. Dans-le-tableau, en mémoire) Ces fonctions sont choisies pour que statistiquement les probabilités que deux clés diérentes donnent le même résultat soient très faibles

]. S. Bibliographieaka12, S. Akamatsu, M. Bottin-rousseau, G. Serefoglu, and . Faivre, A theory of thin lamellar eutectic growth with anisotropic interphase boundaries, e™t— w—teE ri—li—, p.3199205, 2012.

]. R. Ana91, W. Ananth, and . Gill, Self-consistent theory of dendritic growth with convection , tourn—l of gryst—l qrowth, p.17389, 1991.

]. B. App08, H. Appolaire, G. Combeau, and . Lesoult, Modeling of equiaxed growth in multicomponent alloys accounting for convection and for the globular/dendritic morphological transition, w—teri—ls ƒ™ien™e —nd ingineering e, p.3345, 2008.

[. Al-rawahi and G. Tryggvason, Numerical simulation of dendritic solidication with convection : Three-dimensional ow, tourn—l of gomput—tion—l €hysi™s, p.67796, 2004.

]. M. Ast02, J. Asta, A. Hoyt, and . Karma, Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations, €hysi™—l ‚eview f, 2002.

]. A. Bas00, J. Baserman, T. Clinckemaillie, J. Coupez, H. Fingberg et al., Dynamic load-balancing of nite element applications with the DRAMA library, p.839, 2000.

O. Basset, ƒimul—tion numérique d9é™oulements multi )uides sur grille de ™—lE ™ul, Thèse de doctorat, 2006.

K. Beatty and K. Jackson, Monte Carlo modeling of silicon crystal growth, tourE n—l of gryst—l qrowth, p.137, 2000.

]. C. Bec99, H. Beckermann, I. Diepers, A. Steinbach, X. Karma et al., Modeling Melt Convection in Phase-Field Simulations of Solidication, tourn—l of gomput—E tion—l €hysi™s, p.46896, 1999.

]. A. Bog10, H. Bogno, N. Nguyen-thi, N. Bergeon, T. Mangelinck-noël et al., Application of synchrotron X-ray radiography to the study of dendritic equiaxed microstructure formation in Al-Cu alloys, xu™le—r snstruments —nd wethods in €hysi™s ‚ese—r™h ƒe™tion f X fe—m snter—™tions with w—teri—ls —nd etoms, p.3948, 2010.

]. Box58, . Gep, M. Box, and . Muller, A Note on the Generation of Random Normal Deviates , enn—ls of w—them—ti™—l ƒt—tisti™s, p.6101, 1958.

]. S. Boy11, T. Boyer, H. Carozzani, C. Digonnet, and . Gandin, Simulation of spherulite structure in high pressure polymer crystallization based on three dimensional cellular automaton-nite element modeling, 2011.

]. Bro89, . Sgr, J. Brown, and . Spittle, Computer simulation of grain growth and macrostructure development during solidication, w—teri—ls ƒ™ien™e —nd „e™hE nology, p.3628, 1989.

]. A. Buz88, V. Buzynin, V. Antonov, V. Osiko, and . Tatarintsev, Twinning in silicon and A IIIBV compound crystals on growth from liquids, szvestiy— ek—demii x—uk ƒƒƒ‚ Phase eld simulation of equiaxed solidication in technical alloys, Böt06] B. Böttger, J. Eiken, I. Steinbach, vol.52, issue.54, p.2697704, 1988.

]. E. Cad00, N. Cadrl, B. Marasl, M. Bayender, and . Gündüz, Dependency of the microstructure parameters on the solidication parameters for camphene, w—teE ri—ls ‚ese—r™h fulletin, p.98595, 2000.

]. G. Cag89 and . Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-eld equations, p.588796, 1989.

]. P. Car00, D. Carter, C. Cox, R. Gandin, and . Reed, Process modelling of grain selection during the solidication of single crystal superalloy castings, w—teri—ls ƒ™ien™e —nd ingineering e, p.23346, 2000.

