C. Bloquel, C. Trollet, E. Pradines, J. Seguin, D. Scherman et al., Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee, BMC Biotechnology, vol.6, issue.1, p.16, 2006.
DOI : 10.1186/1472-6750-6-16

URL : https://hal.archives-ouvertes.fr/inserm-00081253

K. Rogers, S. Picaud, E. Roncali, R. Boisgard, C. Colasante et al., Non-invasive in vivo imaging of calcium signaling in mice Non-invasive detection of a small number of bioluminescent cancer cells in vivo Tissue oxygen measurements using phosphorescence quenching, Handbook of Biomedical Fluorescence, pp.974-55, 2003.

S. Vinogradov, L. Lo, and W. Jenkins, Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors, Biophysical Journal, vol.70, issue.4, pp.1609-1626, 1996.
DOI : 10.1016/S0006-3495(96)79764-3

I. Dunphy, S. Vinogradov, and D. Wilson, Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence, Analytical Biochemistry, vol.310, issue.2, pp.191-199, 2002.
DOI : 10.1016/S0003-2697(02)00384-6

J. Vilatela and D. Eder, Nanocarbon Composites and Hybrids in Sustainability: A Review, ChemSusChem, vol.20, issue.3, pp.456-78, 2012.
DOI : 10.1002/cssc.201100536

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

Z. Liu, K. Yang, and S. Lee, Single-walled carbon nanotubes in biomedical imaging, J. Mater. Chem., vol.128, issue.3, pp.586-598, 2011.
DOI : 10.1039/C0JM02020F

V. Pansare, S. Hejazi, W. Faenza, and R. Prud-'homme, Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores, and Multifunctional Nano Carriers, Chemistry of Materials, vol.24, issue.5, pp.812-827, 2012.
DOI : 10.1021/cm2028367

P. Cherukuri, C. Gannon, T. Leeuw, H. Schmidt, R. Smalley et al., Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence, Proceedings of the National Academy of Sciences, vol.103, issue.50, pp.18882-18888, 2006.
DOI : 10.1073/pnas.0609265103

K. Welsher, Z. Liu, S. Sherlock, J. Robinson, Z. Chen et al., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nature Nanotechnology, vol.2, issue.11, pp.773-80, 2009.
DOI : 10.1038/nnano.2009.294

C. Lam, J. James, R. Mccluskey, S. Arepalli, and R. Hunter, A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks, Critical Reviews in Toxicology, vol.287, issue.22, pp.189-217, 2006.
DOI : 10.1093/toxsci/kfg228

K. Kostarelos, The long and short of carbon nanotube toxicity, Nature Biotechnology, vol.25, issue.7, pp.774-780, 2008.
DOI : 10.1038/nbt0708-774

Q. Zhao, Z. Zhang, B. Huang, J. Peng, M. Zhang et al., Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite, Chemical Communications, vol.354, issue.41, pp.5116-5118, 2008.
DOI : 10.1039/b812420e

F. Wang, Z. Xie, H. Zhang, C. Liu, and Y. Zhang, Highly Luminescent Organosilane-Functionalized Carbon Dots, Advanced Functional Materials, vol.48, issue.6
DOI : 10.1002/adfm.201002279

Y. Sun, B. Zhou, Y. Lin, W. Wang, K. Fernando et al., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, Journal of the American Chemical Society, vol.128, issue.24, pp.7756-7763, 2006.
DOI : 10.1021/ja062677d

S. Yang, L. Cao, P. Luo, F. Lu, X. Wang et al., Carbon Dots for Optical Imaging in Vivo, Journal of the American Chemical Society, vol.131, issue.32, pp.11308-11317, 2009.
DOI : 10.1021/ja904843x

S. Yu, M. Kang, H. Chang, K. Chen, and Y. Yu, Bright Fluorescent Nanodiamonds:?? No Photobleaching and Low Cytotoxicity, Journal of the American Chemical Society, vol.127, issue.50, pp.17604-17609, 2005.
DOI : 10.1021/ja0567081

L. Brannon-peppas and J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Advanced Drug Delivery Reviews, vol.56, issue.11, pp.1649-1659, 2004.
DOI : 10.1016/j.addr.2004.02.014

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, vol.281, issue.5385, pp.2013-2016, 1998.
DOI : 10.1126/science.281.5385.2013

G. Byk, S. Partouche, A. Weiss, S. Margel, and S. Khandadash, Fully Synthetic Phage-Like System for Screening Mixtures of Small Molecules in Live Cells, Journal of Combinatorial Chemistry, vol.12, issue.3, pp.332-345, 2010.
DOI : 10.1021/cc900156z

