
HAL Id: pastel-00877450
https://pastel.hal.science/pastel-00877450

Submitted on 28 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient routing on multi-modal transportation networks
Dominik Kirchler

To cite this version:
Dominik Kirchler. Efficient routing on multi-modal transportation networks. Data Structures and
Algorithms [cs.DS]. Ecole Polytechnique X, 2013. English. �NNT : �. �pastel-00877450�

https://pastel.hal.science/pastel-00877450
https://hal.archives-ouvertes.fr

Efficient routing on multi-modal
transportation networks

Thèse présentée pour obtenir le grade de

DOCTEUR DE L’ECOLE POLYTECHNIQUE

par

Dominik Kirchler

Soutenue le 3 octobre 2013 devant le jury composé de :

Leo Liberti Ecole Polytechnique, Palaiseau Directeur de thèse

Roberto Wolfler Calvo Université Paris 13, Villetaneuse Co-directeur de thèse

Dorothea Wagner Karlsruhe Institute of Technology Rapporteur

Emmanuel Neron Ecole Polytechnique de l’Université de Tours Rapporteur

Dominique Feillet Ecole des Mines de Saint-Etienne Rapporteur

Philippe Goudal Mediamobile, Ivry-sur-Seine Membre du jury

Olivier Bournez Ecole Polytechnique, Palaiseau Président du jury

Abstract

Mobility is an important aspect of modern society. Consequently, there is a growing demand

for services offering efficient route planning. In this thesis, we study multi-modal routing

and the Dial-a-Ride system. Both respond to the need of a more efficient utilization of

the available transportation infrastructure, which is an important component of sustainable

development.

Multi-modal route planning is complex because of the various modes of transportation

which have to be combined. A generalization of Dijkstra’s algorithm may be used to find

shortest paths on multi-modal networks. However, its performance is not sufficient for real

world applications. For this reason, this thesis introduces a new algorithm called SDALT. It

is an adaption of the speed-up technique ALT. To evaluate the performance of SDALT, we

produced a graph of a real-world multi-modal network based on transportation data of the

French region Ile-de-France. It includes walking, public transportation, car, and bicycle, as

well as timetable information and traffic data. Experiments show that SDALT performs well,

with speed-ups of a factor 1.5 to 60 with respect to the basic algorithm.

Other than finding shortest multi-modal paths that optimally combine the use of several

modes of transportation, yet another problem arises: finding an optimal multi-modal return

path or 2-way path. When using a private vehicle for parts of the outgoing path, it has to

be picked up during the incoming path so that it can be taken to the starting location. For

this reason, the parking must be chosen in such a way as to optimize the combined travel

times of the outgoing and incoming path. We propose an efficient algorithm that solves this

problem faster than previous techniques.

The Dial-a-Ride system offers passengers the comfort and flexibility of private cars and

taxis at a lower cost and higher eco-efficiency by combining similar transportation demands.

It works as follows: passengers request the service by calling a central unit. They specify

their pick-up point, their delivery point, the number of passengers, and some limitations

on their service time (e.g., the earliest departure time). An algorithm then calculates the

routes and schedules of the vehicles. We propose a new efficient and fast heuristic, a Granular

Tabu Search, to produce good solutions in a short amount of time (up to 3 minutes). Our

algorithm produces better results for more than half of the test instances after 60 seconds

of optimization time in comparison with other methods.

i

ii

Résumé

La mobilité est un aspect important des sociétés modernes. Par conséquent, il y a une de-

mande croissante pour des solutions informatiques de calcul d’itinéraire. Cette thèse analyse

le routage multimodal et le système Dial-a-Ride. Ils contribuent à une utilisation plus ef-

ficace de l’infrastructure de transport disponible, élément déterminant dans la perspective

d’un développement durable.

La planification d’itinéraires multimodaux est rendus complexe en raison des différents

modes de transport qui doivent être combinés. Une généralisation de l’algorithme de Dijkstra

peut être utilisée pour trouver les chemins les plus courts sur un réseau multimodal. Cepen-

dant, sa performance n’est pas suffisante pour les applications industrielles. De ce fait, cette

thèse introduit un nouvel algorithme appelé SDALT. Il s’agit d’une adaptation de la tech-

nique d’accélération ALT. Pour évaluer la performance de SDALT, un graphe a été construit à

partir d’un réseau multimodal réel basé sur les données de transport de la région française

Ile-de-France. Ce graph inclut la marche, les transports en commun, la voiture, la bicyclette

ainsi que des informations relatives aux horaires et aux conditions de circulation. Les tests

de performance montrent que SDALT fonctionne bien, avec un temps de calcul réduit d’un

facteur compris entre 1.5 et 60 par rapport à l’algorithme de base.

Dans un contexte multimodal autre la question de la détermination du chemin le plus

court, se pose celle de trouver un chemin aller-retour multimodal optimal entre un point

de départ et un point d’arrivée. Un véhicule privé (voiture ou bicyclette) utilisé pour une

première partie du trajet aller doit être récupéré au cours du trajet retour pour être ramené

au point de départ. Pour cette raison, le parking doit être choisi de manière à optimiser

les temps de déplacement du trajet aller et du trajet retour combinés. L’algorithme qui est

proposé dans cette thèse résout ce problème plus rapidement que les techniques actuelles.

Le système Dial-a-Ride offre aux passagers le confort et la flexibilité des voitures privées

et des taxis à un moindre coût et avec plus d’éco-efficacité car il regroupe les demandes de

transport similaires. Il fonctionne de la manière suivante : les passagers demandent le service

en appelant un opérateur et communiquent leur point de départ, leur point de destination, le

nombre de passagers, ainsi que quelques précisions sur les horaires de service. Un algorithme

calcule ensuite les itinéraires et les horaires des véhicules. Cette thèse propose une nouvelle

heuristique efficace et rapide de type Granular Tabu Search, capable de produire de bonnes

solutions dans des délais courts (jusqu’à 3 minutes). Comparativement aux autres méthodes,

et au regard des instances de test de la littérature, cet algorithme donne de bons résultats.

iv

Acknowledgements

Trois ans entre les langues.

Innanzitutto grazie a Leo Liberti e al (dai, diciamolo) amico-professore Roberto Wolfler

Calvo.

Vielen Dank an Dorothea Wagner und an ihr Forschungsgruppe.

Merci à Philippe Goudal et à mes collègues chez Mediamobile.

But, of course, the biggest thanks go to Sheena.

v

vi

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Contribution . 4

1.3 Overview . 5

2 Definitions and Notations 7

2.1 Languages and Automata . 7

2.2 Graph Theory . 9

2.3 Shortest Path Problem . 11

2.4 Summary . 12

3 Network Modeling 13

3.1 Single Networks . 13

3.1.1 Foot network . 13

3.1.2 Bicycle network . 13

3.1.3 Road network . 14

3.1.4 Public transportation network . 14

3.1.5 Rental bicycle and rental car networks 18

3.1.6 Locations of interest . 19

3.2 Multi-Modal Network . 19

3.3 Application . 22

3.3.1 Multi-modal transportation network IDF (Ile-de-France) 22

3.3.2 Multi-Modal Transportation Network NY (New York City) 27

3.4 Summary . 27

4 Shortest Path Problem 29

4.1 Labeling Method . 30

4.1.1 Label setting methods and Dijkstra’s algorithm 30

4.1.2 Label correction methods . 30

4.2 Uni-Modal Routing . 31

4.2.1 Bi-directional search . 34

4.2.2 The ALT algorithm . 35

4.3 Multi-Modal Routing . 37

4.3.1 Regular language constrained shortest path problem 39

4.3.2 Algorithm to solve RegLCSP . 39

4.4 Summary . 42

vii

5 SDALT 43

5.1 State Dependent ALT: SDALT . 43

5.1.1 Query phase . 43

5.1.2 Preprocessing phase . 45

5.1.3 Constrained landmark distances . 46

5.2 Label Setting SDALT: lsSDALT . 50

5.2.1 Feasible potential functions . 50

5.2.2 Correctness . 51

5.2.3 Complexity and memory requirements 51

5.3 Label Correcting SDALT: lcSDALT . 53

5.3.1 Query . 53

5.3.2 Correctness . 53

5.3.3 Constrained landmark distances . 54

5.3.4 Complexity and memory requirements 55

5.4 Bi-directional SDALT: biSDALT . 57

5.4.1 Query . 57

5.4.2 Constrained landmark distances and potential function 59

5.4.3 Correctness . 60

5.4.4 Memory requirements . 60

5.5 Experimental Results . 61

5.5.1 Test instances . 61

5.5.2 Discussion . 63

5.6 Summary . 73

6 2-Way Multi-Modal Shortest Path Problem 75

6.1 Problem Definition . 75

6.2 Basic Algorithm . 79

6.2.1 Correctness . 79

6.2.2 Complexity . 80

6.3 Speed-up Techniques . 80

6.4 Experimental Results . 85

6.5 Summary . 88

7 Dial-A-Ride 93

7.1 Introduction . 93

7.2 The dial-a-ride problem . 95

7.3 Solution Framework . 97

7.3.1 The granular neighborhood . 97

7.3.2 Preprocessing . 100

7.3.3 Initial Solution . 101

7.3.4 Local search . 101

7.3.5 Tabu list and aspiration criteria . 102

7.3.6 Diversification and intensification . 102

7.3.7 Stopping criterion . 104

7.4 Experimental Results . 104

viii

7.4.1 Test instances . 104

7.4.2 Evaluation of Granular Tabu Search 104

7.4.3 Comparison on f ′(s) . 105

7.4.4 Comparison on f ′′(s) . 105

7.4.5 Discussion . 106

7.5 Summary . 113

8 Conclusions 115

A SDALT: Examples 129

A.1 Details for IVa . 129

ix

x

Chapter 1

Introduction

1.1 Introduction

Mobility is an important aspect of modern society. Consequently, there is a growing demand

for services offering route planning. Several websites provide such services with easy-to-use

interfaces. A user can select a starting and destination location, often directly on a map,

and can specify some characteristics, such as departure or arrival time, the preferred mode

of transportation, and whether he wants to pass by some other location. The service will

then propose a routing plan. Most services are domain specific and offer route planning only

on specific networks and consider only a limited set of transportation modes. Many websites

can calculate paths for walking, cars (often including traffic information), or bicycles on the

road network but public transportation is seldom included, or is included in a limited form.

Route planning on public transportation networks is offered on websites of transportation

agencies which in turn do not incorporate route planning on roads.

In response to a growing demand for integrated solutions and the need for a more efficient

utilization of the available transportation infrastructure, which is an important component

of sustainable development, in recent years prototypes of route planning services which at-

tempt to consider and to combine all available modes of transportation have been developed.

Their goal is to provide multi-modal route planning (see Figures 1.1 and 1.2). Modes of trans-

portation on a multi-modal network include private and rental bicycle, private and rental

car, walking, and public transportation.

Users are typically interested in the fastest path to reach their destination, i.e., the

shortest path in terms of travel time. On a public transportation network, travel time

depends both on the timetable of the transportation vehicles and on traffic perturbations

which may cause delays and service interruptions. Travel time on roads depends on their

congestion level. Knowledge of real-time and forecast traffic information is required to

compute the traversal time of roads for each time instant in the future. For this purpose,

statistical models have been developed which are able to predict the evolution of traffic to a

certain degree of accuracy. They are based on traffic data provided by traffic sensors which

constantly monitor the traffic at strategic locations on the road network. Using a large

database of historical traffic information and by applying statistical analysis, speed profiles

can be computed for road segments. They provide a forecast of the most probable travel

speed on the road segment or travel time to pass the road segment for each time instant of a

1

2 Chapter 1. Introduction

Figure 1.1: Example of a multi-modal path. The path consists of walking (blue line), public
transportation (green line), and rental bicycle (orange line). (Map: OpenStreetMap)

Figure 1.2: Isochrones: destinations reachable by using walking, public transportation, and
rental bicycle after 3min (red), 6min (orange), 9min (light green), 12min (green), and 15min
(violet) of travel time. Note that isocrone areas can be disconnected because stations of
public transportation can often be reached faster then locations between stations. (Map:
OpenStreetMap)

day. Not all roads are monitored, thus typically only a part of the road network is provided

with real time and forecast traffic information, while the remaining part is associated with

static travel times. Note that temporary closures of road segments due to construction

works or accidents also strongly influence travel times and therefore must also be taken into

account.

1.1. Introduction 3

When travel time over a road segment depends on the time instant at which the segment

is traversed, then the road network has the characteristic that it is time-dependent. In the

same sense, public transportation networks are time-dependent. Travel times from one train

station to another depend on the arrival time of the user at the departure station. If the

user arrives prior to the departure of the train, he has to wait; the total travel time of the

user is equal to the sum of the waiting time and the travel time of the train.

Travel time when walking or biking is not time-dependent, but it may vary slightly

from user to user and it might not always be proportional to the length of the road

(e.g., because of steepness). In recent years, major cities have adopted bicycle sharing

systems, e.g., Paris (France), London (UK), Washington DC (US), Hangzhou (China), New

York (US). Besides providing affordable access to bicycles for short-distance trips in an ur-

ban area as an alternative to motorized vehicles, these systems are also supposed to cover

the Last Kilometer, i.e., the distance between public transportation stops and the departure

point or final destination. Thus they constitute an important component of a multi-modal

transportation network.

Another important component of multi-modal paths are recently introduced flexible

rental car systems, e.g., the Autolib’ system of the city of Paris. They are specifically

designed for urban or short interurban journeys. Traditional car rental services mainly of-

fer rental cars for full days, weekends, or longer. These new flexible systems offer rental

cars to be picked up and returned at strategically located car rental stations equipped with

automated identification and payment systems.

Besides the minimization of travel time, multi-modal paths have to respect additional

constraints such as restrictions and/or preferences of the users in employing certain modes of

transportation. Users may be willing to take trains, but not buses, or may want to exclude

bicycles when it is raining. Also, the minimization of the number of transfers between modes

of transportation is sometimes important. Furthermore, whereas distances can be covered

by walking at almost any point during an itinerary, some modes of transportation such as

private cars and bicycles, once discarded, are not available again at a later point in the

itinerary. Rental cars or bicycles can be accessed at rental stations and have to be returned

to rental stations before reaching the destination.

Another important characteristic of a route planning service is that the user may want

to pass by an intermediate stop before reaching the destination. However, a user might

not specify the precise geographical location of this stop and just wish to pass by any

pharmacy, post-office, supermarket, etc. In this case, the route planning service has to

autonomously determine the exact location of the intermediate stop and adapt the multi-

modal path between start and destination location accordingly.

Yet another problem arises when traveling along a multi-modal path. Sometimes it is

advisable to depart from the starting location by using a private car or bicycle and then to

transfer at a later point to public transportation or to walk in order to reach the destination.

Consequently, on some intermediate location the user has to park his car or bicycle which

he will want to pick up on the incoming path in order to take it home. It is clear that the

travel time of the incoming path will depend on the location where the user parked his car

on the outgoing path and may not be optimal and be heavily influenced by this, as traffic

conditions or timetables are not the same at different times of the day. The parking location

must thus be chosen wisely in order to optimize the combined travel times of the outgoing

4 Chapter 1. Introduction

Figure 1.3: Example of a return path or 2-way path. The path consists of walking (blue
line), public transportation (green line), and private bicycle (orange line). The outgoing
path starts at h (home) by bicycle. The bicycle is discarded at the parking location p. The
destination w (work) is reached by public transportation and walking. The incoming path
passes by the parking place so that the bicycle can be picked up. (Map: OpenStreetMap)

and incoming paths, which form the multi-modal return path or 2-way path. See Figure 1.3

for an example.

Under reasonable assumptions, the problem of finding multi-modal paths as discussed

above is theoretically solved in polynomial time by a generalization of Dijkstra’s algorithm.

However, an application of this algorithm over medium-sized multi-modal networks may

require several seconds of calculation time. For real-world applications, this is too slow. For

this reason, techniques to speed up the algorithm are required.

In addition to combining existing modes of transportation in a better way, it is also im-

portant to study innovative transportation services to provide better mobility to passengers.

The Dial-a-Ride (dar) system is such a service. It offers passengers the comfort and flexi-

bility of private cars and taxis at a lower cost and higher eco-efficiency by combining similar

transportation demands. It is thus in line with the demands of the sustainable development

requirement. Dial-a-Ride systems are already employed in several cities. It works as follows:

passengers request the service by calling a central unit. They specify their pick-up point,

their delivery point, the number of passengers, and some limitations on the service time

(e.g., the earliest departure time). An algorithm then calculates the routes and schedules

of the vehicles depending on the received requests, thus permitting a global optimization of

the transportation system. The routing problem cannot be solved by Dijkstra’s algorithm

and other techniques have to be applied.

1.2 Contribution

The major contributions of this thesis are:

Speed-up technique. A generalization of Dijkstra’s algorithms may be used to solve rout-

ing problems on a multi-modal network. However, its performance may not be suffi-

cient for real world applications. For this reason, this thesis introduces a new speed-up

technique called SDALT. It is an adaption of the speed-up technique ALT. The exper-

iments show that SDALT performs well, with speed-ups of a factor 1.5 to 40 (up to

1.3. Overview 5

a factor of 60 with approximation), with respect to the basic algorithm, in networks

where some modes of transportation tend to be faster than others.

2-Way Multi-Modal Shortest Path Problem. We will introduce the 2-way multi-modal

shortest path problem (2WMMSP). When using a private vehicle for parts of the outgoing

path, it has to be picked up during the incoming path so that it can be taken to the

starting location. For this reason, the parking must be chosen in order to optimize the

combined travel times of the outgoing and incoming path. We will propose an algo-

rithm which solves this problem and various ameliorations to reduce runtime including

the application of SDALT.

Granular Tabu Search to solve the Dial-A-Ride problem. We will address the Dial-

A-Ride problem. The objective is to maximize the number of passengers served and the

quality of service, as well as to minimize overall system cost. The main contribution

here is the development of an efficient and fast heuristic to produce good solutions in

a short amount of time (up to 3 minutes). We propose a new Granular Tabu Search

which uses information provided by the solution of a simple and useful sub-problem

to guide the local search process. This sub-problem provides distance information and

clusters of close requests. The idea is that passengers who are close both spatially

(in terms of the distance between pick-up and delivery points) and temporally (with

respect to time windows) are probably best served by the same vehicle in order to

produce good solutions.

Network modeling. A minor but original contribution of this thesis is the network model-

ing of a complete transportation network of an inter-urban region, including all major

modes of transportation, i.e., rental and private cars and bicycles, walking and public

transportation. It includes all relevant information about the modes of transportation,

such as traffic conditions for cars and timetable information for public transportation

vehicles. To our knowledge, this is the first work to consider a multi-modal network

in this configuration and on this scale.

1.3 Overview

We start by giving some basic notations which are used throughout this work (Chapter 2).

We introduce the concept of formal languages and more specifically regular languages. Reg-

ular languages will be used to model the constraints on multi-modal paths, such as maximal

number of transfers, viability, choice of modes of transportation. Furthermore, basic nota-

tions of graph theory are given.

In Chapter 3, we discuss how to model different modes of transportation and how to

combine the models to produce a graph of a multi-modal transportation network. We show

a practical application: our graphs include foot, bicycle, car, public transportation, as well

as rental car and rental bicycle. They are based on transportation data of the French region

Ile-de-France and New York City.

The shortest path problem is introduced in Chapter 4. We will discuss Dijkstra’s algo-

rithm and uni-modal routing on road networks as well as public transportation networks.

6 Chapter 1. Introduction

We will also introduce the regular language constrained shortest path problem (RegLCSP)

which can be applied for routing problems on multi-modal transportation networks.

In Chapter 5, we will discuss a new speed-up technique for a generalization of Dijkstra’s

algorithm which solves RegLCSP. It allows to calculate multi-modal paths faster than previous

methods. We will first introduce the general concepts of the algorithm and then discuss

several different versions of it, including uni-directional and bi-directional search.

Chapter 6 presents an efficient algorithm to solve the 2-way multi-modal shortest path

problem (2WMMSP). Its goal is to find an optimal return path on a multi-modal network. The

shortest incoming path is often not equal to the shortest outgoing path as traffic conditions

and timetables of public transportation vary throughout the day. The main difficulty lies

in finding an optimal parking location of a private bicycle or private car, since they may

be used for parts of the outgoing path and will need to be picked up during the incoming

path. We present extensive experimental results. Our algorithm outperforms a previous

algorithm.

In Chapter 7, we discuss a new Granular Tabu Search algorithm for the static Dial-a-

Ride Problem with the objective of producing good solutions in a short amount of time (up

to 3 minutes). We evaluate the algorithm on test instances from the literature. For most

instances, our results are close to the results of another approach and we report new best

solutions for some instances.

Chapter 8 concludes this thesis.

Bonne lecture!

Chapter 2

Definitions and Notations

In this chapter, important notations from formal language theory and graph theory, which

are used throughout this work, will be introduced. We will also give a formal definition of

the time-dependent shortest path problem.

2.1 Languages and Automata

We will use regular expressions and automata to describe the different constraints which may

arise when solving multi-modal routing problems. In this section, we first introduce formal

languages and regular languages. Then we will describe more in detail regular expressions

and automata. A rigorous exposition of formal languages and the theory of computation

can be found in the books [71,123].

Formal Languages. Formal language theory concerns the study of various types of for-

malisms to describe languages. Different to a natural language, a formal language is an

abstract language with the primary focus not being communication but its mathematical

use. Formal languages are particularly useful for a precise mathematical description of chains

of symbols. Examples are programming languages. Formal languages are primarily used in

the fields of linguistics, logics, and theoretical computer science. Important characteristics

are their expressive power, their recognizability and their comparability. Regular languages

are a type of formal languages which provide a good compromise between expressivity and

ease of recognizability, and are widely used in practical applications.

An alphabet Σ is a set of letters or symbols. A word over an alphabet can be any

finite sequence w = [σ1, σ2, ..., σk] of letters. For simplicity, we write w = σ1σ2 . . . σk.

The set of all words over an alphabet Σ is usually denoted by Σ∗ (using the Kleene star,

see below). The length of a word is the number of symbols it is composed of. For any

alphabet there is only one word of length 0, the empty word, which is denoted by ε. By

concatenation, two words w1 = σ1 . . . σk and w2 = σk+1 . . . σl can be combined to form a

new word w = w1w2 = σ1 . . . σkσk+1 . . . σl, whose length is the sum of the lengths of the

original words. Concatenating a word with the empty word gives the original word.

A formal language L over an alphabet is a subset of Σ∗, i.e., a set of words over that

alphabet. Note that this set is not necessarily finite. All operations on sets like union,

intersection, and complement also apply to languages. Suppose L1 and L2 to be languages

7

8 Chapter 2. Definitions and Notations

over some common alphabet, then the concatenation L3 = L1 ◦L2 is the language consisting

of all words of form vw where v is a word of L1 and w is a word of L2, L3 = {v ◦ w|v ∈
L1 ∧ w ∈ L2}. E.g., if L1 = {a, b} and L1 = {c, d} then L1 ◦ L2 = L3 = {ac, ad, bc, bd}.

Regular Languages. In this work, we will use regular languages as their expressive power

suffices for our purpose and they do not influence much the complexity of the routing algo-

rithms we are using.

Definition 2.1.1 (Regular Languages). The collection of regular languages over an alphabet

Σ is defined as follows.

• The empty language ∅ is a regular language.

• For each σ ∈ Σ, the singleton language {σ} is a regular language.

• If L1 and L2 are regular languages, then L1 ∪ L2 (union), L1 ◦ L2 (concatenation),

and L∗1 (Kleene star) are regular languages.

• No other languages over Σ are regular.

Any regular language can be described by a regular expression and a non-deterministic

finite automaton or NFA. We will use both concepts to represent regular languages.

Non-deterministic finite automaton (NFA). A non-deterministic finite automaton

(NFA) is a finite state machine where from each state and a given input symbol the automa-

ton may change into several possible next states. This distinguishes it from the deterministic

finite automaton (DFA), where the next possible state is uniquely determined. However, a

NFA can always be translated to an equivalent DFA, which recognizes the same formal lan-

guage. Both types of automata recognize only regular languages. NFAs were introduced in

1959 by the authors of [108], who also showed their equivalence to DFAs.

A NFA is a 5-tuple, A = (S,Σ, δ, I, F), consisting of a finite set of states S, an alphabet

Σ, a transition function δ : Σ×S → 2S , a set of initial states I ⊆ S, and a set of final states

F ⊆ S. State diagrams (or transition graphs) are used to illustrate automata: states s ∈ S
are presented as nodes and for each state s we draw an arc from s to s′ labeled by σ if and

only if s′ ∈ δ(s, σ). Initial states are marked by an incoming arc-tip whereas final states are

double framed. The size of a NFA is defined as |A| = |S||Σ|.
Let L ⊆ Σ∗ be an arbitrary language. A word w ∈ L is accepted by A, if there is a path

in the state diagram starting at an initial state s ∈ I, leading to a final state s ∈ F , and

where the subsequent arcs on the path are labeled by the subsequent symbols of w. If no

such path exists, then the word is rejected. If every word w ∈ L is accepted by A, then the

language L is accepted by A.

The backward automaton back(A) of A = (S,Σ, δ, I, F) is the automaton which has the

same set of states S, the same alphabet Σ, but with its transition function reversed, i.e., all

arcs of the automaton are reversed. The set of the final and initial states of the backward

automaton back(A) is equal to the initial and final states of the original automaton A,

respectively.

Figure 2.1 shows a simple example of a NFA. We define
←→
S (s,A) and

←→
Σ (s,A) as the

functions which return the sets of all states and labels, respectively, reachable by multiple

2.2. Graph Theory 9

s0

s2

s1

s3

s4

t

f

t

t

p

t

f

bt bft

Figure 2.1: A simple non-deterministic finite automaton (NFA) given by its state diagram.
It is non-deterministic because from state s1 and input t two states, s1 and s2, can be
reached. The NFA consists of five states, one initial state (s0) and two final states (s1,s4).
The words f , tbbt, and ffftppt are accepted by the automaton whereas tb, bb, and ftp are
not accepted.

transitions on an automaton A by starting at state s, backward and forward. E.g., in

Figure 2.1,
−→
S (s2,A) = {s2, s3, s4},

←−
Σ (s2,A) = {b, f, t}.

A simple example of a language that is not regular is the set of words {anbn|n ≥ 0}. It

consists of all words consisting of a number of a’s followed by the same number of b’s. This

language cannot be recognized by a NFA. Intuitively, a NFA has finite memory and cannot

remember or count the exact number of a’s. If n is bound, i.e., n < l, then the language is

recognizable by a NFA. The size of the set of states S of the NFA is proportional to l. In

general, however, if n has no such bound, there is no fixed size automaton that can recognize

this language.

Regular expressions. Given a finite alphabet Σ, the empty set ∅, the empty string ε,

and the literal character σ ∈ Σ are regular expressions. Given regular expressions R1 and

R2, the following operations are defined to produce regular expressions:

• (concatenation) R1 ◦R2 denotes the set {αβ|α ∈ R1 ∧ β ∈ R2}. For example, {ab, c} ◦
{d, ef} = {abd, abef, cd, cef}.

• (alternation) R1|R2 denoting the set union of sets described by R1 and R2. For

example, {ab, c}|{ab, d, ef} = {ab, c, d, ef}.

• (Kleene star) R∗ is the set of all words that can be made by concatenating any finite

number (including zero) of strings from the set described by R. For example, {0, 1}∗

is the set of all finite binary strings (including the empty string), and {ab, c}∗ =

{ε, ab, c, abab, abc, cab, cc, ababab, abcab, . . .}.

The Kleene star has the highest priority, followed by concatenation and then alternation.

Kleene’s Theorem [83, 108] states that each regular language R can be described by a NFA

A, i.e., for every word w ∈ Σ∗ it holds that A accepts w if and only if w ∈ R. On the other

hand, for every finite automaton A the set of words accepted by A has the property of being

a regular language. E.g., the regular expression of the automaton represented in Figure 2.1

is (f |(t(t|b)∗t)f∗)|(f |(t(t|b)∗t)f∗t(p∗)t(b|f |t)∗).

2.2 Graph Theory

We model transportation networks using graphs. In this section, we introduce basic concepts

of graph theory.

10 Chapter 2. Definitions and Notations

Graph. A graph G = (V,A) consists of a finite set of nodes v ∈ V , and a set of arcs

(i, j) ∈ A, i, j ∈ V . We only use directed graphs so an arc (i, j) is considered to be directed

from i to j; i is called the head and j is called the tail of the arc. An arc (i, j) where i = j

and so connects a node to itself, is called a self-loop. We define the union between two

graphs Gk = (Vk, Ak) and Gl = (Vl, Al) as Gk ∪ Gl = (Vk ∪ Vl, Ak ∪ Al). In our scenario

nodes typically represent road intersection or public transportation stations and arcs the

connections or roads between intersections and stations.

