P. Angerer, L. G. Yu, K. A. Khor, and G. Krumpel, Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders, Materials Science and Engineering: A, vol.381, issue.1-2, pp.16-19, 2004.
DOI : 10.1016/j.msea.2004.02.009

U. Anselmi-tamburini, S. Gennari, J. E. Garaya, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process ii. modeling of current and temperature distributions, Materials Science and Engineering A, vol.394, p.139148, 2005.

G. Bernard-granger, A. Addad, G. Fantozzi, G. Bonnefont, C. Guizard et al., Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing, Acta Materialia, vol.58, issue.9, p.5833903399, 2010.
DOI : 10.1016/j.actamat.2010.02.013

URL : https://hal.archives-ouvertes.fr/hal-00639059

N. Bertolino, J. Garay, U. Anselmi-tamburini, and Z. A. Munir, High-ux current eects in interfacial reactions in Au-Al multilayers, Philosophical Magazine Part B, vol.82, issue.8, p.969985, 2002.

A. G. Bloxam, Improved manufacture of electric incandescence lamp laments from tungsten or molybdenum or an alloy thereof, GB Patent, vol.27, p.2, 1906.

M. Cabibbo, C. Paternoster, R. Cecchini, A. Fabrizi, A. Molinari et al., A microstructure study of nanostructured Fe???Mo+1.5wt.%SiO2 and +1.5wt.%TiO2 powders compacted by spark plasma sintering, Materials Science and Engineering: A, vol.496, issue.1-2, pp.121-132, 2008.
DOI : 10.1016/j.msea.2008.05.014

W. Chen, U. Anselmi-tamburini, J. E. Garay, J. R. Groza, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process i. eect of dc pulsing on reactivity, Materials Science and Engineering A, vol.394, p.132138, 2005.

A. C. Cocks, Inelastic deformation of porous materials, Journal of the Mechanics and Physics of Solids, vol.37, issue.6, p.693715, 1989.
DOI : 10.1016/0022-5096(89)90014-8

G. D. Cremer, Sintering together powders metals such as bronze, brass or aluminum, US Patent, vol.2, p.355954, 1944.

S. Duhr and D. Braun, Why molecules move along a temperature gradient, Proceedings of the National Academy of Sciences, vol.103, issue.52, 2006.
DOI : 10.1073/pnas.0603873103

J. M. Duva and J. W. Hutchinson, Constitutive potentials for dilutely voided nonlinear materials, Mechanics of Materials, vol.3, issue.1, p.4154, 1984.
DOI : 10.1016/0167-6636(84)90013-9

E. Olevsky and L. Froyen, Constitutive modeling of spark-plasma sintering of conductive materials, Scripta Materialia, vol.55, issue.12, p.11751178, 2006.
DOI : 10.1016/j.scriptamat.2006.07.009

J. M. Frei, U. Anselmi-tamburini, and Z. Munir, Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method, Journal of Applied Physics, vol.101, issue.11, p.114914, 2007.
DOI : 10.1063/1.2743885

O. Gillia and D. Bouvard, Phenomenological analysis of densification kinetics during sintering: application to WC???Co mixture, Materials Science and Engineering: A, vol.279, issue.1-2, pp.185-191, 2000.
DOI : 10.1016/S0921-5093(99)00621-8

D. M. Hulbert, A. Anders, J. Andersson, E. Laverniaa, and A. K. Mukherjee, A discussion on the absence of plasma in spark plasma sintering, Scripta Materialia, vol.60, issue.10, p.835838, 2009.
DOI : 10.1016/j.scriptamat.2008.12.059

K. Inoue, Electric discharge heat treatment of metals in electrolytes, US Patent, vol.3188, p.245, 1965.

Y. T. Keum, J. H. Jeon, and K. H. Auh, Computer simulation of ceramic sintering processes, Journal of Ceramic Processing Research, vol.3, 2002.

W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Journal of The Electrochemical Society, vol.124, issue.3, 1975.
DOI : 10.1149/1.2133296

W. Luan, L. Gao, H. Kawaoka, T. Sekino, and K. Niihara, Fabrication and characteristics of ne-grained BaTiO3 ceramics by spark plasma sintering, Ceramics International, vol.30, p.405410, 2004.

H. Maiwa, Preparation and properties of BaTiO3 ceramics by spark plasma sintering

G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi, Relation between microstructure , properties and spark plasma sintering (sps) parameters of pure ultrane wc powder, Japanese Journal of Applied Physics, p.76467649644654, 2007.