J. D. Byrne, T. Betancourt, and L. Brannon-peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Advanced Drug Delivery Reviews, vol.60, issue.15, pp.1615-1626, 2008.
DOI : 10.1016/j.addr.2008.08.005

W. C. Chan and S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, vol.281, issue.5385, pp.1016-1018, 1998.
DOI : 10.1126/science.281.5385.2016

J. V. Frangioni, In vivo near-infrared fluorescence imaging, Current Opinion in Chemical Biology, vol.7, issue.5, pp.626-634, 2003.
DOI : 10.1016/j.cbpa.2003.08.007

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology, vol.13, issue.8, pp.969-976, 2004.
DOI : 10.1006/bbrc.1995.2373

F. Gentile, A. Curcio, C. Indolfi, M. Ferrari, and P. Decuzzi, The margination propensity of spherical particles for vascular targeting in the microcirculation, Journal of Nanobiotechnology, vol.6, issue.1, 2008.
DOI : 10.1186/1477-3155-6-9

R. B. Greenwald, PEG drugs: an overview, Journal of Controlled Release, vol.74, issue.1-3, pp.159-171, 2001.
DOI : 10.1016/S0168-3659(01)00331-5

S. Hong, P. R. Leroueil, I. J. Majaros, B. G. Orr, J. R. Baker et al., The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform, Chemistry & Biology, vol.14, issue.1, pp.107-115, 2007.
DOI : 10.1016/j.chembiol.2006.11.015

J. A. Kamps, H. W. Morselt, and G. L. Scherphof, Uptake of Liposomes Containing Phosphatidylserine by Liver Cellsin Vivoand by Sinusoidal Liver Cells in Primary Culture:In Vivo???in VitroDifferences, Biochemical and Biophysical Research Communications, vol.256, issue.1, pp.57-62, 1999.
DOI : 10.1006/bbrc.1999.0290

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo et al., A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy, Nature Biotechnology, vol.388, issue.5, pp.577-581, 2006.
DOI : 10.1038/nbt1207

Q. Le-masne-de-chermont, C. Chanéac, J. Seguin, F. Pelle, S. Maîtrejean et al., Nanoprobes with near-infrared persistent luminescence for in vivo imaging, Proceedings of the National Academy of Sciences, vol.104, issue.22, pp.9266-9271, 2007.
DOI : 10.1073/pnas.0702427104

Q. Le-masne-de-chermont, C. Richard, J. Seguin, C. Chanéac, M. Bessodes et al., Silicates doped with luminescent ions: useful tools for optical imaging applications, Colloidal Quantum Dots for Biomedical Applications IV, pp.71890-71891, 2009.
DOI : 10.1117/12.819316

G. Longo and I. Szleifer, Ligand???Receptor Interactions in Tethered Polymer Layers, Langmuir, vol.21, issue.24, pp.11342-11351, 2005.
DOI : 10.1021/la051685p

K. Loomis, K. Mcneeley, and R. V. Bellamkonda, Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications, Soft Matter, vol.69, issue.16, pp.839-856, 2011.
DOI : 10.1039/C0SM00534G

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, vol.65, issue.1-2, pp.271-284, 2000.
DOI : 10.1016/S0168-3659(99)00248-5

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes et al., Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice, ACS Nano, vol.5, issue.2, pp.854-862, 2011.
DOI : 10.1021/nn101937h

D. Maysinger, M. Behrendt, M. Lalancette-hebert, and J. Kriz, Real-Time Imaging of Astrocyte Response to Quantum Dots:?? In Vivo Screening Model System for Biocompatibility of Nanoparticles, Nano Letters, vol.7, issue.8, pp.2513-2520, 2007.
DOI : 10.1021/nl071611t

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose et al., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, vivo imaging, and diagnostics, pp.538-544, 2005.
DOI : 10.1126/science.1104274

S. M. Moghimi, C. Hunter, and J. C. Murray, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev, vol.53, pp.283-318, 2001.

