S. Abbasi, P. J. Carreau, A. Derdouri, and M. Moan, Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate, Rheologica Acta, vol.44, issue.4, pp.943-959, 2009.
DOI : 10.1007/s00397-009-0375-7

S. Abbasi, P. J. Carreau, and A. Derdouri, Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties, Polymer, vol.51, issue.4, pp.922-935, 2010.
DOI : 10.1016/j.polymer.2009.12.041

S. Abbasi, A. Derdouri, and P. J. Carreau, Properties of microinjection molding of polymer multiwalled carbon nanotube conducting composites, Polymer Engineering & Science, vol.46, issue.5, pp.992-1003, 2011.
DOI : 10.1002/pen.21904

M. Abdel-goad and P. Pötschke, Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites, Journal of Non-Newtonian Fluid Mechanics, vol.128, issue.1, pp.2-6, 2005.
DOI : 10.1016/j.jnnfm.2005.01.008

A. Hocine, N. Médéric, P. Aubry, and T. , Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure, Polymer Testing, vol.27, issue.3, pp.330-339, 2008.
DOI : 10.1016/j.polymertesting.2007.12.002

URL : https://hal.archives-ouvertes.fr/hal-00400543

I. Alig, S. M. Dudkin, W. Jenninger, and M. Marzantowicz, Ac conductivity and dielectric permittivity of poly(ethylene glycol) during crystallization: Percolation picture, Polymer, vol.47, issue.5, pp.1722-1731, 2006.
DOI : 10.1016/j.polymer.2005.12.026

A. , I. Lellinger, D. Dudkin, S. M. Pötschke, and P. , Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: Recovery after shear and crystallization, Polymer, vol.48, pp.1020-1029, 2007.

A. , I. Skipa-t, M. Engel, D. Lellinger, S. Pegel et al., Electrical conductivity recovery in carbon nanotube-polymer composites after transient shear, Phys. Stat. Sol. (b), vol.244, pp.4223-4226, 2007.

A. , I. Lellinger, D. Engel, M. Skipa, T. Pötschke et al., Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments, Polymer, vol.49, pp.1902-1909, 2008.

A. , I. Skipa, T. Lellinger, D. Bierdel, M. Meyer et al., Dynamic percolation of carbon nanotube agglomerates in a polymer matrix: comparison of different model approaches, Phys. Stat. Sol. (b), vol.245, pp.2264-2267, 2008.

A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Composites Science and Technology, vol.62, issue.15, 1993.
DOI : 10.1016/S0266-3538(02)00129-X

URL : https://hal.archives-ouvertes.fr/hal-00411072

I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation, Physical Review B, vol.30, issue.7, pp.3933-3943, 1984.
DOI : 10.1103/PhysRevB.30.3933

I. Balberg, A comprehensive picture of the electrical phenomena in carbon black???polymer composites, Carbon, vol.40, issue.2, pp.139-143, 2002.
DOI : 10.1016/S0008-6223(01)00164-6

S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, DC and AC Conductivity of Carbon Nanotubes???Polyepoxy Composites, Macromolecules, vol.36, issue.14, pp.5178-5194, 2003.
DOI : 10.1021/ma021263b

URL : https://hal.archives-ouvertes.fr/hal-00920407

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, pp.787-792, 2002.
DOI : 10.1126/science.1060928

W. Bauhofer and J. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology, vol.69, issue.10, pp.1486-1498, 2009.
DOI : 10.1016/j.compscitech.2008.06.018

W. Bauhofer, S. C. Schultz, A. E. Eken, T. Skipa, D. Lellinger et al., Shear-controlled electrical conductivity of carbon nanotubes networks suspended in low and high molecular weight liquids, Polymer, vol.51, issue.22, pp.5024-5027, 2010.
DOI : 10.1016/j.polymer.2010.09.013

R. S. Bay and I. C. Tucker, Fiber orientation in simple injection moldings. Part II: Experimental results, Polymer Composites, vol.10, issue.4, pp.332-341, 1992.
DOI : 10.1002/pc.750130410

A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson et al., Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite, Polymer, pp.2373-2377, 2003.