K. Matsugi, H. Kuramoto, T. Hatayama, and O. Yanagisawa, A case study for production of perfectly sintered complex compacts in rapid consolidation by spark sintering, Materials Science and Engineering: A, vol.354, issue.1-2, p.234242, 2003.
DOI : 10.1016/S0921-5093(03)00012-1

K. Matsugi, H. Kuramoto, T. Hatayama, and O. Yanagisawa, Temperature distribution at steady state under constant current discharge in spark sintering process of ti and al2o3 powders, Journal of Materials Processing Technology, vol.146, p.274281, 2004.

B. Mcwilliams and A. Zavaliangos, Multi-phenomena simulation of electric eld assisted sintering, Journal of Materials Science, vol.43, p.50315035, 2008.

P. Mondalek, L. Silva, and M. Bellet, A numerical model for powder densication by SPS technique, Advanced Engineering Materials, vol.13, issue.7, p.587593, 2011.

K. Mori, K. Maeda, K. Osakada, and S. Maki, Finite element simulation of electric current, temperature and densication behaviour in electrical heating powder compaction, Simulation of Materials Processing: Theory, Methods and Applications, p.517522, 1998.

W. Muhammad, Y. Mutoh, and Y. Miyashita, Microstructure and Mechanical Properties of Magnesium Prepared by Spark Plasma Sintering, Advanced Materials Research, vol.129, issue.131, pp.129-131764768, 2010.
DOI : 10.4028/www.scientific.net/AMR.129-131.764

Z. Munir, U. Anselmi-tamburini, and M. Ohyanaji, The eect of electric eld and pressure on the synthesis and consolidation of materials : A review of the spark plasma sintering method, Journal of Materials Science, vol.41, p.763777, 2006.

S. Munoz and U. Anselmi-tamburini, Temperature and stress elds evolution during spark plasma sintering processes, Journal of materials science, vol.45, p.65286539, 2010.

R. Orru, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering: R: Reports, vol.63, issue.4-6, p.127287, 2009.
DOI : 10.1016/j.mser.2008.09.003

R. Oru, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering R, vol.63, p.127287, 2009.

D. S. Perera, M. Tokita, and S. Moricca, Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing, Journal of the European Ceramic Society, vol.18, issue.4, pp.401404-401438, 1998.
DOI : 10.1016/S0955-2219(97)00139-8

P. Ponte-castaneda, The eective mechanical properties of nonlinear isotropic composites, Journal of the Mechanics and Physics of Solids, vol.39, p.4571, 1991.

A. I. Raichenko and E. S. Chernikova, A mathematical model of electric heating of the porous medium using current-supplying electrode/punches, Soviet Powder Metallurgy and Metal Ceramics, vol.21, issue.No. 6, p.365370, 1989.
DOI : 10.1007/BF00795038

A. I. Raichenko, E. S. Chernikova, and E. A. Olevsky, The analysis of the electric heating of the WC-Co hard-alloy under consideration of the dependence of it's characteristics on the temperature, Le Journal de Physique IV, vol.03, issue.C7, p.12351239, 1993.
DOI : 10.1051/jp4:19937190

J. Rathel, M. Herrmann, and W. Beckert, Temperature distribution for electrically conductive and non-conductive materials during eld assisted sintering (FAST), Journal of the European Ceramic Society, vol.29, p.14191425, 2009.

S. Shima and M. Oyane, Plasticity theory for porous metals, International Journal of Mechanical Sciences, vol.18, issue.6, p.285291, 1976.
DOI : 10.1016/0020-7403(76)90030-8

J. Y. Song, Y. Li, Z. Zhou, Y. Lai, and Y. Ye, A multi-eld coupled fem model for one-step-forming process of spark plasma sintering considering local densication of powder material, Journal of Material Science, vol.46, p.56455656, 2011.

G. F. Taylor, Apparatus for making hard metals compositions, US Patent, vol.1, p.896854, 1933.

M. Tokita, Mechanism of Spark Plasma Sintering, 1999.

K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van-der-biest, Modelling of the temperature distribution during eld assisted sintering, Acta Materialia, vol.53, p.43794388, 2005.

