.. Et-de-dichroïsme-circulaire, 110 Description des états de la protéine, Calcul des dynamiques d'absorption, p.111

. La-peptone-sert-À-nourrir-les-bactéries, il s'agit de protéines à moitié digérées par des réactions enzymatiques % sont préparés à l'aide de l'appareil à FPLC(Fast protein liquid chromatography). La suspension de membrane est déposée en haut de chaque tube sur environ

. Lors-de-cette-extraction-je-n-'ai-obtenu and . Qu, une bande violette, et aucune bande rouge comme on s'y attend Je suppose que c'est dû à la très longue durée de la culture : toute la membrane s'est convertie en membrane pourpre. On extrait la bande violette avec une seringue puis on rince

J. R. Lakowicz and G. Weber, Quenching of protein uorescence by oxygen. Detection of structural uctuations in proteins on the nanosecond time scale, Biochemistry, issue.21, p.1241719, 1973.

E. Chen, M. J. Wood, A. L. Fink, and D. S. Kliger, Time-resolved circular dichroïsm studies of protein folding intermediates of cytochrome c, Biochemistry, vol.37, p.55895598, 1998.

B. Alberts, A. Johnson, J. Lewis, M. Ra, K. Roberts et al., Molecular biology of the cell, 2002.

C. B. Annsen, Studies on the principles that govern the folding of protein chains, 1972.

K. A. Dill and H. S. Chan, From Levinthal to pathways to funnels, Nature Structural Biology, vol.28, issue.1, p.1019, 1997.
DOI : 10.1073/pnas.93.21.11426

A. Rodger and B. Nordén, Circular dichroism and linear dichroism, 1997.

J. Ph and . Pérez, Optique géométrique, ondulatoire et polarisation, 1991.

S. M. Kelly, T. J. Jess, and N. C. Price, How to study proteins by circular dichroism, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1751, issue.2, p.175111939, 2005.
DOI : 10.1016/j.bbapap.2005.06.005

M. Volk, Fast initiation of peptide and protein folding process, Eur. J. Org. Chem, p.26052621, 2001.

O. Bieri and T. Kiefhaber, Elementary Steps in Protein Folding, Biological Chemistry, vol.380, issue.7-8, p.923929, 1999.
DOI : 10.1515/BC.1999.114

R. H. Callender, R. B. Dyer, R. Gilmanshin, and W. H. Woodru, Fast events in protein folding : the time evolution of primary processes. Annual review of physical chemistry, pp.173-202, 1998.

G. Bruhat, Cours de physique générale, Optique, 1992.

T. Dartigalongue and F. Hache, Precise alignment of a longitudinal Pockels cell for time-resolved circular dichroism experiments, Journal of the Optical Society of America B, vol.20, issue.8, p.1780, 2003.
DOI : 10.1364/JOSAB.20.001780

URL : https://hal.archives-ouvertes.fr/hal-00836929

C. Niezborala, Une nouvelle technique de mesure du dichroïsme circulaire : premiers pas vers l'étude du repliement de polypeptides modèles, 2008.

T. Dartigalongue, Dynamique conformationnelle de la myoglobine suivie par dichroïsme circulaire résolu temporellement, 2005.

C. Niezborala and F. Hache, Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil Compensator, Journal of the Optical Society of America B, vol.23, issue.11, p.24182424, 2006.
DOI : 10.1364/JOSAB.23.002418

URL : https://hal.archives-ouvertes.fr/hal-00824483

S. A. Petty and M. Volk, Fast folding dynamics of an alpha-helical peptide with bulky side chains, Phys. Chem. Chem. Phys, vol.6, issue.5, p.10221030, 2004.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, Ultrafast thermally induced unforlding of RNase A, Proceedings of the National Academy of Sciences of the United States of America, vol.92, p.72927296, 1995.

C. Delsart, Lasers et optique non linéaire, 2008.

W. O. Wray, T. Aida, and R. B. Dyer, Photoacoustic cavitation and heat transfer eects in the laser-induced temperature jump in water, Applied Physics B : Lasers and Optics, vol.74, issue.1, p.5766, 2002.

R. David and . Lide, Handbook of chemistry and physics 90th edition, 2010.

A. K. Covington, M. Paabo, R. A. Robinson, and R. G. Bates, Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water, Analytical Chemistry, vol.40, issue.4, p.700706, 1968.
DOI : 10.1021/ac60260a013

C. Krejtschi and K. Hauser, Stability and folding dynamics of polyglutamic acid, European Biophysics Journal, vol.1651, issue.5, p.673685, 2011.
DOI : 10.1007/s00249-011-0673-8

I. H. Van-stokkum, H. Linsdell, J. M. Hadden, P. I. Haris, D. Chapman et al., Temperature-Induced Changes in Protein Structures Studied by Fourier Transform Infrared Spectroscopy and Global Analysis, Biochemistry, vol.34, issue.33, p.341050810518, 1995.
DOI : 10.1021/bi00033a024

S. Yadav and F. Ahmad, A New Method for the Determination of Stability Parameters of Proteins from Their Heat-Induced Denaturation Curves, Analytical Biochemistry, vol.283, issue.2, p.207213, 2000.
DOI : 10.1006/abio.2000.4641

S. Sharma, Helix-coil transition dynamics of alpha-helical peptides, 2006.

E. A. Gooding, S. Sharma, S. A. Petty, E. A. Fouts, C. J. Palmer et al., pH-dependent helix folding dynamics of poly-glutamic acid, Chemical Physics, vol.422, 2012.
DOI : 10.1016/j.chemphys.2012.11.009

R. A. Robinson, M. Paabo, and R. G. Bates, Deuterium Isotope Eect on the Dissociation of Weak Acids in Water and Deuterium Oxide, Journal of research of the National Bureau of standards -A, vol.73, issue.3, p.299308, 1969.