A. R. Bhattacharyya, P. Pötschke, M. Abdel-goad, and D. Fischer, Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites, Chemical Physics Letters, vol.392, issue.1-3, pp.28-33, 2004.
DOI : 10.1016/j.cplett.2004.05.045

A. R. Bhattacharyya, S. Bose, A. R. Kulkarni, P. Pötschke, L. Häußler et al., Styrene maleic anhydride copolymer mediated dispersion of single wall carbon nanotubes in polyamide 12: Crystallization behavior and morphology, Journal of Applied Polymer Science, vol.14, issue.1, pp.345-353, 2007.
DOI : 10.1002/app.26680

L. Bokobza, Mechanical, electrical and spectroscopic investigations of carbon nanotube-reinforced elastomers, Vibrational Spectroscopy, vol.51, issue.1, pp.52-59, 2009.
DOI : 10.1016/j.vibspec.2008.10.001

S. Bose, A. R. Bhattacharyya, A. R. Kulkarni, and P. Pötschke, Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrilebutadiene-styrene with multiwall carbon nanotubes prepared by melt blending

C. R. Bowen and D. P. Almond, Modelling the 'universal' dielectric response in heterogeneous materials using microstructural electrical networks, Materials Science and Technology, vol.27, issue.6, pp.719-724, 2006.
DOI : 10.1063/1.333315

S. R. Broadbent and J. M. Hammersley, Percolation processes, Mathematical Proceedings of the Cambridge Philosophical Society, vol.16, issue.03, pp.629-641, 1957.
DOI : 10.1017/S0305004100032680

A. C. Brosse, Dispersion des nanotubes de carbone à l'aide de copolymères triblocs dans des matrices en polyamide : Relation morphologie-propriétés électriques, Thèse de doctorat, 2009.

A. Bunde and W. Dieterich, Percolation in composites, Journal of Electroceramics, vol.5, issue.2, pp.81-92, 2000.
DOI : 10.1023/A:1009997800513

C. H. Minu, M. L. Kumar, and S. , Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile, Polymer, vol.47, pp.3494-3504, 2006.

R. Chávez-medellín, L. A. Sanchez-de-almeida-prado, and K. Schulte, Polyamide-12/Functionalized Carbon Nanofiber Composites: Evaluation of Thermal and Mechanical Properties, Macromolecular Materials and Engineering, vol.36, issue.4, pp.397-405, 2010.
DOI : 10.1002/mame.200900316

O. Chauvet, J. M. Benoit, and B. Corraze, Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes, Carbon, vol.42, issue.5-6, pp.949-952, 2004.
DOI : 10.1016/j.carbon.2003.12.020

R. J. Crowson, M. J. Folkes, and P. F. Bright, Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement, Polymer Engineering and Science, vol.2, issue.14, pp.925-933, 1980.
DOI : 10.1002/pen.760201403

F. Dalmas, R. Dendievel, L. Chazeau, J. Y. Cavaillé, and C. Gauthier, Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks, Acta Materialia, vol.54, issue.11, pp.2923-2931, 2006.
DOI : 10.1016/j.actamat.2006.02.028

URL : https://hal.archives-ouvertes.fr/hal-00436177

B. Dan, G. C. Irvin, and M. Pasquali, Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films, ACS Nano, vol.3, issue.4, pp.835-843, 2009.
DOI : 10.1021/nn8008307

D. Gennes and P. G. , La percolation : un concept unificateur, La Recherche, vol.7, pp.921-926, 1976.

A. De-la-vega, J. Z. Kovacs, W. Bauhofer, and K. Schulte, Combined Raman and dielectric spectroscopy on the curing behaviour and stress build up of carbon nanotube???epoxy composites, Composites Science and Technology, vol.69, issue.10, pp.1540-1546, 2009.
DOI : 10.1016/j.compscitech.2008.09.015