V. Ntziachristos, FLUORESCENCE MOLECULAR IMAGING, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.1-33, 2006.
DOI : 10.1146/annurev.bioeng.8.061505.095831

C. Oh, Y. Lee, T. Choi, C. Jon, and S. Oh, Facile synthesis of PEG???silica hybrid particles using one-step sol???gel reaction in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.349, issue.1-3, pp.145-150, 2009.
DOI : 10.1016/j.colsurfa.2009.08.008

A. J. Simnick, C. A. Valencia, R. Liu, and A. Chilkoti, Morphing Low-Affinity Ligands into High-Avidity Nanoparticles by Thermally Triggered Self-Assembly of a Genetically Encoded Polymer, ACS Nano, vol.4, issue.4, pp.2217-2227, 2010.
DOI : 10.1021/nn901732h

G. Shen, A. Horgan, and R. Levicky, Reaction of N-phenyl maleimide with aminosilane monolayers, Colloids and Surfaces B: Biointerfaces, vol.35, issue.1, pp.59-65, 2004.
DOI : 10.1016/j.colsurfb.2004.02.010

J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes, Journal of the American Chemical Society, vol.120, issue.9, pp.1959-1964, 1998.
DOI : 10.1021/ja972332i

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes, Science, vol.289, issue.5485, pp.1757-1760, 2000.
DOI : 10.1126/science.289.5485.1757

R. And, N. 1. Weissleder, R. Pittet, and M. J. , Imaging in the Era of Molecular Oncology, Nature, vol.452, pp.580-589, 2008.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials, vol.45, issue.6, pp.435-446, 2005.
DOI : 10.1126/science.1104274

Z. F. Li and E. Ruckenstein, Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels, Nano Letters, vol.4, issue.8, pp.1463-1467, 2004.
DOI : 10.1021/nl0492436

J. Salonen, A. M. Kaukonen, J. Hirvonen, and V. Lehto, Mesoporous Silicon in Drug Delivery Applications, Journal of Pharmaceutical Sciences, vol.97, issue.2, pp.632-653, 2007.
DOI : 10.1002/jps.20999

W. Chen, U. Mahmood, R. Weissleder, and C. Tung, Arthritis Imaging Using a Near-Infrared Fluorescence Folate-Targeted Probe, Arthritis Research & Therapy, vol.7, issue.2, pp.310-317, 2005.
DOI : 10.1186/ar1483

H. S. Choi, Renal clearance of quantum dots, Nature Biotechnology, vol.361, issue.10, pp.1165-1170, 2007.
DOI : 10.1038/nbt1340

M. Longmire, P. L. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats, Nanomedicine, vol.3, issue.5, pp.703-717, 2008.
DOI : 10.2217/17435889.3.5.703

J. H. Park, L. Gu, G. Von-maltzahn, E. Ruoslahti, S. N. Bhatia et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nature Materials, vol.15, issue.4, pp.331-336, 2009.
DOI : 10.1038/nmat2398

U. Resch-genger, M. Grabolle, S. Cavaliere-jaricot, R. Nitschke, and T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nature Methods, vol.13, issue.9, pp.763-775, 2008.
DOI : 10.1038/nmeth.1248

URL : https://hal.archives-ouvertes.fr/hal-00798911

D. Scherman, Nanoprobes with Near-Infrared Persistent Luminescence for in Vivo Imaging, Proc. Natl. Acad. Sci. U. S.A, vol.104, pp.9266-9271, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00345167

Q. Le-masne-de-chermont, C. Richard, J. Seguin, C. Chan-eac, M. Bessodes et al., Silicates doped with luminescent ions: useful tools for optical imaging applications, Colloidal Quantum Dots for Biomedical Applications IV, pp.71890-71891, 2009.
DOI : 10.1117/12.819316

T. J. Daou, L. Li, P. Reiss, and V. Josserand, Effect of Poly(ethylene glycol) Length on the in Vivo Behavior of Coated Quantum Dots, Langmuir, vol.25, issue.5, pp.3040-3044, 2009.
DOI : 10.1021/la8035083

J. Kim, P. Seidler, L. S. Wan, and C. Fill, Formation, structure, and reactivity of amino-terminated organic films on silicon substrates, Journal of Colloid and Interface Science, vol.329, issue.1, pp.114-119, 2009.
DOI : 10.1016/j.jcis.2008.09.031

R. A. Sperling, T. Liedl, S. Duhr, S. Kudera, M. Zanella et al., Size Determination of (Bio)conjugated Water-Soluble Colloidal Nanoparticles:??? A Comparison of Different Techniques, The Journal of Physical Chemistry C, vol.111, issue.31, pp.11552-11559, 2007.
DOI : 10.1021/jp070999d

C. Fang, B. Shi, Y. Pei, M. H. Hong, J. Wu et al., In vivo tumor targeting of tumor necrosis factor-??-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size, European Journal of Pharmaceutical Sciences, vol.27, issue.1, pp.27-36, 2006.
DOI : 10.1016/j.ejps.2005.08.002

