A. Antkowiak, N. Bremond, L. Dizès, S. Villermaux, and E. , Short-term dynamics of a density interface following an impact, Journal of Fluid Mechanics, vol.577, p.241, 2007.
DOI : 10.1017/S0022112007005058

URL : https://hal.archives-ouvertes.fr/hal-00126025

J. Aristoff, The influence of aerodynamic pressure on the water-entry cavities formed by high-speed projectiles, Proceedings of the 7th International Symposium on Cavitation, 2009.

J. M. Aristoff and J. W. Bush, Water entry of small hydrophobic spheres, Journal of Fluid Mechanics, vol.34, issue.1, pp.45-78, 2009.
DOI : 10.1146/annurev.fluid.38.050304.092157

J. M. Aristoff, T. T. Truscott, A. H. Techet, and J. W. Bush, The water-entry cavity formed by low Bond number impacts, Physics of Fluids, vol.20, issue.9, p.91111, 2008.
DOI : 10.1063/1.2973662

J. M. Aristoff, T. T. Truscott, A. H. Techet, and J. W. Bush, The water entry of decelerating spheres, Physics of Fluids, vol.22, issue.3, p.32102, 2010.
DOI : 10.1063/1.3309454

R. Bergmann, D. Van-der-meer, S. Gekle, A. Van-der-bos, and D. Lohse, Controlled impact of a disk on a water surface: cavity dynamics, Journal of Fluid Mechanics, vol.42, p.381, 2010.
DOI : 10.1017/S0022112008004382

A. Bisighini, G. E. Cossali, C. Tropea, and I. V. Roisman, Crater evolution after the impact of a drop onto a semi-infinite liquid target, Physical Review E, vol.82, issue.3, p.36319, 2010.
DOI : 10.1103/PhysRevE.82.036319

C. Duez, C. Ybert, C. Clanet, and L. Bocquet, Making a splash with water repellency, Nature Physics, vol.12, issue.3, pp.180-183, 2007.
DOI : 10.1209/epl/i2005-10068-4

O. G. Engel, Crater Depth in Fluid Impacts, Journal of Applied Physics, vol.37, issue.4, pp.1798-1808, 1966.
DOI : 10.1063/1.1708605

O. G. Engel, Initial Pressure, Initial Flow Velocity, and the Time Dependence of Crater Depth in Fluid Impacts, Journal of Applied Physics, vol.38, issue.10, pp.3935-3940, 1967.
DOI : 10.1063/1.1709044

O. R. Enriquez, I. R. Peters, S. Gekle, L. E. Schmidt, D. Lohse et al., Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water, Journal of Fluid Mechanics, vol.701, pp.40-58, 2012.
DOI : 10.1103/PhysRevE.80.036305

O. R. Enriquez, I. R. Peters, S. Gekle, L. E. Schmidt, M. Versluis et al., Collapse of nonaxisymmetric cavities, Collapse of nonaxisymmetric cavities, p.91104, 2010.
DOI : 10.1063/1.3481432.1

S. Gekle and . Gordillo, Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation, Journal of Fluid Mechanics, vol.663, pp.293-330
DOI : 10.1017/S0022112093002654

S. Gekle, J. M. Gordillo, D. Van-der-meer, and D. Lohse, High-Speed Jet Formation after Solid Object Impact, Physical Review Letters, vol.102, issue.3, p.34502, 2009.
DOI : 10.1103/PhysRevLett.102.034502

URL : http://arxiv.org/abs/0809.4344

J. Glasheen and . Mcmahon, A hydrodynamic model of locomotion in the Basilisk Lizard, Nature, vol.380, issue.6572, pp.340-342
DOI : 10.1038/380340a0

J. &. Gordillo and S. Gekle, Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets, Journal of Fluid Mechanics, vol.53, pp.331-346, 2010.
DOI : 10.1147/rd.311.0096

