utilisé pour les
mesures parfaites et nous rappelons les résultats de stabilité du filtre quantique en temps
discret. De plus, nous présentons le modèle de mesures imparfaites que nous considérons
dans cette thèse. Les propriétés de stabilité de la procédure d’estimation seront aussi
rappelées dans ce cadre. Notre présentation s’inspire beaucoup de [44], [112], [92] et [69].

In the context of quantum systems, being open stands for being in interaction with its
environment. In particular, measuring a physical observable necessitates the interaction
of a meter with the system and leads to modification of the state of the quantum system
(measurement back-action). Indeed, retrieving any information on the quantum state
comes at the expense of opening the system to its environment.

In this chapter, we briefly introduce all the necessary notations and different types of
measurements that we need in the following chapters. Also we describe the stochastic
process attached to positive operator valued measure (POVM) for the perfect measure-
ments and we will recall the stability results of the discrete-time quantum filter. Moreover,
we present the imperfect measurement model that we consider in this thesis. In addi-
tion, the stability results for the estimation procedure will be reminded in this case. Our
presentation is very much inspired from [44], [112], [92] and [69].

2.1 Bra and Ket

All the objects described in this chapter are mathematically well-defined in a finite dimen-
sional Hilbert space H. When the Hilbert spaces are of infinite dimension, one can still
define these objects but one needs the mathematical justifications depending on the con-
sidered system. We suppose in the following that the Hilbert spaces under consideration
are always of finite dimension.

Ket |.〉 denotes a vector in the Hilbert space H while Bra 〈.| denotes a co-vector in the
dual of the Hilbert space H. The quantum state can be represented by a vector |ψ〉 (wave
function) in the Hilbert space H, with 〈ψ|ψ〉 = ‖ |ψ〉 ‖2 = 1.

2.2 Composite system

A composite system is made of several sub-systems. The state of a composite physical
system is the tensor product of the state spaces of its component physical sub-systems.
Consider now a system composed of two sub-systems A and B with corresponding state
spaces

∣∣ψA〉 and
∣∣ψB〉 where these states are represented in the Hilbert spaces HA and

HB. The joint state of the total system is
∣∣ψA〉⊗ ∣∣ψB〉 living in the tensor product Hilbert

space HAB = HA ⊗ HB. Notice that most of the unitary vectors
∣∣ψAB〉 in HAB are not

the tensor product of two unitary vectors of HA and HB. In this case
∣∣ψAB〉 represents an

entangled state between sub-systems A and B. Finally, notice that contrarily to classical
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composite systems, the state space is not obtained by a Cartesian product but by a tensor
product.

2.3 Schrödinger equation

Consider now a time dependant system whose state at time t is described by the state |ψt〉
which evolves according to the Schrödinger equation (here we take the Planck constant
~ = 1):

i
d

dt
|ψt〉 = H(t) |ψt〉 ,

where i2 = −1 and H is a time-varying Hermitian operator, called the Hamiltonian. Note
that this means that H† = H, where H† is the adjoint operator. If the initial state is |ψ0〉 ,
then the state |ψt〉 of the system at time t is given by the following equation

|ψt〉 = Ut |ψ0〉 ,

with the linear operator Ut satisfying the following dynamics

i
d

dt
Ut = H(t)Ut, U0 = 11.

The fact that H is Hermitian implies that Ut is a unitary operator, i.e., U †t Ut = UtU
†
t = 11.

Therefore, the evolution does not change the norm of the state vector, which was set equal
to one. The operator Ut is called the propagator.

2.4 Density operator

The unit vector |ψ〉 in the Hilbert space H corresponds to a pure state. It is associated
to the rank one projector ρ = |ψ〉 〈ψ| which satisfies Tr (ρ) = Tr (ρ2) = 1. In general, the
state of a quantum system is not pure and can be a statistical mixture of orthogonal pure
states |ψk〉 living in H. In this case, the analogue of the rank one projector ρ, the density
operator, reads

ρ =
∑
ν

pν |ψν〉 〈ψν | ,

where pν is the probability that system is in the pure state |ψν〉. We still have Tr (ρ) =∑
ν pν = 1. One says that ρ is a mixed state if Tr (ρ2) < 1. In this case the density

operator ρ represents the quantum state: it summarizes an observer’s knowledge on the
system. Any operator ρ on H that is Hermitian, semi-definite positive and of trace one is a
density operator. The above decomposition corresponds then to its spectral decomposition
with the normalized eigenstate |ψν〉 associated to the eigenvalue pν .

For a composite system HAB = HA⊗HB, its quantum state is described by the density
operator ρAB that is not in general the tensor product of a density operator σ on HA
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and ς on HB. Nevertheless, one can define the partial trace with respect to B as the
linear map sending ρAB to a density operator ρA on HA, ρA = TrB

(
ρAB

)
. This linear

map is completely defined by the fact that if ρAB = σ ⊗ ς is a separable state, then
ρA = TrB (σ ⊗ ς) = σTr (ς) = σ.

2.5 Observables and measurements

Measurements are associated to the observables corresponding to Hermitian operators
on the Hilbert space H. In fact an observable has the following spectral decomposition

O =
∑
µ

λµPµ,

where λµ are the eigenvalues of the Hermitian operator O which are real, and Pµ are the
orthogonal projectors on the corresponding eigenspaces.

2.5.1 Projective measurement

When measuring the observable O, the result of the measurement will necessarily be one
of the eigenvalues of O. Achieving the measurement result λµ, the quantum state ρ just
after this measurement becomes ρ+ which is given by

ρ+ =
PµρPµ
pµ

.

Here pµ = Tr (Pµρ) is the probability to achieve the measurement result λµ. (Note that
Pµ = P †µ and P 2

µ = Pµ.) In addition, the average value of O is given by
∑

µ pµλµ = Tr (ρO) .
Repeating after this first measurement a second one, one gets with probability one λµ.

This results from the fact that Tr (Pνρ+) is equal to 0 if ν 6= µ and is equal to 1 if ν = µ.
Moreover, this second measurement leaves ρ+ unchanged since Pµρ+P

†
µ = ρ+.

For pure states, we have ρ = |ψ〉 〈ψ| , and the projective measurement is simply given
by

|ψ〉+ =
Pµ |ψ〉√
pµ

,

with pµ = 〈ψ|Pµ |ψ〉 . When the observable O is non-degenerate, all projectors Pµ are of
rank one. Such a projective measurement is called a von Neumann measurement.

2.5.2 Positive operator valued measure (POVM)

In general, we do not directly measure the system of interest. In fact, we consider the
interaction of the system with its environment, and the experimenter observes the effect
of the system on the environment. In the aim of formulating this scheme, one defines the
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large Hilbert space HSM = HS⊗HM , where HS denotes the Hilbert space of the quantum
system S and HM denotes the Hilbert space of the meter, and one supposes that the initial
state (before the measurement) of the system is described by the pure state

∣∣ψS〉 ⊗ |θ〉 .
The measurement process is described by the unitary evolution USM on HSM of the initial
state producing, in general, an entangled state USM(

∣∣ψS〉 ⊗ |θ〉) after an interaction time
of τ between the system and the meter. The meter’s observable has the following form:
OM = 11S⊗

∑
µ λµPµ. Here Pµ is a rank-one projection, i.e., Pµ = |λµ〉 〈λµ| with |λµ〉 ∈ HM .

One can now formulate the measurement procedure as follows:

(Mµ

∣∣ψS〉)⊗ |λµ〉 = (11S ⊗ Pµ)USM(
∣∣ψS〉⊗ |θ〉), (2.1)

where the measurement operators Mµ are defined as follows. For all
∣∣ψS〉 ∈ HS,

USM(
∣∣ψS〉⊗ |θ〉) =

∑
µ

(Mµ

∣∣ψS〉)⊗ |λµ〉 .
After the measurement, the conditional state of the system given the outcome λµ is∣∣ψS〉

+
=

Mµ|ψS〉
√
pµ

. This can be also extended to the case of a mixed state ρ on HS, where

the probability of obtaining the value λµ is simply given by pµ = Tr
(
MµρM

†
µ

)
, and the

conditional state given the outcome λµ is

ρ+ = Mµ(ρ) :=
MµρM

†
µ

Tr
(
MµρM

†
µ

) .
Here Mµ is a non-linear superoperator, i.e., it maps an operator to another operator in HS.
From (2.1), it is clear that the measurement operators satisfy

∑
µM

†
µMµ = 11S (since USM

is unitary). This property and the positiveness of the operators M †
µMµ are the necessary

conditions for the set {Mµ} to define a positive operator valued measure (POVM).

2.5.3 Quantum non-demolition (QND) measurement

Quantum non-demolition (QND) measurements correspond to POVM measurements with
specific propagator USM respecting a given observable OS on system S: if the state ρ of
the system S is an eigenstate of OS, it is unchanged by the POVM described previously.
In other words, ρ+ = ρ for any µ.

The propagator USM is generated by the total Hamiltonian H = HS + HM + HSM on
HS⊗HM . In this equation, HS is the Hamiltonian of the subsystem S which is of the form
HS = H̃S ⊗ 11M , where H̃S is a Hermitian operator on HS. Similarly, HM = 11S ⊗ H̃M ,
where H̃M is a Hermitian operator defined on HM . The operator HSM is the system-meter
interaction Hamiltonian acting on HS ⊗HM . Let USM be the propagator generated by H
for an interaction time of τ (for time-invariant H, we have USM = e−iτH ). To ensure that
the POVM measurement is a QND measurement, it is sufficient to have

[H,OS] = 0.
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In other words, USM and OS commute. Thus, the eigenstates of OS are also the eigenstates
of Mµ. Theses eigenstates are unchanged by the POVM measurements.

2.6 Perfect measurement

In this section, we give the stochastic process attached to a POVM and we announce a
stability result of its associated quantum filter.

2.6.1 Stochastic process attached to POVM

The set of density operators ρ on the system’s Hilbert space HS is denoted by D. To any
POVM defined by a set of measurement operators (Mµ), is attached the following Markov
chain of state space D :

ρk+1 =
MµkρkM

†
µk

Tr
(
MµkρkM

†
µk

) , (2.2)

where ρk is the density operator at sampling time kτ, for k ∈ N, and the probability to
have the measurement outcome µk equal to µ ∈ {1, . . . ,m} (with m ∈ N), at step k, is
given by pµ,ρk = Tr

(
MµρkM

†
µ

)
. Notice that if ρk is an element of D, then ρk+1 ∈ D.

The conditional expectation of the average value of observable O in HS at step k + 1
knowing the quantum state at step k, ρk is given by

E [Tr (Oρk+1) |ρk] = Tr (OK(ρk)) ,

where K is the Kraus superoperator attached to the POVM defined by

K(ρ) :=
m∑
µ=1

MµρM
†
µ.

Notice that K(ρk) = E [ρk+1|ρk] .

Now suppose that this POVM provides a QND measurement of an observable OS in
HS with the spectral decomposition OS =

∑
µ λµPµ (λµ being the eigenvalues and Pµ

corresponding to the eigenspace projectors). Then any Pµ yields to a martingale Tr (ρPµ) :

E [Tr (Pµρk+1) |ρk] = Tr (Pµρk) .

The above equation results from
∑m

ν=1M
†
νPµMν = Pµ. Moreover if Pµ is of rank-one, then

it corresponds to a stationary state ρ̄ = Pµ of the Markov process (2.2), i.e., for any µ,
Mµρ̄M

†
µ

Tr(Mµρ̄M
†
µ)

= ρ̄.
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2.6.2 Stability of discrete-time quantum filters

Consider the Markov chain (2.2). Assume that we do not know precisely the initial state ρ0

and we have at our disposal an estimate ρe0. Assume also that we know the measurement
results µk. It is then natural to consider the following recursive update of our estimation
ρek+1 using the knowledge of µk and the previous estimate ρek :

ρek+1 = Mµk(ρ
e
k). (2.3)

Remark that the probability Tr
(
MµρkM

†
µ

)
to get µk = µ depends on the hidden state

ρk and not on ρek. The following theorem ensures the stability of such estimation process
known as a discrete-time quantum filter.

Theorem 2.1 (Rouchon [82]). Consider a Markov chain (ρk, ρ
e
k) satisfying Equations (2.2)

and (2.3). Then F (ρk, ρ
e
k) = Tr2

(√√
ρkρek
√
ρk
)

is a submartingale, i.e.,

E
[
F (ρk+1, ρ

e
k+1)|ρk, ρek

]
≥ F (ρk, ρ

e
k).

2.7 Imperfect measurement

In this section, we consider repeated and imperfect measurements on a quantum system. In
fact, by imperfect measurements, we mean both unread measurements performed by the
environment (decoherence) and active measurements performed by non-ideal detectors.
For more details on the content of this section, we refer to [90].

2.7.1 Measurement model

Consider a single ideal measurement. Take a set of Kraus operators Mq attached to the
ideal detections (which are provided by the ideal sensors) for q ∈ {1, . . . ,m}. These Kraus
operators satisfy

∑m
q=1M

†
qMq = 11, for some m ∈ N. We assume that the real sensors

provide an outcome µ′ that is a random variable in the set {1, . . . ,m′}, for some m′ ∈ N.
Suppose that we know the correlation between the events µ = q and µ′ = p which is given
through the stochastic matrix η ∈ Rm′×m :

ηp,q = P (µ′ = p|µ = q) . (2.4)

Since ηp,q ≥ 0 and for each q,
∑m′

p=1 ηp,q = 1, the matrix η is a left stochastic matrix.

Consider now a sequence of discrete-time POVM measurements. We denote by ρk the
state of the system at time step k, with the initial state ρ0 in D. Assume Mq;k denotes the
Kraus operator corresponding to the kth ideal measurement for q ∈ {1, . . . ,m}. We have

E [ρk+1|ρk, µk = q] = Mq;k(ρk) :=
Mq;kρkM

†
q;k

Tr
(
Mq;kρkM

†
q;k

) , (2.5)
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with P (µk = q|ρk) = Tr
(
Mq;kρkM

†
q;k

)
. Also let ηk be the stochastic matrix at step k.

The optimal estimate is defined as

ρ̂k = E [ρk|Ak−1] , (2.6)

where the event Ak−1 is given by Ak−1 := (ρ0, µ
′
0 = p0, . . . , µ

′
k−1 = pk−1).

The following theorem provides a recursive equation for ρ̂k.

Theorem 2.2 (Somaraju et al. [90]). The optimal estimate ρ̂k satisfies the following re-
cursive equation

ρ̂k+1 = Lpk(ρ̂k) :=

∑m
q=1 η

k
pk,q

Mq;kρ̂kM
†
q;k

Tr
(∑m

q=1 η
k
pk,q

Mq;kρ̂kM
†
q;k

) , (2.7)

if µ′k = pk ( where pk is a random variable taking values in the set {1, . . . ,m′}). Moreover,
we have

P (µ′k = pk|Ak−1) = Tr

(
m∑
q=1

ηkpk,qMq;kρ̂kM
†
q;k

)
. (2.8)

In the rest of this section, we provide an alternative proof of the above theorem which
simplifies the original arguments of [90].

Proof. We start by proving Equation (2.8). We have

Tr

(
m∑
q=1

ηkpk,qMq;kρ̂kM
†
q;k

)
= Tr

(
m∑
q=1

P (µ′k = pk|µk = q)Mq;kE [ρk|Ak−1]M †
q;k

)
,

where we have replaced the expressions of ηkpk,q and ρ̂k given respectively in (2.4) and (2.6).
Using the fact that we can commute the expectation and the linear function trace, the
right hand side term of the above equation becomes equal to

E
[

Tr

(
m∑
q=1

P (µ′k = pk|µk = q)Mq;kρkM
†
q;k

)
|Ak−1

]
=

E
[

m∑
q=1

P (µ′k = pk|µk = q) Tr
(
Mq;kρkM

†
q;k

)
|Ak−1

]
=

E
[

m∑
q=1

P (µ′k = pk|µk = q)P (µk = q|ρk) |Ak−1

]
=

E
[

m∑
q=1

P (µ′k = pk|µk = q, ρk)P (µk = q|ρk) |Ak−1

]
, (2.9)
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where in the second equality, we use that P (µk = q|ρk) = Tr
(
Mq;kρkM

†
q;k

)
and in the last

equality, we use P (µ′k = pk|µk = q) = P (µ′k = pk|µk = q, ρk) , since by relation (2.4), the
probability of µ′k = pk is characterized only by knowing the value of µk = q.

The term (2.9) is equal to

E
[
P (µ′k = pk|ρk) |Ak−1

]
= E

[
E
[
Iµ′k=pk |ρk

]
|Ak−1

]
= E

[
Iµ′k=pk |Ak−1

]
= P (µ′k = pk|Ak−1) ,

where Iµ′k=pk denotes the indicator function, i.e., it is equal to one if µ′k = pk and is equal

to zero if µ′k 6= pk. The above formula is obtained using the facts that E
[
E [A|B]

]
= E [A]

and E [IA] = P (A) . This finishes the proof of the relation (2.8).

In order to prove the recursive relation (2.7), we apply the formula (2.8). We have to
show the following equation

ρ̂k+1 =

∑m
q=1 η

k
pk,q

Mq;kρ̂kM
†
q;k

P (µ′k = pk|Ak−1)
.

This is equivalent to proving that

E [ρk+1|Ak]P (µ′k = pk|Ak−1) =
m∑
q=1

ηkpk,qMq;kρ̂kM
†
q;k =

m∑
q=1

P (µ′k = pk|µk = q)Mq;kρ̂kM
†
q;k. (2.10)

By Equation (2.5), we get

Mq;kρkM
†
q;k = E [ρk+1|ρk, µk = q] Tr

(
Mq;kρkM

†
q;k

)
= E [ρk+1|ρk, µk = q]P (µk = q|ρk) .

Now we compute the expectation with respect to ρk conditioned on the event Ak−1.
We find the following expression:

E
[
Mq;kρkM

†
q;k|Ak−1

]
= Mq;kρ̂kM

†
q;k = E

[
E [ρk+1|ρk, µk = q]P (µk = q|ρk) |Ak−1

]
.

Therefore, the right hand side of (2.10) can be written as

m∑
q=1

P (µ′k = pk|µk = q)Mq;kρ̂kM
†
q;k =

m∑
q=1

P (µ′k = pk|µk = q)E
[
E [ρk+1|ρk, µk = q]P (µk = q|ρk) |Ak−1

]
=

m∑
q=1

P (µ′k = pk|µk = q)E
[E [ρk+1Iµk=q|ρk]
P (µk = q|ρk)

P (µk = q|ρk) |Ak−1

]
=

m∑
q=1

P (µ′k = pk|µk = q)E [ρk+1Iµk=q|Ak−1] , (2.11)
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where we have used the fact that E [A|B,C] = E[AIC |B]

P(C|B)
.

Since

E
[
ρk+1Iµ′k=pk |Ak−1

]
=

E [ρk+1|µ′k = pk,Ak−1]P (µ′k = pk|Ak−1) = E [ρk+1|Ak]P (µ′k = pk|Ak−1) ,

in order to show (2.10), it will be enough to show that the right term in Equation (2.11)
is equal to E

[
ρk+1Iµ′k=pk |Ak−1

]
, i.e.,

m∑
q=1

P (µ′k = pk|µk = q)E [ρk+1Iµk=q|Ak−1] = E
[
ρk+1Iµ′k=pk |Ak−1

]
, (2.12)

Equation (2.12) is equivalent to

m∑
q=1

P (µ′k = pk|µk = q,Ak−1)E [ρk+1Iµk=q|Ak−1] = E
[
ρk+1Iµ′k=pk |Ak−1

]
, (2.13)

where we have used the fact that P (µ′k = pk|µk = q,Ak−1) = P (µ′k = pk|µk = q) , since by
relation (2.4), the probability of the event µ′k = pk is determined only by knowing µk = q.

The left hand side of the above formulas is equal to

m∑
q=1

P (µ′k = pk|µk = q,Ak−1)E [ρk+1Iµk=q|Ak−1] =

m∑
q=1

P (µ′k = pk|µk = q,Ak−1)E [ρk+1|µk = q,Ak−1]P (µk = q|Ak−1) =

m∑
q=1

P (µ′k = pk, µk = q|Ak−1)E [ρk+1|µk = q,Ak−1] =

m∑
q=1

P (µk = q|µ′k = pk,Ak−1)P (µ′k = pk|Ak−1)E [ρk+1|µk = q,Ak−1] .

Here for the first equality, we have used

E [ρk+1Iµk=q|Ak−1] = E [ρk+1|µk = q,Ak−1]P (µk = q|Ak−1) .

Now, in the same way E
[
ρk+1Iµ′k=pk |Ak−1

]
= E [ρk+1|µ′k = pk,Ak−1]P (µ′k = pk|Ak−1) ,

and therefore demonstrating (2.13) is equivalent to showing the following relation

m∑
q=1

P (µk = q|µ′k = pk,Ak−1)P (µ′k = pk|Ak−1)E [ρk+1|µk = q,Ak−1] =

E [ρk+1|µ′k = pk,Ak−1]P (µ′k = pk|Ak−1) .
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Finally, we have to show

m∑
q=1

P (µk = q|µ′k = pk,Ak−1)E [ρk+1|µk = q,Ak−1] = E [ρk+1|µ′k = pk,Ak−1] ,

which is equivalent to

m∑
q=1

P (µk = q|µ′k = pk,Ak−1)E [ρk+1|µk = q, µ′k = pk,Ak−1] = E [ρk+1|µ′k = pk,Ak−1] ,

(2.14)

where we have used E [ρk+1|µk = q,Ak−1] = E [ρk+1|µk = q, µ′k = pk,Ak−1] , since by Equa-
tion (2.5), knowing the value of µ′k does not add further information to calculate the ex-
pectation E [ρk+1|µk = q] .

But Equation (2.14) results from the following elementary fact

E [X|B] =
∑
y

E [X|Y = y,B]P (Y = y|B) .

In the above equation, set X = ρk+1, Y = µk, q = y, and B the event µ′k = pk, we then
necessarily have Equation (2.14).

This finishes the proof of the theorem.

2.7.2 Stability with respect to initial condition

Consider the recursive equation (2.7). Assume that we do not have access to the initial
state ρ0. We cannot compute the optimal estimate ρ̂k. The natural estimation can be still
given by the recursive formula (2.7) based on the real measurement outcomes µ′0, . . . , µ

′
k−1

and an arbitrary initial estimate state ρ̂e0. Thus if µ′k = p, we define ρ̂ek for k ≥ 1 as follows

ρ̂ek+1 = Lp(ρ̂ek). (2.15)

The recursive formula (2.15) is valid as soon as
∑

q Tr
(
ηkp,qMq;kρ̂

e
kM

†
q;k

)
> 0, which is

automatically satisfied when ρ̂ek is of full rank. (When
∑

q Tr
(
ηkp,qMq;kρ̂

e
kM

†
q;k

)
= 0, we can

still define the value of ρ̂ek+1, see more details in [90].) We state now a theorem ensuring
the stability of such estimation procedure whatever the initial state ρ̂e0 is.

Theorem 2.3 (Somaraju et al. [90]). Suppose ρ̂ek satisfies the recursive relation (2.15) with
an arbitrary initial density operator ρ̂e0. Then the fidelity between ρ̂k and ρ̂ek defined by

F (ρ̂k, ρ̂
e
k) = Tr2

(√√
ρ̂kρ̂ek

√
ρ̂k

)
is a submartingale in the following sense:

E
[
F (ρ̂k+1, ρ̂

e
k+1)|ρ̂0, . . . , ρ̂k, ρ̂

e
0, . . . , ρ̂

e
k

]
≥ F (ρ̂k, ρ̂

e
k).
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With this preliminary introduction to models of discrete-time open quantum systems,
we can study the remaining chapters.
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Fidelity based stabilization of the
photon box
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Dans le but de réaliser un traitement robuste de l’information quantique, l’une des
tâches principale consiste à préparer et à protéger les différents états quantiques. Durant
les quinze dernières années, l’application des paradigmes de rétroaction basée sure la mesure
ont été étudiés par des nombreux physiciens [107, 97, 34, 103, 71, 47] comme une solution
possible pour cette préparation robuste. Cependant, la plupart de ces efforts sont restés à
un niveau théorique et n’ont pas été en mesure de donner lieu à des expériences abouties.
Cela est essentiellement dû à la nécessité de simuler, en parallèle avec le système, un filtre
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quantique [16] qui fournit une estimation de l’état du système basée sur l’historique des
sauts quantiques induit par le processus de mesure. En effet, il est en général difficile
d’effectuer de telles simulations en temps réel. Dans ce chapitre, nous considérons que
la loi de rétroaction proposée dans [36] dans le cadre de la boite à photons, un systéme
quantique ouvert en temps discret, où nous avons pu effectuer ces calculs en temps réel
(voir [44] pour une description détaillée de ce système électrodynamique quantique en
cavité).

En tenant compte du postulat que la mesure quantique induit une projection, les pro-
tocoles de mesure les plus pratiques dans le but de réaliser une rétroaction sont les mesures
quantique non-destructive (QND) [24, 96, 99]. Comme nous l’avons vu au Chapitre 2, ce
sont des mesures qui préservent la valeur de l’observable mesurée. En effet, en considérant
un processus de mesure QND bien conçu où l’état quantique à préparer est un état propre
de l’opérateur de mesure, le processus de mesure n’est pas un obstacle pour la préparation
de l’état, mais il peut même l’aider en ajoutant de la contrôlabilité ou de la stabilité.
Très souvent, un protocole de mesure QND bien choisi peut lui-même être considéré comme
un outil de préparation pour les différents états quantiques. Noter que la conception de ces
mesures n’est pas toujours pratique (voir par exemple [25]). Cependant, cette préparation
est généralement non-déterministe et on ne peut pas s’assurer qu’elle converge vers l’état
souhaité, sauf en répétant l’expérience plusieurs fois. La rétroaction peut être appliquée
pour rendre ce processus déterministe [93, 71, 36].

Dans [32, 43, 40], des mesures QND sont exploités pour détecter et/ou produire des états
fortement non-classiques de la lumière piégée dans une cavité supraconductrice (voir [44,
Chapitre 5] pour une description de tels systèmes CQED et [27] pour les détails sur les
modèles physiques utilisés pour des mesures QND de la lumière en utilisant des atomes).
Pour un tel montage expérimental, nous détaillons et analysons ici un schéma de rétroaction
qui stabilise le champ de la cavité vers n’importe quel état-nombre de photon (état de
Fock). Ces états sont fortement non-classiques car leurs nombres de photons sont parfaite-
ment définis. L’entrée de commande est de type classique et correspond è une impulsion
cohérente de la lumière injectée à l’intérieur de la cavité entre les passages des atomes. La
structure globale de ce schéma de rétroaction proposé est inspirée de [39] en utilisant une
adaptation quantique de la structure observateur/contrôleur largement mise en œvre pour
les systèmes classiques (voir par exemple [50, Chapitre 4]). Comme les mesures induisant
des sauts quantiques et l’injection du champ de contrôle arrivent en temps discret, la partie
d’observation du schéma de rétroaction proposée consiste en un filtre quantique à temps
discret. En effet, le fait que la mesure arrive à temps discret nous fournit un premier
prototype des systèmes quantiques où nous avons suffisamment du temps pour effectuer le
filtrage quantique et calculer la loi de rétroaction basée sur la mesure à appliquer pour le
contrôle.

Du point de vue de la modélisation mathématique, le filtre quantique évolue comme
une châıne de Markov à temps discret. L’état estimé est utilisé dans une rétroaction
d’état, basée sur le modèle de Lyapunov. En considérant un candidat naturel pour la
fonction de Lyapunov, la loi de rétroaction assure la diminution de son espérance sur le
processus de Markov. Par conséquent, la valeur de la fonction de Lyapunov considérée
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au cours de la châıne de Markov définit une sur-martingale. L’analyse de la convergence
du système en boucle fermée est donc basée sur des outils plutôt classiques de l’analyse
de stabilité stochastique [55]. Le contrôle de châınes de Markov similaires a déjà été pris
en compte. Dans [47], la rétroaction d’état est dérivée du contrôle optimal sensible au
risque. En principe, nous pouvons appliquer ces techniques au cas étudié. Néanmoins,
comme le nombre d’entréées scalaires de l’état est important (autour de 50 pour une ma-
trice 10×10), le calcul de cette loi de rétroaction optimale n’est pas possible en temps réel.
Dans [18], une stratégie de rétroaction de sortie statique est proposée afin de stabiliser un
état pur. Malheureusement, nous ne pouvons pas appliquer cette méthode ici pour les deux
raisons suivantes. Tout d’abord, nous avons seulement à notre disposition l’ensemble des
opérateurs de déplacements cohérents comme les transformations unitaires sur l’état quan-
tique de la cavité (oscillateur harmonique quantifié). Avec cet ensemble restreint, il n’est
pas possible de stabiliser un état de Fock en prenant l’amplitude de déplacement comme
une fonction statique du résultat de la mesure. Deuxiement, il semble que l’adaptation
d’une telle rétroaction de sortie statique au retard de la mesure est une question ouverte.

L’une des caractéristiques particulières du systèmes pris en compte dans ce chapitre
correspond à un retard non-négligeable dans le processus de rétroaction. Comme expliqué
au Chapitre 1, dans le dispositif expérimental considéré dans ce chapitre, il existe un délai
de τ étapes entre le processus de mesure et l’injection de rétroaction. Dans ce chapitre,
nous proposons une adaptation du filtre quantique, basée sur une version stochastique d’un
prédicteur de type Kalman, qui prend en compte ce retard par la prédiction de l’état actuel
du système sans avoir l’accès au résultat de la dernière détection.

Dans la Section 3.1, nous décrivons brièvement le modèle physique de la boite à photons
et de sa dynamique de saut. La Section 3.2 est consacrée au comportement en boucle
ouverte : nous montrons dans le Théorème 3.1 que le processus de mesure QND, sans
aucune injection de contrôle supplémentaire, permet une préparation non-déterministe
des états de Fock. En effet, nous constatons que la châıne de Markov associée converge
nécessairement vers un état de Fock et la probabilité de convergence vers un état de Fock
fixé est donnée par sa population sur l’état initial. En outre, dans la Proposition 3.1, nous
montrons que le système linearisé autour d’un état de Fock fixé en boucle ouverte admet
un exposant de Lyapunov strictement négatif (voir la Section A.3 de l’Annexe A pour une
définition de l’exposant de Lyapunov). Dans la Section 3.3, nous proposons un modèle
de Lyapunov basé sur la rétroaction permettant de stabiliser globalement le système avec
le retard en boucle fermée autour d’un état de Fock désiré. Le Théorème 3.2 prouve la
convergence presque sure des trajectoires du système en boucle fermée vers l’état de Fock
cible. En outre, grâce à la Proposition 3.2, nous prouvons que le système linearisé autour de
l’état de Fock cible en boucle fermée admet un exposant de Lyapunov strictement négatif.
Enfin, dans la Section 3.4, nous proposons une brève discussion sur le filtre quantique
considéré, et en prouvant un principe de séparation plutôt général (Théorème 3.3), nous
montrons une robustesse semi-globale par rapport à la connaissance de l’état initial du
système. Aussi, à travers une brève analyse du système-observateur linearisé autour de
l’état de Fock cible et en appliquant les Propositions 3.1 et 3.2, nous montrons que son
plus grand exposant de Lyapunov est également strictement négatif (Proposition 3.3).

51



CHAPTER 3. FIDELITY BASED STABILIZATION OF THE PHOTON BOX

Une version préliminaire, en l’absence de tout retard, a été pris en compte dans [68]. Le
schéma de compensation du retard a été introduit dans [36]. Les résultats de ce chapitre
sont basés sur [3].

In the aim of achieving a robust processing of quantum information, one of the main
tasks is to prepare and to protect various quantum states. Through the last 15 years,
the application of measurement-based feedback paradigms has been investigated by many
physicists [107, 97, 34, 103, 71, 47] as a possible solution for this robust preparation.
However, most of these efforts have remained at a theoretical level and have not been
able to give rise to successful experiments. This is essentially due to the necessity of
simulating, in parallel to the system, a quantum filter [16] providing an estimate of the
state of the system based on the historic of quantum jumps induced by the measurement
process. Indeed, it is in general difficult to perform such simulations in real-time. In this
chapter, we consider the feedback law proposed in [36] for the photon box, a discrete-time
open quantum system, where we actually have the time to perform these computations
in real-time (see [44] for a detailed description of this cavity quantum electrodynamics
system).

Taking into account the measurement-induced quantum projection postulate, the most
practical measurement protocols in the aim of feedback control are the quantum non-
demolition (QND) measurements [24, 96, 99]. As we have seen in Chapter 2, these are the
measurements which preserve the value of the measured observable. Indeed, by considering
a well-designed QND measurement process where the quantum state to be prepared is an
eigenstate of the measurement operator, the measurement process is not an obstacle for
the state preparation but can even help by adding some controllability and/or stability.
In fact, very often a well-chosen QND measurement protocol can itself be considered as
a preparation tool for various quantum states. Note that the design of such measure-
ments is not always practical (see e.g., [25]). However, this preparation is generally non-
deterministic and one cannot make sure that it converges towards the desired state except
by repeating the experiment many times. The feedback can be applied to make this process
deterministic [93, 71, 36].

In [32, 43, 40] QND measures are exploited to detect and/or produce highly non-classical
states of light trapped in a super-conducting cavity (see [44, Chapter 5] for a description
of such CQED systems and [27] for detailed physical models with QND measures of light
using atoms). For such experimental setup, we detail and analyze here a feedback scheme
that stabilizes the cavity field towards any photon-number states (Fock states). Such states
are strongly non-classical since their photon numbers are perfectly defined. The control
input is of classical type and corresponds to a coherent light-pulse injected inside the cavity
between atom passages. The overall structure of the proposed feedback scheme is inspired
by [39] using a quantum adaptation of the observer/controller structure widely used for
classical systems (see e.g., [50, Chapter 4]). As the measurement-induced quantum jumps
and the controlled field injection happen in a discrete-time manner, the observer part
of the proposed feedback scheme consists in a discrete-time quantum filter. Indeed, the
discreteness of the measurement process provides us a first prototype of quantum systems,
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where we actually have enough time to perform the quantum filtering and to compute the
measurement-based feedback law to be applied as the controller.