A. Lecointre, B. Viana, Q. Le-masne, A. Bessi-ere, C. Chan-eac et al., Red long-lasting luminescence in clinoenstatite, Journal of Luminescence, vol.129, issue.12, pp.1527-1530, 2009.
DOI : 10.1016/j.jlumin.2009.04.067

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski et al., Role of defect states in persistent luminescence materials, Journal of Alloys and Compounds, vol.374, issue.1-2, pp.56-59, 2004.
DOI : 10.1016/j.jallcom.2003.11.064

R. Kudrawiec, M. Nyk, M. Syperek, A. Podhorodecki, and J. Misiewicz, Photoluminescence from GaN nanopowder: The size effect associated with the surface-to-volume ratio, Applied Physics Letters, vol.88, issue.18
DOI : 10.1063/1.2199489

B. L. Abrams and P. H. Holloway, Role of the Surface in Luminescent Processes, Chemical Reviews, vol.104, issue.12, pp.5783-5801, 2004.
DOI : 10.1021/cr020351r

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey et al., Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles, Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles, pp.699-704, 2010.
DOI : 10.1021/nn901146y

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827663

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, Noninvasive Imaging of Quantum Dots in Mice, Bioconjugate Chemistry, vol.15, issue.1, pp.79-86, 2004.
DOI : 10.1021/bc034153y

R. F. Minchin and D. J. Martin, Minireview: Nanoparticles for Molecular Imaging???An Overview, Endocrinology, vol.151, issue.2, pp.474-481, 2010.
DOI : 10.1210/en.2009-1012

M. L. Schipper, Z. Cheng, S. Lee, L. A. Bentolila, G. Iyer et al., microPET-Based Biodistribution of Quantum Dots in Living Mice, Journal of Nuclear Medicine, vol.48, issue.9, pp.1511-1518, 2007.
DOI : 10.2967/jnumed.107.040071

A. M. Smith, A. M. Duan, S. Mohs, and . Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging???, Advanced Drug Delivery Reviews, vol.60, issue.11, pp.1226-1240, 2008.
DOI : 10.1016/j.addr.2008.03.015

Q. Le-masne-de-chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean et al., Nanoprobes with near-infrared persistent luminescence for in vivo imaging, Proceedings of the National Academy of Sciences, vol.104, issue.22, pp.9266-9271, 2007.
DOI : 10.1073/pnas.0702427104

A. Lecointre, A. Bessiere, B. Viana, and D. Gourier, Red persistent luminescent silicate nanoparticles, Radiation Measurements, vol.45, issue.3-6, pp.3-6, 2010.
DOI : 10.1016/j.radmeas.2010.01.043

A. Lecointre, B. Viana, Q. Le-masne-de-chermont, A. Bessière, C. Chanéac et al., Red long-lasting luminescence in clinoenstatite, Journal of Luminescence, vol.129, issue.12, pp.1527-1530, 2009.
DOI : 10.1016/j.jlumin.2009.04.067

A. Lecointre, A. Bessiere, A. J. Bos, P. Dorenbos, B. Viana et al., (Ln = Nd, Er, Ho, Dy), The Journal of Physical Chemistry C, vol.115, issue.10, pp.4217-4227, 2011.
DOI : 10.1021/jp108038v

A. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, Lanthanide energy levels in YPO4, Radiation Measurements, vol.43, issue.2-6, pp.222-226, 2008.
DOI : 10.1016/j.radmeas.2007.10.042

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes et al., Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice, ACS Nano, vol.5, issue.2, pp.854-862, 2011.
DOI : 10.1021/nn101937h

T. Maldiney, G. Byk, N. Wattier, J. Seguin, R. Khandadash et al., Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability, International Journal of Pharmaceutics, vol.423, issue.1, pp.102-107, 2012.
DOI : 10.1016/j.ijpharm.2011.06.048

URL : https://hal.archives-ouvertes.fr/hal-00767886

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. Le-masne-de-chermont, M. Bessodes et al., In Vitro Targeting of Avidin-Expressing Glioma Cells with Biotinylated Persistent Luminescence Nanoparticles, Bioconjugate Chemistry, vol.23, issue.3, p.10, 1021.
DOI : 10.1021/bc200510z

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes et al., Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging, Journal of the American Chemical Society, vol.133, issue.30, pp.133-11810, 2011.
DOI : 10.1021/ja204504w

