B. Figure, 1 ? Couverture du numéro d'Applied Optics du 10 mars 2012 dans lequel est publié l'article "Compact infrared cryogenic wafer-level camera : design and experimental validation

?. F. De-la-barrière, G. Druart, N. Guérineau, J. Taboury, A. Gueugnot et al., Fabrication of concave and convex potassium bromide lens arrays by compression molding, Applied Optics, vol.51, issue.21, pp.4936-4944, 2012.
DOI : 10.1364/AO.51.004936

?. F. De-la-barrière, G. Druart, N. Guérineau, Y. Ferrec, J. Taboury et al., Random phase mask in a filamentation regime: application to the localization of point sources, Optics Letters, vol.36, issue.5, pp.684-686, 2011.
DOI : 10.1364/OL.36.000684

?. G. Druart, N. Guérineau, F. De-la-barrière, and E. G. Vincent, Les multiples facettes des imageurs multivoies, Photoniques, vol.48, issue.48, pp.46-49, 2010.
DOI : 10.1051/photon/20104846

?. F. De-la-barrière, G. Druart, N. Guérineau, and J. Taboury, Integration of advanced optical functions near the focal plane array: first steps toward the on-chip infrared camera, Novel Optical Systems Design and Optimization XIII, pp.778706-778707, 2010.
DOI : 10.1117/12.859463

?. F. De-la-barrière, G. Druart, N. Guérineau, J. Taboury, and E. M. Fendler, Design of compact multichannel optical systems inspired by the vision of invertebrates, Bio-Inspired Robots Workshop

?. F. De-la-barrière, G. Druart, N. Guérineau, and E. J. Taboury, Original design rules for simple imaging systems, Optical Design and Engineering IV, pp.816704-816705
DOI : 10.1117/12.891943

?. F. De-la-barrière, S. Derelle, G. Druart, N. Guérineau, S. Rommeluère et al., Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors, II-VI Workshop
DOI : 10.1007/s11664-012-1990-0

?. F. De-la-barrière, G. Druart, and E. N. Guérineau, New and future optical designs for small and micro UAVs, European calibration and orientation workshop (EuroCOW)

?. F. De-la-barrière, G. Druart, N. Guérineau, J. Taboury, G. Lasfargues et al., Intégration ultime de fonctions optiques sur plans focaux infrarouges Horizons de l'Optique, Mini-colloque "Technologies optiques intégrées au plan focal

?. N. Guérineau, G. Druart, F. De-la-barrière, F. Gillard, S. Rommeluère et al., Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays, Micro-Optics 2010, pp.77160-77161, 2010.
DOI : 10.1117/12.859081

?. M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. De-la-barrière et al., Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras, Infrared Technology and Applications XXXVI, pp.766022-766023, 2010.
DOI : 10.1117/12.852275

?. G. Druart, F. De-la-barrière, N. Guérineau, J. Deschamps, M. Fendler et al., Towards infrared DDCA with an imaging function, Infrared Technology and Applications XXXVII, pp.801228-801229, 2011.
DOI : 10.1117/12.883396

?. G. Druart, N. Guérineau, and F. De-la-barrière, Review of different designs of optical payloads for micro-UAV, EuroSDR/ETH Tutorial on Unmanned Air Vehicles for geomatic, 2011.

?. G. Druart, F. De-la-barrière, N. Guérineau, G. Lasfargues, M. Fendler et al., Integration of wide field-of-view imagery functions in a detector dewar cooler assembly, Infrared Technology and Applications XXXVIII, pp.835322-835323, 2012.
DOI : 10.1117/12.919177

C. Le-stage-de-fin-d-'études-que-j-'ai-effectué-au and . Leti, qui a précédé ma thèse s'inscrit dans une réflexion large sur l'intégration de fonctions optiques au plus près du détecteur Durant ce stage, j'ai étudié, d'un point de vue technologique, l'intégration d'une fonction de spectrométrie au voisinage du détecteur infrarouge refroidi. Cette étude a eu pour objectif de réaliser un micro-spectromètre infrarouge par transformée de Fourier en rapportant une lame de forme prismatique au contact du détecteur (cf. figure B.2), Une cavité prismatique est ainsi créée : elle est le lieu d'interférences à deux ondes (notées onde 1 et onde 2 sur le schéma de la figure [1] M. Kast : High-precision wafer-level optics fabrication and integration. Photonics, pp.34-36, 2010.