H. Deng-1, T. Skipa, R. Zhang, D. Lellinger, E. Bilotti et al., Effect of melting and crystallization on the conductive network in conductive polymer composites, Polymer, vol.50, issue.15, pp.3747-3754, 2009.
DOI : 10.1016/j.polymer.2009.05.016

H. Deng-2, R. Zhang, E. Bilotti, J. Loos, and T. Peijis, Conductive polymer tape containing highly oriented carbon nanofillers, Journal of Applied Polymer Science, vol.102, issue.2, pp.742-751, 2009.
DOI : 10.1002/app.29624

D. Dray, P. Gilormini, and G. Régnier, Comparison of several closure approximations for evaluating the thermoelastic properties of an injection molded short-fiber composite, Composites Science and Technology, vol.67, issue.7-8, pp.1601-1610, 2007.
DOI : 10.1016/j.compscitech.2006.07.008

URL : https://hal.archives-ouvertes.fr/hal-00771348

M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon nanotubes : Synthesis, structure, properties, and applications, 2001.

M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hernández, Electronic, thermal and mechanical properties of carbon nanotubes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1823, pp.2065-2098, 2004.
DOI : 10.1098/rsta.2004.1430

M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, vol.409, issue.2, pp.47-99, 2005.
DOI : 10.1016/j.physrep.2004.10.006

F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer et al., Nanotube Networks in Polymer Nanocomposites:?? Rheology and Electrical Conductivity, Nanotube networks in polymer nanocomposites : rheology and electrical conductivity, pp.9048-9055, 2004.
DOI : 10.1021/ma049164g

F. Du, J. E. Fischer, and K. I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Physical Review B, vol.72, issue.12, pp.121404-121405, 2005.
DOI : 10.1103/PhysRevB.72.121404

J. C. Dyre and T. B. Schrøder, Universality of ac conduction in disordered solids, Reviews of Modern Physics, vol.72, issue.3, pp.873-892, 2000.
DOI : 10.1103/RevModPhys.72.873

E. Bounia, N. E. Piccione, and P. M. , Experimental investigation of the rheological and electrical properties of poly(vinylidene fluoride) composites based on carbon black and carbon nanotubes synergy, J. Polym. Eng, vol.28, pp.141-154, 2008.

M. Endo, T. Hayashi, A. Kim, Y. Terrones, M. Dresselhaus et al., Applications of carbon nanotubes in the twenty-first century, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1823, pp.2223-2238, 2004.
DOI : 10.1098/rsta.2004.1437

F. J. Calleja, Alternating-current electrical properties of graphite, carbon black and carbon fibers polymeric composites, Comp. Sci. Tech, vol.61, pp.903-909, 2001.

D. Fischer, P. Pötschke, H. Brünig, and A. Janke, Investigation of the Orientation in Composite Fibers of Polycarbonate with Multiwalled Carbon Nanotubes by Raman Microscopy, Macromolecular Symposia, vol.40, issue.1, pp.167-172, 2005.
DOI : 10.1002/masy.200551156

M. D. Frogley, Q. Zhao, and H. D. Wagner, Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain, Physical Review B, vol.65, issue.11, pp.113413-113414, 2002.
DOI : 10.1103/PhysRevB.65.113413

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, Effects of nanofiller loading on the molecular motion and carrier transport in polyamide, IEEE Transactions on Dielectrics and Electrical Insulation, vol.16, issue.2, pp.524-530, 2009.
DOI : 10.1109/TDEI.2009.4815188

M. Ganz, Extremely Economical Micro Parts, Kunststoffe International, pp.99-101, 2010.

G. Gao, T. Ça?in, and I. W. Goddard, Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology, vol.9, issue.3, pp.184-191, 1998.
DOI : 10.1088/0957-4484/9/3/007

M. C. García-gutiérrez, A. Nogales, D. R. Rueda, C. Domingo, J. V. García-ramos et al., X-ray microdiffraction and micro-Raman study on an injection moulding SWCNT-polymer nanocomposite, Composites Science and Technology, vol.67, issue.5, pp.798-805, 2007.
DOI : 10.1016/j.compscitech.2006.01.039