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana et al., ZnGa_2O_4:Cr^3+: a new red long-lasting phosphor with high brightness, Optics Express, vol.19, issue.11, pp.10131-10137, 2011.
DOI : 10.1364/OE.19.010131

K. Van-den-eeckhout, P. F. Smet, and D. Poelman, Persistent luminescence in rare-earth codoped, Journal of Luminescence, vol.129, issue.10, pp.1140-1143, 2009.
DOI : 10.1016/j.jlumin.2009.05.007

K. Van-den-eeckhout, P. F. Smet, and D. Poelman, Luminescent Afterglow Behavior in the M2Si5N8: Eu Family (M = Ca, Sr, Ba), Materials, vol.4, issue.12, pp.980-990, 2011.
DOI : 10.3390/ma4060980

P. F. Smet, K. Van-den-eeckhout, A. J. Bos, E. Van-der-kolk, and P. Dorenbos, Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M=Ca, Sr, Ba) persistent phosphors, Journal of Luminescence, vol.132, issue.3, pp.682-689, 2012.
DOI : 10.1016/j.jlumin.2011.10.022

T. Schlieper and W. Schnick, Nitrido-Silicate. I. Hochtemperatur-Synthese und Kristallstruktur von Ca2Si5N8, Zeitschrift f???r anorganische und allgemeine Chemie, vol.1, issue.6, pp.1037-1041, 1995.
DOI : 10.1002/zaac.19956210624

G. Ledoux, D. Amans, C. Dujardin, and K. Masenelli-varlot, Facile and rapid synthesis of highly luminescent nanoparticles via pulsed laser ablation in liquid, Nanotechnology, vol.20, issue.44, p.445605, 2009.
DOI : 10.1088/0957-4484/20/44/445605

URL : https://hal.archives-ouvertes.fr/hal-00384543

A. Hahn, S. Barcikowski, and B. N. Chichkov, Influences on Nanoparticle Production during Pulsed Laser Ablation, Journal of Laser Micro/Nanoengineering, vol.3, issue.2, pp.73-77, 2008.
DOI : 10.2961/jlmn.2008.02.0003

F. Mafuné, J. Ya, Y. Kohno, T. Takeda, H. Kondow et al., Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution, The Journal of Physical Chemistry B, vol.104, issue.39, pp.9111-9117, 2000.
DOI : 10.1021/jp001336y

H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki, Photoluminescence of ZnO Nanoparticles Prepared by Laser Ablation in Different Surfactant Solutions, The Journal of Physical Chemistry B, vol.109, issue.1, pp.120-124, 2005.
DOI : 10.1021/jp046747j

D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput et al., Synthesis of Oxide Nanoparticles by Pulsed Laser Ablation in Liquids Containing a Complexing Molecule: Impact on Size Distributions and Prepared Phases, The Journal of Physical Chemistry C, vol.115, issue.12, pp.5131-5139, 2011.
DOI : 10.1021/jp109387e

L. Yang, P. W. May, L. Yin, R. Brown, and T. B. Scott, Direct Growth of Highly Organized Crystalline Carbon Nitride from Liquid-Phase Pulsed Laser Ablation, Chemistry of Materials, vol.18, issue.21, pp.5058-5064, 2006.
DOI : 10.1021/cm061485e

P. Dorenbos, Energy of the first 4f7???4f65d transition of Eu2+ in inorganic compounds, Journal of Luminescence, vol.104, issue.4, pp.239-260, 2003.
DOI : 10.1016/S0022-2313(03)00078-4

K. Van-den-eeckhout, P. F. Smet, and D. Poelman, Persistent Luminescence in Eu2+-Doped Compounds: A Review, Materials, vol.3, issue.4, pp.2536-2566, 2010.
DOI : 10.3390/ma3042536

B. Mercier, Propriétés de luminescence et effets de confinement dans Gd2O3:Eu, 2005.

V. Buissette, A. Huignard, T. Gacoin, J. P. Boilot, P. Aschehoug et al., Luminescence properties of YVO4:Ln (Ln=Nd, Yb, and Yb???Er) nanoparticles, Surface Science, vol.532, issue.535, pp.532-535, 2003.
DOI : 10.1016/S0039-6028(03)00203-6

D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. , Ion-sensing devices with silicon nitride and borosilicate glass insulators, IEEE Transactions on Electron Devices, vol.34, issue.8, pp.1700-1707, 1987.
DOI : 10.1109/T-ED.1987.23140

J. Kim, P. Seidler, L. S. Wan, and C. Fill, Formation, structure, and reactivity of amino-terminated organic films on silicon substrates, Journal of Colloid and Interface Science, vol.329, issue.1, pp.114-119, 2009.
DOI : 10.1016/j.jcis.2008.09.031