]. T. Car12, H. Carozzani, C. Digonnet, and . Gandin, 3D CAFE modeling of grain structures : application to primary dendritic and secondary eutectic solidication, wodelling —nd ƒimul—tion in w—teri—ls ƒ™ien™e —nd ingineering, 2012.

]. P. Che08, Y. Chen, C. Tsai, and . Lan, Phase eld modeling of growth competition of silicon grains, e™t— w—teri—li—, p.411422, 2008.

]. A. Cho12, K. Choudhury, E. Reuther, A. Wesner, B. August et al., Comparison of phase-eld and cellular automaton models for dendritic solidication in Al-Cu alloy, gomput—tion—l w—teri—ls ƒ™ien™e, p.2638, 2012.

]. H. Com12, M. Combeau, Y. Bellet, D. Fautrelle, E. Gobin et al., Analysis of a numerical benchmark for columnar solidication of binary alloys, p.12086, 2012.

]. T. Cou97, S. Coupez, and . Marie, From a Direct Solver to a Parallel Iterative Solver in 3-D Forming Simulation, sntF tF righ €erfF gompF eppF, p.27785, 1997.

J. Danzig and M. , Rappaz, ƒolidi(™—tion, 2009.

]. A. Das00, E. Das, and . Mittemeijer, Simulation of Eutectic Solidication Structures of Binary Alloys : a Multiparticle Diusion Limited Aggregation Model, wet—lE lurgi™—l —nd w—teri—ls „r—ns—™tions e, p.31, 2000.

]. A. Das02, S. Das, Z. Ji, and . Fan, Morphological development of solidication structures under forced uid ow : a Monte-Carlo simulation, e™t— w—teri—li—, pp.4571-85, 2002.

]. P. Del10, C. Delaleau, R. Beckermann, L. Mathiesen, and . Arnberg, Mesoscopic Simulation of Dendritic Growth Observed in X-ray Video Microscopy During Directional Solidication of Al-Cu Alloys, sƒst sntern—tion—l, p.188694, 2010.

H. Digonnet, ‚ep—rtitionnement dyn—miqueD m—illeur p—r—llèle et leurs —ppliE ™—tions à l— simul—tion numérique en mise en forme des m—téri—ux, 2001.

]. T. Duf10, A. Duar, and . Nadri, On the twinning occurrence in bulk semiconductor crystal growth, ƒ™ript— w—teri—li—, p.95560, 2010.

]. B. Ech04, R. Echebarria, A. Folch, M. Karma, and . Plapp, Quantitative phase-eld model of alloy solidication, €hysF ‚evF i, p.61604, 2004.

]. J. Egg01, G. Eggleston, and P. Mcfadden, Voorhees, A phase-eld model for highly anisotropic interfacial energy, €hysi™— h, p.91103, 2001.

]. J. Eik06, B. Eiken, I. Böttger, and . Steinbach, Multiphase-eld approach for multicomponent alloys with extrapolation scheme for numerical application, €hysi™—l ‚eview i, p.66122, 2006.

J. Eiken, e €h—seEpield model for te™hni™—l —lloy solidi(™—tion, Thèse de doctorat, 2009.

]. K. Eld07, N. Elder, J. Provatas, P. Berry, M. Stefanovic et al., Phase-eld crystal modeling and classical density functional theory of freezing, pp.75-064107, 2007.

H. Emmerich, L. Grànàsy, and H. Löwen, Selected issues of phase-eld crystal simulations, „he iurope—n €hysi™—l tourn—l €lus, p.102, 2011.

]. S. Fel91, J. Felicelli, D. Heinrich, and . Poirier, Simulation of freckles during vertical solidication of binary alloys, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions f, pp.10-1007, 1991.

]. S. Fel98, J. Felicelli, D. Heinrich, and . Poirier, Three-dimensional simulations of freckles in binary alloys, tourn—l of gryst—l qrowth, 1998.