L. J. Leng, Splash formation by spherical drops, Journal of Fluid Mechanics, vol.427, issue.1, pp.73-105, 2001.
DOI : 10.1017/S0022112000002500

´. E. Lorenceau, D. Quéré, J. Y. Ollitrault, and C. Clanet, Gravitational oscillations of a liquid column in a pipe, Physics of Fluids, vol.14, issue.6, 1985.
DOI : 10.1063/1.1476670

URL : https://hal.archives-ouvertes.fr/hal-01123705

W. Macklin and . Metaxas, Splashing of drops on liquid layers, Journal of Applied Physics, vol.47, issue.9, pp.3963-3970
DOI : 10.1063/1.323218

A. May, Vertical Entry of Missiles into Water, Journal of Applied Physics, vol.23, issue.12, pp.1362-1372
DOI : 10.1063/1.1702076

A. May, Water entry and the cavity-running behavior of missiles, 1975.

T. &. Séon and . Antkowiak, Arnaud 2012 Large bubble rupture sparks fast liquid jet, Phys. Rev. Lett, vol.109, 14501.

R. Seymour, . Hetz, and K. Stefan, The diving bell and the spider: the physical gill of Argyroneta aquatica, Journal of Experimental Biology, vol.214, issue.13, pp.2175-2181, 2011.
DOI : 10.1242/jeb.056093

G. Taylor, The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.201, issue.1065, pp.175-186, 1065.
DOI : 10.1098/rspa.1950.0050

A. Benusiglio, D. Quéré, and C. Clanet, Surface explosion cavities, 2013.

A. Benusiglio, T. Leweke, D. Quéré, C. Clanet, W. Sternberg et al., Interaction of a vortex ring with surfaces, en prépa- ration 3 Wave drag on a submerged sphere, en préparation Calculated flow and energy distribution following underwater detonation of a pentolite sphere, Physics of Fluids, vol.14, issue.1, p.1869, 1971.

E. Klaseboer, K. C. Hung, C. Wang, C. W. Wang, B. C. Khoo et al., Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure, Journal of Fluid Mechanics, vol.537, issue.-1, pp.537387-413, 2005.
DOI : 10.1017/S0022112005005306

Z. Aman, Z. Weixing, W. S. , and F. Linhan, Dynamic response of the noncontact underwater explosions on naval equipment. Marine Structures, pp.396-411, 2011.

G. Zilman and T. Miloh, Radar backscatter of a v-like ship wake from a sea surface covered by surfactants, Proceedings of the Twenty-First Symposium on Naval Hydrodynamics, pp.235-248, 1997.

D. Bradley, . Culver, L. Di, and . Bjorno, Acoustic qualities of ship wakes, Acta Acustica united with Acustica, vol.88, issue.5, pp.687-690, 2002.

S. Vagle and H. Burch, Acoustic measurements of the sound-speed profile in the bubbly wake formed by a small motor boat, The Journal of the Acoustical Society of America, vol.117, issue.1, p.153, 2005.
DOI : 10.1121/1.1819502

F. Caillé, Sillages de bulles des navires de surfaces

L. Kelvin, On the waves produced by a single impulse in water of any depth, or in a dispersive medium, Proceedings of the Royal Society of London. Series A, vol.42, pp.80-83, 1887.

E. Raphaël and P. Gennes, Capillary gravity waves caused by a moving disturbance: Wave resistance, Physical Review E, vol.53, issue.4, p.3448, 1996.
DOI : 10.1103/PhysRevE.53.3448

A. M. Worthington and R. S. Cole, Impact with a Liquid Surface Studied by the Aid of Instantaneous Photography. Paper II, Containing Papers of a Mathematical or Physical Character, pp.175-199, 1900.
DOI : 10.1098/rsta.1900.0016

A. M. Worthington, A study of splashes. Longmans, Green, and Co, 1908.

C. Duez, C. Ybert, C. Clanet, and L. Bocquet, Making a splash with water repellency, Nature Physics, vol.12, issue.3, pp.180-183, 2007.
DOI : 10.1209/epl/i2005-10068-4