A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: part one???photosensitizers, photochemistry and cellular localization, Photodiagnosis and Photodynamic Therapy, vol.1, issue.4, pp.279-293, 2004.
DOI : 10.1016/S1572-1000(05)00007-4

D. J. Gourier, A. Lumin-lecointre, A. Bessi-ere, B. Viana, D. Gourier et al., Phosphor Handbook, Radiat. Meas. J. Mater. Sci. Boca Raton J. Mater. Chem.. The Physics and Chemistry of the Sol Gel Processing J.; Prahl, S. A. A. J. IEEE J. Quantum Electron, vol.129, issue.26, pp.1527-1530, 1990.

J. H. Park, L. Gu, G. Von-maltzahn, E. Ruoslahti, S. N. Bhatia et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nature Materials, vol.15, issue.4, pp.1-6, 2009.
DOI : 10.1038/nmat2398

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes et al., Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging, Journal of the American Chemical Society, vol.133, issue.30, pp.11810-11815, 2011.
DOI : 10.1021/ja204504w

A. Lecointre, A. Bessière, A. J. Bos, P. Dorenbos, B. Viana et al., (Ln = Nd, Er, Ho, Dy), The Journal of Physical Chemistry C, vol.115, issue.10, pp.4217-4227, 2011.
DOI : 10.1021/jp108038v

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, D. Gourier et al., Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging, Oxide-based Materials and Devices III, p.826318, 2012.
DOI : 10.1117/12.909865

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana et al., ZnGa_2O_4:Cr^3+: a new red long-lasting phosphor with high brightness, Optics Express, vol.19, issue.11, pp.10131-10137, 2011.
DOI : 10.1364/OE.19.010131

Z. 19-pan, Y. Y. Lu, and F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates, Nature Materials, vol.24, issue.1, pp.58-63, 2011.
DOI : 10.1063/1.441677

B. L. Abrams and P. H. Holloway, Role of the Surface in Luminescent Processes, Chemical Reviews, vol.104, issue.12, pp.5783-5802, 2004.
DOI : 10.1021/cr020351r

M. Hirano, M. Imai, and M. Inagaki, Preparation of ZnGa2O4 Spinel Fine Particles by the Hydrothermal Method, Journal of the American Ceramic Society, vol.82, issue.3, pp.977-979, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01310.x

X. Zhang, J. Huang, K. Ding, Y. Hou, X. Wang et al., with a High Surface Area, Environmental Science & Technology, vol.43, issue.15, pp.5947-5951, 2009.
DOI : 10.1021/es900403a

C. D. Walkey, J. B. Olsen, H. Guo, A. Emili, and W. C. Chan, Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake, Journal of the American Chemical Society, vol.134, issue.4, pp.2139-2147, 2012.
DOI : 10.1021/ja2084338

M. L. Schipper, G. Iyer, A. L. Koh, Z. Cheng, Y. Ebenstein et al., Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice, Particle Size , Surface Coating , and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice, pp.126-134, 2009.
DOI : 10.1002/smll.200800003

K. Xiao, Y. Li, J. Luo, J. Lee, X. W. Gonik et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials, vol.32, issue.13, pp.3435-3481, 2011.
DOI : 10.1016/j.biomaterials.2011.01.021

Z. Poon, J. Lee, S. Morton, and P. Hammond, Controlling in Vivo Stability and Biodistribution in Electrostatically Assembled Nanoparticles for Systemic Delivery, Nano Letters, vol.11, issue.5, pp.2096-103, 2011.
DOI : 10.1021/nl200636r

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard et al., In vivo optical imaging with rare earth doped Ca_2Si_5N_8 persistent luminescence nanoparticles, Optical Materials Express, vol.2, issue.3, pp.261-268, 2012.
DOI : 10.1364/OME.2.000261

T. Maldiney, G. Byk, N. Wattier, J. Seguin, R. Khandadash et al., Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability, International Journal of Pharmaceutics, vol.423, issue.1, pp.102-109, 2012.
DOI : 10.1016/j.ijpharm.2011.06.048

URL : https://hal.archives-ouvertes.fr/hal-00767886

T. Maldiney, M. Kaikkonen, J. Seguin, Q. Le-masne-de-chermont, M. Bessodes et al., In Vitro Targeting of Avidin-Expressing Glioma Cells with Biotinylated Persistent Luminescence Nanoparticles, Bioconjugate Chemistry, vol.23, issue.3, pp.472-8580, 2008.
DOI : 10.1021/bc200510z

. Appl and . Instrum, [18] Strategies for increasing the sensitivity of gadolinium based MRI contrast agents, Part B Chem. Soc. Rev, vol.35, pp.512-523, 1991.