Arc cost. Every arc has an associated arc cost which in our case represents travel times.

Whereas for non time-dependent route planning it is sufficient to have constant costs (cij gives

the cost for arc (i, j)), we generalize this concept and use periodic cost functions to be able

to assign to an arc different costs for different times of the day. We call a graph which uses

such cost functions a time-dependent graph.

All cost functions are elements of a function space F of positive functions f : R+ → R+.

The cost functions associated with an arc (i, j) ∈ A is given by c : A → F and are denoted

by cij(τ). In this work, we only use periodic cost functions with period P . We have that

∀τ ≥ P , cij(τ) = cij(τ − kP), where k = max{k ∈ N|τ − kP ∈ T } and T = [0, P] ⊂ R.

This implies cij(τ + P) = cij(τ), ∀τ ∈ T . Cost functions are interpreted as travel time. We

additionally require that

c(x) + x ≤ c(y) + y,∀c ∈ F, x, y ∈ R+, x ≤ y;

this ensures the FIFO property (see below). The lower and upper bound of cij(τ) is defined

as cij = minτ∈T cij(τ) and c̄ij = maxτ∈T cij(τ), respectively. A graph which uses the lower

or upper bound of cij(τ) as cost function is marked by G and Ḡ, respectively

Choice of the cost function. We will use the graph to search for shortest paths. The

efficiency of algorithms for shortest paths computations on time-dependent graphs depend

on the choice of the cost function. See [32] for a study of the use of different cost functions.

In this work, we will use piecewise linear functions to model cost functions. They can easily

approximate traffic data, represent time tabled data, and they allow for some flexibility

(data accuracy versus memory requirements) while being simple to treat computationally.

Furthermore, the FIFO property can be checked efficiently: the condition f(x) +x ≤ f(y) +

y,∀x ≤ y can be written as df(x)
dx ≥ −1.

A piecewise-defined function is a function which is defined by multiple subfunctions, each

subfunction applying to a certain interval of the main function’s domain. A piecewise linear

function f is a function composed of straight-line sections. It is a piecewise-defined function

whose pieces or subfunctions are affine functions. It can be be described by a finite set B
of interpolation points where each interpolation point pi ∈ B consists of a departure time τi

and an associated function value f(τi). The value of f for an arbitrary time τ is computed

by interpolation. Note that this is done differently for time-dependent road networks and

public transportation networks (see Section 3.1).

Labeled graph. A labeled graph is a triplet G = (V,A,Σ). Other then nodes and arcs,

it includes a set of labels l ∈ Σ. In our case the labels are used to mark arcs as, e.g., foot

2.3. Shortest Path Problem 11

paths (label f), bicycle lanes (label b), highways (label c), etc. An arc in a labeled graph is

a triple (i, j, l) ∈ A ⊆ V × V × Σ. It has constant cost cijl or time-dependent cost cijl(τ).

Path. A path p in G is a sequence of nodes p = (v1, . . . , vk) such that (vi, vi+1) ∈ A

for all 1 ≤ i < k. The cost of the path in a non time-dependent scenario is given by

c(p) =
∑k−1
i=1 cvivi+1 . We denote as d(r, t) the cost of the shortest path between nodes r

and t. In time-dependent scenarios, the cost or travel time γ(p, τ) of a path p departing

from v1 at time τ is recursively given by

γ((v1, v2), τ) = cv1v2(τ)

and

γ((v1, . . . , vj), τ) = γ((v1, . . . , vj−1), τ) + cvj−1,vj (γ(v1, . . . , vj−1, τ) + τ).

For paths on labeled graphs, the function Word(p) returns the sequence of labels along the

path p. The concatenation of two paths p′ = (v1, . . . , vk) and p′′ = (vk+1, . . . , vk+n), with

1 ≤ k < n, is the path p = p′ ◦ p′′ = (v1, . . . , vk, vk+1, . . . , vk+n).

2.3 Shortest Path Problem

The shortest path problem (SP) is the problem of finding a path p between two nodes in a

graph such that its cost c(p) is minimized. Relevant for us is the time dependent shortest

path problem (TDSP):

Definition 2.3.1 (Time dependent shortest path problem (TDSP)). Given a directed graph

G = (V,A) with a cost function c : A → F, a source node r ∈ V , a target node t ∈ V , a

departure time τ0, find a path p = (s = v1, v2, . . . , vk = t) in G such that its time-dependent

cost γ(p, τ0) is minimum.

The TDSP can be solved by adapted versions of Dijkstra’s algorithm. See Chapter 4.

Definition 2.3.2 (Time dependent regular language constrained shortest path problem

(TDRegLCSP)). Given a directed and labeled graph G = (V,A,Σ) with a cost function c : A→
F, a source node r ∈ V , a target node t ∈ V , a departure time τ0, and a regular language

L0 over Σ, find a path p = (s = v1, v2, . . . , vk = t) in G such that its time-dependent cost

γ(p, τ0) is minimum and Word(p) is an element of L0.

The TDRegLCSP is a generalisation of the TDSP. We will treat it more in detail in Section 4.3.

The FIFO property. The FIFO (First-In-First-Out) property states that for each pair

of time instance τ, τ ′ ∈ T where τ ′ > τ

cij(τ) + τ ≤ cij(τ ′) + τ ′,∀(i, j) ∈ A.

This means, in other words, that for any arc (i, j), if a car c1 leaves node i earlier than another

car c2, FIFO guarantees that c1 will not arrive later at node j than c2. FIFO is also called

then non-overtaking property. The TDSP in FIFO-networks is polynomially solvable [80],

12 Chapter 2. Definitions and Notations

even when considering traffic lights [4]. It is NP-hard in non-FIFO networks [100]. The

same considerations hold for TDRegLCSP.

Note that in some transportation networks overtaking is rare (such as in train networks).

On the other hand, modeling of car transportation may yield networks where the FIFO

property does not apply. See [96] for a mathematical programming formulation for the

shortest path problem which takes into account time-dependency in non-FIFO networks

and non-linear time-dependent cost functions. The author proposes some algorithms for the

resulting MILP and MINLP problem formulations.

2.4 Summary

In this chapter, we introduced relevant notations from formal language theory and graph

theory. We will use a labeled graph with time-dependent arc-costs to model a multi-modal

transportation network (see Chapter 3). On this network, we will use a generalization of

Dijkstra’s algorithm to solve the TDRegLCSP. We use regular languages to impose constraints

on the shortest path, e.g., to exclude certain modes of transportation or to limit the number

of transfers (more details on this in Chapter 4). Finally, in Chapter 5, we will present a new

algorithm which is able to solve TDRegLCSP faster than previous algorithms.

Chapter 3

Network Modeling

We use a labeled graph with time-dependent arc-costs to model a multi-modal transporta-

tion network. Efficient algorithms to compute shortest paths on such graphs exist (see

Section 4.3). In this chapter, we first discuss graphs for single network types: foot, private

bicycle, rental bicycle, private car, rental car, and public transportation. Then we describe

how to combine the different networks to build a model of a multi-modal transportation

network. We also discuss how we produced the graphs of two real world multi-modal trans-

portation networks: of the French region Ile-De-France, which includes the city of Paris, and

of New York City. These graphs will be used in later chapters to evaluate our shortest path

algorithms.

3.1 Single Networks

In this section, we introduce approaches to model foot, bicycle, road, and public transporta-

tion networks.

3.1.1 Foot network

The construction of the model of the foot network is straightforward. Junctions are rep-

resented by nodes, and arcs between two nodes exist if there is a footpath between two

junctions (see Figure 3.1 for an example). Arc costs depend on geographical length and on

average pedestrian walking speed. Labels on arcs mark the type of path, such as side-way,

stairs, trail, etc.

3.1.2 Bicycle network

The bicycle network is constructed in a similar way to the foot network. Nodes represent

road junctions and arcs are inserted into the graph whenever biking is allowed between two

junctions. Different road types for cycling exist, such as roads with a separate cycling path,

roads with a separate lane for cyclists which are shared with buses, roads shared with general

traffic, etc. Arcs may be labeled accordingly. Arc costs represent cycling time and depend

on geographical length and on average cycling speed. See [114] for information about multi-

13

14 Chapter 3. Network Modeling

Figure 3.1: Model of the foot path. Road junctions are represented by nodes and arcs
between two nodes represent footpaths between two junctions.

critera routing on cycling networks and for advanced graph modeling of cycling networks

which also consider security aspects1.

3.1.3 Road network

For the road network, nodes represent road junctions and arcs represent roads connecting

the junctions. Different road types exist, e.g., local roads, urban roads, inter-urban roads,

motorways, toll roads, etc. Arc costs may be time-dependent and represent travel time

which depends on the geographical length, the speed limits, and the traffic conditions (see

Figure 3.2 for an example of a cost function and Section 3.3.1 for more information about

traffic data).

3.1.4 Public transportation network

A public transportation network consists of buses, subways, tramways, ferries, local trains,

etc. Several approaches for modeling a public transportation network exist. We will shortly

introduce the condensed, the time-expanded, and the time-dependent model. We refer to

[107, 117] for an in-depth discussion. All these models are based on a timetable. We will

introduce this concept first.

Timetable

A timetable is a 4-tuple (C,B,Z, P): B is a set of stations where vehicles stop (e.g., bus

stops, metro or train stations), Z is a set of vehicles, P is the periodicity of the timetable,

and C is a set of elementary connections. An elementary connection is defined by a 5-tuple

c = (z, s1, s2, τ1, τ2). A vehicle z ∈ Z travels from station s1 ∈ B to station s2 ∈ B departing

from s1 at time τ1 and arriving at s2 at time τ2. Note that τ1 < P , τ2 < P , and that the

vehicle does not stop at any other stop while going from s1 to s2. Note also that it is possible

to depart in the evening and to arrive the next day. The travel time δ of an elementary

connection is calculated as follows:

1See vgps.paris.fr for an online routing service for cyclists which optimizes distance and security of the
path.

3.1. Single Networks 15

01:00 11:00 21:00
0

20
40

60
80

10
0

Time

S
pe

ed

Figure 3.2: Typical cost function of a road segment. Average speeds (in km/h) in the
evening and during the night are close to the speed limit (80km/h). During rush hour in the
morning and late afternoon, congestion increases and the average speed on the road segment
is much lower (20km/h). Over midday, traffic conditions are slightly better and the average
speed is about 60km/h.

δ(τ1, τ2) =

{
τ2 − τ1 if τ2 ≥ τ1
P − τ1 + τ2 otherwise

(3.1)

Condensed model

A simple approach to model a public transportation system is the use of the condensed

model. It represents the network structure but not the scheduling, thus it is non time-

dependent. Examples of condensed models are subway or bus maps which only indicate

stations, connections, and lines, but no departure or travel times. Every station s ∈ B is

represented by exactly one node v ∈ V in the graph. An arc (si, sj) is introduced if and

only if at least one elementary connection exists in the timetable that goes from station

si to station sj . Arc costs are omitted or are defined as the minimum travel time over

all elementary connections from si to sj . The condensed model provides an overview of

the structure of the public transportation system but is not useful for exact shortest path

calculations.

Time-expanded model

A more complete representation of a public transportation system provides the time-expanded

model. Two versions exist: a simple version and a realistic version. The latter incorporates

realistic transfer times between two vehicles at stations.

Simple version. Nodes represent departure events and arrival events. For each elementary

connection c = (z, s1, s2, τ1, τ2) two nodes are created: a departure node v, which represents

the departure event of vehicle z at station s1 at time τ1, and an arrival node u which

represents the arrival event of vehicle z at station s2 at time τ2. Each node is assigned its

16 Chapter 3. Network Modeling

a

b

c

d

e

f

g

(a) Simple time-expanded model.

a

b

c

d

e

f

g

h

i

j

k

(b) Realistic time-expanded model.

Figure 3.3: Representation of a station in the simple and the realistic version of the time-
expanded model. Arrival, departure, and transfer nodes are colored orange, green, and
violet, respectively. Note that the third train leaving can be reached from the second train
arriving in the simple version but not in the realistic version.

station s and its timestamp τ when the event occurs. Two types of arcs exist, travel arcs

and internal station arcs. A travel arc connects the node representing the departure event

with the node representing the arrival event of an elementary connection c. The arc cost

represents travel time and is set to δ(τ1, τ2). Internal station arcs are only inserted between

nodes which are associated with the same station. First, all nodes associated with the same

station are sorted in ascending order with respect to their timestamp; we obtain an ordered

series of nodes (v1, . . . , vk). Then for two subsequent nodes vi, vj having timestamps τi and

τj , a transfer arc e := (vi, vj) is inserted in the graph. It has arc cost δ(τi, τj) which represents

the waiting or transfer time between arrival and departure event. To allow transfers over

the end of the period (midnight), an arc connecting the node vk with the latest timestamp

and the node v1 having the lowest timestamp is inserted into the graph. See Figure 3.3 for

an example.

Realistic version. The simple version is enhanced by inserting transfer nodes and transfer

arcs to correctly model and include transfer times at stations. See Figure 3.3 for an example.

Time-dependent model

In the time-dependent model, travel times are represented by functions. Again two versions

exist [107, 117]: a simple and a realistic version. The realistic version incorporates transfer

times.

Simple version. The simple version is an expansion of the condensed model. There is

a node for every station in B and an arc if there exists at least one elementary connection

between the two stations represented by the node. Unlike the condensed model, arc costs

3.1. Single Networks 17

●

●

●

●

●

●

3:00 8:00 12:00 15:00 18:00 20:00

120min

180min

6:30

waiting time

travel time

Π

f(τ)

τ

Figure 3.4: A piecewise linear function with 6 interpolation points. There are 3 fast trains
departing at 3:00, 12:00, and 18:00, and 3 slow trains at 8:00, 15:00, and 20:00. The fast
trains take 120min and the slow trains take 180min to reach the target station. If a passenger
arrives at the station at 6:30, then the journey to the arrival target takes 270min: 90min
waiting time and 180min travel time.

are time-dependent and are represented by piecewise linear functions. For each elementary

connection c = (Z, s1, s2, τ1, τ2) an interpolation point p = (τ1, δ(τ1, τ2)) is added to the

function f of the arc between stations s1 and s2. τ1 is the departure time and δ(τ1, τ2) the

travel time. To evaluate the function f for a time point τ we apply the equation

f(τ) = (τi − τ)︸ ︷︷ ︸
waiting time

+ f(τi)︸ ︷︷ ︸
travel time

, (3.2)

where τ ≤ τi and τi is the departure time of the closest interpolation point. τ = τi means

that the passenger arrives at station s1 exactly at the time of departure. If τ < τi then the

passengers arrives early at the station and his travel time to s2 equals the sum of the waiting

time at the station s1 and the travel time of the vehicle. See Figure 3.4 for an example.

Realistic version. The realistic version of the time-dependent model considers also trans-

fer times at stations. It consists of station nodes which represent public transportation sta-

tions, such as those pictured on subway network maps, and route nodes. Route nodes can

be pictured as station platforms and are connected by transfer arcs to station nodes. The

construction of this model proceeds as follows. First, for every station a station node is

inserted into the graph. Then the route nodes are inserted: A trip of a vehicle is defined

as the sequence of stations it visits according to its elementary connections defined in the

timetable. Trips consisting of the exact same sequence of stations are grouped into routes.

For every station included in a route, a route node is inserted in the graph and connected

by transfer arcs to the corresponding station node. Note that it is possible for a station that

more than one route node is inserted in the graph in case more than one route includes the

station. Subsequent route nodes belonging to the same route are connected by travel arcs

with time-dependent cost functions.

The realistic version can be further generalized. Transfer times between platforms of

the same station may vary considerably especially in big stations. These transfer times can

be incorporated into the model by inserting additional transfer arcs between route nodes.

Furthermore, station nodes can be duplicated to represent entrances of the station and to

provide access points to other networks, such as the foot network. However, for such a

detailed representation, real world data might not always be available. Furthermore, the

model becomes more complex especially regarding the number of transfer arcs [107].

18 Chapter 3. Network Modeling

a b

Z1, Z2

Z3

Z1, Z2, Z3

Z1, Z2

Z4

Z3, Z4

(a) Simple time-dependent model.

a b

c

d

e

f

g

Z1, Z2

Z3

Z1, Z2

Z3

Z1, Z2

Z3

Z4

Z4

(b) Realistic time-dependent model.

Figure 3.5: Representation of two stations and four vehicles in the simple and in the realistic
version of the time-dependent model. Station and route nodes are colored orange and violet,
respectively. Note that vehicles Z1 and Z2 belong to the same route.

FIFO-property. The TDSP on a time-dependent graph of a public transportation network

can be solved efficiently when the arc cost function f is non-negative and FIFO. In our

case, non-negativity is ensured by construction. We have to make sure that it is FIFO:

τ ≤ τ ′ ⇒ τ +f(τ) ≤ τ ′+f(τ ′). We will assume that the condition is always fulfilled. This is

reasonable as, e.g., trains with different speeds almost never serve the exact same sequence

of stations (slower trains stop more frequently), i.e., they do not belong to the same route.

Even if that were the case, FIFO can be ensured by duplicating the route and assigning the

slower train to one route and the faster train to the other. This should only seldom be the

case for public transportation systems, so the increase in graph size is insignificant.

Conclusions

The time-expanded model rolls out the time schedule of the public transportation timetable.

It allows exact shortest path queries and it is easy to adapt the Dijkstra’s algorithm to work

on this model [117]. But there are two major disadvantages of this model: First, as the

exact arrival node is not known in advance, bi-directional speed-up techniques are difficult

to apply. Second, the size of the graph is very large even for small networks. This leads

to a large search space and high memory requirements. For these reasons, we will use the

time-dependent model in this work. In [38], the authors show techniques on how to reduce

the size of the time-expanded model and its impact on query times. Find more information

on multi-modal routing on public transportation networks in Section 4.2.

3.1.5 Rental bicycle and rental car networks

Major cities in recent years have adopted bicycle rental systems, e.g., Paris (France), Lon-

don (UK), Washington DC (US), Hangzhou (China). Besides providing affordable access

to bicycles for short-distance trips in an urban area as an alternative to motorized vehicles,

these systems are also supposed to cover the Last Kilometer, i.e., the distance between pub-

lic transportation stops and the departure or final location. For this reason, they are an

important component of a multi-modal transportation network.

3.2. Multi-Modal Network 19

We consider bicycle sharing systems with fixed rental stations, like the bicycle sharing

systems in operation in Paris2 or Washington DC3. In such systems, users retrieve and return

bicycles at bicycle rental stations distributed evenly over the served area. Each rental station

v is characterized by a maximal number of bicycles it can hold cmax
v ∈ Z+. Bicycle rental

costs may also be an important characteristic of a rental bicycle system. The modeling of a

rental bicycle system is straightforward. It uses the bicycle network, and nodes representing

locations near bicycle rental stations are labeled accordingly. Shortest path queries are only

allowed between these labeled nodes.

Recently, similar rental principles have been adapted to rental car systems. See for

example the Autolib’ system4 in Paris which offers electric cars to rent for short trips. The

modeling of a rental car system is similar to the modeling of a bicycle rental system, but

instead of using the bicycle network, the car network is used. Nodes of the car network next

to car rental stations are labeled accordingly.

Availability of rental vehicles. Rental vehicles are subject to availability. Furthermore,

they can only be returned at stations with free return slots. This information must be

known before a shortest path query is started. It is easy to incorporate this constraint in the

Dijkstra algorithm. It suffices to assign a flag to each node v labeled as a station, which is

true, if rental vehicles are available (fbike avail(v) = true), and a second flag which is true if

return slots are available (f free slots(v) = true). The flags have to be updated periodically.

3.1.6 Locations of interest

The user may want to pass by an intermediate stop before reaching the target location. How-

ever, a user might not specify the precise geographical location of this stop and just wish to

pass by any pharmacy, post-office, supermarket, etc. In this case, the route planning service

has to determine autonomously the exact location of the intermediate stop and adapt the

path between source and target location accordingly. We use the following simple approach

to include information about such locations of interest in a graph. We duplicate arcs mod-

eling roads on which locations of interest are located and we substitute the assigned label

with a new label indicating the presence of, e.g., a pharmacy along a footpath. Note that

in this way no information on the time spent at the location of interest can be incorporated

in the model. However, this can easily be done by appropriately expanding the graph and

by modeling a location of interest through the insertion of additional nodes.

3.2 Multi-Modal Network

In this section, we combine the different networks described in the previous section into

a single multi-modal network. This requires the choice of the locations at which different

networks meet (e.g., public transportation stations, parking places). Once the locations are

identified the networks have to be linked by the insertion of transfer arcs between nodes

of different networks. A technical difficulty is the identification of nodes which are located

close to each other in a graph. We discuss this problem first.

2Vélib’, www.velib.fr
3Capital Bike Share, www.capitalbicycleshare.com
4Autolib’,www.autolib.eu

20 Chapter 3. Network Modeling

The nearest neighbor problem

Let Rn be the n-dimensional vector space over R and P ⊃ Rn a finite set of vectors. The

set P is called candidate points. Let d : R→ R be a metric on Rn.

Definition 3.2.1. nearest neighbor problem. Given a metric space (Rn, d), a set of

candidate points P on Rn and a set Q of query points on Rn we ask for a map f : Q → P

with the property

f(q) = p ⇐⇒ ∀p′ ∈ P : p 6= p′ ⇒ d(p′, q) ≥ d(p, q). (3.3)

In other words, for a query point q, we try to find the nearest candidate point p ∈ P

with respect to d. To solve this problem, Linear Search can be applied. This is a naive

approach and consists of scanning the list of candidate points P for each query point p ∈
Q. This requires the distance computation between each pair (q, p) ∈ Q × P . While the

implementation of this algorithm is straightforward, its runtime O(|Q||P |) might be too high

for large sets of P and Q. A better search strategy consists in using k-d-trees during the

search process; k-d-trees, or k-dimensional trees, are a data structure designed for geometric

search algorithms [20]. How to use k-d-trees to solve the nearest neighbor problem is

briefly mentioned in [20] and is more extensively discussed in [92]. A good implementation

is provided by [81]. It can compute the single nearest neighbor of q, and also the m closest

points to q. The algorithm consists of two phases. First, a k-d-tree is created with all

candidate points P , this can be done in O(n log n). Second, for each query point q ∈ Q

a query on the data structure is started which yields the nearest neighbor of q, this takes

O(log |P |). Running time for finding the neighbors for all q ∈ Q is thus O(|Q| log |P |).

Combining the networks

Given a number of uni-modal graphs G1, . . . , Gn each having node, arc, and label sets

Gi = (Vi, Ai,Σi), the combination yields a multi-modal graph Gmm = (V mm, Amm,Σmm).

The node and label sets are the union of the node and label sets of the input graphs, thus

V mm = V1 ∪ · · · ∪ Vi and Σmm = Σ1 ∪ · · · ∪ Σi. The arc set is the union of the arc sets of

the input graphs and a set of transfer arcs Atransfer, so Amm = A1 ∪ · · · ∪Ai ∪Atransfer. The

transfer arcs are used to connect the uni-modal graphs together, i.e., to make it possible to

transfer from one uni-modal graph to another. Transfer arcs to connect two graphs Gi and

Gj are created in the following way:

1. Definition of two sets which contain the link nodes, i.e., nodes from which transfer to

the other network should or may be possible: V link
i , V link

j .

2. Resolution of a nearest neighbor problem instance where V link
i is the candidate set

and V link
j is the query set, or vice versa. Note that the geographical location of nodes

given in x and y coordinates as latitude and longitude values have to be available.

Let us now look more in detail at how the networks are linked. Note that we will link

each network exclusively to the foot network. This means that there are, for example, no

transfer arcs between the car and the bicycle network and thus direct transfer from the car

network to the bicycle network is not possible. This is reasonable, as most transfers involve

3.2. Multi-Modal Network 21

Bicy
cle

Net
work

Car Net
work

Foot Net
work

Public
Tra

nsp
orta

tio
n

Net
work

Figure 3.6: The graph consists of 4 layers which are connected by transfer arcs.

at least some walking. In the following, we illustrate how we chose the link nodes for each

network. See Figure 3.6 for a schematic representation of the multi-modal graph.

Foot ↔ Bicycle: Private Bicycle, Rental Bicycle. The bicycle network can be ac-

cessed by private bicycle from anywhere in the foot layer. So we simply connect every node

in the foot network to its nearest neighbor node in the bicycle network. On the other hand,

accessing the bicycle network by rental bicycle is only possible at bicycle rental stations. For

each bicycle rental station, we find the nearest node on the foot network and the nearest

node on the bicycle network and connect the two nodes. To distinguish transfer arcs repre-

senting transfer at bicycle rental stations and transfer arcs representing access to the bicycle

network by private bicycle, we assign different arc labels.

Foot ↔ Car: Private Car, Rental Car. The car network can only be accessed at

points where a private car can theoretically be parked, e.g., parking is not allowed along

motorways and high speed roads. Thus, we identify all nodes of the road network belonging

to low road classes and connect them to their nearest neighbor nodes on the foot network.

We handle rental car stations in the same way as we handle rental bicycle stations.

Foot ↔ Public Transportation. Switching from the foot to the public transportation

network is only possible at public transportation stations, i.e., the station nodes. We insert

transfer arcs from station nodes to the nearest nodes in the foot network.

22 Chapter 3. Network Modeling

Accuracy. Note that we introduced a series of inaccuracies. In the real world, changing

from the foot network to the car or bicycle network can also be done at other locations

than road junctions. Furthermore, we assign bicycle and car rental stations to the nearest

junctions. This might displace rental stations for several meters from their actual location.

A more accurate solution is to introduce additional nodes at the exact locations and to

appropriately connect them to the foot, bicycle, and car network. Furthermore, coordinates

are in geographical form (latitude and longitude). Using the Euclidean metrics lead to

inaccurate results when computing the distance between two points. The error increases the

greater the distance between the two points. To avoid this problem, geodetic distances on

a solid resembling the form of the earth can be used, e.g., the GRS80-ellipsoid [94] which is

also used by the Global Positioning System (GPS). Nevertheless, we believe that our model

sufficiently mirrors reality so that our experimental results are representative. However, for

real world applications, these issues have to be kept in mind.

3.3 Application

For the evaluation of our algorithms, we produced two multi-modal graphs: the graph IDF

based on data of the French region Ile-de-France (including the city of Paris) and the

graph NY based on data from New York City. In this section, we discuss how we pro-

duced these two multi-modal graphs and the data we used.

The graphs are divided into four layers (see Figure 3.6): 1) walking, 2) road, 3) cycling,

and 4) public transportation layer. Each layer is connected to the walking layer through

transfer arcs: arcs with label tc and ta mark transfer arcs to access the road network either

by private or by rental car, arcs with label tb and tv mark transfer arcs to access the bicycle

network either by private or rental bicycle, and arcs with label tp mark transfer arcs to

the public transportation network. The cost of transfer arcs represent the time needed to

transfer from one layer to another (e.g., the time needed to unchain and mount a bicycle)

and we set it to 20 seconds. In addition, in both graphs we introduced twenty arcs with label

zf1 and another twenty arcs with label zf2 between nodes of the foot layer. Furthermore, we

introduced twenty arcs with label zc1 and another twenty arcs with label zc2 between nodes

of the car layer. They represent arcs close to locations of interest, and are used to simulate

the problem of reaching a target and in addition to pass by any pharmacy, grocery shop,

etc. See Section 3.1.6.

3.3.1 Multi-modal transportation network IDF (Ile-de-France)

The network IDF is based on road and public transportation data of the French region

Ile-de-France (which includes the city of Paris and its suburbs), see map in Figure 3.7. It

consists of four layers, bicycle, walking, car, and public transportation, and has circa 3.9m

arcs and 1.2m nodes. See for more detailed information Table 3.1.

Data of the public transportation network have been provided by STIF5. They include

geographical information, as well as timetable data on bus lines, tramways, subways, and

regional trains. The public transportation layer is reachable through transfer arcs (label tp)

at public transportation stations, i.e., subway stations, bus stops, etc.

5Syndicat des Transports IdF, www.stif.info, data for scientific use (01/12/2010)

3.3. Application 23

Figure 3.7: Ile-de-France (Google Maps).