]. E. Fer27 and . Fermi, Un Metodo Statistico per la Determinazione di alcune Proprietà dell'Atomo, ‚endi™onti vin™ei, p.6027, 1927.

]. K. Fuj04, Y. Fujiwara, T. Obinata, N. Ujihara, G. Usami et al., Grain growth behaviors of polycrystalline silicon during melt growth processes, tourE n—l of gryst—l qrowth, p.4418, 2004.

]. K. Fuj08, K. Fujiwara, N. Maeda, G. Usami, Y. Sazaki et al., In situ observation of Si faceted dendrite growth from lowdegree-of-undercooling melts, e™t— w—teri—li—, p.26638, 2008.

]. B. Gal11, T. Gallien, S. Duar, F. Lay, and . Robaut, Analysis of grain orientation in cold crucible continuous casting of photovoltaic Si, tourn—l of gryst—l qrowth, p.318, 2011.

]. C. Gan94, M. Gandin, and . Rappaz, A coupled nite element-cellular automaton model for the prediction of dendritic grain structures in solidication processes, e™t— wet—llurgi™— et w—teri—li—, p.223346, 1994.

]. C. Bibliographie-[-gan95, M. Gandin, D. Rappaz, and B. West, Adams, Grains Texture Evolution during the Columnar Growth of Dendritic Alloys, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions e, p.154351, 1995.

]. C. Gan96, R. Gandin, M. Schaefer, and . Rappaz, Analytical and numerical predictions of dendritic grain envelopes, e™t— w—teri—li—, p.333947, 1996.

]. C. Gan97, M. Gandin, and . Rappaz, A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth, e™t— w—teri—li—, p.218795, 1997.

]. C. Gan99, J. Gandin, M. Desbiolles, P. Rappaz, and . Thévoz, A Three-Dimensional Cellular Automaton-Finite Element Model for the Prediction of Solidication Grain Structures, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions e, p.315365, 1999.

C. Gandin, Experimental Study of the Transition from Constrained to Unconstrained Growth during Directional Solidication, sƒst sntern—tion—l, p.9719, 2000.

C. Gandin, From constrained to unconstrained growth during directional solidication, e™t— w—teri—li—, p.2483501, 2000.

]. C. Gan03, G. Gandin, B. Guillemot, N. Appolaire, and . Niane, Boundary layer correlation for dendrite tip growth with uid ow, w—teri—ls ƒ™ien™e —nd ingineering e, p.4450, 2003.

]. C. Gan08, S. Gandin, T. Mosbah, D. Volkmann, and . Herlach, Experimental and numerical modeling of equiaxed solidication in metallic alloys, e™t— w—teri—li—, p.302335, 2008.

]. J. Gan10 and D. Gantz, The Digital Universe Decade -Are You Ready ?, 2010.

]. M. Gar01, K. Garnier, P. Kaneko, and . Ribeyron, Apparatus and process for the continuous fabrication of a polycrystalline silicon ingot, 2001.

]. W. Geo02, J. George, and . Warren, A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method, tourn—l of gomput—tion—l €hysi™s, p.26483, 2002.

]. A. Gia70, B. H. Giamei, and . Kear, On the Nature of Freckles in Nickel Base Superalloys, p.218592, 1970.

]. A. Gre00, A. Greer, A. Bunn, P. Tronche, D. Evans et al., Modelling of inoculation of metallic melts : application to grain renement of aluminium by Al-Ti-B, e™t— w—teri—li—, p.282335, 2000.

G. Guillemot, porm—tion de stru™tures de gr—ins d—ns des —lli—ges à solidi(E ™—tion dendritique E wodélis—tion ™ouplée eutom—tes gellul—ires et iléments pinis, Thèse de doctorat, INPL, 2004.