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, pp.183-191, 2007.
DOI : 10.1142/9789814287005_0002

F. H. Gojny and K. Schulte, Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Composites Science and Technology, vol.64, issue.15, pp.2303-2308, 2004.
DOI : 10.1016/j.compscitech.2004.01.024

H. H. Gommans, J. W. Allredge, H. Tashiro, J. Park, J. Magnuson et al., Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy, Journal of Applied Physics, vol.88, issue.5, pp.2509-2514, 2000.
DOI : 10.1063/1.1287128

N. Grossiord, J. Loos, L. Van-laake, M. Maugey, C. Zakri et al., High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers, Advanced Functional Materials, vol.1, issue.4, pp.3226-3234, 2008.
DOI : 10.1002/adfm.200800528

URL : https://hal.archives-ouvertes.fr/hal-00680353

M. Gupta and K. K. Wang, Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results, Polymer Composites, vol.22, issue.5, pp.367-382, 1993.
DOI : 10.1002/pc.750140503

R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, and K. I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chemical Physics Letters, vol.330, issue.3-4, pp.219-225, 2000.
DOI : 10.1016/S0009-2614(00)01013-7

P. J. Harris, Carbon nanotube composites, International Materials Reviews, vol.34, issue.1, pp.31-43, 2004.
DOI : 10.1016/S0008-6223(03)00110-6

E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Elastic properties of C and B x C y N z composites nanotubes, Phys. Rev. Lett, vol.20, pp.4502-4505, 1998.

J. Hwang, H. H. Gommans, A. Ugawa, H. Tashiro, R. Haggenmueller et al., Polarized spectroscopy of aligned single-wall carbon nanotubes, Physical Review B, vol.62, issue.20, pp.310-313, 2000.
DOI : 10.1103/PhysRevB.62.R13310

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

K. Inaba, K. Saida, P. Ghosh, K. Matsubara, M. Subramanian et al., Determination of Young???s modulus of carbon nanofiber probes fabricated by the argon ion bombardment of carbon coated silicon cantilever, Carbon, vol.49, issue.13, pp.4191-4196, 2011.
DOI : 10.1016/j.carbon.2011.05.051

A. K. Jonscher, A new understanding of the dielectric relaxation of solids, Journal of Materials Science, vol.41, issue.8, pp.2037-2060, 1981.
DOI : 10.1007/BF00542364

T. S. Jose, E. Lievana, and J. Karger-kocsis, Morphology and mechanical properties of polyamide 12 blends with styrene/ethylene-butylene/styrene rubbers with and without maleation, Journal of Applied Polymer Science, vol.26, issue.6, pp.1376-1387, 2005.
DOI : 10.1002/app.21362

S. Jose, S. Thomas, P. Thomas, S. Karger-kocsis, and J. , Thermal and crystallisation behaviours of blends of polyamide 12 with styrene???ethylene/butylene???styrene rubbers, Polymer, vol.47, issue.18, pp.6328-6336, 2006.
DOI : 10.1016/j.polymer.2006.07.002

M. V. Jose, B. W. Steinert, V. Thomas, D. R. Dean, M. A. Abdalla et al., Morphology and mechanical properties of Nylon 6/MWNT nanofibers, Polymer, pp.1096-1104, 2007.

A. B. Kaiser, Heterogeneous model for conduction in carbon nanotubes, Physical Review B, vol.57, issue.3, pp.1418-1421, 1998.
DOI : 10.1103/PhysRevB.57.1418

A. M. Keszler, A. L. Nemes, and X. Fang, Characterisation of carbon nanotube materials by raman spectroscopy and microscopy-A case study of multiwalled and singlewalled samples, J. Optoelec. Adv. Mater, vol.6, pp.1269-1274, 2004.

P. Kim, L. Shi, . Majumdar, and P. L. Mceuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, vol.87, issue.21, pp.215502-215503, 2001.
DOI : 10.1103/PhysRevLett.87.215502

S. H. Kim, B. G. Min, S. C. Lee, S. B. Park, T. D. Lee et al., Morphology and properties of polyacrylonitrile/single wall carbon nanotube composites films, Fibers & Polym, pp.198-203, 2004.