M. Vuillermet, D. Billon-lanfrey, Y. Reibel, A. Manissadjian, L. Mollard et al., Destefanis : Status of MCT focal plane arrays in France, Proc. SPIE, pp.83532-83533, 2012.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida et al., Thin observation module by bound optics (TOMBO): concept and experimental verification, Applied Optics, vol.40, issue.11, pp.1806-1813, 2001.
DOI : 10.1364/AO.40.001806

A. Brückner, R. Leitel, A. Oberdörster, P. Dannberg, and F. Wippermann, Multi-aperture optics for wafer-level cameras, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.10, issue.4, pp.43010-43011, 2011.
DOI : 10.1117/1.3659144

A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons et al., Design and characterization of thin multiple aperture infrared cameras, Applied Optics, vol.48, issue.11, pp.2115-2126, 2009.
DOI : 10.1364/AO.48.002115

M. P. Christensen, V. Bhakta, D. Rajan, T. Mirani, S. C. Douglas et al., Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager fields of view, Applied Optics, vol.45, issue.13, pp.2884-2892, 2006.
DOI : 10.1364/AO.45.002884

M. Singer, Design of a cryogenic infrared detector with integrated optics, Proc. SPIE, pp.76601-76602, 2010.

S. Rommeluère, Conception et réalisation d'un microspectromètre intégré au voisinage d'un plan focal infrarouge, Thèse de doctorat, 2007.

G. Druart, Nouvelles briques de conception de systèmes intégrés pour la vision infrarouge. D'une approche minimaliste à la caméra sur puce, Thèse de doctorat, 2009.

J. W. Goodman, Introduction to Fourier Optics, chapitre 5, page 107, Roberts and Company publishers, vol.3, 2005.

J. W. Goodman, Introduction to Fourier Optics, chapitre 6, page 146, Roberts and Company publishers, vol.3, 2005.

S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. , The optical advantages of curved focal plane arrays, Optics Express, vol.16, issue.7, pp.4965-4971, 2008.
DOI : 10.1364/OE.16.004965

M. Born and E. Wolf, Principles of Optics, p.211, 1989.
DOI : 10.1017/CBO9781139644181

M. Born and E. Wolf, Principles of Optics, p.213, 1989.
DOI : 10.1017/CBO9781139644181

M. Born and E. Wolf, Principles of Optics, p.228, 1989.
DOI : 10.1017/CBO9781139644181

M. Born and E. Wolf, Principles of Optics, p.468, 1989.
DOI : 10.1017/CBO9781139644181

D. J. Brady, Micro-optics and Megapixels, Optics and Photonics News, vol.17, issue.11, pp.24-29, 2006.
DOI : 10.1364/OPN.17.11.000024

D. Dumas, Rétines courbes : une approche "bio-inspirée" de simplification et miniaturisation des systèmes infrarouge, Thèse de doctorat, 2011.

P. Milojkovic and J. N. , Space-bandwidth scaling for wide field-of-view imaging, Applied Optics, vol.51, issue.4, pp.36-47, 2012.
DOI : 10.1364/AO.51.000A36

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature, vol.1, issue.7205, pp.748-753, 2008.
DOI : 10.1038/nature07113

D. Dumas, M. Fendler, F. Berger, B. Cloix, C. Pornin et al., Infrared camera based on a curved retina, Optics Letters, vol.37, issue.4, pp.653-655, 2012.
DOI : 10.1364/OL.37.000653

URL : https://hal.archives-ouvertes.fr/hal-01226486

E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, Ultrathin cameras using annular folded optics, Applied Optics, vol.46, issue.4, pp.463-471, 2007.
DOI : 10.1364/AO.46.000463

E. J. Tremblay, R. A. Stack, R. L. Morrison, J. H. Karp, and J. E. Ford, Ultrathin four-reflection imager, Applied Optics, vol.48, issue.2, pp.343-354, 2009.
DOI : 10.1364/AO.48.000343