Table 3.1: Graph IDF (Ile-de-France).

layer nodes arcs labels

walking 275 606 751 144 f (all arcs except 2x20 arcs with labels zf1 and zf2)
public trans-
portation

109 922 292 113 pb (bus, 72 512 arcs), pm (metro, 1 746), pt (tram, 1 746), pr
(train, 8 309), pc (connection between stations, 32 490), pw (walk-
ing station intern, 176 790 (omitted in automata and regular ex-
pressions for simplicity)), time-dependent 82 833

bike 250 206 583 186 b
car 613 972 1 273 170 ct (toll roads, 3 784), cf (fast roads, 16 502), cp (paved roads except

toll and fast roads, 1 212 957), cu (unpaved roads, 27 979), 2x20
arcs with labels zc1 and zc2 , time-dependent 188 197

transfers - 1 109 922 access to car layer by private car tc (493 601) and by rental car
at rental car stations ta (524), access to bike layer by rental bike
tv (1 198) and by private bike tb (493 601), access to public trans-
portation at stations tp (38 848)

Tot 1 249 706 3 980 887 time-dependent arcs 271 030 (7 687 204 time points)

Data for the car layer is based on road and traffic information provided by the French

company Mediamobile6. Arc labels are set according to the road type. Arc cost equals

travel time which depends on the type of road (motorway, side street, etc.). Circa 15% of

the road arcs have a time-dependent cost function to represent changing traffic conditions

throughout the day (see Section 3.3.1). Transfers from the car layer to the walking layer

are possible at uniformly distributed transfer arcs (label tc) or, if a rental car is used, at car

rental stations7 (label ta). Car rental stations are located in Paris and its surroundings and

cars are assumed to always be available.

The walking as well as the bicycle layer are based on road data (walking paths, cycle

paths, etc.) extracted from geographical data freely available from OpenStreetMap8. Arc

cost equals walking or cycling time (pedestrians 4km/h, cyclists 12km/h). Arcs are replicated

and inserted in each of the layers if both walking and biking are possible. Rental bicycle

stations are located mostly in the area of Paris9; they serve as connection points between

the walking layer and the bicycle layer, as rental bicycles have to be picked up and returned

at bicycle rental stations (label tv). The private bicycle layer is connected to the walking

layer at common street intersections (label tb).

6www.v-trafic.fr, www.mediamobile.fr
7Autolib’, www.autolib.eu
8See www.openstreetmap.org
9Vélib’, www.velib.paris.fr

24 Chapter 3. Network Modeling

00:00 10:00 20:00

0
20

40
60

80
12

0

Time

S
pe

ed

(a) Loop Sensor.

00:00 10:00 20:00

0
20

40
60

80
12

0

Time

S
pe

ed

(b) FCD.

Figure 3.8: Example of a speed profile of a road section based on data provided by a loop
sensor (left) and a FCD provider (right). Both graphs show vehicle speeds over the day.
It can be seen that speed is much lower during the day than during the night because of
higher traffic. FCD data contain high noise and many outliers and filter algorithms have to
be applied. Loop sensor data is more precise but does not cover the whole network.

Traffic Information

Traffic information is provided by the French company Mediamobile. Figures 3.9 and 3.10

show the arcs of the data set we are using for which traffic information is available, i.e., the

cost function of arcs is time-dependent. Figure 3.11 shows real-time traffic data of the city

of Paris as it is diffused via the company’s public website.

Producing traffic data involves collecting raw data and processing the data. While the

collection step is straightforward, it is not trivial to produce high quality traffic data and to

determine if raw data are significant and representative of real traffic conditions. For more

details, see [82, 127]. Raw traffic data are provided by traffic data sources. They provide

information about vehicle flow on stretches of roads, such as vehicle speeds, counts of vehicles,

and travel time. Traffic data sources may rely on multiple technologies. Mediamobile works

mainly with two types of traffic data sources: loop sensors and floating car data.

Loop sensors. Loop sensors are electromagnetic loops which are buried under the road.

Whenever a heavy metallic item passes above a loop, a variation in the electromagnetic field

occurs, an electrical power is created, and a voltage can be recorded. To spot vehicles, a

detection threshold on this voltage is fixed. Loop sensors can count the number of passing

vehicles and by setting two loops near each other on a stretch of road, they can also provide

information about vehicle speed. See Figure 3.8a for an example of data produced by loop

sensors.

Floating Car Data (FCD). Vehicles equipped with GPS devices communicate their

positions to a central server at pre-defined intervals. These data are called floating car data.

A map-matching algorithm calculates speeds V (x, t) on a road link x at a time t from a

series of successive positions and times by matching them on a network. One of the major

differences between FCD and Loop Sensors is that FCD is not geographically dependent

on counting stations. Connected devices are increasingly popular and this makes FCD a

3.3. Application 25

Figure 3.9: Roads with time-dependent cost functions (black), Ile-de-France (France).

Figure 3.10: Roads with time-dependent cost functions (black), Paris (France).

relevant source of traffic data as it can cover potentially the entire road network. Unlike

data collected by loop sensors, FCD data usually exhibit high noise and many outliers due

to GPS logger accuracy and projection errors on the road network (see Figure 3.8b).

26 Chapter 3. Network Modeling

Figure 3.11: Real time traffic information of the city of Paris on the public website
www.v-traffic.com provided by the company Mediamobile. Green, orange, and red roads
indicate low, intermediate, and heavy traffic, respectively.

3.4. Summary 27

Table 3.2: Graph NY (New York City).

layer nodes arcs labels

walking 104 737 317 888 f (all arcs except 2x20 arcs with labels zf1 and zf2)
public trans-
portation

43 856 78 932 pb (bus, 23 784 arcs), pm (metro, 1 702), pt (train, 348), pc (con-
nection between stations, 142), pw (walking station intern, 52 956
(omitted in automata and RE)), time-dependent arcs 25 834

bike 104 737 317 888 b
car 100 529 276 521 all paved roads cp except 2x20 arcs with labels zc1 and zc2 and

all non-time-dependent
transfers - 442 796 access to car layer by private car tc (201 058), access to bike layer

by private bike tv (209 474), access to public transportation at
stations tp (32 264)

Tot 353 859 1 436 141 time-dependent arcs 25 834 (time points 3 572 498)

Figure 3.12: New York City (Google Maps).

3.3.2 Multi-Modal Transportation Network NY (New York City)

The graph NY is composed of data of the road and public transportation system of New

York City (see map in Figure 3.12). It consists of four layers: bicycle, walking, car, and

public transportation. It is constructed in the same way as the graph of Ile-de-France and

we use the same labels to mark modes of transportation. We use geographical data from

OpenStreetMap for the car, walking, and cycling layers. The public transportation layer

is based on data freely available from the Metropolitan Transportation Authority10. See

Table 3.2 for detailed information.

3.4 Summary

In this chapter, we showed how to produce a model of a multi-modal transportation net-

work by means of a labeled graph. We used time-dependent edge costs to include traffic

information and timetable information. Efficient algorithms exist to calculate shortest path

on such a graph. This will be the topic of the next chapter.

10MTA, www.mta.info/developers (01/08/2012)

28 Chapter 3. Network Modeling

Chapter 4

Shortest Path Problem

The shortest path problem (SP) is a widely studied research topic because of its high rele-

vance in many practical applications. In particular, transportation theory provides many

applications of variations of shortest path problems. Much of the early work on this topic

has been carried out in the 1950s and 1960s at the RAND corporation. It focused mostly

on transportation network analysis [18]. The first algorithms to optimally solve shortest

path problems have been presented by Dijkstra [51], Bellman and Ford [19, 55], and Hart,

Nilsson and Raphael [68]. They are based on the labeling method which we will introduce in

Section 4.1.

While these algorithms compute optimal shortest paths, they are too slow to be em-

ployed in applications based on large real world data sets, such as the road network of a

whole country. Therefore, research in recent years has focused on the development of speed-

up techniques to accelerate these early algorithms by reducing their search space. Many

techniques have been proposed for the computation of shortest paths on static road graphs,

and algorithms capable of finding shortest paths in a few microseconds exist. Some of these

ideas have been adapted to dynamic scenarios, i.e., scenarios where arc costs are updated

regularly to represent the actual traffic situation, and the time-dependent scenario. An

overview can be found in [40]. We will shortly introduce some of the most important works

on this topic and we will treat bi-directional search and the ALT algorithm in detail, as we

will use these techniques for our new algorithm SDALT, which we will present in Chapter 5.

Some of the speed-up techniques for shortest path algorithms on road networks have also

been applied to public transportation networks. We will discuss speed-up techniques for

shortest paths on road networks and public transportation networks in Section 4.2.

We focus on finding shortest paths on multi-modal networks, which we will discuss in

Section 4.3. Other than minimizing travel time, shortest paths on such networks must

satisfy some additional constraints. First of all, feasibility has to be assured: private cars

or bicycles can only be used when they are available. Second, passenger preferences should

be respected: passengers may want to exclude some transportation modes, e.g., the bicycle

when it is raining or the car at moments of heavy traffic. The regular language constrained

shortest path problem (RegLCSP) deals with this kind of problem and can be solved in

polynomial time by a generalization of Dijkstra’s algorithm (which we will call DRegLC). In

Chapter 5, we will show how to adapt ALT and bi-directional search to speed-up DRegLC.

29

30 Chapter 4. Shortest Path Problem

4.1 Labeling Method

The labeling method for the shortest path [56] finds shortest paths from a source node r to

all other nodes in a graph. It works as follows: it maintains for every node v a tentative

distance label d(v), a parent node p(v), and a status S(v). A status of a node can be

unreached, explored, or settled. Initially, for every node v, d(v) = ∞, p(v) = nil, and

S(v) = unreached. The algorithm starts by setting d(r) = 0 and S(v) = explored. At

every successive iteration, the algorithm selects a node with status explored, it relaxes all

outgoing arcs, and sets its status to settled. Relaxing an arc (v, w) means to first check if

d(w) > d(v) + cvw, and, if that is the case, to set d(w) = d(v) + cvw, p(w) = v, and S(w) =

explored. The algorithm terminates when there are no more nodes with status explored

and if the graph does not contain cycles with negative cost, it produces a shortest path

tree, i.e., all distances and shortest paths starting at the source node r to all other nodes

of the graph. The shortest path to a node v can be retrieved by following the parent nodes

backward starting at v.

4.1.1 Label setting methods and Dijkstra’s algorithm

The order in which the next node to be scanned is selected highly influences the efficiency

of the labeling method. On a static graph with non-negative arc cost, it is easy to see that

if the algorithm always selects nodes v for which d(v) corresponds exactly to the shortest

distance between r and v, then each node is scanned at most once and arcs (w, v) for which

the status of v is settled have to not be relaxed. In this case, the algorithm is called label

setting. If the cost function is non-negative and the node to be explored at each step is

the one with smallest distance label d(v), then d(v) will correspond exactly to the shortest

distance between r and v. This has first been observed by Dijkstra [51] and the labeling

method with minimum distance label selection rule is referred to as Dijkstra’s algorithm,

which we will call Dijkstra. It scans nodes in non-decreasing order of distance to the source

node r. The algorithm terminates as soon as the target node t is assigned the status settled.

Complexity depends on the priority queue used to hold the distance labels. Runtime is in

O(|E| + |V | log |V |) if a Fibonacci heap [57] is used and O((|E| + |V |) log |V |) if a binary

heap is used. Computing the shortest path from r with starting time τstart on a graph with

time-dependent arc costs can be solved by a slightly modified algorithm: when relaxing arc

(v, w), it evaluates arc costs for time τstart + d(v), so d(w) = d(v) + cvw(τstart + d(v)) [27,53].

Dijkstra can also be applied to dynamic networks [25,26].

4.1.2 Label correction methods

We will call label correcting methods those labeling methods which may update distance

labels for nodes with status settled. In this case, a distance label may be re-inserted in

the priority queue, and the status of a node may change from settled back to explored

multiple times. On a time-dependent graph, label-correcting algorithms may be used to

compute the distant function between d∗(r, t) : T → (R), d∗(r, t)(τ) = d(r, t, τ), which finds

the cost of the shortest path for every starting time τ ∈ T [32]. It is implemented similarly

to Dijkstra, but uses functions instead of scalars as distance labels.

4.2. Uni-Modal Routing 31

Dijkstra works correctly only on graphs with non-negative arc costs. To find shortest

paths on graphs with negative arc costs, the Bellman-Ford algorithm [19,93] can be used. In

its basic structure it is similar to Dijkstra algorithm, but instead of selecting the minimum-

weight node not yet processed to relax, it simply relaxes all the arcs, and does this |V | − 1

times. Runtime of Bellman-Ford is in O(|V ||E|). Note that if a graph contains a negative

cycle, i.e., a cycle with total negative arc cost, then paths of arbitrarily low weight can be

constructed by repeatedly following the cycle. Such cases can be detected by the Bellman-

Ford algorithm, but a correct shortest path cannot be produced. The label correction method

is relevant for our algorithm SDALT which we will discuss in Chapter 5. One variant of SDALT

will use the label correction method (Section 5.3).

4.2 Uni-Modal Routing

In this section, we introduce some of the most recent and advanced speed-up techniques for

shortest paths on road and public transportation networks. We will discuss bi-directional

search and the ALT algorithm in detail, as we will use these techniques for our algorithm

SDALT, which we will present in Chapter 5.

Routing on road networks

Running times of Dijkstra on large road networks are far too high for practical application.

In the early years of the 2000s, huge road networks were made publicly available which

stimulated widespread research on speed-up techniques for Dijkstra. This culminated in

the 9th DIMACS Challenge on shortest paths [45], where many new fundamental works

on efficiently finding shortest paths were presented. Three basic components are common

to many speed-up techniques of shortest path algorithms on road networks: bi-directional

search, goal-directed search, and contraction [40, 116]. Also table lookups are becoming

increasingly relevant [1, 12]. The fastest search techniques use a combination of these basic

components. In the following, we will introduce these basic components as well as some

of the more recent fast algorithms. Relevant for this work are bi-directional search and

goal-directed search (the ALT algorithm). We will discuss them in detail in Sections 4.2.1

and 4.2.2.

Bi-directional search. When applying bi-directional search, two searches are started,

one starting at the source node and another starting at the target node. The search stops

when the two searches meet and the shortest path is the concatenation of the partial paths

produced by the two searches. This approach has been introduced and refined by [31, 65].

Bi-directional search is quite a simple technique and works well on static graphs with no time-

dependent cost functions. Its application on time-dependent graphs is more complicated [98].

Goal-directed search. The ALT algorithm [65, 66] is a goal directed search as it prefer-

ably settles nodes that are close to the target. It combines the characteristics of the A∗ algo-

rithm [68], the use of landmarks, and the triangle inequality, and is very robust and works

in dynamic and time-dependent scenarios [17,42]. A second goal directed approach on static

networks is called Geometric Containers [128]. This approach has been enhanced by [85]

32 Chapter 4. Shortest Path Problem

yielding the Arc-Flags algorithm. Here arcs of the network are explored by the search only

if they are relevant for shortest paths toward nodes near the target node. The algorithm

PCD [89] exploits precomputed distances between clusters of the graph to produce upper

and lower bounds on the distance to the target to reduce the search space. All these search

techniques require a preprocessing phase. Usually there is a trade-off between memory size

of preprocessed data and query time.

Contraction. The objective of contraction is to identify the most relevant parts of the

road network. The search query then concentrates on this limited set of roads. Note for

example that most side and secondary roads are not relevant for shortest paths where travel

time is minimized, except when located near the source or target node. Highway Hier-

archies [111, 112] exploit the implicitly present hierarchy of real world road networks (road

classes). A different approach is Contraction Hierarchies [58,61]. It is an uncomplicated and

quite simple yet very efficient speed-up technique on static road networks. The adaption of

Contraction Hierarchies to time-dependent road networks is shown in [13, 14]. The authors

of [60] adapt contraction to find shortest paths which minimize linear combinations of two

different metrics, such as travel time and energy cost. A mobile implementation that also

considers traffic jams is presented in [62].

Graph Separators. When using graph separators [70, 72, 79, 118] during preprocessing,

a multi-level partition of the graph is calculated to create a series of interconnected overlay

graphs. A query starts at the lowest level and moves to higher levels as it progresses. Early

implementations reached just modest speed-ups in comparison to other methods. However,

those fast techniques (such as Contraction Hierarchies or Transit Node Routing) rely heavily

on the strong inherent hierarchy of road networks with respect to travel time. They run much

slower on metrics with less-pronounced hierarchies [16]. Preprocessing and query times of

graph separators are essentially metric-independent. This is exploited by the authors of [35]

who apply graph separators to develop a very robust and fast algorithm which supports

arbitrary cost functions (travel distance, travel distance combined with travel time, travel

time combined with cost on U-turns, etc.), real-time traffic data, and turn costs. They report

query times of about a millisecond over continental road networks by carefully engineering

the implementation of their algorithm and by applying contraction, goal-directed approaches,

and parallelization.

Table Lookups. Another approach for speeding up shortest path queries is the use of

table lookups of preprocessed distance data. The authors of [11, 12, 113] discuss Transit

Node Routing. Here, a set of nodes (transit nodes) is first algorithmically determined.

Transit nodes have the characteristic that many shortest paths connecting distant nodes

pass through these nodes. These might be nodes representing locations of access points to

fast motorways. Then the distances between each pair of transit nodes is precomputed and

will be exploited during the shortest path query.

Advanced techniques. Several techniques exist which use a combination of bi-directional

and goal directed search, and contraction. See [16] for an overview. The authors of [36,96,99]

introduce Core-ALT for time-dependent networks. They apply contraction to produce a

4.2. Uni-Modal Routing 33

much smaller core-graph, consisting of short-cuts, which combine stretches of roads on the

original graph. The search query performs most of the search on the core-graph. The

algorithm is further accelerated by applying ALT and bi-directional search. Core-ALT is

robust to updates of the graph with real time traffic information. To further accelerate the

algorithm, approximation can be applied.

The algorithm SHARC [15,33] is a uni-directional search technique which combines Arc-

Flags and Contraction. It is a very efficient technique even on large scale networks and can

be applied to time-dependent networks. The multi-criteria scenario has been studied in [43].

The fastest algorithms on static road networks include combinations of Contraction Hi-

erarchies with Arc-Flags (CHASE) and Transit Node Routing with Arc-Flags (TNR+AF).

These algorithms answer random point-to-point shortest paths queries six orders of magni-

tude faster than Dijkstra [16]. To gain further insight as to why these techniques work so

well on road networks, the authors of [3] conducted a theoretical analysis based on modeling

road networks as graphs with low highway dimensions. Roughly speaking, these are graphs

with a very small set of important nodes being part of all long shortest paths. Based on this

analysis, the same authors developed the Hub-based Labeling algorithm (HL) [1]. During

preprocessing, it uses Contraction Hierarchies to compute distance labels for every node to-

ward important nodes (hubs) of the network which are then exploited by the shortest path

algorithm. Labels must obey a cover property: for any two nodes r and t, there exists a

node h on the shortest r-t path that belong to both labels (of r and t). An even better tech-

nique to calculate these labels is presented in [2]. It reduces average label size to surprising

69 (distances to nodes) for a graph of Western Europe with 18 million nodes. All these

techniques are carefully engineered to reduce memory space and to improve preprocessing

quality, and the authors claim that their algorithm is the fastest currently known in (static)

road networks.

Routing on public transportation networks

An important characteristic of routing in public transportation networks is the modeling of

timetable information. Two major approaches emerged: the time-expanded and the time-

dependent approach. For both, queries are answered by applying a shortest path algorithm

to a suitable constructed directed graph. In the time-expanded approach, nodes represent

departure or arrival events at a station and arcs between nodes represent elementary con-

nections between two events (i.e., served by a train or bus that does not stop along the

way). Arc cost represents travel time. In the time-dependent approach, nodes represent

stations and there is an arc between stations, if there exists at least one elementary con-

nection between the stations. Arc costs are time-dependent and are modeled with piecewise

linear functions. The authors of [107] give a detailed description of the two approaches,

evaluate their performance, and present basic route planning algorithms. They conclude

that the time-dependent approach allows for faster queries and smaller graph sizes, whereas

the time-expanded approach is more robust for modeling more complex scenarios (like train-

transfers). In this work, we will use the time-dependent approach. See Section 3.1.4 for more

detailed information.

In general, because timetable information has to be respected, speeding-up shortest path

queries on public transportation networks results more difficult than speeding-up shortest

34 Chapter 4. Shortest Path Problem

path queries on road networks. More specifically, speed-up techniques which proved to

be very efficient on road networks did not yield the same results on public transportation

networks [9,10,17,38,59,107]. One major difference is the lack of hierarchy in the network,

for example in large bus networks [9].

Note that in public transportation systems, multi-criteria optimization is very important.

Not only travel time, but also cost, convenience, number of transfers, etc., are relevant.

Pareto-optimal paths between two points can be calculated by using augmented versions

of Dijkstra [107] but these versions increase runtime significantly and the application of

acceleration techniques is even more difficult [22,52,95]. Another interesting related problem

is how to incorporate uncertainty in travel times into the shortest path calculation and to

maximise the reliability of a journee [67], e.g., minimise the probabilty to miss a conncetion.

A recent work [39] presents the algorithm RAPTOR. It is not Dijkstra-based and op-

erates directly on the timetable by adopting dynamic programming. It does not rely on

preprocessed data and thus can be easily extended to dynamic scenarios. When considering

two criteria (arrival time and number of transfers), RAPTOR is a magnitude faster than

previous Dijkstra-based approaches. The authors show how to add even more criteria, such

as fare zones, and how to accelerate the algorithm by adopting parallelization.

The algorithm presented in [49] is also not Dijkstra-based. It organizes the network

data as a single array of elementary connections, which the algorithm scans once per query.

By using this simple data structure and by careful engineering, the authors are able to

gain high spatial data locality which in turn results in very low runtimes. Furthermore, the

authors present an extension of their algorithm which is able to handle multi-criteria queries.

4.2.1 Bi-directional search

Mono-directional search techniques start at the source node and move until the target node

is found. Bi-directional search techniques start two searches, one starting at the source

node and another starting at the target node. The bi-directional version of Dijkstra uses

two mono-directional Dijkstra queries and builds two shortest path trees, one routed in the

source node (forward search) and the other in the target node (backward search). As soon as

a node v has status settled in both forward and backward queries the algorithm stops and

the concatenation of the paths r-v and v-t is a shortest r-t-path. Mono-directional Dijkstra

explores nodes circular centered in r with increasing radius until t is reached. Generally, the

search space of the bi-directional variant is smaller as it explores nodes circular centered in

the two nodes r and t until the two circles meet [17].

Time-dependency. Adapting bi-directional search to time-dependent networks has one

major difficulty: The arrival time at the target node for the backward query is not known.

However, the backward search can still assist the forward search in the following way. The

forward query is started with starting time τ , while the backward query works with minimum

weight arc costs cij . As soon as the two searches meet, i.e., a node v is settled by both

queries, a preliminary r-t-path p′ is produced by concatenating the r-v-path obtained by the

forward search with the v-t-path obtained by the backward search. The correct cost of p′ is

calculated by a re-evaluating of the v-t path in respect to arrival time τ at v calculated by

the forward search. The cost γ(p′, τ) provides an upper-bound on the cost of the optimal

4.2. Uni-Modal Routing 35

r t r t

Figure 4.1: Schematic search space for the Dijkstra algorithm (left) and the A∗ algorithm
(right).

path. Next, the two queries continue. As soon as the backward query settles a node with

cost equal to or higher than γ(p′, τ), it may stop. At this point it can be guaranteed that

the shortest r-t-path is contained in the combined search spaces of the two queries. Now

only the forward search continues but it only visits nodes settled by the backward search.

4.2.2 The ALT algorithm

The ALT algorithm [65,66] is a goal directed search as it preferably settles nodes that are close

to the shortest path toward the target node. The ALT algorithm combines the characteristics

of the A∗ algorithm, the use of landmarks, and the triangle inequality.

A∗. The A∗ algorithm [68] is similar to Dijkstra. The difference lies in the order of selection

of the next node v to be settled: A∗ employs a key k(v) = d(v) + π(v). At every iteration,

the algorithm selects the node v with the smallest key k(v). Ideally, the potential function π

should push the search toward the target. In contrast, Dijkstra strictly explores all nodes

in increasing distance from the source node r (see Figure 4.1).

Potential function. The potential function π is a function on nodes π : V → R. The

reduced cost of an arc is defined by cπvw = cvw − π(v) + π(w). We denote the graph which

uses the reduced cost on arcs as Gπ. On Gπ the length of any path P = [v1, . . . , vk] changes

to cπ(P) = c(P)− π(v1) + π(vk). In [74], it is shown that running A∗ on G is equivalent to

running Dijkstra on Gπ. Dijkstra works well only for non-negative arc costs, so not all

potential functions can be used. We call a potential function π feasible, if cπvw is positive for

all v, w ∈ V . The following characteristics are important for the algorithms in this work:

Lemma 4.2.1 ([65]). If π is feasible and for a node t ∈ V we have π(t) ≤ 0, then π(v) ≤
d(v, t),∀v ∈ V .

Lemma 4.2.2 ([65]). If π1 and π2 are feasible potential functions, then max(π1, π2) is a

feasible potential function.

The first lemma implies that a feasible potential function can be interpreted as a lower

bound on the distance from v to t, if the potential of the target node is zero. The second

lemma states that two feasible lower bound functions can be combined.

In the case where π(v) gives an exact estimate, A∗ only scans nodes on shortest paths to t

and in general, the closer π(v) is to the actual remaining distance, the faster the algorithm

will find the target.

Landmarks and triangle inequality. On a road network, the Euclidean distance or air

distance from node v to node t can be used to compute π(v). A significant improvement

36 Chapter 4. Shortest Path Problem

v

ℓ

t

d(ℓ, v)

d(ℓ, t)

d(v, t)
v

ℓ

t

d(v, ℓ)

d(t, ℓ)

d(v, t)

Figure 4.2: Landmark distances.

can be achieved by using landmarks and the triangle inequality [65]. The main idea is to

select a small set of nodes, called landmarks, ` ∈ L ⊂ V , spread appropriately over the

network, and precompute all distances of shortest paths d(`, v) and d(v, `) between these

nodes and any other node, by using Dijkstra. By using these landmark distances and the

triangle inequality, d(`, v) + d(v, t) ≥ d(`, t) and d(v, t) + d(t, `) ≥ d(v, `), lower bounds on

the distances between any two nodes v and t can be derived (see Figure 4.2).

π(v) = max
`∈L

(d(v, `)− d(t, `), d(`, t)− d(`, v)) (4.1)

gives a lower bound for the distance d(v, t) and is a feasible potential function. The A∗ al-

gorithm based on this potential function is called ALT.

Landmark selection. A crucial point of the algorithm is the quality of landmarks. A good

landmark should yield constantly high lower bounds for as many queries and for as many

nodes possible. Several heuristics have been evaluated [41,65,66]. The most used heuristics

are Avoid [65] and MaxCover [66]. The quality of landmarks produced by MaxCover is

better than the quality of landmarks produced by Avoid, but runtime of MaxCover are too

high for larger graphs.

Query. The difference of ALT with respect to Dijkstra is that it employs a key k(v) =

d(v) + π(v). Note that calculating Equation 4.1 with respect to all landmarks ` ∈ L is not

efficient. For that reason, the potential function is usually calculated on a subset Lactive ⊂ L
of active landmarks. A good strategy is to start with the two landmarks which yield the

highest potentials for r at the beginning of the query and to add new landmarks at every k

iterations of the algorithm, if non-active landmarks yield better potentials for the currently

settled nodes than the active landmarks. Whenever the set of active landmarks changes,

all keys in the priority queue have to be updated. The authors of [65, 66] propose a uni-

directional (uniALT) and bi-directional variant of ALT. We will treat bi-directional ALT in

more detail in Section 5.4.

Time-dependency. The ALT algorithm can be adapted to the time-dependent scenario

by selecting landmarks and calculating landmark distances by using the minimum weight

cost function cij = minτ∈T cij(τ). In this case, the values of the potential function represent

a lower bound of a lower bound. The quality of the landmark distances depends on the

gap between the lower and upper bound of the arc cost functions. Typically, ALT on time-

dependent networks does not perform as well as on time-independent networks. See [98] for

efficient implementations of uniALT and ALT as well as experimental data on continental size

road networks which include traffic information.

4.3. Multi-Modal Routing 37

Dynamic networks. As observed in [17,44], potentials stay feasible as long as arc weights

only increase and do not drop below a minimal value. Therefore, ALT can be applied to

dynamic networks, such as road networks which are periodically updated with real time

traffic information [42,98], without the need to re-run the calculation of landmark distances.