S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics, vol.45, issue.4, pp.574-588, 1973.
DOI : 10.1103/RevModPhys.45.574

A. Kis and A. Zettl, Nanomechanics of carbon nanotubes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.296, issue.5569, pp.1591-1611, 2008.
DOI : 10.1126/science.1066996

L. Labarthet, F. Buffeteau, T. Sourisseau, and C. , Orientation Distribution Functions in Uniaxial Systems Centered Perpendicularly to a Constraint Direction, Applied Spectroscopy, vol.54, issue.5, pp.699-705, 2000.
DOI : 10.1366/0003702001949951

M. Leboeuf, N. Ghamri, B. Brulé, T. Coupez, and B. Vergnes, Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black, Rheologica Acta, vol.39, issue.2, pp.201-212, 2008.
DOI : 10.1007/s00397-007-0232-5

URL : https://hal.archives-ouvertes.fr/hal-00509547

S. H. Lee, M. W. Kim, S. H. Kim, and J. R. Youn, Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips, European Polymer Journal, vol.44, issue.6
DOI : 10.1016/j.eurpolymj.2008.03.017

D. Lellinger, D. Xu, A. Ohneiser, T. Skipa, and I. Alig, Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites, physica status solidi (b), vol.37, issue.10, pp.2268-2271, 2008.
DOI : 10.1002/pssb.200879619

D. Lellinger, T. Skipa, and W. Böhm, Spatial decorrelation of the conductive nanotube network in a polymer melt, physica status solidi (b), vol.438, issue.11-12, pp.2667-2670, 2009.
DOI : 10.1002/pssb.200982303

Q. Li, Y. Li, X. Zhang, S. B. Chikkannanavar, Y. Zhao et al., Structure-Dependent Electrical Properties of Carbon Nanotube Fibers, Advanced Materials, vol.6, issue.20, pp.3358-3363, 2007.
DOI : 10.1002/adma.200602966

B. Lin, U. Sundararaj, and P. Pötschke, Melt Mixing of Polycarbonate with Multi-Walled Carbon Nanotubes in Miniature Mixers, Macromolecular Materials and Engineering, vol.44, issue.3, pp.227-238, 2006.
DOI : 10.1002/mame.200500335

T. Liu and S. Kumar, Quantitative characterization of SWNT orientation by polarized Raman spectroscopy, Chemical Physics Letters, vol.378, issue.3-4, pp.257-262, 2003.
DOI : 10.1016/S0009-2614(03)01287-9

E. Logakis, P. Ch, V. Peoglos, P. Pissis, J. Pionteck et al., Electrical, dielectric properties and conduction mechanism in melt polyamide/multi-walled carbon nanotubes composites, Polymer, pp.5103-5111, 2009.

E. Logakis, P. Pissis, D. Pospriech, A. Korwitz, B. Krause et al., Low electrical percolation threshold in poly(ethylene terephthalate)/multi-walled carbon nanotube nanocomposites, European Polymer Journal, vol.46, issue.5, pp.928-936, 2010.
DOI : 10.1016/j.eurpolymj.2010.01.023

C. Lu and Y. W. Mai, Anomalous electrical conductivity and percolation in carbon nanotube composites, Journal of Materials Science, vol.47, issue.17, pp.6012-6015, 2008.
DOI : 10.1007/s10853-008-2917-2

A. W. Ma and M. R. Mackley, The microstructure and rheology of carbon nanotube suspensions, International Journal of Material Forming, vol.87, issue.2, pp.75-81, 2008.
DOI : 10.1007/s12289-008-0375-7

URL : https://hal.archives-ouvertes.fr/hal-01007548

J. E. Mark, Polymer Data Handbook, 1999.

J. Martin, Etude par spectroscopie Raman du polypropylène isotactique au cours de sa déformation uniaxiale, Thèse de doctorat, 2009.