From a mathematical modeling point of view, the quantum filter evolves through a
discrete-time Markov chain. The estimated state is used in a state feedback, based on a
Lyapunov design. By considering a natural candidate for the Lyapunov function, the feed-
back law ensures the decrease of its expectation over the Markov process. Therefore, the
value of the considered Lyapunov function over the Markov chain defines a supermartin-
gale. The convergence analysis of the closed-loop system is therefore based on some rather
classical tools from stochastic stability analysis [55]. The control of similar discrete-time
quantum Markov chains has been already considered. In [47] the state feedback is derived
from risk-sensitive optimal control. In principle, one can apply these techniques to our
case. Nevertheless, since the number of scalar entries of the state is large (around 50 for
a 10 × 10 density matrix), computations of this optimal feedback law is not possible in
real-time. In [18] a static output feedback strategy is proposed to stabilize a pure state.
Unfortunately, we cannot apply this method here for the following two reasons. Firstly, we
have only at our disposal the set of coherent displacement operators as unitary transfor-
mations on the cavity quantum state (quantized harmonic oscillator). With this restricted
set, it is not possible to stabilize a Fock state by taking the displacement amplitude as
a static function of measurement outcome. Secondly, it appears that adaptation of such
static output feedback to measurement delay is an open question.

One of the particular features of the system considered in this chapter corresponds
to a non-negligible delay in the feedback process. As explained in Chapter 1, in the
experimental setup considered through this chapter, there exists a delay of τ steps between
the measurement process and the feedback injection. Through this chapter, we propose an
adaptation of the quantum filter, based on a stochastic version of a Kalman-type predictor,
which takes into account this delay by predicting the actual state of the system without
having access to the result of τ last detections.

In Section 3.1, we briefly describe the physical model of the photon box and its jump
dynamics. Section 3.2 is devoted to the open-loop behavior: we show in Theorem 3.1
that the QND measurement process, without any additional controlled injection, allows a
non-deterministic preparation of the Fock states. Indeed, we will see that the associated
Markov chain converges necessarily towards a Fock state and that the probability of the
convergence towards a fixed Fock state is given by its population over the initial state.
Also, in Proposition 3.1, we will show that the linearized open-loop system around a fixed
Fock state admits strictly negative Lyapunov exponents (see Section A.3 in Appendix A
for a definition of the Lyapunov exponent). In Section 3.3, we propose a Lyapunov-based
feedback design allowing to stabilize globally the delayed closed-loop system around a
desired Fock state. Theorem 3.2 proves the almost sure convergence of the trajectories
of the closed-loop system towards the target Fock state. Also, through Proposition 3.2,
we will prove that the linearized closed-loop system around the target Fock state admits
strictly negative Lyapunov exponents. Finally in Section 3.4, we propose a brief discussion
on the considered quantum filter, and by proving a rather general separation principle
(Theorem 3.3), we show a semi-global robustness with respect to the knowledge of the
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initial state of the system. Also, through a brief analysis of the linearized system-observer
around the target Fock state and by applying Propositions 3.1 and 3.2, we show that its
largest Lyapunov exponent is also strictly negative (Proposition 3.3).

A preliminary version, in the absence of any delay was considered in [68]. The delay
compensation scheme was introduced in [36]. The results of this chapter are based on [3].

3.1 Physical model of the photon box and its jump

dynamics

Figure 3.1: The ENS photon box; atoms get out of box B one by one, undergo then a first Rabi
pulse in Ramsey zone R1, become entangled with electromagnetic field trapped in C, undergo a
second Rabi pulse in Ramsey zone R2, and finally are measured in the detector D. The control
corresponds to a coherent displacement of amplitude α ∈ C that is applied via the microwave
source S between two atom passages.

As illustrated by Figure 3.1, the system consists in C a high-Q microwave cavity, in
B a box producing Rydberg atoms, in R1 and R2 two low-Q Ramsey cavities and in D
an atom detector. The dynamics model is discrete in time and takes into account the
measurement back-action. Each time step is indexed by the integer k corresponding to
atom number k coming from B, submitted then to a first Ramsey π/2-pulse in R1, crossing
the cavity C and being entangled with it, submitted to a second π/2-pulse in R2 and
finally being measured in D. The state of the cavity is associated to a quantized mode.
The control corresponds to a coherent displacement of amplitude α ∈ C that is applied
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via the microwave source S between two atom passages. We consider a finite-dimensional
approximation of this quantized mode and take a truncation to nmax photons. The cavity
state is thus approximated by the Hilbert space Cnmax+1. It admits (|0〉 , |1〉 , . . . , |nmax〉) as
an orthonormal basis. Each basis vector |n〉 ∈ Cnmax+1 corresponds to a pure state, called
Fock state, where the cavity has exactly n photons with n ∈ {0, . . . , nmax}.

In this Fock states basis the number operator N corresponds to the diagonal matrix

N = diag(0, 1, . . . , nmax).

The annihilation operator truncated to nmax photons is denoted by a. It corresponds to
the upper 1-diagonal matrix filled with (

√
1, . . . ,

√
nmax):

a |0〉 = 0, a |n〉 =
√
n |n− 1〉 for n = 1, . . . , nmax.

The truncated creation operator denoted by a† is the Hermitian conjugate of a. Notice that
we still have N = a†a, but truncation does not preserve the usual commutation [a, a†] = 1
that is only valid when nmax = +∞.

The delay attached to the atoms flying between cavity and detector corresponds to a
measurement delay on system output. On system input we have no delay. It is well-known
that systems with constant output delay and without input delay can be described also as
systems with constant input delay and without output delay. We consider here this second
description where the delay is attached to the input: the control elaborated at step k, αk,
is subject to a delay of τ steps, τ representing the number of flying atoms between the
cavity C and the detector D. Just after the measurement of the atom number k − 1, the
state of the cavity is described by the density matrix ρk belonging to the following set of
well-defined density matrices:

X =
{
ρ ∈ C(nmax+1)2 | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0

}
. (3.1)

The random evolution of this state ρk can be modeled through a discrete-time Markov
process that will be described below (see [36, 27] and the references therein explaining the
physical modeling assumptions). Let us denote by αk ∈ C the control at step k. Then
ρk+1, the cavity state after measurement of atom k, is given by

ρk+1 = Mµk(ρk+
1
2
), ρ

k+
1
2

= Dαk−τ (ρk), (3.2)

where

• µk ∈ {g, e}, Mg(ρ) =
MgρM

†
g

Tr(MgρM
†
g)

, Me(ρ) = MeρM
†
e

Tr(MeρM
†
e)

with operators

Mg = cos (ϕ011 + ϑN) and Me = sin (ϕ011 + ϑN) (ϕ0, ϑ constant parameters). For
any n ∈ {0, . . . , nmax}, we set ϕn = ϕ0 + nϑ;

• Dα(ρ) = DαρD
†
α, where the unitary displacement operator Dα is given by Dα =

eαa
†−α∗a. In open-loop, α = 0, D0 = 11 (identity operator) and D0(ρ) = ρ. Note that

D†α = D−α;
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• µk is a random variable taking the value g when the atom k is detected in g (resp. e
when the atom k is detected in e) with probability

Pg,k = Tr

(
Mgρk+

1
2
M †

g

) (
resp. Pe,k = Tr

(
Meρk+

1
2
M †

e

))
; (3.3)

• the control elaborated at step k, αk, is subject to a delay of τ steps, τ being the
number of flying atoms between the cavity C and the detector D.

We will assume throughout this chapter that the parameters ϕ0, ϑ are chosen in order to
have Mg, Me invertible and such that the spectrum of M †

gMg = M2
g and M †

eMe = M2
e

are non-degenerate. This implies that the nonlinear operators Mg and Me are well-defined
for all ρ ∈ X , and that Mg(ρ) and Me(ρ) belongs also to the state space X defined
by (3.1). We note that Mg and Me commute, are diagonal in the Fock basis and satisfy
M †

gMg +M †
eMe = 11. This means that the measurement process achieves a quantum non-

demolition (QND) measurement for the physical observables given by projection operators
over the states { |n〉 ∈ Cnmax+1 | n ∈ {0, . . . , nmax}}. The Kraus map associated to this
Markov process is given by

Kα(ρ) = MgDαρD
†
αM

†
g +MeDαρD

†
αM

†
e . (3.4)

It corresponds to the expectation value of ρk+1 knowing ρk and αk−τ :

E [ρk+1 | ρk, αk−τ ] = Kαk−τ (ρk). (3.5)

3.2 Open-loop behavior

We consider in this section the following dynamics

ρk+1 = Mµk(ρk), (3.6)

obtained from (3.2) when αk−τ ≡ 0.

3.2.1 Simulations

Figure 3.2 corresponds to 100 realizations of this Markov process with nmax = 10 photons,
ϑ = 2

10
and ϕ0 = π

4
− 3ϑ. For each realization, ρ0 is initialized to the same coherent state

D√3(|0〉 〈0|) with Tr (Nρ0) ≈ 3 as mean photon number. We observe that 〈3|ρk|3〉 tends
either to 1 or 0. Since the ensemble average curve is almost constant, the proportion of
trajectories for which 〈3|ρk|3〉 tends to 1 is given approximatively by 〈3|ρ0|3〉.
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Figure 3.2: Fidelity with respect to the 3-photon state 〈3|ρk|3〉 versus the number of passing
atoms k ∈ {0, . . . , 400} for 100 realizations of the open-loop Markov process (3.6) (blue
fine curves) starting from the same coherent state ρ0 = D√3(|0〉 〈0|). The ensemble average
over these realizations corresponds to the thick red curve.

3.2.2 Global convergence analysis

The following theorem underlies the observations made for simulations of Figure 3.2.

Theorem 3.1. Consider the Markov process ρk obeying (3.6) with an initial condition
ρ0 ∈ X defined by (3.1). Then

• for any n ∈ {0, . . . , nmax}, Tr (ρk |n〉 〈n|) = 〈n| ρk |n〉 is a martingale,

• ρk converges with probability 1 to one of the nmax + 1 Fock states |n〉 〈n| with n ∈
{0, . . . , nmax},

• the probability to converge towards the Fock state |n〉 〈n| is given by Tr (ρ0 |n〉 〈n|) =
〈n| ρ0 |n〉.

Proof. Let us first prove that Tr (ρk |n〉 〈n|) is a martingale. Set ξ = |n〉 〈n|. We have

E [Tr (ξρk+1) | ρk] = Pg,kTr
(
ξ
MgρkM

†
g

Pg,k

)
+ Pe,kTr

(
ξMeρkM

†
e

Pe,k

)
= Tr

(
ξMgρkM

†
g

)
+ Tr

(
ξMeρkM

†
e

)
= Tr

(
ρk(M

†
gξMg +M †

e ξMe)
)
.

Since ξ commutes with Mg and Me, and M †
gMg+M †

eMe = 11, we have E [Tr (ξρk+1) | ρk] =
Tr (ξρk).
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Consider now the following function:

Vn(ρ) = f(〈n|ρ|n〉),

where f(x) = x+x2

2
. Note that f is 1-convex, f ′ ≥ 1

2
on [0, 1], and it satisfies

∀(x, y, θ) ∈ [0, 1], θf(x) + (1− θ)f(y) = θ(1−θ)
2

(x− y)2 + f(θx+ (1− θ)y). (3.7)

The function f is increasing and convex and 〈n|ρk|n〉 is a martingale. Thus Vn(ρk) is a
submartingale, E [Vn(ρk+1) | ρk] ≥ Vn(ρk). Since

〈n|Mg(ρ)|n〉 = cos2ϕn

Tr(MgρM
†
g)
〈n|ρ|n〉 , 〈n|Me(ρ)|n〉 = sin2ϕn

Tr(MeρM
†
e)
〈n|ρ|n〉 ,

we have

E [Vn(ρk+1) | ρk] = Tr
(
MgρkM

†
g

)
f

(
cos2ϕn

Tr(MgρkM
†
g)
〈n|ρk|n〉

)
+ Tr

(
MeρkM

†
e

)
f

(
sin2ϕn

Tr(MeρkM
†
e)
〈n|ρk|n〉

)
.

Then (3.7), together with

θ = Tr
(
MgρkM

†
g

)
, x = cos2ϕn

Tr(MgρkM
†
g)
〈n|ρk|n〉 , y = sin2ϕn

Tr(MeρkM
†
e)
〈n|ρk|n〉 ,

yields to

E [Vn(ρk+1) | ρk]− Vn(ρk) =

Tr
(
MgρkM

†
g

)
Tr
(
MeρkM

†
e

)
(〈n|ρk|n〉)2

2

(
cos2ϕn

Tr(MgρkM
†
g)
− sin2ϕn

Tr(MeρkM
†
e)

)2

.

We have also shown that E [Vn(ρk+1) | ρk] = Vn(ρk) implies that either 〈n|ρk|n〉 = 0 or
Tr
(
MgρkM

†
g

)
= cos2ϕn (assumption Mg and Me invertible is used here).

We apply now the invariance theorem established by Kushner [55] (recalled in Ap-
pendix A) for the Markov process ρk and the submartingale Vn(ρk). This theorem implies
that the Markov process ρk converges in probability to the largest invariant subset of{

ρ ∈ X | Tr
(
MgρM

†
g

)
= cos2ϕn or 〈n|ρ|n〉 = 0

}
.

But the set {ρ ∈ X | 〈n|ρ|n〉 = 0} is invariant. It thus remains to characterize the largest
invariant subset denoted by Xn which is included in

{
ρ ∈ X | Tr

(
MgρM

†
g

)
= cos2ϕn

}
.

Take ρ ∈ Xn. Invariance means that Mg(ρ) and Me(ρ) belong to Xn (since Mg and
Me are invertible, the probabilities to detect µ = g or µ = e are strictly positive for any
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ρ ∈ X ). Consequently, Tr
(
MgMg(ρ)M †

g

)
= Tr

(
MgρM

†
g

)
= cos2ϕn. This means that

Tr
(
M4

g ρ
)

= Tr2
(
M2

g ρ
)
. By Cauchy-Schwartz inequality,

Tr
(
M4

g ρ
)

= Tr
(
M4

g ρ
)

Tr (ρ) ≥ Tr2
(
M2

g ρ
)

with equality if and only if M4
g ρ and ρ are co-linear. M4

g being non-degenerate, ρ is neces-
sarily a projector over an eigenstate of M4

g , i.e., ρ = |m〉 〈m| for some m ∈ {0, . . . , nmax}.
Since Tr

(
MgρM

†
g

)
= cos2ϕn > 0, m = n and thus Xn is reduced to {|n〉 〈n|}. Therefore

the only possibilities for the ω-limit set are Tr (ρ |n〉 〈n|) = 0 or 1 and

Wn(ρk) = Tr (ρk |n〉 〈n|) (1− Tr (ρk |n〉 〈n|))
k→∞−→ 0 in probability.

The convergence in probability together with the fact that Wn(ρk) is a positive bounded
(Wn ∈ [0, 1]) random process implies the convergence in expectation. Indeed

lim sup
k→∞

E [Wn(ρk)] ≤ ε lim sup
k→∞

P (Wn(ρk) ≤ ε) + lim sup
k→∞

P (Wn(ρk) > ε)

≤ ε+ lim sup
k→∞

P (Wn(ρk) > ε) ≤ ε,

where for the last inequality, we have applied the convergence in probability of Wn(ρk)
towards 0. As the above inequality is valid for any ε > 0, we have

lim
k→∞

E [Wn(ρk)] = 0.

Furthermore, by the first part of Theorem 3.1, we know that Tr (ρk |n〉 〈n|) is a bounded
martingale and therefore by Doob’s first martingale convergence theorem (see Theorem A.1
in Appendix A), Tr (ρk |n〉 〈n|) converges almost surely towards a random variable l∞n ∈
[0, 1]. This implies that Wn(ρk) converges almost surely towards the random variable
l∞n (1− l∞n ) ∈ [0, 1]. We apply now the dominated convergence theorem to get

E [l∞n (1− l∞n )] = E
[

lim
k→∞

Wn(ρk)
]

= lim
k→∞

E [Wn(ρk)] = 0.

This implies that l∞n (1− l∞n ) vanishes almost surely and therefore

Wn(ρk) = Tr (ρk |n〉 〈n|) (1− Tr (ρk |n〉 〈n|))
k→∞−→ 0 almost surely.

Since we can repeat this same analysis for any choice of n ∈ {0, 1, . . . , nmax}, ρk converges
almost surely to the set of Fock states

{|n〉 〈n| | n = 0, 1, . . . , nmax},

which ends the proof of the second part.
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We have shown so far that the probability measure associated to the random variable
ρk converges to the probability measure

nmax∑
n=0

pnδ(|n〉 〈n|),

where δ(|n〉 〈n|) denotes the Dirac distribution at |n〉 〈n| and pn is the probability of con-
vergence towards |n〉 〈n|. In particular, we have

E [Tr (|n〉 〈n| ρk)]
k→∞−→ pn.

But Tr (|n〉 〈n| ρk) is a martingale and E [Tr (|n〉 〈n| ρk)] = E [Tr (|n〉 〈n| ρ0)]. Thus pn =
〈n| ρ0 |n〉 , which ends the proof of the third and last part.

3.2.3 Local convergence rate

According to Theorem 3.1, the ω-limit set of the Markov process (3.6) is the discrete set
of Fock states {|n〉 〈n|}n∈{0,...,nmax}. We investigate here the local convergence rate around
one of these Fock states denoted by ρ̄ = |n̄〉 〈n̄| for some n̄ ∈ {0, . . . , nmax}.

Since Mg(ρ̄) = Me(ρ̄) = ρ̄, we can develop the dynamics (3.6) around the fixed point
ρ̄. We write ρ = ρ̄ + δρ with δρ small, Hermitian and with zero trace. Keeping only the
first order terms in (3.6), we have

δρk+1 =
Mµk

δρkM
†
µk

Tr(Mµk
ρ̄M†µk)

− Tr(Mµk
δρkM

†
µk)

Tr(Mµk
ρ̄M†µk)

ρ̄.

Thus, the linearized Markov process around the fixed point ρ̄ reads

δρk+1 = AµkδρkA
†
µk
− Tr

(
AµkδρkA

†
µk

)
ρ̄, (3.8)

where the random matrices Aµk are given by :

• Ag = Mg

cosϕn̄
with probability Pg = cos2ϕn̄ and

• Ae = Me

sinϕn̄
with probability Pe = sin2ϕn̄.

The following proposition shows that the convergence of the linearized dynamics is expo-
nential (a crucial robustness indicator).

Proposition 3.1. Consider the linear Markov chain (3.8) of state δρ belonging to the set
of Hermitian matrices with zero trace. Then the largest Lyapunov exponent Λ is given by

Λ = max
n ∈ {0, . . . , nmax}

n 6= n̄

(
cos2ϕn̄ log

(
| cosϕn|
| cosϕn̄|

)
+ sin2ϕn̄ log

(
| sinϕn|
| sinϕn̄|

))
,

where ϕn = ϕ0 + nϑ. In addition, Λ is strictly negative, Λ < 0.
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Proof. Set δρn1,n2 = 〈n1|δρ|n2〉 for any n1, n2 ∈ {0, . . . , nmax}. Since Tr (δρk) ≡ 0, we
exclude here the case (n1, n2) = (n̄, n̄) because δρn̄,n̄k = −

∑
n6=n̄ δρ

n,n
k . Since Ae and Ag are

diagonal matrices, we have

δρn1,n2

k+1 = an1,n2
µk

δρn1,n2

k , (3.9)

where µk = g (resp. µk = e) with probability cos2 ϕn̄ (resp. sin2 ϕn̄) and where an1,n2
g =

cosϕn1 cosϕn2

cos2 ϕn̄
and an1,n2

e =
sinϕn1 sinϕn2

sin2 ϕn̄
.

Denote by Λn1,n2 the Lyapunov exponent of (3.9) for (n1, n2) 6= (n̄, n̄). By the law of

large numbers, we know that
log(|∏l=k

l=0 a
n1,n2
µk |)

k+1
converges almost surely towards

cos2ϕn̄ log(|an1,n2
g |) + sin2ϕn̄ log(|an1,n2

e |).

Thus, we have

Λn1,n2 = cos2 ϕn̄

(
log
(
| cosϕn1 |
| cosϕn̄|

)
+ log

(
| cosϕn2 |
| cosϕn̄|

))
+ sin2 ϕn̄

(
log
(
| sinϕn1 |
| sinϕn̄|

)
+ log

(
| sinϕn2 |
| sinϕn̄|

))
.

The function

[
0,
π

2

]
3 ϕ 7→

(
cosϕ

| cosϕn̄|

)cos2 ϕn̄ ( sinϕ

| sinϕn̄|

)sin2 ϕn̄

increases strictly from 0 to 1 when ϕ goes from 0 to arcsin(| sinϕn̄|), and decreases strictly
from 1 to 0 when ϕ goes from arcsin(| sinϕn̄|) to π

2
. Since (n1, n2) 6= (n̄, n̄), we have

Λn1,n2 < 0. Denote Λn = Λn,n̄ for n ∈ {0, . . . , nmax}:

Λn = cos2ϕn̄ log
(
| cosϕn|
| cosϕn̄|

)
+ sin2ϕn̄ log

(
| sinϕn|
| sinϕn̄|

)
.

Since (n1, n2) 6= (n̄, n̄), we have Λn1,n2 ≤ maxn 6=n̄ Λn and Λ = maxn 6=n̄ Λn is strictly nega-
tive.

3.3 Feedback stabilization with delays

Throughout this section we assume that we have access at each step k to the cavity state ρk.
The goal is to design a causal feedback law that stabilizes globally the Markov chain (3.2)
towards a goal Fock state ρ̄ = |n̄〉 〈n̄| with n̄ photon(s), n̄ ∈ {0, . . . , nmax}. To be consistent
with truncation to nmax photons, n̄ has to be far from nmax (typically n̄ = 3 with nmax = 10
in the simulations below).
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Figure 3.3: Fidelity with respect to the 3-photon state Tr (ρkρ̄) = 〈3|ρk|3〉 versus k ∈
{0, . . . , 400} for 100 realizations of the closed-loop Markov process (3.2) with feedback (3.10)
(blue fine curves) starting from the same state ρ0 = D√3(|0〉 〈0|) (no delay, τ = 0). The ensemble
average over these realizations corresponds to the thick red curve.
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Figure 3.4: Tr (ρkρ̄) = 〈3|ρk|3〉 versus k ∈ {0, . . . , 400} for 100 realizations of the closed-
loop Markov process (3.12) with feedback (3.11) (blue fine curves) starting from the same state
χ0 = (D√3(|0〉 〈0|), 0, . . . , 0) and with 5-step delay (τ = 5). The ensemble average over these
realizations corresponds to the thick red curve.
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3.3.1 Feedback scheme and closed-loop simulations

The feedback is based on the fact that, in open-loop when αk ≡ 0, Tr (ρ̄ρk) = 〈n̄|ρk|n̄〉
is a martingale. When τ = 0, [68] proves global almost sure convergence of the following
feedback law

αk =

{
εTr (ρ̄ [ρk, a]) if Tr (ρ̄ρk) ≥ ς, and
argmax
|α|≤ᾱ

(Tr (ρ̄ Dα(ρk))) if Tr (ρ̄ρk) < ς, (3.10)

for any ᾱ > 0 when ε, ς > 0 are small enough. This feedback law ensures that Tr (ρ̄ρk) is
a submartingale.

When τ > 0, we cannot set αk−τ = εTr (ρ̄ [ρk, a]) since αk will depend on ρk+τ and the
feedback law is not causal. In [36], this feedback law is made causal by replacing ρk+τ by
its expectation value (average prediction) ρpred

k knowing ρk and the past controls αk−1, . . . ,
αk−τ :

ρpred

k = Kαk−1
◦ . . . ◦Kαk−τ (ρk),

where the Kraus map Kα is defined by (3.4).
We will thus consider here the following causal feedback based on an average compen-

sation of the delay τ

αk =

{
εTr (ρ̄ [ρpred

k , a]) if Tr (ρ̄ρpred

k ) ≥ ς, and
argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρpred

g,k )
)

Tr
(
ρ̄ Dα(ρpred

e,k )
))

if Tr (ρ̄ρpred

k ) < ς, (3.11)

with {
ρpred

g,k = Kαk−1
◦ . . . ◦Kαk−τ+1

(MgDαk−τρkD
†
αk−τ

M †
g )

ρpred

e,k = Kαk−1
◦ . . . ◦Kαk−τ+1

(MeDαk−τρkD
†
αk−τ

M †
e )

The closed-loop system, i.e., Markov chain (3.2), with the causal feedback (3.11), is still a
Markov chain but with (ρk, αk−1, . . . , αk−τ ) as state at step k. More precisely, denote by
χ = (ρ, β1, . . . , βτ ) this state where βl stands for the control α delayed l steps. Then the
state form of the closed-loop dynamics reads

ρk+1 = Mµk(Dβτ,k(ρk))
β1,k+1 = αk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(3.12)

The control law defined by (3.11) corresponds to a static state feedback since
ρpred

k = ρpred(χk) = E [ρk+τ | χk] = Kβ1,k
◦ . . . ◦Kβτ,k(ρk)

ρpred

g,k = ρpred
g (χk) = Kβ1,k

◦ . . . ◦Kβτ−1,k
(MgDβτ,kρkD

†
βτ,k

M †
g )

ρpred

e,k = ρpred
e (χk) = Kβ1,k

◦ . . . ◦Kβτ−1,k
(MeDβτ,kρkD

†
βτ,k

M †
e ).

(3.13)
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Note that ρpred

k = ρpred

g,k + ρpred

e,k .
Simulations displayed on Figures 3.3 and 3.4 correspond to 100 realizations of the

above closed-loop systems with τ = 0 and τ = 5. The goal state ρ̄ = |3〉 〈3| contains n̄ = 3
photons and nmax, ϕ0 and ϑ are those used for the open-loop simulations of Figure 3.2. Each
realization starts with the same coherent state ρ0 = D√3(|0〉 〈0|) and β1,0 = . . . = βτ,0 = 0.
The feedback parameters appearing in (3.11) are as follows:

ε = 1
2n̄+1

= 1
7
, ς = 1

10
, ᾱ = 1.

These simulations illustrate the influence of the delay τ on the average convergence speed:
the longer the delay is the slower convergence speed becomes.

Remark 1. The choice of the feedback law whenever Tr (ρ̄ρpred

k ) < ς might seem compli-
cated for real-time simulation issues. However, this choice is only technical. Actually, any
non-zero constant feedback law seems to achieve the task here (see for instance the simula-
tions of [36]). However, the convergence proof for such simplified control scheme is more
complicated and is not considered in this chapter.

3.3.2 Global convergence in closed-loop

The main result of this section is the following theorem.

Theorem 3.2. Take the Markov chain (3.12) with the feedback (3.11) where ρpred

k , ρpred

g,k

and ρpred

e,k are given by (3.13) with ᾱ > 0. Then, for small enough ε > 0 and ς > 0, the
state χk converges almost surely towards χ̄ = (ρ̄, 0, . . . , 0) whatever the initial condition
χ0 ∈ X × Cτ is . Here the compact set X is defined as in (3.1).

Proof. The proof is based on the Lyapunov-type function

V(χ) = f (Tr (ρ̄ρpred)) with ρpred = Kβ1 ◦ . . . ◦Kβτ (ρ), (3.14)

where f(x) = x+x2

2
has already been used in the proof of Theorem 3.1. The proof relies on

the following four lemmas:

• in Lemma 3.1, we prove an inequality showing that, for small enough ε, V(χ) and
Tr (ρ̄ρpred(χ)) are submartingales within {χ | Tr (ρ̄ρpred) ≥ ς};

• in Lemma 3.2, we show that for small enough ς, the trajectories starting within the
set {χ | Tr (ρ̄ρpred) < ς} always reach in one step the set {χ | Tr (ρ̄ρpred) ≥ 2ς};

• in Lemma 3.3, we show that the trajectories starting within the set {χ | Tr (ρ̄ρpred) ≥
2ς}, will never hit the set {χ | Tr (ρ̄ρpred) < ς} with a uniformly non-zero probability
p > 0;

• in Lemma 3.4, we combine the first step and the invariance principle due to Kushner,
to prove that almost all trajectories remaining inside {χ | Tr (ρ̄ρpred) ≥ ς} converge
towards χ̄ = (ρ̄, 0, . . . , 0).
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The combination of Lemmas 3.2, 3.3 and 3.4 shows then directly that χk converges almost
surely towards χ̄. We detail now these four lemmas.

Lemma 3.1. For ε > 0 small enough and for χk satisfying Tr (ρ̄ρpred(χk)) ≥ ς,

E [Tr (ρ̄ρpred(χk+1)) | χk] ≥ Tr (ρ̄ρpred(χk)) + ε |Tr (ρ̄ [ρpred

k , a])|2 ,

and also

E [V(χk+1) | χk] ≥ V(χk) + ε
2
|Tr (ρ̄ [ρpred

k , a])|2

+
Pg,kPe,k

2
(Tr

(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k
◦Mg ◦ Dβτ,k(ρk)

)
− Tr

(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k
◦Me ◦ Dβτ,k(ρk)

))2

. (3.15)

Proof. Since M †
gMg +M †

eMe = 11 and [ρ̄,Mg] = [ρ̄,Me] = 0, we have

Tr
(
ρ̄ Kβ1,k+1

◦Kβ2,k+1
◦ . . . ◦Kβτ,k+1

(ρk+1)
)

=

Tr
(
ρ̄ Dβ1,k+1

◦Kβ2,k+1
◦ . . . ◦Kβτ,k+1

(ρk+1)
)
.

Also, we have

E
[
f
(
Tr
(
ρ̄ Kβ1,k+1

◦Kβ2,k+1
◦ . . . ◦Kβτ,k+1

(ρk+1)
))
| χk

]
=

Pg,kf
(
Tr
(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k
◦Mg ◦ Dβτ,k(ρk)

))
+

Pe,kf
(
Tr
(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k
◦Me ◦ Dβτ,k(ρk)

))
.

By (3.7) we find

E [V(χk+1) | χk] = f
(
Tr
(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k
◦Kβτ,k(ρk)

))
+

Pg,kPe,k
2

(
Tr
(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k

(
Mg ◦ Dβτ,k(ρk)−Me ◦ Dβτ,k(ρk)

)) )2

Since ρpred(χk) = ρpred

k = Kβ1,k
◦ . . . ◦Kβτ−1,k

◦Kβτ,k(ρk) we have

Tr
(
ρ̄ Dαk ◦Kβ1,k

◦ . . . ◦Kβτ−1,k
◦Kβτ,k(ρk)

)
= Tr (ρ̄ Dαk(ρ

pred

k )) .

For small α the Baker-Campbell-Hausdorff formula yields

Dα(ρ) = eαa
†−α∗a ρ e−(αa†−α∗a) = ρ+ [αa† − α∗a, ρ] +O(|α|2).

Consequently

Tr (ρ̄ Dαk(ρ
pred

k )) = Tr (ρ̄ ρpred

k ) + Tr
(
ρ̄ [αka

† − α∗ka, ρ
pred

k ]
)

+O(|αk|2).
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Since αk = εTr (ρ̄[ρpred

k , a]), we get

Tr (ρ̄ Dαk(ρ
pred

k )) = Tr (ρ̄ ρpred

k ) + 2ε |Tr (ρ̄[ρpred

k , a])|2 +O(ε2).

We infer that for ε > 0 small enough, uniformly in ρpred

k ∈ X ,

Tr (ρ̄ Dαk(ρ
pred

k )) ≥ Tr (ρ̄ ρpred

k ) + ε |Tr (ρ̄[ρpred

k , a])|2 .

Using the fact that f is increasing and f(x+ y) ≥ f(x) + y/2 for any x, y > 0, we get

f (Tr (ρ̄ Dαk(ρ
pred

k ))) ≥ f((Tr (ρ̄ ρpred

k )) + ε
2
|Tr (ρ̄[ρpred

k , a])|2 ,

which finishes the proof of the lemma.

Lemma 3.2. When ς > 0 is small enough, any state χk satisfying the inequality Tr (ρ̄ρpred(χk)) <
ς yields a new state χk+1 such that Tr (ρ̄ρpred(χk+1)) ≥ 2ς.

Proof. SinceMg andMe are invertible, there exists ζ ∈]0, 1[ such that for any χ, Tr
(
ρpred
g (χ)

)
≥

ζ and Tr (ρpred
e (χ)) ≥ ζ (ρpred

g and ρpred
e are defined in (3.13)). Denote by Xζ the compact

set of Hermitian semi-definite positive matrices with trace in [ζ, 1]: for any χ, ρpred
g (χ) and

ρpred
e (χ) are in Xζ . Let us first prove that for any ρg, ρe ∈ Xζ ,

max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe))) > 0. (3.16)

If for some ρg, ρe ∈ Xζ the above maximum is zero, then for all α ∈ C (analyticity of Dα

versus <(α) and =(α) 1:
Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe)) ≡ 0.

