&. A. Larminie and . Dicks, Fuel cell systems explained, 2003.
DOI : 10.1002/9781118878330

S. Brown, M. Primdahl, and . Mogensen, Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.147, issue.2, p.475, 2000.
DOI : 10.1149/1.1393220

S. J. Lashtabeg and . Skinner, Solid oxide fuel cells???a challenge for materials chemists?, J. Mater. Chem., vol.404, issue.46, p.3161, 2006.
DOI : 10.1016/j.jpowrsour.2005.11.036

N. Q. Minh and T. Takahashi, Science and Technology of ceramic fuel cells, Elservier, pp.117-351, 1995.

E. Weber and . Ivers-­?tiffée, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, Journal of Power Sources, vol.127, issue.1-2, p.273, 2004.
DOI : 10.1016/j.jpowsour.2003.09.024

P. Murray and S. A. Barnett, (La,Sr)MnO3???(Ce,Gd)O2???x composite cathodes for solid oxide fuel cells, Solid State Ionics, vol.143, issue.3-4, p.265, 2001.
DOI : 10.1016/S0167-2738(01)00871-2

M. Ferkhi, S. Kelili, L. Zerroual, A. Ringuedé, and M. Cassir, Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1???xCuxO4+?? materials as new cathodes for solid oxide fuel cells, Electrochimica Acta, vol.54, issue.26, p.6341, 2009.
DOI : 10.1016/j.electacta.2009.05.082

D. Benyoucef, C. Klein, B. Coddet, and . Benyoucef, Development and characterisation of (Ni, Cu, Co)-YSZ and Cu-Co-YSZ cermets anode materials for SOFC application, Surface and Coatings Technology, vol.202, issue.10, pp.2202-695, 2003.
DOI : 10.1016/j.surfcoat.2007.09.009

T. R. Takeguchi, T. Kikuchi, K. Yano, and . Murata, Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode, Catalysis Today, vol.84, issue.3-4, p.217, 2003.
DOI : 10.1016/S0920-5861(03)00278-5

R. J. Costa-­?nuñez, J. M. Gorte, and . Vohs, Comparison of the performance of Cu???CeO2???YSZ and Ni???YSZ composite SOFC anodes with H2, CO, and syngas, Journal of Power Sources, vol.141, issue.2, p.241, 2005.
DOI : 10.1016/j.jpowsour.2004.09.022

J. Gorte, H. Kim, and J. M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon, Journal of Power Sources, vol.106, issue.1-2, p.10, 2002.
DOI : 10.1016/S0378-7753(01)01021-7

R. J. Costa-­?nuñez, J. M. Gorte, and . Vohs, Comparison of the performance of Cu???CeO2???YSZ and Ni???YSZ composite SOFC anodes with H2, CO, and syngas, Journal of Power Sources, vol.141, issue.2, p.241, 2005.
DOI : 10.1016/j.jpowsour.2004.09.022

S. Park, R. J. Gorte, and J. M. Vohs, Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell, Applied Catalysis A: General, vol.200, issue.1-2, p.55, 2000.
DOI : 10.1016/S0926-860X(00)00650-5

B. D. Liu, Z. Madsen, S. A. Ji, and . Barnett, A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells, Electrochemical and Solid-State Letters, vol.5, issue.6, p.122, 2002.
DOI : 10.1149/1.1473258

W. Xie, B. Zhu, C. Zhu, and . Xia, FexCo0.5???xNi0.5???SDC anodes for low-temperature solid oxide fuel cells, Electrochimica Acta, vol.51, issue.15, p.3052, 2006.
DOI : 10.1016/j.electacta.2005.08.039

S. P. Jiang and S. H. Chan, A review of anode materials development in solid oxide fuel cells, Journal of Materials Science, vol.39, issue.14, p.4405, 2004.
DOI : 10.1023/B:JMSC.0000034135.52164.6b

C. Porat, H. L. Heremans, and . Tuller, Phase Stability and Electrical Conductivity in Gd2Ti2O7-Gd2Mo2O7 Solid Solutions, Journal of the American Ceramic Society, vol.61, issue.12, p.2278, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03118.x

J. Sprague and H. L. Tuller, Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate, Journal of the European Ceramic Society, vol.19, issue.6-7, p.803, 1999.
DOI : 10.1016/S0955-2219(98)00319-7