C. Wang, L. Cheng, and Z. Zhao, FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation, Computational Materials Science, vol.49, issue.2, p.351362, 2010.
DOI : 10.1016/j.commatsci.2010.05.021

S. Wang, L. D. Cheng, Y. S. Kangb, M. Niinob, and T. Hiraia, Eect of plasma activated sintering (PAS) parameters on densication of copper powder, Materials Research Bulletin, vol.35, p.619628, 2000.

X. Wang, S. R. Casolco, G. Xu, and J. E. Garay, Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress, Acta Materialia, vol.55, issue.10, p.36113622, 2007.
DOI : 10.1016/j.actamat.2007.02.022

Y. Wang and Z. Fu, Study of temperature eld in spark plasma sintering, Materials Science and Engineering B, vol.90, p.3437, 2002.

Y. C. Wang, Z. Y. Fu, and W. M. Wang, Numerical simulation of the temperature eld in sintering of bn by sps, Key Engineering Materials, vol.249, p.471476, 2003.

G. Weintraub and H. Rush, Process and apparatus for sintering refractory materials, US Patent, vol.1, p.71448, 1913.

G. Xie, O. Ohashi, K. Chiba, N. Yamaguchi, M. Song et al., Frequency eect on pulse electric current sintering process of pure aluminum powder, Materials Science and Engineering A, vol.359, p.384390, 2003.

O. Yanagisawa, H. Kuramoto, K. Matsugi, and M. Komatsu, Observation of particle behavior in copper powder compact during pulsed electric discharge, Materials Science and Engineering: A, vol.350, issue.1-2, pp.184-189, 2003.
DOI : 10.1016/S0921-5093(02)00726-8

M. Yoneya and T. Ikeshoji, A Numerical Calculation Method Advantageous for Complex Boundary Problems -An Application to the Pulse Discharge Sintering Process-, MATERIALS TRANSACTIONS, vol.42, issue.11, p.21652171, 2001.
DOI : 10.2320/matertrans.42.2165

A. Zavaliangos, J. Zhang, M. Krammer, and J. R. Groza, Temperature evolution during eld activated sintering, Materials Science and Engineering A, vol.379, p.218228, 2004.

J. Heating and T. , 49 3.5.1 Numerical validation of Ohm's law, p.49

M. Abouaf, Modélisation de la compaction de poudres métalliques frittées, 1985.

M. Abouaf and J. L. Chenot, Modélisation numérique de la déformation à chaud de poudres métalliques, Journal de Mécanique Théorique et Appliquée, vol.5, p.121140, 1986.

E. Artz, The inuence of an increasing particle coordination on the densication of spherical powders, Acta Metallurgica, vol.30, p.18831890, 1982.

I. Babuska, The nite element method with lagrangian multipliers, Numerical Mathematics, vol.20, p.179192, 1973.

O. Basset, Simulation numerique d'écoulements multi uides sur grille de calcul, 2006.

O. Bouaziz, C. Dellis, and P. Stutz, Creation of a material data le for modelling HIPing of an austenitic stainless steel, International workshop on modelling of metal powder forming processes, 1997.

D. Bouvard and E. Ouedraogo, Modelling of hot isostatic pressing: A new formulation using random variables, Acta Metallurgica, vol.35, issue.9, p.23232328, 1987.
DOI : 10.1016/0001-6160(87)90080-0

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers, RAIRO Ser. Rouge, vol.8, p.129151, 1974.

]. T. Coupez, Stabilized nite element method for 3d forming calculation. Intern communication, CEMEF, 1996.

E. Doege and A. Bagaviev, Fem-modelling of the non isothermal sintering of metal powder compacts, International workshop on modelling of metal powder forming processes, 1997.

C. Gay, Contribution à la simulation numérique 3D du forgeage à froid, 1995.

C. Geindreau, D. Bouvard, and P. Doremus, A unied viscoplastic constitutive equation for modelling hot isostatic pressing, International workshop on modelling of metal powder forming processes, 1997.

C. Geindreau, D. Bouvard, and P. Doremus, Constitutive behaviour of metal powder during hot forming., European Journal of Mechanics - A/Solids, vol.18, issue.4, pp.597-615, 1999.
DOI : 10.1016/S0997-7538(99)00101-1

URL : https://hal.archives-ouvertes.fr/hal-00343099

M. Gunzburger and R. A. Nicolaides, Incompressible Computational Fluid Dynamics, 1993.
DOI : 10.1017/CBO9780511574856

E. Hachem, Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

O. Jaouen, Modélisation tridimensionnelle par éléments nis pour l'analyse thermomécanique du refroidissement des pieces coulées, 1998.