4.3 Multi-Modal Routing

The goal of multi-modal routing is to provide information about the best way to reach a des-

tination by considering all available modes of transportation in a multi-modal transportation

network. These are car, rental car, public transportation, bicycle, rental bicycle, taxis, walk-

ing, etc. Other than minimizing travel time, shortest paths in such networks must typically

satisfy some additional constraints. First of all, feasibility has to be assured: private cars or

bicycles can only be used when they are available. Second, passenger preferences should be

respected: passengers may want to exclude some modes of transportation, e.g., the bicycle

when it is raining or the car at moments of heavy traffic. Furthermore, they may want to

limit the number of changes when using different modes of transportation or may not want

to use toll roads. Such customization is an important characteristic of multi-modal routing

services.

The regular language constrained shortest path problem (RegLCSP) can be applied to this

kind of problem. It uses regular languages to model constraints on paths. A valid shortest

path minimizes some cost function (distance, time, etc.) and, in addition, the word produced

by concatenating the labels on the arcs along the shortest path must form an element of the

regular language. RegLCSP can be solved by a generalization of Dijkstra which we will call

DRegLC. The adaption of RegLCSP to multi-modal transportation networks has successfully

been shown in various studies [7,69,121,122]. The expressibility of regular languages proved

to be sufficient for modeling most reasonable path constraints, which might arise when

searching valid and customized shortest paths on multi-modal networks. A difficulty when

applying RegLCSP is that runtimes of DRegLC on large graphs (like Dijkstra) are too high for

real-time applications. Furthermore, because of the labeled graph and the regular language,

it is not straight-forward to apply known speed-up techniques which work well for Dijkstra

to DRegLC. In addition, as discussed in the previous section, different techniques have to be

applied when speeding-up Dijkstra on road networks or public transportation networks.

DRegLC works on a multi-modal network, which includes both roads and public transportation.

In order to cut runtime, some recent works on multi-modal routing isolate the public

transportation network from road networks so that they can be treated individually or do

not use a labeled graph and limit a priori the range of allowed types of paths [34,37,50]. In

this way, they are able to substantially accelerate runtime but lose much of the flexibility

which the use of regular language as a means to constrain the paths offers. Some attempts

to accelerate DRegLC have been made in [69]. One of the major contributions of this thesis is

the algorithm SDALT which solves RegLCSP but runs considerably faster then DRegLC. In this

section, we will discuss RegLCSP and DRegLC in detail. SDALT will be presented in Chapter 5.

38 Chapter 4. Shortest Path Problem

Related Work

Early works on the use of regular languages as a model for constrained shortest path problems

include [90,110,130], with applications to database queries and web searches. A finite state

automaton is used in [86] to model path constraints (called path viability) on a multi-modal

transportation network for the bi-criteria multi-modal shortest path problem.

The authors of [8] present a systematic theoretical study of formal language constrained

shortest path variants with respect to problem complexity for different classes of languages.

The authors prove that the problem is solvable in deterministic polynomial time when regular

languages are used and they provide a generalization of Dijkstra’s algorithm (DRegLC) to solve

RegLCSP. Also context-free languages are shown to permit polynomial algorithms. Moreover,

the paper provides a collection of problems in transportation science that can be handled

by using formal languages, such as finding alternative paths, handling turn-penalties, and

multi criteria shortest paths. Experimental data on efficient implementations of DRegLC

on multi-modal networks including time-dependent arc costs can be found in [7, 121, 122];

[122] introduces turn penalties. In [69], various speed-up techniques and their combinations

including bi-directional and goal-directed search have been applied to DRegLC on rail and road

networks. The performance of the algorithm depends on the network properties and on the

restrictivity of the regular language.

The authors of [5] apply bi-directional search and A∗ to speed-up a bi-criteria algorithm

which minimizes travel time and the number of modal transfers. The authors of [109] use

contraction on a large road network where roads are labeled according to their road type.

A subclass of the regular languages, the Kleene languages, is used to constrain the shortest

path. It can be used to exclude certain road types. Kleene languages are less expressive

than regular languages but contraction proves to be very effective in such a scenario. The

authors report on speed-ups of over 3 orders of magnitude compared to DRegLC.

An advantage of using regular languages is its flexibility: it is quite simple to forbid un-

feasible patterns of paths, e.g., private bicycle followed by metro followed by private bicycle,

to assure that paths do not exceed a maximum number of transfers, or to exclude modes

of transportation or certain types of road, e.g., toll roads. Unfortunately, it is not trivial to

apply known speed-up techniques to DRegLC. Therefore, some recent works isolate the public

transportation network from road networks so that they can be treated individually and

limit a priori the range of allowed types of paths [37,50].

The authors of [37] assume that the road network is used only at the beginning and at

the end of a path and public transportation is used in between. They apply Transit Node

Routing to the road network and an adaption of Dijkstra to the public transportation

network. In [50], contraction has been applied only to arcs belonging to the road network

of a multi-modal transportation network consisting of roads, public transport, and flight

data. The sequence of modes of transportation can be chosen freely and is modeled by a

regular language; no update of preprocessed data is needed for different regular languages.

The authors report on speed-ups of over 3 orders of magnitude compared to DRegLC. The

authors of [34] apply a recent fast algorithm [39] to public transportation and contraction to

the walking network. Their algorithms are able to compute full Pareto sets of multi-modal

shortest paths, optimizing arrival, trip, and walking time, as well as trip cost. Significant

journeys are identified by applying techniques from fuzzy logic. The authors present experi-

4.3. Multi-Modal Routing 39

mental data on a large metropolitan area including walking, taxi, rental bicycle, and public

transportation. Runtimes are fast enough for practical applications.

4.3.1 Regular language constrained shortest path problem

The objective of the formal language constrained shortest path problem [8] is to find a

path on a labeled graph which minimizes some cost function (distance, time, etc.) and

which respects constraints on the word produced by concatenating the labels on the arcs

along the shortest path. The constraints are given by a formal language and the word

must form an element of that language. In [8], a systematic theoretical study of the formal

language constrained shortest path problem can be found. The authors provide algorithmic

and complexity-theoretical results on the use of various types of languages. When regular

languages are used to model the constraints then the problem is called regular language

constrained shortest path problem, which we will denote by RegLCSP.

Definition 4.3.1 (Regular language constrained shortest path problem (RegLCSP)). Given

an alphabet Σ, a regular language L0 ∈ Σ∗, a directed, labeled graph G = (V,A,Σ), a source

node r ∈ V and a target node t ∈ V , find a shortest path from r to t, where the sequence of

labels along the arcs of the path forms a word w ∈ L0 (Word(p) ∈ L0).

Note that in this work, we consider the time-dependent variant of RegLCSP: we are looking

for shortest r-t-paths constrained by a regular language L0 with departure time τ0 ∈ T (see

Definition 2.3.2). Note that any shortest r-t-path subject to some restriction is at least as

long as a shortest unrestricted r-t-path.

4.3.2 Algorithm to solve RegLCSP

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm has been proposed

by [8]. We will call this algorithm DRegLC. It works on a product graph G× = G × A. The

product graph is constructed as follows.

Definition 4.3.2 (Product graph). Given a labeled directed graph G = (V,A,Σ), and a

non deterministic finite automaton A = (S,Σ, τ, s0, F), the product graph is G× = G×A =

(V ×, A×) where

• the node set is V × = {v× = (v, s)|v ∈ V, s ∈ S}

• and the arc set is A×. An arc ((v, s)(w, s′)) ∈ A× exists for (v, s) ∈ V ×, (w, s′) ∈ V ×

if there is an arc (v, w, l) ∈ A and a transition such that s′ ∈ δ(l, s). The cost and

label of an arc ((v, s)(w, s′)) ∈ A× corresponds to the cost and label of (v, w, l) ∈ A.

The RegLCSP can be solved in deterministic polynomial time because there is a one-to-one

correspondence between constrained r-t-paths in G and shortest paths in G× (see Algo-

rithm 1).

Theorem 4.3.3 ([8]). Finding a shortest r-t-path constrained by language L for some L ⊆
Σ∗, r ∈ V , and t ∈ V is equivalent to finding a shortest path in the product graph G× = G×A
from node (r, s0) and ending at node (t, sf) for some sf ∈ F0 in G×.

40 Chapter 4. Shortest Path Problem

Algorithm 1 [8]

Input: labeled graph G = (V,A,Σ), source r, target t, regular language L0 ⊆ Σ∗

Output: constrained shortest path

1 construct a NFA A0 = (S,Σ, δ, s0, F) from L0

2 construct the product graph G× = G×A0

3 starting from product node (r, s0), find a shortest path to all product nodes (t, sf) with
sf ∈ F .

4 from the resulting paths pick the path with minimal cost

The output of the algorithm will be a sequence of nodes:

p× = [(r, s0), (vi, si), . . . , (t, sf)], sf ∈ F (4.2)

The output path p on G can be produced by maintaining the same sequence of nodes of

p× but omitting the states, p = (r, vi, . . . , t). The function Word(p) returns the sequence of

labels along a path p. Word(p) will be an element of L0.

Complexity. It can be seen that step 3 dominates the other steps. The size of G× is

O(|A||G|) and so step 3 is in O(T (|A||G|)) where T (n) is the runtime of a shortest path

algorithm on a graph with n nodes.

Implicit computation of the product graph. The size of memory required to hold

the product graph G× is in O(T (|A||G|)). This might result in being too large for some

applications, especially when working with large networks. Therefore, the authors of [7]

propose a modification to avoid the explicit calculation of the product graph in advance:

the algorithm works on an implicit product graph by generating all the neighbors which have

to be explored only when necessary. Note that in the worst case scenario, the algorithm may

still have to visit all the nodes of the product graph and so the entire product graph will be

produced. This should rarely be the case.

Time-dependency. The algorithm can easily be adapted to the time-dependent scenario

as shown in [7], see Algorithm 2.

Our implementation. Algorithm 2 shows the pseudo code for our implementation of

DRegLC. It produces the product graph implicitly (line 10) and works with time-dependent

arc costs (line 11). It is the basis of the algorithm SDALT which we will introduce in Chapter 5.

Speed-up techniques for DRegLC

In [6, 69], various speed-up techniques and their combinations including bi-directional and

goal-directed search have been applied to the time-independent version of DRegLC on rail and

road networks. The authors use average costs (average travel times). The performance of

the algorithm depends on the network properties and on how restrictive the regular language

is. The authors of [5] apply bi-directional search and A∗ to speed-up a bi-criteria algorithm

which minimizes travel time and the number of modal transfers.

4.3. Multi-Modal Routing 41

Algorithm 2 Algorithm DRegLC to solve TDRegLCSP

Input: labeled graph G = (V,A,Σ), source r, target t, regular language L0 ⊆ Σ∗ repre-
sented as automaton A0, start time τstart

1 function DRegLC(G, r, t, τstart,A0)
2 d(v, s)←∞, p(v, s)← −1, ∀(v, s) ∈ V × S
3 pathFound ← false, d(r, s0)← 0, k(r, s0)← 0, p(r, s0)← −1
4 insert (r, s0) in priority queue Q
5 while Q is not empty do
6 extract (v, s) with smallest key k from Q
7 if v == t and s ∈ F0 then
8 pathFound ← true
9 break

10 for each (w, s′) s.t. (v, w, l) ∈ A0 ∧ s′ ∈ δ(l, s) do
11 dtmp ← d(v, s) + cvwl(τstart + d(v, s)) . time-dependency
12 if dtmp < d(w, s′) then
13 p(w, s′)← (v, s)
14 d(w, s′)← dtmp
15 k(w, s′)← d(w, s′)
16 if (w, s′) not in Q then . insert
17 insert (w, s′) in Q
18 else . decrease
19 decreaseKey (w, s′) in Q

A∗. When adapting A∗ [68] to DRegLC, the calculation of the key changes to k(v, s) = d(v, s)+

π(v, s). The choice of the potential function depends on the type of arc cost. If a distance

metric is used, the Euclidean distance distij from node i to node j represents a lower bound

on the length of the shortest i-j-path. Hence, π(v) := distvt yields a feasible potential

function. For travel time metrics, the potential function π(v) :=
distvt

vmax
can be used, where

vmax = max(i,j)∈E
distij
cij

can be seen as the maximum speed in the graph.

Sedgewick-Vitter Heuristic. If exact shortest paths are not essential, a canonical ex-

tension of the A∗ is to enforce the potential function: the Sedgewick-Vitter heuristic [119]

uses a modified key:

k(v, s) = d(v, s) + απ(v, s), α ≥ 1 (4.3)

The parameter α determines the trade-off between speed-up of runtime and path length

increase: the greater α the narrower the search space. However, some nodes essential to the

shortest r-t-path may not be visited. See [76] for another study of this heuristic.

ALT. The adaption of ALT to DRegLC is straightforward. On a labeled graph G for every

language L and every r-t-path P constrained by L the following holds:

c(P) ≥ c(Pfree) (4.4)

where Pfree is a non restricted r-t-path, i.e., it may have any sequence of labels, or r-t-path

on the un-labeled graph G. In other words, applying constraints to shortest paths never

yields shorter paths. The landmark distances calculated on the un-labeled graph G remain

42 Chapter 4. Shortest Path Problem

valid on the labeled graph. However, on a time-dependent multi-modal graph the lower

bounds now represent lower bounds on travel times and on modes of transportation.

Bi-directional search. Two queries of DRegLC are started simultaneously, one forward

query starting at source node (r, s0) and one backward query, starting from all final nodes

(t, sf), sf ∈ F0. For static graphs, the algorithm may stop as soon as a node is settled by

both searches. For the time-dependent scenario, the application of bi-directional search is

more complicated. We will discuss bi-directional search in more detail in Section 5.4. Note

that bi-directional search can be combined with A∗, with the Sedgewick-Vitter Heuristic, as

well as with ALT.

4.4 Summary

In this chapter, we introduced routing techniques on road and public transportation net-

works, as well as on multi-modal transportation networks. We discussed in detail the regular

language constrained shortest path problem and the algorithm DRegLC, which can be used to

find multi-modal shortest paths. In the next chapter, we will present the algorithm SDALT

which runs considerably faster than DRegLC in many scenarios. In Chapter 6, we will use

DRegLC and SDALT to solve the 2-way multi-modal shortest path problem.

Chapter 5

SDALT

5.1 State Dependent ALT: SDALT

To speed up DRegLC, [6] employs among other techniques goal directed search (A∗ search) and

bi-directional search on a labeled graph with constant cost function. We go a step further

and extend uni- and bi-directional ALT to speed-up DRegLC. Note that we consider labeled

graphs with time-dependent arc costs. Furthermore, we enhance the potential function by

integrating information about the constraints which are modeled by the regular language L0

(the corresponding automaton is marked as A0 = (S,Σ, δ, s0, F)), in a pre-processing phase.

E.g., consider a transportation network; in case L0 excludes a certain mode of transportation,

say buses, we can anticipate this constraint by ignoring the bus network during the landmark

distance calculation. We will show how to anticipate more complex constraints during the

pre-processing phase and we will prove that our approach is correct and yields considerable

speed-ups of DRegLC in many scenarios. We will see that one difficulty is to assure feasibility

of the potential function. Therefore, we will present two versions of SDALT: lsSDALT, which

works with feasible potential functions; and lcSDALT, which also works in cases where the

potential function is not always feasible. Furthermore, we will discuss three bi-directional

versions of SDALT.

Let us first look at the general structure of the algorithm. The algorithm SDALT, similar

to ALT, consists of a preprocessing phase and a query phase (see Figure 5.1). The main

differences consist in the way landmark distances are calculated and on SDALT being based

on DRegLC and not on Dijkstra. Potentials depend on the pair (v, s).

5.1.1 Query phase

The query phase deploys a DRegLC algorithm enhanced by the characteristics of the ALT

algorithm. As priority queue Q we use a binary heap. The pseudo code in Algorithm 3

works as follows: the algorithm maintains, for every visited node (v, s) in the product graph

G×, a tentative distance label d(v, s) and a parent node p(v, s). It starts by computing

the key k(r, s0) = π(r, s0) for the start node (r, s0) and by inserting it into Q (line 3).

At every iteration, the algorithm extracts the node (v, s) in Q with the smallest key (it

is settled) and relaxes all outgoing arcs (line 9), i.e., it checks and possibly updates the

key and tentative distance label for every node (w, s′), where s′ ∈ δ(l, s). More precisely,

43

44 Chapter 5. SDALT

landmark
distances d

landmarks

π(v)

A∗-type al-
gorithm
based on
Dijkstra

r, t, τstart

1) Preprocessing phase
on G with minimum
weight function

2) Query phase on G

(a) UniALT

constrained
landmark

distances d′

landmarks
L0

π(v, s)

A∗-type algo-
rithm based

on DRegLC

r, t, τstart, L0

1) Preprocessing phase
on labeled graph G
with min. weight function

2) Query phase
on labeled graph G

(b) SDALT

Figure 5.1: Comparison uniALT and SDALT

5.1. State Dependent ALT: SDALT 45

a new temporary distance label dtmp = d(v, s) + cvwl(τstart + d(v, s)) is compared to the

currently assigned tentative distance label (line 10). If it is smaller, it either calculates the

key k(w, s′) = π(r, s0) + dtmp and inserts (w, s′) into the priority queue or decreases its key

(line 14, 18). Note that it is necessary to calculate the potential of the node (w, s′) only

the first time it is visited. The cost of arc (v, w, l) might be time-dependent and thus has

to be evaluated for time τstart + d(v, s). The algorithm terminates when a node (t, s′) with

s′ ∈ F is settled. The resulting shortest path can be produced by following the parent nodes

backward starting from (t, s′).

Algorithm 3 Pseudo-code SDALT

Input: labeled graph G = (V,A,Σ), source r, target t, start time τstart, regular language
L0 ⊆ Σ∗ represented as automaton A0

1 function SDALT(G, r, t, τstart, L0)
2 d(v, s)←∞, p(v, s)← −1, πv,s ← 0, ∀(v, s) ∈ V × S
3 pathFound ← false, d(r, s0)← 0, k(r, s0)← π(r, s0), p(r, s0)← −1
4 insert (r, s0) in priority queue Q
5 while Q is not empty do
6 extract (v, s) with smallest key k from Q
7 if v == t and s ∈ F0 then
8 pathFound ← true
9 break

10 for each (w, s′) s.t. (v, w, l) ∈ A0 ∧ s′ ∈ δ(l, s) do
11 dtmp ← d(v, s) + cvwl(τstart + d(v, s)) . time-dependency
12 if dtmp < d(w, s′) then
13 p(w, s′)← (v, s)
14 d(w, s′)← dtmp
15 if (w, s′) not in Q then . insert
16 πw,s′ ← π(w, s

′)
17 k(w, s′)← d(w, s′) + πw,s′

18 insert (w, s′) in Q
19 else . decrease
20 k(w, s′)← d(w, s′) + πw,s′

21 decreaseKey (w, s′) in Q

5.1.2 Preprocessing phase

Preprocessed distance data is used to guide the search algorithm. This data is produced as

follows. First, as done for ALT, a set of landmarks ` ∈ L ⊂ V is selected by using the avoid

heuristic [65] (Note that we calculated the landmarks on the walking network, as all our

paths begin and end by walking). Then the costs of the shortest paths between all v ∈ V
and each landmark ` are determined. Here lies one of the major differences between SDALT

and ALT: different from ALT, SDALT uses DRegLC instead of Dijkstra to determine landmark

distances and works on G×, instead of G. This way, it is possible to constrain the cost

calculation by some regular languages which we will derive from L0. We refer to the travel

time of the shortest path from (i, s) to (j, s′), for some s′ ∈ F, which is constrained by

the regular language Li→js , as constrained distances d′s(i, j) and to the distances calculated

during the preprocessing phase as constrained landmark distances. Li→js represents the

regular language which constrains the shortest paths from (i, s) to (j, s′), for some s′ ∈ F .

46 Chapter 5. SDALT

v

ℓ

t
d′s(ℓ, v), L

ℓ→v
s

d′s(ℓ, t), L
ℓ→t
s

d′s(v, t), L
v→t
s

v

ℓ

t

d′s(v, ℓ), L
v→ℓ
s

d′s(t, ℓ), L
t→ℓ
s

d′s(v, t), L
v→t
s

Figure 5.2: Landmark distances for SDALT, Li→js represents the regular language which
constrains the shortest paths from (i, s) to (j, s′), s′ ∈ F .

The constrained landmark distances are used to calculate the potential function π(v, s), and

to provide a lower bound on the distance d′s(v, t):

π(v, s) = max
`∈L

(d′s(`, t)− d′s(`, v), d′s(v, `)− d′s(t, `)) (5.1)

Note that d′s(v, t) is constrained by Lv→ts = Ls0. Ls0 is the regular expression of As0 which is

equal to A0 except that the initial state s0 is replaced by s. Intuitively, Lv→ts represents the

remaining constraints to be considered for the shortest path from an arbitrary node (v, s)

to the target.

In the next section, we provide different methods on how to choose L`→ts , L`→vs , Lv→`s ,

Lt→`s used to constrain the calculation of d′s(`, t), d
′
s(`, v), d′s(v, `), and d′s(t, `), for all s ∈ S

(see Figure 5.2).

5.1.3 Constrained landmark distances

The only open question now is how to produce good bounds to guide SDALT efficiently toward

the target. This means, more formally, how to choose the regular languages L`→ts , L`→vs ,

Lv→`s , Lt→`s used to constrain the calculation of d′s(`, t), d
′
s(`, v), d′s(v, `), d

′
s(t, `) in order

that d′s(`, t) − d′s(`, v), d′s(v, `) − d′s(t, `) are valid lower bounds for d′s(v, t) (see Figure 5.2

and Equation 5.1). A first answer gives Proposition 5.1.1:

Proposition 5.1.1. For all s ∈ S, if the concatenation of L`→vs and Lv→ts is included in

L`→ts , then d′s(`, t) − d′s(`, v) is a lower bound for the distance d′s(v, t). Similar, if Lv→ts ◦
Lt→`s ⊆ Lv→`s then d′s(v, `)− d′s(t, `) is a lower bound for d′s(v, t).

Proof. (i) Suppose that d′s(`, t) − d′s(`, v) is not a lower bound for the distance d′s(v, t) for

some s ∈ S and L`→vs ◦ Lv→ts ⊆ L`→ts . We have d′s(`, t)− d′s(`, v) > d′s(v, t). Let w1 ∈ L`→vs

and w2 ∈ Lv→ts be the words produced by concatenating the labels on the arcs of the

shortest path with cost d′s(`, v) and d′s(v, t), respectively. d′s(`, t) − d′s(`, v) > d′s(v, t) or

d′s(`, v) + d′s(v, t) < d′s(`, t) means that the word w1 ◦ w2 /∈ L`→ts , as d′s(`, t) is a cost of a

shortest path. But this means L`→vs ◦Lv→ts 6⊆ L`→ts . (ii) The same can be proven in a similar

way for d′s(v, `)− d′s(t, `).

Proposition 5.1.1 is based on the observation that the distance of the shortest path from `

to t (v to `) must not be greater than the distance of the shortest path from ` to v to t

(v to t to `). We will now give three procedures to determine the regular languages L`→ts ,

L`→vs , Lv→`s , Lt→`s , which satisfy Proposition 5.1.1, in order to gain valid distance bounds

for a generic node (v, s) of G× (see also Table 5.1):

Procedure 1. The language produced by Procedure 1 allows every combination of labels

in Σ.

5.1. State Dependent ALT: SDALT 47

Table 5.1: With reference to a generic RegLCSP where the shortest path is constrained by
regular language L0 (A0 = (S,Σ, δ, s0, F)) the table shows three procedures to determine
the regular language to constrain the distance calculation for a generic node (n, s) of the
product graph G×.

Procedure and regular language and/or NFA

1 Lv→`s = Lt→`s = L`→vs = L`→ts = Lproc1 = {Σ∗}
Lproc1 : Aproc1 = ({s},Σ, δ : {s} × Σ→ {s}, s, {s})

2 Lv→`s = Lt→`s = L`→vs = L`→ts = Lproc2,s = {
−→
Σ (s,A0)∗}

Lproc2,s : Aproc2,s = ({s},
−→
Σ (s,A0), δ : {s} ×

−→
Σ (s,A0)→ {s}, s, {s})

3 a) L`→vs : A`→vs = (S,Σ, δ, s0, s)

b) L`→ts : A`→ts = (S,Σ, δ, s0, F ∩
←−
S (s,A0))

c) Lv→`s : Av→`s = (S,Σ, δ, s, F)

d) Lt→`s : At→`s = (S,Σ, δ, F ∩
←−
S (s,A0), F ∩

←−
S (s,A0))

f) [Optional] Clean A`→vs ,A`→ts ,Av→`s ,At→`s from all transitions and states
which are not reachable.

Procedure 2. The language produced by Procedure 2 depends on the state s of the node

(v, s). It allows every combination of labels in Σ except those labels for which there is

no longer any transition between states which are reachable from state s.

Procedure 3 produces four distinct languages for a node (v, s) of Gx. To compute the

bound d′s(l, t)− d′s(l, v) the distance calculation of d′s(l, t) is limited by all constraints

of A0, i.e., it will be constrained by A0, and that of d′s(l, v) is constrained by the

part of the constraints on A0 occurring before state s. Similar, to compute the bound

d′s(v, l)− d′s(t, l), the distance calculation of d′s(v, l) is limited by all constraints on A0

occurring after state s, and that of d′s(t, l) may only use labels on self-loops on final

states. We modify the initial and final states and then remove from the automaton

all transitions and states that are no longer reachable. If constrained shortest paths

cannot be found because landmarks are not reachable from r or t, then it suffices to

relax L0 into a new language L′0, e.g., by adding self-loops, and then apply Procedure 3

to L′0.

Consider, e.g., a transportation network offering different modes of transportation. Pro-

cedures 1 and 2 are based on the intuition that modes of transportation that are excluded

by L0 (Procedure 1), or are excluded from a certain state s onward (Procedure 2), should

not be used to compute the bounds. Procedure 3 goes a step further with the aim to in-

corporate into the preprocessed data not only the exclusion of modes of transportation but

also specific information from L0, i.e., having to maintain a certain sequence of modes of

transportation, or limitations on the number of changes of modes of transportation which

can be made during the trip.

The following Proposition 5.1.2 gives indications on when Procedure 1 will generally

produce better bounds than ALT.

Proposition 5.1.2. Given a labeled graph G = (V,A1 ∪A2,Σ) with Σ = {`1, `2}, where for

any two shortest paths p1 ⊆ A1, p2 ⊆ A2 between two arbitrary nodes, there exists an α > 1

48 Chapter 5. SDALT

such that c(p1) > αc(p2). Arcs in A1 are labeled `1 and arcs in A2 are labeled `2. For a

RegLCSP on G exclusively allowing arcs with label `1, L0 = {`∗1}, bounds calculated by using

Procedure 1 are at least a factor α greater than bounds calculated using ALT.

Proof. We have Σ = {`1, `2}. For ALT the landmark distances calculation is not constrained

which is equal to constraining the landmark distance calculation by LALT = {(`1|`1)∗}. For

Procedure 1 the language LP1 = {`∗1} is used to constrain the landmark distance calculation.

We gain bounds bALT = d′s,ALT(`, t) − d′s,ALT(`, v) and bSDALT = d′s,P1(`, t) − d′s,P1(`, v). As

landmark distances are shortest paths bSDALT > α ≤ bALT, as shortest paths by considering

only arcs A1 are at least a factor α greater than when considering arcs A1 ∪A2.

With reference to a multi-modal transportation network, Proposition 5.1.2 states that for

a RegLCSP where some fast modes of transportation are excluded, Procedure 1 produces

better bounds than ALT. Note, that Procedure 2 yields better bounds than Procedure 1 on a

graph where modes of transportation hierarchically dominate each other (car over trains over

biking over walking) and which are excluded in decreasing order of speed by L0. Procedure 3

on the other hand works for those instances of RegLCSP, which not only totally or partially

exclude arcs with certain labels, which is the case for Procedures 1 and 2, but which impose

specific conditions on the use of arcs with certain labels which are likely to inflict a major

detour from the unconstrained shortest path. These can be, for example, obligations on the

visit of arcs with infrequent labels, limitations on the use of public transportation to only

one ride, etc. See Proposition 5.1.3.

Proposition 5.1.3. Given a labeled graph G = (V,A1∪A2,Σ). The arcs of A1 are assigned

label li and the arcs of A2 are assigned l2. For every arc (i, j, l2), there is a parallel arc

(i, j, l1) with cijl1 ≤ cijl2 . For a RegLCSP with L0 on G which imposes that a label l2 has to

be visited at least once, bounds calculated by Procedure 3 are better than bounds calculated

by Procedure 1 or Procedure 2.