L. Pauling, The Nature of the Chemical Bond. V, The Journal of Chemical Physics, vol.2, issue.8, 1960.
DOI : 10.1063/1.1749514

A. Soper and C. Benmore, Quantum Dierences between Heavy and Light Water, Physical Review Letters, vol.101, issue.6, 2008.

S. Scheiner and C. Martin, Relative Stability of Hydrogen and Deuterium Bonds, Journal of the American Chemical Society, vol.118, issue.6, p.15111521, 1996.
DOI : 10.1021/ja9530376

C. B. Stanley and H. H. Strey, Osmotically Induced Helix-Coil Transition in Poly(Glutamic Acid), Biophysical Journal, vol.94, issue.11
DOI : 10.1529/biophysj.107.122705

T. Kimura, S. Takahashi, S. Akiyama, T. Uzawa, K. Ishimori et al., -glutamic Acids, Journal of the American Chemical Society, vol.124, issue.39, p.1241159611597, 2002.
DOI : 10.1021/ja026639f

URL : https://hal.archives-ouvertes.fr/in2p3-00509098

D. T. Clarke, A. J. Doig, B. J. Stapley, and G. R. Jones, The alpha-helix folds on the millisecond time scale, Proceedings of the National Academy of Sciences of the United States of America, issue.13, p.9672327237, 1999.

T. Sano and T. Yasunaga, Kinetics of helix-coil transition of polypeptides in solution by the relaxation methods, Biophysical Chemistry, vol.11, issue.3-4, p.377386, 1980.
DOI : 10.1016/0301-4622(80)87011-6

A. Pozo-ramajo, S. A. Petty, and M. Volk, Fast folding dynamics of alpha-helical peptides - Eect of solvent additives and pH, Chemical Physics, vol.323, issue.1, p.1120, 2006.

D. Klimov and D. Thirumalai, Viscosity Dependence of the Folding Rates of Proteins, Physical Review Letters, vol.79, issue.2, p.317320, 1997.
DOI : 10.1103/PhysRevLett.79.317

R. Fernandez-prini, A. H. Harvey, and D. A. Palmer, Aqueous systems at elevated temperatures and pressures, 2004.

M. Holz, X. Mao, D. Seiferling, and A. Sacco, Experimental study of dynamic isotope effects in molecular liquids: Detection of translation???rotation coupling, The Journal of Chemical Physics, vol.104, issue.2, p.669, 1996.
DOI : 10.1063/1.470863

T. E. Meyer, J. A. Kyndt, S. Memmi, T. Moser, B. Colon-acevedo et al., The growing family of photoactive yellow proteins and their presumed functional roles, Photochemical & Photobiological Sciences, vol.2, issue.10, p.14951514, 2012.
DOI : 10.1039/c2pp25090j

L. J. Van-wilderen, M. A. Van-der-horst, I. H. Van-stokkum, K. J. Hellingwerf, R. Van-grondelle et al., Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein, Proceedings of the National Academy of Sciences of the United States of America, p.150505, 2006.
DOI : 10.1073/pnas.0603476103

P. Changenet-barret, A. Espagne, P. Plaza, K. J. Hellingwerf, and M. M. Martin, Investigations of the primary events in a bacterial photoreceptor for photomotility : photoactive yellow protein (PYP), New J. Chem, vol.29, issue.4, p.527534, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00124281

P. Changenet-barret, P. Plaza, M. M. Martin, H. Chosrowjan, S. Taniguchi et al., Role of arginine 52 on the primary photoinduced events in the PYP photocycle, Chemical Physics Letters, vol.434, issue.4-6, pp.4-6320325, 2007.
DOI : 10.1016/j.cplett.2006.12.027

URL : https://hal.archives-ouvertes.fr/hal-00126210

D. S. Larsen, I. H. Van-stokkum, M. Vengris, M. A. Van-der-horst, F. L. De-weerd et al., Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy, Biophysical Journal, vol.87, issue.3, pp.1858-1872, 2004.
DOI : 10.1529/biophysj.104.043794

B. Borucki, H. Otto, T. E. Meyer, M. A. Cusanovich, and M. P. Heyn, ??? ??* Transition of the Carbonyl, The Journal of Physical Chemistry B, vol.109, issue.1, p.62933, 2005.
DOI : 10.1021/jp046515k

P. Changenet-barret, P. Plaza, M. M. Martin, H. Chosrowjan, S. Taniguchi et al., Structural Eects on the Ultrafast Photoisomerization of Photoactive Yellow Protein. Transient Absorption Spectroscopy of Two Point Mutants, The Journal of Physical Chemistry C, vol.113, p.1160511613, 2009.