J. Karp, S. Hong, O. Farokhzad, R. Margalit, and R. Langer, Surface Modification of Gadolinium Oxide Thin Films and Nanoparticles using Poly(ethylene glycol)-Phosphate Nanocarriers as an emerging platform for cancer therapy, Langmuir Nat Nanotechnol, vol.282, issue.12, pp.774-782751, 2007.

R. Petros and J. Desimone, Strategies in the design of nanoparticles for therapeutic applications, Nature Reviews Drug Discovery, vol.3, issue.8, pp.615-642, 2010.
DOI : 10.1038/nrd2591

S. Kelkar and T. Reineke, Theranostics: Combining Imaging and Therapy, Bioconjugate Chemistry, vol.22, issue.10, pp.1879-903, 2011.
DOI : 10.1021/bc200151q

H. Choi, W. Liu, P. Misra, E. Tanaka, J. Zimmer et al., Renal clearance of quantum dots, Nature Biotechnology, vol.361, issue.10, pp.1165-70, 2007.
DOI : 10.1038/nbt1340

J. Jokerst, T. Lobovkina, R. Zare, and S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine, vol.6, issue.4
DOI : 10.2217/nnm.11.19

R. Jain and T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nature Reviews Clinical Oncology, vol.3, issue.11, pp.653-64, 2010.
DOI : 10.1038/nrclinonc.2010.139

J. Xie, S. Lee, and X. Chen, Nanoparticle-based theranostic agents, Advanced Drug Delivery Reviews, vol.62, issue.11, pp.1064-79, 2010.
DOI : 10.1016/j.addr.2010.07.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988080

J. Kim, H. Kim, N. Lee, T. Kim, H. Kim et al., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery, Angewandte Chemie International Edition, vol.54, issue.44, pp.8438-8479, 2008.
DOI : 10.1002/anie.200802469

J. Lee, N. Lee, T. Kim, J. Kim, and T. Hyeon, Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications, Accounts of Chemical Research, vol.44, issue.10, pp.893-902, 2011.
DOI : 10.1021/ar2000259

T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi et al., Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells, Journal of the American Chemical Society, vol.133, issue.9, pp.2955-61, 2011.
DOI : 10.1021/ja1084095

J. Kim, J. Lee, J. Lee, J. Yu, B. Kim et al., Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals, Journal of the American Chemical Society, vol.128, issue.3, pp.688-697, 2006.
DOI : 10.1021/ja0565875

Z. Xu, Y. Gao, S. Huang, P. Ma, J. Lin et al., A luminescent and mesoporous core-shell structured Gd2O3???:???Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier, Dalton Transactions, vol.22, issue.18, pp.4846-54, 2011.
DOI : 10.1039/c1dt10162e

X. Hu, P. Zrazhevskiy, and X. Gao, Encapsulation of Single Quantum Dots with Mesoporous Silica, Annals of Biomedical Engineering, vol.128, issue.10, pp.1960-1966, 2009.
DOI : 10.1007/s10439-009-9660-y

D. Kryza, J. Taleb, M. Janier, L. Marmuse, I. Miladi et al., Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent, Bioconjugate Chemistry, vol.22, issue.6, pp.1145-52, 2011.
DOI : 10.1021/bc1005976

URL : https://hal.archives-ouvertes.fr/hal-00673880

Z. Xu, C. Li, P. Ma, Z. Hou, D. Yang et al., nanocomposite as a drug carrier, Nanoscale, vol.19, issue.2, pp.661-668, 2011.
DOI : 10.1039/C0NR00695E

Q. Le-masne-de-chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean et al., Nanoprobes with near-infrared persistent luminescence for in vivo imaging, Proceedings of the National Academy of Sciences, vol.104, issue.22
DOI : 10.1073/pnas.0702427104

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard et al., In vivo optical imaging with rare earth doped Ca_2Si_5N_8 persistent luminescence nanoparticles, Optical Materials Express, vol.2, issue.3, pp.261-268, 2012.
DOI : 10.1364/OME.2.000261

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes et al., Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice, ACS Nano, vol.5, issue.2, pp.854-62, 2011.
DOI : 10.1021/nn101937h

S. Herttuala, D. Scherman, and C. Richard, In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles, Bioconjug Chem, vol.23, issue.3, pp.472-480, 2012.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes et al., Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging, Journal of the American Chemical Society, vol.133, issue.30, pp.11810-11815, 2011.
DOI : 10.1021/ja204504w

T. Maldiney, C. Richard, D. Scherman, D. Gourier, B. Viana et al., Nanoparticules excitables in situ pour l'imagerie optique in vivo, l'imagerie multimodale optique-IRM in vivo, et la théranostique, 2012.