Proof. With reference to Figure 5.3d, let us suppose that there is only one arc (v′, v′′, l2)

which has label l2 and is close to node v and landmark ` for which we will examine

the bounds. This means that a shortest path from (v, s0) to the target satisfying L0

(solid line) will necessarily have to include arc (v′, v′′, l2). By applying Procedure 1, the

landmark distances d′s,P1(`, v) and d′s,P1(`, t) are both constrained by the automaton in

Figure 5.3c. Both distances are shown as dotted lines. By applying Procedure 3, as

stated before, the automaton in Figure 5.3a is used for the constrained landmark dis-

tance calculation of d′s,P3(`, t) and automaton in Figure 5.3b for d′s,P3(`, v) (dashed lines).

This yields d′s,P1(`, t) − d′s,P1(`, v) ≤ d′s,P3(`, t) − d′s,P3(`, v) as d′s,P1(`, t) = d′s,P3(`, t) and

d′s,P1(`, v) ≤ d′s,P3(`, v). It follows that Procedure 3 produces better bounds for node (v, s)

than Procedure 1.

Time-dependency

Similar to Dijkstra, DRegLC and also SDALT can easily be adapted to the time-dependent

scenario by selecting landmarks and calculating landmark distances by using the minimum

weight cost function cijl = minτ∈T cijl(τ). Note that in a dynamic scenario, potentials stay

valid as long as arc weights only increase and do not drop below a minimal value [7, 44].

5.1. State Dependent ALT: SDALT 49

s0 s1
l2

l1 l1, l2

(a)

s

l1

(b)

s

l1, l2

(c)

v

ℓ

t

v′ v′′

d′s,P3(ℓ, v) = d′s,P1(ℓ, v)

l2
d′s,P3(ℓ, t)

d′s,P1(ℓ, t)

d′s(v, t)

(d)

Figure 5.3: Example for Procedure 3. Automaton 5.3a is used to constrain d′s,P1(v, t) and
d′s,P3(`, t), automaton 5.3b is used to constrain the calculation of d′s,P1(`, b) and d′s,P3(`, b),
and automaton 5.3c is used to constrain d′s,P1(v, t).

50 Chapter 5. SDALT

5.2 Label Setting SDALT: lsSDALT

One condition that the A∗ and the ALT algorithm work correctly is that reduced costs are

positive, i.e., the potential function is feasible (see Section 4.2.2). In this section, we present

three methods on how to produce feasible potential functions for SDALT. We call the version

of SDALT which uses such potential functions Label Setting SDALT (lsSDALT) as it guaranties

that when a node (v, s) is extracted from the priority queue (the node is settled), then it

will not be visited again. Note that here label refers to the distance label of the algorithm

and not to the labels on arcs, which indicate the mode of transportation.

5.2.1 Feasible potential functions

We present three methods on how to produce potential functions which are feasible: a

basic method (bas), an advanced method (adv), and a specific method (spe). The basic

method (bas) applies Procedure 1 to determine the constrained distance calculation. All

nodes (v, s), s ∈ S have the same lower bound on the distance to the target node. The

advanced method (adv) applies Procedure 2 and thus produces different constrained landmark

distances and consequently different lower bounds for nodes (v, s) with different states s ∈ S.

Feasibility is guaranteed by using a slightly modified potential function:

πadv(v, s) = max{π(v, sx)|sx ∈
←−
S (s,A0)}

Finally, the third method, the specific method (spe), applies Procedure 3. Potentials are

feasible as proven by Proposition 5.2.1.

Proposition 5.2.1. By using the regular languages produced by applying Procedure 3 (see

Table 5.1) for the constrained landmark distance calculation for all nodes (v, s), the potential

function π(v, s) in Equation 5.1 is feasible.

Proof. If π(v, s) is feasible, then the reduced cost cπijl is non-negative for all arcs of graph G×.

(i) Let us look at the potential function π1(v, s) = d′s(`, t)− d′s(`, v) first. In reference to the

two arbitrary nodes (f, sf) and (g, sg) and (f, g, l), let us suppose π(v, s) is not feasible and

that the reduced cost is cfgl(τ)− π(f, sf) + π(g, sg) < 0. We have that cfgl(τ) + (d′sg (`, t)−
d′sg (`, g)) < (d′sf (`, t)− d′sf (`, f)). Let us consider two cases.

(case 1) If sf = sg = s, then cfgl(τ) + d′s(`, f) < d′s(`, g). But as d′s(`, g) is a shortest path

and s ∈ δ(l, s), this is a contradiction.

(case 2) If sg 6= sf then as for (3b), A`→tsf
includes A`→tsg we have d′sf (`, t) ≤ d′sg (`, t). So

we have that cfgl(τ) + d′sf (`, f) < d′sg (`, g). But as, for rules (3a), A`→gsg includes all

states and transitions of A`→fsf
plus the transition δ(l, sf) = sg, and as d′sg (`, g) is a

shortest path, this is again a contradiction.

(ii) Let us now look at the potential function π2(v, s) = d′s(v, `)−d′s(t, `). In reference to the

two arbitrary nodes (f, sf) and (g, sg) and arc a = ((f, sf)(g, sg), l) let us suppose π(v, s) is

not feasible and that cfgl(τ) − π(f, sf) + π(g, sg) < 0. We have that cfgl(τ) + (d′sg (g, `) −
d′sg (t, `)) < (d′sf (f, `)− d′sf (t, `)). Let us consider two cases.

(case 1) If sf = sg = s, then cfgl(τ) + d′s(g, `) < d′s(f, `). But as d′s(f, `) is a shortest path

and s ∈ δ(l, s), this is a contradiction.

5.2. Label Setting SDALT: lsSDALT 51

(case 2) If sg 6= sf then as for 3c and 3d, At→`sf
is included in At→`sg we have d′sf (t, `) ≥

d′sg (t, `). Thus cfgl(τ)+d′sg (`, g) < d′sf (`, f). But as, for (3c), Af→`sf
includes all states

and transitions of Ag→`sg plus the transition δ(l, sf) = sg, and as d′sf (f, `) is a shortest

path, this again is a contradiction.

Thus π1(v, s) = d′s(`, t) − d′s(`, v) is feasible and π2(v, s) = d′s(v, `) − d′s(t, `) is feasible.

Hence, π(v, s) = max`∈L(d′s(`, t)− d′s(`, v), d′s(v, `)− d′s(t, `)) is feasible.

For an example of how these three methods are applied, see Figure 5.6. We call the versions

of lsSDALT which apply these three methods bas_ls, adv_ls, and spe_ls. We introduce a

fourth standard version called std to evaluate lsSDALT. It does not constrain the landmark

distance calculation by any regular language and can be seen as the application of plain

uniALT to DRegLC.

5.2.2 Correctness

In the case the potential function π(v, s) is feasible, all characteristics that we discussed for

uniALT also hold for SDALT, which can be seen as an A∗ search on the product graph G×

which uses the potential function π(v, s). Hence, lsSDALT is correct and always terminates

with the correct constrained shortest path.

Proposition 5.2.2. If solutions exist, lsSDALT finds a shortest path.

5.2.3 Complexity and memory requirements

Complexity of lsSDALT is equal to the complexity of DRegLC, which is equal to the complexity

of Dijkstra on the product graph G×: O(m log n); m = |A||S|2 and n = |V ||S| are the

number of arcs and nodes of G×. The amount of memory needed to hold the distance data

computed during the preprocessing phase varies depending on the chosen method. Memory

requirements for std and bas_ls are proportional to |L|×|V |. They are up to an additional

factor |S| and 4× |S| higher for adv_ls and spe_ls, respectively.

Calculation of potential function

Note that the calculation of the potential function π(v, s) introduces a strong algorithmic

overhead for lsSDALT. The number of calculated bounds to compute the potential function

grows linearly to the number of relaxed arcs for bas_ls and spe_ls. For adv_ls, the number

of calculated bounds in worse case scenario is an additional factor |S| higher.

52 Chapter 5. SDALT

regular language
to constrain

distance calculation settled nodes in G×

algo Lv→`s0 Lt→`s0 Lv→`s1 Lt→`s1 (key in square brackets)
DRegLC no potential all
std not constrained (r, s0)[9], . . . all except (1, s0), (2, s0)
bas_ls (f |b)∗ (r, s0)[10], (5, s0)[10], (6, s1)[10], (7, s1)[11], (8, s1)[11],

(9, s1)[11], (10, s1)[11], (t, s1)[11]
adv_ls (f |b)∗ f∗ (r, s0)[10], (5, s0)[10], (8, s0)[11], (9, s1)[11], (10, s1)[11],

(t, s1)[11]
spe_ls f∗bf∗ f∗ (r, s0)[11], (8, s0)[11], (9, s1)[11], (10, s1)[11], (t, s1)[11]

(a)

lr

1 2

3 4

5 6 7

8 9 10

t

f, 1

f, 1

f, 4

f, 4
c, 1

f, 1 b, 2 f, 4 b, 3

f, 1
b, 2 f, 4

f, 4

f, 9

(b)

s0 s1
b

f f

(c)

Figure 5.4: Example showing the application of lsSDALT on a labeled graph. The shortest
r-t-paths is constrained by the regular expression f∗bf∗ (NFA in Figure 5.4c). Table 5.4a
shows the regular languages used to constrain the landmark distance calculation, as well
as the settled nodes by each algorithm. The optimal path is (r, s0), (8, s0), (9, s1),(10, s1),
(t, s1) with cost 11. Node l is the landmark.

5.3. Label Correcting SDALT: lcSDALT 53

5.3 Label Correcting SDALT: lcSDALT

The algorithm lsSDALT works correctly only if reduced arc costs are non-negative. It turns

out, however, that by violating this condition often tighter lower bounds can be produced

and required memory space can be reduced. At least in our scenario, this compensates

the additional computational effort required to remedy the disturbing effects of the use of

negative reduced costs on the underlying Dijkstra algorithm and in addition results in

shorter query times and lower memory requirements. This is why we propose a version of

SDALT, which can handle negative reduced costs. The major impact of this is that settled

nodes may be re-inserted into the priority queue for re-examination (correction). In our

setting, the number of arcs with non-negative reduced arc costs is limited and we can prove

that the algorithm may stop once the target node is extracted from the priority queue. We

name the new algorithm Label Correcting SDALT or shortly lcSDALT.

5.3.1 Query

The algorithm lcSDALT is similar to lsSDALT with the difference being that it allows re-

insertion of a node (v, s) into the priority queue Q. Note that it is necessary to calculate the

potential of a node (v, s) only the first time it is inserted in Q (see Algorithm 4, the missing

lines are the same as in Algorithm 3). See Figure 5.5 for an example.

Algorithm 4 Pseudo-code lcSDALT

15 if (w, s′) not in Q and never visited then . insert
16 πw,s′ ← π(w, s′)
17 k(w, s′)← d(w, s′) + πw,s′

18 insert (w, s′) in Q
19 else if (w, s′) not in Q then . re-insert
20 k(w, s′)← d(w, s′) + πw,s′

21 insert (w, s′) in Q
22 else . decrease
23 k(w, s′)← d(w, s′) + πw,s′
24 decreaseKey (w, s′) in Q

5.3.2 Correctness

The algorithm lcSDALT is based on DRegLC and uniALT. It suffices to prove that the algorithm

may stop as soon as the target node (t, s′), s′ ∈ F is extracted from the priority queue (see

Lemma 5.3.1 and Proposition 5.3.2). Note that π(t, s′) = 0, s′ ∈ F , that d∗(v, s) is the

distance of the shortest path from (r, s0) to (v, s), and that there are no negative cycles as

arc costs are always non-negative.

Lemma 5.3.1. The priority queue always contains a node (i, s′) with key k(i, s′) = d∗(i, s′)+

π(i, s′) which belongs to the shortest path from (r, s0) to (t, s′′) where s′′ ∈ F, s′ ∈ S.

Proof. Let q∗ = (p1 = (r, s0), . . . , pm = (t, s′′)) be the shortest path from (r, s0) to (t, s′′)

on G× (constrained by L0). At the first step of the algorithm, node p1 = (r, s0) is inserted

in the priority queue with key k(r, s) = d∗(r, s) + π(r, s) = π(r, s). When node pn with

k(i, s) = d∗(i, s) + π(i, s) for some n ∈ {1, . . . ,m} is extracted from the priority queue, at

54 Chapter 5. SDALT

π = 15 π = 10

π = 1

π = 9

π = 3 π = 0

r 1

2

3

4 t
5

5

1 1

5 5

step 1: insert node r in Q with key 15
step 2: extract node r from Q and insert node 1 in Q with key 15
step 3: extract node 1 from Q and insert node 2 in Q with key 11

and insert node 3 in Q with key 15
step 4: extract node 2 from Q and insert node 4 in Q with key 18
step 5: extract node 3 from Q and insert node 2 in Q with key 8
step 6: extract node 2 from Q and decrease node 3 in Q with key 15
step 7: extract node 4 from Q and insert node t in Q with key 15
step 8: extract node t from Q and terminate
step 9: output path: (r,1,3,2,4,t) with cost 17.

Figure 5.5: Application of algorithm lcSDALT on a simple graph (not labeled, without
constraints). The arc from node 1 to node 2 has negative reduced cost (5 + 1 − 10 = −4)
and as a result node 2 is inserted twice in the priority queue (Q). Note that lsSDALT would
have found the non-optimal path (r,1,2,4,t) with cost 20.

least one new node pn+1 = (j, s′) with d(j, s′) = d∗(j, s′) = d∗(i, s)+c(i,s)(j,s′)l(τ) is inserted

in the queue by lines 18, 21, 24.

Proposition 5.3.2. If solutions exist, lcSDALT finds a shortest path.

Proof. Let us suppose that a node (t, s′), where s′ ∈ F , is extracted from the priority queue

but its distance label is not optimal, so d(t, s) 6= d∗(t, s). Node (t, s) has key k(t, sf) =

d(t, sf) + π(t, s) 6= d∗(t, s). By Lemma 5.3.1, this means that there exists some node (i, s′)

in the priority queue on the shortest path from (r, s0) to (t, s) which has not been settled

because its key k(i, s′) > k(t, s). This means k(i, s′) = d∗(i, s′) +π(i, s′) > d(t, s) +π(t, s) =

k(t, s), which is a contradiction.

5.3.3 Constrained landmark distances

The methods (bas), (adv), and (spe) may be used with lcSDALT. However, lcSDALT produces

a slight overhead in respect to lsSDALT as it unnecessarily checks if newly inserted nodes in

Q have previously been extracted from the priority queue (line 18). Now we will present two

new methods which can only be used with lcSDALT, as reduced costs may be negative: an

adapted version of (adv) which we will call (advlc) and an adapted version of (spe) which we

will call (spelc). We name the versions of lcSDALT which apply these two methods adv_lc

and spe_lc.

(advlc) Equal to (adv), this method applies Procedure 2 to all nodes (v, s) of G×. Different

to (adv) it uses Equation 5.1 as potential function and thereby considerably reduces

the number of potentials to be calculated.

5.3. Label Correcting SDALT: lcSDALT 55

(spelc) The method (spe) applies the regular languages constructed by applying Procedure 3

for each state of L0. This is space-consuming and bounds for nodes with certain states

may be worse than those produced by Procedure 2. This is why we introduce a more

flexible new method (spelc) which provides the possibility to freely choose for each

state between the application of Procedure 2 and Procedure 3. This also provides a

trade-off between memory requirements and performance improvement as Procedure 2

consumes less space than Procedure 3. The right calibration for a given L0 and the

choice of whether to use Procedure 2 or 3 is determined experimentally. See Table 5.6

for an example.

5.3.4 Complexity and memory requirements

Complexity of lcSDALT when a feasible potential function is used is equal to the complexity

of lsSDALT. If the potential function is non-feasible the key of a node extracted from the

priority queue could not be minimal, hence already extracted nodes might have to be re-

inserted into the priority queue at a later point and re-examined (corrected). The algorithm

lcSDALT can handle this but in this case its complexity is similar to the complexity of the

Bellman-Ford algorithm (plus the time needed to manage the priority queue): O(mn log n);

m = |A||S|2 and n = |V ||S| are the number of arcs and nodes of G×. The amount of memory

needed to hold the distance data computed during the preprocessing phase for spe_lc and

adv_ls in the worst case is equal to spe_ls and adv_ls, respectively.

56 Chapter 5. SDALT

s0 s2s1
tb tb

f b f

(a) A0: Automaton allows walking (label f) and biking
(label b), transitions with label tb model the transfer be-
tween walking and biking. Once the bike is discarded
(state s2) it may not be used again. Automaton has states
S = {s0, s1, s2}, initial state s0, final states F = {s0, s2},
and labels Σ = {f, b, tb}.

L0 : f∗|(f∗tbb∗tbf∗)
(b) A0 expressed as a regular expression. The vertical bar |
represents the boolean or and the asterisk ∗ indicates that
there are zero or more of the preceding element.

methods: (bas) (adv)/(advlc) (spelc) (spe)

L`→v
s0

s0

f

f∗

L`→t
s0

s0

ftbb

(b|f |tb)∗
s0 s2s1

tb tb

f b f

f∗|(f∗tbb∗tbf∗)

L`→v
s1

s0 s1
tb

f b

f∗tbb
∗

L`→t
s1

L`→v
s2

= L`→t
s2

s0

f

f∗
s0 s1 s2

tb tb

f b f

f∗tbb
∗tbf

∗

Figure 5.6: Example of a regular language L0 and its representation as an automaton (Figure
5.6a) and regular expression (Figure 5.6b). The table lists the languages used to constrain
the landmark distance calculation for the different methods. E.g., for (bas) all (b|f |t)∗, for
(adv): L`→vs0 = L`→ts0 = L`→vs1 = L`→ts1 : (b|f |t)∗, L`→vs2 = L`→ts2 : f∗. Preprocessing space is
proportional to the number of automata used. Note that as walking is much slower than
biking it is likely that the bounds for state s0 when using (spelc) are better than when using
(spe). Memory space is also reduced as for (spelc) only three automata are used during
pre-processing instead of four. However, the potential function for (spelc) is not feasible.

5.4. Bi-directional SDALT: biSDALT 57

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

b bftv

s0

s2

s1

s3

s4tb

f tb
tp

p

tp

f

b bftv

Figure 5.7: Example of an automaton (left) and its backward automaton (right). Shortest
paths start either by walking (label f) or by taking a private bicycle: transfer to private
bicycle (tb) and moving on bicycle network (b). Once the private bicycle is discarded (s1),
the path can be continued by walking or by taking public transportation (p). The trip may
then be continued by using bicycle rental, by transferring at bicycle rental station to the
bicycle network (tv) or by walking.

r

ℓ

v
d′s(ℓ, r), L

ℓ→r
s

d′s(ℓ, v), L
ℓ→v
s

d′s(r, v), L
r→v
s

r

ℓ

v

d′s(r, ℓ), L
r→ℓ
s

d′s(v, ℓ), L
v→ℓ
s

d′s(r, v), L
r→v
s

Figure 5.8: Landmark distances for backward search.

5.4 Bi-directional SDALT: biSDALT

In this section, we discuss the bi-directional version of the SDALT algorithm. We introduce

the approaches for bi-directional search for Dijkstra and ALT described in [65,97,105] and

we describe how we adapted them to SDALT.

5.4.1 Query

In general, bi-directional SDALT (biSDALT) works as follows. It alternates between running

a lsSDALT query from source (r, s0) to target (t, sf), sf ∈ F (forward search) and a second

lsSDALT query from all (t, sf), sf ∈ F to (r, s0) (backward search). Note that the backward

search works on the backward automaton: all arcs of A0 are reversed, final states become

initial states and initial states become final states (see Figure 5.7 for an example). The

potential function for the backward search, πB (see Figure 5.8), is a slight modification of

the potential function for the forward search, πF (equal to Equations 5.1):

πF (v, s) = max
`∈L

(d′s(`, t)− d′s(`, v), d′s(v, `)− d′s(t, `)) (5.2)

πB(v, s) = max
`∈L

(d′s(`, v)− d′s(`, r), d′s(r, `)− d′s(v, `)) (5.3)

As πF and πB are not consistent (i.e., πF + πB 6= const.), we have no guarantee that the

shortest path is found when the two searches first meet [65]. We will discuss the non time-

dependent and the time-dependent case.

Non time-dependent case. For networks without time-dependent arc costs, the authors

of [105] propose a symmetric lower bounding algorithm. When applied to the product

graph G×, it works as follows. Every time the forward or backward search relaxes a node

58 Chapter 5. SDALT

(v, s) which has already been relaxed by the opposite search, it checks whether the cost of

the path (r, s0)− (v, s)− (t, sf) is smaller than that of the best shortest path (whose cost is

µ) found so far. If this is the case, we update µ. The search stops when one of the searches

is about to settle a node (v, s) with key k(v, s) ≥ µ, or when the priority queues of both

searches are empty. The authors of [65] enhance this algorithm further: when either of the

searches relaxes a node (v, s) which has been settled by the opposite search, then the search

does nothing with (v, s) (pruning).

Time-dependent case. For networks with time-dependent arc costs, the algorithm be-

comes more complicated. The symmetric lower bounding algorithm may stop as soon as a

node (v, s) with k(v, s) ≤ µ is found, because for every settled node the backward search

produces correct shortest path distances to the target. In the time-dependent scenario, arc

costs depend on the arrival time at the arc. But for the backward search the exact starting

time from the target is not known. The authors of [97] propose to use the minimum weight

arc cost for the backward search and to use the backward query only to restrict the search

space of the forward query. Their algorithm is similar to the symmetric lower bounding

algorithm. Again µ is checked and recorded at every iteration, µ is the sum of the costs

of paths (r, s0) − (v, s) (forward search) and (v, s) − (t, sf) (backward search). Note that

the cost of path (v, s)− (t, sf) is re-evaluated by considering the correct time-dependent arc

costs. When either search settles a node (v, s) with key k(v, s) ≥ µ then only the backward

search stops. The forward search continues but only visits nodes already settled by the

backward search. Pruning applies only to the backward search. The authors of [97] prove

correctness and propose the following two improvements:

Approximation. The algorithm produces approximate shortest paths of factor K if the

backward search is stopped as soon as a node (v, s) with k(v, s) ≤ K · µ is found.

Tight Potential Function. In order to enhance the potential function of the backward

search, information from the forward search is used. The potential function for the

backward search becomes

π∗B(w, s) = max{πB(w, s), d(v′, s′) + πF (v′, s′)− πB(w, s)}.

At predefined checkpoints, i.e., whenever the current distance exceeds K·πF (r,s0)
10 , k ∈

{1, . . . , 10} the node (v′, s′) that was settled most recently by the forward search is

memorized. At the checkpoints the backward queue is flushed and all the keys are

recalculated. This guarantees feasibility.

We includ these improvements in our algorithm and call this new version of SDALT biv0.

As time-dependent arcs are limited in our scenario, depending on the regular language L0,

we propose a first variation of biv0 that combines the symmetric lower-bounding algorithm

with the time-dependent version. To do this, we set a flag on nodes visited by the backward

search indicating that the node has been reached exclusively by using time-independent

arcs. If a node with flag=1 is reached by the forward search the termination condition of

the symmetric lower-bound algorithm applies. We call this version of the algorithm biv1.

Note that the bi-directional algorithm only works correctly (pruning of backward search,

approximation, tight potential function) if both πB and πF are feasible. However, whenever

a node already settled by the backward search is visited by the forward search, the potential

5.4. Bi-directional SDALT: biSDALT 59

Table 5.2: With reference to a generic RegLCSP where the SP is constrained by regular
language L0 (A0 = (S0,Σ0, δ0, s0, F0)) the table shows three procedures to determine the
regular language to constrain the distance calculation for a generic node (n, s) of the product
graph G× for the backward query.

proc. regular language and/or NFA

1B equal to Procedure 1

2B L`→vs = L`→rs = Lr→`s = Lv→`s = Lproc2,s = {
←−
Σ (s,A0)∗}

Lproc2,s : Aproc2,s = ({s},
←−
Σ (s,A0), δ : {s} ×

←−
Σ (s,A0)→ {s}, s, {s})

3B a) L`→rs : A`→rs = (S0,Σ0, δ0, s0, s0)
b) L`→vs : A`→vs = (S0,Σ0, δ0, s0, s)
c) Lr→`s : Ar→`s = A0

d) Lv→`s : Av→`s = (S0,Σ0, δ0, s, F0 ∩
←−
S (s,A0))

e) [Optional] Clean A`→rs ,A`→vs ,Ar→`s ,At→`s of all transitions and states
which are not reachable

function πF can be enhanced by using the distance already calculated by the backward

search. In the second variation of biv0, which we call biv2, as soon as the backward search

stops we switch to lcSDALT for the forward search and use the potential πF (v, s) = d(v, s) for

every visited node; d(v, s) is the distance label for node (v, s) of the backward search. This

improves potentials and prevents the computation of bounds. However, this new potential

functon is not feasible and therefore the forward search has to switch lo lcSDALT.

5.4.2 Constrained landmark distances and potential function

The potential function for the backward search is constructed semi-symmetrically to the

potential function of the forward search. We want to choose the regular languages for

L`→vs , L`→rs , Lr→`s , Lv→`s used to constrain the calculation of d′s(`, v), d′s(`, r), d
′
s(r, `),

d′s(v, `) in order that d′s(`, v) − d′s(`, r), d′s(r, `) − d′s(v, `) be valid lower bounds for d′s(r, v)

(see Figure 5.8). Similar to Proposition 5.1.1, the following Proposition 5.4.1 gives first

indications.

Proposition 5.4.1. For all s ∈ S, if the concatenation of L`→rs and Lr→vs is included in

L`→vs (L`→rs ◦Lr→vs ⊆ L`→vs), then d′s(`, v)−d′s(`, r) is a lower bound for the distance d′s(r, v).

Similarly, if Lr→vs ◦ Lv→`s ⊆ Lr→`s then d′s(r, `)− d′s(v, `) is a lower bound for d′s(v, t).

Table 5.2 summarizes three procedures on how to determine L`→vs , L`→rs , Lr→`s , Lv→`s for

the backward search. The basic method (basB) applies Procedure 1B to determine the

constrained distance calculation and is equal to Procedure 1. The advanced method (advB)

applies procedure 2B and thus produces different constrained landmark distances for nodes

with different states. Feasibility is again guaranteed by using a slightly modified potential

function:

πadv B(v, s) = max{π(v, sx)|sx ∈
←−
S (s,A0)}

Finally, the specific method (speB) applies procedure 3B.

Note that when using any of the methods, (bas), (adv) or (spe), for the forward search,

any of the methods defined for the backward search, (basB), (advB) or (speB) can be used.

60 Chapter 5. SDALT

We provide experimental data for the combinations (bas)-(basB), (adv)-(advB), and (spe)-

(speB), and called the algorithms bas-bivx, adv-bivx, and spe-bivx, respectively, where

x ∈ {1, 2, 3}. Preliminary results for the other combinations did not differ greatly, however,

it shall be noted that they provide the possibility to further balance the trade-off between

memory requirements and performance improvement.

5.4.3 Correctness

The variants of biSDALT are based on the principles outlined in [65,97] and Section 5.3.2.

Proposition 5.4.2. If solutions exist, the variants of biSDALT find a shortest path.

5.4.4 Memory requirements

Memory requirements to hold preprocessing data for bas-bivx and spe-bivx are equal to

requirements of (basls) and (spels), because of symmetry in the calculation of the potential

function for forward and backward search. For adv-bivx memory requirements in worst case

are a factor 2 higher as memory requirements for (advls).

5.5. Experimental Results 61

5.5 Experimental Results

The algorithms are implemented in C++ and compiled with GCC 4.1. A binary heap is

used as priority queue. Similar to the ALT algorithm presented in [97], periodical additions

of landmarks (max. 6 landmark) take place. Experiments are run on an Intel Xeon (model

W3503), clocked at 2.4 Ghz, with 12 GB RAM.

For the evaluation of the versions of SDALT two multi-modal transportation networks have

been used: IDF (Ile-de-France) and NY (New York City). See for more details Section 3.3.

Note that we did not consider real time traffic information, perturbations on public trans-

portation, or information about available rental cars or bicycles at rental stations. However,

SDALT is robust to variations in the graph and so this information can be included as long

as minimum travel times do not change.

5.5.1 Test instances

To test the performance of the algorithms, we recorded runtimes for 500 test instances for

26 RegLCSP scenarios. Scenarios have been chosen with the intention to represent real-world

queries, which may arise when looking for constrained shortest paths on a multi-modal

transportation network. 11 scenarios have simple constraints which only exclude modes of

transportation. The remaining 15 scenarios have more complex constraints (constraints on

number of changes, sequence of modes of transportation, e.g., bicycle followed by public

transportation followed by rental bicycles). These scenarios have been derived from six

base-automata (I, II, III, IV, V, VI) by varying the involved modes of transportation, see

Figures 5.9, 5.11, 5.13, 5.15, 5.17, and 5.19. The regular expressions of all 26 scenarios can

be found in Tables 5.5 and 5.7.