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom et al., Ultra-miniature catadioptrical system for an omnidirectional camera, Micro-Optics 2008, pp.69920-69921, 2008.
DOI : 10.1117/12.779988

V. R. Bhakta, M. Somayaji, S. C. Douglas, and M. P. Christensen, Experimentally validated computational imaging with adaptive multiaperture folded architecture, Applied Optics, vol.49, issue.10, pp.51-58, 2010.
DOI : 10.1364/AO.49.000B51

M. Somayaji, M. P. Christensen, E. Faramarzi, D. Rajan, J. P. Laine et al., Prototype development and field-test results of an adaptive multiresolution PANOPTES imaging architecture, Applied Optics, vol.51, issue.4, pp.48-58, 2012.
DOI : 10.1364/AO.51.000A48

S. R. Wilk, Ancient optics : Producing magnification without lenses. Opt, Photonics News, vol.17, pp.12-13, 2006.

G. Druart, N. Guérineau, J. Taboury, S. Rommeluère, R. Haïdar et al., Compact infrared pinhole fisheye for wide field applications, Applied Optics, vol.48, issue.6, pp.1104-1113337, 1978.
DOI : 10.1364/AO.48.001104

URL : https://hal.archives-ouvertes.fr/hal-00700221

G. Andersen and D. Tullson, Broadband antihole photon sieve telescope, Applied Optics, vol.46, issue.18, pp.3706-3708, 2007.
DOI : 10.1364/AO.46.003706

S. R. Gottesman and E. E. Fenimore, New family of binary arrays for coded aperture imaging, Applied Optics, vol.28, issue.20, pp.4344-4352, 1989.
DOI : 10.1364/AO.28.004344

G. Druart, N. Guérineau, R. Haïdar, J. Primot, A. Kattnig et al., Image formation by use of continuously self-imaging gratings and diffractive axicons, Unconventional Imaging III, pp.671208-671209, 2007.
DOI : 10.1117/12.730629

URL : https://hal.archives-ouvertes.fr/hal-00701504

G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer et al., Demonstration of image-zooming capability for diffractive axicons, Optics Letters, vol.33, issue.4, pp.366-368, 2008.
DOI : 10.1364/OL.33.000366

URL : https://hal.archives-ouvertes.fr/hal-00628969

G. Druart, N. Guérineau, R. Haïdar, J. Primot, P. Chavel et al., Nonparaxial analysis of continuous self-imaging gratings in oblique illumination, Journal of the Optical Society of America A, vol.24, issue.10, pp.3379-3387, 2007.
DOI : 10.1364/JOSAA.24.003379

URL : https://hal.archives-ouvertes.fr/hal-00872939

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, Artificial apposition compound eye fabricated by micro-optics technology, Applied Optics, vol.43, issue.22, pp.4303-4310, 2004.
DOI : 10.1364/AO.43.004303

J. Duparré, P. Dannberg, P. Schreiber, and A. Bräuer, Thin compound-eye camera, Applied Optics, vol.44, issue.15, pp.2949-2956, 2005.
DOI : 10.1364/AO.44.002949

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, and A. Bräuer, Thin wafer-level camera lenses inspired by insect compound eyes, Optics Express, vol.18, issue.24, pp.24379-24394, 2010.
DOI : 10.1364/OE.18.024379

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-severin, A. Bräuer et al., Microoptical telescope compound eye, Microoptical telescope compound eye, pp.889-903, 2005.
DOI : 10.1364/OPEX.13.000889.m002

J. Meyer, A. Brückner, R. Leitel, P. Dannberg, and A. Bräuer, Optical Cluster Eye fabricated on wafer-level, Optics Express, vol.19, issue.18, pp.17506-17519, 2011.
DOI : 10.1364/OE.19.017506

K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, and A. Bräuer, The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects, Optics Express, vol.17, issue.18, pp.15747-15759, 2009.
DOI : 10.1364/OE.17.015747.m002

G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury et al., Demonstration of an infrared microcamera inspired by Xenos peckii vision, Applied Optics, vol.48, issue.18, pp.3368-3374, 2009.
DOI : 10.1364/AO.48.003368

URL : https://hal.archives-ouvertes.fr/hal-00569989

L. C. Laycock and V. A. , Handerek : Multi-aperture imaging device for airborne platforms, Proc. SPIE, pp.673709-673710, 2007.