This implies that either Tr (ρ̄ Dα(ρg)) ≡ 0 or Tr (ρ̄ Dα(ρe)) ≡ 0 (if the product of two
analytic functions is zero, one of them is zero). Take ρ ∈ Xζ such that Tr (ρ̄ Dα(ρ)) ≡ 0.
We can decompose ρ as a sum of projectors

ρ =
m∑
ν=1

λν |ψν〉 〈ψν | ,

where λν are strictly positive eigenvalues,
∑

ν λν ∈ [ζ, 1], and ψν are the associated nor-
malized eigenstates of ρ, 1 ≤ m ≤ nmax. Since Tr (ρ̄ Dα(ρ)) ≡ 0 for all α ∈ C , we have
for all ν, 〈ψν | Dα|n̄〉 = 0. Fixing one ν ∈ {1, . . . ,m} and taking ψ = ψν noting that
Dα = exp(<(α)(a†−a) + ı=(α)(a†+a) and deriving j times versus <(α) and =(α) around
α = 0, we get 〈

ψ | (a† − a)j|n̄
〉

=
〈
ψ | (a† + a)j|n̄

〉
= 0 ∀j ≥ 0.

With j = 0, we get, 〈ψ |n̄〉 = 0. With j = 1, since a† |n̄〉 =
√
n̄+ 1 |n̄+ 1〉 and a |n̄〉 =√

n̄ |n̄− 1〉 , we get 〈ψ |n̄− 1〉 = 〈ψ |n̄+ 1〉 = 0. With j = 2, using the null Hermitian

1The notations <(A) and =(A) denote respectively the real and the imaginary part of A
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products obtained for j = 0 and 1, we deduce that 〈ψ |n̄− 2〉 = 〈ψ |n̄+ 2〉 = 0, since
aa† |n̄〉 and a†a |n̄〉 are colinear to |n̄〉. Similarly, for any j using the null Hermitian products
obtained for j′ < j, we deduce that 〈ψ |max(0, n̄− j)〉 = 〈ψ |min(nmax, n̄+ j)〉 = 0. Thus,
for any n, 〈ψ|n〉 = 0, |ψ〉 = 0 and we get a contradiction. Thus (3.16) holds true for any
ρg, ρe ∈ Xζ .

The map F

F : (ρg, ρe) 7→ F (ρg, ρe) = max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe)))

is continuous. We have proved that for all ρg, ρe in the compact set Xζ , F (ρg, ρe) > 0.
Therefore, there exists δ > 0 such that F (ρg, ρe) ≥ δ for any ρg, ρe ∈ Xζ . Take α̃ an
argument of the maximum,

Tr (ρ̄ Dα̃(ρg)) Tr (ρ̄ Dα̃(ρe)) = max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe))) ≥ δ.

Since Tr (ρ̄ Dα̃(ρg)) ≤ 1 (Cauchy-Schwartz inequality for the Frobenius product) and
Tr (ρ̄ Dα̃(ρe)) ≤ 1, we have Tr (ρ̄ Dα̃(ρg)) ≥ δ and Tr (ρ̄ Dα̃(ρe)) ≥ δ.

Take now ς < δ
2

and χk such that Tr (ρ̄ρpred(χk)) ≤ ς. According to (3.11), αk is chosen
as an argument of

max
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρpred

g,k )
)

Tr
(
ρ̄ Dα(ρpred

e,k )
))
,

where ρpred

g,k , ρ
pred

e,k ∈ Xζ . Thus, Tr
(
ρ̄ Dαk(ρ

pred

g,k )
)
≥ δ and Tr

(
ρ̄ Dαk(ρ

pred

e,k )
)
≥ δ. But either

ρpred

k+1 = 1
Pg,k

Kαk(ρ
pred

g,k ) or ρpred

k+1 = 1
Pe,k

Kαk(ρ
pred

e,k ) where 0 < Pg,k, Pe,k < 1. Since we have the

identity Tr (ρ̄Kα(ρ)) = Tr (ρ̄Dα(ρ)) , because ρ̄ commutes with Mg and Me, we conclude
that Tr (ρ̄ ρpred(χk+1)) ≥ δ ≥ 2ς.

Lemma 3.3. Initializing the Markov process χk within the set {χ | Tr (ρ̄ρpred(χ)) ≥ 2ς},
with some probability

p >
ς

1− ς
> 0,

χk will never hit the set {χ | Tr (ρ̄ρpred(χ)) < ς}

Proof. We know from Lemma 3.1 that the process 1 − Tr (ρ̄ρpred(χ)) is a supermartingale
in the set {χ | Tr (ρ̄ρpred(χ)) ≥ ς}. Therefore, one only needs to use the Doob’s inequality
recalled in Appendix A:

P
(

sup
0≤k<∞

(1− Tr (ρ̄ρpred(χk))) > 1− ς
)
>

1− Tr (ρ̄ρpred(χ0))

1− ς
≥ 1− 2ς

1− ς
,

which shows the lemma for p > 1− 1−2ς
1−ς = ς

1−ς .

Lemma 3.4. Sample paths χk remaining in the set {Tr (ρ̄ρpred(χ)) ≥ ς} converges almost
surely to χ̄ as k →∞.
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Proof. We apply first the Kushner’s invariance theorem to the Markov process χk with
the submartingale function V(χk). It ensures convergence in probability towards I the
largest invariant set attached to this submartingale (see Appendix A). Let us prove that
I is reduced to {χ̄}.

By inequality (3.15), if (ρ, β1, . . . , βτ ) = χ belongs to I, then Tr (ρ̄ [ρpred(χ), a]) = 0,
i.e., α ≡ 0 and also

Tr
(
ρ̄ Dα ◦Kβ1 ◦ . . . ◦Kβτ−1 ◦Mg ◦ Dβτ (ρ)

)
=

Tr
(
ρ̄ Dα ◦Kβ1 ◦ . . . ◦Kβτ−1 ◦Me ◦ Dβτ (ρ)

)
.

Invariance associated α ≡ 0 implies that β1 = . . . = βτ = 0. Hence the above equality
reads

Tr (ρ̄ Mg(ρ)) = Tr (ρ̄ Me(ρ)) ,

where we have used the fact that, for any % ∈ X , Tr (ρ̄ K0(%)) = Tr (ρ̄ D0(%)) = Tr (ρ̄%).
Then ρ satisfies the equation

Tr
(
ρ̄MgρM

†
g

)
Tr
(
MeρM

†
e

)
= Tr

(
ρ̄MeρM

†
e

)
Tr
(
MgρM

†
g

)
that reads,

cos2ϕn̄Tr
(
MeρM

†
e

)
= sin2ϕn̄Tr

(
MgρM

†
g

)
,

since M †
g ρ̄Mg = cos2ϕn̄ ρ̄, M †

e ρ̄Me = sin2ϕn̄ ρ̄ and Tr (ρ̄ρ) > 0.

Since Tr
(
MeρM

†
e

)
+ Tr

(
MgρM

†
g

)
= 1, we recover Tr

(
MgρM

†
g

)
= cos2ϕn̄ the same

condition as the one appearing at the end of the proof of Theorem 3.1. Similar invariance
arguments combined with Tr (ρ̄ρ) > 0 imply ρ = ρ̄. We conclude that I is reduced to {χ̄}.

Consider now the event P≥ς = {∀k ≥ 0, Tr (ρ̄ρpred(χk)) ≥ ς}}. Convergence of χk in
probability towards χ̄ means that

∀δ > 0, lim
k→∞

P (‖χk − χ̄‖ > δ | P≥ς) = 0,

where ‖ · ‖ is any norm on the χ-space. The continuity of χ 7→ Tr (ρ̄ρpred(χ)) implies that,
∀δ > 0,

lim
k→∞

P (Tr (ρ̄ρpred(χk)) < 1− δ | P≥ς) = 0.

Since 0 ≤ Tr (ρ̄ρpred(χ)) ≤ 1, we have

1 ≥ E [Tr (ρ̄ρpred(χk)) | P≥ς ] ≥ (1− δ)P (1− δ ≤ Tr (ρ̄ρpred(χk)) | P≥ς) .

Thus

1 ≥ E [Tr (ρ̄ρpred(χk)) | P≥ς ] ≥ 1− δ − P (Tr (ρ̄ρpred(χk)) < 1− δ | P≥ς) .

Consequently, ∀δ > 0, lim sup
k→∞

E [Tr (ρ̄ρpred(χk)) | P≥ς ] ≥ 1− δ, i.e.,

lim
k→∞

E [Tr (ρ̄ρpred(χk)) | P≥ς ] = 1.
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The process Tr (ρ̄ρpred(χk)) is a bounded submartingale and so, by Theorem A.1 of Ap-
pendix A, we know that it converges for almost all trajectories remaining in the set
{Tr (ρ̄ρpred(χ)) ≥ ς}. Denoting the limit random variable by fid∞, we have by the domi-
nated convergence theorem

E [fid∞] = E
[

lim
k→∞

Tr (ρ̄ρpred(χk)) | P≥ς
]

= lim
k→∞

E [Tr (ρ̄ρpred(χk)) | P≥ς ] = 1.

This trivially proves that fid∞ ≡ 1 almost surely and finishes the proof of the lemma.

3.3.3 Convergence rate around the target state

Around the target state χ̄ = (ρ̄, 0, . . . , 0), the closed-loop dynamics reads

ρk+1 = Mµk(Dβτ,k(ρk))

β1,k+1 = εTr
(
[a, ρ̄] Kβ1,k

◦ . . . ◦Kβτ,k(ρk)
)

β2,k+1 = β1,k

...

βτ,k+1 = βτ−1,k.

Set χ = χ̄+ δχ with δχ = (δρ, δβ1, . . . , δβτ ) small. Computations based on

Dδβ(ρ̄) = ρ̄+
(
δβ[a†, ρ̄]− δβ∗[a, ρ̄]

)
+O(|δβ|2),

Kδβ(ρ̄) = K0(ρ̄) + cosϑ
(
δβ[a†, ρ̄]− δβ∗[a, ρ̄]

)
+O(|δβ|2),

K0(ρ̄) = ρ̄, K0([a†, ρ̄]) = cosϑ [a†, ρ̄], K0([a, ρ̄]) = cosϑ [a, ρ̄],

Tr
(
[a, ρ̄][a†, ρ̄]

)
= −(2n̄+ 1) and Tr

(
[a, ρ̄]2

)
= 0,

yield the following linearized closed-loop system

δρk+1 = Aµk
(
δρk + δβτ,k[a

†, ρ̄]− δβ∗τ,k[a, ρ̄]
)
A†µk − Tr

(
AµkδρkA

†
µk

)
ρ̄

δβ1,k+1 = −ε(2n̄+ 1)
(∑τ

j=1 cosjϑ δβj,k

)
+ ε cosτϑ Tr (δρk[a, ρ̄])

δβ2,k+1 = δβ1,k
...

δβτ,k+1 = δβτ−1,k

(3.17)

where µk ∈ {g, e}, and the random matrices Aµk are given by Ag = Mg

cosϕn̄
with probability

Pg = cos2ϕn̄ and Ae = Me

sinϕn̄
with probability Pe = sin2ϕn̄.

Set δρn1,n2

k = 〈n1|δρk|n2〉 for any n1, n2 ∈ {0, . . . , nmax}. Since Tr (δρk) ≡ 0, we exclude
here the case (n1, n2) = (n̄, n̄) because δρn̄,n̄k = −

∑
n6=n̄ δρ

n,n
k . When (n1, n2) does not
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belong to {(n̄− 1, n̄), (n̄+ 1, n̄), (n̄, n̄− 1), (n̄, n̄+ 1)}, we recover the open-loop linearized
dynamics (3.9):

δρn1,n2

k+1 = an1,n2
µk

δρn1,n2

k ,

where µk = g (resp. µk = e) with probability cos2ϕn̄ (resp. sin2ϕn̄), and where an1,n2
g =

cosϕn1 cosϕn2

cos2ϕn̄
and an1,n2

e =
sinϕn1 sinϕn2

sin2ϕn̄
. A direct adaptation of the proof of Proposition 3.1

shows that the largest Lyapounov exponent Λ0 of this dynamics is strictly negative and is
given by

Λ0 = max
n ∈ {0, . . . , nmax}
n 6= n̄− 1, n̄, n̄+ 1

(
cos2ϕn̄ log

(
| cosϕn|
| cosϕn̄|

)
+ sin2ϕn̄ log

(
| sinϕn|
| sinϕn̄|

))
.

For (n1, n2) ∈ {(n̄ − 1, n̄), (n̄ + 1, n̄), (n̄, n̄ − 1), (n̄, n̄ + 1)}, we just have to consider
x = δρn̄,n̄−1 and y = δρn̄+1,n̄, since δρ is Hermitian. Set zj,k = δβj,k. We deduce from (3.17)
that the process Xk = (xk, yk, z1,k, . . . , zτ,k) is governed by

xk+1 = aµk(xk −
√
n̄zτ,k)

yk+1 = bµk(yk +
√
n̄+ 1zτ,k)

z1,k+1 = −ε(2n̄+ 1)
(∑τ

j=1 cosjϑzj,k

)
+ ε cosτϑ

(√
n̄xk −

√
n̄+ 1yk

)
z2,k+1 = z1,k

...
zτ,k+1 = zτ−1,k,

(3.18)

where µk = g (resp. µk = e) with probability cos2ϕn̄ (resp. sin2ϕn̄), and

ag = cosϕn̄−1

cosϕn̄
, ae = sinϕn̄−1

sinϕn̄
, bg = cosϕn̄+1

cosϕn̄
, be = sinϕn̄+1

sinϕn̄
.

Take s > 0 to be defined later, set Σ = | cosϑ| ∈]0, 1[ and consider

P(X) = |x|+ |y|+ s
(
|z1|+ Σ|z2|+ . . .+ Στ−1|zτ |

)
.

A direct computation exploiting (3.18) yields

E [P(Xk+1) | Xk] = Σ|xk −
√
n̄zτ,k|+ Σ|yk +

√
n̄+ 1zτ,k|

+ Σs
(
|z1,k|+ Σ|z2,k|+ . . .+ Στ−2|zτ−1,k|

)
+ εs

∣∣∣∣∣−(2n̄+ 1)

(
τ∑
j=1

cosjϑzj,k

)
+ cosτϑ

(√
n̄xk −

√
n̄+ 1yk

)∣∣∣∣∣ .
Thus,

E [P(Xk+1) | Xk] ≤ (Σ + εsΣτ
√
n̄+ 1)(|xk|+ |yk|)

+ Σ(1 + ε(2n̄+ 1))s
(
|z1,k|+ . . .+ Στ−2|zτ−1,k|+ Σ1−τ (

√
n̄+
√
n̄+1)+εs(2n̄+1)

(1+ε(2n̄+1))s
Στ−1|zτ,k|

)
.
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For the value s =
√
n̄+
√
n̄+1

Στ−1 , we get

E [P(Xk+1) | Xk] ≤ Σ(1 + 2ε(n̄+ 1)) P(Xk).

Because Σ < 1, for ε > 0 small enough (ε < 1−Σ
2(n̄+1)

), the norm P(Xk) is a supermartingale
converging exponentially almost surely towards zero. Therefore the largest Lyapunov ex-
ponent of the linear Markov chain (3.18) is strictly negative. To conclude, we have proved
the following proposition:

Proposition 3.2. Consider the linear Markov chain (3.17). For small enough ε > 0, its
largest Lyapunov exponent is strictly negative.

Remark 2. We remark that the delay τ can be taken arbitrary large. This can be observed
through the proof of Theorem 3.2 that our stability result does not depend on the number
of delays. However, it is not necessarily interesting for the experimentalists to take a large
delay which decreases the convergence rate.

3.4 Quantum filter and separation principle

The feedback law (3.11) requires the knowledge of (ρk, β1,k, . . . , βτ,k). When the mea-
surement process is fully efficient and the jump model (3.2) admits no error, the Markov
system (3.12) represents a natural choice for the quantum filter to estimate the value of ρ.
Indeed, we define the estimator χek = (ρek, β1,k, . . . , βτ,k) satisfying the dynamics

ρek+1 = Mµk(Dβτ,k(ρ
e
k))

β1,k+1 = αk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(3.19)

Note that, similarly to any observer-controller structure, the jump result, µk = g or e, is
the output of the physical system (3.2) but the feedback control αk is a function of the
estimator ρe. Indeed, αk is defined as in (3.11):

αk =

{
εTr
(
ρ̄ [ρpred,e

k , a]
)

if Tr
(
ρ̄ρpred,e

k

)
≥ ς

argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρpred,e

g,k )
)

Tr
(
ρ̄ Dα(ρpred,e

e,k )
))

if Tr
(
ρ̄ρpred,e

k

)
< ς (3.20)

where the predictor’s state ρpred,e
k is defined as follows:

ρpred,e
k = Kαk−1

◦ . . . ◦Kαk−τ (ρ
e
k)

ρpred,e
g,k = Kαk−1

◦ . . . ◦Kαk−τ+1
(MgDαk−τρ

e
kD
†
αk−τ

M †
g )

ρpred,e
e,k = Kαk−1

◦ . . . ◦Kαk−τ+1
(MeDαk−τρ

e
kD
†
αk−τ

M †
e ).

We will see through this section that, even if do not have any a priori knowledge of the
initial state of the physical system, the choice of the feedback law through the above
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quantum filter can ensure the convergence of the system towards the desired Fock state.
Indeed, we prove a semi-global robustness of the feedback scheme with respect to the choice
of the initial state of the quantum filter.

Before going through the details of this robustness analysis, let us illustrate it through
some numerical simulations in the next subsection.

3.4.1 Quantum filter and closed-loop simulations

In the simulations of Figure 3.5, we assume no a priori knowledge on the initial state
of the system. Therefore, we initialize the filter equation at the maximally mixed state
ρe0 = 1

nmax+1
11(nmax+1)×(nmax+1). Computing the feedback control through the above quantum

filter and injecting it to the physical system modeled by (3.2), the fidelity (with respect to
the target Fock state) of the closed-loop trajectories of the physical system are illustrated in
the first plot of Figure 3.5. The second plot of this figure illustrate the Frobenius distance
between the estimator ρe and the physical state ρ. As one can easily see, one still has the
convergence of the quantum filter and the physical system to the desired Fock state (here
|3〉 〈3|).

Through these simulations, we have considered the same measurement and control
parameters as those of Section 3.3. The system is initialized at the coherent state ρ0 =
D√3(|0〉 〈0|) while the quantum filter is initialized at ρe0 = 1

nmax+1
11(nmax+1)×(nmax+1).

Through the next subsection, we establish a sort of separation principle implying this
semi-global robustness of the closed-loop system with respect to the initial state of the
filter equation. Also through the short Subsection 3.4.3 we provide a heuristic analysis of
the local convergence rate of the filter equation around the target Fock state.

3.4.2 A quantum separation principle

We consider the joint system-observer dynamics defined for the state Ξk = (ρk, ρ
e
k, β1,k, . . . , βτ,k):

ρk+1 = Mµk(Dβτ,k(ρk))
ρek+1 = Mµk(Dβτ,k(ρ

e
k))

β1,k+1 = αk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(3.21)

We have the following result, a quantum version of the separation principle, ensuring the
asymptotic stability of observer/controller from the stability of the observer and of the
controller separatly.

Theorem 3.3. Consider any closed-loop system of the form (3.21), where the feedback
law αk is a function of the quantum filter: αk = g(ρek, β1,k, . . . , βτ,k). Assume more-
over that, whenever ρe0 = ρ0 (so that the quantum filter coincides with the closed-loop
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Figure 3.5: (First plot) Tr (ρkρ̄) = 〈3|ρk|3〉 versus k ∈ {0, . . . , 400} for 100 realizations of the
closed-loop Markov process (3.2) with feedback (3.20) based on the quantum filter (3.19) starting
from the same state χe0 = ( 1

nmax+111(nmax+1)×(nmax+1), 0, . . . , 0) with 5-step delay (τ = 5). The
initial state of the physical system ρ0 is given by D√3(|0〉 〈0|). The ensemble average over these
realizations corresponds to the thick red curve; (Second plot) The Frobenius distance between
the estimator ρe and ρ (

√
Tr ((ρ− ρe)2)) for 100 realizations. The ensemble average over these

realizations corresponds to the thick red curve.
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dynamics (3.12)), the closed-loop system ρk and the estimate state ρek converge almost
surely towards a fixed pure state ρ̄. Then, for any choice of the initial state ρe0, such that
kerρe0 ⊂ kerρ0, the trajectories of the system ρk and also the estimate state ρek converge
almost surely towards the same pure state: ρk → ρ̄ and ρek → ρ̄ .

Remark 3. One only needs to choose ρe0 = 1
nmax+1

11(nmax+1)×(nmax+1), so that the assumption
kerρe0 ⊂ kerρ0 is satisfied for any ρ0.

Proof. The basic idea is based on the fact that E [Tr (ρkρ̄) | ρ0, ρ
e
0] (where we take the

expectation over all jump realizations) depends linearly on ρ0 even though we are applying
a feedback control. Indeed, the feedback law αk depends only on the historic of the quantum
jumps as well as on the initialization of the quantum filter ρe0. Therefore, we can write

βk,τ = αk−τ = α(ρe0, µ0, . . . , µk−τ−1),

where {µj}k−1
j=0 denotes the sequence of k first jumps. Finally, through simple computations,

we have

E [Tr (ρkρ̄) | ρ0, ρ
e
0] =

∑
µ0,...,µk−1

Tr
(
M̃µk−1

◦ Dβk,τ ◦ . . . ◦ M̃µ0 ◦ Dβ0,τρ0

)
,

where
M̃µρ = MµρM

†
µ.

So, we easily have the linearity of E [Tr (ρkρ̄) | ρ0, ρ
e
0] with respect to ρ0.

At this point, we apply the assumption kerρe0 ⊂ kerρ0 and therefore, we can find a
constant γ > 0 and a well-defined density matrix ρc0 in X such that

ρe0 = γρ0 + (1− γ)ρc0.

Now, considering the system (3.21) initialized at the state (ρe0, ρ
e
0, 0, . . . , 0), we have by the

assumptions of the theorem and by applying the dominated convergence theorem:

lim
k→∞

E [Tr (ρkρ̄) | ρe0, ρe0] = 1.

By the linearity of E [Tr (ρkρ̄) | ρ0, ρ
e
0] with respect to ρ0, we get

E [Tr (ρkρ̄) | ρe0, ρe0] = γE [Tr (ρkρ̄) | ρ0, ρ
e
0] + (1− γ)E [Tr (ρkρ̄) | ρc0, ρe0] ,

and since both E [Tr (ρkρ̄) | ρ0, ρ
e
0] and E [Tr (ρkρ̄) | ρc0, ρe0] are less than or equal to one,

we necessarily obtain that both of them converge to 1:

lim
k→∞

E [Tr (ρkρ̄) | ρ0, ρ
e
0] = 1.

This implies the almost sure convergence of the physical system towards the pure state ρ̄.
We infer that E [Tr (ρekρ̄|ρ0, ρ

e
0)] depends linearly on ρ0. Thus,

E [Tr (ρekρ̄) |ρe0, ρe0] = γE [Tr (ρekρ̄) |ρ0, ρ
e
0] + (1− γ)E [Tr (ρekρ̄) |ρc0, ρe0] .

Using the fact that when ρ0 = ρe0, we have ρk = ρek for all k, we conclude similarly that ρek
converges almost surely towards ρ̄ even if ρ0 and ρe0 do not coincide.
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3.4.3 Local convergence rate for the quantum filter

Let us linearize the system-observer dynamics (3.21) around the equilibrium state
Ξ̄ = (ρ̄, ρ̄, 0, . . . , 0). Set Ξ = Ξ̄ + δΞ with δΞ = (δρ, δρe, δβ1, . . . , δβτ ) small, δρ and
δρe Hermitian and of trace 0. We have the following dynamics for the linearized system
(adaptation of (3.17)):

δρk+1 = Aµk
(
δρk + δβτ,k[a

†, ρ̄]− δβ∗τ,k[a, ρ̄]
)
A†µk − Tr

(
AµkδρkA

†
µk

)
ρ̄

δρek+1 = Aµk
(
δρek + δβτ,k[a

†, ρ̄]− δβ∗τ,k[a, ρ̄]
)
A†µk − Tr

(
Aµkδρ

e
kA
†
µk

)
ρ̄

δβ1,k+1 = −ε(2n̄+ 1)
(∑τ

j=1 cosjϑ δβj,k

)
+ ε cosτϑ Tr (δρek[a, ρ̄])

δβ2,k+1 = δβ1,k
...

δβτ,k+1 = δβτ−1,k,

(3.22)

where µk ∈ {g, e}, and the random matrices Aµk are given by Ag = Mg

cosϕn̄
with probability

Pg = cos2ϕn̄ and Ae = Me

sinϕn̄
with probability Pe = sin2ϕn̄.

At this point, we note that by considering δ̃ρk = δρek−δρk, we have the following simple
dynamics:

δ̃ρk+1 = Aµk δ̃ρkA
†
µk
− Tr

(
Aµk δ̃ρkA

†
µk

)
ρ̄.

Indeed, as the same control laws are applied to the quantum filter and the physical system,
the difference between δρek and δρk follows the same dynamics as the linearized open-loop
system (3.8). But, we know by Proposition 3.1 that this linear system admits strictly
negative Lyapunov exponents. This triangular structure, together with the convergence
rate analysis of the closed-loop system in Proposition 3.2, yields the following proposition
whose detailed proof is left to the reader:

Proposition 3.3. Consider the linear Markov chain (3.22). For small enough ε > 0, its
largest Lyapunov exponent is strictly negative.

3.5 Conclusion

We have analyzed a measurement-based feedback control allowing to stabilize globally and
deterministically a desired Fock state. In this feedback design, we have taken into account
the important delay between the measurement process and the feedback injection. This
delay has been compensated by a stochastic version of a Kalman-type predictor in the
quantum filtering equation.

In fact, the measurement process of the experimental setup [32] admits some other
imperfections. These imperfections can, essentially, be resumed to the following ones:

1. The atom-detector is not fully efficient and it can miss some of the atoms, we denote
the detector’s efficiency by ηd ∈ (0, 1] (ηd is about 0.8 for the LKB experimental
setup);
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2. The atom-detector is not fault-free and the result of the measurement (atom in the
state g or e) can be inter-changed, we denote the fault rate by ηf ∈ [0, 1

2 ] (a fault
rate of about 10%);

3. The atom preparation process is itself a stochastic process following a Poisson law,
and therefore the measurement pulses can be empty of atom, we note the occupancy
rate by ηa ∈ (0, 1] (a pulse occupation rate of about 40%).

The knowledge of all these rates can help us to adapt the quantum filter by taking into
account these imperfections. This has been done in [36], by considering the Bayesian law
and by providing numerical evidence of the efficiency of such feedback algorithms assuming
all these imperfections.

Indeed, whatever the initial state is, we can achieve three results: the atom is in
|g〉, the atom is in |e〉 , there are no atom detected. In each case, with the notations of
the probabilities given in above, we can express the conditional evolution of the density
operator.

• Atom is detected in |g〉 . Either the atom is in the state |e〉 and the detector
has made a mistake by detecting it in the state |g〉 which arrives with the following
probability

P f
g =

ηfPe
ηfPe + (1− ηf )Pg

2,

where Pg = Tr
(
MgρM

†
g

)
and Pe = Tr

(
MeρM

†
e

)
. Or the atom is really in the state

|g〉, this happens with probability 1−P f
g . So , the conditional evolution of the density

matrix (as our knowledge on the cavity state conditioned on the measurement result)
at step k is given as follows:

ρk+1 = P f
g Me(ρk) + (1− P f

g )Mg(ρk) =
ηfMeρkM

†
e + (1− ηf )MgρkM

†
g

ηfPe + (1− ηf )Pg
,

which is also in accordance with the recursive formula (2.7).

• Atom is detected in |e〉 . In the same way, the conditional evolution of the density
matrix in this situation is given by the following

ρk+1 =
ηfMgρkM

†
g + (1− ηf )MeρkM

†
e

ηfPg + (1− ηf )Pe
,

which can also be obtained by the formula (2.7).

2where we have used the Bayes’ rule: P (A|B) = P (B|A)P (A)
P (B|A)P (A)+P (B|Ac)P (Ac) , with Ac the complementary

of A.
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• No atom is detected. Either the pulse has been empty, which arrives with proba-
bility Pna given below, or there has been an atom which has not been detected by the
detector, this arrives with probability 1−Pna. The probability Pna can be computed
through the Bayes’ rule:

Pna =
1− ηa

ηa(1− ηd) + (1− ηa)
=

1− ηa
1− ηaηd

.

Then with probability Pna, the density matrix remains unchanged. The complemen-
tary situation corresponds to an undetected atom. In this case, the evolution of the
density matrix is described by the Kraus operator K(ρk) := MgρkM

†
g +MeρkM

†
e . We

can now describe the conditional evolution as follows

ρk+1 = Pnaρk + (1− Pna)(MgρkM
†
g +MeρkM

†
e ) =

(1− ηa)ρk + ηa(1− ηd)(MgρkM
†
g +MeρkM

†
e )

1− ηaηd
.

This formula can be also derived from the recursive equation (2.7).

In the next chapter, we will consider the measurement imperfections and their impacts
on the control of discrete-time systems subject to QND measurements.

In [36], the stabilizing feedback of this chapter which takes into account all the im-
perfections of the experimental setup has been tested in simulations. It has also been
tested experimentally but the obtained fidelity was slightly less than the one given for the
feedback law developed in the next chapter.
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4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Dans le chapitre précédent, nous avons étudié une rétroaction basée sur la mesure (qui
prend en compte les retards) pour stabiliser un état arbitraire de nombre de photons dans
la boite de photons. La méthode est basée sur l’utilisation de la fonction de Lyapunov
naturelle 1 − 〈n̄| ρ |n̄〉. Mais dans la mise en œvre expérimentale [88, 87], la rétroaction
d’état a été améliorée par un meilleur choix sur la fonction de Lyapunov. Le but de ce
chapitre est de présenter les méthodes mathématiques sous-jacentes à de telles construc-
tions de Lyapunov améliorées qui simplifient l’analyse de la convergence, car l’application
des principes d’invariance de Kushner n’est pas nécessaire.

Dans ce chapitre, une rétroaction d’état est appliquée aux systèmes génériques en temps
discret et de dimensions finies dans le but de préparer et stabiliser le système sur un état
cible prédéfini. Nous considérons deux types de dynamiques. La première décrit l’évolution
des systèmes quantiques soumis à des mesures QND et contrôlés par une évolution unitaire
réglable entre deux mesures successives QND. Les dynamiques de ces systèmes sont décrites
par des modèles de Markov séparable (i.e., par l’application de deux opérateurs successifs:
d’abord l’opérateur de mesure puis l’opérateur de contrôle unitaire). En boucle ouverte,
ces mesures QND fournissent un outil de préparation non-déterministe exploitant l’action
de retour de la mesure sur l’état quantique. Nous proposons ici une méthode systématique
basée sur la théorie des graphes élémentaires et inversion des matrices de Laplace pour
construire des fonctions de Lyapunov stricte. Cela donne une loi de rétroaction appropriée
qui stabilise globalement le système vers un état cible choisi parmi ceux qui sont stables
en boucle ouverte; ceci rend cette préparation déterministe en boucle fermée. La deuxième
dynamique décrit l’évolution des systèmes quantiques contrôlés soumis à des POVM qui
dépendent de la commande u. En boucle ouverte, les mesures quantiques sont supposée
être non-destructives (QND). Ce processus de Markov admet donc un ensemble d’états purs
associés à une base orthonormée de l’espace de Hilbert sous-jacent. Ces états stationnaires
fournissent des martingales qui sont essentielles pour la caractérisation de la stabilité en
boucle ouverte : sous des hypothèses simples et suggestives, presque toutes les trajectoires
convergent vers un de ces états stationnaires ; la probabilité de converger vers un état
stationnaire est donnée par sa distance avec l’état initial. À partir de ces martingales
en boucle ouverte, nous construisons une sur-martingale dont les paramètres sont donnés
par l’inversion d’une matrice Metzler caractérisant l’impact de la commande en sur les
opérateurs de Kraus définissant le processus de Markov.

Dans la Section 4.1, nous considérons les systèmes dont les évolutions sont décrites par
des modèles de Markov séparables. La Section 4.2 est consacrée aux systèmes dont les
dynamiques sont données par des modèles de Markov non-séparables. Dans la Section 4.3,
nous reconsidérons des châınes de Markov non-séparable contrôlées, mais en présence de
certains retards dans le processus de mesure. Dans cette section, nous démontrons, en
utilisant un filtre de prédiction quantique, que le schéma proposé dans la section précédante
fonctionne même en présence de retards. Dans la Section 4.4, nous supposons qu’il existe
des retards dans le processus de mesure et que les mesures sont imparfaites. Notre résultat
principal est donné dans le Théorème 4.10 où la convergence en boucle fermée est prouvée
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en présence de retards et d’imperfection de mesure. La Section 4.5 est consacrée à la mise
en œvre expérimentale qui a été réalisée au Laboratoire Kastler Brossel (LKB) à l’École
Normale Supérieure (ENS) de Paris. Les simulations en boucle fermée et les données
expérimentales complémentaires à celles rapportées dans [87, 88] sont présentées. Les
résultats de la Section 4.1 sont principalement basés sur [5]. Les Sections 4.3, 4.4 et 4.5
sont directement dérivées de notre travail [6].

In the previous chapter, we have studied a measurement-based feedback (which takes
into account delays) to stabilize an arbitrary photon-number state in the photon box.
The method was based on using the natural Lyapunov function 1 − 〈n̄| ρ |n̄〉 . But in the
experimental implementation [88, 87], the state feedback has been improved by a better
choice of Lyapunov function. The goal of this chapter is to present the mathematical
methods underlying such improved Lyapunov designs which simplifies the convergence
analysis, since the application of Kushner’s invariance principles [55] is not necessary.