C. Mcclory, P. Pötschke, and T. Mcnally, Influence of Screw Speed on Electrical and Rheological Percolation of Melt-Mixed High-Impact Polystyrene/MWCNT Nanocomposites, Macromolecular Materials and Engineering, vol.44, issue.1, pp.59-69, 2011.
DOI : 10.1002/mame.201000220

O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer et al., Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer, pp.739-748, 2004.

R. Mendoza, Morphologies induites dans les pièces en polyoléfines moulées par injection, Thèse de doctorat, Ecole Nationale Supérieure d'Arts et Métiers, 2005.

C. Mnekbi, M. Vincent, and J. F. Agassant, Polymer rheology at high shear rate for microinjection moulding, International Journal of Material Forming, vol.3, issue.S1, pp.539-542, 2010.
DOI : 10.1007/s12289-010-0826-9

URL : https://hal.archives-ouvertes.fr/hal-00572536

G. T. Mohanraj, C. T. Chakraborty, A. Khastgir, and D. , Measurement of AC conductivity and dielectric properties of flexible conductive styrene???butadiene rubber-carbon black composites, Journal of Applied Polymer Science, vol.124, issue.2, pp.986-995, 2007.
DOI : 10.1002/app.25561

P. Molinié, Comment modéliser un isolant en électrostatique? Approche classiques et modernes d'un problème complexe, 5 ème Congrès de la Société Française d'Electrostatique, 2006.

A. Noll and T. Burkhart, Morphological characterization and modelling of electrical conductivity of multi-walled carbon nanotube/poly(p-phenylene sulfide) nanocomposites obtained by twin screw extrusion, Composites Science and Technology, vol.71, issue.4, pp.499-505, 2011.
DOI : 10.1016/j.compscitech.2010.12.026

URL : https://hal.archives-ouvertes.fr/hal-00723643

S. Pegel, P. Pötschke, G. Petzold, I. Alig, S. M. Dudkin et al., Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts, Polymer, pp.974-984, 2008.

S. Pegel, P. Pötschke, T. Villmow, D. Stoyan, and G. Heinrich, Spatial statistics of carbon nanotube polymer composites, Polymer, vol.50, issue.9, pp.2123-2132, 2009.
DOI : 10.1016/j.polymer.2009.02.030

C. Perrot, P. M. Piccione, C. Zakri, P. Gaillard, and P. Poulin, Influence of the spinning conditions on the structure and properties of polyamide 12/carbon nanotube composite fibers, Journal of Applied Polymer Science, vol.318, issue.6
DOI : 10.1002/app.30875

URL : https://hal.archives-ouvertes.fr/hal-00420074

P. Pötschke, T. D. Fornes, and D. R. Paul, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, vol.43, issue.11, pp.3247-3255, 2002.
DOI : 10.1016/S0032-3861(02)00151-9

P. Pötschke, S. M. Dudkin, and I. Alig, Dielectric spectroscopy on melt processed polycarbonate???multiwalled carbon nanotube composites, Polymer, vol.44, issue.17, pp.5023-5030, 2003.
DOI : 10.1016/S0032-3861(03)00451-8

P. , P. Abdel-goad, M. Alig, I. Dudkin, S. Lellinger et al., Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites, Polymer, vol.45, pp.8863-8870, 2004.

P. , P. Bhattacharyya, A. R. Janke, and A. , Melt mixing of polycarbonate with mulltiwalled carbon nanotubes: microscopic studies on the state of dispersion, Eur. Polym. J, vol.40, pp.137-148, 2004.