A. Hui and . Petric, Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions, Journal of The Electrochemical Society, vol.149, issue.1, p.1, 2002.
DOI : 10.1149/1.1420706

M. Vernoux, J. Guillodo, A. Fouletier, and . Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ionics, vol.135, issue.1-4, p.425, 2000.
DOI : 10.1016/S0167-2738(00)00390-8

S. Tao and J. T. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature Materials, vol.2, issue.5, p.320, 2003.
DOI : 10.1038/nmat871

Q. X. Fu, F. Tietz, and D. Stöver, La[sub 0.4]Sr[sub 0.6]Ti[sub 1???x]Mn[sub x]O[sub 3?????] Perovskites as Anode Materials for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.4, p.74, 2006.
DOI : 10.1149/1.2170585

M. Matsuda, Y. Karppinen, H. Yamazaki, and . Yamauchi, Oxygen-vacancy concentration in A2MgMoO6????? double-perovskite oxides, Journal of Solid State Chemistry, vol.182, issue.7, p.1713, 2009.
DOI : 10.1016/j.jssc.2009.04.016

C. B. Jud, L. J. Huwiler, and . Gauckler, Sintering Analysis of Undoped and Cobalt Oxide Doped Ceria Solid Solutions, Journal of the American Ceramic Society, vol.8, issue.9, p.3013, 2005.
DOI : 10.1023/A:1021570503733

S. Y. Chun and N. Mizutani, The transport mechanism of YSZ thin films prepared by MOCVD, Applied Surface Science, vol.171, issue.1-2, p.82, 2001.
DOI : 10.1016/S0169-4332(00)00543-2

T. W. Eom, H. K. Yang, K. H. Kim, H. H. Yoon, J. S. Kim et al., Effect of interlayer on structure and performance of anode-supported SOFC single cells, Ultramicroscopy, vol.108, issue.10, p.1283, 2008.
DOI : 10.1016/j.ultramic.2008.04.069

F. M. Marques and L. M. Navarro, Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study, Solid State Ionics, vol.100, issue.1-2, p.29, 1997.
DOI : 10.1016/S0167-2738(97)00261-0

T. Ishihara, H. Shibayama, Y. Nishigushi, and . Takita, Nickel??????Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte, Solid State Ionics, vol.132, issue.3-4, p.209, 2000.
DOI : 10.1016/S0167-2738(00)00660-3

A. Tsoga, A. Gupta, P. Naoumidis, and . Nikopoulos, Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology, Acta Materialia, vol.48, issue.18-19, p.4709, 2000.
DOI : 10.1016/S1359-6454(00)00261-5

A. Ballée, M. Ringuedé, M. Cassir, L. Putkonen, and . Niinistö, , by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications, Chemistry of Materials, vol.21, issue.19, p.4614, 2009.
DOI : 10.1021/cm9016968

V. Zivkovic, O. Lair, A. Lupan, and . Ringuedé, Effect of samarium addition and annealing on the properties of electrodeposited ceria thin films, Thin Solid Films, vol.519, issue.11, pp.3538-3543, 2011.
DOI : 10.1016/j.tsf.2011.01.245

S. Ferkhi, L. Khelili, A. Zerroual, M. Ringuedé, and . Cassir, Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1???xCuxO4+?? materials as new cathodes for solid oxide fuel cells, Electrochimica Acta, vol.54, issue.26, pp.6341-6346, 2009.
DOI : 10.1016/j.electacta.2009.05.082

A. Lair, P. Ringuede, S. Vernaut, and . Briveau, Synthesis and characterization of cerium oxide by electrochemical methods, physica status solidi (c), vol.130, issue.1, pp.3492-3495, 2008.
DOI : 10.1002/pssc.200779438

D. Perednis and L. J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis, Solid State Ionics, vol.166, issue.3-4, p.229, 2004.
DOI : 10.1016/j.ssi.2003.11.011

F. Brahim, A. Chauveau, M. Ringuede, M. Cassir, L. Putkonen et al., thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications, J. Mater. Chem., vol.12, issue.6, pp.760-766, 2009.
DOI : 10.1039/B813001A

A. Cassir, L. Ringuedé, and . Niinistö, Input of atomic layer deposition for solid oxide fuel cell applications, Journal of Materials Chemistry, vol.31, issue.41, pp.8987-8993, 2010.
DOI : 10.1039/c0jm00590h