A. May, Vertical Entry of Missiles into Water, Journal of Applied Physics, vol.23, issue.12, pp.1362-1372, 1952.
DOI : 10.1063/1.1702076

A. May, Water entry and the cavity-running behavior of missiles, 1975.

J. W. Glasheen and T. A. Mcmahon, A hydrodynamic model of locomotion in the Basilisk Lizard, Nature, vol.380, issue.6572, pp.340-342, 1996.
DOI : 10.1038/380340a0

R. S. Seymour and S. K. Hetz, The diving bell and the spider: the physical gill of Argyroneta aquatica, Journal of Experimental Biology, vol.214, issue.13, pp.2175-2181, 2011.
DOI : 10.1242/jeb.056093

V. Duclaux, F. Caillé, C. Duez, C. Ybert, L. Bocquet et al., Dynamics of transient cavities, Journal of Fluid Mechanics, vol.XXXIV, issue.1, pp.1-19, 2007.
DOI : 10.1103/PhysRevLett.93.198003

URL : https://hal.archives-ouvertes.fr/hal-00453628

J. M. Aristoff and J. W. Bush, Water entry of small hydrophobic spheres, Journal of Fluid Mechanics, vol.34, issue.1, pp.45-78, 2009.
DOI : 10.1146/annurev.fluid.38.050304.092157

A. L. Goff, D. Quéré, and C. Clanet, Viscous cavities, Phys. Fluids, p.2013
URL : https://hal.archives-ouvertes.fr/hal-00996496

S. Gekle, J. M. Gordillo, D. Van-der-meer, and D. Lohse, High-speed jet formation after solid object impact. Physical review letters, p.34502, 2009.
DOI : 10.1007/978-3-642-01273-0_78

URL : http://arxiv.org/abs/0809.4344

S. Gekle and J. M. Gordillo, Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation, Journal of Fluid Mechanics, vol.663, pp.293-330, 2010.
DOI : 10.1017/S0022112093002654

J. M. Gordillo and S. Gekle, Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets, Journal of Fluid Mechanics, vol.53, pp.331-346, 2010.
DOI : 10.1147/rd.311.0096

J. Aristoff, The influence of aerodynamic pressure on the water-entry cavities formed by high-speed projectiles, Proceedings of the 7th International Symposium on Cavitation, 2009.

J. M. Aristoff, T. T. Truscott, A. H. Techet, and J. W. Bush, The water-entry cavity formed by low Bond number impacts, Physics of Fluids, vol.20, issue.9, p.91111, 2008.
DOI : 10.1063/1.2973662

R. Bergmann, D. Van-der-meer, S. Gekle, A. Van-der-bos, and D. Lohse, Controlled impact of a disk on a water surface: cavity dynamics, Journal of Fluid Mechanics, vol.42, p.381, 2010.
DOI : 10.1017/S0022112008004382

O. R. Enriquez, I. R. Peters, S. Gekle, L. E. Schmidt, M. Versluis et al., Collapse of nonaxisymmetric cavities, Physics of Fluids, vol.22, issue.9, p.91104, 2010.
DOI : 10.1063/1.3481432.1

O. R. Enriquez, I. R. Peters, S. Gekle, L. E. Schmidt, D. Lohse et al., Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water, Journal of Fluid Mechanics, vol.701, pp.40-58, 2012.
DOI : 10.1103/PhysRevE.80.036305

D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. Van-der-meer et al., Impact on soft sand : Void collapse and jet formation. Physical review letters, p.93, 2004.
DOI : 10.1103/physrevlett.93.198003

URL : http://purl.utwente.nl/publications/49050

S. T. Thoroddsen, A. Q. Shen, and G. Taylor, Granular jets The formation of a blast wave by a very intense explosion. ii. the atomic explosion of 1945, Physics of Fluids Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.13, issue.4, pp.201175-186, 1065.