Source node r, target node t, and start time τstart are picked at random, r and t always

belong to the walking layer. Thus all paths start and end by walking. For all scenarios we

use the same 32 landmarks determined by using the avoid heuristic [65]. The determination

of the landmarks took approximately 3 minutes in our scenario. Landmarks are calculated

and placed exclusively on the walking layer as all paths of the scenarios start and end by

walking. The calculation of the constrained landmark distances involves the execution of one

backward and one forward DRegLC search from each landmark to all other nodes (one-to-all)

for each regular language determined by the different methods (bas), (adv), (spe), etc. (For

(bas) only one regular language, for (adv) up to |S| regular languages etc.) Preprocessing on

network IDF takes less than 90s for a single regular language and up to 8m for all the regular

languages determined by the chosen method (20s and 1m40s for the network NY, which is

of a smaller size). See Tables 5.3 and 5.4 for preprocessing times and sizes of preprocessed

data for all scenarios.

For each scenario, we compare average runtimes of the different variations of SDALT (see

Table 5.6) with DRegLC [8] and std (which is based on the goal directed search algorithm go

presented in [6]). To the best of our knowledge, no other comparable methods on finding

constrained shortest paths on multi-modal networks exists in the literature. A direct com-

parison to the methods presented in [109] and [50] is not possible as they do not consider

time-dependent arc costs on the road network and are only applicable to specific scenarios.

62 Chapter 5. SDALT

Table 5.3: Preprocessing times (in minutes and seconds). (For std: 50s.)

Scenarios bas_ls adv_ls bi-advvx spe_lc spe_ls
bi-basvx adv_lc bi-spevx

Ile-de-France, IDF

Ia 51s 1m11s 1m11s 2m54s 2m54s
Ib 58s 1m16s 1m11s 3m6s 3m6s
IIa 52s - - 3m23s 2m32s
IIb 57s - - 3m56s 2m58s
IIIa 1m19s 2m17s 4m37s 5m02s 4m39s
IIIb 1m11s 2m2s 4m8s 4m58s 4m20s
IIIc 50s 1m48s 3m10s 4m01s 3m33s
IIId 37s 1m31s 2m32s 3m35 2m59s
IVa 48s 2m10s 3m31s 2m49s 5m41s
IVb 48s 2m0s 3m18s 2m43s 5m32s
IVc 37s 1m42s 2m52s 2m30s 5m6s
Va 1m28s 4m41s 8m08s 6m01 6m12s
Vb 1m14s 4m0s 6m54s 5m29 5m39s
VIa 1m15s 2m35s 5m41s 5m26s 5m27s
VIb 1m8s 2m19s 5m07s 4m52s 4m52s

New York, NY

IIIb 17s 34s 1m01s 1m28s 1m10s
IIIc 16s 33s 58s 1m23s 1m8s
IIId 14s 31s 53s 1m20s 1m6s
IVb 15s 32s 59s 45s 1m38s
IVc 13s 29s 54s 44s 1m34s

Table 5.4: Size of preprocessed data (in MB).

Scenarios std_ls adv_ls bi-advvx spe_lc spe_ls
bas_ls, bi-basvx adv_lc bi-spevx

Ile-de-France, IDF

Ia, Ib 306 612 612 1224 1224
IIa, IIb 306 - - 918 612
IIIa, IIIb, IIIc, IIId 306 918 1530 1530 1224
IVa, IVb, IVc 306 918 1530 1224 1836
Va, Vb 306 1530 2754 1836 1836
VIa, VIb 306 918 1836 1224 1224

New York, NY

IIIa, IIIb, IIIc, IIId 86 258 430 430 344
IVa, IVb, IVc 86 258 430 344 516

Table 5.5: Regular expressions of test scenarios for experimental evaluation.

NFA regular expression

Ia f∗|(f∗ta(ct|cf |cp|cu)∗taf
∗

Ib f∗|(f∗tc(ct|cf |cp|cu)∗tcf
∗

IIa (f |ta|ct|cf |cp|cu)∗z(f |ta|z|ct|cf |cp|cu)∗

IIb (f |tc|ct|cf |cp|cu)∗z(f |tc|z|ct|cf |cp|cu)∗

IIIa (ta|ct|cf |cp|cu)∗zf1(b|f |tb)∗zf2f
∗

IIIb (ta|cp|cu)∗zf1(b|f |tb)∗zf2f
∗

IIIc (tp|pb|pm|pr|pt)∗zf1(b|f |tb)∗zf2f
∗

IIId (tp|pm|pt)∗zf1(b|f |tb)∗zf2f
∗

IVa (tbb
∗tb|f)(f∗|f∗tpptp(b|f |tv)∗

IVb (tbb
∗tb|f)(f∗|f∗tp(pc|p)∗tp(b|f |tv)∗

IVc (tbb
∗tb|f)(f∗|f∗tp(pm|pt)∗tp(b|f |tv)∗

Va (b|f |tb)∗|(b|f |tb)∗((tac
∗ta)|(tpp∗tp)|(tpp∗pcp∗tp))(b|f |tv)∗

Vb (b|f |tb)∗|(b|f |tb)∗((tac
∗ta)|(tp(pm|pt)∗tp)|(tp(pm|pt)∗pc(pm|pt)∗tp))(b|f |tv)∗

VIa (b|f |pm|pt|tp|tb)∗(zf |(tac∗zc(c|zc)∗ta)(f |pm|pt|tp|zf)∗

VIb (b|f |tb)∗(zf |(tac∗zc(c|zc)∗ta)(f |zf)∗

Table 5.6: List of the different variants of the SDALT algorithm.

lsSDALT lcSDALT biSDALT

bas_ls - bas_biv0 bas_biv1 bas_biv2

adv_ls adv_lc adv_biv0 adv_biv1 adv_biv2

spe_ls spe_lc spe_biv0 spe_biv1 spe_biv2

5.5. Experimental Results 63

5.5.2 Discussion

Simple constraints

For a preliminary evaluation of the impact of the use of various modes of transportation,

we first run tests for scenarios with simple regular expressions which just exclude modes

of transportation but do not impose any other constraints. We solely applied bas_ls as

the automaton has only one state. Average runtimes are listed in Table 5.7. Speed-ups in

respect to DRegLC range from a speed-up of a factor of 1.5 to a factor of 40 (up to a factor of

55 with approximation). We observed that bas_ls is always faster than DRegLC and std, and

that the faster the modes of transportation which are excluded, the higher the speed-up.

This can be explained intuitively by the observation that std guides the search toward arcs

with the lowest cost on the shortest un-constrained path to the target. Furthermore, time-

dependency has a negative impact on runtime and especially on the runtime of bi-directional

search. Lower bounds are calculated using the minimum weight cost function and thus are

sometimes very different to the real travel times especially for public transportation at night

time as connections are not served as frequently as during the day. The stopping condition

for bi-directional search for scenarios involving time-dependent arc costs is weaker than the

stopping condition used when no time-dependent arc costs are involved. That is why bi-

directional search performs often worse than uni-directional search. However, the advantage

of bi-directional search is that approximation can be applied. By applying approximation

bi-directional search runs in most scenarios faster than uni-directional search.

Complex constraints

Let us now look at the scenarios with more complex constraints. In Figures 5.10, 5.12,

5.14, 5.16, 5.18, and 5.20, we report average runtimes of the different versions of SDALT

by using methods (bas), (adv), and (spe) applied to 15 scenarios on the IDF network. Of

those 15 scenarios, we run 5 on the NY network (Figures 5.21 and 5.21). See Figure 5.10

for information on how to read these graphs. Note that the conclusions which follow apply

to both networks, IDF and NY, which proves the applicability of our algorithm to different

multi-modal transportation networks.

Let us examine the uni-directional versions of SDALT first. Runtimes of std are always the

worst, and sometimes even lower than plain DRegLC. Again, this can be explained intuitively

by the observation that it is likely to guide the search toward arcs with the lowest cost on

the shortest un-constrained path to the target. The uni-directional versions of SDALT, on

the other hand, are able to anticipate the constraints of L0 during the preprocessing phase

and thus will tend to explore nodes toward low cost arcs which are likely to not violate the

constraints of L0. Version bas_ls works well in situations where L0 excludes a priori fast

modes of transportation. See Table 5.7 and scenarios Ia and IIa, here the fastest mode of

transportation, private car, is excluded. Version adv_ls gives a supplementary speed-up in

cases where initially allowed fast modes of transportation are excluded from a later state on

A0 onward. This can be observed in scenarios IV where the use of public transportation is

excluded in state s4, and also in scenarios V. For the latter, adv_ls provides better bounds for

states s1 and s3 than bas_ls because it excludes public transportation and the use of a rental

car, respectively, during the calculation of the constrained landmark distances. Version

spe_ls has a positive impact on runtimes for scenarios where the constrained shortest path

64 Chapter 5. SDALT

Table 5.7: Experimental results for scenarios with simple regular languages: no constraints
other than exclusion of modes of transportation (average runtimes in milliseconds, prepro-
cessing time (pre) in seconds). Size of preprocessed data for scenarios on IDF and NY is
306 MB and 86 MB, respectively.

regular allowed modes of netb prec DRegLC std bas_ls bas_biv0 10%a 20%a

expression transportations [s] [ms] [ms] [ms] [ms] [ms] [ms]

(f)∗ only foot IDF 19s 88 117 5 *4 4 4
NY 6s 27 38 *1.6 2.4 1.8 1.8

(b|f |tb)∗ bike IDF 32s 199 248 13 9 *8 8
NY 12s 75 96 5.4 3.2 *2.9 2.9

(c|f |tc)∗ car IDF 57s 356 130 124 261 179 *117
NY 11s 68 96 3.8 2.6 *2.4 2.4

(f |pc|pm|pt|pr| public trans IDF 34s 182 186 *116 291 269 251
pb|tp)∗ NY 9s 63 76 *37 89 69 58

(f |pc|pm|pt|tp)∗ tram,metro IDF 24s 135 175 23 44 24 *22
NY 9s 48 64 *14 30 26 20

(f |pc|pr|tp)∗ trains IDF 29s 166 172 *73 177 162 155
NY 8s 42 57 *17 35 26 23

(f |pb|pc|tp)∗ bus IDF 28s 174 216 *157 431 419 408
NY 9s 61 79 *35 90 89 81

(b|f |tv)∗ rental bike IDF 30s 223 300 10 5 *4 4

(c|f |ta)∗ rental car IDF 51s 509 623 90 96 16 *11

(cf |cp|cu|f |tc)∗ private car, no
toll roads

IDF 57s 347 126 108 219 132 *90

(cp|cu|f |tc)∗ private car, no
toll/fast roads

IDF 55s 340 209 *134 349 251 184

a bas_biv0 with approximation factors 10% and 20%, b network,
c preprocessing time for bas_ls and bas_biv0 (in seconds). Preprocessing time for std: 50s.

is very different from the un-constrained shortest path. We simulate this by imposing the

visit of some infrequent labels, which would generally not be part of the un-constrained

shortest path. In scenarios II, III, and VI an arc with labels zf1 , zf2 , or zc1 has to be

visited which is likely to impose a detour from the un-constrained shortest path. Other

cases where spe_ls is likely to improve runtimes are scenarios in which the use of fast

modes of transportation is somehow limited (e.g., in scenario IVa public transportation can

be used only once and no changes are allowed, in scenarios V exactly one change is allowed).

The regular languages used to calculated the constrained landmark distances for spe_ls

include information about these constraints, thus spe_ls is able to anticipate and guide the

search faster to the target than bas_ls and adv_ls. Finally, versions adv_lc and spe_lc

prove to be quite efficient. Especially adv_lc runs faster than adv_ls in most scenarios as it

substantially reduces the number of calculated potentials, the negative effect on the runtime

caused by the re-insertion of nodes turns out to be out-balanced by the lower number of

visited nodes.

Let us now look at the results of the bi-directional versions. We conclude that time-

dependent arcs, in general, have a negative impact on runtimes of the bi-directional versions

of SDALT (scenarios Ib, II, V, and IV). In some cases, bi-directional search which employs

approximation runs very fast when the number of time-dependent arcs is limited (as is the

case in Ia, rental cars are available only in a small part of the graph, namely Paris and its

surroundings, and in IVc where no buses and trains may be used). Bi-directional search

5.5. Experimental Results 65

performs very well in cases where spe_ls also works well. These are cases where the con-

strained shortest path is very different from the un-constrained shortest path, e.g., scenarios

III and VI. As forward and backward search communicate with each other by using the

concept of the tight potential function, the bi-directional search is able to predict these

difficult constraints. Finally, version biv2 seems to dominate the other two bi-directional

versions in most cases. By looking at the number of settled nodes for each version, we found

that versions biv1 and biv2 settled constantly fewer nodes than biv0, but runtimes are not

always lower as the algorithmic overhead is higher.

66 Chapter 5. SDALT

s0 s2s1
ty ty

f x f

Ia: rental car ty = ta, x = ctcf cpcu
Ib: car ty = tc, x = ctcf cpcu

Figure 5.9: Scenarios I: a path starts and ends by walking. A car (scenario Ia) or rental car
(scenario Ib) may be used once.

ru
nt

im
e

[m
s]

●

●

●

● ●
●

● ●

● ●
●

● ●

● ●
●

● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

130

260

390

520

650

bas adv spe

− nfa I, IDF −

● Ia: rental car
Ib: private car

approx. 10%

approx. 20%

Figure 5.10: Experimental results for scenarios I. The different line-types indicate average
runtimes (in milliseconds [ms]) of the different SDALT variants when varying the allowed
modes of transportation. In this example, the continuous blue and dashed red lines indicate
average runtimes for the different SDALT variants for scenarios Ia and Ib. We provide average
runtimes for DRegLC, std, bas_ls, bas_bivx, adv_ls, adv_lc, adv_bivx, spe_ls, spe_lc,
and spe_bivx (abbreviated in this order on the graph). For all bi-directional versions of the
algorithms we also report average runtimes for an approximation factor of 10% and of 20% (in
the graph indicated for scenario Ib). For scenario Ia average runtimes for DRegLC are about
530ms. Applying std results in a speed-down (680ms). Instead, bas_ls works very well
(100ms) and applying bi-directional search with approximation even more so (10ms). Note
that results for an approximation of 10% and 20% for this scenario coincide. For scenario
Ib, average runtimes for DRegLC are about 360ms. std and bas_ls provide a speed-up of
about factor 3. The other algorithms do not provide better results.

5.5. Experimental Results 67

s0 s1
zc1

bfx bfx

IIa: rental car x = tactcf cpcu
IIb: private car x = tcctcf cpcu

Figure 5.11: Scenarios II: Walking, rental car (scenario IIa), or private car (scenario IIb)
may be used to reach the target. One arc with label zc1 has to be visited.

ru
nt

im
e

[m
s]

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

● ● ●

● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

330

660

990

1320

1650

bas adv spe

− nfa II, IDF −

● IIa: rental car
IIb: private car

For adv same results as for bas

Figure 5.12: Experimental results for scenarios II. For scenario IIa std is slower than
DRegLC. bas_ls and bas_bivx provide a speed-up of about factor 2. spe_ls runs slightly
faster. The bi-directional algorithms spe_bivx work very well and provide average runtime
of about 60ms (speed-up factor of about 20). For scenario IIa, std and bas_ls perform
equally, the different versions of spe provide slightly better results.

68 Chapter 5. SDALT

s0 s1 s2
zf1 zf2

x bftb f

IIIa: private car x = tactcf cpcu
IIIb: private car, no fast roads x = tacpcu
IIIc: public trans x = tppbpmprpt
IIId: metro/tram x = tppmpt

Figure 5.13: Scenarios III: the path begins with private car (scenarios IIIa and IIIb) or
public transportation (scenarios IIIc and IIId). After visiting an arc with label zf1, the
path may be continued by rental bicycle and/or by walking. Before reaching the target by
walking, an arc with label zf2 has to be visited.

ru
nt

im
e

[m
s]

●

●

●

●

● ●

●

●

●

●

●

● ●

● ● ●

●

● ●●

● ●

●

●

●

●

●

●

● ● ●● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

270

540

810

1080

1350

bas adv spe

− nfa III (1), IDF −

● IIIc: public trans.
IIId: metro/tram

ru
nt

im
e

[m
s]

●

● ●

●
●

●

●
●

●

● ●

● ●

● ● ●

●
● ●

●
● ●

●

● ●

●

● ●

● ● ●● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

420

840

1260

1680

2100

bas adv spe

− nfa III (2), IDF −

● IIIa: private car
IIIb: private car, no toll/fast roads

Figure 5.14: Experimental results for scenarios III. For all scenarios the algorithms std,
bas_ls, adv_ls, and adv_ls are not very efficient. Instead, spe_ls and spe_lc and the
bi-directional versions work very well. They provide a speed-up of a factor of 10 to 15.

5.5. Experimental Results 69

s0

s2

s1

s3

s4

tb

f

tb

tp

x

tp

f

b bftv
IVa: public trans, no changing x = pbpmprpt
IVb: public trans x = pbpmprptpc
IVc: metro/tram, no changing x = ptpm

Figure 5.15: Scenarios IV: the path begins either by walking or private bicycle. Once the
private bicycle is discarded, the path may be continued by walking. Public transportation
may be used (all public transportation without changing (scenario IVa), with changing
(scenario IVb), or only metro/tram without changing (scenario IVc)). Finally, the target
may be reached by walking or by using a rental bicycle.

ru
nt

im
e

[m
s]

●

●

●

●
●

●

●
●

●

●

●
●

●
● ●

●

● ● ●
● ● ●
●

● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

120

240

360

480

600

bas adv spe

− nfa IV, IDF −

● IVa: public trans, no changing
IVb: public trans, with changing
IVc: metro/tram, no changing

Figure 5.16: Experimental results for scenarios IV. The bi-directional versions of the algo-
rithm and std are not efficient. Instead, bas_ls, adv_ls, and spe_ls provide speed-ups of
a factor between 2 and 10.

70 Chapter 5. SDALT

s0

s1 s2

s3 s4

bftb tp

ta

pc

tp
tp

ta

x x

y bftv
Va: public trans y = ctcf cpcu, x = pbpmprpt
Vb: metro/tram y = ctcf cpcu, x = pmpt

Figure 5.17: Scenarios V: a path begins by walking or by using a private bicycle. Then either
a rental car or public transportation may be used (one or two changes). At the end a rental
bicycle or walking may be used to reach the target. In scenario Va all public transportation
may be used, in scenario Vb only metro and tram.

ru
nt

im
e

[m
s]

● ●

●

●
●

●

●
●

● ●

●
●

●

● ●
●

● ●
●●

● ●

● ●

●

●
●

●

● ● ●● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

230

460

690

920

1150

bas adv spe

− nfa V, IDF −

● Va: public trans
Vb: metro/tram

Figure 5.18: Experimental results for scenarios V. Bi-directional search does not work well if
public transportation can be used (scenario Va). Instead, if public transportation is restricted
(scenario Vb) bi-directional search is very fast. For scenario Vb, bi-directional search with
approximation of 20% provides a speed-up of about a factor of 60, spe_ls of a factor of 15.

5.5. Experimental Results 71

s0 s1

s2 s3

zf1

zc1

ta ta

bfxtv fxzf1

y yzc1

VIa: metro/tram y = ctcf cpcu, x = pmpt
VIb: no public trans y = ctcf cpcu, no x

Figure 5.19: Scenarios VI: Walking, rental bicycle, and rental car may be used, but either
an arc with label zf1 or zc1 has to be visited (scenario VIb). In scenario VIb also metro and
tram may be used.

ru
nt

im
e

[m
s]

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

500

1000

1500

2000

2500

bas adv spe

− nfa VI, IDF −

● VIa: metro/tram
VIb: no public trans

Figure 5.20: Experimental results for scenarios VI.

72 Chapter 5. SDALT

ru
nt

im
e

[m
s]

●

● ●

●

● ●

●

●

●

● ●

● ●
● ● ●

●

● ●

●

● ●

●

● ●

●

● ●

● ● ●● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

110

220

330

440

550

bas adv spe

− nfa III, NY −

● IIIa: private car
IIIc: public trans.
IIId: metro/tram

Figure 5.21: Experimental results for scenarios III on network NY.

ru
nt

im
e

[m
s]

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●
●

●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

40

80

120

160

200

bas adv spe

− nfa IV, NY −

● IVa: public trans, no changing
IVb: public trans, with changing
IVc: metro/tram, no changing

Figure 5.22: Experimental results for scenarios IV on network NY.

5.6. Summary 73

5.6 Summary

We presented different versions of uni- and bi-directional SDALT which solves the Regular

Language Constraint Shortest Path Problem. Constrained shortest paths minimize costs

(e.g., travel time) and in addition must respect constraints like preferences or exclusions of

modes of transportation. In our scenario, a realistic multi-modal transportation network,

SDALT finds constrained shortest paths 1.5 to 40 (60 with approximation) times faster than

the standard algorithm, a generalized Dijkstra’s algorithm (DRegLC).

Recent works on finding constrained shortest paths on multi-modal networks report

speed-ups of different orders of magnitude. They achieve this by using contraction hier-

archies. The authors of [109] apply contraction to a graph consisting of different road types

and limit the regular languages which can be used to constrain the shortest paths to Kleene

languages (road types may only be excluded, for example toll roads). We use Kleene lan-

guages for the scenarios reported in Table 5.7. Here, SDALT provides maximum speed-ups

of about factor 20. However, besides limiting the range of applicable regular languages,

[109] do not consider public transportation nor traffic information (time-dependent arc cost

functions) which are important components of multi-modal route planning. The authors

of [50] apply contraction only to the road network of a multi-modal transportation network

consisting of foot, car, and public transportation. Their scenario is comparable to scenarios

IV. Here, SDALT provides maximum speed-ups of about factor 3 to 10. However, the authors

do not consider traffic information nor different road classes. SDALT considers and incorpo-

rates both. Furthermore, they do not discuss how to integrate other modes of transportation

which use the road network, such as rental or private bicycle.

SDALT is a general method to speed-up DRegLC for all regular languages and which can

be applied to multi-modal networks including time-dependent arc costs. We discussed un-

der which conditions SDALT should provide good speed-ups. Another advantage of SDALT,

although not explicitly discussed in this work, is that the original graph is not modified

by the preprocessing process, as it is based on ALT. Because of that, real time information

can be incorporated easily (changing traffic information, closures of roads, etc.), without

recalculating preprocessed data (under mild conditions).

The objective of future research on constrained shortest path calculation is to further

increase speed-ups. The combination of SDALT and contraction is a viable option, although

handling time-dependency and considering the labels on arcs during the contraction process

is not straightforward. A further area of future research is to study the multi-criteria sce-

nario, where not only travel time but also, e.g., travel cost or the number of changes are

minimized.

74 Chapter 5. SDALT

Chapter 6

2-Way Multi-Modal Shortest

Path Problem

In this chapter, we present an efficient algorithm to solve the 2-way multi-modal shortest

path problem (2WMMSP). Its goal is to find an optimal return path on a multi-modal network.

It consists of an outgoing path from the source to the target location and an incoming path

from the target to the source location. The shortest incoming path is often not equal to

the shortest outgoing path as traffic conditions and timetables of public transportation vary

throughout the day. The main difficulty lies in finding an optimal parking location for a

private bicycle or private car, since they may be used for parts of the outgoing path and

will need to be picked up during the incoming path. We present experimental results on

a real-world multi-modal transportation network. Our algorithm outperforms a previous

algorithm [24]. Note that parts of this work have been presented in [73].

6.1 Problem Definition

Multi-modal transportation networks include various modes of transportation, such as cars,

public transportation, bicycles, etc. Consequently, a path on such a network may be com-

posed of parts, each of which is covered by different modes of transportation. Other than

finding shortest multi-modal paths from a source location to a target location which opti-

mally combine the use of several modes of transportation, yet another problem arises: finding

an optimal multi-modal return path or 2-way path. A 2-way path consists of two paths, an

outgoing path from the source to the target location and an incoming path from the target

to the source location. On a multi-modal transportation network, the shortest incoming

path is often not equal to the shortest outgoing path as traffic conditions and timetables of

public transportation vary throughout the day and one-way roads prevent the same path

from being taken in the opposite direction. Furthermore, in some cases the user will start

from the source location with a private car or bicycle and then transfer at a later point to

public transportation or walk in order to reach the target location. At some intermediate

parking location, the user has to park his car or bicycle which he will want to pick up on

the incoming path in order to take it home. The travel time of the incoming path may be

heavily negatively influenced by a parking location which is not picked wisely. Therefore, it

75

76 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

(a) Optimal outgoing path, conditioned incoming path, total travel time 2-way path 1h31min.

(b) Optimal incoming path, conditioned outgoing path, total travel time 2-way path 1h29min.

(c) Optimal 2-way path, total travel time 2-way path 1h25min.

Figure 6.1: Three different 2-way paths between a source location r and a target location t.
The parking location is marked by v. The blue, orange, and green lines represent walking,
bicycle, and public transportation, respectively. In Figure 6.1a, the 2-way path has been
determined by first calculating the optimal outgoing path and then the incoming path. The
incoming path is conditioned as it has to pass by the parking location v used by the outgoing
path. In Figure 6.1b, the optimal incoming path has been determined first and then the
conditioned outgoing path. Figure 6.1c shows the optimal 2-way path.

is important to choose a parking location which optimizes the combined travel times of the

outgoing and incoming path, see Figure 6.1. We call this problem the 2-way multi-modal

shortest path problem (2WMMSP).

6.1. Problem Definition 77

Let us define the concepts of a 2-way path and the 2WMMSP problem in a more formal

way (with reference to Figure 6.2):

Definition 6.1.1 (2-way path). A 2-way path

←→p = (v, po1 ◦ po2 ◦ pi1 ◦ pi2) (6.1)

between two nodes, r and t, consists of a parking node v and the concatenation of four paths

po1 = (r, . . . , v), po2 = (v, . . . , t), pi1 = (t, . . . , v), and pi2 = (v, . . . , r). po = po1 ◦ po2 is the

outgoing path and pi = pi1 ◦ pi2 is the incoming path. The cost γ(←→p , τor , τ it) of a 2-way path
←→p with departure time τor at r for path po1 and departure time τ it at t for path pi1 is

γ(←→p , τor , τ it) = γ(po1, τ
o
r) + γ(po2, γ(po1, τ

o
r) + τor) + γ(pi1, τ

i
t) + γ(pi2, γ(pi1, τ

i
t) + τ it). (6.2)

As we are interested in multi-modal paths, we constrain the four partial paths by the

regular languages Ro1, Ro2, Ri1, and Ri2. In this way, we can control the use of modes of

transportation which can be employed for the four parts of the 2-way path. See Figure 6.3

for a full example. Generally, by using the regular languages, the product graph is split into

two parts, where the common nodes of both parts represent the parking nodes. Note that

the parking node can be equal to the source or target node.

outgoing path

incoming path

τ
o
r τ

i
tr v t

po
1
, Ro

1
po
2
, Ro

2

pi
1
, Ri

1

pi
2
, Ri

2

Figure 6.2: Schema 2-way path.

Definition 6.1.2 (2-way multi-modal shortest path problem (2WMMSP)). Given a directed,

labeled graph G = (V,A,Σ) with a cost function c : A → F, a source node r ∈ V , a target

node t ∈ V , a departure time τr at r, a departure time τt at t, find a 2-way path ←→p such

that γ(←→p , τor , τ it) is minimal.

The definition can be further generalized by introducing the possibility to specify not

the departure time τor at r but the arrival time τot at t, and/or for the incoming path, not

the departure time τ it at t but the arrival time τ ir at r. Note that in these cases only the

cost function has to be slightly modified. Our algorithm can handle all these cases but for

simplicity, when describing our algorithm, we will only consider the case where departure

times are given for r and for t, for the incoming path and for the outgoing path, respectively,

as specified in Definition 6.1.1.

To the best of our knowledge, the 2WMMSP has only been previously studied in [24]. The

authors of [24] adopt a brute force algorithm by calculating all paths between the source

and target location, and a pre-determined set of possible parking nodes.