W. Mindt, Electroless Deposition of Certain Metal Oxides, Journal of The Electrochemical Society, vol.117, issue.5, p.615, 1970.
DOI : 10.1149/1.2407588

M. R. Agarwal, A. H. De-guire, and . Heuer, Synthesis of ZrO2 and Y2O3-Doped ZrO2 Thin Films Using Self-Assembled Monolayers, Journal of the American Ceramic Society, vol.6, issue.11, p.2967, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03222.x

M. Izaki and T. Omi, Transparent zinc oxide films prepared by electrochemical reaction, Applied Physics Letters, vol.68, issue.17, p.2439, 1996.
DOI : 10.1063/1.116160

M. Izaki, Preparation of Transparent and Conductive Zinc Oxide Films by Optimization of the Two-Step Electrolysis Technique, Journal of The Electrochemical Society, vol.146, issue.12, p.4517, 1999.
DOI : 10.1149/1.1392667

M. Izaki and J. Katayama, Characterization of Boron-Incorporated Zinc Oxide Film Chemically Prepared from an Aqueous Solution, Journal of The Electrochemical Society, vol.147, issue.1, p.210, 2000.
DOI : 10.1149/1.1393176

M. Izaki, Preparation of Transparent Indium Oxide Film from a Chemically Deposited Precursor, Electrochemical and Solid-State Letters, vol.1, issue.5, p.215, 1998.
DOI : 10.1149/1.1390689

L. C. Nagle and J. F. Rohan, Investigation of DMAB Oxidation at a Gold Microelectrode in Base, Electrochemical and Solid-State Letters, vol.8, issue.5, p.77, 2005.
DOI : 10.1149/1.1883905

I. Zhitomirsky and A. Petric, Electrolytic deposition of Gd2O3 and organoceramic composite, Materials Letters, vol.42, issue.5, p.273, 2000.
DOI : 10.1016/S0167-577X(99)00193-7

S. Suntola and J. Antson, Method for producing compound thin films, U.S. Patent No, vol.4058430, 1974.

T. Suntola, Atomic layer epitaxy, Thin Solid Films, vol.216, issue.1, p.84, 1992.
DOI : 10.1016/0040-6090(92)90874-B

P. Holme, C. Lee, and F. B. Prinz, Atomic layer deposition of LSM cathodes for solid oxide fuel cells, Solid State Ionics, vol.179, issue.27-32, p.1540, 2008.
DOI : 10.1016/j.ssi.2007.12.100

R. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol.97, issue.12, p.121301, 2005.
DOI : 10.1063/1.1940727

M. Knez, K. Nielsch, and L. Niinistö, Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition, Advanced Materials, vol.17, issue.21, pp.3425-3438, 2007.
DOI : 10.1002/adma.200700079

M. Ritala and . Leskelä, Atomic layer deposition. Handbook of thin film materials, pp.103-108, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01289765

M. Suntola and . Simpson, Atomic Layer Epitaxy, 1990.

. Suntola, Handbook of crystal growth 3: thin films epitaxy, Part B " . Bristol

D. Suntola, S. I. Glocker, and . Shah, Handbook of Thin Films Process Technology, 1995.

M. Leskelä and M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, vol.409, issue.1, p.138, 2002.
DOI : 10.1016/S0040-6090(02)00117-7

R. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol.97, issue.12, p.121301, 2005.
DOI : 10.1063/1.1940727

H. Seim, M. Mölsä, H. Nieminen, L. Fjellvåg, and . Niinistö, Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor, Journal of Materials Chemistry, vol.7, issue.3, p.449, 1997.
DOI : 10.1039/a606316k

M. Seim, L. Nieminen, H. Niinistö, L. Fjellvåg, and . Johansson, Growth of LaCoO3 thin films from ??-diketonate precursors, Applied Surface Science, vol.112, p.243, 1997.
DOI : 10.1016/S0169-4332(96)01001-X

M. Nieminen, S. Lehto, and L. Niinistö, Atomic layer epitaxy growth of LaGaO3 thin films, Journal of Materials Chemistry, vol.11, issue.12, p.3148, 2001.
DOI : 10.1039/b105978p

M. Nilsen, H. Peussa, L. Fjellvåg, A. Niinistö, and . Kjekshus, Thin film deposition of lanthanum manganite perovskite by the ALE process, Journal of Materials Chemistry, vol.9, issue.8, p.1781, 1999.
DOI : 10.1039/a902957e

. Nilsen, Growth of Thin Films of Functional Oxides with the ALCVD Method, 2003.