O. G. Engel, Crater Depth in Fluid Impacts, Journal of Applied Physics, vol.37, issue.4, pp.1798-1808, 1966.
DOI : 10.1063/1.1708605

O. G. Engel, Initial Pressure, Initial Flow Velocity, and the Time Dependence of Crater Depth in Fluid Impacts, Journal of Applied Physics, vol.38, issue.10, pp.3935-3940, 1967.
DOI : 10.1063/1.1709044

A. Bisighini, G. E. Cossali, C. Tropea, and I. V. Roisman, Crater evolution after the impact of a drop onto a semi-infinite liquid target, Physical Review E, vol.82, issue.3, p.36319, 2010.
DOI : 10.1103/PhysRevE.82.036319

V. R. Oberbeck, Application of high explosion cratering data to planetary problems, Impact and Explosion Cratering : Planetary and Terrestrial Implications, pp.45-65, 1977.

A. Walsh, K. E. Holloway, P. Habdas, and J. R. De-bruyn, Morphology and scaling of impact craters in granular media. Physical review letters, p.91104301, 2003.

H. J. Melosh, A schematic model of crater modification by gravity, Journal of Geophysical Research: Solid Earth, vol.165, issue.B1, pp.371-380, 1982.
DOI : 10.1029/JB087iB01p00371

J. M. Aristoff, T. T. Truscott, A. H. Techet, and J. W. Bush, The water entry of decelerating spheres, Physics of Fluids, vol.22, issue.3, p.32102, 2010.
DOI : 10.1063/1.3309454

É. Lorenceau, D. Quéré, J. Y. Ollitrault, and C. Clanet, Gravitational oscillations of a liquid column in a pipe, Physics of Fluids, vol.14, issue.6, 1985.
DOI : 10.1063/1.1476670

URL : https://hal.archives-ouvertes.fr/hal-01123705

A. Antkowiak, N. Bremond, S. Le-dizès, and E. Villermaux, Short-term dynamics of a density interface following an impact, Journal of Fluid Mechanics, vol.577, p.241, 2007.
DOI : 10.1017/S0022112007005058

URL : https://hal.archives-ouvertes.fr/hal-00126025

T. Séon and A. Antkowiak, Large Bubble Rupture Sparks Fast Liquid Jet, Physical Review Letters, vol.109, issue.1, p.14501, 2012.
DOI : 10.1103/PhysRevLett.109.014501

I. R. Peters, Y. Tagawa, N. Oudalov, C. Sun, A. Prosperetti et al., Highly focused supersonic microjets: numerical simulations, Journal of Fluid Mechanics, vol.2, 2012.
DOI : 10.1017/S0022112093003015

URL : http://arxiv.org/abs/1203.5029

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. Van-der-meer et al., Highly Focused Supersonic Microjets, Physical Review X, vol.2, issue.3, 2011.
DOI : 10.1103/PhysRevX.2.031002

URL : http://doi.org/10.1103/physrevx.2.031002

S. Taneda, Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers, Journal of the Physical Society of Japan, vol.11, issue.10, pp.1104-1108, 1956.
DOI : 10.1143/JPSJ.11.1104

S. Taneda, Visualization of Separating Stokes Flows, Journal of the Physical Society of Japan, vol.46, issue.6, pp.1935-1942, 1979.
DOI : 10.1143/JPSJ.46.1935

É. Guyon, J. P. Hulin, and L. Petit, Hydrodynamique physique, EDP SCIENCES, 2001.