N. A. Ahuja and N. K. Bose, Design of Large Field-of-View High-Resolution Miniaturized Imaging System, EURASIP Journal on Advances in Signal Processing, vol.2007, issue.1, pp.1-10, 2007.
DOI : 10.1109/MCD.2005.1438751

H. Liu, F. Chen, Q. Yang, P. Qu, and S. , Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections, Applied Physics Letters, vol.100, issue.13, pp.133701-133702, 2012.
DOI : 10.1063/1.3696019

C. L. Tisse, F. Guichard, and F. Cao, Does resolution really increase image quality?, Digital Photography IV, pp.68170-68171, 2008.
DOI : 10.1117/12.766150

A. Durand, J. L. Tissot, P. Robert, S. Cortial, C. Roman et al., Legras : VGA 17 micrometer development for compact, low power systems, Proc. SPIE, pp.80121-80122, 2011.

A. Papoulis, Generalized sampling expansion, IEEE Transactions on Circuits and Systems, vol.24, issue.11, pp.652-654, 1977.
DOI : 10.1109/TCS.1977.1084284

M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons et al., Thin infrared imaging systems through multichannel sampling, Applied Optics, vol.47, issue.10, pp.1-10, 2008.
DOI : 10.1364/AO.47.0000B1

G. Druart, F. De-la-barrière, N. Guérineau, J. Deschamps, M. Fendler et al., Moullec : Towards infrared DDCA with an imaging function, Proc. SPIE, pp.801228-801229, 2011.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, The manufacture of microlenses by melting photoresist, Measurement Science and Technology, vol.1, issue.8, pp.759-766, 1990.
DOI : 10.1088/0957-0233/1/8/016

Z. D. Popovic, R. A. Sprague, G. A. Neville, and . Connell, Technique for monolithic fabrication of microlens arrays, Applied Optics, vol.27, issue.7, pp.1281-1284, 1988.
DOI : 10.1364/AO.27.001281

M. He, X. Yuan, and J. Bu, Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique, Optics Letters, vol.29, issue.9, pp.1007-1009, 2004.
DOI : 10.1364/OL.29.001007

P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Völkel et al., Two step process for the fabrication of diffraction limited concave microlens arrays, Optics Express, vol.16, issue.24, pp.19541-19549, 2008.
DOI : 10.1364/OE.16.019541

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou et al., Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method, Optics Express, vol.18, issue.19, pp.20334-20343, 2010.
DOI : 10.1364/OE.18.020334

J. Dunkel, F. Wippermann, A. Brückner, and A. Bräuer, Laser lithographic approach to micro-optical freeform elements with extremely large sag heights, Optics Express, vol.20, issue.4, pp.4763-4775, 2012.
DOI : 10.1364/OE.20.004763

R. Gläbe, Riemer : Diamond machining of micro-optical components and structures, Proc. SPIE, pp.771602-771603, 2010.

S. Scheiding, A. Gebhardt, and R. Eberhardt, Micro Lens Array Milling on Large Wafers, Optik & Photonik, vol.4, issue.4, pp.41-45, 2009.
DOI : 10.1002/opph.201190061

E. Paul, C. J. Evans, A. Mangamelli, and M. L. , Chemical aspects of tool wear in single point diamond turning, Precision Engineering, vol.18, issue.1, pp.4-19, 1996.
DOI : 10.1016/0141-6359(95)00019-4

F. Klocke, O. Dambon, and B. Bulla, Diamond turning of aspheric steel molds for optics replication, Micromachining and Microfabrication Process Technology XV, pp.75900-75901, 2010.
DOI : 10.1117/12.839422

E. Brinksmeier, R. Gläbe, J. F. Klocke, O. Dambon, and B. Bulla, Osmer : Ultra-precision diamond cutting of steel molds Annals of the CIRP Heselhaus : Direct diamond turning of steel molds for optical replication, Proc. SPIE, pp.551-554728202, 2006.