L. Tiitta and . Niinistö, Volatile Metal ??-Diketonates: ALE and CVD precursors for electroluminescent device thin films, Chemical Vapor Deposition, vol.5, issue.83, p.167, 1997.
DOI : 10.1002/cvde.19970030404

T. Ozawa, Volatility of metal ??-diketonates for chemical vapor deposition of oxide superconductors, Thermochimica Acta, vol.174, p.185, 1991.
DOI : 10.1016/0040-6031(91)80160-K

J. Eisentraut and R. E. Sievers, Volatile Rare Earth Chelates, Journal of the American Chemical Society, vol.87, issue.22, p.5254, 1965.
DOI : 10.1021/ja00950a051

C. Tian and S. Chan, Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3, Solid State Ionics, vol.134, issue.1-2, p.89, 2005.
DOI : 10.1016/S0167-2738(00)00717-7

M. Päivässari, L. Putkonen, and . Niinistö, Cerium dioxide buffer layers at low temperature by atomic layer deposition, Journal of Materials Chemistry, vol.12, issue.6, p.1828, 2002.
DOI : 10.1039/b108333c

T. Ylilammi, Ranta-­?aho, Thin Solid Films, pp.56-62, 1993.

A. Sarantaridis and . Atkinson, Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review, Fuel Cells, vol.31, issue.3, pp.246-258, 2007.
DOI : 10.1002/fuce.200600028

T. Richarson, R. Scates, and M. V. Twigg, X-ray diffraction study of nickel oxide reduction by hydrogen, Applied Catalysis A: General, vol.246, issue.1, pp.137-150, 2003.
DOI : 10.1016/S0926-860X(02)00669-5

P. S. Sarkar and . Nicholson, ac Conductivity and conductivity relaxation studies in the CeO2???Y2O3 system, Solid State Ionics, vol.21, issue.1, pp.49-53, 1986.
DOI : 10.1016/0167-2738(86)90007-X

Q. X. Fu, G. Y. Meng, and B. Zhu, Intermediate temperature fuel cells based on doped ceria???LiCl???SrCl2 composite electrolyte, Journal of Power Sources, vol.104, issue.1, p.73, 2002.
DOI : 10.1016/S0378-7753(01)00874-6

B. Zhu, I. Albinsson, C. Anderson, K. Borsand, M. Nilsson et al., Electrolysis studies based on ceria-based composites, Electrochemistry Communications, vol.8, issue.3, p.495, 2006.
DOI : 10.1016/j.elecom.2006.01.011

S. Li and J. Sn, Electrochemical performances of NANOCOFC in MCFC environments, International Journal of Hydrogen Energy, vol.35, issue.7, p.2980, 2010.
DOI : 10.1016/j.ijhydene.2009.05.096

J. Di, M. Chen, C. Wang, J. Zheng, L. Fan et al., Samarium doped ceria???(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell, Journal of Power Sources, vol.195, issue.15, p.4695, 2010.
DOI : 10.1016/j.jpowsour.2010.02.066

J. Huang, L. Yang, R. Gao, Z. Mao, and C. Wang, A high-performance ceramic fuel cell with samarium doped ceria???carbonate composite electrolyte at low temperatures, Electrochemistry Communications, vol.8, issue.5, p.785, 2006.
DOI : 10.1016/j.elecom.2006.03.016

L. Zhang, R. Lan, C. T. Petit, and S. Tao, Durability study of an intermediate temperature fuel cell based on an oxide???carbonate composite electrolyte, International Journal of Hydrogen Energy, vol.35, issue.13, p.6934, 2010.
DOI : 10.1016/j.ijhydene.2010.04.026

B. Malinowska, M. Cassir, and J. Devynck, Behaviour of nickel species in molten Li2CO3 + Na2CO3 + K2CO3 Part 2. Electrochemical characterization under P(CO2) = 0.1 atm + P(O2) = 0.9 atm, P(Ar) = 1 atm and P(O2) = 1 atm, Journal of Electroanalytical Chemistry, vol.417, issue.1-2, p.135, 1996.
DOI : 10.1016/S0022-0728(96)04734-1

E. Ballée, A. Ringuedé, M. Cassir, M. Putkonen, and L. Niinistö, , by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications, Chemistry of Materials, vol.21, issue.19, p.4614, 2009.
DOI : 10.1021/cm9016968