P. G. Saffman, Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, 1992.

T. Leweke and C. H. Williamson, Cooperative elliptic instability of a vortex pair, Journal of Fluid Mechanics, vol.360, issue.1, pp.85-119, 1998.
DOI : 10.1017/S0022112097008331

A. Emerson and D. , Modes of Motion : Or, Mechanical Conceptions of Physical Phenomena, p.1897

J. J. Allen and B. Auvity, Interaction of a vortex ring with a piston vortex, Journal of Fluid Mechanics, vol.465, pp.353-378, 2002.
DOI : 10.1017/S0022112002001118

P. Meunier and T. Leweke, Analysis and treatment of errors due to high velocity gradients in particle image velocimetry, Experiments in Fluids, vol.35, issue.5, pp.408-421, 2003.
DOI : 10.1007/s00348-003-0673-2

URL : https://hal.archives-ouvertes.fr/hal-00014834

P. Meunier and T. Leweke, Elliptic instability of a co-rotating vortex pair, Journal of Fluid Mechanics, vol.533, pp.125-160, 2005.
DOI : 10.1017/S0022112005004325

URL : https://hal.archives-ouvertes.fr/hal-00326257

R. Levy, D. Uminsky, A. Park, and J. Calambokidis, A theory for the hydrodynamic origin of whale flukeprints, International Journal of Non-Linear Mechanics, vol.46, issue.4, pp.616-626, 2011.
DOI : 10.1016/j.ijnonlinmec.2010.12.009

R. L. Panton, Overview of the self-sustaining mechanisms of wall turbulence, Progress in Aerospace Sciences, pp.341-383, 2001.

H. Helmholtz and . Lxiii, on integrals of the hydrodynamical equations, which express vortex-motion, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.33, issue.226, pp.485-512, 1867.

C. C. Chu, C. T. Wang, C. C. Chang, R. Y. Chang, and W. T. Chang, Head-on collision of two coaxial vortex rings: experiment and computation, Journal of Fluid Mechanics, vol.225, issue.-1, pp.39-72, 1995.
DOI : 10.1143/JPSJ.53.2263

J. K. Harvey and F. J. Perry, Flowfield produced by trailing vortices in the vicinity of the ground, AIAA Journal, vol.9, issue.8, p.1659, 1971.
DOI : 10.2514/3.6415

J. D. Walker, C. Smith, A. W. Cerra, and T. Doligalski, The impact of a vortex ring on a wall, Journal of Fluid Mechanics, vol.42, issue.-1, pp.99-140, 1987.
DOI : 10.1016/0021-9991(80)90040-6

P. Orlandi, Vortex dipole rebound from a wall Physics of Fluids A : Fluid Dynamics, p.1429, 1990.

S. Ohring and H. J. Lugt, Interaction of a viscous vortex pair with a free surface, Journal of Fluid Mechanics, vol.20, issue.-1, pp.47-70, 1991.
DOI : 000__S0022112089000935

W. Kramer, H. J. Clercx, and G. J. Van-heijst, Vorticity dynamics of a dipole colliding with a no-slip wall, Physics of Fluids, vol.19, issue.12, p.126603, 2007.
DOI : 10.1063/1.2814345

S. Alben, Interactions between vortices and flexible walls, International Journal of Non-Linear Mechanics, vol.46, issue.4, pp.586-591, 2011.
DOI : 10.1016/j.ijnonlinmec.2010.12.011

L. P. Bernal, A. Hirsa, J. T. Kwon, and W. W. Willmarth, On the interaction of vortex rings and pairs with a free surface for varying amounts of surface active agent, Physics of Fluids A: Fluid Dynamics, vol.1, issue.12, 1989.
DOI : 10.1063/1.857472

M. Song, L. P. Bernal, and G. Tryggvason, Head???on collision of a large vortex ring with a free surface, Physics of Fluids A: Fluid Dynamics, vol.4, issue.7, p.1457, 1992.
DOI : 10.1063/1.858420

J. A. Luton, S. A. Ragab, J. G. Fogg74-]-p, T. G. Archer, G. N. Thomas et al., The three-dimensional interaction of a vortex pair with a wall Vortex pair instabilities in ground effect The instability of a vortex ring impinging on a free surface, Physics of Fluids Journal of Fluid Mechanics, vol.9, issue.642, p.296779, 1997.