]. G. Gui04b, C. Guillemot, H. Gandin, R. Combeau, and . Heringer, A new cellular automaton-nite element coupling scheme for alloy solidication, wodelling —nd ƒimul—tion in w—teri—ls ƒ™ien™e —nd ingineering, 2004.

]. G. Gui06, C. Guillemot, and H. Gandin, Combeau, Modeling of Macrosegregation and Solidication Grain Structures with a Coupled Cellular Automaton-Finite Element Model, sƒst sntern—tion—l, p.88095, 2006.

]. G. Gui07, C. Guillemot, M. Gandin, and . Bellet, Interaction between single grain solidication and macrosegregation : Application of a cellular automaton-Finite element model, tourn—l of gryst—l qrowth, p.5868, 2007.

]. G. Gul09 and . Gulliver, The quantitative eect of rapid cooling upon the constitution of binary alloys, tourn—l of the snstitute of wet—ls, p.12057, 1909.

J. Gustafson, Reevaluating Amdahl's Law, gommuni™—tions of the egw, p.5323, 1988.

]. M. Gün85, J. Gündüz, and . Hunt, The measurement of solid-liquid surface energies in the

]. E. Hac10, H. Hachem, N. Digonnet, E. Kossei, T. Massoni et al., Enriched nite element spaces for transient conduction heat transfer, epplied w—them—ti™s —nd gomput—tion, p.392943, 2010.

L. Hachani, B. Saadi, X. Wang, A. Nouri, K. Zaidat et al., Experimental analysis of the solidication of Sn-3 wt.convection, sntern—tion—l tourn—l of re—t —n w—ss „r—nsfer, 2012.

E. Hachem, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized nite element solution to handle complex heat and uid ows in industrial furnaces using the immersed volume method, sntern—tion—l tourn—l for xumeri™—l wethods in pluids, p.99121, 2012.

M. Hamide, E. Massoni, and M. Bellet, Adaptive mesh technique for thermalmetallurgical numerical simulationof arc welding processes, sntern—tion—l tourE n—l for xumeri™—l wethods in ingineering, p.62441, 2008.

]. D. Heb74, J. Hebditch, and . Hunt, Observations of ingot macrosegregation on model systems, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions f, pp.15571564-15571574, 1974.

]. H. Hel90, H. Heller, K. Grubmüller, and . Schulten, Molecular dynamics simulation on a parallel computer, wole™ul—r ƒimul—tion, p.13365, 1990.

]. R. Her06, C. Heringer, G. Gandin, H. Lesoult, and . Henein, Atomized droplet solidication as an equiaxed growth model, e™t— w—teri—li—, p.442740, 2006.

]. J. Hoy03, M. Hoyt, A. Asta, and . Karma, Atomistic and continuum modeling of dendritic solidication, w—teri—ls ƒ™ien™e —nd ingineering X ‚ X ‚eports, pp.41-12163, 2003.

S. Huang and M. Glicksman, Fundamentals of Dendritic Solidication, e™t— wetE —llurgi™—, p.70134, 1981.

]. J. Hun84 and . Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic , w—teri—ls ƒ™ien™e —nd ingineering, p.7583, 1984.

K. Jackson and J. Hunt, Lamellar and Rod Eutectic Growth, „r—ns—™tions of the wet—llurgi™—l ƒo™iety of eswi, p.112942, 1966.

K. Jackson, Crystal growth kinetics, w—teri—ls ƒ™ien™e —nd ingineering, <ce :title>Solidication Microstructure : 30 Years after Constitutional Supercooling </ce :title>, 1984.

]. J. Jeo01, N. Jeong, J. Goldenfeld, and . Dantzig, Phase eld model for three-dimensional dendritic growth with uid ow, €hysi™—l ‚eview i, p.41602, 2001.

]. D. Jur96, G. Juric, and . Tryggvason, A Front-Tracking Method for Dendritic Solidication , tourn—l of gomput—tion—l €hysi™s, p.12748, 1996.