78 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

s0

s1

s2

tc

tc

c

fptp

(a) Ro = Ro
1 ◦ Ro

2: regular lan-
guage to constrain the outgoing
path.

s0

s1

s2

tc

tc

c

fptp

(b) Ri = Ri
1 ◦ Ri

2: regular lan-
guage to constrain the incoming
path.

s0

s1

s2

tc

c

(c) Ro
1 (outgoing path, r to v)

s0

s1

s2

tc

c

(d) Ri
2 (incoming path, t to v)

s1

s2
tc

fptp

(e) Ro
2 (outgoing path, v to t)

s1

s2tc

fptp

(f) Ri
1 (incoming path, v to r)

(g) Example of a 2-way path (Map from OpenStreetMap)

Figure 6.3: Example of a 2-way path with parking node v between source node r and target
node t. We suppose that all paths start and end at the foot network. The outgoing path is
constrained by the regular language Ro (represented by an automaton). It states that the
car can be used at the beginning of the journey (by accessing the car layer from the foot
layer via a transfer arc with label tc). Once the car is discarded, the journey may continue
by public transportation (labels p and tp) or by walking (label f). For partial paths pn1 , po2
only the car may be used, for partial paths pi2, po1 only public transportation and walking
may be used. Figure 6.3g shows a valid 2-way path. Orange lines mark the car, light and
dark green lines mark public transportation, and blue lines mark walking.

6.2. Basic Algorithm 79

6.2 Basic Algorithm

We call our algorithm 2-WAY-PATH-SEARCH. The basic version of the algorithm (basic) works

as follows (with reference to pseudo-code in Algorithm 5). We alternate the execution of

four DRegLC algorithms (see Section 4.3.1) on the labeled graph G (see Chapter 3) of the

transportation network: algorithms Do
1 and Do

2 for the outgoing path, and Di
1 and Di

2 for

the incoming path (see Figure 6.4). Do
1 and Di

2 calculate the shortest paths from r to all

other nodes, and Do
2 and Di

1 from t to all other nodes. Algorithms Do
1 and Di

1 apply forward

search, and algorithms Do
2 and Di

2 apply backward search (lines 3 to 12).

outgoing path

incoming path

τ
o
r τ

i
tr t

Do
1

Do
2

Di
2

Di
1

Figure 6.4: Schema algorithm 2-WAY-PATH-SEARCH.

At each iteration, we choose the algorithm D out of Do
1, Do

2, Di
1, and Di

2, which node x to

be settled next, has the lowest key among the nodes yet to be settled by the four algorithms

(line 21). D executes one DRegLC step: node x is settled and all outgoing edges are relaxed

(line 27). Now, if node x has been settled by all four algorithms, a new 2-way path has been

found, for which x is the parking node (line 29). To evaluate the cost of the 2-way path, it

suffices to add the costs of the 4 shortest paths to x as calculated by the 4 DRegLC algorithms

(line 41). If the total cost is lower than the cost µ of the best 2-way path found up to this

point, then µ is updated and x is memorized. The algorithm may stop as soon as the key

δ of the next node to be settled is greater than or equal to µ (line 24) or the four priority

queues of the four DRegLC algorithms are empty (line 20).

Time-dependency. In scenarios involving time-dependent arc costs, the starting times of

the four algorithms have to be specified. However, starting times for the backward searches

Do
2 and Di

2 are not known. For this reason, we employ the minimum weight cost function

cijl = minτ∈T cijl(τ) when evaluating arc costs. However, because of this, when calculating

the cost of a 2-way shortest path, the cost of the paths produced by Do
2 and Di

2 have first

to be re-evaluated by two DRegLC algorithms starting in x. Correct starting times are given

by the keys of x in Do
1 and Di

1 (lines 14-15 and lines 36-39).

6.2.1 Correctness

At each step, the node with minimum key is settled (among the next nodes to be settled

by the four DRegLC algorithms Do
1, Do

2, Di
1, and Di

2). In this way, the algorithm may stop

as soon as the key of the next node to be settled is higher than the cost of the current best

2-way path (line 24). Furthermore, all four paths connecting the parking node with the

source and target node are shortest paths. Therefore it is easy to see that:

80 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

Theorem 6.2.1. If a solution exists, algorithm 2-WAY-PATH-SEARCH returns an optimal

2-way path.

6.2.2 Complexity

Let n be the number of nodes in the product graph G×, and m the number of arcs. The

runtime of DRegLC is O(m × log(n)). Note that 2-WAY-PATH-SEARCH uses 4 DRegLC, so its

run time is in O(4 ×m × log(n)). In cases where paths have to be re-evaluated because of

time-dependent arcs costs, the complexity becomes O(4 ×m × log(n) + 2n ×m × log(n))

which is dominated by O(2n×m× log(n)).

6.3 Speed-up Techniques

In this section, we present some techniques to speed-up 2-WAY-PATH-SEARCH. Improvement I1

can be applied to non time-dependent as well as time-dependent scenarios. The other im-

provements are aimed for time-dependent scenarios for which re-evaluations of parking nodes

are necessary. Note that the runtime of the re-evaluation process largely dominates the run-

time of the rest of the algorithm.

I1: Improved stopping condition. We produce a lower bound λ on the cost of the

2-way paths which have not yet been found. As soon as λ > µ, the algorithm may stop. µ is

the cost of the current best 2-way path. We define the temporary cost γ(x) as the sum of

the keys of node x of the algorithms which already settled node x,

γ(x) =
∑

D∈{Do
1 ,D

o
2 ,D

i
1,D

i
2}∧settled(D,x)=1

key(D,x). (6.3)

Function key(D,x) returns the key assigned to node x by algorithmD. Function settled(D,x)

returns 1 if node x has been settled by algorithm D, 0 otherwise. We define αi as the mini-

mum γ(x) over all nodes x ∈ V × settled by exactly i of the 4 algorithms:

αi = min
x∈V ×∧numSet(x)=i

γ(x) (6.4)

numSet(x) =
∑

D∈{Do
1 ,D

o
2 ,D

i
1,D

i
2}

settled(D,x) (6.5)

Proposition 6.3.1.

λ = min
i∈1..3

(αi + (4− i)δ), (6.6)

is a valid lower bound on the costs of the 2-way paths not yet found, where δ is the cost of

the next node to be settled by Algorithm 5.

Proof. Any node x which has not yet been settled by all four algorithms must have been

settled either 0, 1, 2, or 3 times and its cost is at least 4δ, α1 +3∗δ, α2 +2∗δ, or α3 +δ. Note

that 4δ ≥ α1 + 3 ∗ δ. Thus, as soon as λ > µ, µ is the cost of the optimal 2-way path.

6.3. Speed-up Techniques 81

I2: Upper bound / lower bound. Instead of initializing µ to ∞, we use an upper

bound µub. In this way, we enforce the condition in line 34 and fewer potential parking

nodes have to be re-evaluated. We determine the upper bound in the following way (with

reference to Figure 6.5). First, the cost co of the shortest outgoing path from r to t and the

used parking node v is determined. Then, the costs ci1 and ci2 of the shortest t-v-path and

v-r-path are calculated. µ′ub = co + ci1 + ci2 is an upper bound on the cost µ∗ of the optimal

2-way path. Similarly, we calculate the cost ci of the incoming path from t to r, and we

determine the used parking location v. By calculating the costs co1 and co2 of the shortest

r-v-path and v-t-path, we obtain µ′′ub = ci+ co1 + co2. Then we set µub = min{µ1
ub, µ

2
ub}. Note

that µlb = co+co is a valid lower bound of the cost of the optimal 2-way path. The algorithm

may stop as soon as µ = µlb. The calculation of the lower bound µlb and upper bound µub

is done by running six times DRegLC. Experimental results show that this effort is largely

compensated by a consistent reduction of the number of parking nodes to be re-evaluated.

outgoing path

incoming path

τ
o
r τ

i
tr

v

t

po, co

pi
1
, ci

1
pi
2
, ci

2

(a)

outgoing path

incoming path

τ
o
r τ

i
tr

v

t

po
1
, co

1

po
2
, co

2

pi, ci

(b)

Figure 6.5: Path calculation for improvement I2.

I3: Minimum cost in time interval. Instead of calculating the minimum cost of an arc

over the entire time horizon T = [0, P], we may use the minimum cost of a more restricted

time interval [τ1, τ2], see Figure 6.6. For algorithm Do
2 we may use cost:

cτ1,τ2jkl = min
τ∈[τ1,τ2]

cjkl(τ) (6.7)

where

τ1 = τor

τ2 = τor + µup − ci − key(Do
2, j)

(6.8)

82 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

The starting time at r is τor , values prior to this time may be ignored. The cost of the

outgoing path is bound by τor + µup − ci minus the key of the node j. ci is the cost of the

shortest path from t to r as defined for I2. The interval for evaluating the cost function for

Di
2 is determined in a similar way.

●

f(τ)

τ
P τ1 τ2

●

f(τ)

τ
P

Figure 6.6: Minimum value over entire time period and in time interval [τ1, τ2].

I4: Postponed re-evaluation. The re-evaluation of parking nodes may be postponed

until the stopping condition applies (line 24). Note that in this case, the upper bound µ

stays constant and is not updated, lines 36-44 are not executed. The parking nodes are re-

evaluated in order of increasing temporary cost (as calculated on line 33). The re-evaluation

stops as soon as µ is greater than or equal to the temporary cost of the next parking node

to be re-evaluated.

I5: Parallel computing. When applying I4, the re-evaluation of parking nodes can be

parallelized. Groups of parking node are assigned to a process which re-evaluates their costs.

I6: SDALT for re-evaluation. The SDALT (bas_ls) algorithm (see Chapter 5) instead of

DRegLC is used for the re-evaluation of nodes in lines 14-15.

I7: Multi-criteria algorithm for re-evaluation. For a list of parking nodes, let us

suppose that only one path out of the four paths p1
o, p

2
o, p

1
i , and p2

i , which compose a 2-

way path, is not known. In order to find the parking node which minimizes the cost of

the optimal 2-way path a multi-criteria-type DRegLC algorithm may be applied, instead of

re-evaluating every parking node one by one. We call this algorithm Multi-Source-DRegLC.

For each node, it keeps track of a key which is a tuple composed of the starting time τ at the

node and its cost c. However, Multi-Source-DRegLC only optimizes the cost of the shortest

path. The algorithm is initialized by inserting all the parking nodes with their respective

starting times and costs into the priority queue. At each step the tuple with the lowest cost

is extracted and its outgoing arcs are relaxed. As soon as a tuple belonging to the target

node is extracted from the priority queue, the algorithm may stop.

The following dominance rule applies (based on the FIFO property, see Section 2.3). A

tuple (τi, ci) dominates a tuple (τj , cj) if

τi < τj ∧ ci − cj ≤ τi − τj . (6.9)

6.3. Speed-up Techniques 83

Approximation. Finally, approximation can be applied. The algorithm is stopped when

µlb × (1 + α) ≥ µ, (6.10)

where α > 0 is the approximation factor and µlb a lower bound of the cost of the optimal

2-way path (see I2). By applying approximation, we have that

µ ≤ (1 + α)µ∗. (6.11)

The cost µ of the found 2-way path will not be higher than (1 + α) ∗ µ∗, where µ∗ is the

cost of the optimal 2-way path.

84 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

Algorithm 5 2-WAY-PATH-SEARCH to calculate an optimal 2-way path. DRegLC (G,R, d)
returns a DRegLC algorithm instance working on graph G, with regular language R, and
direction d (f for forward search, b for backward search). Method init(D,r,t,τ) initializes
the algorithm D with source node r, target node t, and start time τ , −1 is used if a parameter
is not specified. Function settled(D,x) returns 1 if node x has been settled by algorithm D,
0 otherwise.

Input: labeled graph G = (V,A,Σ), source r, target t, starting times τ i and τo, regular
languages Ro1, Ro2, Ri1, and Ri2

1 function 2-WAY-PATH-SEARCH(G, r, t, τ i, τo, Ro1, R
o
2, R

i
1, R

i
2)

2 . create and initialize algos calculating outgoing path
3 Do

1 ← DRegLC (G,Ro1, f)
4 Do

2 ← DRegLC (G,Ro2, b)
5 init(Do

1, r,−1, τo)
6 init(Do

2, t,−1,−1)
7

8 . create and initialize algos calculating incoming path
9 Di

1 ← DRegLC (G,Ri1, f)
10 Di

2 ← DRegLC (G,Ri2, b)
11 init(Di

1, t,−1, τ i)
12 init(Di

2, r,−1,−1)
13 . create algos for re-evaluation of paths (time-dependency)
14 Do

re ← DRegLC (G,Ro2, f)
15 Di

re ← DRegLC (G,Ri2, f)
16

17 µ←∞ . holds cost of current best 2-way path
18 p← ∅ . holds current best 2-way path
19

20 while priority queues of Do
1, D

o
2, D

i
1, D

i
2 are not empty do

21 D ← getAlgoMinNextKey(Do
1, D

o
2, D

i
1, D

i
2)

22 x← extractNextNodeFromPriorityQueue(D)
23 δ ← getKey(D,x) . Returns key of node x in algorithm D
24 if µ ≤ δ then . Stopping condition
25 return
26

27 runOneStep(D) . Settles next node and relaxes outgoing edges
28

29 . check if new 2-way path has been found
30 if settled(Do

1, x)∧ settled(Do
2, x)∧ settled(Di

1, x)∧ settled(Di
2, x) then

31

32 . re-evaluation of paths (time-dependency)
33 µtmp =

∑
D∈{Do

1 ,D
o
2 ,D

i
1,D

i
2}

getKey(D,x) . temporary cost

34 if µtmp >= µ then
35 continue
36 init(Do

re, x, t,getKey(Do
1, x) + τor)

37 tmpo2 ← getCostShortestPath(Do
re)

38 init(Di
re, x, r,getKey(Di

1, x) + τ it)
39 tmpi2 ← getCostShortestPath(Di

re)
40

41 µtmp =getKey(Do
1, x)+tmpo2+getKey(Di

1, x) + tmpi2
42 if µtmp < µ then . new best 2-way path found
43 µ← µtmp

44 p← getPath(Do
1) ◦ getPath(Do

re) ◦ getPath(Di
1) ◦ getPath(Do

re)

6.4. Experimental Results 85

6.4 Experimental Results

The algorithm 2-WAY-PATH-SEARCH was implemented in C++ and compiled with GCC

4.1. Experiments are run on a Bi-Xeon quad-core 3 Ghz, 64Gb RAM. We used the multi-

modal transportation network of Ile-de-France (IDF) as presented in Section 3.3.1. Approxi-

mately 20 000 nodes can be used as parking nodes for cars and approximately 220 000 nodes

for bicycles. In addition, we ran tests on a smaller graph which only includes roads and

public transportation of the city of Paris. We refer to this graph as PARIS. It consists of

137 459 nodes and 505 198 arcs (of which 34 221 are time-dependent). Approximately 3 000

nodes can be used as parking nodes for cars and approximately 25 000 nodes as parking

nodes for bicycles.

Scenarios

To evaluate runtimes of our algorithm, we generated test instances for five scenarios, see

Figures 6.7, 6.8, and 6.9. Source node r and target node t have been determined randomly

on the walking network. For each scenario, we created three test sets by varying how to set

departure and arrival times of the 2-way path. We set departure and arrival times

(morning/evening) to 9h and 17h, to simulate the commute to work,

(random) to random times in [0h, 23.59h],

(day/night) to times during the night (in [23h, 5h]) for incoming path, and times during

the day (in [5h, 23h]) for outgoing path, or vice versa. This should be the most difficult

scenario as public transportation timetables and traffic conditions differ substantially

between night and day times.

s0

s1

s2

tb

tb

b

f

(a) Ro

s0

s1

s2

tb

tb

b

f

(b) Ri

r v t

bicycle
foot

foot
bicycle

(c)

Figure 6.7: Scenario (b/f): The parking may be reached by bicycle, the rest of the journey is
done by walking. No time-dependent edges are used in this scenario so departure or arrival
times are not relevant.

86 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

s0

s1

s2

tb

tb

b

fptp

(a) Ro

s0

s1

s2

tb

tb

b

fptp

(b) Ri

τ
o
r

τ
i
t

r v t

bicycle
public transp.

public transp.
bicycle

(c) Scenario (b/fp)1.

τ
o
r

τ
i
t

r v t

bicycle public transp.

public transp.
bicycle

(d) Scenario (b/fp)2, path v-t has to be re-evaluated.

τ
o
r

τ
i
t

r v t

bicycle public transp.

public transp.
bicycle

(e) Scenario (b/fp)3, paths v-t and t-v have to be re-evaluated.

Figure 6.8: Scenarios (b/fp)x: the parking may be reached by bicycle, the rest of the
journey is done either by public transportation or walking. We distinguish three versions.
For scenario (b/fp)1 the arrival time τot at t for the outgoing path and the departure time τ it
at t for the incoming path, for scenario (b/fp)2 the departure times τor , τ it , and for scenario
(b/fp)3 the departure time τor and the arrival time τ ir are given. Thick lines indicate paths
which have to be re-evaluated.

s0

s1

s2

tc

tc

c

fptp

(a) Ro

s0

s1

s2

tc

tc

c

fptp

(b) Ri

τ
o
r

τ
i
t

r v t

car public transp.

public transp.
car

(c) (c/fp), paths r-v and v-r have to be re-evaluated.

Figure 6.9: Scenario (c/fp): the parking may be reached by car, the rest of the journey is
done either by public transportation or walking. The arrival time τot at t for the outgoing
path and the departure time τ it at t for the incoming path are given. Thick lines indicate
paths which have to be re-evaluated.

6.4. Experimental Results 87

Table 6.1: Average runtimes and maximal runtimes (in parenthesis) for scenarios which
do not require re-evaluation of parking nodes on the graphs PARIS and IDF. Runtimes
are in seconds and are reported for the version basic of the algorithm and basic including
improvement I1.

Graph Scenario basic +I1

PARIS (b/f) 0.08, (0.13) 0.04, (0.09)
(b/fp)1 0.33, (1.22) 0.23, (1.16)

IDF (b/f) 0.73, (1.28) 0.37, (0.73)
(b/fp)1 1.65, (2.16) 0.78, (1.81)

Results for scenarios without re-evaluation of parking nodes

Table 6.1 reports average runtimes and maximal runtimes (in parenthesis) of the algorithm

for scenarios which do not require re-evaluations of parking nodes. We provide results for

the basic version of the algorithm 2-WAY-PATH-SEARCH as well as the version which includes

the improved stopping condition (IP1). IP1 improves average runtimes slightly for scenario

(b/f) and by approximately factor 2 for scenario (b/fp)1.

Results for scenarios with re-evaluation of parking nodes

Tables 6.2 and 6.3 report average runtimes for scenarios which require re-evaluation of park-

ing nodes on the graphs of Paris (PARIS) and Ile-de-France (IDF), respectively. We provide

results for the basic version of the algorithm 2-WAY-PATH-SEARCH as well as relevant versions

where we enhanced the basic version with combinations of the improvements which have been

discussed in Section 6.3. Note that a10% indicates that approximation of a factor of 10%

has been applied. In parenthesis, we report maximal runtimes, the number of instances with

incorrect solutions (e), and the maximal deviation from the optimal solution (m). Values in

italic indicate runtimes of the different versions of 2-WAY-PATH-SEARCH which include SDALT

(bas_ls) for the re-evaluation of parking nodes. For improvement (I5), we used 4 processes

in parallel for the re-evaluations.

Average runtimes of the basic version are very high, especially if the number of parking

nodes to be re-evaluated is high. Improvements I1, I2, I3, I5, and I7 prove to be very

effective. In general, instances of scenarios (b/fp)2 and (b/fp)3 seem to be more difficult to

be solved than instances of scenario (c/fp). This can be explained by the data provided in

Table 6.4. They summarizes the gaps between lower and upper bounds for the test instances

of the three scenarios. We found that in scenario (c/fp) the car almost always dominates

public transportation. Consequently, the parking node is often located near the destination.

Lower and upper bound coincide in many cases, or only a few parking nodes have to re-

evaluated, and so the algorithm stops early. This is also often the case for scenarios (b/fp)2

and (b/fp)3, but less frequently. Generally, for short trips, the bicycle dominates public

transportation, and for long trips public transportation dominates the bicycle. Interesting

for us, becaue more difficult to solve, are those cases where the two modes of transportation

complement each other or when one mode of transportation dominates one path and another

mode of transportation the other path (incoming or outgoing). This is often the case for

scenarios (b/fp)2 and (b/fp)3 where start times have been set (random) and (night/day).

If the departure time is during the day, for long trips, public transportation generally will

88 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

dominate the bicycles, but during the night, even for long trips the bicycle will dominate

public transportation.

Improvement I4 has a positive impact on runtimes, speed-ups up to factor 2 can be

observed for tests on the graph IDF. Overall, the impact on runtimes of SDALT and paral-

lelization (I5) is as expected. They improve runtimes on average by a factor 2. SDALT is

more efficient for scenario (c/fp) as it includes the car which dominates public transporta-

tion. SDALT works better for road networks than for public transportation networks. In

some rare cases the application of SDALT on networks including public transportation can

increase runtime. Note that parallelization is only applied to scenarios which require two

re-evaluations per parking node, i.e., scenarios (c/fp) and (b/fp)3.

Figure 6.10 reports the test results for (b/fp)3 (night/day) on the network PARIS in

more detail. It can be observed that 59 difficult instances require 98% of the total runtime

for the basic algorithm and over 2 000 re-evaluations. The maximal number of parking nodes

to be re-evaluated is 25 400. Applying I1, I2, I3, I4, and I7 improves the maximal runtime

over all instances by a factor 4 and the maximal number of re-evaluations required is reduced

to 12 206. Average runtime drops from 66s to about 10s, but unfortunately the maximal

runtime is still 171s and 14 difficult instances still require 90% of runtime. By applying

SDALT, parallelization, and an approximation of 10%, average and maximal runtime are

reduced to 1.40s and 42s, respectively. In general, we observed that in all test sets, runtime

is dominated by a few difficult instances, while the majority of instances can be handled in

reasonable time.

Scenario (b/fp)3 proves to be challenging. Maximal runtimes for the network PARIS still

reach 42s even when parallelization and approximation is applied. For the larger network

IDF results are worse, with average runtimes exceeding 300s. To solve these instances in

reasonable times future research is required, such as the investigation of stronger stopping

conditions and of techniques to further decrease the number of parking nodes which have to

be re-evaluated. Average runtimes for scenario (b/fp)2 are around 2s on the network IDF.

For this scenario only one re-evaluation per parking node is required, which can be done

efficiently by applying improvement I7. However, maximal runtimes still reach 20s.

Nevertheless, we are able to report faster runtimes than those reported by the authors of

[24]. Runtimes of their brute force algorithm are quite high even when limiting the number

of possible parking nodes. They report average runtimes of 60s when considering 20 parking

nodes and of 900s for 80 parking nodes (on a Pentium M, 1.86 Ghz). Note that we work on

a considerably larger graph than [24].

6.5 Summary

In this chapter, we presented the algorithm 2-WAY-PATH-SEARCH which is able to solve

the 2-way multi-modal shortest path problem. We proposed a basic version of the algorithm

and a series of improvements (including the application of SDALT) and presented experimen-

tal results on a realistic multi-modal transportation network. We were able to report better

runtimes than those reported in the literature. The majority of the instances can be solved

in a few seconds of calculation time. Future reseach directions include the investigation of

stronger stopping conditions and of techniques to further decrease the number of parking

nodes which have to be re-evaluated.

6.5. Summary 89

T
ab

le
6.

2:
A

ve
ra

ge
ru

n
ti

m
es

in
se

co
n

d
s

of
d
iff

er
en

t
ve

rs
io

n
s

o
f

a
lg

o
ri

th
m

2
-
W
A
Y
-
P
A
T
H
-
S
E
A
R
C
H

o
n

th
e

n
et

w
o
rk

P
A

R
IS

.
In

p
a
re

n
th

es
is

m
a
x
im

a
l

ru
n
ti

m
e.

(a
10

%
)

in
d
ic

at
es

th
at

ap
p
ro

x
im

at
io

n
h
as

b
ee

n
ap

p
li
ed

,
(e

)
g
iv

es
th

e
n
u
m

b
er

o
f

in
st

a
n
ce

s
w

it
h

w
ro

n
g

re
su

lt
s

a
n
d

(m
)

th
e

m
a
x
im

a
l

g
a
p

b
et

w
ee

n
ca

lc
u

la
te

d
an

d
op

ti
m

al
so

lu
ti

on
.

V
al

u
es

in
it

al
ic

in
d
ic

at
e

th
at

S
D
A
L
T

h
a
s

b
ee

n
a
p
p

li
ed

.
→

a
n
d
↔

in
d
ic

a
te

th
a
t

o
n
e

a
n
d

tw
o

re
-e

va
lu

a
ti

o
n

o
f

p
a
rk

in
g

n
o
d

es
a
re

re
q
u
ir

ed
,

re
sp

ec
ti

v
el

y.

S
ce

n
a
ri

o
b
a
si

c
+

I1
+

I2
+

I3
+

I7
+

I1
+

I2
+

I3
+

I7
+

I1
+

I2
+

I3
+

I7
+

I1
+

I2
+

I3
+

I7
+

I1
+

I2
+

I3
+

I7
+

I4
+

I4
+

a
1
0
%

+
I4

+
I5

+
I4

+
I5

+
a
1
0
%

(m
o
rn

in
g
/
ev

en
in

g
)

(b
/
f
p
) 2

→
5
.8

9
,

(5
9
)

0
.2

7
,

(1
.0

4
)

0
.2

4
,

(0
.7

6
)

0
.2

2
,

(0
.4

2
)

(e
:

1
,

m
:

1
%

)
-

-
-

1
.0
5
,
(1
9
)

0
.3
5
,
(1
.1
6
)

0
.3
5
,
(1
.0
9
)

0
.2
7
,
(0
.5
7
)

(e
:
1
,
m
:
1
%
)

-
-

-

(b
/
f
p
) 3

↔
3
2
,

(2
3
5
)

1
.0

2
,

(4
1
)

1
.0

1
,

(4
1
)

0
.2

2
,

(0
.4

5
)

(e
:

2
,

m
:

1
%

)
0
.4

9
,

(1
2
)

0
.2

3
,

(0
.4

7
)

(e
:

2
,

m
:

1
%

)
9
.3
7
,
(1
0
1
)

0
.5
8
,
(1
0
)

0
.6
9
,
(1
0
)

0
.2
7
,
(0
.6
3
)

(e
:
2
,
m
:
1
%
)

0
.3
1
,
(4
.6
3
)

0
.2
1
,
(0
.4
8
)

(e
:
2
,
m
:
1
%
)

(c
/
f
p
)

↔
0
.5

1
,

(1
.8

2
)

0
.1

5
,

(0
.5

7
)

0
.1

5
,

(0
.5

7
)

0
.1

5
,

(0
.5

7
)

(e
:

1
,

m
:

2
%

)
0
.1

7
,

(0
.5

7
)

0
.1

4
,

(0
.5

7
)

(e
:

1
,

m
:

2
%

)
0
.1
5
,
(0
.7
0
)

0
.1
0
,
(0
.6
2
)

0
.1
2
,
(0
.7
2
)

0
.1
0
,
(0
.6
1
)

(e
:
1
,
m
:
2
%
)

0
.1
0
,
(0
.5
9
)

0
.0
9
,
(0
.6
7
)

(e
:
1
,
m
:
2
%
)

(r
a
n
d
o
m

)

(b
/
f
p
) 2

→
1
5
,

(9
2
8
)

0
.3

8
,

(4
.1

0
)

0
.3

2
,

(2
.2

0
)

0
.2

3
,

(2
.0

5
)

(e
:

5
,

m
:

2
%

)
-

-
-

1
8
,
(1

6
6
1
)

0
.4
7
,
(4
.6
1
)

0
.4
3
,
(3
.1
2
)

0
.3
4
,
(2
.9
2
)

(e
:
5
,
m
:
2
%
)

-
-

-

(b
/
f
p
) 3

↔
6
7
,

(1
1
9
7
)

3
.9

5
,

(1
0
4
)

3
.9

1
,

(9
3
)

1
.0

0
,

(3
2
)

(e
:

3
,

m
:

8
%

)
1
.6

0
,

(3
1
)

0
.5

2
,

(1
2
)

(e
:

3
,

m
:

8
%

)
4
4
,
(1

7
0
4
)

3
.1
2
,
(8
3
)

3
.4
5
,
(9
1
)

1
.2
7
,
(5
4
)

(e
:
3
,
m
:
8
%
)

0
.8
5
,
(1
4
)

0
.4
1
,
(1
0
)

(e
:
3
,
m
:
8
%
)

(c
/
f
p
)

↔
1
.7

0
,

(1
8
)

0
.1

8
,

(0
.5

6
)

0
.1

8
,

(0
.5

7
)

0
.1

6
,

(0
.3

0
)

(e
:

0
,

m
:

0
%

)
0
.2

0
,

(0
.5

6
)

0
.1

6
,

(0
.3

0
)

(e
:

0
,

m
:

0
%

)
0
.6
0
,
(4
.3
6
)

0
.1
4
,
(0
.4
7
)

0
.1
4
,
(0
.4
7
)

0
.1
3
,
(0
.2
9
)

(e
:
0
,
m
:
0
%
)

0
.1
3
,
(0
.4
0
)

0
.1
2
,
(0
.2
8
)

(e
:
0
,
m
:
0
%
)

(n
ig

h
t/

d
ay

)

(b
/
f
p
) 2

→
1
2
,

(1
2
9
)

0
.4

7
,

(3
.9

9
)

0
.3

4
,

(1
.3

5
)

0
.2

5
,

(1
.4

1
)

(e
:

7
,

m
:

9
%

)
-

-
-

5
.0
5
,
(7
6
)

0
.5
6
,
(3
.6
2
)

0
.5
0
,
(1
.9
6
)

0
.3
7
,
(1
.9
0
)

(e
:
7
,
m
:
7
%
)

-
-

-

(b
/
f
p
) 3

↔
6
6

(5
3
4
)

9
.6

2
,

(1
7
7
)

1
0
,

(1
7
1
)

4
.9

6
,

(1
6
7
)

(e
:

2
,

m
:

4
%

)
3
.0

2
,

(4
6
)

1
.5

7
,

(4
6
)

(e
:

2
,

m
:

4
%

)
3
3
,
(4
3
7
)

8
.1
4
,
(2
1
2
)

8
.7
6
,
(2
0
3
)

5
.5
2
,
(1
9
3
)

(e
:
2
,
m
:
4
%
)

2
.2
2
,
(4
1
)

1
.4
0
,
(4
2
)

(e
:
2
,
m
:
4
%
)

(c
/
f
p
)

↔
1
.8

9
,

(1
5
)

0
.1

7
,

(0
.6

5
)

0
.1

7
,

(0
.6

5
)

0
.1

6
,

(0
.3

3
)

(e
:

0
,

m
:

0
%

)
0
.1

7
,

(0
.5

3
)

0
.1

6
,

(0
.3

5
)

(e
:

0
,

m
:

0
%

)
0
.6
6
,
(8
.0
4
)

0
.1
3
,
(0
.7
3
)

0
.1
3
,
(0
.7
2
)

0
.1
2
,
(0
.3
4
)

(e
:
0
,
m
:
0
%
)

0
.1
2
,
(0
.5
3
)

0
.1
2
,
(0
.3
2
)

(e
:
0
,
m
:
0
%
)

90 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

T
ab

le
6.3

:
A

vera
g
e

ru
n
tim

es
in

secon
d
s

o
f

d
iff

eren
t

versio
n
s

o
f

a
lg

o
rith

m
2
-
W
A
Y
-
P
A
T
H
-
S
E
A
R
C
H

o
n

th
e

n
etw

ork
ID

F
.