R. Bruck, R. Hainberger, R. Heer, N. Kataeva, A. Köck et al., Bilenberg : Direct replication of nanostructures from silicon wafers in polymethylpentene by injection molding, Proc. SPIE, pp.77880-77881, 2010.

G. C. Firestone and A. Y. Yi, Precision compression molding of glass microlenses and microlens arrays???an experimental study, Applied Optics, vol.44, issue.29, pp.6115-6122, 2005.
DOI : 10.1364/AO.44.006115

A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs et al., Development of a compression molding process for three-dimensional tailored free-form glass optics, Applied Optics, vol.45, issue.25, pp.6511-6518, 2006.
DOI : 10.1364/AO.45.006511

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon et al., A hybrid polymer???glass achromatic microlens array fabricated by compression molding, Journal of Optics, vol.13, issue.5, pp.1-11, 2011.
DOI : 10.1088/2040-8978/13/5/055407

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens, Infrared Technology and Applications XXXII, pp.6206-6207, 2006.
DOI : 10.1117/12.667250

D. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim et al., Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications, Applied Optics, vol.49, issue.9, pp.1607-1613, 2010.
DOI : 10.1364/AO.49.001607

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, Contactless molding of arrayed chalcogenide glass lenses, Journal of Non-Crystalline Solids, vol.357, issue.11-13, pp.2484-2488, 2011.
DOI : 10.1016/j.jnoncrysol.2010.11.077

J. Orava, T. Kohoutek, A. L. Greer, and H. Fudouzi, Soft imprint lithography of a bulk chalcogenide glass, Optical Materials Express, vol.1, issue.5, pp.796-802, 2011.
DOI : 10.1364/OME.1.000796

E. A. Sanchez, M. Waldmann, and C. B. Arnold, Chalcogenide glass microlenses by inkjet printing, Applied Optics, vol.50, issue.14, pp.1974-1978, 2011.
DOI : 10.1364/AO.50.001974

M. Silvennoinen, K. Paivasaari, J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero et al., Imprinting the nanostructures on the high refractive index semiconductor glass, Applied Surface Science, vol.257, issue.15, pp.6829-6832, 2011.
DOI : 10.1016/j.apsusc.2011.03.007

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka et al., Nakayama : Developement of ZnS lenses for FIR applications. Sei technical review, pp.48-53, 2009.

J. W. Goodman, Introduction to Fourier Optics, chapitre Appendice B, page 444, Roberts and Company publishers, vol.3, 2005.

E. D. Palik, Handbook of optical constants of solids, page 571, 1991.

E. D. Palik, Handbook of optical constants of solids, 1991.

H. Toyozumi and M. C. , Ashley : Intra-pixel sensitivity variation and charge transfer inefficiency -results of CCD scans, pp.257-266, 2005.

J. D. Bray, L. W. Schumann, and T. S. , Lomhein : Front-side illuminated CMOS spectral pixel response and modulation transfer function characterization : impact of pixel layout details and pixel depletion volume, Proc. SPIE, pp.74050-74051, 2009.

S. E. Reichenbach, S. K. Park, and R. Narayanswamy, Characterizing digital image acquisition devices, Optical Engineering, vol.30, issue.2, pp.170-177, 1991.
DOI : 10.1117/12.55783

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.421.6367

M. Estribeau and P. Magnan, Fast MTF measurement of CMOS imagers at the chip level using ISO 12233 slanted-edge methodology, Sensors, Systems, and Next-Generation Satellites VIII, pp.243-251, 2004.
DOI : 10.1117/12.565503

M. A. Chambliss, J. A. Dawson, and E. J. Borg, <title>Measuring the MTF of undersampled staring IRFPA sensors using 2D discrete Fourier transform</title>, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VI, pp.312-324, 1995.
DOI : 10.1117/12.210058

M. Marchywka and D. G. , Modulation transfer function measurement technique for small-pixel detectors, Applied Optics, vol.31, issue.34, pp.7198-7213, 1992.
DOI : 10.1364/AO.31.007198

J. E. Greivenkamp and A. E. Lowman, Modulation transfer function measurement of sparse-array sensors using a self-calibrating fringe pattern, Applied Optics, vol.33, issue.22, pp.5029-5036, 1994.
DOI : 10.1364/AO.33.005029

R. O. Gappinger, J. E. Greivenkamp, and C. Borman, High-modulation camera for use with a non-null interferometer, Opt. Eng, vol.43, pp.689-696, 2004.