In this chapter, a state feedback scheme is applied to generic discrete-time finite-
dimensional quantum systems, in the aim of preparing and stabilizing the system at some
pre-specified goal state. We consider two types of dynamics. The first one describes the
evolution of quantum systems subject to QND measurements and controlled by an ad-
justable unitary evolution between two successive QND measures. The dynamics of such
systems are described by separable Markov models (i.e., by applying two successive opera-
tors: first the measurement operator and then the unitary control operator). In open-loop,
such QND measurements provide a non-deterministic preparation tool exploiting the back-
action of the measurement on the quantum state. We propose here a systematic method
based on elementary graph theory and inversion of Laplacian matrices to construct strict
control-Lyapunov functions. This yields an appropriate feedback law that stabilizes glob-
ally the system towards a chosen target state among the open-loop stable ones, and that
makes in closed-loop this preparation deterministic. The second dynamics describes the
evolution of controlled quantum systems subject to POVMs that depend on the control u.
In open-loop, the measurements are assumed to be quantum non-demolition (QND). This
Markov process admits thus a set of stationary pure states associated to an orthonormal
basis of the underlying Hilbert space. These stationary states provide martingales that
are crucial to characterizing the open-loop stability: under simple and suggestive assump-
tions, almost all trajectories converge to one of these stationary states; the probability to
converge to a stationary state is given by its overlap with the initial quantum state. From
these open-loop martingales, we construct a supermartingale whose parameters are given
by inverting a Metzler matrix characterizing the impact of the control input on the Kraus
operators defining the Markov process.

In Section 4.1, we consider the systems whose evolutions are described by separa-
ble Markov models. Section 4.2 is devoted to the systems whose dynamics are given by
non-separable Markov models. In Section 4.3, we reconsider the non-separable controlled
Markov chain but in presence of some delays in the measurement process. In this sec-
tion, we demonstrate, using a predictive quantum filter, that the scheme proposed in the
previous section works even in presence of delays. In Section 4.4, we suppose that there
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exist some delays in the measurement process and also that the measurements are imper-
fect. Our main result is given in Theorem 4.10 where closed-loop convergence is proved in
presence of delays and measurement imperfections. Section 4.5 is devoted to the experi-
mental implementation that has been carried on in Laboratoire Kastler Brossel (LKB) at
Ecole Normale Supérieure (ENS) de Paris. Closed-loop simulations and experimental data
complementary to those reported in [87, 88] are presented. The results of Section 4.1 are
mainly based on [5]. Sections 4.3, 4.4 and 4.5 are directly derived from our work [6].

4.1 Strict control-Lyapunov functions for separable

Markov models

4.1.1 The separable Markov model

We consider a finite-dimensional quantum system (so the underlying Hilbert space H = Cd

being of dimension d > 0) measured through a generalized measurement procedure placed
discretely in time. Between two measurements, the system undergoes a unitary evolution
depending on a scalar control input u ∈ R. The dynamics of such discrete-time quantum
systems is described by a non-linear controlled Markov chain whose structure is derived
from quantum physics. We just sketch here this structure with a mathematical viewpoint,
and note that a tutorial physical exposure can be found in [44].

The system state is described by the density operator ρ belonging to D the space of
positive, Hermitian matrices of trace one:

D := {ρ ∈ Cd×d | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0}.

The generalized measurement procedure admits m > 0 different discrete values µ ∈
{1, . . . ,m}: to each measurement outcome µ is attached a Kraus operator described by a
matrixMµ ∈ Cd×d. The Kraus operators (Mµ)µ∈{1,...,m} satisfy the constraint

∑m
µ=1M

†
µMµ =

11, where 11 is the identity matrix. In general the Mµ are not necessarily Hermitian.
The controlled evolution between two measures Uu is defined by the unitary operator
exp(−iuH) = Uu, where H is a Hermitian operator H ∈ Cd×d with H† = H.

The random evolution of the state ρk ∈ D at time step k is modeled through the
following Markov process:

ρk+1 = Uuk(Mµk(ρk)), (4.1)

where

• uk ∈ R is the control at step k,

• µk is a random variable taking values µ in {1, . . . ,m} with probability pµ,ρk =
Tr
(
MµρkM

†
µ

)
,

• Uu is the superoperator

Uu : D 3 ρ 7→ UuρU
†
u ∈ D,
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• for each µ, Mµ is the superoperator

Mµ : ρ 7→ MµρM
†
µ

Tr(MµρM
†
µ)
∈ D

defined for any ρ ∈ D such that Tr
(
MµρM

†
µ

)
6= 0.

We suppose throughout this section that the two following assumptions are verified by the
system under consideration.

Assumption 4.1. The measurement operators Mµ are diagonal in the same orthonormal

basis { |n〉 ∈ Cd | n ∈ {1, . . . , d}}, therefore Mµ =
∑d

n=1 cµ,n |n〉 〈n| with cµ,n ∈ C.

Assumption 4.2. For all n1 6= n2 in {1, . . . , d}, there exists a µ ∈ {1, . . . ,m} such that
|cµ,n1|2 6= |cµ,n2|2.

Assumption 4.1 means that the considered measurement process achieves a quan-
tum non-demolition (QND) measurement for the physical observables given by orthog-
onal projections over the states

{
|n〉 ∈ Cd | n ∈ {1, . . . , d}

}
. This implies that for

uk ≡ 0, any ρ = |n〉 〈n| corresponding to the orthogonal projector on the basis vector
|n〉, n ∈ {1, . . . , d}, is a fixed point of the Markov process (4.1). Since the operators Mµ

must satisfy
∑m

µ=1M
†
µMµ = 11, we have, according to Assumption 4.1, that

∑m
µ=1 |cµ,n|2 = 1

for all n ∈ {1, . . . , d}.
Assumption 4.2 means that there exists a µ such that the statistics when uk ≡ 0 for

obtaining the measurement result µ are different for the fixed points |n1〉 〈n1| and |n2〉 〈n2|.
This follows by observing that Tr

(
Mµ |n〉 〈n|M †

µ

)
= |cµ,n|2 for n ∈ {1, . . . , d}.

4.1.2 Convergence of the open-loop dynamics

When the control vanishes (uk = 0, ∀k), the dynamics is simply given by

ρk+1 = Mµk(ρk), (4.2)

where µk is a random variable with discrete values in {1, . . . ,m}. The probability pµ,ρk to
have µk = µ depends on ρk: pµ,ρk = Tr

(
MµρkM

†
µ

)
. We then have the following theorem

which characterizes the open-loop asymptotic behavior.

Theorem 4.1. Consider a Markov process ρk obeying the dynamics of (4.2) with an initial
condition ρ0 in D. Then

• with probability one, ρk converges to one of the d states |n〉 〈n| with n ∈ {1, . . . , d}.

• the probability of convergence towards the state |n〉 〈n| depends only on the initial
condition ρ0 and is given by

Tr (ρ0 |n〉 〈n|) = 〈n| ρ0 |n〉 .
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The proof is a generalization of the one given for Theorem 3.1.

Proof. For any n ∈ {1, . . . , d}, 〈n| ρ |n〉 is a martingale. This results from

E [〈n| ρk+1 |n〉 |ρk] =
m∑
µ=1

Tr
(
MµρkMµ

†) 〈n|Mµ(ρk) |n〉

=
m∑
µ=1

〈n|MµρkMµ
† |n〉 = 〈n|

m∑
µ=1

Mµ
†Mµρk |n〉 = 〈n| ρk |n〉 ,

where we have used that Mµ and |n〉 〈n| commute, and
∑m

µ=1 Mµ
†Mµ = 11.

Take the function

V (ρ) := −
d∑

n=1

(
〈n| ρ |n〉

)2

2
. (4.3)

The function V being concave and each 〈n| ρ |n〉 being a martingale, we infer that V (ρ) is
a supermartingale, i.e.,

E [V (ρk+1)|ρk] ≤ V (ρk).

More precisely, we have

E [V (ρk+1)|ρk] = −1

2

d∑
n=1

∑
µ∈Iρk

Tr
(
MµρkMµ

†)( 〈n|MµρkMµ
†|n〉

Tr(MµρkMµ
†)

)2

,

with Iρk =
{
µ ∈ {1, . . . ,m} | Tr

(
MµρkMµ

†) 6= 0
}

. We have the identity

∑
µ∈Iρk

Tr
(
MµρkMµ

†
)(

〈n|MµρkMµ
†|n〉

Tr(MµρkMµ
†)

)2

=

∑
µ∈Iρk

Tr
(
MµρkMµ

†
)
〈n|MµρkMµ

†|n〉
Tr(MµρkMµ

†)

2

+
1

2

∑
µ,ν∈Iρk

Tr
(
MµρkMµ

†
)

Tr
(
MνρkMν

†
)(
〈n|MµρkMµ

†|n〉
Tr(MµρkMµ

†)
− 〈n|MνρkMν

†|n〉
Tr(MνρkMν

†)

)2
,

where we have used
∑

µ∈Iρk
Tr
(
MµρkMµ

†) = 1.

The above identity yields E [V (ρk+1)|ρk]− V (ρk) = −Q(ρk) with

Q(ρ) = 1
4

d∑
n=1

∑
µ,ν∈Iρ

Tr
(
MµρMµ

†)Tr
(
MνρMν

†)( |cµ,n|2〈n|ρ|n〉
Tr(MµρMµ

†)
− |cν,n|2〈n|ρ|n〉

Tr(MνρMν
†)

)2

.

We have used that 〈n|Mµ(ρ) |n〉 = |cµ,n|2〈n|ρ|n〉
Tr(MµρMµ

†)
and

∑
µ∈Iρk

〈n|MµρMµ
† |n〉 = 〈n| ρ |n〉 .

Since Q ≥ 0, V (ρk) is a supermartingale. Note that the sum in the definition of Q(ρ)
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is over all µ, ν ∈ Iρ. However, we can assume that the sum is actually over all µ, ν in
{1, . . . ,m} by observing the following facts. For any µ, ν, take the mapping

ρ 7→ Tr
(
MµρMµ

†)Tr
(
MνρMν

†)( |cµ,n|2〈n|ρ|n〉
Tr(MµρMµ

†)
− |cν,n|2〈n|ρ|n〉

Tr(MνρMν
†)

)2

,

defined only when Tr
(
MµρMµ

†)Tr
(
MνρMν

†) > 0. Since this mapping is positive and

bounded by ρ 7→ Tr
(
MµρMµ

†)Tr
(
MνρMν

†), it can be extended by continuity to any

ρ ∈ D by taking a null value when Tr
(
MµρMµ

†)Tr
(
MνρMν

†) = 0. Thus

Q(ρ) = 1
4

d∑
n=1

m∑
µ,ν=1

Tr
(
MµρMµ

†)Tr
(
MνρMν

†)( |cµ,n|2〈n|ρ|n〉
Tr(MµρMµ

†)
− |cν,n|2〈n|ρ|n〉

Tr(MνρMν
†)

)2

(4.4)

is continuously defined for any ρ ∈ D and still satisfies

E [V (ρk+1)|ρk]− V (ρk) = −Q(ρk), ∀ρk ∈ D.

By Theorem A.4 of the Appendix, the ω-limit set is a subset of {ρ ∈ D| Q(ρ) = 0}.
The condition Q = 0 implies that, for all n, µ, ν

Tr
(
MνρMν

†) 〈n|MµρMµ
† |n〉 = Tr

(
MµρMµ

†) 〈n|MνρMν
† |n〉 .

Taking the sum over all ν, we get for all n and µ,

〈n|MµρMµ
† |n〉 = Tr

(
MµρMµ

†) 〈n| ρ |n〉 .
These relations read (ρn′,n′ = 〈n′| ρ |n′〉)

|cµ,n|2ρn,n =

(∑
n′

|cµ,n′|2ρn′,n′
)
ρn,n. (4.5)

Since Tr (ρ) = 1 and ρ ≥ 0, there exists n∗ ∈ {1, . . . , d} such that ρn∗,n∗ > 0. Thus (4.5)
with arbitrary µ and n = n∗ gives |cµ,n∗|2 =

∑
n′ |cµ,n′|2ρn′,n′ . Consequently, for all µ and

n, (4.5) reads

(|cµ,n|2 − |cµ,n∗ |2)ρn,n = 0.

By assumption 4.2, ρn,n = 0 as soon as n 6= n∗ and thus ρ = |n∗〉 〈n∗|. This finishes the
proof of the first assertion.

We have shown that the probability measure associated to the random variable ρk
converges weakly to the probability measure

∑d
n=1 pnδ|n〉〈n|, where δ|n〉〈n| denotes the Dirac

measure at |n〉 〈n| and pn is the probability of convergence towards |n〉 〈n| . In particular, we
have E [〈n| ρk |n〉] −→ pn. But 〈n| ρk |n〉 is a martingale, hence, E [〈n| ρk |n〉] = E [〈n| ρ0 |n〉]
and consequently, pn = 〈n| ρ0 |n〉.
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4.1.3 Feedback stabilization

Design of strict control-Lyapunov functions. The goal is to design a feedback law
that globally stabilizes the Markov chain (4.1) towards a chosen target state |n̄〉 〈n̄|, for
some n̄ among {1, . . . , d}. In previous publications [71, 68, 36], the proposed feedback
schemes tend to decrease at each step the same open-loop martingale Vn̄(ρ) = 1−〈n̄| ρ |n̄〉:
u is chosen in order to decrease u 7→ Vn̄(Uu(ρ)). When ρ = |n〉 〈n| with n 6= n̄, u 7→ Vn(ρ)
is maximum at u = 0. Consequently, its first-order u-derivative vanishes at u = 0. But
its second-order u-derivative could also vanish at u = 0. For the photon box considered in
the previous chapter, this happens when |n − n̄| ≥ 2. Such lack of strong concavity in u
when the image of ρ is almost orthogonal to |n̄〉, explains the fact that, in previous works,
the control u was set to be a constant non-zero value when Vn̄(ρ) is close to one.

To improve convergence and avoid such constant feedback zone, we propose to modify
Vn̄ using the other open-loop martingales Vn(ρ) = 〈n| ρ |n〉 and the supermartingale V (ρ) =

−
∑d

n=1
(〈n|ρ|n〉)2

2
used in the proof of Theorem 4.1. The goal of such modification is to get

control-Lyapunov functions still admitting a unique global minimum at |n̄〉 〈n̄| but being
strongly concave versus u around 0 when ρ is close to any |n〉 〈n|, n 6= n̄.

Take V0(ρ) =
∑d

n=1 σn 〈n| ρ |n〉 with real coefficients σn to be chosen such that σn̄
remains the smallest one and such that for any n 6= n̄, the second-order u-derivative of
V0(Uu(|n〉 〈n|)) at u = 0 is strictly negative. This yields to a set of linear equations (see
Lemma 4.2) in σn that can be solved by inverting a Laplacian matrix (see Lemma 4.1).
Notice that V0 is an open-loop martingale. To obtain a supermartingale we consider (see
Theorem 4.2) Vε(ρ) = V0(ρ) + εV (ρ). For ε > 0 small enough, Vε(ρ) still admits a unique
global minimum at |n̄〉 〈n̄|; for u close to zero, Vε(Uu(|n〉 〈n|)) is strongly concave for any
n 6= n̄ and strongly convex for n = n̄. This implies that Vε is a control-Lyapunov function
with arbitrary small control (see proof of Theorem 4.2).

In order to formalize our results, we provide next some definitions and lemmas. These
will be used later to underlay the construction of the strict control-Lyapunov functions Vε.

Connectivity graph and Laplacian matrix. To the Hamiltonian operator H defining
the controlled unitary evolution Uu = e−ıuH , we associate its undirected connectivity graph
denoted by GH . This graph admits d vertices labeled by n ∈ {1, . . . , d}. Two different
vertices n1 6= n2 (n1, n2 ∈ {1, . . . , d}) are linked by an edge if and only if 〈n1|H |n2〉 6= 0.
Attached to H we also associate RH , the real symmetric matrix d× d (Laplacian matrix)
with entries

RH
n1,n2

= 2
(
δn1,n2 〈n1|H2 |n2〉 − | 〈n1|H |n2〉 |2

)
. (4.6)

Lemma 4.1. Assume the graph GH is connected. Then there exists a vector σ = (σn)n∈{1,...,d}
of Rd such that −RHσ = λ, where λ is a vector of Rd with components λn and λn̄ =
−
∑

n 6=n̄ λn.
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Proof. Note that RH is symmetric and the sum of the entries for any column and any row
of RH is equal to zero. Therefore, the vector (1 . . . 1)T is in the kernel of RH . The diagonal
(resp. non-diagonal) components of RH are positive (resp. negative). Therefore RH is a
Laplacian matrix (see [14, Ch. 4]). The connectivity graph associated to RH coincides
with GH . Since this graph is supposed to be connected, classical results of graph theory
(see, e.g., [14, Theorem 3.1]) imply that the vector (1, . . . , 1)T spans the kernel of RH .
Therefore, the dimension of the image of RH is equal to d− 1. Since RH is symmetric, its
image coincides with the orthogonal to its kernel. For the sake of completeness, here we
give a simple proof of this statement. Indeed, for any vector X in the kernel of RH , we
have ∑

n1,n2∈{1,...,d}

RH
n1,n2

(Xn1 −Xn2)2 = XTRX = 0.

This implies RH
n1,n2

(Xn1−Xn2)2 = 0, ∀n1, n2 ∈ {1, . . . , d}. As the graph of RH is connected,
we necessarily have Xn1 = Xn2 for all n1, n2 ∈ {1, . . . , d}. Thus any vector orthogonal to
(1 . . . 1)T is in the image of RH . The vector λ is obviously orthogonal to (1, . . . , 1)T .

Lemma 4.2. Take n̄ ∈ {1, . . . , d} and consider a vector λ in Rd with components λn and
λn̄ = −

∑
n6=n̄ λn. Assume GH connected and consider a vector σ = (σn) ∈ Rd given by

Lemma 4.1. For any ρ ∈ D we set

V0(ρ) =
d∑

n=1

σnTr (|n〉 〈n| ρ) =
d∑

n=1

σn 〈n| ρ |n〉 . (4.7)

Then for any n ∈ {1, . . . , d} we have

d2V0

(
Uu(|n〉〈n|)

)
du2

∣∣∣∣
u=0

= λn.

Proof. For any n, set gn(u) = V0(Uu(|n〉 〈n|) = V0(e−ıuH |n〉 〈n| eıuH). The Baker-Campbell-
Hausdorff formula yields up to third order terms in u ([·, ·] is the commutator):

Uu(|n〉 〈n|) ≈ |n〉 〈n| − ıu[H, |n〉 〈n|]− u2

2
[H, [H, |n〉 〈n|]].

Consequently, for any l ∈ {1, . . . , d}, we have

Tr (Uu(|n〉 〈n|) |l〉 〈l|) ≈ Tr
(
|l〉 〈l|

(
|n〉 〈n| − ıu[H, |n〉 〈n|]

))
− u2

2
Tr
(
|l〉 〈l|

(
[H, [H, |n〉 〈n|]]

))
=
(
δl,n + u2

2
Tr ([H, |n〉 〈n|][H, |l〉 〈l|])

)
, (4.8)

since Tr (|l〉 〈l| [H, |n〉 〈n|]) = −Tr ([|l〉 〈l| , |n〉 〈n|]H) = 0, because |l〉 〈l| commutes with
|n〉 〈n|), and since

Tr (|l〉 〈l| [H, [H, |n〉 〈n|]]) = −Tr ([H, |n〉 〈n|][H, |l〉 〈l|]) .
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Thus, up to third order terms in u, we have

gn(u) =
d∑
l=1

σl

(
δl,n + u2

2
Tr ([H, |n〉 〈n|][H, |l〉 〈l|])

)
.

Therefore,

∂2V0

(
Uu(|n〉〈n|)

)
∂u2

∣∣∣∣
u=0

=
d∑
l=1

σlTr ([H, |n〉 〈n|][H, |l〉 〈l|]) .

It is not difficult to see that Tr ([H, |n〉 〈n|][H, |l〉 〈l|]) = −RH
n,l. Thus

∂2V0

(
Uu(|n〉〈n|)

)
∂u2

∣∣∣∣
u=0

=

−
∑d

l=1 R
H
n,lσl.

The global stabilizing feedback. The main result of this section is expressed in the
following theorem.

Theorem 4.2. Consider the controlled Markov chain of state ρk obeying (4.1). Assume
that the graph GH associated to the Hamiltonian H is connected and that the Kraus oper-
ators satisfy Assumptions 4.1 and 4.2. Take n̄ ∈ {1, . . . , d} and d− 1 strictly negative real
numbers λn < 0 for n ∈ {1, . . . , d} \ {n̄}, and λn̄ = −

∑
n6=n̄ λn. Consider the component

(σn) of σ ∈ Rd defined by Lemma 4.1. Denote by ρ
k+

1
2

= Mµk(ρk) the quantum state

just after the measurement outcome µk at step k. Take ū > 0 and consider the following
feedback law

uk = K(ρ
k+

1
2
) = argmin

u∈[−ū,ū]

(
Vε
(
Uu

(
ρ
k+

1
2

)))
, (4.9)

where the control-Lyapunov function Vε(ρ) is defined by

Vε(ρ) =
d∑

n=1

(
σn 〈n| ρ |n〉 − ε

2
(〈n| ρ |n〉)2) , (4.10)

with the parameter ε > 0 not too large to ensure that

∀n ∈ {1, . . . , d} \ {n̄}, λn + 2ε
(
(〈n|H |n〉)2 − 〈n|H2 |n〉

)
> 0.

Then for any ρ0 ∈ D, the closed-loop trajectory ρk converges almost surely to the pure state
|n̄〉 〈n̄|.

The proof relies on the fact that Vε(ρ) is a strict Lyapunov function for the closed-loop
system.
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Proof. We have

E [Vε(ρk+1)|ρk]− Vε(ρk) =∑
µ

pµ,ρk

(
Vε
(
UK(Mµ(ρk))(Mµ(ρk))

)
− Vε(ρk)

)
=

∑
µ

pµ,ρk

(
min

u∈[−ū,ū]

(
Vε
(
Uu(Mµ(ρk))

))
− Vε(ρk)

)
=

∑
µ

pµ,ρk

(
Vε
(
Mµ(ρk)

)
− Vε(ρk)

)
+

∑
µ

pµ,ρk

(
min

u∈[−ū,ū]

(
Vε
(
Uu(Mµ(ρk))

))
− Vε

(
Mµ(ρk)

))
=:

− Q̃1(ρk)− Q̃2(ρk),

with Q̃1 and Q̃2 given by the following

Q̃1(ρk) :=
∑
µ

pµ,ρk

(
Vε(ρk)− Vε

(
Mµ(ρk)

))
,

and

Q̃2(ρk) :=
∑
µ

pµ,ρk

(
Vε
(
Mµ(ρk)

)
− min

u∈[−ū,ū]

(
Vε
(
Uu(Mµ(ρk))

)))
.

These functions are both positive continuous functions of ρk (the continuity of these
functions can be proved in the same way as the proof of the continuity of Q(ρk) in Theo-
rem 4.1). By Theorem A.4 of the appendix, the ω-limit set Ω is included in the following
set

{ρ ∈ D| Q̃1(ρ) = 0} ∩ {ρ ∈ D| Q̃2(ρ) = 0}.

Indeed Q̃1 coincides with Q defined in (4.4). During the proof of Theorem 4.1, we have

shown that Q̃1(ρ) = 0 implies ρ = |n〉 〈n| for some n ∈ {1, . . . , d} . But Q̃2(|n〉 〈n|) = 0
implies that min

u∈[−ū,ū]
Vε
(
Uu(|n〉 〈n|)

)
= Vε

(
〈n| |n〉

)
, since Mµ(|n〉 〈n|) = |n〉 〈n|. According

to Lemma 4.2 and the relation (4.8), we have
dVε

(
Uu(|n〉〈n|)

)
du

∣∣∣∣
u=0

= 0 and

d2Vε

(
Uu(|n〉〈n|)

)
du2

∣∣∣∣
u=0

= λn + 2ε
(
(〈n|H |n〉)2 − 〈n|H2 |n〉

)
.

Since λn < 0 for n 6= n̄ and ε is not too large, for any n 6= n̄, u = 0 is a locally strict
maximum of Vε

(
Uu(|n〉 〈n|)

)
. Consequently, Q̃2(|n〉 〈n|) = 0 implies that n = n̄.

Remark 4. In fact, the unitary propagator Uu does not admit in general a simple ana-
lytic form. For the case of photon box (see [5, Section 5]), the simulations show that we
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can replace Uu by its quadratic approximation valid for u small and derived from Baker-
Campbell-Hausdorff formula:

Uu(ρ) ≈ −iu[H, ρ]− u2

2
[H, [H, ρ]] +O(u3),

with Hamiltonian H = i(a†−a). This yields an explicit quadratic approximation of Vε(Uu(ρ))
around zero. The feedback is then given by minimizing a parabolic expression in u of
Vε(Uu(ρ)). This approximated function takes its minimum necessary at one of the two
extremes −ū, ū or at the point where its derivative is zero.

4.1.4 Quantum filtering and separation principle

When the measurement process is perfect, the Markov process (4.1) represents a natural
choice for estimating the hidden state ρ. Thus, the estimate ρe of ρ satisfies the following
dynamics

ρek+1 = Uuk(Mµk(ρ
e
k)), (4.11)

where the measurement outcome µk is driven by (4.1). We now announce the following
theorem which is the analogue of Theorem 3.3.

Theorem 4.3. Consider the Markov chain of state ρk obeying (4.1) and assume that
the assumptions of Theorem 4.2 are satisfied. For each measurement outcome µk given
by (4.1), consider the estimation ρek given by (4.11) with an initial condition ρe0.

Set uk = K(ρe
k+

1
2

) where K is given by (4.9). Then for all ε ∈
]
0,minn6=n̄

(
λn
RHn,n

)]
, we

have ρk and ρek converge almost surely towards the target state |n̄〉 〈n̄| as soon as ker(ρe0) ⊂
ker(ρ0).

The proof of this theorem is similar to the one given for Theorem 3.3, and is omitted.

4.2 Strict control-Lyapunov functions for non-separable

Markov models

We generalize here the Lyapunov design proposed in Section 4.1 for arbitrary controlled
Kraus operators Mu

µ that cannot be decomposed into QND measurement operators M0
µ

followed by a unique controlled unitary operator Uu with U0 = 11. In [5, 91], it is assumed
that Mu

µ ≡ UuM
0
µ.

4.2.1 The non-separable Markov model

We consider a quantum system defined in the Hilbert spaceH = Cd, and measured through
a generalized measurement procedure at discrete-time intervals. To each measurement
outcome µ ∈ {1, . . . ,m} is attached the Kraus operator Mu

µ ∈ Cd×d depending on µ and
also on a scalar control input u ∈ R. For each u, these Kraus operators (Mu

µ )µ∈{1,...,m}
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satisfy the constraint
∑m

µ=1M
u
µ
†Mu

µ = 11. They are attached to the Kraus map Ku defined
by

D 3 ρ 7→ Ku(ρ) =
m∑
µ=1

Mu
µρM

u
µ
† ∈ D. (4.12)

The random evolution of the state ρk ∈ D at time step k is modeled through the following
Markov process

ρk+1 = Muk
µk

(ρk), (4.13)

where

• uk is the control at step k,

• µk is a random variable taking values µ in {1, . . . ,m} with probability

pukµ,ρk = Tr
(
Muk

µ ρkM
uk
µ
†) ,

• for each µ, Mu
µ is the superoperator

Mu
µ : ρ 7→ Mu

µρM
u
µ
†

Tr(Mu
µρM

u
µ †)
∈ D, (4.14)

defined for ρ ∈ D such that puµ,ρ = Tr
(
Mu

µρM
u
µ
†) 6= 0.

We state below three essential assumptions that we need in the following. Assump-
tions 4.3 and 4.4 are the same as Assumptions 4.1 and 4.2 where we replace Mµ by M0

µ.

Assumption 4.3. For u = 0, the measurement operators M0
µ are diagonal in the same

orthonormal basis { |n〉 ∈ Cd |n ∈ {1, . . . , d}}, therefore M0
µ =

∑d
n=1 cµ,n |n〉 〈n| with cµ,n ∈

C.

Assumption 4.4. For all n1 6= n2 in {1, . . . , d}, there exists µ ∈ {1, . . . ,m} such that
|cµ,n1|2 6= |cµ,n2|2.

Assumption 4.5. The measurement operators Mu
µ are C2 functions of u.

4.2.2 Convergence of the open-loop dynamics

When the control input vanishes (u ≡ 0), the dynamics are simply given by

ρk+1 = M0
µk

(ρk), (4.15)

where µk is a random variable with values in {1, . . . ,m}. The probability p0
µ,ρk

to have

µk = µ depends on ρk: p0
µ,ρk

= Tr
(
M0

µρkM
0
µ
†
)

. The open-loop asymptotic behavior is

characterized by the following theorem, whose proof is analogue to the proof of Theorem 4.1
and is so omitted.
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Theorem 4.4. Consider a Markov process ρk obeying the dynamics of (4.15) with an
initial condition ρ0 in D. Then

• with probability one, ρk converges to one of the d states |n〉 〈n| with n ∈ {1, . . . , d},

• the probability of convergence towards the state |n〉 〈n| depends only on the initial
condition ρ0 and is given by 〈n| ρ0 |n〉 .

4.2.3 Feedback stabilization

Design of strict control-Lyapunov function. Theorem 4.4 implies that the open-
loop dynamics is stable in the sense that almost all realizations ρk converges to one of
the pure states |n〉 〈n| where n is a random variable in {1, . . . , d}, taking the value n̄
with probability 〈n̄| ρ0 |n̄〉 (since 〈n̄| ρ |n̄〉 is a martingale). The control goal is to ensure
a deterministic convergence towards a controller set point n̄ ∈ {1, . . . , d}. The control
design is based on Lyapunov techniques exploiting the d open-loop martingales 〈n| ρ |n〉.
In Chapter 3, we take

1− 〈n̄| ρ |n̄〉 =
∑
n6=n̄

〈n| ρ |n〉

as control-Lyapunov function and propose a state feedback law transforming this open-
loop martingale into a closed-loop supermartingale. In Section 4.1, the feedback relies on
Lyapunov functions V0(ρ) of the form

V0(ρ) =
d∑

n=1

σn 〈n| ρ |n〉 ,

where the real coefficients σn are chosen such that σn̄ remains the smallest one. Since
the coefficients σn are all different in general, such Lyapunov functions achieve a better
discrimination between the open-loop equilibrium points |n〉 〈n|: a large σn indicates that
the control effort needed to steer |n〉 〈n| towards |n̄〉 〈n̄| will be important.

More precisely, these coefficients have to ensure that for any n 6= n̄, the second-order
u-derivative of V0(Ku(|n〉 〈n|)) at u = 0 is strictly negative (Ku is the Kraus map defined
by (4.12)). This yields to a set of linear equations in σn that can be solved by inverting an
irreducible Metzler matrix (see Lemma 4.4). Once the σn’s satisfy these constraints, the
stabilizing feedback law proposed in Theorem 4.5 is based on the open-loop supermartingale

Vε(ρ) = V0(ρ)− ε
2

d∑
n=1

(〈n| ρ |n〉)2.

For ε > 0 small enough, Vε(ρ) still admits a unique global minimum at ρ = |n̄〉 〈n̄|, for u
close to 0, u 7→ Vε(Ku(|n〉 〈n|)) is strongly concave for any n 6= n̄ and strongly convex for
n = n̄. This indicates that Vε is still a good candidate as control-Lyapunov function. The
construction of V0(ρ) relies on the following lemmas.

92



CHAPTER 4. FEEDBACK STABILIZATION UNDER DISCRETE-TIME QND
MEASUREMENTS

Lemma 4.3. Consider the d× d matrix R defined by

Rn1,n2 =
∑
µ

(
2
∣∣∣〈n1|

dMu
µ
†

du

∣∣
u=0
|n2〉

∣∣∣2 + 2δn1,n2<
(
cµ,n1 〈n1|

d2Mu
µ
†

du2

∣∣
u=0
|n2〉

))
.

When R 6= 0, the non-negative P = 11−R/Tr (R) is a right stochastic matrix. The notation
<(A) denotes the real part of A.

Proof. For n1 6= n2, Rn1,n2 ≥ 0. Thus R is a Metzler matrix. Let us prove that the sum of
each row vanishes. This results from the identity

∑
µM

u
µ
†Mu

µ = 11. Derivating twice with
respect to u the relation

1 =
∑
µ

〈n1|Mu
µ
†Mu

µ |n1〉 =
∑
µ,n2

〈n1|Mu
µ
† |n2〉 〈n2|Mu

µ |n1〉 ,

yields∑
µ,n2

2 〈n1|
dMu

µ
†

du
|n2〉 〈n2|

dMu
µ

du
|n1〉+ 〈n1|

d2Mu
µ
†

du2 |n2〉 〈n2|Mu
µ |n1〉

+ 〈n1|Mu
µ
† |n2〉 〈n2|

d2Mu
µ

du2 |n1〉 = 0.

Since for u = 0, 〈n2|M0
µ |n1〉 = δn1,n2cµ,n1 , the above sum corresponds to

∑
n2
Rn1,n2 .

Therefore, the diagonal elements of R are non-positive. If R 6= 0, then Tr (R) < 0 and the
matrix P = 11−R/Tr (R) is well-defined with non-negative entries. Since the sum of each
row of R vanished, the sum of each row of P is equal to 1. Thus P is a right stochastic
matrix.

To the Metzler matrix R defined in Lemma 4.3, we associate its directed graph denoted
by G. This graph admits d vertices labeled by n ∈ {1, . . . , d}. To each strictly positive off-
diagonal element of the matrix R, say, on the n1th row and the n2th column we associate
an arc from vertex n1 towards vertex n2.