]. A. Kar01 and . Karma, Phase-Field Formulation for Quantitative Modeling of Alloy Solidication , €hysi™—l ‚eview vetters, p.115701, 2001.

K. Kelton, Crystal nucleation in liquids and glasses, ƒolid ƒt—te €hysi™s, p.75177, 1991.

]. Y. Kim00, N. Kim, J. Goldenfeld, and . Danzig, Computation of dendritic microstructures using a level set method, €hysi™—l ‚eview i, p.24714, 2000.

]. M. Kit05, N. Kitamura, T. Usami, K. Sugawara, K. Kutsukake et al., Growth of multicrystalline Si with controlled grain boundary conguration by the oating zone technique, tourn—l of gryst—l qrowth, p.41924, 2005.

]. M. Kra09, D. Krane, S. Johnson, and . Raghavan, The development of a cellular automatonnite volume model for dendritic growth, p.223447, 2009.

]. W. Kur86, B. Kurz, R. Giovanola, and . Trivedi, Theory of microstructural development during rapid solidication, e™t— wet—llurgi™—, p.82330, 1986.

]. J. Lan77, J. Langer, and . Müller-krumbhaar, Stability eects in dendritic crystal growth, tourn—l of gryst—l qrowth, p.114, 1977.

]. Lee11, . Sb, Y. Lee, and . Kim, Direct observation of in-plane ordering in the liquid at a liquid Al/?-Al 2 O 3 ( ¯ 110 ¯ 2) interface, e™t— w—teri—li—, Macrosegregation in steel strands and ingots : Characterisation and formation and consequences, w—teri—ls ƒ™ien™e —nd ingineering e, 1929.

J. De, Romé de l'Isle, iss—i de ™rist—llogr—phie, p.1772

]. J. Lip87, M. Lipton, W. Glicksman, and . Kurz, Equiaxed dendrite growth in alloys at small supercooling, p.3415, 1987.

]. S. Liu01, R. Liu, R. Napolitano, and . Trivedi, Measurement of anisotropy of crystal-melt interfacial energy for a binary Al-Cu alloy, e™t— w—teri—li—, p.42716, 2001.

W. Liu, pinite element modelling of m—™rosegreg—tion —nd thermome™h—ni™—l phenomen— in solidi(™—tion pro™esses, Thèse de doctorat, 2005.

]. W. Liu09, C. Liu, M. Xie, and H. Bellet, Combeau, 2-Dimensional FEM modeling of macrosegregation in the directional solidication with mesh adaptation, e™t— wet—llurgi™— ƒini™— @inglish vettersA, p.23340, 2009.

S. Marie, …n modèle de p—r—llélis—tion ƒF€FwFhF pour l— simul—tion numérique de pro™édés de mise en forme des m—téri—ux, Thèse de doctorat, 1997.

]. M. Mar03, C. Martorano, C. Beckermann, and . Gandin, A Solutal Interaction Mechanism for the Columnar-to-Equiaxed Transition in Alloy Solidication, p.165774, 2003.

]. R. Mat05 and L. Mathiesen, Arnberg, X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al-30wt%Cu alloy, e™t— w—teri—li—, p.94756, 2005.

]. Y. Mes09, H. Mesri, T. Digonnet, and . Coupez, Advanced parallel computing in material forming with CIMLib, iurope—n tourn—l of gomput—tion—l we™h—ni™s, p.66994, 2009.

]. L. Mik91, A. Mikheev, and . Chernov, Mobility of a diuse simple crystal-melt interface, tourn—l of gryst—l qrowth, p.5916, 1991.

]. W. Mil11 and . Miller, Some remarks on the undercooling of the Si(111) facet and the "Monte Carlo modeling of silicon crystal growth, J. Crystal Growth, vol.211, issue.325, p.1013, 2000.

]. R. Mir04, K. Miron, and . Fichthorn, Multiple-Time Scale Accelerated Molecular Dynamics : Addressing the Small-Barrier Problem, €hysi™—l ‚eview vetters, 2004.