S. Wu, Y. Hung, and C. Mou, Mesoporous silica nanoparticles as nanocarriers, Chemical Communications, vol.16, issue.36, pp.9972-85, 2011.
DOI : 10.1039/c1cc11760b

X. Li, J. Zhang, and H. Gu, Adsorption and Desorption Behaviors of DNA with Magnetic Mesoporous Silica Nanoparticles, Langmuir, vol.27, issue.10, pp.6099-106, 2011.
DOI : 10.1021/la104653s

S. Joo, J. Park, C. Tsung, Y. Yamada, P. Yang et al., Thermally stable Pt/mesoporous silica core???shell nanocatalysts for high-temperature reactions, Nature Materials, vol.109, issue.2, pp.126-157, 2009.
DOI : 10.1038/nmat2329

M. Kosmulski, Pristine Points of Zero Charge of Gallium and Indium Oxides, Journal of Colloid and Interface Science, vol.238, issue.1, pp.225-227, 2001.
DOI : 10.1006/jcis.2001.7484

M. Kosmulski, The pH-dependent surface charging and points of zero charge, Journal of Colloid and Interface Science, vol.353, issue.1, pp.1-15, 2011.
DOI : 10.1016/j.jcis.2010.08.023

L. Yuan, Q. Tang, D. Yang, J. Zhang, F. Zhang et al., Preparation of pH-Responsive Mesoporous Silica Nanoparticles and Their Application in Controlled Drug Delivery, The Journal of Physical Chemistry C, vol.115, issue.20, pp.9926-9932, 1920.
DOI : 10.1021/jp201053d

K. L. Nair, S. Jagadeeshan, S. Nair, and G. Kumar, Evaluation of triblock copolymeric micelles of ??- valerolactone and poly (ethylene glycol) as a competent vector for doxorubicin delivery against cancer, Journal of Nanobiotechnology, vol.9, issue.1, p.42, 2011.
DOI : 10.1021/bm049845j

B. Maldiney, M. Doan, D. Bessodes, B. Scherman-ere, D. Viana et al., Cyrille Richard En attente de soumission Controlling aminosilane layer thickness to extend plasma half-life of stealth persistent luminescence nanoparticles in vivo Thomas Maldiney, Michel Bessodes, Daniel Scherman, Cyrille Richard En attente de soumission Persistent nanophosphors activated in vivo for the optical imaging of vascularization , tumors and grafted cells Thomas Maldiney Cyrille Richard Manuscrit en révision, Nature Materials In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles Thomas Maldiney In vivo optical imaging with rare earth doped Ca 2 Si 5 N 8 persistent luminescence nanoparticles Thomas Maldiney Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging Thomas Maldiney, Daniel Scherman Proc. SPIE, pp.472-478, 2012.

T. Maldiney, C. Richard, D. Scherman, B. Auréliebessì-ere, and . Viana, Didier Gourier Déposé le 30 janvier 2012 par le Centre National de la Recherche Scientifique FR1250846 Revues 2012 Persistent luminescence nanoparticles for diagnostics and imaging Thomas Maldiney, Daniel Scherman, Cyrille Richard Invited contribution to the ACS book : Functional Nanoparticles for Bioanalysis, NanoparticulesàNanoparticulesà luminescence persistante excitables in situ pour l'imagerie optique in vivo Nanomedicine and Bioelectronic Devices (2012) Persistent luminescence nanoparticles for bioimaging Cyrille Richard Daniel Scher- man Advances in Bio-Imaging : From Physics to Signal Understanding Issues State-ofthe-Art and Challenges (Advances in Intelligent and Soft Computing) 2012, pp.37-53, 2012.

T. Maldiney, D. Scherman, C. R. Clinibook, E. , P. Of-excellence et al., Articles 2011 Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging Thomas Maldiney, Aurélie Lecointre Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability Thomas Maldiney, Daniel Scherman Journal of the American Chemical Society Daniel Scherman ACS Nano Daniel Scherman International Journal of Pharmaceutics, vol.133, issue.4231, pp.11810-11815, 2006.