G. Boreman and E. L. Dereniak, Method For Measuring Modulation Transfer Function Of Charge-Coupled Devices Using Laser Speckle, Optical Engineering, vol.25, issue.1, pp.148-150, 1986.
DOI : 10.1117/12.7973792

M. Sensiper, G. D. Boreman, A. D. Ducharme, and D. R. Snyder, Modulation transfer function testing of detector arrays using narrow-band laser speckle, Optical Engineering, vol.32, issue.2, pp.395-400, 1993.
DOI : 10.1117/12.60851

X. Chen, N. George, G. Agranov, C. Liu, and B. Gravelle, Sensor modulation transfer function measurement using band-limited laser speckle, Optics Express, vol.16, issue.24, pp.20047-20059, 2008.
DOI : 10.1364/OE.16.020047

B. T. Teipen and D. L. Macfarlane, Liquid-crystal-display projector-based modulation transfer function measurements of charge-coupled-device video camera systems, Applied Optics, vol.39, issue.4, pp.515-525, 2000.
DOI : 10.1364/AO.39.000515

M. Chambon, J. Primot, and M. Girard, Modulation transfer function assessment for sampled imaging system: application of the Generalized Line Spread Function to a standard infrared camera, Infrared Physics & Technology, vol.37, issue.5, pp.619-626, 1996.
DOI : 10.1016/1350-4495(95)00129-8

D. N. Sitter, J. S. Goddard, and R. K. Ferrell, Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns, Applied Optics, vol.34, issue.4, pp.746-751, 1995.
DOI : 10.1364/AO.34.000746

N. Guérineau, J. Primot, and M. Tauvy, Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target, Applied Optics, vol.38, issue.4, pp.631-637, 1999.
DOI : 10.1364/AO.38.000631

N. Guérineau, J. Primot, and M. Tauvy, Caes : Experimental evaluation of the modulation tranfer function of an infrared focal plane array using the Talbot effect, Proc. SPIE, pp.826-831, 1998.

N. Guérineau and J. Primot, Nondiffracting array generation using an N-wave interferometer, Journal of the Optical Society of America A, vol.16, issue.2, pp.293-298, 1999.
DOI : 10.1364/JOSAA.16.000293

N. Guérineau, B. Harchaoui, J. Primot, S. Guérineau, E. Rommeluère et al., Heggarty : Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings, Primot : New techniques of characterization. C.R. Physique, pp.411-413, 2001.

E. , D. Mambro, N. Guérineau, and J. Primot, Modulation transfer function measurement of an infrared focal plane array using a continuously self-imaging grating, Proc. SPIE, pp.169-178, 2003.

J. Durnin, Exact solutions for nondiffracting beams I The scalar theory, Journal of the Optical Society of America A, vol.4, issue.4, pp.651-654, 1987.
DOI : 10.1364/JOSAA.4.000651

E. Di-mambro, Génération de motifs à haute résolution sans optique : Application à la caractérisation spatiale des détecteurs infrarouge, Thèse de doctorat, 2005.

M. Piponnier, G. Druart, N. Guerineau, J. L. De-bougrenet, and J. Primot, Optimal conditions for using the binary approximation of continuously self-imaging gratings, Optics Express, vol.19, issue.23, pp.23054-23066, 2011.
DOI : 10.1364/OE.19.023054

URL : https://hal.archives-ouvertes.fr/hal-00704230

C. B. Markwardt, Non-linear least-squares fitting in IDL with MPFIT, éditeur : Astronomical Data Analysis Software and Systems XVIII, volume 411 de Astronomical Society of the Pacific Conference Series, p.251, 2009.