Lemma 4.4. Assume the directed graph G is strongly connected, i.e., for any n, n′ ∈
{1, . . . , d}, n 6= n′, there exists a chain of r distinct elements (nj)j=1,...,r of {1, . . . , d} such
that n1 = n, nr = n′ and for any j = 1, . . . r− 1, Rnj ,nj+1

6= 0. Take n̄ ∈ {1, . . . , d}. Then,
there exist d− 1 strictly positive real numbers en, n ∈ {1, . . . , d} \ {n̄}, such that

• for any reals λn, n ∈ {1, . . . , d} \ {n̄}, there exists a unique vector σ = (σn)n∈{1,...,d}
of Rd with σn̄ = 0 such that Rσ = λ, where λ is the vector of Rd of components
λn for n ∈ {1, . . . , d} \ {n̄} and λn̄ = −

∑
n6=n̄ enλn. If additionally λn < 0 for all

n ∈ {1, . . . , d} \ {n̄}, then σn > 0 for all n ∈ {1, . . . , d} \ {n̄};

• for any vector σ ∈ Rd, solution of Rσ = λ ∈ Rd, the function V0(ρ) =
∑d

n=1 σn 〈n| ρ |n〉
satisfies

d2V0

(
Ku(|n〉 〈n|)

)
du2

∣∣∣∣∣
u=0

= λn ∀n ∈ {1, . . . , d}.
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Proof. Since the directed graph G coincides with the directed graph of the right stochastic
matrix P defined in Lemma 4.3, P is irreducible. Since it is a right stochastic matrix, its
spectral radius is equal to 1. By Perron-Frobenius theorem for non-negative irreducible
matrices, this spectral radius, i.e., one, is also an eigenvalue of P and of P T , with multiplic-
ity one and associated to eigenvectors having strictly positive entries. The right eigenvector
(Pw = w) is obviously w = (1, . . . , 1)T , and the left eigenvector e = (e1, . . . , en)T (P T e = e)
can be chosen such that en̄ = 1. Consequently, the rank of R is d−1 with ker(R) = span(w)
and Im(R) = e⊥, where e⊥ is the hyperplane orthogonal to e. Since eTλ = 0, λ ∈ Im(R),
there exists σ such that Rσ = λ. Since ker(R) = span(w), there is a unique σ solution of
Rσ = λ such that σn̄ = 0. The fact that σn > σn̄ when λn < 0 for n 6= n̄, comes from
elementary manipulations of Pσ = σ − λ/Tr (R) showing that minn 6=n̄ σn > σn̄.

For any n, set gun = W0(Ku(|n〉 〈n|)) =
∑

l σl 〈l|Ku(|n〉 〈n|) |l〉 , and P u
l = 〈l|Ku(|n〉 〈n|) |l〉 .

We have
dPul
du

=
∑
µ

(
〈l| dM

u
µ

du
|n〉 〈n|Mu

µ
† |l〉+ 〈l|Mu

µ |n〉 〈n|
dMu

µ
†

du
|l〉
)

and

d2Pul
du2 |u=0 =

∑
µ

(
〈l| d

2Mu
µ

du2

∣∣
u=0
|n〉 〈n|M0

µ
† |l〉

+ 〈l| dM
u
µ

du

∣∣
u=0
|n〉 〈n| dM

u
µ
†

du

∣∣
u=0
|l〉+ 〈l|M0

µ |n〉 〈n|
d2Mu

µ
†

du2

∣∣
u=0
|l〉
)

=
∑
µ

(
2
∣∣∣〈n| dMu

µ
†

du

∣∣
u=0
|l〉
∣∣∣2 + 2δnl<

(
cµ,n 〈n|

d2Mu
µ
†

du2

∣∣
u=0
|l〉
))

.

Therefore
d2Pul
du2 |u=0 = Rn,l and

d2W0

(
Ku(|n〉〈n|)

)
du2

∣∣∣∣
u=0

=
∑d

l=1Rn,lσl = λn.

The global stabilizing feedback. We now state the main result of this section.

Theorem 4.5. Consider the Markov chain (4.13) with Assumptions 4.3, 4.4 and 4.5. Take
n̄ ∈ {1, . . . , d} and assume that the directed graph G associated to the Metzler matrix R of
Lemma 4.3 is strongly connected. Take ε > 0, σ ∈ Rd

+ the solution of Rσ = λ with σn̄ = 0,
λn < 0 for n ∈ {1, . . . , d} \ {n̄}, λn̄ = −

∑
n6=n̄ enλn (see Lemma 4.4) and consider

Vε(ρ) =
d∑

n=1

σn 〈n| ρ |n〉 − ε
2
(〈n| ρ |n〉)2.

Take ū > 0 and consider the following feedback law

uk = argmin
u∈[−ū,ū]

(
E [Vε(ρk+1)|ρk, uk = u]

)
=: f(ρk). (4.16)

Then for all ε ∈
]
0,minn6=n̄

(
λn
Rn,n

)]
, the closed-loop Markov chain of state ρk with the

feedback law (4.16) converges almost surely towards |n̄〉 〈n̄| for any initial condition ρ0 ∈ D.
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The proof of this theorem is very similar to the one given for Theorem 4.2.

Proof. We have

E [Vε(ρk+1)|ρk]− Vε(ρk) =∑
µ

pf(ρk)
µ,ρk

Vε(Mf(ρk)
µ (ρk))− Vε(ρk) =

min
u∈[−ū,ū]

∑
µ

puµ,ρkVε(M
u
µ(ρk))− Vε(ρk) =

min
u∈[−ū,ū]

∑
µ

puµ,ρkVε(M
u
µ(ρk))−

∑
µ

p0
µ,ρk

Vε(M0
µ(ρk)) +

∑
µ

p0
µ,ρk

Vε(M0
µ(ρk))− Vε(ρk) :=

−Q1 −Q2,

with Q1 and Q2 defined by the following:

Q1 := Vε(ρk)−
∑
µ

p0
µ,ρk

Vε(M0
µ(ρk)),

and

Q2 :=
∑
µ

p0
µ,ρk

Vε(M0
µ(ρk))− min

u∈[−ū,ū]

∑
µ

puµ,ρkVε(M
u
µ(ρk)).

These functions are both positive continuous function of ρk . By Theorem A.4 of the
appendix, the ω-limit set Ω is included in the following set

{ρ ∈ D| Q1(ρ) = 0} ∩ {ρ ∈ D| Q2(ρ) = 0}.

Indeed Q1 coincides with Q defined in (4.4), if we replace Mµ by M0
µ, so Q1(ρ) = 0 implies

ρ = |n〉 〈n| for some n ∈ {1, . . . , d}. But Q2(|n〉 〈n|) = 0 implies that

min
u∈[−ū,ū]

∑
µ

puµ,ρkVε(M
u
µ(|n〉 〈n|)) = Vε(|n〉 〈n|),

since M0
µ(|n〉 〈n|) = |n〉 〈n| and

∑
µ p

0
µ,|n〉〈n| = 1. According to Lemma 4.4, we have

dVε(Ku(|n〉 〈n|))
du

∣∣
u=0

= 0 and
d2Vε(Ku(|n〉 〈n|))

du2

∣∣
u=0

= λn + εRnn.

Now remark that λn < 0 for n 6= n̄ and ε is not too large, then for any n 6= n̄, u = 0 is a
locally strict maximum of Vε(Mu

µ(|n〉 〈n|)). As a result, Q2(|n〉 〈n|) = 0 implies that n = n̄.
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4.2.4 Quantum filtering and separation principle

The natural estimate ρe of ρ satisfies the following dynamics,

ρek+1 = Muk
µk

(ρek). (4.17)

We now state the following theorem which ensures the convergence of ρk and ρek towards
the target state ρ̄ = |n̄〉 〈n̄|.
Theorem 4.6. Consider the Markov chain of state ρk obeying (4.13) and assume that
the assumptions of Theorem 4.5 are satisfied. For each measurement outcome µk given
by (4.13), consider the estimation ρek given by (4.17) with an initial condition ρe0.

Set uk = f(ρek) where f is given by (4.16). Then for all ε ∈
]
0,minn6=n̄

(
λn
Rn,n

)]
, ρk and ρek

converge almost surely towards the target state |n̄〉 〈n̄| as soon as ker(ρe0) ⊂ ker(ρ0).

Proof. We demonstrate that E [Tr (ρkρ̄) |ρ0, ρ
e
0] (where we take the expectation over all

jump realizations) depends linearly on ρ0 even though we apply the feedback control.
Since uk is a function of ρe0, we have

E [Tr (ρkρ̄) |ρ0, ρ
e
0] =

∑
µ0,...,µk−1

Tr
(
M̃uk

µk−1

(
. . .
(
M̃u0

µ0
(ρ0)

))
ρ̄
)
,

where M̃u
µ (ρ) = Mu

µρM
u
µ
†. The linearity of E [Tr (ρkρ̄) |ρ0, ρ

e
0] with respect to ρ0 is thus

verified. The rest of the proof relies on the same arguments presented for Theorem 3.3.

4.3 Compensation of feedback delays

In this section, we take delays into account.

4.3.1 The non-separable Markov model

The random evolution of the state ρk ∈ D at time step k is modeled through the following
Markov process

ρk+1 = Muk−τ
µk

(ρk), (4.18)

where

• uk−τ is the control at step k, subject to a delay of τ > 0 steps. This delay is usually
due to delays in the measurement process that can also be seen as delays in the
control process;

• µk is a random variable taking values µ in {1, . . . ,m} with probability

puk−τµ,ρk
= Tr

(
Muk−τ

µ ρkM
uk−τ
µ

†) ;

• for each µ, Mu
µ is the superoperator defined in (4.14).

We suppose that the system under consideration verifies Assumptions 4.3, 4.4 and 4.5.
Thus, it is clear that the open-loop behavior is described through Theorem 4.4.
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4.3.2 Feedback stabilization

Design of the control-Lyapunov function. We take the same control-Lyapunov func-
tion Vε which is proposed in Section 4.2. Now it remains to explain how to take into account
the delay τ explicitly into the Lyapunov design relying of Vε(ρ). Take (ρk, uk−1, . . . , uk−τ )
as state at step k. More precisely denote by χ = (ρ, β1, . . . , βτ ) this state where βl stands
for the control input u delayed l steps. Then the state form of the delay dynamics (4.18)
is governed by the following Markov chain

ρk+1 = Mβτ,k
µk (ρk)

β1,k+1 = uk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(4.19)

The goal is to design a feedback law uk = f(χk) that globally stabilizes this Markov
chain towards a chosen target state χ̄ = (|n̄〉 〈n̄| , 0, . . . , 0) for some n̄ ∈ {1, . . . , d}. In
Theorem 4.7, we show how to design a feedback relying on the control-Lyapunov function

Wε(χ) = Vε(Kβ1(Kβ2(. . . . . .Kβτ (ρ) . . .))),

where Vε(ρ) = V0(ρ) + εV (ρ). The construction of V0(ρ) relies on Lemmas 4.3 and 4.4.

The global stabilizing feedback. The main result of this section is the following the-
orem.

Theorem 4.7. Consider the Markov chain (4.19) with Assumptions 4.3, 4.4 and 4.5. Take
n̄ ∈ {1, . . . , d} and assume that the directed graph G associated to the Metzler matrix R of
Lemma 4.3 is strongly connected. Take ε > 0, and let σ ∈ Rd

+ be the solution of Rσ = λ
with σn̄ = 0, λn < 0 for n ∈ {1, . . . , d} \ {n̄}, λn̄ = −

∑
n 6=n̄ enλn (see Lemma 4.4) and

consider

Vε(ρ) =
d∑

n=1

σn 〈n| ρ |n〉 − ε
2
(〈n| ρ |n〉)2.

Take ū > 0 and consider the following feedback law

uk = argmin
ξ∈[−ū,ū]

(
E [Wε(χk+1)|χk, uk = ξ]

)
=: f(χk), (4.20)

where Wε(χ) = Vε(Kβ1(Kβ2(. . . . . .Kβτ (ρ) . . .))).

Then, there exists u∗ > 0 such that for all ū ∈]0, u∗] and ε ∈
]
0,minn 6=n̄

(
λn
Rn,n

)]
, the

closed-loop Markov chain of state χk with the feedback law (4.20) converges almost surely
towards (|n̄〉 〈n̄| , 0, . . . , 0) for any initial condition χ0 ∈ D × [−ū, ū]τ .
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Proof. For the sake of simplicity, first we demonstrate this theorem for τ = 1 and thus for
χ = (ρ, β1). We then explain how this proof may be extended to arbitrary τ > 1.

We have

E [Wε(χk+1)|χk, uk] =
∑
µ

p
β1,k
µ,ρkVε(Kuk(Mβ1,k

µ (ρk))).

Thus E [Wε(χk+1)|χk, uk] = −Q1(χk) +
∑

µ p
β1,k
µ,ρkVε(K0(Mβ1,k

µ (ρk))), where we have set

Q1(χk) =
∑
µ

p
β1,k
µ,ρkVε(K0(Mβ1,k

µ (ρk)))− min
ξ∈[−ū,ū]

∑
µ

p
β1,k
µ,ρkVε(Kξ(Mβ1,k

µ (ρk))), (4.21)

and we clearly have Q1 ≥ 0.

Using Vε(K0(ρ)) = Vε(ρ) for any ρ ∈ D and
∑

µ p
β1,k
µ,ρkVε(K0(Mβ1,k

µ (ρk))) = Vε(Kβ1,k(ρk))−
Q2(χk) with

Q2(χ) = 1
4

d∑
n=1

∑
µ,ν

Tr
(
Mβ1

µ ρM
β1
µ

†
)

Tr
(
Mβ1

ν ρM
β1
ν

†
)

〈n|Mβ1
µ ρM

β1
µ
† |n〉

Tr
(
Mβ1

µ ρM
β1
µ
†) − 〈n|Mβ1

ν ρM
β1
ν
† |n〉

Tr
(
Mβ1

ν ρM
β1
ν
†)
2

, (4.22)

we have

E [Wε(χk+1)|χk, uk] = Wε(χk)−Q1(χk)−Q2(χk), (4.23)

where the continuous and non-negative functionsQ1 andQ2 are defined by (4.21) and (4.22).
Wε(χk) is thus a supermartingale. According to Theorem A.4, the ω-limit set I∞ of χk
satisfies

I∞ ⊂ {(ρ, β1) ∈ D × [−ū, ū] | Q1(ρ, β1) = 0, Q2(ρ, β1) = 0} .

We now show in three steps that I∞ only consists of the target pure state |n̄〉 〈n̄|.

Step 1. For all δ > 0, there exists ū > 0 small enough such that

I∞ ⊂
d⋃

n=1

{
(ρ, β1) ∈ D × [−ū, ū] | 〈n|ρ|n〉 ≥ 1− δ

}
.

Proof of step 1. Step 1 follows from Q2(ρ) = 0 for all (ρ, β1) ∈ I∞ and the following
lemma.

Lemma 4.5. Consider the function Q2 defined by (4.22) and ũ > 0. Then there exists
C > 0 such that for all (ρ, β1) ∈ D × [−ũ, ũ] satisfying Q2(ρ, β1) = 0, there exists n ∈
{1, . . . , d} such that ρn,n = 〈n| ρ |n〉 ≥ 1− C|β1|.
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Proof of Lemma 4.5 The condition Q2 = 0 implies that, for all n, µ, ν

Tr
(
Mβ1

ν ρM
β1
ν

†
)
〈n|Mβ1

µ ρM
β1
µ

† |n〉 = Tr
(
Mβ1

µ ρM
β1
µ

†
)
〈n|Mβ1

ν ρM
β1
ν

† |n〉.

Taking the sum over all ν, we get for all n and µ,

〈n|Mβ1
µ ρM

β1
µ

† |n〉 = Tr
(
Mβ1

µ ρM
β1
µ

†
)
〈n|Kβ1(ρ) |n〉 .

Since Mβ1
µ and Kβ1 are C2 function of β1, these relations read (ρn′,n′ = 〈n′| ρ |n′〉)

|cµ,n|2ρn,n =

(∑
n′

|cµ,n′|2ρn′,n′
)
ρn,n + β1 bµ,n(ρ, β1), (4.24)

where the scalar functions bµ,n depend continuously on ρ and β1.
Let us prove the lemma by contradiction. Assume that for all C > 0, there exists

(ρC , βC1 ) ∈ D × [−ũ, ũ] satisfying Q2(ρC , βC1 ) = 0, such that

∀n ∈ {1, . . . , d}, ρCn,n ≤ 1− C|βC1 |.

Take C tending towards +∞. Since ρC and βC1 remain in a compact set, we can assume, up
to some extraction process, that ρC and βC1 converge towards ρ∗ and β∗1 in D and [−ũ, ũ].
Since |βC1 | ≤ (1− ρCn,n)/C ≤ 1/C, we have β∗1 = 0. Since

|cµ,n|2ρCn,n =

(∑
n′

|cµ,n′|2ρCn′,n′

)
ρCn,n + βC1 bµ,n(ρC , βC1 ), (4.25)

we have by continuity for C → +∞

|cµ,n|2ρ∗n,n =

(∑
n′

|cµ,n′|2ρ∗n′,n′

)
ρ∗n,n,

for all n and µ. Thus, there exists n∗ ∈ {1, . . . , d} such that ρ∗ = |n∗〉 〈n∗| (see the proof
of Theorem 4.4). Since ρ∗n∗,n∗ = 1, for C large enough, ρCn∗,n∗ > 1/2 and thus(∑

n′

|cµ,n′ |2ρCn′,n′

)
= |cµ,n∗|2 − βC1

bµ,n∗(ρ
C , βC1 )

ρCn∗,n∗
. (4.26)

Taking n 6= n∗, by Assumption 4.4, there exists µ such that |cµ,n|2 6= |cµ,n∗|2. Replac-
ing (4.26) in (4.25) yields(

|cµ,n|2 − |cµ,n∗|2 + βC1
bµ,n∗ (ρC ,βC1 )

ρC
n∗,n∗

)
ρCn,n = βC1 bµ,n(ρC , βC1 ).

Thus, there exists C0 > 0 such that for n 6= n∗ and C large enough

ρCn,n ≤ C0|βC1 |.

But ρCn∗,n∗ = 1 −
∑

n6=n∗ ρ
C
n,n ≥ 1 − C0(d − 1)|βC1 |. This is in contradiction with ρCn∗,n∗ ≤

1− C|βC1 | as soon as C > C0(d− 1).
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Step 2. There exist δ′ > 0 and ū > 0 small enough, such that

I∞ ⊂ {(ρ, β1) ∈ D × [−ū, ū] | 〈n̄|ρ|n̄〉 ≥ 1− δ′}.

Proof of step 2. If Q1(ρ, β1) = 0, the minimum of the function

[−ū, ū] 3 ξ 7→ Fρ,β1(ξ) =
∑
µ

pβ1
µ,ρVε(Kξ(Mβ1

µ (ρ)))

is attained at ξ = 0.
By construction of Vε, we know that for β1 = 0, ρ = |n〉 〈n|,

d2F|n〉〈n|,0(ξ)

dξ2

∣∣∣∣
ξ=0

< 0,

if n 6= n̄, and ε ≤ minn6=n̄

(
λn
Rn,n

)
. The dependence of d2Fρ,β1/dξ

2 versus ρ and β1 is

continuous from Assumption 4.5. Therefore, there exist δ′, ū > 0 such that for all

(ρ, β1) ∈
⋃
n6=n̄

{(ρ, β1) ∈ D × [−ū, ū] | 〈n|ρ|n〉 ≥ 1− δ′} (4.27)

we have
d2Fρ,β1(ξ)

dξ2

∣∣∣∣
ξ=0

< 0.

Therefore, for all (ρ, β1) satisfying (4.27), ξ = 0 cannot minimize Fρ,β1(ξ) and we have

I∞ ∩
⋃
n6=n̄

{(ρ, β1) ∈ D × [−ū, ū] | 〈n|ρ|n〉 ≥ 1− δ′} = ∅.

Therefore, we get

I∞ ⊂ {(ρ, β1) ∈ D × [−ū, ū] | 〈n̄|ρ|n̄〉 ≥ 1− δ′},

by setting δ = δ′ in Step 1, for ū small enough. This finishes the proof of Step 2.

Step 3. ū can be chosen small enough so that I∞ = {(|n̄〉 〈n̄| , 0)}.

Proof of step 3. By construction of Vε, we have for ρ = |n̄〉 〈n̄| and β1 = 0,

d2F|n̄〉〈n̄|,0(ξ)

dξ2

∣∣∣∣
ξ=0

> 0.

By continuity of d2Fρ,β1/dξ
2 with respect to ρ and β1, we can choose δ̄ and ū small enough

such that for all β1 ∈ [−ū, ū] and ρ satisfying 〈n̄|ρ|n̄〉 ≥ 1− δ̄, we have

d2Fρ,β1(ξ)

dξ2

∣∣∣∣
ξ=0

> 0.
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This implies that on the domain

{(ρ, β1, ξ) ∈ D × [−ū, ū]2 | 〈n|ρ|n〉 ≥ 1− δ̄},

F is a uniformly strongly convex function of ξ ∈ [−ū, ū]. Thus the argument of its minimum
over ξ ∈ [−ū, ū] is a continuous function of ρ and β1.

Now we choose δ′′ = min{δ̄/2, δ′/2}, where δ′ is as in step 2. Then, taking a convergent
subsequence of {χk}∞k=1 (that we still denote by χk for simplicity sakes), we have

χk −→ (ρ∞, β1,∞) ∈ I∞ ⊂ {(ρ, β1) ∈ D × [−ū, ū] | 〈n|ρ|n〉 ≥ 1− δ̄}.

Therefore,
uk = argmin

ξ∈[−ū,ū]

Fρk,β1,k
(ξ)→ argmin

ξ∈[−ū,ū]

Fρ∞,β1,∞(ξ) = 0.

In the above, we get the last equality from the fact that Q1(ρ∞, β1,∞) = 0.
Since β1,k = uk−1, β1,k tends almost surely towards 0. We know that Q2(ρk, β1,k) and

Q1(ρk, β1,k) tend also almost surely to 0 (Theorem A.4) and by uniform (in ρ) continuity
with respect to β1,k, Q2(ρk, 0) and Q1(ρk, 0) tend almost surely to 0. Since Q1(ρ, 0) =
Q2(ρ, 0) = 0 implies ρ = |n̄〉 〈n̄|, ρk converges almost surely towards |n̄〉 〈n̄|. This completes
the proof for τ = 1.

Extension to τ > 1. For τ > 1 and χ = (ρ, β1, . . . , βτ ), the proof is very similar. We
still have (4.23) with Q1 and Q2 given by formulae analogous to (4.21) and (4.22): β1,k is re-

placed by βτ,k; M
β1,k
µ (ρk) is replaced by Kβ1,k . . .Kβτ−1,k(Mβτ,k

µ (ρk)); p
βτ,k
µ,ρk = Tr

(
M

βτ,k
µ ρkM

βτ,k
µ

†)
is replaced by Tr

(
Kβ1,k . . .Kβτ−1,k(M

βτ,k
µ ρkM

βτ,k
µ

†
)
)

(Kraus maps are trace preserving). The

analogue of technical Lemma 4.5, whose proof relies on similar continuity and compactness
arguments, has now the following statement:

Lemma 4.6. There exists C > 0 such that for all (ρ, β1, . . . , βτ ) ∈ D × [−ũ, ũ]τ satisfying
Q2(ρ, β1, . . . , βτ ) = 0, there exists n ∈ {1, . . . , d} such that ρn,n ≥ 1− C(|β1|+ |β2|+ . . .+
|βτ |).

The last part of the proof showing that, for ū small enough, the control uk is a continuous
function of χk when χk is in the neighborhood of the ω-limit set

{χ ∈ D × [−ū, ū]τ | Q1(χ) = Q2(χ) = 0},

remains almost the same.

4.3.3 Quantum filter and separation principle

The natural estimation of the hidden state ρ satisfies the following dynamics

ρek+1 = Muk−τ
µk

(ρek), (4.28)
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where the measurement outcome µk is driven by (4.18). In practice, the control uk defined
in Theorem 4.7 could only depend on this estimation ρek replacing ρk in χk. We have the
following theorem which ensures the convergence of ρk and ρek towards the target state
|n̄〉 〈n̄| even though the initial states ρ0 and ρe0 do not coincide.

Theorem 4.8. Consider the recursive dynamics of state ρk obeying (4.18) and assume
that the assumptions of Theorem 4.7 are satisfied. For each measurement outcome µk
given by (4.18), consider the estimation ρek given by (4.28) with an initial condition ρe0.

Set uk = f(ρek, uk−1, . . . , uk−τ ), where f is given by (4.20). Then, there exists u∗ > 0 such

that for all ū ∈]0, u∗] and ε ∈
]
0,minn 6=n̄

(
λn
Rn,n

)]
, ρk and ρek converge almost surely towards

the target state |n̄〉 〈n̄| as soon as ker(ρe0) ⊂ ker(ρ0).

Proof. We show that E [Tr (ρkρ̄) |ρ0, ρ
e
0] (where we take the expectation over all jump re-

alizations) depends linearly on ρ0 even though we apply the feedback control.

Since uk−τ is a function of (ρe0, µ0, . . . , µk−τ−1), we have

E [Tr (ρkρ̄) |ρ0, ρ
e
0] =

∑
µ0,...,µk−1

Tr
(
M̃uk−τ

µk−1

(
. . .
(
M̃u−τ

µ0
(ρ0)

))
ρ̄
)
,

where M̃u
µ (ρ) = Mu

µρM
u
µ
†. The linearity of E [Tr (ρkρ̄) |ρ0, ρ

e
0] with respect to ρ0 is thus

clear. The rest of the proof will be done in the same way as the one presented for Theo-
rem 3.3.

4.4 Imperfect measurements

We now consider the feedback control problem in the presence of classical measurement
imperfections with the possibility of detection errors. We get the model described in
Section 2.7. The imperfections in the measurement process are described by a classical
probabilistic model relying on a left stochastic matrix (ηµ′,µ), µ′ ∈ {1, . . . ,m′} and µ ∈
{1, . . . ,m}: ηµ′,µ ≥ 0 and for any µ,

∑m′

µ′=1 ηµ′,µ = 1. The integer m′ corresponds to the
number of imperfect outcomes and ηµ′,µ is the probability of having the imperfect outcome
µ′ knowing that the perfect one is µ.

Set

ρ̂k = E
[
ρk|ρ0, µ

′
0, . . . , µ

′
k−1, u−τ , . . . , uk−τ−1

]
. (4.29)

Since ρk follows (4.18), ρ̂k is also governed by a Markov process [90]:

ρ̂k+1 = Luk−τµ′k
(ρ̂k), (4.30)

where
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• for each µ′, Luµ′ is the superoperator defined by

ρ̂ 7→ Luµ′(ρ̂) =
Lu
µ′(ρ̂)

Tr
(
Lu
µ′(ρ̂)

)
with Lu

µ′(ρ̂) =
∑m

µ=1 ηµ′,µM
u
µ ρ̂M

u
µ
†;

• µ′k is a random variable taking values µ′ in {1, . . . ,m′} with probability

p
uk−τ
µ′,ρ̂k

= Tr
(
L
uk−τ
µ′ (ρ̂k)

)
.

Since ηµ′,µ is a left stochastic matrix, we have

E [ρ̂k+1|ρ̂k = ρ, uk−τ = u] =
m′∑
µ′=1

Lu
µ′(ρ̂) =

m∑
µ=1

Mu
µ ρ̂M

u
µ
† = Ku(ρ̂),

which is precisely the Kraus map (4.12) associated with the Markov process ρk. By As-
sumption 4.3, each pure state |n〉 〈n|, for n ∈ {1, . . . , d} remains a fixed point of the Markov
process (4.30), when u ≡ 0.

We now consider the dynamics of the filter state ρ̂ in the presence of delays in the
feedback control. Similar to the case with perfect measurements, let χ̂k = (ρ̂k, β1,k, . . . , βτ,k)
be the filter state at step k, where βl,k = uk−l is the feedback control at time step k delayed
l steps. Then the delay dynamics are determined by the following Markov chain

ρ̂k+1 = Lβτ,kµ′k
(ρ̂k)

β1,k+1 = uk
β2,k+1 = β1,k

...
βτ,k+1 = βτ−1,k.

(4.31)

Instead of Assumption 4.4 we now assume

Assumption 4.6. For all n1 6= n2 in {1, . . . , d}, there exists µ′ ∈ {1, . . . ,m′} such that

m∑
µ=1

ηµ′,µ|cµ,n1|2 6=
m∑
µ=1

ηµ′,µ|cµ,n2|2.

Assumption 4.6 means that there exists a µ′ such that the statistics when u ≡ 0 for
obtaining the measurement result µ′ are different for the fixed points |n1〉 〈n1| and |n2〉 〈n2|.
This follows by noting that Tr

(
L0
µ′(|n〉 〈n|)

)
=
∑m

µ=1 ηµ′,µ|cµ,n|2 for n ∈ {1, . . . , d}.
We now state the main result of this section, which is the analogue of Theorem 4.7 in

the case of imperfect measurements.
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Theorem 4.9. Consider the Markov chain (4.31) with Assumptions 4.3, 4.5 and 4.6. Take
n̄ ∈ {1, . . . , d}. Assume that the directed graph G associated to the Metzler matrix R of
Lemma 4.3 is strongly connected. Take ε > 0, σ ∈ Rd

+ solution of Rσ = λ with σn̄ = 0, ,
λn < 0 for n ∈ {1, . . . , d} \ {n̄}, λn̄ = −

∑
n6=n̄ enλn (see Lemma 4.4) and set

Vε(ρ̂) =
d∑

n=1

σn 〈n| ρ̂ |n〉 − ε
2
(〈n| ρ̂ |n〉)2.

Take ū > 0 and consider the following feedback law

uk = argmin
ξ∈[−ū,ū]

(
E [Wε(χ̂k+1)|χ̂k, uk = ξ]

)
= f(χ̂k) (4.32)

where Wε(χ̂) = Vε(Kβ1(Kβ2(. . . . . .Kβτ (ρ̂) . . .))).

Then there exists u∗ > 0 such that for all ū ∈]0, u∗] and ε ∈
]
0,minn 6=n̄

(
λn
Rn,n

)]
, the

closed-loop Markov chain of state χ̂k with the feedback law (4.32) converges almost surely
towards (|n̄〉 〈n̄| , 0, . . . , 0), for any initial condition χ̂0 ∈ D × [−ū, ū]τ .

The proof of this theorem is almost identical to that of Theorem 4.7 with Mu
µ replaced

by Luµ′ and puµ,ρ replaced by puµ′,ρ̂ and we do not give the details of this proof.
For estimating the hidden state ρ̂ necessary to apply the feedback (4.32), let us consider

the estimate ρ̂e given by
ρ̂ek+1 = Luk−τµ′k

(ρ̂ek), (4.33)

where µ′k corresponds to the imperfect outcome detected at step k. Such µ′k is correlated
to the perfect and hidden outcome µk of (4.18) through the classical stochastic process
attached to (ηµ′,µ): for each µk, µ

′
k is a random variable which is equal to µ′ ∈ {1, . . . ,m′},

with probability ηµ′,µk .
In practice, the control uk defined in Theorem 4.9 could only depend on the estimation

ρ̂ek replacing ρ̂k in χ̂k = (ρ̂k, uk−1, . . . , uk−τ ). The following result guaranties the conver-
gence of the feedback scheme when ker(ρ̂e0) ⊂ ker(ρ0).

Theorem 4.10. Consider the recursive dynamics of state ρk obeying (4.18) and take the
assumptions of Theorem 4.9. Consider the estimation ρ̂ek given by (4.33) with an initial
condition ρ̂e0. Set uk = f(ρ̂ek, uk−1, . . . , uk−τ ) where f is given by (4.32).

Then there exists u∗ > 0 such that for all ū ∈]0, u∗] and ε ∈
]
0,minn6=n̄

(
λn
Rn,n

)]
, ρk and ρ̂ek

converge almost surely towards the target state |n̄〉 〈n̄| as soon as ker(ρ̂e0) ⊂ ker(ρ0).

Proof. Let us first prove that ρ̂k defined by (4.29) converges almost surely towards |n̄〉 〈n̄|.
Since ρ̂0 = ρ0, we have ker(ρ̂e0) ⊂ ker(ρ̂0). Thus, there exist ρ̂c0 ∈ D and γ ∈]0, 1[, such that
ρ̂e0 = γρ̂0 + (1 − γ)ρ̂c0. Similarly to the proof of Theorem 4.8, E [Tr (ρ̂kρ̄) |ρ̂0, ρ̂

e
0] depends

linearly on ρ̂0:

E [Tr (ρ̂kρ̄) | ρ̂e0, ρ̂e0] = γE [Tr (ρ̂kρ̄) | ρ̂0, ρ̂
e
0] + (1− γ)E [Tr (ρ̂kρ̄) | ρ̂c0, ρ̂e0] .
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Moreover, by Theorem 4.9, E [Tr (ρ̂kρ̄) | ρ̂e0, ρ̂e0] converges almost surely towards one, thus,
E [Tr (ρ̂kρ̄) | ρ̂0, ρ̂

e
0] and E [Tr (ρ̂kρ̄) | ρ̂c0, ρ̂e0] converge also towards one. Consequently, ρ̂k

converges almost surely towards |n̄〉 〈n̄|.
Since ρ̂k is the conditional expectation of ρk knowing the past imperfect outcomes and

control inputs, and since its limit |n̄〉 〈n̄| is a pure state, ρk converges necessarily towards
the same pure state almost surely. Convergence of ρ̂ek relies on similar arguments exploiting
the linearity of E [Tr (ρ̂ekρ̄) |ρ̂0, ρ̂

e
0] versus ρ̂0.

4.5 The photon box

In this section, we reconsider the photon box presented in Chapter 3. Not only we suppose
that there exists some delays in the measurement process, but we assume also that the
measurements are imperfect. Indeed, we give the explicit expression of the feedback which
is obtained by the Lyapunov design discussed in this chapter. Moreover, this feedback
has been experimentally tested in Laboratoire Kastler Brossel (LKB) at Ecole Normal
supérieure (ENS) de Paris and the result has been published in [88].