D. A. Lightner and J. E. Gurst, Organic conformal analysis and stereochemistry from circular dichroism spectroscopy, 2000.

G. Groenhof, M. Bouxin-cademartory, B. Hess, S. P. De-visser, H. J. Berendsen et al., Photoactivation of the Photoactive Yellow Protein:?? Why Photon Absorption Triggers a Trans-to-Cis Isomerization of the Chromophore in the Protein, Journal of the American Chemical Society, vol.126, issue.13, p.12642284233, 2004.
DOI : 10.1021/ja039557f

F. Schotte, H. S. Cho, V. R. Kaila, H. Kamikubo, N. Dashdorj et al., Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography, Proceedings of the National Academy of Sciences of the United States of America, p.1925619261, 2012.
DOI : 10.1073/pnas.1210938109

C. P. Joshi, B. Borucki, H. Otto, T. E. Meyer, M. A. Cusanovich et al., Photoreversal kinetics of the I1 and I2 intermediates in the photocycle of photoactive yellow protein by double ash experiments with variable time delay, Biochemistry, issue.2, p.44656665, 2005.

K. Bryl, Visual and archael rhodopsins : similarities, dierences and controversy. cellular and molecular biology letters, p.285296, 2003.

I. Provencio, I. R. Rodriguez, and G. Jiang, A novel human opsin in the inner retina, The journal of Neuroscience, vol.15, p.600605, 2000.

S. Nuttall, C. Bath, M. Pfeier, F. Santos, J. Eichler et al., The Halohandbook, 2008.

A. Colonna, Polarisation ultrarapide et mouvements vibrationnels dans la bactériorhodopsine étudiés par spectroscopie cohérente d'émission infrarouge, 2005.

W. Kuhlbrandt, Bacteriorhodopsin -the movie, Nature, vol.406, 2000.

R. Herderson and P. N. Unwin, Three-dimentional model of purple membrane obtained by electron microscopy, Nature, vol.257, p.2832, 1975.

R. Neutze, E. Pebay-peyroula, K. Edman, A. Royant, J. Navarro et al., Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1565, issue.2, p.1565144167, 2002.
DOI : 10.1016/S0005-2736(02)00566-7

J. W. Petrich, J. Breton, J. L. Martin, and A. Antonetti, Femtosecond absorption spectroscopy of light-adapted and dark-adapted bacteriorhodopsin, Chemical Physics Letters, vol.137, issue.4, p.369375, 1987.
DOI : 10.1016/0009-2614(87)80902-8

S. P. Balashov, Protonation reactions and their coupling in bacteriorhodopsin, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1460, issue.1, p.7594, 2000.
DOI : 10.1016/S0005-2728(00)00131-6

S. P. Balashov, R. Govindjee, M. Kono, and E. Lukashov, Arg82ala mutant of bacteriorhodopsin expressed in H. halobium : drastic decrease in the rate of proton release and eect on dark adaptation, Structures and functions of retinal proteins, p.111114, 1992.

E. Nachliel, M. Gutman, J. Tittor, and D. Oesterhelt, Proton Transfer Dynamics on the Surface of the Late M State of Bacteriorhodopsin, Biophysical Journal, vol.83, issue.1, p.416426, 2002.
DOI : 10.1016/S0006-3495(02)75179-5

B. Hessling, J. Herbst, R. Rammelsberg, and K. Gerwert, Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition, Biophysical Journal, vol.73, issue.4, pp.2071-2080, 1997.
DOI : 10.1016/S0006-3495(97)78237-7

H. Sass, G. Buldt, R. Gessenich, D. Hehn, D. Ne et al., Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin, Nature, vol.406, p.649653, 2000.

H. Okazaki, C. Chang, T. Akaike, O. Oshida, and T. Yasukawa, Biological signicance of the trans-cis isomerization of retinal in proton transfer processes of bacteriorhodopsin, Structures and functions of retinal proteins, p.123126, 1992.

S. Subramaniam, M. Lindahl, P. Bullough, R. Faruqi, J. Tittor et al., Protein conformational changes in the bacteriorhodopsin photocycle, Journal of Molecular Biology, vol.287, issue.1, p.145161, 1999.
DOI : 10.1006/jmbi.1999.2589

S. Subramaniam and R. Henderson, Crystallographic analysis of protein conformational changes in the bacteriorhodopsin photocycle, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1460, issue.1, p.15765, 2000.
DOI : 10.1016/S0005-2728(00)00136-5

J. Czéagéa and L. Reinisch, Photodestruction of bacteriorhodopsin, Photochemistry and Photobiology, vol.53, issue.5, p.659666, 1991.

D. Oesterhelt and W. Stoeckenius, [69] Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, Methods in enzymology, vol.31, p.667678, 1974.
DOI : 10.1016/0076-6879(74)31072-5