J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, Lecture Notes in Mathematics, vol.11, issue.15, pp.105-116, 1978.
DOI : 10.1137/0111030

J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User guide for MINPACK-1. Rapport technique ANL-80-74, Applied Mathematics Division, 1980.

S. C. Park, M. K. Park, and M. G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Processing Magazine, vol.20, issue.3, pp.21-36, 2003.
DOI : 10.1109/MSP.2003.1203207

M. Elad and Y. , A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur, IEEE Transactions on Image Processing, vol.10, issue.8, pp.1187-1193, 2001.
DOI : 10.1109/83.935034

A. Létienne, Super-résolution : développement d'algorithmes rapides et évaluation de performance, Thèse de doctorat, 2010.

Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto et al., Reconstruction of a high-resolution image on a compound-eye image-capturing system, Applied Optics, vol.43, issue.8, pp.1719-1727, 2004.
DOI : 10.1364/AO.43.001719

K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, Image reconstruction for thin observation module by bound optics by using the iterative backprojection method, Applied Optics, vol.45, issue.13, pp.2893-2900, 2006.
DOI : 10.1364/AO.45.002893

K. Choi and T. J. Schulz, Signal-processing approaches for image-resolution restoration for TOMBO imagery, Applied Optics, vol.47, issue.10, pp.104-116, 2008.
DOI : 10.1364/AO.47.00B104

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, TOMBO sensor with scene-independent superresolution processing, Optics Letters, vol.32, issue.19, pp.2855-2857, 2007.
DOI : 10.1364/OL.32.002855

M. W. Haney, Comments on ???Design and characterization of thin multiple aperture infrared cameras???, Applied Optics, vol.50, issue.11, pp.1584-1586, 2011.
DOI : 10.1364/AO.50.001584

D. J. Brady, Reply to ???Comments on multiple aperture cameras???, Applied Optics, vol.50, issue.11, pp.1587-1592, 2011.
DOI : 10.1364/AO.50.001587

E. D. Palik, Handbook of optical constants of solids, 1991.

L. M. Harwood and C. J. Moody, Experimental organic chemistry : Standard and Microscale , page 292, 1989.

M. Born and E. Wolf, Principles of Optics, pp.211-228, 1989.
DOI : 10.1017/CBO9781139644181

M. Piponnier, Etude et développement de tableaux non-diffractants pour la conception de systèmes imageurs avancés, Thèse de doctorat

P. R. Gill, C. Lee, D. G. Lee, A. Wang, and A. Molnar, A microscale camera using direct Fourier-domain scene capture, Optics Letters, vol.36, issue.15, pp.2949-2951, 2011.
DOI : 10.1364/OL.36.002949

R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, Multispectral imaging using compact compound optics, Optics Express, vol.12, issue.8, pp.1643-1655, 2004.
DOI : 10.1364/OPEX.12.001643

J. Minet, Imagerie multispectrale, vers une conception adaptée à la détection de cibles, Thèse de doctorat, 2011.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau et al., Free-standing subwavelength metallic gratings for snapshot multispectral imaging, Applied Physics Letters, vol.96, issue.22, pp.221104-221105, 2010.
DOI : 10.1063/1.3442487

A. Ashok and M. A. , Pseudorandom phase masks for superresolution imaging from subpixel shifting, Applied Optics, vol.46, issue.12, pp.2256-2268, 2007.
DOI : 10.1364/AO.46.002256

S. R. Gottesman, A. Isser, and G. W. Gigioli, Adaptative coded apertures : bridging the gap between non-diffractive and diffractive imaging systems, Proc. SPIE, pp.781805-781806, 2010.

A. Ashok and M. A. , Point spread function engineering for iris recognition system design, Applied Optics, vol.49, issue.10, pp.26-39, 2010.
DOI : 10.1364/AO.49.000B26

J. W. Goodman, Speckle phenomena in optics : theory and applications, chapitre 3, page 29. Roberts and Company publishers, 2007.

P. Refregier, Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency, Optics Letters, vol.16, issue.11, pp.829-831, 1991.
DOI : 10.1364/OL.16.000829