P. Pötschke, H. Brünig, A. Janke, D. Fischer, and D. Jehnichen, Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning, Polymer, vol.46, issue.23, pp.10355-10363, 2005.
DOI : 10.1016/j.polymer.2005.07.106

P. Poulin, B. Vigolo, and P. Launois, Films and fibers of oriented single wall nanotubes, Carbon, vol.40, issue.10, pp.40-1741, 2002.
DOI : 10.1016/S0008-6223(02)00042-8

K. Prashantha, J. Soulestin, M. F. Lacrampe, P. Krawczak, G. Dupin et al., Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties, Composites Science and Technology, vol.69, issue.11-12, pp.1756-1763, 2009.
DOI : 10.1016/j.compscitech.2008.10.005

S. Rhee and J. L. White, Crystal structure and morphology of biaxially oriented polyamide 12 films, Journal of Polymer Science Part B: Polymer Physics, vol.260, issue.19, pp.1189-1200, 2002.
DOI : 10.1002/polb.10181

S. Richter, M. Saphiannikova, D. Jehnichen, M. Bierdel, and G. Heinrich, Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts, Express Polymer Letters, vol.3, issue.12, pp.753-768, 2009.
DOI : 10.3144/expresspolymlett.2009.94

P. F. Rios, A. Ophir, R. Kenig, I. Zonder, and R. Popovitz-biro, Impact of injection-molding processing parameters on the electrical, mechanical, and thermal properties of thermoplastic/carbon nanotube nanocomposites, Journal of Applied Polymer Science, vol.47, issue.1, pp.70-78, 2011.
DOI : 10.1002/app.32983

M. E. Rousseau, T. Lefèvre, L. Beaulieu, T. Asakura, and M. Pézolet, Study of Protein Conformation and Orientation in Silkworm and Spider Silk Fibers Using Raman Microspectroscopy, Biomacromolecules, vol.5, issue.6, pp.2247-2257, 2004.
DOI : 10.1021/bm049717v

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, pp.2201-2206, 1992.
DOI : 10.1063/1.107080

J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró et al., Mechanical properties of carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, pp.255-260, 1999.
DOI : 10.1007/s003390050999

J. Sandler, M. S. Shaffer, T. Prasse, W. Bauhofer, K. Schulte et al., Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, pp.5967-5971, 1999.

J. K. Sandler, S. Pegel, M. Cadek, F. Gojny, M. Van-es et al., A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres, Polymer, vol.45, issue.6, pp.2001-2015, 2004.
DOI : 10.1016/j.polymer.2004.01.023

B. K. Satapathy, R. Weidish, P. Pötschke, and A. Janke, Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites, Composites Science and Technology, vol.67, issue.5, pp.867-879, 2007.
DOI : 10.1016/j.compscitech.2006.01.036

M. S. Shaffer and A. H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, Advanced Materials, vol.11, issue.11, pp.937-941, 1999.
DOI : 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9

C. A. Silva, J. C. Viana, W. J. Ferrie, W. J. Van-hattum, and A. M. Cunha, Fiber orientation in injection molding with rotating flow, Polymer Engineering & Science, vol.20, issue.2, pp.395-404, 2008.
DOI : 10.1002/pen.20685

T. Skipa, D. Lellinger, M. Saphiannikova, and I. Alig, Shear-stimulated formation of multi-wall carbon nanotube networks in polymer melts, physica status solidi (b), vol.45, issue.11-12, pp.2453-2456, 2009.
DOI : 10.1002/pssb.200982265

T. Skipa, D. Lellinger, W. Böhm, M. Saphiannikova, and I. Alig, Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates, Polymer, vol.51, issue.1, pp.201-210, 2010.
DOI : 10.1016/j.polymer.2009.11.047

J. Slumfeth, C. Androher, X. Schulte, and K. , Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black, J. Mater. Sci, vol.44, pp.3241-3247, 2009.

R. Socher, B. Krause, R. Boldt, S. Hermasch, R. Wursche et al., Melt mixed nano composites of PA12 with MWNTs: Influence of MWNT and matrix properties on macrodispersion and electrical properties, Composites Science and Technology, vol.71, issue.3, pp.306-314, 2011.
DOI : 10.1016/j.compscitech.2010.11.015

Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube???polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, vol.35, issue.3, pp.357-401, 2010.
DOI : 10.1016/j.progpolymsci.2009.09.003

D. Stauffer and A. Aharony, An Introduction to Percolation Theory, 1985.

G. Sun, G. Chen, Z. Liu, and M. Chen, Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites, Carbon, vol.48, issue.5, pp.1434-1440, 2010.
DOI : 10.1016/j.carbon.2009.12.037