D. M. Harris and C. H. Williamson, A short wave instability caused by the approach of a vortex pair to a ground plane, Physics of Fluids, vol.22, issue.9, 2010.
DOI : 10.1063/1.3483215

D. M. Harris and C. H. Williamson, Instability of secondary vortices generated by a vortex pair in ground effect, Journal of Fluid Mechanics, vol.5, p.148, 2012.
DOI : 10.1017/S002211207400190X

T. Leweke, M. C. Thompson, and K. Hourigan, Instability of the flow around an impacting sphere, Journal of Fluids and Structures, vol.22, issue.6-7, pp.961-971, 2006.
DOI : 10.1016/j.jfluidstructs.2006.05.002

S. E. Widnall and J. Sullivan, On the Stability of Vortex Rings, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.332, issue.1590, pp.335-353, 1590.
DOI : 10.1098/rspa.1973.0029

P. G. Saffman, The number of waves on unstable vortex rings, Journal of Fluid Mechanics, vol.66, issue.04, pp.625-639, 1978.
DOI : 10.1007/BF00534755

S. E. Widnall, D. B. Bliss, and C. Y. Tsai, The instability of short waves on a vortex ring, Journal of Fluid Mechanics, vol.8, issue.01, pp.35-47, 1974.
DOI : 10.1017/S0022112074000048

S. E. Widnall and C. Y. Tsai, The Instability of the Thin Vortex Ring of Constant Vorticity, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.287, issue.1344, pp.273-305, 1344.
DOI : 10.1098/rsta.1977.0146

C. Eloy and S. L. Dizès, Three-dimensional instability of Burgers and Lamb???Oseen vortices in a strain field, Journal of Fluid Mechanics, vol.378, issue.1, pp.145-166, 1999.
DOI : 10.1017/S0022112098003103

URL : https://hal.archives-ouvertes.fr/hal-00021309

D. Fabre, Instabilités et instationnarités dans les tourbillons : Application aux sillages d'avion, 2002.

J. K. Walters and J. F. Davidson, The initial motion of a gas bubble formed in an inviscid liquid, Journal of Fluid Mechanics, vol.34, issue.03, pp.321-336, 1963.
DOI : 10.1017/S0022112063001373

T. J. Pedley, The toroidal bubble, Journal of Fluid Mechanics, vol.175, issue.01, p.97, 1968.
DOI : 10.1017/S0022112068000601

J. S. Turner and J. S. Turner, Buoyant Vortex Rings, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.239, issue.1216, pp.61-75, 1216.
DOI : 10.1098/rspa.1957.0022

T. S. Lundgren and N. N. Mansour, Vortex ring bubbles, Journal of Fluid Mechanics, vol.200, issue.-1, pp.177-196, 1991.
DOI : 10.1017/S0022112088003076

H. Lamb and . Hydrodynamics, Article, pp.440-442, 1932.

D. J. Acheson, Elementary Fluid Dynamics, The Journal of the Acoustical Society of America, vol.89, issue.6, 1990.
DOI : 10.1121/1.400751

G. B. Whitham, Linear and nonlinear waves, 1974.
DOI : 10.1002/9781118032954

M. Rabaud and F. Moisy, Ship Wakes: Kelvin or Mach Angle?, Physical Review Letters, vol.110, issue.21, 2013.
DOI : 10.1103/PhysRevLett.110.214503

URL : http://arxiv.org/abs/1304.2653

T. H. Havelock, Some Cases of Wave Motion due to a Submerged Obstacle, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.93, issue.654, pp.520-532, 1917.
DOI : 10.1098/rspa.1917.0036

R. B. Chapman, Hydrodynamic Drag of Semisubmerged Ships, Journal of Basic Engineering, vol.94, issue.4, p.879, 1972.
DOI : 10.1115/1.3425581

N. F. Hughes, The wave-drag hypothesis: an explanation for size-based lateral segregation during the upstream migration of salmonids, Canadian Journal of Fisheries and Aquatic Sciences, vol.61, issue.1, pp.103-109, 2004.
DOI : 10.1139/f03-144

P. W. Webb, D. Sims, and W. W. Schultz, The effects of an air/water surface on the fast-start performance of rainbow trout (oncorhynchus mykiss), Journal of experimental biology, vol.155, issue.1, pp.219-226, 1991.