H. Kim, O. Gillia, P. Dorémus, and D. Bouvard, Near net shape processing of a sintered alumina component: adjustment of pressing parameters through finite element simulation, International Journal of Mechanical Sciences, vol.44, issue.12, pp.2523-2539, 2002.
DOI : 10.1016/S0020-7403(02)00189-3

H. S. Kim and D. N. Lee, Power-law creep model for densication of powder compacts, Materials Science and Engineering A, vol.271, p.424429, 1999.

K. Kim and Y. C. Jeon, Densication behavior of 316L stainless steel powder under high temperature, International workshop on modelling of metal powder forming processes, 1997.

L. T. Kuhn and R. M. Mcmeeking, Power-law creep of powder bonded by isolated contacts, International Journal of Mechanical Sciences, vol.34, issue.7, p.563573, 1992.
DOI : 10.1016/0020-7403(92)90031-B

W. Liu, Finite element modelling of macrosegregation and thermomechnanical phenomena in solidication processes, 2005.

J. Matthews, Indentation hardness and hot pressing, Acta Metallurgica, vol.28, issue.3, p.311, 1980.
DOI : 10.1016/0001-6160(80)90166-2

B. Mcwilliams and A. Zavaliangos, Multi-phenomena simulation of electric eld assisted sintering, Journal of Materials Science, vol.43, issue.14, p.50315035, 2008.

S. Munoz and U. Anselmi-tamburini, Temperature and stress elds evolution during spark plasma sintering processes, Journal of materials science, vol.45, p.65286539, 2010.

T. Nieh, L. Hsiung, and J. Wadsworth, Superplastic behavior of a powder metallurgy TiAl alloy with a metastable microstructure, Intermetallics, vol.7, issue.2, p.163170, 1999.
DOI : 10.1016/S0966-9795(98)00017-X

E. Olevsky, Theory of sintering: From discrete to continuum, review, Materials Science and Engineering, p.41100, 1998.

E. Olevsky and L. Froyen, Constitutive modeling of spark-plasma sintering of conductive materials, Scripta Materialia, vol.55, issue.12, p.11751178, 2006.
DOI : 10.1016/j.scriptamat.2006.07.009

C. Pradille, Vers une meilleure compréhension et caractérisation du comportement des aciers à très haute température, 2011.

A. S. Rao and A. C. Chaklader, Plastic ow during hot-pressing, Journal of the American Ceramic Society, issue.12, p.55596601, 1972.

S. Shima and M. Oyane, Plasticity theory for porous metals, International Journal of Mechanical Sciences, vol.18, issue.6, p.285291, 1976.
DOI : 10.1016/0020-7403(76)90030-8

J. Song, Y. Li, Z. Zhou, Y. Lai, and Y. Ye, A multi-eld coupled FEM model for one-step-forming process of spark plasma sintering considering local densication of powder material, Journal of Material Science, vol.46, p.56455656, 2011.

P. Stutz, G. Aryanpour, O. Bouaziz, and C. Dellis, A two strain rate model for the HIPing of austenitic stainless steel, International workshop on modelling of metal powder forming processes, 1997.

C. Wang, L. Cheng, and Z. Zhao, FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation, Computational Materials Science, vol.49, issue.2, p.351362, 2010.
DOI : 10.1016/j.commatsci.2010.05.021

X. Wang, S. R. Casolco, G. Xu, and J. E. Garay, Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress, Acta Materialia, vol.55, issue.10, p.36113622, 2007.
DOI : 10.1016/j.actamat.2007.02.022

/. Powder and .. Wall-friction-models, 124 5.2.2 Viscoplastic friction model for powder compaction, p.125

J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, p.335354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

S. Brinckmann, G. Gao, and T. Siegmund, A combined experimental???numerical study of the compaction behavior of NaCl, Powder Technology, vol.194, issue.3, 2009.
DOI : 10.1016/j.powtec.2009.04.008

J. Bruchon, H. Digonnet, and T. Coupez, Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach, International Journal for Numerical Methods in Engineering, vol.11, issue.3, p.9801008, 2009.
DOI : 10.1002/nme.2519

URL : https://hal.archives-ouvertes.fr/emse-00475556

J. R. Cho and H. S. Jeong, Application of upper bound method to the powderforging of cup-shaped axisymmetric preforms for estimating punch load, International Journal for Numerical Methods in Engineering, vol.51, issue.4, p.429448, 2001.