4.5.1 Experimental system

Figure 4.1: Scheme of the experimental setup.

The system to be controlled is a microwave electromagnetic field trapped in a cavity
C (see Fig. 4.1), made of two high-reflection mirrors facing each other and able to store
photons for almost Tcav ∼ 0.1 s. When prepared in a classical state, namely a coherent state
|α〉, where α ∈ C denotes the amplitude of the field, the number of photons in the field
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is not well-defined: the photon number probability distribution P (nph) is a Poisson law
of parameter 〈nph〉 = |α|2. Coherent states are robust states that remain coherent while
their energy 〈nph〉 decays with a characteristic time Tcav. The non-classical photon-number
states |n = nph + 1〉 ≡ |nph〉, or Fock states containing exactly nph ∈ N photons, are more
fragile: a so-called quantum jump towards |nph − 1〉 occurs on average after time Tcav/nph

only. Real-time information is then required to correct for these jumps and stabilize these
states.

In LKB experiment, this information is provided by individual two-level atoms, whose
states are denoted |g〉 and |e〉, and which are prepared in box B and sent through the
cavity mode every time interval Tp. In additional cavities R1 and R2, we can map these
states to and from their quantum superposition which is sensitive to the field in C. While
interacting with the cavity field, the atoms act as atomic clocks whose rate would be
proportional to the number nph of photons stored in the cavity: they accumulate a phase
φ(nph) = φ0(nph + 1/2), where φ0 is the dephasing per photon. Measuring each atom in
the {|g〉 , |e〉} basis by means of detector D gives partial information about nph. Since the
atomic preparation is not deterministic (Poisson process with a mean number of atoms per
sample of 〈na〉 ≈ 0.6), zero, one or two atoms may be detected.

A real-time computer then runs the quantum filter, which estimates the actual density
matrix ρ of the field using the outcome of the measurement and all available knowledge
on the experimental setup. Notably, it takes into account the limited detection efficiency ε
(percentage of atoms that are actually detected) and the detection errors ηe and ηg (ηµ∈{e,g}
is the probability to detect an atom in the wrong state).

The controller eventually calculates through its feedback law the amplitude u ∈ R
(scalar control input) of the classical microwave field that is injected into the cavity by the
classical source S so as to bring the cavity field closer to the target state. The succession of
the atomic detection, the state estimation and the microwave injection define one iteration
of our feedback loop. For a more detailed description see [88, 87, 44].

4.5.2 The controlled Markov process and quantum filter

The three main processes that drive the evolution of our system are decoherence, injection
and measurement. Their action onto the system’s state can be described by three super-
operators T, D and P, respectively (see [36] for more details). All operators are expressed
in the truncated Fock-basis (|nph〉)nph=0,...,nmax to nmax photons. With notations given in
previous sections, d = nmax + 1 and the index n = nph + 1.

Decoherence

The decoherence manifests through spontaneous loss or capture of a photon to or from the
environment. Thus, it can be sufficiently described by the action of the superoperator T
in the justified approximation θ = Tp/Tcav�1 in the form of

ρ 7→ Tθ(ρ) = L0ρL
†
0 + L−ρL

†
− + L+ρL

†
+. (4.34)
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Here, the three operators L0, L− and L+ refer to the situations where the photon number
changes by 0, −1 and +1 after the time interval Tp. They thus read

L0 = 11− θ(1/2 + nth) N− (θnth/2) 11, (4.35)

L− =
√
θ(1 + nth) a, (4.36)

L+ =
√
θnth a†, (4.37)

where a and a† are photon annihilation and creation operators, (a |nph〉 =
√
nph |nph−1〉

and a† |nph〉 =
√
nph+1 |nph+1〉), and N = a†a is the photon number operator (N |nph〉 =

nph |nph〉). Besides, nth is the mean number of photons in the cavity mode at thermal
equilibrium with its environment.

Injection

The control field is realized by injecting into the cavity a small coherent microwave field
of real amplitude u ∈ R. It is described by the unitary displacement operator Du =
exp(ua† − ua). The evolution of the state ρ after the control injection is thus modeled
through

ρ 7→ Du(ρ) = DuρD−u. (4.38)

Since all analysis is performed up to the second order of the control parameter u, we use
the following approximation of the displaced state:

Du(ρ) ≈ ρ− u[ρ, a†− a] +
u2

2
[[ρ, a†− a], a†− a]. (4.39)

In the following, we therefore limit the control to u ∈ [−ū, ū] with ū = 0.1 � 1. Besides,
this approximation allows to significantly reduce the computation time during the real-time
state filtering.

Measurement

In the ideal case, every detection of an atomic sample gives one of the two possible results
µ ∈ {e, g} and the system gets projected onto one of the two states given by

Pµ(ρ) =
MµρM

†
µ

Tr
(
MµρM

†
µ

) . (4.40)

The operators Mµ depend on the experimental settings, the relative phase φr between
cavities R1 and R2 and the dephasing per photon φ0:

Mg = cos
(φr11 + φ0(N + 1/211)

2

)
, (4.41a)

Me = sin
(φr11 + φ0(N + 1/211)

2

)
, (4.41b)
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µ′ \ µ ø g e gg ee ge or eg

ø 1 1−ε 1−ε (1−ε)2 (1−ε)2 (1−ε)2
g 0 ε(1−ηg) εηe 2ε(1−ε)(1−ηg) 2ε(1−ε)ηe ε(1−ε)(1−ηg+ηe)
e 0 εηg ε(1−ηe) 2ε(1−ε)ηg 2ε(1−ε)(1−ηe) ε(1−ε)(1−ηe+ηg)
gg 0 0 0 ε2(1−ηg)2 ε2η2e ε2ηe(1−ηg)
ge 0 0 0 2ε2ηg(1−ηg) 2ε2ηe(1−ηe) ε2((1−ηg)(1−ηe)+ηgηe)
ee 0 0 0 ε2η2g ε2(1−ηe)2 ε2ηg(1−ηe)

Table 4.1: Stochastic matrix ηµ′,µ showing the probability to measure outcome µ′ for
each ideal measurement outcome µ. Note that we cannot technically distinguish detection
outcomes µ′ = {ge} and µ′ = {eg}.

(with notations given in Section 3.1, 1
2φr + 1

4
φ0 = ϕ0 and 1

2φ0 = ϑ). These measurement
operators are diagonal in the photon number basis {|nph〉}, illustrating their quantum
non-demolition nature with respect to the photon number operator and thus fulfilling
Assumption 4.3. Besides, Assumption 4.4 can also be fulfilled by a proper choice of the
experimental parameters φr and φ0

In the real experiment, the atom source is probabilistic and is characterized by a trun-
cated Poisson probability distribution Pa(na) ≥ 0 to have na ∈ {0, 1, 2} atom(s) in a
sample (we neglect events with more than two atoms). This expands the set of the possi-
ble detection outcomes to m = 7 values µ ∈ {ø, g, e, gg, eg, ge, ee}, related to the following
measurement operators:

Lø =
√
Pa(0) 11, (4.42)

Lg =
√
Pa(1)Mg,

Le =
√
Pa(1)Me,

Lgg =
√
Pa(2)M2

g ,

Lge =
√
Pa(2)MgMe,

Leg =
√
Pa(2)MgMe,

Lee =
√
Pa(2)M2

e .

Finally, the real measurement process is not perfect: the detection efficiency is limited
to ε < 1 and the state detection errors are non-zero (0 < ηe/g < 1). These imperfections
are taken into account by considering the left-stochastic matrix ηµ′,µ given in Table 4.1 [90].
Consequently, the optimal state estimate after measurement outcome µ′ gets the following
form

Pµ′(ρ) =

∑m
µ=1 ηµ′,µLµρL

†
µ

Tr
(∑m

µ=1 ηµ′,µLµρL
†
µ

) . (4.43)

State estimation. The last experimental complication to be taken into account is the
spatial separation of the cavity C and the detector D, which results in τ atomic samples
flying between them at every moment. This introduces a delay in the control field since a
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sample measured at step k has been in the cavity just after control injection made at step
k − τ . After taking into account our full knowledge about the experiment, we finally get
the following state estimate at step k + 1:

ρ̂ek+1 = Pµ′k(Duk−τ (Tθ(ρ̂
e
k))) ≡ Luk−τ ,θµ′k

(ρ̂ek). (4.44)

4.5.3 Feedback controller

For θ = 0 (no cavity decoherence), the Markov model of density matrix ρ̂ associated
to the filter (4.44) is exactly of the form (4.31) with (|nph〉 〈nph|)nph=0,...,nmax being fixed-
points in open-loop. Similarly, the underlying Markov process of state ρ, the true cavity
state unobservable in practice because of detection imperfections and delays, admits the
same fixed-points. With parameters given in Subsection 4.5.3 (except θ = 0), these Markov
processes satisfy Assumptions 4.3-4.4-4.5 for ρ and Assumptions 4.3-4.5-4.6 for ρ̂. Moreover
the Metzler matrix R of Lemma 4.4 is irreducible since its directed graph coincides with
the directed graph of a†− a, a tri-diagonal operator. Consequently the assumptions of
Theorem 4.9 are satisfied. The feedback law proposed in Theorem 4.10 and relying on
the filter state ρ̂e will stabilize globally the unobservable state ρ towards the goal photon-
number state |n̄ph〉 〈n̄ph|. Numerous closed-loop simulations show that taking ε = 0 in
the feedback law does not destroy stability and does not affect the convergence rates.
This explains why in the simulations and experiments, we set ε = 0 despite the fact that
Theorem 4.10 guaranties convergence only for arbitrary small but strictly positive ε.

For θ positive and small, the |nph〉 〈nph|’s are no more fixed-points for ρ and ρ̂ in open-
loop. Nevertheless, closed-loop simulations and experimental data of figures 4.3 and 4.4
indicate that a slight adaptation of the feedback scheme of Theorem 4.10 steers and main-
tains ρ and ρ̂ close to the target |n̄ph〉 〈n̄ph| between photon-number jumps induced by
cavity decoherence (jump operators L+ and L− given in (4.35)). The feedback of The-
orem 4.10 appears to be robust enough to compensate such cavity decoherence jumps
induced by a finite lifetime of the photons.

Let us detail how to adapt the feedback scheme of Theorem 4.10. At each step of an ideal
experiment, the control uk minimizes the Lyapunov function V0(ρ̃k) =

∑
nph

σnph
〈nph| ρ̃k |nph〉

(ε is set to zero) calculated for state ρ̃k = Duk(ρk). In our real experiment however, we also
take into account decoherence and τ flying not-yet-detected samples and therefore choose
uk to minimize V0(ρ̃k) for

ρ̃k = Duk(Tθ(Kuk−1,θ(Kuk−2,θ(. . .Kuk−τ ,θ(ρ̂ek) . . .)))),

with ρ̂e given by (4.44). Here we have introduced the Kraus map of the real experiment

D 3 ρ 7→ Ku,θ(ρ) =
m′∑
µ′=1

m∑
µ=1

ηµ′,µLµ(Du(Tθ(ρ)))Lµ
† ∈ D. (4.45)

To simplify the minimization of W0, we use approximation (4.39) and get

V0(Du(ρ)) ≈ V0(ρ)−
(
a1u+ a2

u2

2

)
, (4.46)

109



CHAPTER 4. FEEDBACK STABILIZATION UNDER DISCRETE-TIME QND
MEASUREMENTS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

photon number n
ph

Coefficients  σ
n

ph

 of the control Lyapunov function

Figure 4.2: Coefficients of the Lyapunov function V0(ρ) used in the feedback for the simu-
lations of Figure 4.3 and for the experiment of Figure 4.4.

with a1 = Tr
(
[a†−a, σN]ρ

)
and a2 = Tr

(
[[a†−a, σN], a†−a]ρ

)
, where σN is the diagonal

operator
∑

nph
σnph
|nph〉 〈nph|. The coefficients σnph

are computed using Lemma 4.4, where,
for nph 6= n̄ph, λnph

are chosen strictly negative and with a decreasing modulus versus nph

in order to compensate cavity decay. For n̄ph = 3, we have compared different setting in
simulations and selected the profile displayed in Fig. 4.2. The control u minimizing V0 is
then approximated by

argmax
ξ∈[−ū,ū]

(
a1ξ + a2ξ

2/2
)
.

This approximated function takes its maximum necessary at one of the two extremes −ū,
ū or at the point −a1/a2 where its derivative is zero.

Simulations and experimental results. Closed-loop simulation of Figure 4.3 shows
one typical Monte-Carlo trajectory of the feedback loop aiming on the stabilization of
the 3-photon state |n̄ph = 3〉. The typical values of experimental parameters used in the
simulations are the following: nmax = 8, φ0 = 0.245π, φr = π/2−φ0(n̄ph +1/2), 〈na〉 = 0.6,
ε = 0.35, ηe = 0.13, ηg = 0.11, Tp = 82µs, Tcav = 65 ms, nth = 0.05, and τ = 4. For the
feedback, σnph

are given in Figure 4.2, ε = 0 and ū = 1/10. The initial states ρ0 and ρ̂e0
coincide with the coherent state with n̄ph = 3 photons: D√n̄ph

(|0〉 〈0|).
The results of the experimental implementation of the feedback scheme are presented

in Figure 4.4. Figure 4.4(e) shows that the average fidelity of the target state is about
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Figure 4.3: Simulation of one Monte-Carlo trajectory in closed-loop with the target state
|n̄ph = 3〉. (a) Detection results. (b) control-Lyapunov function. (c) Control input. (d)
Estimated photon number probabilities:

∑
nph<n̄ph

〈nph| ρ̂e |nph〉 in red, 〈n̄ph| ρ̂e |n̄ph〉 in

thick green, and
∑

nph>n̄ph
〈nph| ρ̂e |nph〉 in blue. (e) cavity photon number probabilities:∑

nph<n̄ph
〈nph| ρ |nph〉 in red , 〈n̄ph| ρ |n̄ph〉 in thick green, and

∑
nph>n̄ph

〈nph| ρ |nph〉 in blue.
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47%. Besides, the asymmetry between the distributions for nph < n̄ph and nph > n̄ph

indicates the presence of quantum jumps occurring preferentially downwards (n̄ph → n̄ph−
1). Contrarily to the simulations of Figure 4.3(e), the cavity photon numbers relied on
ρ are not accessible in the experimental data of Figure 4.4, since we do not have access
to the detection errors and to the cavity decoherence jumps. Nevertheless, green curves
in simulation Figures 4.3(d) and 4.3(e) indicate that when 〈n̄ph| ρ̂e |n̄ph〉 exceeds 8/10, ρ
coincides, with high probability, with the goal state |n̄ph〉 〈n̄ph|.

Remark 5. We remark that the feedback designed in this chapter is more efficient than
the one proposed in [36] (the increase of 10 percent in fidelity).

4.6 Conclusion

We have proposed the Lyapunov designs for state feedback stabilization of some discrete-
time finite-dimensional quantum systems with QND measurements. Extensions of these
designs are possible in different directions such as:

• replacing the continuous and one-dimensional input u by a multi-dimensional one
(u1, . . . , up);

• assuming that u belongs to a finite set of discrete values;

• taking an infinite dimensional state space as in [91], where the truncation to finite
photon numbers is removed;

• considering continuous-time systems similar to the ones investigated in [71];

• ensuring convergence towards a sub-space instead of a pure-state and thus achieving
a goal similar to error correction code as already proposed in [1].
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Figure 4.4: Single experimental trajectory of the feedback loop with the target state
|n̄ph = 3〉. (a) Detection results. (b) Evolution of the control function. (c) Control
injection. (d) Estimated photon number probabilities:

∑
nph<n̄ph

〈nph| ρ̂e |nph〉 in red ,

〈n̄ph| ρ̂e |n̄ph〉 in thick green, and
∑

nph>n̄ph
〈nph| ρ̂e |nph〉 in blue. (e) Estimated photon

number probabilities averaged over 4000 experimental trajectories of the feedback loop.
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Dans cette partie, nous considérons les systèmes quantiques ouverts en temps con-
tinu qui sont simultanément en interaction avec un environnement et subissent une cer-
taine mesure. Ces systèmes sont généralement décrits par des équations différentielles
stochastiques. Cette description peut être faite de deux manières : soit une équation de
Schrödinger stochastique (SSE) [11, 26, 8] lorsque l’état quantique reste pur et que les sauts
dus à l’environnement et la mesure sont pleinement intégrées, soit une équation mâıtresse
stochastique (SME) [9, 11] pour les états mixtes arbitraires lorsque seuls les sauts dus à la
mesure sont pris en compte. En outre, ces équations différentielles stochastiques peuvent
être caractérisées par deux types de bruits : les processus de Poisson apparaissent comme
les bruits pour le cas sauts et les processus de Wiener pour les cas diffusifs. Les SMEs plus
générales ou les SSEs sont simultanément dérivées par les deux termes de diffusion et de
saut [10].

Dans ce chapitre, nous considérons le cas le plus fréquent des SMEs dérivées par un
processus de Wiener et nous montrons que les filtres quantiques associés sont stables.
Dans le prochain chapitre, nous allons présenter des équations mâıtresse stochastiques plus
générales dérivées heuristiquement du Théorème 2.2 pour le cas discret, où les imperfections
de mesure sont caractérisées par des modèles stochastiques classiques.

La théorie de filtrage quantique fournit une base de l’inférence statique inspirée, par
exemple, par les systèmes optiques quantiques. Ces systèmes sont décrits par des équations
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différentielles stochastiques quantiques en temps continu. Ces équations mâıtresses stochas-
tiques incluent des effets de retour de mesure sur l’état quantique. À ces équations stochas-
tiques sont attachés des filtres dits quantiques fournissant les estimations des états quan-
tiques à partir des mesures en temps réels. La robustesse et la convergence de telles
estimations ont été étudiées dans de nombreux articles. Par exemple, les conditions suff-
isantes relatives aux questions d’observabilité sont données dans [101] et [100]. Pour autant
que nous sachions, il n’existe pas encore de conditions nécessaires et suffisantes de conver-
gence générales et vérifiables. Dans ce chapitre, nous généralisons un résultat de stabilité
pour les états purs (voir par exemple [33]) aux états quantique mixtes arbitraires. Plus
précisément, nous montrons que la fidélité entre l’état quantique (qui pourrait être un
état mixte) et l’état de son filtre quantique associé est une sous-martingale : cela signi-
fie qu’en moyenne l’état estimé tend à se rapprocher de l’état du système. Cependant,
ceci n’implique pas sa convergence asymptotique en fonction du temps. Pour prouver ces
résultats de convergence, l’analyse plus spécifique en fonction de la structure précise des
opérateurs Hamiltonien, Lindbladien et des opérateurs de mesure définissants le modèle
du système est nécessaire. Ce travail peut être vu comme une extension du cas continu du
Théorème 2.1 (c.f. la sous-section 1.2.4 pour plus de détails).

Ce chapitre est organisé come suit. Dans la Section 5.1, nous présentons les équations
mâıtresses stochastiques non linéaires et les filtres quantiques associés et nous énonçons le
résultat principal dans le Théorème 5.1. La Section 5.2 est consacrée à la démonstration
de ce résultat : d’une part, nous considérons une approximation par des équations stochas-
tiques mâıtresses conduites par des processus de Poisson (approximation de la diffusion) ;
d’autre part, nous prouvons la propriété sous-martingale par une discrétisation en temps.
Dans la section finale, nous proposons quelques extensions possibles de ce résultat. Ce
travail a été publié dans [2].

In this part, we consider open quantum systems in continuous-time which are simulta-
neously in interaction with an environment and undergo some measurement. Such systems
are usually described by stochastic differential equations. There are two possibilities for
this description: either a stochastic Schrödinger equation (SSE) [11, 26, 8] when the quan-
tum state remains pure and the jumps due to the environment and measurement are fully
included; or a stochastic master equation (SME) [9, 11] for arbitrary mixed states when
only the jumps due to the measurement are included . Moreover, these two stochastic dif-
ferential equations can be described by two kinds of noises: the Poisson processes appear
as the noises for the jump cases; the Wiener processes appear as the noises for the diffusive
cases. More general SMEs or SSEs are simultaneously driven by both jump and diffusion
terms [10].

In this chapter, we consider the most usual case of SMEs driven only by a Wiener
process and we show that the associated quantum filters are stable. In the next chapter,
we will present more general stochastic master equations derived heuristically from the
discrete-time Theorem 2.2, where measurement imperfections are characterized by classical
stochastic models.

The quantum filtering theory provides a foundation of statistical inference inspired in
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e.g., quantum optical systems. These systems are described by continuous-time quantum
stochastic differential equations. These stochastic master equations include the measure-
ments back-actions on the quantum-state. To these stochastic master equations are at-
tached so-called quantum filters providing, from the real-time measurements, estimations
of the quantum states. Robustness and convergence of such estimation process has been
investigated in many papers. For example, sufficient convergence conditions, related to
observability issues, are given in [101] and [100]. As far as we know, general and verifiable
necessary and sufficient convergence conditions do not exist yet. In this chapter, we gen-
eralize a stability result for pure states (see e.g., [33]) to arbitrary mixed quantum states.
More precisely, we prove that the fidelity between the quantum state (that could be a
mixed state) and its associated quantum filter state is a submartingale: this means that in
average, the estimated state tends to be closer to the system state. This does not however
imply its asymptotic convergence for large times. To prove such convergence results, more
specific analysis depending on the precise structure of the Hamiltonian, Lindbladian and
measurement operators defining the system model is required. This work can be seen as an
extension to the continuous-time case of Theorem 2.1 (see more details in Subsection 1.2.4).

This chapter is organized as follows. In Section 5.1, we introduce the non-linear stochas-
tic master equations, its associated quantum filter and we state the main result in Theo-
rem 5.1. Section 5.2 is devoted to the proof of this result: firstly, we consider an approxima-
tion via stochastic master equations driven by Poisson processes (diffusion approximation);
secondly, we prove the submartingale property via a time discretization. In final section,
we suggest some possible extensions of this result. This work was appeared in [2].

5.1 Main result

We consider quantum systems of finite-dimensions 1 < d < ∞. The state space of such a
system is given by the set of density matrices

D := {ρ ∈ Cd×d| ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0}.

Formally, we consider the evolution of the real state ρ ∈ D which is described by the
following stochastic master equation (cf., [16, 20, 103]),

dρt = L(ρt) dt+ Λ(L)ρt dWt , (5.1)

where we recall the notations used in above:

• the superoperator L is called Lindblad operator which has the following form,

L(ρ) := −i[H, ρ]− 1

2
{L†L, ρ}+ LρL†,

where H = H† is a Hermitian operator which describes the action of external forces
on the system . The notations [A,B] and {A,B} refer respectively to AB −BA and
AB +BA;
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• dWt is the Wiener process which is the following innovation

dWt = dyt − Tr
(
(L+ L†) ρt

)
dt , (5.2)

where yt is a continuous semi-martingale with quadratic variation 〈y, y〉t = t (which
is the observation process obtained from the system) and L is an arbitrary matrix
which determines the measurement process (typically the coupling to the probe field
for quantum optic systems) ;

• the superoperator Λ is defined by

Λ(c)ρ := cρ+ ρc† − Tr
(
(c+ c†)ρ

)
ρ.

All the developments remain valid, when H and L are deterministic time-varying matrices.
For the sake of clarity, we do not recall below such possible time dependence.

The evolution of the quantum filter of state ρet ∈ D is described by the following stochas-
tic master equation which depends on the time-continuous measurement yt depending on
the true quantum state ρt via (5.2) (see e.g., [7]):

dρet = L(ρet ) dt+ Λ(L)ρet

(
dyt − Tr

(
(L+ L†)ρet

)
dt
)
. (5.3)

Replacing dyt by its value given in (5.2), we obtain

dρet =L(ρet ) dt+ Λ(L)ρet dWt + Λ(L)ρet

(
Tr
(
(L+ L†)ρt

)
− Tr

(
(L+ L†)ρet

) )
dt.

A usual measurement of the difference between two quantum states ρ1 and ρ2 is given by
the fidelity, a real number between 0 and 1. More precisely, the fidelity between ρ1 and ρ2

in D is given by (see [75, Chapter 9] for more details)

F (ρ1, ρ2) = Tr2

(√√
ρ1ρ2
√
ρ1

)
. (5.4)

Here F (ρ1, ρ2) = 1 means ρ1 = ρ2, and F (ρ1, ρ2) = 0 means that the support of ρ1 and ρ2

are orthogonal. When at least one of the states ρ1 or ρ2 is pure (i.e., orthogonal projector
of rank one), F (ρ1, ρ2) coincides with their inner product Tr (ρ1ρ2). It is well-known that
stochastic master Equations (5.1) and (5.3) leave the domain D positively invariant (see
Lemma 3.2 and Proposition 3.3 in [71]). Therefore, the expression of fidelity given by (5.4)
is well-defined. Hence, we can use Itô rules to give the following numerical approximations
of SMEs (5.1) and (5.3) which imply then directly, as soon as ρ0 and ρe0 belong to D, that
ρt and ρet remain in D for all t ≥ 0.

ρt+dt =

(
11− iH dt− 1

2L
†Ldt+ Ldyt

)
ρt
(
11− iH dt− 1

2L
†Ldt+ Ldyt

)†
Tr
((

11− iH dt− 1
2L
†Ldt+ Ldyt

)
ρt
(
11− iH dt− 1

2L
†Ldt+ Ldyt

)†) (5.5)

120



CHAPTER 5. ON STABILITY OF CONTINUOUS-TIME QUANTUM FILTERS

and

ρet+dt =

(
11− iH dt− 1

2L
†Ldt+ Ldyt

)
ρet
(
11− iH dt− 1

2L
†Ldt+ Ldyt

)†
Tr
((

11− iH dt− 1
2L
†Ldt+ Ldyt

)
ρet
(
11− iH dt− 1

2L
†Ldt+ Ldyt

)†) , (5.6)

where dyt = Tr
(
(L+ L†) ρt

)
dt+ dWt.

We are now in position to state the main result of this chapter.

Theorem 5.1. Consider the Markov processes (ρt, ρ
e
t ) satisfying stochastic master Equa-

tions (5.1) and (5.3) respectively with ρ0, ρe0 in D. Then the fidelity F (ρt, ρ
e
t ), defined in

Equation (5.4), is a submartingale, i.e., E [F (ρt, ρ
e
t )|(ρs, ρes)] ≥ F (ρs, ρ

e
s), for all t ≥ s.

We recall that the above theorem generalizes the results of [33] to arbitrary purity of
the real states and quantum filters. If ρ0 is pure, then ρt remains pure for all t > 0. In
this case, F (ρt, ρ

e
t ) coincides with Tr (ρtρ

e
t ). It is proved in [33] that this Frobenius inner

product is a submartingale for any initial value of ρet :
d
dt
E [Tr (ρtρ

e
t )] ≥ 0. The main idea

of the proof in [33] consists in using Itô’s formula to reduce the theorem to showing that
E [Tr (dρtρ

e
t + ρtdρ

e
t + dρtdρ

e
t )] ≥ 0, and then using the shift invariance of the operator L

in the dynamics (5.1) and (5.3) and choosing an appropriate value.
In the absence of any information on the purity of the real states and the quantum filter,
the fidelity is given by (5.4), and the application of Itô’s formula for the above expression
becomes much more involved. In particular, the calculation of the cross derivatives was
so complicated that it became hopeless to proceed this way. As the proof presented in
the next section shows, we had to choose an undirect way to approach the theorem which
allowed us to avoid the heavy calculations based on second order derivatives of F .

5.2 Proof of Theorem 5.1

We proceed in two steps.

• In the first step, we describe briefly how we obtain stochastic master Equations (5.1)
and (5.3) as the limits of the stochastic master equations with Poisson processes
using the diffusive limits inspired from the physical balanced Homodyne detection
model [9, 109].

• In the second step, we show that the fidelity between the real state and the quantum
filter which are the solutions of stochastic master equations with Poisson processes,
is a submartingale.

Step 1. Take ς > 0 a large real number and consider the evolution of the quantum state
ρςt described by the following stochastic master equation derived from balanced homodyne
detection scheme (see Section 6.4 of [26] or [9], [109] for more physical details):

dρςt =− i[H, ρςt ] dt− 1
4
Λς(L†L)ρςt dt+ Υς(L)ρςt dN1 (5.7)

− 1
4
Λ−ς(L†L)ρςt dt+ Υ−ς(L)ρςt dN2 ,
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where the superoperators Υς is defined as follows

Υς(c)ρ :=
(c+ ς)ρ(c† + ς)

Tr ((c+ ς)ρ(c† + ς))
− ρ,

and the superoperator Λς is defined by

Λς(c)ρ := (c+ ς)ρ+ ρ(c† + ς)− Tr
(
(c+ c† + 2ς)ρ

)
ρ.

The superoperators Λ−ς and Υ−ς are just obtained with replacing ς by −ς in the expressions
given in above.

The two processes dN1 and dN2 are defined by

dN1 := N1(t+ dt)−N1(t) and dN2 := N2(t+ dt)−N2(t),

where N1 and N2 are two Poisson processes. dN1 and dN2 take value 1 with probabilities
1
2Tr

(
(L† + ς)(L+ ς)ρςt

)
dt and 1

2Tr
(
(L† − ς)(L− ς)ρςt

)
dt, respectively, and take value 0

with the complementary probabilities.

Similarly, the following stochastic master equation describes the infinitesimal evolution
of the associated quantum filter of state ρe,ςt (see [7]):

dρt
e,ς =− i[H, ρe,ςt ] dt− 1

4
Λς(L†L)ρe,ςt dt+ Υς(L)ρe,ςt dN1 (5.8)

− 1
4
Λ−ς(L†L)ρe,ςt dt+ Υ−ς(L)ρe,ςt dN2.

The following diffusive limit is obtained by the central limit theorem when ς tends to +∞
for the semi-martingale processes applied to dNq, for q = 1, 2, (see [56] or [46] for more
details)

dNq
law−→ 〈dNq

dt
〉 dt+

√
〈dNq
dt
〉 dWq , (5.9)

where the notation 〈A〉 refers to the mean value of A. Here

〈dN1〉 =
1

2
Tr
(
(L† + ς)(L+ ς)ρςt

)
dt and 〈dN2〉 =

1

2
Tr
(
(L† − ς)(L− ς)ρςt

)
dt,

and dW1 and dW2 are two independent Wiener processes, the convergence in (5.9) is in
law.

Stochastic master Equations (5.1) and (5.3) are obtained by replacing the processes dNq

for q ∈ {1, 2} by their limits given in (5.9), in stochastic master Equations (5.7) and (5.8),
taking the limit when ς goes to +∞, and keeping only the lowest ordered terms in ς−1.
This is usually called diffusion approximation (see e.g., [29]).

Notice that dW appearing in stochastic master Equations (5.1) and (5.3) is given in
terms of its independent constituents by

dW =

√
1

2

(
dW1 + dW2

)
,

and is thus itself a standard Wiener process.
The following theorem from [78] justifies the diffusion approximation described above.
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Theorem 5.2 (Pellegrini-Petruccione [78]). The solutions of the stochastic master Equa-
tions (5.7) and (5.8) converge in law, when ς → +∞, to the solutions of stochastic master
Equations (5.1) and (5.3), respectively.

Step 2. We now prove that the fidelity between two arbitrary solutions of stochastic
master Equations (5.7) and (5.8) is a submartingale.

Proposition 5.1. Consider the Markov processes (ρς , ρe,ς) which satisfy stochastic master
Equations (5.7) and (5.8). Then the fidelity defined in Equation (5.4) is a submartingale,
i.e., for all t ≥ s,

E [F (ρςt , ρ
e,ς
t )|(ρςs, ρe,ςs )] ≥ F (ρςs, ρ

e,ς
s ).

Proof. We consider approximations of the time-continuous Markov processes (5.7) and (5.8)
by discrete-time Markov processes ξk and ξek:

ξk+1 =
Mµk

ξkM
†
µk

Tr(Mµk
ξkM

†
µk)

and ξek+1 =
Mµk

ξekM
†
µk

Tr(Mµk
ξekM

†
µk)

, (5.10)

where

• k ∈ {0, . . . , n} for a fixed large n;

• ξ0 = ρςs and ξe0 = ρe,ςs ;

• µk is a random variable taking values µ ∈ {0, 1, 2} with probability Pµ,k = Tr
(
MµξkM

†
µ

)
;

• The operators M0, M1 and M2 are defined as follows

M0 := 1− 1
4
(L† + ς)(L+ ς)εn − 1

4
(L† − ς)(L− ς)εn − iHεn,

M1 := (L+ ς)

√
1

2
εn, and M2 := (L− ς)

√
1

2
εn,

with εn = t−s
n
.

In the following lemma, we show that ξn and ξen correspond to the Euler-Maruyama time
discretization. Since (5.7) and (5.8) depend smoothly on ρςt and ρe,ςt , ξn and ξen converge in
law towards ρςt and ρe,ςt , when n→ +∞.

Lemma 5.1. The processes ξk and ξek correspond up to second order terms in εn, to the
Euler-Maruyama discretization scheme of (5.7) and (5.8) on [s, t].

Proof. we regard the three following possible cases which may happen according to the
different values of µk . In each case, we show that ξk and ξek for k ∈ {0, . . . , n} are
the numerical solutions of the dynamics (5.7) and (5.8) respectively, with the following
partition s ≤ s+ εn ≤ . . . ≤ s+ (n− 1)εn ≤ t, where the uniform step length εn is t−s

n
.
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Case 1. We first consider the case where µk = 0 which happens with probability

P0,k = Tr
(
M0ξkM

†
0

)
. Note that

M0ξkM
†
0 = ξk − 1

4
{(L† + ς)(L+ ς), ξk} εn − 1

4
{(L† − ς)(L− ς), ξk} εn − i[H, ξk] εn +O(ε2n).