R. Vennell, D. Pease, and B. Wilson, Wave drag on human swimmers, Journal of Biomechanics, vol.39, issue.4, pp.664-671, 2006.
DOI : 10.1016/j.jbiomech.2005.01.023

B. Prezelin, The Naval Institute Guide to Combat Fleets of the World, 1995.

T. Burghelea and V. Steinberg, Onset of wave drag due to generation of capillarygravity waves by a moving object as a critical phenomenon. Physical review letters, pp.2557-2560, 2001.

F. Chevy and E. , Capillary gravity waves: A ???fixed-depth" analysis, Europhysics Letters (EPL), vol.61, issue.6, p.61796, 2003.
DOI : 10.1209/epl/i2003-00304-5

URL : https://hal.archives-ouvertes.fr/hal-00148463

D. Richard and É. , Capillary-gravity waves: The effect of viscosity on the wave resistance, Europhysics Letters (EPL), vol.48, issue.1, p.49, 1999.
DOI : 10.1209/epl/i1999-00112-5

M. L. Merrer, C. Clanet, D. Quéré, and F. Chevy, Wave drag on floating bodies, Proceedings of the National Academy of Sciences, pp.15064-15068, 2011.
DOI : 10.1073/pnas.1106662108

URL : https://hal.archives-ouvertes.fr/hal-00998005

T. Havelock, The Wave Resistance of a Spheroid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.131, issue.817, pp.275-285, 1931.
DOI : 10.1098/rspa.1931.0052

R. L. Flemmer and C. L. Banks, On the drag coefficient of a sphere, Powder Technology, vol.48, issue.3, pp.217-221, 1986.
DOI : 10.1016/0032-5910(86)80044-4

A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans, Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry, Applied Optics, vol.48, issue.2, pp.380-392, 2009.
DOI : 10.1364/AO.48.000380

P. J. Cobelli, A. Maurel, V. Pagneux, and P. Petitjeans, Global measurement of water waves by Fourier transform profilometry, Experiments in Fluids, vol.67, issue.9, pp.1037-1047, 2009.
DOI : 10.1007/s00348-009-0611-z

G. K. Batchelor, Compression waves in a suspension of gas bubbles in liquid, Fluid Dyn. Trans, vol.4, pp.425-445, 1969.

B. Qian and Z. Shen, Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates, Langmuir, vol.21, issue.20, pp.9007-9009, 2005.
DOI : 10.1021/la051308c

A. Sohankar, C. Norberg, and L. Davidson, Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, International Journal for Numerical Methods in Fluids, vol.89, issue.1, pp.39-56, 1998.
DOI : 10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P

C. H. Williamson, Defining a universal and continuous Strouhal???Reynolds number relationship for the laminar vortex shedding of a circular cylinder, Physics of Fluids, vol.31, issue.10, pp.312742-2744, 1988.
DOI : 10.1063/1.866978

C. H. Williamson, Vortex dynamics in the cylinder wake. Annual review of fluid mechanics, pp.477-539, 1996.

P. Meunier, Etude Expérimentale de Deux Tourbillons Corotatifs

J. T. Evans, Pneumatic and Similar Breakwaters, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.231, issue.1187, pp.457-466, 1187.
DOI : 10.1098/rspa.1955.0187

G. I. Taylor, The Action of a Surface Current Used as a Breakwater, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.231, issue.1187, pp.231466-478, 1187.
DOI : 10.1098/rspa.1955.0188