M. Tanaka and R. J. Young, Review Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers, Journal of Materials Science, vol.27, issue.3, pp.963-991, 2006.
DOI : 10.1007/s10853-006-6595-7

E. Thostenson, Z. Ren, and T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol.61, issue.13, pp.1899-1912, 2001.
DOI : 10.1016/S0266-3538(01)00094-X

L. Vaisman, B. Larin, I. Davidi, E. Wachtel, G. Marom et al., Processing and characterization of extruded drawn MWNT-PAN composite filaments, Composites Part A: Applied Science and Manufacturing, vol.38, issue.5, pp.1354-1362, 2007.
DOI : 10.1016/j.compositesa.2006.10.005

M. Van-gurp, The use of rotation matrices in the mathematical description of molecular orientations in polymers, Colloid and Polymer Science, vol.14, issue.7, pp.607-625, 1995.
DOI : 10.1007/BF00652253

T. Villmow, S. Pegel, P. Pötschke, and U. Wagenknecht, Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes, Composites Science and Technology, vol.68, issue.3-4, pp.777-789, 2008.
DOI : 10.1016/j.compscitech.2007.08.031

M. Vincent, T. Giroud, A. Clarke, and C. Eberhardt, Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics, Polymer, vol.46, issue.17, pp.6719-6725, 2005.
DOI : 10.1016/j.polymer.2005.05.026

URL : https://hal.archives-ouvertes.fr/hal-00530704

M. Wang, W. Wang, T. Liu, and W. D. Zhang, Melt rheological properties of nylon 6/multi-walled carbon nanotube composites, Composites Science and Technology, vol.68, issue.12, pp.2498-2502, 2008.
DOI : 10.1016/j.compscitech.2008.05.002

I. M. Ward, Structure and properties of oriented polymers, Second Edition, 1997.

B. Q. Wei, R. Vajtai, and P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.1172-1174, 2001.
DOI : 10.1063/1.1396632

J. R. Wood, Q. Zhao, and H. D. Wagner, Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Composites Part A: Applied Science and Manufacturing, vol.32, issue.3-4, pp.391-399, 2001.
DOI : 10.1016/S1359-835X(00)00105-6

G. Wu, S. Asai, M. Sumita, T. Hattori, R. Higuchi et al., Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements, Colloid & Polymer Science, vol.278, issue.3, pp.220-228, 2000.
DOI : 10.1007/s003960050035

X. L. Xie, Y. W. Mai, and X. P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering: R: Reports, vol.49, issue.4, pp.89-112, 2005.
DOI : 10.1016/j.mser.2005.04.002

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, Thermal and electrical transport in multi-walled carbon nanotubes, Physics Letters A, vol.329, issue.3, pp.207-213, 2004.
DOI : 10.1016/j.physleta.2004.05.070

M. Yang, Y. Koutsos, and M. Zaiser, Size effect in the tensile fracture of single-walled carbon nanotubes with defects, Nanotechnology, vol.18, issue.15, pp.155708-155712, 2007.
DOI : 10.1088/0957-4484/18/15/155708

C. Yang, Y. Lin, and C. W. Nan, Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density, Carbon, vol.47, issue.4, pp.1096-1101, 2009.
DOI : 10.1016/j.carbon.2008.12.037

Y. Zhang, J. H. Yang, T. S. Ellis, and T. Shi, Crystal structures and their effects on the properties of polyamide 12/Clay and polyamide 6-polyamide 6

Q. Zhao and H. D. Wagner, Raman spectroscopy of carbon-nanotube-based composites, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1824, pp.2407-2424, 2004.
DOI : 10.1098/rsta.2004.1447

P. Zhihua, P. Jingcui, P. Yanfeng, O. Yangyu, and N. Yantao, Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: A numerical study, Physics Letters A, vol.372, issue.20, pp.3714-3718, 2008.
DOI : 10.1016/j.physleta.2008.02.015