T. [. Mangelinck-noël and . Duar, Modelling of the transition from a planar faceted front to equiaxed growth : Application to photovoltaic polycrystalline silicon, tourn—l of gryst—l qrowth, pp.311-205, 2008.

J. [. Mangelinck-noël, C. Spinelli, G. Gandin, H. Reinhart, B. Nguyen-thi et al., A method to determine the active particle nucleation undercooling distribution in a rened alloy, sy€ gonfF ƒeries X w—teri—ls ƒ™ien™e —nd ingineering, p.12090, 2011.

]. S. Mos10, M. Mosbah, C. Bellet, and . Gandin, Experimental and Numerical Modeling of Segregation in Metallic Alloys, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions e, pp.41-65169, 2010.

]. W. Mul64, R. Mullins, and . Sekerka, Stability of a planar interface during solidication of a dilute binary alloy, tourn—l of epplied €hysi™s, p.44451, 1964.

]. A. Mul11 and . Mullis, Prediction of the operating point of dendrites growing under coupled thermosolutal control at high growth velocity, p.61601, 2011.

]. K. Nag05, K. Nagashio, and . Kuribayashi, Growth mechanism of twin-related and twin-free facet Si dendrites, e™t— w—teri—li—, p.30219, 2005.

]. R. Nap02, S. Napolitano, R. Liu, and . Trivedi, Experimental Measurement of Anisotropy in Crystal-Melt Interfacial Energy, snterf—™e ƒ™ien™e, p.21732, 2002.

]. L. Nas99 and . Nastac, Numerical modeling of solidication morphologies and segregation patterns in cast dendritic alloys, e™t— w—teri—li—, p.425362, 1999.

E. Perchat, winiEélément et f—™toris—tions in™omplètes pour l— p—r—llélis—tion d9un soveur de ƒtokes PdF eppli™—tion —u forge—ge, Thèse de doctorat, 2000.

]. J. Poh10, M. Pohl, A. Müller, K. Seidl, and . Albe, Formation of parallel (111) twin boundaries in silicon growth from the melt explained by molecular dynamics simulations , tourn—l of gryst—l qrowth, pp.312-141115, 2010.

]. N. Pro99, N. Provatas, J. Goldenfeld, and . Danzig, Adaptive Mesh Renement Computation of Solidication Microstructures Using Dynamic Data Structures, tourn—l of gomput—tion—l €hysi™s, p.26590, 1999.

J. Ramirez and C. Beckermann, Evaluation of a rayleigh-number-based freckle criterion for Pb-Sn alloys and Ni-base superalloys, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions e, 2003.

]. M. Rap89 and . Rappaz, Modelling of microstructure formation in solidication processes, sntern—tion—l w—teri—ls ‚eview, p.93123, 1989.

]. M. Rap93, C. Rappaz, and . Gandin, Probalistic modelling of microstructure formation in solidication processes, e™t— wet—llurgi™— et w—teri—li—, p.34560, 1993.

]. M. Rap99, W. Rappaz, and . Boettinger, On dendritic solidication of multicomponent alloys with unequal liquid diusion coecients, e™t— w—teri—li—, p.320519, 1999.

]. M. Rap10, J. Rappaz, A. Friedli, M. Mariaux, and . Salgado-ordorica, The inuence of solid-liquid interfacial energy anisotropy on equilibrium shapes and nucleation and triple lines and growth morphologies, ƒ™ript— w—teri—li—, p.9049, 2010.

R. Reed, „he super—lloysF pund—ment—ls —nd —ppli™—tions, 2006.

B. Rivaux, ƒimul—tion Qh éléments (nis des m—™roségrég—tions en pe—u inE duites p—r déform—tions thermomé™—niques lors de l— solidi, 2011.

]. D. Ruv07, R. Ruvalcaba, D. Mathiesen, L. Eskin, L. Arnberg et al., In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidication of an aluminum alloy, e™t— w—teri—li—, p.428792, 2007.