Therefore

Tr
(
M0ξkM

†
0

)
= 1− 1

2
Tr
(
(L† + ς)(L+ ς)ξk

)
εn −

1

2
Tr
(
(L† − ς)(L− ς)ξk

)
εn +O((εn)2)

and(
Tr
(
M0ξkM

†
0

) )−1 ≈ 1 +
1

2
Tr
(
(L† + ς)(L+ ς)ξk

)
εn +

1

2
Tr
(
(L† − ς)(L− ς)ξk

)
εn +O((εn)2).

Therefore, we find the following dynamics

ξk+1 ≈ ξk − 1
4
{(L† + ς)(L+ ς), ξk} εn − 1

4
{(L† − ς)(L− ς), ξk} εn

+
1

2
Tr
(
(L† + ς)(L+ ς)ξk

)
ξk εn +

1

2
Tr
(
(L† − ς)(L− ς)ξk

)
ξk εn +O(ε2n).

This can be also written as follows

ξk+1 − ξk ≈− 1
4
Λς(L†L)ξk εn − 1

4
Λ−ς(L†L)ξk εn +O(ε2n). (5.11)

Obviously, this dynamics in the first order of εn is equivalent to the dynamics of the
numerical solution of stochastic master Equation (5.7) with the partition s ≤ s + εn ≤
. . . ≤ s+ (n− 1)εn ≤ t, when

N1(s+ (k + 1)εn)−N1(s+ kεn) = 0 and N2(s+ (k + 1)εn)−N2(s+ kεn) = 0,

which happens with probability(
1− 1

2
Tr
(
(L+ ς)(L† + ς) ξk

)
εn
)(

1− 1

2
Tr
(
(L− ς)(L† − ς) ξk

)
εn
)
.

This probability, in the first order of εn is equal to Tr
(
M0ξkM

†
0

)
.

Case 2. The second case corresponds to µk = 1 which happens with probability

Tr
(
M1ξkM

†
1

)
. We find the following dynamics

ξk+1 =
(L+ ς)ξk(L

† + ς)

Tr ((L+ ς)ξk(L† + ς))
= Υς(L) ξk + ξk.

We observe that the numerical solution of stochastic master Equation (5.7) follows also
the same dynamics when

N1(s+ (k + 1)εn)−N1(s+ kεn) = 1 and N2(s+ (k + 1)εn)−N2(s+ kεn) = 0,
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which happens with probability(1

2
Tr
(
(L+ ς)(L† + ς) ξk

)
εn
)(

1− 1

2
Tr
(
(L− ς)(L† − ς) ξk

)
εn
)
.

This is equal to Tr
(
M1ξkM

†
1

)
, in the first order of εn.

Case 3. Now we consider the last case µk = 2 which happens with probability

Tr
(
M2ξkM

†
2

)
. Therefore, we have

ξk+1 =
(L− ς)ξk(L† − ς)

Tr ((L− ς)ξk(L† − ς))
= Υ−ς(L)ξk + ξk.

This can be also written by stochastic master Equation (5.7) with taking ξk as the numerical
solution and

N1(s+ (k + 1)εn)−N1(s+ kεn) = 0 and N2(s+ (k + 1)εn)−N2(s+ kεn) = 1,

which happens with probability(
1− 1

2
Tr
(
(L+ ς)(L† + ς) ξk

)
εn
)(1

2
Tr
(
(L− ς)(L† − ς) ξk

)
εn
)
,

where in the first order of εn, this probability is equal to Tr
(
M2ξkM

†
2

)
.

Remark that if we neglect the terms in the order of ε2n, the probability of N1(s + (k +
1)εn) − N1(s + kεn) = 1 and N2(s + (k + 1)εn) − N2(s + kεn) = 1 is negligible. Now it is
clear that ξk and similarly ξek are respectively the numerical solutions of stochastic master
Equations (5.7) and (5.8) obtained by Euler-Maruyama method. As the right hand side
of stochastic master Equations (5.7) and (5.8) are smooth with respect to ρς and ρe,ς , we
can use the result of [45, Theorem 1] to conclude the convergence in law of ξn and ξen to ρςt
and ρe,ςt for large n.

Now we notice that

M †
0M0 +M †

1M1 +M †
2M2 = 11 +O(ε2n) =: A,

Take M̃r := (
√
A)−1Mr for r = 0, 1, 2 which satisfy necessarily

M̃0

†
M̃0 + M̃1

†
M̃1 + M̃2

†
M̃2 = 11. (5.12)

We define now the following Markov processes υk and υek by

υk+1 =
M̃µk

υkM̃µk

†

Tr
(
M̃µk

υkM̃µk

†) (5.13)

and

υek+1 =
M̃µk

υekM̃µk

†

Tr
(
M̃µk

υekM̃µk

†) , (5.14)

where
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• k ∈ {0, . . . , n} for a fixed large n;

• υ0 = ξ0 and υe0 = ξe0;

• µk is a random variable taking values µ ∈ {0, 1, 2} with probability Pµ,k = Tr
(
M̃µυkM̃

†
µ

)
.

Clearly υk and υek can be seen as the numerical solutions of stochastic master Equa-
tions (5.7) and (5.8), since (

√
A)−1 = 11 − O(ε2n). Therefore in the first order of εn, the

solutions ξk and ξek are equal to υk and υek, respectively. But the advantage of using υk
and υek instead of ξk and ξek is that the operators M̃r are the Kraus operators, since they
satisfy Equality (5.12). Thus we can apply Theorem 2.1, which proves that F (υk, υ

e
k) is a

submartingale. Thus we have

E [F (υn, υ
e
n) | υ0, υ

e
0] ≥ F (υ0, υ

e
0) = F (ρςs, ρ

e,ς
s ).

Therefore by Lemma 5.1, we have necessarily

E [F (ρςt , ρ
e,ς
t )|ρςs, ρe,ςs ] ≥ F (ρςs, ρ

e,ς
s ),

for all t ≥ s, since we have (convergence in law) ρςt = limn−→∞ υn, ρ
e,ς
t = limn−→∞ υ

e
n,

υ0 = ρςs and υe0 = ρe,ςs .

We now apply Theorem 5.2 and we use the fact that the function F is bounded by one
and is continuous with respect to ρ and ρe to get

E [F (ρt, ρ
e
t )|(ρs, ρes)] ≥ F (ρs, ρ

e
s),

for all t ≥ s, which ends the proof of Theorem 5.1.

5.3 Numerical test

In this section, we test the result of Theorem 5.1 through numerical simulations. Consid-
ering the two-level system of [103], we take the following Hamiltonian H and measurement
operators L:

H = σy =

(
0 −i
i 0

)
L = σz =

(
1 0
0 −1

)
.

The simulations of figure 5.1 illustrate the fidelity for 500 random trajectories starting at

ρ0 =

(
1
2

1
4

1
4

1
2

)
and ρe0 =

(
1
3

0
0 2

3

)
.

In particular, we note that both initial states are mixed ones. As it can be seen, the
average fidelity is monotonically increasing. Here the fidelity converges to one indicating
the convergence of the filter towards the physical state. An interesting direction is to
characterize the situations where this convergence is ensured.
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Figure 5.1: The average fidelity between the Markov processes ρ and ρe, over 500 realiza-
tions, time t from 0 to T = 3 with discretization time step dt = 10−4.

In order to simulate Equations (5.1) and (5.3), we have considered the alternative
formulations (5.5) and (5.6) and the resulting discretization scheme (k ∈ N and time step
0 < dt� 1)

ρ(k+1)dt =
Mk ρ(kdt) M†

k

Tr
(
Mkρ(kdt)M†

k

) , ρe(k+1)dt =
Mkρ

e
(kdt)M

†
k

Tr
(
Mkρe(kdt)M

†
k

) ,
whereMk = 11−iH dt− 1

2L
†Ldt+Ldy(kdt) and dy(kdt) = Tr

(
(L+ L†) ρ(kdt)

)
dt+dW(kdt). For

each k, the Wiener increment dW(kdt) is a centered Gaussian random variable of standard

deviation
√
dt. As it said before, the major interest of such discretization is to guaranty

that, if ρ0, ρ
e
0 ∈ D, then ρk and ρek also remain in D for any k ≥ 0.

5.4 Conclusion

The fact that the fidelity between the real quantum state and the quantum filter state
increases in average should remain valid for more general stochastic master equations where
other Lindbald terms are added to L(ρ) appearing in (5.1). We briefly discuss the necessary
change here. In this case, the dynamics (5.1) and (5.3) become

dρt = −i[H, ρt] dt+

p̃∑
ν̃=1

L̃ν̃(ρt) dt+

p∑
ν=1

Lν(ρt) dt+

p∑
ν=1

Λν(Lν)ρt dW
ν
t ,
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and

dρet = −i[H, ρet ] dt+
p̃∑

ν̃=1

L̃ν̃(ρet ) dt+
p∑

ν=1

Lν(ρet ) dt+
p∑

ν=1

Λν(Lν)ρ
e
t

(
dyνt−Tr

(
(Lν + L†ν)ρ

e
t

)
dt

)
,

where dW ν
t are independent Wiener processes,

Lν(ρ) := −1

2
{L†νLν , ρ}+ LνρL

†
ν ,

L̃ν̃(ρ) := −1

2
{L̃†ν̃L̃ν̃ , ρ}+ L̃ν̃ρL̃

†
ν̃ ,

and Λν(c)ρ := cρ + ρc† − Tr
(
(c+ c†)ρ

)
ρ. Here p, p̃ ≥ 1, (L̃ν̃)1≤ν̃≤p̃ and (Lν)1≤ν≤p are

arbitrary operators. The special case considered here corresponds to p = 1 and p̃ = 1 with
L1 = L and L̃1 = 0. For this general case, the proof of Theorem 5.1 should follow the same
lines: first step still relies on Theorem 5.2; second step relies now on [82, Theorem 2]. The
formulations analogue to (5.5) and (5.6) read then

ρt+dt =
dMt ρt dM

†
t +

∑p̃
ν̃=1 L̃ν̃ρtL̃

†
ν̃ dt

Tr
(
dMt ρt dM

†
t +

∑p̃
ν̃=1 L̃ν̃ρtL̃

†
ν̃ dt
) ,

and

ρet+dt =
dMt ρ

e
t dM

†
t +

∑p̃
ν̃=1 L̃ν̃ρ

e
t L̃
†
ν̃ dt

Tr
(
dMt ρet dM

†
t +

∑p̃
ν̃=1 L̃ν̃ρ

e
t L̃
†
ν̃ dt
) ,

where denoting dyνt and dMt by

dyνt = dW ν
t + Tr

(
(Lν + L†ν)ρt

)
dt,

and

dMt = 11− iH dt− 1

2

p̃∑
ν̃=1

L̃†ν̃L̃ν̃ dt−
1

2

p∑
ν=1

L†νLν dt+

p∑
ν=1

Lνdy
ν
t .
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Chapter 6

Models of continuous-time open
quantum systems
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Dans le chapitre précédent, nous avons étudié la stabilité du filtre quantique associé à
une équation mâıtresse stochastique découlant d’un processus de Wiener.

Dans ce chapitre, nous présentons des SMEs plus générales qui découlent soit de pro-
cessus de Poisson multidimensionnel, soit de processus de Wiener, soit des deux à la fois.
Notre contribution consiste ici à ajouter des erreurs de mesures classiques décrites par des
modèles stochastiques classiques afin de construire heuristiquement les SMEs découlant
par des processus de Poisson et Wiener multidimensionnels (SME (6.16)). Une telle SME
est une extension naturelle de la châıne de Markov en temps discret (2.7) au temps continu.

Ce chapitre est structuré comme suit. Les Sections 6.1 et 6.2 sont respectivement con-
sacrées aux SMEs avec des processus de Poisson et Wiener multidimensionnels en présence
d’imperfections de mesures. Dans la Section 6.3, nous considérons une SME générale
découlant à la fois par des processus de Poisson et Wiener multidimensionnels : la sta-
bilité du filtre associé est exprimée dans la Conjecture 1. Nous rappelons que les résultats
obtenus dans ce chapitre sont basés sur des arguments heuristiques. La manière rigoureuse
d’obtenir les SMEs génériques découlant des deux processus de Poisson et Wiener multidi-
mensionnels en présence d’erreurs de mesure classiques ainsi qu’une preuve rigoureuse de
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la Conjecture 1 sont encore des travaux en cours [4]. Pour plus d’interprétations physiques
sur le contenu de ce chapitre, nous-nous référons à [69], [92], [112] et [44].

In the previous chapter, we studied the stability of the quantum filter associated to a
stochastic master equation driven by a Wiener process.

In this chapter, we present more general SMEs which are driven either by multidi-
mensional Poisson processes, Wiener processes or both of them. Our contribution con-
sists here in adding measurement errors described by classical stochastic models to design
heuristically the SMEs driven by both multidimensional Poisson and Wiener processes
(SME (6.16)). Such SME is a natural extension to continuous-time of discrete-time Markov
chain (2.7).

This chapter is structured as follows. Sections 6.1 and 6.2 are respectively devoted to the
SMEs with multidimensional Poisson and Wiener processes in presence of measurements
imperfections. In Section 6.3, we consider a generic SME driven by both multidimensional
Poisson and Wiener processes: the stability of the associated quantum filter is expressed
through Conjecture 1. We remind that the results obtained in this chapter are based on
some heuristic arguments. The rigorous way to obtain the generic SMEs given by both mul-
tidimensional Poisson and Wiener processes, in presence of classical measurement errors,
and a rigorous proof of Conjecture 1 is in progress [4]. For more physical interpretations
of the contents of this chapter, we refer to [69], [92], [112] and [44].

6.1 SMEs driven by multidimensional Poisson pro-

cesses

In this section, we consider the SMEs with m-dimensional Poisson processes for perfect
and imperfect measurements.

6.1.1 Perfect measurement

We consider a finite-dimensional quantum system (the underlying Hilbert space H = Cd

is of dimension d > 0) which is in interaction with its environment. This system is being
measured through a continuous-in-time POVM (see more physical details in [44]). The
system state is described by the density matrix ρ ∈ D :

D := {ρ ∈ Cd×d | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0}.

In the aim of modeling the evolution, we consider the result of the measurement in the
interval [t, t + dt] (this model is the analogue of the discrete-time model, since we regard
the infinitesimal evolution of the system). In this interval, we detect necessarily one of the
outcomes µ ∈ {0, 1, . . . ,m}.

For any µ 6= 0, we define the following jump operators

Mµ =
√
dtCµ, (6.1)
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where Cµ is an arbitrary operator defined in Cd×d. When the detector observes the outcome
µ, the evolution is governed by the following jump

ρt+dt =
MµρtM

†
µ

Tr
(
MµρtM

†
µ

) =
CµρtCµ

†

Tr
(
CµρtCµ

†) ,
which happens with probability Tr

(
CµρtCµ

†) dt.
The other situation (µ = 0) corresponds to no-jump case, this has an influence on the

system and can be described by the measurement operator M0, but using the fact that the
measurement operators are POVM, we have

m∑
µ=1

M †
µMµ +M †

0M0 = 11.

Thus, in the first order of dt, the no-jump operator M0 has necessarily the following form

M0 = 11− 1

2

m∑
µ=1

Cµ
†Cµ dt− iH dt, (6.2)

where H describes the Hamiltonian of the system. Hence we find the following dynamics
for no-jump detected

ρt+dt =
M0ρtM

†
0

Tr
(
M0ρtM

†
0

)
= ρt −

m∑
µ=1

1

2

(
Cµ
†Cµρt + ρtCµ

†Cµ

)
dt+

m∑
µ=1

Tr
(
CµρtCµ

†) ρt dt− i[H, ρt] dt,

which happens with probability Tr
(
M0ρtM

†
0

)
= 1 −

∑m
µ=1 Tr

(
CµρtCµ

†) dt, in the first

order of dt.
In order to summarize, the stochastic evolution of the density matrix ρt is modeled

through the following trajectories, known as quantum Monte Carlo trajectories.

ρt+dt =


CµρtCµ†

Tr(CµρtCµ†)
, with probability Tr

(
CµρtCµ

†) dt, for any µ ∈ {1, . . . ,m},

ρt −
∑m

µ=1
1
2

(
Cµ
†Cµρt + ρtCµ

†Cµ

)
dt+

∑m
µ=1 Tr

(
CµρtCµ

†) ρt dt− i[H, ρt] dt,

with probability 1−
∑m

µ=1 Tr
(
CµρtCµ

†) dt.
We can combine these m + 1 possibilities by applying m Poisson processes. In any given
time interval [t, t+ dt[, we define the Poisson process Nµ(t) and the processes

dNµ
t := Nµ(t+ dt)−Nµ(t),
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which takes the value one with probability Tr
(
CµρtCµ

†) dt and value zero with 1 −
Tr
(
CµρtCµ

†) dt. Hence, the above dynamics can be represented through the following
Itô stochastic master equation (which has been obtained by taking a conditional expecta-
tion on the actual state and the previous observations)

dρt = L(ρt) dt+
m∑
µ=1

Υµ(ρt)
(
dNµ

t − Tr
(
CµρtC

†
µ

)
dt
)
, (6.3)

where

• the Lindblad operator L is given by the following expression

L(ρ) := −i [H, ρ] +
m∑
µ=1

Lµ(ρ),

with Lµ(ρ) := CµρC
†
µ − 1

2{C†µCµ, ρ};

• the superoperator Υµ is defined as follows

Υµ(ρ) :=
CµρC

†
µ

Tr
(
CµρC

†
µ

) − ρ.
In fact, if we consider the situation of an ensemble of such quantum systems, then we get
the following average dynamics (using the fact that 〈dNµ

t 〉 = Tr
(
CµρtC

†
µ

)
dt)

d〈ρt〉 = L(〈ρt〉) dt,

where the notation 〈〉 stands for the expectation value. This average dynamics is called
Lindblad master equation.

An example of Poisson process: spontaneous emission. A simple example is a two
level atom which is in interaction with a quasi resonant external optical field. The atom
can also interact with the vacuum modes of the free radiation field (the environment). This
induces to spontaneous jumps of atom from its excited state |e〉 to the ground state |g〉
which causes the emission of a photon in a random direction. The state of the system lives
in the two-dimensional Hilbert space spanned by |e〉 and |g〉 . In the interval [t, t+dt] of time,
either we detect a photon or none. The probability to detect a photon is proportional to
the population of the excited state Tr (|e〉 〈e| ρ) = 〈e| ρ |e〉 . More precisely, this probability
can be expressed through the following formula

P1 = Γ 〈e| ρ |e〉 dt.

Here Γ is the decay rate of the system which is equivalent to the inverse of the atomic
lifetime of the excited state |e〉. The measurement operator corresponding to the jump
phenomena is given by the following

M1 =
√

Γdt σ−,
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where σ− = |g〉 〈e| . Once we detect a photon, the excited state will jump to the ground
state. So the evolution in this case is governed through the following dynamics:

ρt+dt =
M1ρtM

†
1

Tr
(
M1ρtM

†
1

) =
σ−ρtσ

†
−

Tr
(
σ−ρtσ

†
−

) = |g〉 〈g| ,

which happens with probability ΓTr
(
σ−ρtσ

†
−

)
dt.

The no-jump measurement operator has the following form

M0 = 11− 1

2
Γσ†−σ− dt− iH dt,

where σ†− = σ+ = |e〉 〈g| and H is the Hamiltonian of the system. Thus we find the
following dynamics for no-jump detected, if we neglect the second order terms in dt:

ρt+dt =
M0ρtM

†
0

Tr
(
M0ρtM

†
0

)
= ρt − Γ

2
{σ+σ−, ρt} dt+ ΓTr (σ−ρtσ+) ρt dt− i [H, ρt] dt,

which arrives with probability Tr
(
M0ρtM

†
0

)
= 1− ΓTr (σ−ρtσ+) dt, in the first order of dt.

We can now define a Poisson process N(t) and the process dNt := N(t+dt)−N(t), which
takes the value one with probability ΓTr (σ−ρtσ+) dt and zero with the complementary
probability. The following SME describes the evolution of the system:

dρt = L(ρt) dt+

(
σ−ρtσ+

Tr (σ−ρtσ+)
− ρt

)
(dNt − ΓTr (σ−ρtσ+) dt) ,

where the Lindblad operator is given by L(ρ) = −i [H, ρ] + Γσ−ρσ+ − 1
2Γ{σ+σ−, ρ}. One

easily verifies that the above SME is a special example of SME (6.3) by taking m = 1 and
C1 =

√
Γdtσ−.

6.1.2 Imperfect measurement

Assume that there exists the unread measurements performed by the environment and the
active measurements performed by the non-ideal detectors like the situations described in
Section 2.7. Set the ideal outcome µ in the set {0, 1, . . . ,m} and suppose that the real
outcome µ′ takes its values in the set {0, 1, . . . ,m′}. The Kraus operators attached to the
ideal outcome µ are denoted by Mµ which are given by (6.1) and (6.2). We use the notation
η presented in Section 2.7 for the stochastic matrix characterizing the classical correlation
between the events µ and µ′. We suppose that the elements of η are known and take the
following values:

• for any µ′ 6= 0, ηµ′,0 = η̄µ′ dt and η0,0 = 1−
∑m′

µ′=1 η̄µ′ dt, with η̄µ′ ≥ 0;
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• for any µ 6= 0, η0,µ = 1−
∑m′

µ′=1 ηµ′,µ, where 0 ≤ ηµ′,µ ≤ 1 and η0,µ ≥ 0.

Note that we take ηµ′,0 in order of dt, which is a natural choice.

We are aiming to obtain the evolution of the optimal filter which is the expected value
of the current system state conditioned on the initial state and all the previous detector
real outcomes. Apply now Theorem 2.2 to deduce the infinitesimal evolution of the optimal
filter ρ̂t in the interval [t, t+ dt]. We have for any µ′ ∈ {0, 1, . . . ,m′} :

ρ̂t+dt = Lµ′(ρ̂t) =

∑m
µ=0 ηµ′,µMµρ̂tM

†
µ

Tr
(∑m

µ=0 ηµ′,µMµρ̂tM
†
µ

) , (6.4)

which happens with probability Tr
(∑m

µ=0 ηµ′,µMµρ̂tM
†
µ

)
.

Now replacing the expressions of Mµ described in (6.1) and (6.2) inside the dynam-
ics (6.4) and keeping only the first order terms of dt, we find the following for µ′ = 0:

L0(ρ̂t) =

(
1−

∑m′

µ′=1 η̄µ′ dt
)(

ρ̂t − 1
2

∑m
µ=1{C†

µCµ, ρ̂t} dt− i[H, ρ̂t] dt
)

+
∑m
µ=1

(
1−

∑m′

µ′=1 ηµ′,µ

)
Cµρ̂tC

†
µ dt

Tr
((

1−
∑m′

µ′=1 η̄µ′ dt
)(

ρ̂t − 1
2

∑m
µ=1{C

†
µCµ, ρ̂t} dt− i[H, ρ̂t] dt

)
+
∑m
µ=1

(
1−

∑m′

µ′=1 ηµ′,µ

)
Cµρ̂tC

†
µ dt

)
=

(
1−

∑m′

µ′=1 η̄µ′ dt
)
ρ̂t − 1

2

∑m
µ=1{C†

µCµ, ρ̂t} dt− i[H, ρ̂t] dt+
∑m
µ=1

(
1−

∑m′

µ′=1 ηµ′,µ

)
Cµρ̂tC

†
µ dt

1−
∑m′

µ′=1 η̄µ′ dt−
∑m
µ=1

∑m′

µ′=1 ηµ′,µ Tr
(
C†
µρ̂tCµ

)
dt

=

ρ̂t − m′∑
µ′=1

η̄µ′ ρ̂t dt−
1

2

m∑
µ=1

{C†
µCµ, ρ̂t} dt− i[H, ρ̂t] dt+

m∑
µ=1

(
1−

m′∑
µ′=1

ηµ′,µ

)
Cµρ̂tC

†
µ dt

×
1 +

m′∑
µ′=1

η̄µ′ dt+

m∑
µ=1

m′∑
µ′=1

ηµ′,µ Tr
(
C†
µρ̂tCµ

)
dt

 . (6.5)

In the first order terms of dt, Equation (6.5) is equal to:

L0(ρ̂t) = ρ̂t −
1

2

m∑
µ=1

{C†µCµ, ρ̂t} dt− i[H, ρ̂t] dt

+

m∑
µ=1

1−
m′∑
µ′=1

ηµ′,µ

 Cµρ̂tC
†
µ dt+

m∑
µ=1

m′∑
µ′=1

ηµ′,µ Tr
(
Cµρ̂tC

†
µ

)
ρ̂t dt.

Similarly, we can also express the superoperator Lµ′ , in the first order of dt, for µ′ 6= 0:

Lµ′(ρ̂t) =
η̄µ′ dt

(
ρ̂t − 1

2

∑m
µ=1{C

†
µCµ, ρ̂t} dt− i[H, ρ̂t] dt

)
+
∑m

µ=1 ηµ′,µCµρ̂tC
†
µ dt

Tr
(
η̄µ′ dt

(
ρ̂t − 1

2

∑m
µ=1{C

†
µCµ, ρ̂t} dt− i[H, ρ̂t] dt

)
+
∑m

µ=1 ηµ′,µCµρ̂tC
†
µ dt
)

=
η̄µ′ ρ̂t +

∑m
µ=1 ηµ′,µCµρ̂tC

†
µ

η̄µ′ +
∑m

µ=1 ηµ′,µTr
(
Cµρ̂tC

†
µ

) .
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Hence, the stochastic evolution of the optimal filter ρ̂t can be modeled through the fol-
lowing Monte Carlo trajectories.

ρ̂t+dt =

{
L0(ρ̂t) with probability 1−

∑m′

µ′=1 η̄µ′ dt−
∑m

µ=1

∑m′

µ′=1 ηµ′,µ Tr
(
C†µρ̂tCµ

)
dt,

Lµ′(ρ̂t) with probability η̄µ′ dt+
∑m

µ=1 ηµ′,µTr
(
Cµρ̂tC

†
µ

)
dt, for any µ′ 6= 0.

In order to combine these m′ + 1 possibilities, we introduce the m′ Poisson processes
N̂µ′(t) and the processes dN̂µ′

t := N̂µ′(t+ dt)− N̂µ′(t) which takes unity with probability
η̄µ′ dt+

∑m
µ=1 ηµ′,µTr

(
Cµρ̂tC

†
µ

)
dt and zero with the complementary probability. Thus the

evolution of the optimal filter is described as follows:

dρ̂t = −i [H, ρ̂t] dt −
1

2

m∑
µ=1

{C†µCµ, ρ̂t} dt +
m∑
µ=1

(
1−

m′∑
µ′=1

ηµ′,µ

)
Cµρ̂tC

†
µ dt

+
m∑
µ=1

m′∑
µ′=1

ηµ′,µTr
(
Cµρ̂tC

†
µ

)
ρ̂t dt+

m′∑
µ′=1

Υ̂µ′(ρ̂t) dN̂
µ′

t , (6.6)

where the superoperator Υ̂µ′ is defined as follows

Υ̂µ′(ρ) :=
η̄µ′ρ+

∑m
µ=1 ηµ′,µCµρC

†
µ

η̄µ′ +
∑m

µ=1 ηµ′,µTr
(
CµρC

†
µ

) − ρ.
Stochastic master Equation (6.6) can also be rewritten as follows

dρ̂t = L(ρ̂t) dt

+
m′∑
µ′=1

 η̄µ′ ρ̂t +
∑m

µ=1 ηµ′,µCµρ̂tC
†
µ

η̄µ′ +
∑m

µ=1 ηµ′,µTr
(
Cµρ̂tC

†
µ

) − ρ̂t
 (

dN̂µ′

t − η̄µ′ dt−
m∑
µ=1

ηµ′,µTr
(
Cµρ̂tC

†
µ

)
dt

)
,

(6.7)

with the Lindblad operator

L(ρ̂t) := −i [H, ρ̂t]−
1

2

m∑
µ=1

{C†µCµ, ρ̂t}+
m∑
µ=1

Cµρ̂tC
†
µ.

Notice that the average dynamics of ρ̂ is still governed by the Lindblad term:

d〈ρ̂t〉 = L(〈ρ̂t〉) dt,

where we have used the fact that 〈dN̂µ′

t 〉 = η̄µ′ dt+
∑m

µ=1 ηµ′,µTr
(
Cµρ̂tC

†
µ

)
dt.

135



CHAPTER 6. MODELS OF CONTINUOUS-TIME OPEN QUANTUM SYSTEMS

6.2 SMEs driven by multidimensional diffusive pro-

cesses

Another type of continuous-time stochastic master equations correspond to those driven
by multidimensional Wiener processes. Such diffusive type measurement back-action is
particularly relevant when one considers a Homodyne detection of the scattered coherent
light through the quantum system to be measured [9, 109].

6.2.1 Perfect measurement

The SME described by the p-dimensional diffusive terms is as follows (see [37, 16, 20, 103]):

dρt = L(ρt) dt+

p∑
ν=1

Λν(ρt) dW
ν
t , (6.8)

where

• the Lindblad operator is given by

L(ρ) := −i [H, ρ] +

p∑
ν=1

Lν(ρ),

with Lν(ρ) := −1
2{L†νLν , ρ}+ LνρL

†
ν , and Lν is an arbitrary operator in Cd×d;

• the superoperator Λν is defined as follows

Λν(ρ) := Lνρ+ ρL†ν − Tr
(
(Lν + L†ν)ρ

)
ρ,

for any ν ∈ {1, . . . , p};

• dW ν
t is the Wiener process which is the following innovation

dW ν
t = dyνt − Tr

(
(Lν + Lν

†) ρt
)
dt ,

where yνt is a continuous semi-martingale corresponding to the outcome ν.

Notice that the average dynamics reads d〈ρt〉 = L(〈ρt〉) dt, since 〈dW ν
t 〉 = 0 for any

ν ∈ {1, . . . , p}.

An example of the diffusion process: a two level atom. We consider a single
qubit in dispersive interaction with an optical probe in the z-direction and controlled by a
magnetic field in the y-direction. Assuming a Homodyne detection of the probe field, one
achieves, in the Markovian approximation, the following stochastic master equation [112]:

dρt = −iut [σy, ρt] dt+
(
σzρtσ

†
z −

1

2
σ†zσzρt −

1

2
ρtσ
†
zσz
)
dt

+ (σzρt + ρtσ
†
z − 2Tr (σzρt) ρt) dWt,

where
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• ut ∈ R is the control input at time t > 0;

• the controlled evolution given in above is a particular form of Equation (6.8), where
p = 1,

H = utσy = ut

(
0 −i
i 0

)
and L1 = σz =

(
1 0
0 −1

)
;

• the innovation term dWt is given by dWt = dyt − 2Tr (σzρt), where dyt denotes the
measurement record.

We remark that if we set the control to zero, the system state converges almost surely
towards the state |g〉 〈g| or |e〉 〈e| (it is sufficient to take the following supermartingale:
−Tr2 (σzρ) as Lyapunov function). But an appropriate feedback can be applied to stabilize
an arbitrary pure state of the atom either |g〉 〈g| or |e〉 〈e| (see [71] for more details).

6.2.2 Imperfect measurement

We take the same model of imperfection discussed in Section 6.1.2. The approach that we
apply to obtain the stochastic master equation driven by multidimensional Wiener pro-
cesses is based on the diffusion approximation, as in Section 5.2. Thanks to Equation (6.7),
we know that the evolution of the optimal filter described by the Poisson processes takes
the following form

dρ̂t = L(ρ̂t) dt+
m′∑
µ′=1

Υ̂µ′(ρ̂t)

(
dN̂µ′

t − η̄µ′ dt−
m∑
µ=1

ηµ′,µTr
(
Cµρ̂tC

†
µ

)
dt

)
.

In fact, the total transformation that we should make to go from direct to Homodyne
detection is the following transformation

∀µ ∈ {1, . . . ,m} : Cµ −→ Cµ + ς, H −→ H − i
2
ς

m∑
µ=1

(Cµ − C†µ),

where ς > 0 is a large real number (which corresponds to the amplitude of the local
oscillator in Homodyne detection). Thus the above SME becomes:

dρ̂t = −i[H, ρ̂t] dt −
1

2

m∑
µ=1

[ςCµ − ςC†µ, ρ̂t] dt

+
m∑
µ=1

(
− 1

2
{(C†µ + ς)(Cµ + ς), ρ̂t}+ (Cµ + ς)ρ̂t(C

†
µ + ς)

)
dt

+
m′∑
µ′=1

Υ̂ς
µ′(ρ̂t)

(
dN̂µ′,ς

t − η̄µ′ dt−
m∑
µ=1

ηµ′,µTr
(
(Cµ + ς)ρ̂t(C

†
µ + ς)

)
dt
)
, (6.9)
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where the superoperator Υ̂ς
µ′ is defined as follows

Υ̂ς
µ′(ρ) :=

η̄µ′ρ+
∑m

µ=1 ηµ′,µ(Cµ + ς)ρ(C†µ + ς)

η̄µ′ +
∑m

µ=1 ηµ′,µTr
(

(Cµ + ς)ρ(C†µ + ς)
) − ρ.

The process dN̂µ′,ς
t := N̂µ′,ς(t+ dt)− N̂µ′,ς(t) (where N̂µ′,ς(t) are the m′ Poisson processes)

takes unity with probability η̄µ′ dt+
∑m

µ=1 ηµ′,µTr
(
(Cµ + ς)ρ̂t(C

†
µ + ς)

)
dt and zero with the

complementary probability. Now we take the limit ς −→ ∞ (corresponding to a strong
local oscillator). By the central limit theorem, we have

dN̂µ′,ς
t

law−→ 〈dN̂
µ′,ς
t

dt
〉 dt+

√
〈dN̂

µ′,ς
t

dt
〉 dŴµ′

t ,

thus we find the following limit, for any µ′ ∈ {1, . . . ,m′}:

dN̂µ′,ς
t

law−→ η̄µ′ dt+

m∑
µ=1

ηµ′,µTr
(

(Cµ + ς)ρ̂t(C
†
µ + ς)

)
dt

+

√√√√η̄µ′ +
m∑
µ=1

ηµ′,µTr
(

(Cµ + ς)ρ̂t(C
†
µ + ς)

)
dŴµ′

t .