J. C. Cunningham, I. C. Sinka, and A. Zavaliangos, Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction, Journal of Pharmaceutical Sciences, vol.93, issue.8, p.9320222039, 2004.
DOI : 10.1002/jps.20110

P. Dorémus and E. Pavier, Friction behaviour of an iron powder investigated whith two dierents apparatus, PM World congress, p.114119, 1998.

A. Frachon, Modélisation et Simulation Numérique de la Compression en Matrice de Poudres Métalliques, 2002.

D. Guyoncourt, J. Tweed, A. Gough, J. Dawson, and L. Patter, Constitutive data and friction measurments of powders using instrumented die, Powder Metallurgy, vol.44, p.2532, 2001.

G. K. Ashoka, M. Jinka, L. Bellet, and . Fourment, A new three-dimensional nite element model for the simulation of powder forging processes: application to hot forming of p/m connecting rod, International Journal for Numerical Methods in Engineering, issue.21, p.4039553978, 1997.

. Sh, A. R. Keshavarz, A. R. Khoei, and . Khaloo, Contact friction simulation in powder compaction process based on the penalty approach, Materials and Design, vol.29, issue.6, p.11991211, 2008.

A. R. Khoei, S. O. Biabanaki, A. R. Vafa, and S. , Keshavarz I. Yadegaran. A new computational algorithm for contact friction modeling of large plastic deformation in powder compaction processes, International Journal of Solids and Structures, vol.46, issue.2, p.287310, 2009.

J. Kovacik, S. Emmer, J. Bielek, and L. Kelesi, Eect of composition on friction coecient of cu-graphite composites, WEAR, vol.265, p.417421, 2008.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions, SIAM Journal on Optimization, vol.9, issue.1, p.112147, 1998.
DOI : 10.1137/S1052623496303470

E. Pavier and P. Dorémus, Friction behaviour of an iron powder investigated whith two dierents apparatus, International Worshop on Modelling of Metal Powder Forming Processes, p.335344, 1997.

M. Rappaz, M. Bellet, and M. Deville, Modélisation numérique en science et génie des matériaux, Presses Polytechniques et Universitaires Romandes, 1998.

I. C. Sinka, J. C. Cunningham, and A. Zavaliangos, Analysis of tablet compaction. ii. nite element analysis of density distributions in convex tablets, Journal of Pharmaceutical Sciences, issue.8, p.9320402053, 2004.

Y. Tien, P. Wu, W. Huang, M. Kuo, and C. Chu, Wall friction measurement and compaction characteristics of bentonite powders, Powder Technology, vol.173, issue.2, p.140151, 2007.
DOI : 10.1016/j.powtec.2006.11.023

D. Tran, R. Lewis, D. Gethin, and A. Arin, Numerical modeling of powder compaction processes: displacement based nite element method, Powder Metallurgy, vol.36, p.257266, 1993.

B. Wilkman, H. Haggblad, and M. Oldenburg, Modelling of powder-wall friction for simulation of iron powder pressing, International Worshop on Modelling of Metal Powder Forming Processes, p.149157, 1997.

A. Identication and S. Functions, 165 6.3.1 SPS experiments and measurements 166 6.3.2 Calibration of c and f using, Calibration of the friction coecient . . . . . . . . . . . . . . . 181

M. Abouaf, Modélisation de la compaction de poudres métalliques frittées, 1985.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions, SIAM Journal on Optimization, vol.9, issue.1, p.112147, 1998.
DOI : 10.1137/S1052623496303470

D. Lin and F. Sun, Superplasticity in a large-grained TiAl alloy, Intermetallics, vol.12, issue.7-9, p.875883, 2004.
DOI : 10.1016/j.intermet.2004.02.039

C. Nicolle, Mise en forme de poudres de bore par compression isostatique à chaud: Détermination des propriétés rhéologiques et simulation numérique du procédé, 1999.

T. G. Nieh, L. M. Hsiung, and J. Wadsworth, Superplastic behavior of a powder metallurgy TiAl alloy with a metastable microstructure, Intermetallics, vol.7, issue.2, p.163170, 1999.
DOI : 10.1016/S0966-9795(98)00017-X