E. Scheil, Bemerkungen zur Schichtkristallbildung, eits™hrift für wet—lE lkunde, p.7072, 1942.

]. J. Spi89, S. Spittle, and . Brown, Computer simulation of the eects of alloy variables on the grain structures of castings, e™t— wet—llurgi™—, p.180310, 1989.

]. V. Sri10, K. Srinivasan, D. Moon, D. Greif, M. Wang et al., Numerical simulation of immersion quenching process of an engine cylinder head, p.211128, 2010.

]. I. Ste99, C. Steinbach, B. Beckermann, Q. Kauerauf, J. Li et al., Three-dimensional modeling of equiaxed dendritic growth on a mesoscopic scale, e™t— w—teriE —li—, pp.47-97182, 1999.

]. I. Ste05, H. Steinbach, C. Diepers, and . Beckermann, Transient growth and interaction of equiaxed dendrites, tourn—l of gryst—l qrowth, p.62438, 2005.

]. I. Ste08 and . Steinbach, Eect of interface anisotropy on spacing selection in constrained dendrite growth, e™t— w—teri—li—, p.496571, 2008.

]. L. Stu11, G. Sturz, and . Zimmermann, In-situ and real-time investigation of the columnarequiaxed transition in the transparent alloy system neopentylglycol-camphor onboard the sounding rocket TEXUS-47, tourn—l of €hysi™s X gonferen™e ƒeE ries, p.12002, 2011.

]. G. Swa08, K. Swaminarayan, T. Kadau, G. Germann, and . Fossum, 369 Top/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer, €ro™eedings of the PHHV egwGsiii ™onferen™e on ƒuper™omE puting, 2008.

L. Thomas, The calculation of atomic elds, w—them—ti™—l €ro™eedings of the g—m˜ridge €hilosophi™—l ƒo™iety, p.5428, 1927.

]. P. Thé89, J. Thévoz, M. Desbiolles, and . Rappaz, Modeling of Equiaxed Microstructure Formation in Casting, pp.20-31122, 1989.

]. D. Tou09, C. Tourret, and . Gandin, A generalized segregation model for concurrent dendritic , peritectic and eutectic solidication, e™t— w—teri—li— Multiple non-equilibrium phase transformations : Modeling versus electro-magnetic levitation experiment , e™t— w—teri—li—, p.466577, 2009.

]. G. Try01, B. Tryggvason, A. Bunner, D. Esmaeeli, N. Juric et al., A Front-Tracking Method for the Computations of Multiphase Flow, tourn—l of gomput—tion—l €hysi™s, p.70859, 2001.

]. A. Voi98, E. Voigt, H. Wolf, V. Shrunk, A. Voller et al., Grain orientation and grain boundaries in cast multicrystalline silicon, w—teri—ls ƒ™ien™e —nd ingineering f The modelling of heat and mass and solute transport in solidication systems, p.171931, 1989.

C. Wang and C. Beckermann, A Multiphase Solute Diusion Model for Dendritic Alloy Solidication, wet—llurgi™—l „r—ns—™tions e, p.2787802, 1993.

C. Wang and C. Beckermann, A unied solute diusion model for columnar and equiaxed dendritic alloy solidication, w—teri—ls ƒ™ien™e —nd ingineering e, 1993.

C. Wang and C. Beckermann, Equiaxed Dendritic Solidication with Convection : Part I. Multiscale/Multiphase Modeling, wet—llurgi™—l —nd w—teri—ls „r—nsE —™tions e, p.275464, 1996.

C. Wang and C. Beckermann, Equiaxed Dendritic Solidication with Convection : Part II. Numerical Simulations for an AI-4 Wt Pct Cu Alloy, wet—llurgi™—l —nd w—teri—ls „r—ns—™tions e, p.276583, 1996.
DOI : 10.1007/bf02652369