Replacing dN̂µ′,ς
t appeared in Equation (6.9) by its limit given above and simplifying the

terms in ς and ς2, we find

dρ̂t = L(ρ̂t) dt+
m′∑
µ′=1

Υ̂ς
µ′(ρ̂t)

√√√√η̄µ′ +
m∑
µ=1

ηµ′,µTr
(
Cµ + ς)ρ̂t(C

†
µ + ς)

)
dŴµ′

t . (6.10)

Expanding the diffusive term and keeping only the terms in order of ς−1, we find

Υ̂ς
µ′(ρ̂t)

√√√√η̄µ′ +
m∑
µ=1

ηµ′,µTr
(

(Cµ + ς)ρ̂t(C
†
µ + ς)

)
dŴµ′

t

=

 η̄µ′ ρ̂t +
∑m

µ=1 ηµ′,µ(Cµ + ς)ρ̂t(C
†
µ + ς)

η̄µ′ +
∑m

µ=1 ηµ′,µTr
(

(Cµ + ς)ρ̂t(C
†
µ + ς)

) − ρ̂t
 √√√√η̄µ′ +

m∑
µ=1

ηµ′,µTr
(

(Cµ + ς)ρ̂t(C
†
µ + ς)

)
dŴµ′

t

=

 ς2
∑m

µ=1 ηµ′,µρ̂t + ς
∑m

µ=1 ηµ′,µ
(
Cµρ̂t + ρ̂tC

†
µ

)
−
∑m

µ=1 ηµ′,µTr
(

(ςCµ + ςC†µ)ρ̂t

)
ρ̂t∑m

µ=1 ηµ′,µς
2

− ρ̂t

×
√√√√ m∑

µ=1

ηµ′,µς2 dŴµ′

t =

∑m
µ=1 ηµ′,µ

(
Cµρ̂t + ρ̂tC

†
µ − Tr

(
(Cµ + C†µ)ρ̂t

)
ρ̂t

)
∑m

µ=1 ηµ′,µ

√√√√ m∑
µ=1

ηµ′,µ dŴ
µ′

t =:

Λ̂µ′(ρ̂t) dŴ
µ′

t ,
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where Λ̂µ′ is defined as follows

Λ̂µ′(ρ) := Ĉµ′ρ+ ρĈ†µ′ − Tr
(

(Ĉµ′ + Ĉ†µ′)ρ
)
ρ

with Ĉµ′ =
∑m
µ=1 ηµ′,µCµ∑m
µ=1 ηµ′,µ

. Thus SME (6.10) becomes

dρ̂t = L(ρ̂t) dt+
m′∑
µ′=1

Λ̂µ′(ρ̂t) dŴ
µ′

t ,

where dŴ µ′

t is the Wiener process given by

dŴ µ′

t = dŷµ
′

t −
√∑

µ

ηµ′,µTr
(
Ĉµ′ ρ̂tĈ

†
µ′

)
dt, (6.11)

and ŷµ
′

t is the measurement record corresponding to the outcome µ′.

6.3 Conclusion

In this section, we consider a generic stochastic master equation driven simultaneously by
mP−dimensional Poisson and mW−dimensional Wiener processes.

Perfect measurement

The evolution of an open quantum system can be described by the following SME (see [10,
72]):

dρt = L(ρt) dt+

mW∑
ν=1

Λν(ρt) dW
ν
t +

mP∑
µ=1

Υµ(ρt)
(
dNµ

t − Tr
(
CµρtC

†
µ

)
dt
)
, (6.12)

where

• the Lindblad operator is given by the following expression

L(ρt) := −i [H, ρt] +

mP∑
µ=1

LPµ (ρt) +

mW∑
ν=1

LWν (ρt), (6.13)

with the superoperators LPµ and LWν respectively defined by

LPµ (ρ) := −1

2
{C†µCµ, ρ}+ CµρC

†
µ and LWν (ρ) := −1

2
{L†νLν , ρ}+ LνρL

†
ν ;
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• the superoperators Υµ and Λν have the following forms

Υµ(ρ) :=
CµρC

†
µ

Tr
(
CµρC

†
µ

) − ρ and Λν(ρ) := Lνρ+ ρL†ν − Tr
(
(Lν + L†ν)ρ

)
ρ;

• the jump detector µ corresponds to the Poisson process Nµ(t), where dNµ
t = Nµ(t+

dt)−Nµ(t) = 1 happens with probability Tr
(
CµρtCµ

†) dt;
• the continuous detector ν refers to the continuous signal yνt related to the Wiener

process dW ν
t by

dyνt = dW ν
t + Tr

(
(Lν + L†ν)ρt

)
dt. (6.14)

The evolution of the quantum filter of state ρet ∈ D is given by the following stochastic
master equation which depends on the true quantum state ρt via relation (6.14)

dρet = L(ρet ) dt+

mW∑
ν=1

Λν(ρ
e
t )
(
dyνt − Tr

(
(Lν + L†ν)ρ

e
t

)
dt
)

+

mP∑
µ=1

Υµ(ρet )
(
dNµ

t − Tr
(
Cµρ

e
tC
†
µ

)
dt
)
. (6.15)

So, this can be rewritten as follows

dρet = L(ρet ) dt+

mW∑
ν=1

Λν(ρ
e
t )
(
Tr
(
(Lν + L†ν)ρt

)
− Tr

(
(Lν + L†ν)ρ

e
t

))
dt

+

mW∑
ν=1

Λν(ρ
e
t )dW

ν
t +

mP∑
µ=1

Υµ(ρet )
(
dNµ

t − Tr
(
Cµρ

e
tC
†
µ

)
dt
)
.

Note that if ρ0 and ρe0 are in D, then ρt and ρet remain in D for all t > 0. If the initial
states are pure, i.e., Tr (ρ2

0) = Tr ((ρe0)2) = 1, this purity will not be changed during the
time evolutions, i.e., Tr (ρ2

t ) = Tr ((ρet )
2) = 1 for all t > 0.

Imperfect measurement

Let us now define the new notations in the aim of modeling the imperfect jump-diffusion
SMEs. Set the real outcomes µ′ ∈ {0, 1, . . . ,m′P} and the ideal outcomes µ ∈ {0, 1, . . . ,mP}
for the measurements associated to the jump terms. The classical stochastic model relating
to the real and ideal outcomes is parameterized by the (m′P +1)×mP left stochastic matrix

ηP = (ηPµ′,µ)0≤µ′≤m′P ,1≤µ≤mP and the positive vector η̄P = (η̄Pµ′)1≤µ′≤m′P in Rm′P
+ .

Similarly we take the following notations associated to the diffusive terms. The m′W
real continuous signals yν

′
t with ν ′ ∈ {1, . . . ,m′W}, and the mW ideal ones yνt with ν ∈
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{1, . . . ,mW} are correlated by the m′W × mW matrix ηW = (ηWν′,ν)1≤ν′≤m′W ,1≤ν≤mW , with

0 ≤ ην′,ν ≤ 1 and
∑m′W

ν′=1 ην′,ν ≤ 1.

With these new notations, we get the following jump-diffusion SME for the optimal
filter:

dρ̂t = L(ρ̂t) dt+

m′P∑
µ′=1

Υ̂µ′(ρ̂t)
(
dN̂µ′

t − η̄Pµ′ dt−
mP∑
µ=1

ηPµ′,µTr
(
Cµρ̂tC

†
µ

)
dt
)

+

m′W∑
ν′=1

√
η̄Wν′ Λ̂ν′(ρ̂t) dŴ

ν′

t , (6.16)

with η̄Wν′ =
∑mW

ν=1 η
W
ν′,ν . Now we recall the notations applied in the above SME:

• the Lindblad operator L is defined by (6.13)

• the superoperators Υ̂µ′ and Λ̂ν′ are given by

Υ̂µ′(ρ) :=
η̄Pµ′ρ+

∑mP
µ=1 η

P
µ′,µCµρC

†
µ

η̄Pµ′ +
∑mP

µ=1 η
P
µ′,µTr

(
CµρC

†
µ

)−ρ and Λ̂ν′(ρ) = L̂ν′ρ+ρL̂†ν′−Tr
(

(L̂ν′ + L̂†ν′)ρ
)
ρ,

with L̂ν′ := (
∑mW

ν=1 η
W
ν′,νLν)/η̄

W
ν′ ;

• the jump detector µ′ corresponds to the Poisson process N̂µ′(t), where dN̂µ′

t = N̂µ′(t+

dt)− N̂µ′(t) = 1 happens with probability

P̂µ′(ρ̂t) = η̄Pµ′ dt+

mP∑
µ=1

ηPµ′,µTr
(
Cµρ̂tC

†
µ

)
dt; (6.17)

• the continuous detector ν ′ refers to the continuous signal ŷν
′
t related to the Wiener

process dŴ ν′
t by

dŷν
′

t = dŴ ν′

t +
√
η̄Wν′ Tr

(
(L̂ν′ + L̂†ν′)ρ̂t

)
dt. (6.18)

The estimate optimal filter of state ρ̂et is governed by the following stochastic master
equation which depends on the optimal filter state ρ̂t via (6.17) and (6.18).

dρ̂et = L(ρ̂et ) dt+

m′P∑
µ′=1

Υ̂µ′(ρ̂
e
t )
(
dN̂µ′

t − η̄Pµ′ dt−
mP∑
µ=1

ηPµ′,µTr
(
Cµρ̂

e
tC
†
µ

)
dt
)

+

m′W∑
ν′=1

√
η̄Wν′ Λ̂ν′(ρ̂

e
t )

(
dŷν

′

t −
√
η̄Wν′ Tr

(
(L̂ν′ + L̂†ν′)ρ̂

e
t

)
dt

)
. (6.19)

141



CHAPTER 6. MODELS OF CONTINUOUS-TIME OPEN QUANTUM SYSTEMS

Replacing dŷν
′
t by its value given in (6.18) in the above equation, we find

dρ̂et = L(ρ̂et ) dt+

m′P∑
µ′=1

Υ̂µ′(ρ̂
e
t )
(
dN̂µ′

t − η̄Pµ′ dt−
mP∑
µ=1

ηPµ′,µTr
(
Cµρ̂

e
tC
†
µ

)
dt
)

+

m′W∑
ν′=1

η̄Wν′ Λ̂ν′(ρ̂
e
t )
(

Tr
(

(L̂ν′ + L̂†ν′)ρ̂t

)
− Tr

(
(L̂ν′ + L̂†ν′)ρ̂

e
t

))
dt+

m′W∑
ν′=1

√
η̄Wν′ Λ̂ν′(ρ̂

e
t )dŴ

ν′

t .

We remark that as soon as ρ0 and ρe0 belong to D, ρt and ρet remain in D for all t ≥ 0.
Contrarily to the case of perfect measurement, if the initial states ρ̂0 and ρ̂e0 are pure, this
will not be necessarily preserved through the evolutions (6.16) and (6.19).

We can now state the following conjecture whose proof is in progress [4].

Conjecture 1. Consider the Markov processes (ρ̂t, ρ̂
e
t ) satisfying stochastic master Equa-

tions (6.16) and (6.19) respectively with ρ̂0, ρ̂e0 in D. Then the fidelity F (ρ̂, ρ̂e), defined
by (5.4) is a submartingale, i.e., E [F (ρ̂t, ρ̂

e
t )|(ρ̂s, ρ̂es)] ≥ F (ρ̂s, ρ̂

e
s), for all t ≥ s.

Sketch of a possible proof. We can proceed in the same way as for the proof of The-
orem 5.1. In the first step, we describe how we obtain stochastic master Equations (6.16)
and (6.19) as the limits of the SMEs driven only by the Poisson processes (diffusion ap-
proximation). In second step, we show the analogue of Proposition 5.1 which ensures
that the fidelity between two arbitrary solutions of the SMEs with Poisson processes is a
submartingale. This can be proved thanks to Theorem 2.3 showing the stability of the es-
timate optimal filter for discrete-time imperfect measurements which are POVM. Finally,
an analogue of Theorem 5.2 (convergence in law) could be stated to conclude that the
fidelity between ρ̂ and ρ̂e is a submartingale.
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Conclusion

Cette thèse traite de la stabilisation de systèmes quantiques par des feedbacks basés sur des
mesures QND. Elle porte également sur la stabilité de filtres quantiques en temps continu
et l’élaboration de SMEs saut-diffusion en présence d’erreurs de mesure.

La Partie I de cette thèse était dédiée aux systèmes quantiques ouverts à temps discret.
Dans le Chapitre 3, nous avons proposé un schéma de rétroaction basée sur des mesures
visant à stabiliser un système physique, consistant en une cavité micro-onde sondée par des
atomes de Rydberg, vers un certain état de Fock. Ce type de schéma de rétroaction qui
tient compte d’un délai pur est basé sur une approche de Lyapunov. Dans le Chapitre 4,
nous avons considéré plus généralement les systèmes quantiques en temps discret sujet à
des mesures QND. L’objectif de ce chapitre était de concevoir une rétroaction qui puisse
stabiliser de manière déterministe le système considéré vers un état pur prédéfini. De plus,
nous avons proposé des fonctions de Lyapunov qui rendent l’analyse de la convergence
plus facile car l’utilisation du principe d’invariance de Kushner n’est pas nécessaire. En
outre, nous avons prouvé la convergence d’une rétroaction qui tient compte de certains
délais et d’imperfections dans les mesures. L’efficacité d’une telle rétroaction a été testée
expérimentalement pour le cas de la boite à photons au Laboratoire Kastler Brossel (LKB)
de l’École Normale Supérieure (ENS) de Paris.

Les paragraphes suivants présentent des extensions possibles de la recherche élaborée
dans la première partie.

• Considérons une rétroaction de stabilisation appliquée à une évolution en temps
continu, comme celle étudiée en [71]. Dans ce travail, une stratégie systématique de
rétroaction a été proposée pour assurer la stabilisation d’états intriqués symétriques
à plusieurs qubits (i.e., des états qui sont invariants par permutation des atomes
dans l’ensemble). Dans ce but, les auteurs proposent une méthode de Lyapunov.
Cependant, la stabilisation obtenue n’est pas fondée sur une fonction de Lyapunov
stricte et il faut donc appliquer le théorème d’invariance de Kushner [55] pour assurer
la stabilité asymptotique. Nous pensons qu’il est possible de stabiliser n’importe quels
états intriqués en utilisant les techniques présentées au Chapitre 4 en construisant une
fonction de Lyapunov stricte. Nous notons qu’il est impossible d’utiliser une approche
similaire à celle du Chapitre 4 pour le temps continu, puisque la minimisation conduit
à un feedback qui pourrait ne pas être continu par rapport à l’état considéré. Ainsi,
la traduction de la technique de rétroaction considérée au Chapitre 4 pour le temps
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continu n’est pas évidente : l’existence et l’unicité de trajectoires en boucle fermée
sont problématiques.

• La méthode de stabilisation de [71] est basée sur la simulation en temps réel de
l’équation d’un filtre quantique pour obtenir une estimation de l’état quantique.
Cependant, cette équation de filtre quantique est en général de grande dimension
(dimension N + 1 en considérant des états symétriques de N systèmes de spin-
1/2 de dimension 2N si nous-nous intéressons à tous les états symétriques et non
symétriques). Ceci, en général, rend impossible (à cause des échelles de temps trop
courtes de ce système quantique) de réaliser une simulation en temps réel de l’équation
du filtre. Mais la simplicité des lois de rétroactions proposées suggère qu’il puisse
y avoir une équation réduite du filtre (de dimension réduite) [74] qui puisse fournir
suffisamment d’information pour obtenir de telles lois de rétroaction. Une ouverture
possible serait l’examen de ces problèmes de réduction de filtre en parallèle de la
recherche de nouvelles lois de rétroaction pour des états non symétriques intriqués.

• Des stratégies de rétroaction quantique similaires à celles présentées dans le Chapitre 4
peuvent être appliquées pour stabiliser des états encore plus exotiques, tels que les
états de radiation du chat de Schrödinger. Dans [86] et [85], les états comprimés
et la superposition d’états du champ mésoscopique sont stabilisés par l’ingénierie de
réservoir [79]. Il serait intéressant d’étudier une stabilisation de tels états quantiques
par rétroaction basée sur des mesures.

• Supposons que nous avons des paramètres incertains, tels que des constantes d’interaction
atome-champs, l’intensité de mesure et l’efficacité de détection. Pour pouvoir obtenir
une méthode plus robuste, nous pouvons utiliser des techniques de contrôle adaptatif
permettant d’estimer ces paramètres, tout en contrôlant le système pour qu’il con-
verge vers l’état désiré.

Dans la Partie II, nous-nous sommes concentrés sur des systèmes quantiques ouverts
à temps continu. Au cours du Chapitre 5, nous avons montré que le filtre associé à
l’équation mâıtresse stochastique découlant seulement par un processus de Wiener est
une sous-martingale, ce qui assure la stabilité d’un tel filtre. Ceci signifie que la fidélité
entre l’état physique et son filtre quantique associé est croissante en moyenne. Enfin, au
Chapitre 6, nous avons obtenu par des arguments heuristiques une forme générique de
SMEs mélangeant aussi bien des processus de Poisson et de Wiener multidimensionnels, en
présence de quelques imperfections classiques de mesure. De plus, nous avons déterminé
la stabilité des filtres quantiques associés.

Dans les paragraphes suivants, nous résumons quelques extensions possibles des recherches
en rapport avec la deuxième partie.

• Notre objectif futur [4] est d’adapter l’approche utilisée dans [77] pour obtenir rigoureuse-
ment les équations mâıtresses stochastiques saut-diffusion en présence de certaines
imperfections classiques de mesure introduites au Chapitre 6. La preuve rigoureuse
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associée à la Conjecture 1 a été menée en deux étapes. La première consister en la
recherche d’approximations markoviennes en temps discret et de dynamiques des fil-
tres associés convergeant en distribution vers des équations mâıtresses stochastiques
saut-diffusion, en présence d’imperfection de mesures. Ensuite, à la deuxième étape,
nous avons appliqué le Théorème 2.3 qui a prouvé la stabilité des filtres quantiques
approximés en temps discret.

• Il serait intéressant de poursuivre la recherche en caractérisant des conditions suff-
isantes pour assurer la convergence asymptotique des filtres quantiques [101].

This thesis considers measurement-based feedbacks stabilizing discrete-time quantum
systems which are subject to QND measurements. It is also concerned with the stabil-
ity of continuous-time quantum filters and design of jump-diffusion SMEs in presence of
measurement errors.

Part I of this thesis was devoted to discrete-time open quantum systems. In Chapter 3,
we proposed a measurement-based feedback scheme which stabilizes a physical system, con-
sisting of a microwave cavity probed by Rydberg atoms, towards a desired Fock state. This
type of feedback which takes into account a pure delay is based on a Lyapunov approach.
In Chapter 4, we considered the more general discrete-time quantum systems which are
subject to QND measurements. The aim of this chapter was to design a feedback which
deterministically stabilizes the system under consideration towards some predetermined
pure states. Moreover, we proposed Lyapunov functions which make the convergence anal-
ysis easier since the use of Kushner’s invariance principle is not necessary. In addition, we
proved the convergence of a stabilizing feedback which takes into account some delays and
imperfections in measurements. The efficiency of such feedback was experimentally tested
for the photon box case in Laboratoire Kastler Brossel (LKB) at Ecole Normale Supérieure
(ENS) de Paris.

Here we list some possible future directions related to Part I.

• Consider a stabilizing feedback applied to continuous-time evolution, as the one in-
vestigated in [71]. In this work, a systematic feedback strategy was proposed to
ensure the stabilization of symmetric multi-qubit entangled states (i.e., states that
are invariant under permutations of the atoms in the ensemble). In this aim, the
authors propose a Lyapunov-based method. However their stabilization is not based
on a strict Lyapunov function and therefore they need to apply the Kushner’s invari-
ance theorem [55] to ensure the asymptotic stability. We believe that it should be
possible to stabilize any entangled states, applying the techniques given in Chapter 4
to construct a strict Lyapunov function. We note that taking a feedback similar to
the one proposed in Chapter 4 in continuous-time is not possible, since the minimiza-
tion produces a feedback that could be not continuous with respect to the state. So
translating the feedback design considered in Chapter 4 to continuous-time is not at
all straightforward: the existence and the uniqueness of closed-loop trajectories are
problematic.
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• The stabilization method of [71] is based on the real-time simulation of a quantum
filter equation to obtain an estimate of the quantum state. However, this quantum
filter equation is in general high-dimensional (dimension N + 1 if we are interested in
the symmetric states of N spin-1/2 systems and dimension 2N if we are interested in
all symmetric or non-symmetric states). This, in general, makes it impossible (due to
the short time scales of the quantum system) to achieve real-time simulation of the
filter equation. However, the simplicity of the proposed feedback laws suggests that
there might be a reduced filter equation (of low dimension) [74] which can provide
enough information to obtain these feedback laws. A possible direction could be to
investigate this filter reduction problem in parallel to the research on new feedback
laws for non-symmetric entangled states.

• Similar quantum feedback strategies as those considered in Chapter 4 may be ap-
plied to stabilize even more exotic states such as Schrödinger cat states of radiation.
In [86] and [85] the squeezed states and the mesoscopic field state superpositions
are stabilized by reservoir engineering [79]. It would be interesting to investigate a
measurement-based feedback stabilization of such quantum states.

• Assume that we have some uncertain parameters such as atom-field interaction con-
stants, measurement intensity and detection efficiency. In order to have the largest
robustness, we can use adaptive control techniques allowing to estimate these param-
eters, while controlling the system towards the desired state.

In Part II, we focused on continuous-time open quantum systems. In Chapter 5, we
showed that the filter associated to a stochastic master equation driven only by a Wiener
process is a submartingale, which ensures the stability of such filter. This means that the
fidelity between the physical state and its associated quantum filter increases in average.
Finally, in Chapter 6, we obtained through heuristic arguments, a generic form of SMEs
driven by both multidimensional Poisson and Wiener processes, in presence of some classi-
cal measurement imperfections. Moreover, we proclaimed the stability of their associated
quantum filters.

Below, we resume some possible research directions related to Part II.

• Our future aim [4] is to adapt the approach used in [77] to obtain rigourously the
jump-diffusion stochastic master equations in presence of some classical measurement
imperfections introduced in Chapter 6. The rigorous proof associated to Conjecture 1
could be done in two following steps. The first step is to find the discrete-time Markov
approximations and their associated filter dynamics which converge in distribution
to jump-diffusion stochastic master equations, in presence of measurement imperfec-
tions. Then, in the second step, we apply Theorem 2.3 which proves the stability of
the approximated discrete-time quantum filters.

• An important research direction is to characterize sufficient conditions ensuring the
asymptotic convergence of the quantum filters [101].
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Appendix A

Stability of stochastic processes

In this appendix, we give different notions of stability, some stability theorems for stochas-
tic processes, and the definition of Lyapunov exponent of linear stochastic processes.

A.1 Different notions of stability

We start by recalling different notions of stability.

Definition A.1 (Stability in probability). Let xzt be a diffusion process on the metric space
S, started at x0 = z, and let z̃ be an equilibrium position of the diffusion, i.e., xz̃t = z̃. Then
the equilibrium z̃ is stable in probability if

lim
z−→z̃

P
(

sup
0≤t<∞

‖ xzt − z̃ ‖≥ ε

)
= 0 ∀ε > 0.

Definition A.2 (Global stability). The equilibrium z̃ is said globally stable if it is stable
in probability and additionally

P
(

lim
t−→∞

xzt = z̃
)

= 1, ∀z ∈ S.

Definition A.3 (Lyapunov stability). The equilibrium z̃ is said Lyapunov stable if

∀ε > 0 : ∃δ > 0 such that, if ‖ xz0 − z̃ ‖< δ, then ‖ xzt − z̃ ‖< ε.

Definition A.4 (Asymptotic stability). The equilibrium z̃ is said asymptotically stable if
‖ xz0 − z̃ ‖< δ, then limt−→∞ ‖ xzt − z̃ ‖= 0.

Definition A.5 (Exponential stability). The equilibrium z̃ is said exponentially stable if
it is asymptotically stable and additionally

∃α, β, δ > 0 such that, if ‖ xz0 − z̃ ‖< δ then ‖ xzt − z̃ ‖≤ α ‖ xz0 − z̃ ‖ exp−βt .
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A.2 Stability theorems

Consider (Xn)∞n=1 a sequence of random variables defined on the probability space (Ω,F ,P)
and taking values in a metric space S. Let F1 ⊂ F2 ⊂ . . . ⊂ F be a nondecreasing family
of sub-σ-algebras.

Definition A.6. The sequence (Xn,Fn)∞n=1 is called respectively a supermartingale, a sub-
martingale or a martingale, if E [|Xn|] <∞ for n = 1, 2, . . . and

E [Xn|Fm] ≤ Xm, for n ≥ m

E [Xn|Fm] ≥ Xm, for n ≥ m

E [Xn|Fm] = Xm, for n ≥ m.

The following theorem characterizes the convergence of bounded martingales.

Theorem A.1 (Doob’s first martingale convergence theorem). Let {Xn} be a Markov
chain on state space S and suppose that

E [Xn] ≥ E [Xm] , for n ≥ m,

thus Xn is a submartingale. Denote by x+ the positive part of x. Assume furthermore that

sup
n
E
[
X+
n

]
<∞.

Then limnXn (= X∞) exists with probability one, and E [X+
∞] <∞.

For a proof, we refer to [59, Chapter 2].

Now we recall two results that are often referred as the stochastic versions of the
Lyapunov stability theory and the LaSalle’s invariance principle. For detailed discussions
and proofs, we refer to [55, Sections 8.4 and 8.5].

Theorem A.2 (Doob’s inequality). Let {Xn} be a Markov chain on state space S. Suppose
that there exists a non-negative function V (x) satisfying

E [V (X1) | X0 = x]− V (x) = −k(x),

where k(x) ≥ 0 on the set {x : V (x) < λ} ≡ Qλ. Then

P
(

sup
0≤n<∞

V (Xn) ≥ λ | X0 = x

)
≤ V (x)

λ
.

For the statement of the second theorem, we need to use the language of probability
measures rather than of random processes. Therefore, we deal with the space M of prob-
ability measures on the state space S. Let µ0 = σ be the initial probability distribution
(everywhere through this thesis we have dealt with the case where µ0 is a Dirac on a state
ρ0 of the state space of density matrices). Then, the probability distribution of Xn, given
initial distribution σ, is to be denoted by µn(σ). Note that for m ≥ 0, the Markov property
implies: µn+m(σ) = µn(µm(σ)).
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Theorem A.3 (Kushner’s invariance theorem). Consider the same assumptions as that
of Theorem A.2. Let µ0 = σ be concentrated on a state x0 ∈ Qλ (Qλ being defined as in
Theorem A.2), i.e., σ(x0) = 1. Assume that 0 ≤ k(Xn) → 0 in Qλ implies that Xn →
{x | k(x) = 0} ∩ Qλ ≡ Kλ. Under the conditions of Theorem A.2, for trajectories never
leaving Qλ, Xn converges to Kλ almost surely. Also, the associated conditioned probability
measures µ̃n tend to the largest invariant set of measures M∞ ⊂ M whose support set is
in Kλ. Finally, for the trajectories never leaving Qλ, Xn converges in probability to the
support set of M∞.

Theorem A.4. Let Xk be a Markov chain on the compact state space S ′. Suppose that
there exists a non-positive function V (X) satisfying

E [V (Xk+1)|Xk]− V (Xk) = −Q(Xk), (A.1)

where Q(X) is a positive continuous function of X, then the ω-limit set Ω (in the sense of
almost sure convergence) of Xk is contained by the following set

I∞ = {X| Q(X) = 0}.

Proof. The proof is just an application of Theorem 1 in [55, Chapter 8], which shows that
Q(Xk) converges to zero for almost all paths. It is clear that the continuity of Q(X) with
respect to X and the compactness of S ′ implies that the ω-limit set of Xk is necessarily
included into the set I∞.

A.3 Lyapunov exponents of linear stochastic processes

Consider a discrete-time linear stochastic system defined on Rd by

Xk+1 = AµkXk,

where Aµk is a random matrix taking its values inside a finite set {A1, . . . , Am} with a
stationary probability distribution for µk over {1, . . . ,m}. Then

λ(X0) = lim
k→∞

1

k
log

(
‖Xk‖
‖X0‖

)
,

for different initial states X0 ∈ Rd, may take at most d values which are called the Lyapunov
exponents of the linear stochastic system.
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[32] S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and
S. Haroche. Reconstruction of non-classical cavity field states with snapshots of
their decoherence. Nature, 455(7212):510–514, 2008.
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[87] C. Sayrin. Préparation et stabilisation d’un champ non classique en cavité par
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Titre : Stabilisation des systèmes quantiques à temps discret et
stabilité des filtres quantiques à temps continu

Résumé : Dans cette thèse, nous étudions des rétroactions visant à stabiliser
des systèmes quantiques en temps discret soumis à des mesures quantiques non-
destructives (QND), ainsi que la construction et la stabilité de filtres quantiques à
temps continu en présence d’imperfections. Cette thèse comporte deux parties.

Dans une première partie, nous généralisons les méthodes mathématiques sous-
jacentes à une rétroaction quantique en temps discret testée expérimentalement au
Laboratoire Kastler Brossel (LKB) de l’École Normale Supérieure (ENS) de Paris.
Nous présentons d’abord l’algorithme de contrôle qui a été utilisé lors de cette ex-
périence. Son but est la préparation et la stabilisation d’état à nombres entiers de
photons (états de Fock) pour un champ micro-onde au sein d’une cavité supracon-
ductrice. Pour cela, un filtre donne une estimation en temps-réel de l’état quantique
malgré des imperfections et des retards de mesure. Cet état estimé est alors utilisé
dans une loi de rétroaction (feedback) assurant la stabilisation vers un état de Fock
prédéterminé. Cette stabilisation est obtenue grâce à des méthodes Lyapunov sto-
chastiques. Nous montrons ici comment une telle stratégie de contrôle se généralise
à d’autres systèmes quantiques en temps discret soumis à des mesures QND.

Dans une seconde partie, nous nous inspirons du temps discret pour construire
et étudier la stabilité de filtres quantiques en temps continu et prenant en compte
des imperfections de mesure. Tout d’abord, nous démontrons la stabilité d’un filtre
quantique gouverné par l’équation maîtresse stochastique associée à un processus
de Wiener. La stabilité signifie ici que la “distance" entre l’état physique et le filtre
quantique décroit en moyenne. Cette distance est ici donnée par la fidélité, l’état phy-
sique et l’état du filtre pouvant être tous les deux des états mixtes. Cette partie étudie
également la conception d’un filtre optimal en temps continu en présence d’imper-
fections de mesure. Pour ce faire, nous étendons la méthode utilisée précédemment
pour construire les filtres quantiques en temps discret prenant en compte les imper-
fections de mesure. Nous obtenons alors heuristiquement des filtres généraux en
temps continu, dont la dynamique est décrite par des équations maîtresses stochas-
tiques mélangeant processus de Poisson et de Wiener. Nous conjecturons que ces
filtres sont optimaux et stables.

Mots clés : Contrôle non-linéaire, mesures quantiques non-destructives (QND),
électro-dynamique quantique en cavité (CQED), filtrage quantique, équation de Lind-
blad, équations maîtresses stochastiques (SMEs), équations de Schrödinger sto-
chastiques (SSEs), méthode de Lyapunov, contrôle stochastique, rétroaction quan-
tique , état de Fock.
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Title: Stabilization of discrete-time quantum systems and
stability of continuous-time quantum filters

Abstract: In this thesis, we study measurement-based feedbacks stabilizing discrete-
time quantum systems subject to quantum non-demolition (QND) measurements and
stability of continuous-time quantum filters. This thesis contains two parts.

In the first part, we generalize the mathematical methods underlying a discrete-
time quantum feedback experimentally tested in Laboratoire Kastler Brossel (LKB) at
Ecole Normal Supérieure (ENS) de Paris. In fact, we contribute to a control algo-
rithm which has been used in this recent quantum feedback experiment. This exper-
iment prepares and stabilizes on demand photon-number states (Fock states) of a
microwave field in a superconducting cavity. We design real-time filters allowing esti-
mation of the state despite measurement imperfections and delays, and we propose
a feedback law which ensures the stabilization of a predetermined target state. This
stabilizing feedback is obtained by stochastic Lyapunov techniques and depends on
a filter estimating the quantum state. We prove that such control strategy extends to
other discrete-time quantum systems under QND measurements.

The second part considers an extension, to continuous-time, of a stability result
for discrete-time quantum filters. Indeed, we prove the stability of a quantum filter
associated to usual stochastic master equation driven by a Wiener process. This sta-
bility means that a “distance” between the physical state and its associated quantum
filter decreases in average. Another subject that we study in this part is related to
the design of a continuous-time optimal filter, in the presence of measurement im-
perfections. To this aim, we extend a construction method for discrete-time quantum
filters with measurement imperfections. Finally, we obtain heuristically generalized
continuous-time optimal filters whose dynamics are given by stochastic master equa-
tions driven by both Poisson and Wiener processes. We conjecture the stability of
such optimal filters.

Keywords: Non-linear control, quantum non-demolition (QND) measurements,
cavity quantum electrodynamics (CQED), quantum filtering, Lindblad equations, stochas-
tic master equations (SMEs), stochastic Schrödinger equations (SSEs), Lyapunov-
based techniques, stochastic control, measurement-based feedback, photon-number
states (Fock states).
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