In
p
aren

th
esis

m
ax

im
al

ru
n
tim

e.
(a1

0%
)

in
d
ica

tes
th

at
ap

p
rox

im
a
tion

h
a
s

b
een

ap
p

lied
,

(e)
g
ives

th
e

n
u

m
b

er
o
f

in
sta

n
ces

w
ith

w
ro

n
g

resu
lts

an
d

(m
)

th
e

m
ax

im
al

gap
b

etw
een

calcu
lated

an
d

o
p
tim

a
l

solu
tio

n
.

V
a
lu

es
in

ita
lic

in
d
ica

te
th

a
t
S
D
A
L
T

h
a
s

b
een

a
p

p
lied

.
→

a
n
d
↔

in
d
ica

te
th

a
t

o
n
e

an
d

tw
o

re-evalu
ation

of
p

ark
in

g
n

o
d
es

are
req

u
ired

,
resp

ectively.
W

e
d

o
n
o
t

rep
ort

d
eta

iled
resu

lts
fo

r
scen

a
rio

s
(b/

f
p
)
3

(ra
n

d
o
m

)
a
n
d

(b/
f
p
)
3

(n
ig

h
t/

d
ay

)
as

av
erage

ru
n
tim

es
ex

ceed
300s.

S
cen

a
rio

b
a
sic

+
I1

+
I2

+
I3

+
I7

+
I1

+
I2

+
I3

+
I7

+
I1

+
I2

+
I3

+
I7

+
I1

+
I2

+
I3

+
I7

+
I1

+
I2

+
I3

+
I7

+
I4

+
I4

+
a
1
0
%

+
I4

+
I5

+
I4

+
I5

+
a
1
0
%

(m
o
rn

in
g
/
ev

en
in

g
)

(b/
f
p
)
2

→
4
9
5
,

(1
0

1
6
3
)

2
.6

8
,

(2
8
)

2
.3

4
,

(8
.8

0
)

1
.8

8
,

(3
.7

7
)

(e:
5
,

m
:

3
%

)
-

-
-

3
8
5
,
(1
0
5
7
0
)

2
.5
1
,
(2
6
)

2
.2
1
,
(7
.3
1
)

1
.8
3
,
(3
.6
5
)

(e:
5
,
m
:
3
%
)

-
-

-

(b/
f
p
)
3

↔
2

7
6
3
,

(2
4

8
2
9
)

1
2
,

(3
6
2
)

1
3
,

(3
3
7
)

1
.6

9
,

(5
.0

5
)

(e:
3
,

m
:

7
%

)
5
.7

7
,

(1
1
3
)

1
.7

5
,

(5
.4

2
)

(e:
3
,

m
:

7
%

)
1
6
1
6
,
(1
8
5
0
1
)

7
.4
7
,
(1
8
3
)

1
0
,
(2
0
0
)

2
.3
0
,
(4
.7
2
)

(e:
1
,
m
:
4
%
)

4
.0
5
,
(5
0
)

1
.7
1
,
(3
.4
4
)

(e:
1
,
m
:
4
%
)

(c/
f
p
)

↔
1
2
9
,

(1
5
9
0
)

3
.1

5
,

(7
.5

3
)

3
.2

1
,

(7
.4

5
)

3
.0

5
,

(6
.7

1
)

(e:
0
,

m
:

0
%

)
2
.1

5
,

(4
.8

3
)

2
.1

4
,

(4
.8

3
)

(e:
0
,

m
:

0
%

)
5
0
,
(6
7
3
)

2
.2
9
,
(5
.6
3
)

2
.0
7
,
(5
.1
7
)

2
.1
4
,
(5
.4
4
)

(e:
0
,
m
:
0
%
)

1
.9
2
,
(4
.6
4
)

1
.9
4
,
(4
.8
6
)

(e:
0
,
m
:
0
%
)

(ra
n
d
o
m

)

(b/
f
p
)
2

→
9
0
6
,

(1
3

6
9
2
)

5
.0

2
,

(6
7
)

3
.3

0
,

(2
1
)

2
.6

2
,

(2
1
)

(e:
1
0
,

m
:

6
%

)
-

-
-

5
0
3
,
(1
4
5
0
6
)

3
.7
1
,
(4
1
)

2
.8
6
,
(1
3
)

2
.3
3
,
(1
3
)

(e:
1
0
,
m
:
6
%
)

-
-

-

(c/
f
p
)

↔
1
0
8
,

(2
1
2
9
)

3
.7

6
,

(9
.6

7
)

3
.3

3
,

(8
.6

7
)

2
.9

8
,

(6
.2

9
)

(e:
0
,

m
:

0
%

)
2
.8

6
,

(6
.9

9
)

2
.4

1
,

(5
.5

3
)

(e:
0
,

m
:

0
%

)
2
8
,
(3
4
8
)

2
.0
9
,
(5
.5
6
)

2
.0
5
,
(4
.7
8
)

1
.7
6
,
(4
.2
2
)

(e:
0
,
m
:
0
%
)

1
.8
7
,
(4
.4
4
)

2
.0
9
,
(5
.0
3
)

(e:
0
,
m
:
0
%
)

(n
ig

h
t/

d
ay

)

(b/
f
p
)
2

→
7
4
4
,

(1
6

0
4
3
)

5
.0

5
,

(6
4
)

3
.1

1
,

(1
6
)

2
.3

4
,

(1
6
)

(e:
1
4
,

m
:

4
%

)
-

-
-

4
0
6
,
(1
3
0
2
6
)

3
.7
4
,
(3
7
)

2
.8
6
,
(1
5
)

2
.1
8
,
(1
4
)

(e:
1
4
,
m
:
4
%
)

-
-

-

(b/
f
p
)
3

↔
2
2
2
,

(2
9
0
0
)

1
0
4
,

(2
1
1
0
)

(e:
6
,

m
:

9
.8

%
)

1
5
0
,
(3

8
8
2
)

5
1
,
(1

4
1
2
)

(e:
4
,
m
:
3
%
)

(c/
f
p
)

↔
8
0
,

(1
4
4
2
)

2
.9

8
,

(2
1
)

3
.3

0
,

(1
9
)

2
.8

0
,

(6
.4

4
)

(e:
1
,

m
:

0
.0

3
%

)
2
.2

8
,

(9
.2

2
)

2
.1

4
,

(4
.5

8
)

(e:
1
,

m
:

0
.0

3
%

)
2
1
,
(2
8
5
)

1
.6
4
,
(5
.7
4
)

1
.6
5
,
(4
.9
1
)

1
.5
6
,
(3
.8
7
)

(e:
1
,
m
:
0
.0
3
%
)

1
.6
6
,
(4
.7
3
)

1
.5
9
,
(3
.9
0
)

(e:
1
,
m
:
0
.0
3
%
)

6.5. Summary 91

Table 6.4: Maximal gap (max) between lower bound µlb and upper bound µub. Number of
instances with a gap which lies in the specified intervals (Network IDF).

Scenario max 0%]0%,1%]]1%,5%]]5%,10%]]10%,20%] >20%

morning/evening
(b/fp)2 39min (13%) 79 5 10 4 2 0
(b/fp)3 35min (10%) 86 2 6 5 1 0
(c/fp) 1min (2%) 98 2 0 0 0 0

random
(b/fp)2 113min (35%) 60 4 9 10 10 7
(b/fp)3 223min (33%) 67 2 5 9 13 4
(c/fp) 1min (2%) 94 5 1 0 0 0

night/day
(b/fp)2 120min (30%) 57 5 12 10 11 5
(b/fp)3 261min (47%) 54 1 12 9 19 5
(c/fp) 1min (2%) 92 8 0 0 0 0

algo: basic
average runtime: 66s
max runtime: 534s

max #re-evaluations: 25 400

% total average
#re-evaluations #instances runtime runtime

2 0 0% 0.0
3-10 1 <1% 0.1
11-99 7 <1% 0.1
11-499 9 <1% 0.2
500-999 9 <1% 1.6

1 000-1 999 15 1.8 8.0
>2 000 59 97.9 110.4

algo: basic+I1+I2+I3+I4+I7
average runtime: 10s
max runtime: 171s

max #re-evaluations: 12 206

%total average
#re-evaluations #instances runtime runtime

2 66 1.2% 0.2
3-10 4 <1% 0.4
11-99 3 <1% 0.4
11-499 5 <1% 0.9
500-999 2 1.5% 7.2

1 000-1 999 6 7.0% 11.7
>2 000 14 89.5% 64.1

Figure 6.10: Detail for tests on scenario (b/fp)3 (night/day) on the network PARIS. The
tables report number of instances, percentage of runtime with respect to total runtime over
all 100 instances, and average runtime in function of the number of re-evaluations of parking
nodes.

92 Chapter 6. 2-Way Multi-Modal Shortest Path Problem

Chapter 7

Dial-A-Ride

In addition to combining existing modes of transportation in a better way, it is also important

to study innovative transportation services to provide better mobility to passengers. The

Dial-a-Ride (dar) system is such a service. It offers passengers the comfort and flexibility

of private cars and taxis at a lower cost and higher eco-efficiency by combining similar

transportation demands. It is thus in line with the demands of the sustainable development

requirement and is already employed in several cities. It works as follows: a fleet of vehicles

without fixed routes and schedules carries people from their pick-up point to their delivery

point. Pre-specified time windows must be respected, and service levels for passengers as

well as operation costs should be optimized. The resulting routing and scheduling problem

is NP-hard and can be modeled by a mixed integer linear programming formulation. In this

chapter, we discuss a Granular Tabu Search algorithm for the static Dial-a-Ride Problem

with the objective of producing good solutions in a short amount of time (less than 1 minute).

We evaluate the algorithm on test instances from the literature: For most instances, our

results are close to the results of another approach and we report new best solutions for

some instances.

7.1 Introduction

A Dial-a-Ride (dar) system organizes the routing of a fleet of vehicles in order to satisfy

transportation demands. Passengers may request the service by calling a central unit. They

have to specify their pick-up point, their delivery point, the number of passengers, and some

limitations on the service time (e.g., the earliest departure time). The routes and schedules

of the vehicles vary depending on the received requests. In the static dar, the passenger asks

for the service in advance and the routing of the vehicles is determined before the system

starts to operate; in the dynamic dar, the passenger can call during the service time and the

routes are updated in real time. A dar system offers passengers the comfort and flexibility

of private cars and taxis at a lower cost. It is suited to serve sparsely populated areas, weak

demand periods, or passengers with specific requirements (elderly, disabled). Applications

have been reported from several cities, e.g., Bologna [125], Copenhagen [88], Milan [129].

The resulting Dial-a-Ride Problem (darp) is NP-hard, as it generalizes the Pickup

and Delivery Problem with Time Windows (pdptw). Various solution strategies have been

described in the literature and various types of objective functions have been studied. They

93

94 Chapter 7. Dial-A-Ride

include the minimization of the number of vehicles used, the mean travel or waiting time of

passengers, the maximization of the number of passengers served, and the level of service

provided.

Several exact algorithms have been proposed for the single-vehicle case. Among the first

were [46, 106, 120]. Multi-vehicle cases have been studied in [54] as well as in [28]. In the

latter the author describes a Branch and Cut algorithm. To speed up running times, several

heuristics for different versions of darp have been produced. Parallel insertion algorithms

have been presented in [77, 88]. A heuristic for the transportation of handicapped people

with a homogeneous fleet of vehicles has been proposed in [75]. The algorithm presented

by [125] deals with a heterogeneous fleet of vehicles. The authors of [29] propose a Tabu

Search to solve a static darp with a homogeneous fleet of vehicles. A darp with a fixed

number of vehicles and whose objective function maximizes service quality for passengers is

discussed in [129]. The authors of [47] propose a constructive heuristic for the darp based

on the assignment of passengers to vehicles according to a regret function. Moreover, the

authors of [48] propose a method for the fleet sizing of a transport service on-demand. The

authors of [87] present an insertion-based constructive heuristic and the authors of [78] use

a genetic algorithm. Recent approaches using Variable Neighborhood Search and Hybrid

Large Neighborhood Search to solve the darp are presented in [103, 104]. The authors

of [101] discuss multi-criteria optimization within a Tabu Search mechanism for the darp.

For a broader overview of existing solution techniques and darp-variants we refer to [30,102].

In [21] an overview of dynamic darp-variants can be found.

We address the static darp with time windows and a fixed fleet of vehicles. Our objective

is to maximize the number of passengers served and the quality of service, as well as to

minimize overall system cost. There is a growing interest in fast methods for obtaining high

quality darp solutions, since darps often occur in a dynamic real-world setting. Therefore,

the main contribution of this paper is the development of an efficient and fast heuristic to

produce good solutions in a short amount of time (up to 3 minutes). We propose a new

Granular Tabu Search which uses information provided by the solution of a simple and

useful sub-problem to guide the local search process. This sub-problem provides distance

information and clusters of close requests. The idea is that passengers who are close both

spatially (in terms of the distance between pick-up and delivery points) and temporally (with

respect to time windows) are probably best served by the same vehicle in order to produce

good solutions. This intuition has been introduced in [129] to produce good initial solutions.

In this paper, we go a step further and exploit this information during the improvement

phase of a Granular Tabu Search algorithm in order to limit the local search neighborhood.

We compare the results of our new algorithm with the results of a Variable Neighborhood

Search (VNS) algorithm presented in [103] and a Genetic Algorithm (GA) presented in [78].

Results are based on instances from [29]. Our algorithm performs well and produces better

results than the GA for all instances. In the long run, the VNS performs better than our

Granular Tabu Search algorithm, but we are able to report better results on test instances

after 60s of optimization time.

This chapter is organized as follows. The problem definition and its mixed integer linear

programming formulation are given in Section 7.2. Section 7.3 describes the Granular Tabu

Search approach and how it has been applied to solve darp. Computational results and

conclusions close the chapter.

7.2. The dial-a-ride problem 95

7.2 The dial-a-ride problem

Let R = {1, . . . , n} be a set of requests. Each request i consists of two nodes, i+ and i−.

A load qi must be taken from i+ to i−. Let N+ = {i+, i ∈ R} be the set of pick-up nodes

and N− = {i−, i ∈ R} be the set of delivery nodes (N ′ = N+ ∪ N− and R′ = {(i+, i−) :

i ∈ R} ∪ {(0, 2n + 1)}). A positive amount qi+ = qi is associated with the pick-up node,

a negative amount qi− = −qi with the delivery node. A time window is also associated

with each node, i.e., [ei+ , li+] for the pick-up node and [ei− , li−] for the delivery node. The

fleet of vehicles is denoted as V and all vehicles have the same capacity Q. Let G = (N,A)

be a directed graph with a set of nodes N = N+ ∪ N− ∪ {0, 2n + 1} and a set of arcs

A = {(i, j) : i, j ∈ N, i 6= j}. Nodes 0 and 2n + 1 represent the start and end depot, and

have time windows [e0, l0] and [e2n+1, l2n+1], which denote the earliest departure time and

the latest return time at the depots. Travel time tij is assigned to each arc (i, j) ∈ A. Service

time at nodes is di. Ride time constraints for passengers have to be respected and may not

exceed T ride. Maximal route time for vehicles is bounded by T route.

The problem consists in finding a set of routes starting and ending at the depots 0 and

2n+ 1, respectively, such that the objective function is optimized and routing, capacity, and

time window constraints are respected. We use the following variables: xvij is 1 if vehicle

v uses arc (i, j) and 0 otherwise; Ai, Bi, and Di represent arrival, start of service, and

departure time at node i ∈ N ; Dv
0 and Av2n+1 represent departure and arrival time at the

start and end depots for vehicle v ∈ V ; variable yi holds the load of the vehicle after leaving

node i.

min f ′(s) = min(ω1 · c(s) + ω2 · r(s) + ω3 · l(s) + ω4 · g(s) + ω5 · e(s) + α · k(s)) (7.1)

subject to

∑
v∈V

∑
j∈N

xvij ≤ 1 ∀i ∈ N+ ∪ {0} (7.2)

∑
j∈N

xvij −
∑
j∈N

xvji = 0 ∀v ∈ V,∀i ∈ N ′ (7.3)

∑
j∈N

xvi+j −
∑
j∈N

xvji− = 0 ∀v ∈ V,∀(i+, i−) ∈ R′ (7.4)

xvij(yi + qj) ≤ yj ∀v ∈ V,∀(i, j) ∈ A (7.5)

qi ≤ yi ≤ Q ∀i ∈ N+ (7.6)

xvij(Di + tij) = xvijAj ≤ Bj ∀v ∈ V,∀(i, j) ∈ N ′ ×N ′ (7.7)

xv0j(D
v
0 + t0j) = xv0jAj ≤ Bj ∀v ∈ V,∀j ∈ N+ (7.8)

xvi,2n+1(Di + ti,2n+1) = xvi,2n+1A
v
2n+1 ∀v ∈ V,∀i ∈ N− (7.9)

ei ≤ Bi ≤ li ∀i ∈ N ′ (7.10)

Bi− −Di+ ≤ T ride ∀i ∈ R (7.11)

Av2n+1 −Dv
0 ≤ T route ∀v ∈ V (7.12)

96 Chapter 7. Dial-A-Ride

R = {1, . . . , n} set of requests
V = {1, . . . ,m} set or vehicles
N set of nodes
{i+, i−} a transportation request
tij travel time for arc (i, j)
Q vehicle capacity
T route maximum vehicle route duration
T ride maximum passenger ride time
T ride
i ride time of request i
qi number of passengers to be picked up at node i
ei beginning of time window at node i
li end of time window at node i
di service time at node i
Ai arrival time at node i
Bi beginning of service at node i
Di = Bi + di departure time from node i
wi = Bi −Ai vehicle waiting time at node i
Dv

0 departure time at start depot for vehicle v
Av2n+1 arrival time at end depot for vehicle v
yi load when leaving node i
s a solution (routing plan)

Table 7.1: Notations.

Dv
0 ≥ e0, A

v
2n+1 ≤ l2n+1 ∀v ∈ V (7.13)∑

v∈V

∑
j∈N+

xv0j ≤ m (7.14)

xvij ∈ {0, 1} ∀v ∈ V,∀ (i, j) ∈ A (7.15)

Di ≥ 0, Ai ≥ 0 ∀i ∈ N+ ∪N− (7.16)

The objective function (7.1) minimizes routing cost c(s) =
∑

(i,j)∈A,v∈V x
v
ijtij , excess

ride time r(s) =
∑
i∈R(Bi− − Di+ − ti+i−), waiting time of passengers on board l(s) =∑

i∈N ′ wi(yi− qi), route durations g(s) =
∑
v∈V (Av2n+1−Dv

0), early arrival times at pickup

and delivery nodes e(s) =
∑
i∈N ′(ei − Ai)+, and finally the number of unserved requests

k(s) = n−
∑
v∈V,(i,j)∈N+×N x

v
ij . The notation is summarized in Figure 7.1. This objective

function has first been introduced by [78].

The first three groups of constraints (7.2), (7.3), and (7.4) impose that each request

is served by at most one vehicle. Constraints (7.5) and (7.6) ensure the feasibility of the

loads. Time constraints (7.7), (7.8), (7.9), and (7.10) ensure correct arrival, service, and

departure time and (7.11, 7.12) ensure that passenger ride time and bus route duration

do not exceed T ride and T route, respectively. Finally, constraint (7.14) limits the number

of vehicles which can be used. Note that constraints (7.5) and (7.7) can be linearized as

M(1 − xvij) ≥ yi + qj − yj and M(1 − xvij) ≥ Di + tij − Bj , respectively. The same is true

for constraints (7.8) and (7.9). These equations are a generalization of the classical TSP

sub-tour elimination constraints proposed by [91].

7.3. Solution Framework 97

7.3 Solution Framework

We apply a Granular Tabu Search (GTS) to solve the darp. It is based on the well known

Tabu Search (TS) algorithm which is a memory-based search method introduced by [64].

The TS is able to escape local optima by allowing the objective function to deteriorate and

it avoids cyclic moves in the search space by keeping track of recent moves through the use

of a memory structure called tabu list. The size, contents, and management policies of the

tabu list depend on the specific problem and algorithm. To improve the effectiveness of the

TS, diversification and intensification strategies are employed.

The Granular Tabu Search is a Tabu Search with a particular focus on the local search

phase. It uses a reduced neighborhood (granular neighborhood) which ideally should not

include moves which are unlikely to belong to good solutions. The size of the granular

neighborhood is regulated by a granular threshold. The GTS has first been proposed by

[126]. The authors apply the method to the Vehicle Routing Problem (VRP). Based on the

assumption that good solutions rarely contain long edges (in terms of travel time), their

algorithm explores only edges with a length up to a certain threshold during the local search

phase. Whenever no improving solutions can been found for a certain time during execution,

the threshold is gradually increased. The authors show that, in their scenario, this approach

significantly reduces computation time to find good solutions in comparison to the classical

Tabu Search. See [84] for another application of a granular neighborhood in a Variable

Neighborhood Search framework to solve the Team Orienting problem.

7.3.1 The granular neighborhood

The neighborhood N(s) of a solution s includes all feasible solutions that can be obtained

by applying a single simple move to the current solution s. We consider the following simple

moves: move a request from a route into another one, insert an unserved request in a route,

or remove a request from a route. More complex transformations can be achieved through

sequences of simple moves. Since we are considering a granular neighborhood, the only

moves allowed are those with reduced cost c̄ij < TGran, where TGran is the granular threshold.

We construct the granular neighborhood by solving an assignment problem, which is based

on the value D̄ij and which provides the reduced costs c̄ij .

Average departure time D̄ij To measure the spatial and temporal distance between two

requests i and j, we introduce the average departure time D̄ij . It provides an evaluation

of the feasibility and the cost of serving requests i and j by using the same vehicle and by

starting at node i+. The possible sequences of nodes for a vehicle to serve the two requests

are: Π1 = (i+, i−, j+, j−), Π2 = (i+, j+, i−, j−), and Π3 = (i+, j+, j−, i−) (see Figure 7.1).

j−i+ j−i+j−i+

i− j+ i− j+ i− j+

possible waiting time possible waiting timepossible waiting time

i+i− j+j− j+j−

i−j+

t

t

t
i+j+

i−j−

t

t
j−i−

i+j+

t

t
t

j+i−t

Figure 7.1: Possible sequences of nodes to serve two requests i and j.

98 Chapter 7. Dial-A-Ride

For a generic sequence of s nodes Π = (π1, . . . , πs), the departure time at the last node

of the sequence (node πs) can be determined using the following equation [129]

DΠ = Dπ1
+ Tπ1,πs

+Wπ1,πs
, (7.17)

where Tπ1,πs is the total travel time along the sequence, including service time, and Wπ1,πs

is the total waiting time. By applying this equation to the three sequences in Figure 7.1, we

obtain:

DΠ1 = ei+ + di+ + ti+i− + di− + ti−j+ + dj+ + tj+j− + wj+ + dj−

DΠ2 = ei+ + di+ + ti+j+ + dj+ + tj+i− + di− + ti−j− + wj+ + dj−

DΠ3 = ei+ + di+ + ti+j+ + dj+ + tj+j− + dj− + tj−i− + wj+ + di−

(7.18)

If for a sequence Π time or load constraints at a node are not respected, then we set DΠ =∞.

Note that the vehicle might have to only wait in node j+ (wj+), since the sequence starts in

i+ and ei− = ei+ + di+ + ti+i− . Now we define the average departure time of the departure

times at the last nodes of the sequences Π1, Π2, and Π3 of a vehicle when serving two request

i and j as:

D̄ij =
∑

Π∈{Π1,Π2,Π3}

DΠ · kΠ

kΠ
, (7.19)

where kΠ = 1, if DΠ 6= ∞, kΠ = 0 otherwise. Note that if kΠ1 + kΠ2 + kΠ3 = 0 and thus

D̄ij =∞, it is not feasible to serve request i and request j with the same vehicle (by starting

from i+). Note also that in general D̄ij 6= D̄ji.

The assignment problem Our goal is to construct clusters of requests which are close

in respect to D̄ij . We first define an auxiliary graph Ĝ = (R̂, Â) with a set of nodes R̂ =

R∪ {n+ 1, ..., n+m} consisting of n nodes representing requests and m nodes representing

the available vehicles. Â = {(i, j) : i, j ∈ R̂, i 6= j} represents the set of arcs. Arc weights

D̂ij are assigned as follows:

D̂ij =

D̄ij ∀i, j ∈ R
∞ ∀i, j ∈ V
e0 + t0j+ + wj+ + dj+ ∀(i, j) ∈ V ×R
l2n+1 − ei− − ti−,2n+1 − di− ∀(i, j) ∈ R× V

(7.20)

with wj+ = max(ej+ − e0 − t0j+ , 0).

Next we define and solve an assignment problem on Ĝ. The time window constraints

(7.7), (7.8), (7.9), and (7.10) are relaxed. However, they are partially enforced when calculat-

ing D̄ij . Constraints (7.2), (7.3), and (7.4) have to be taken into account. Constraints (7.11),

(7.12), (7.5), and (7.6) are relaxed. Constraints (7.3), (7.4), and (7.14) are replaced by the

classical assignment constraints. The problem to be solved becomes a standard assignment

problem of size n+m:

7.3. Solution Framework 99

min
∑

(i,j)∈Â

D̂ijxij (7.21)

∑
j∈R̂

xji = 1 ∀i ∈ R̂ (7.22)

∑
i∈R̂

xji = 1 ∀j ∈ R̂ (7.23)

xij ∈ {0, 1} ∀ (i, j) ∈ Â (7.24)

The solution of the assignment problem is a set of clusters which contain a sequence of

requests. Some of these clusters contain a vehicle (maximal one) while the rest of them,

called sub-tours, are composed by requests only. The solution of the assignment problem

can be exploited in two ways. First, it can be used to quickly construct an initial solution, as

shown in [129]. Second, the assignment problem provides the reduced cost value for each arc

(i, j) calculated as c̄ij = D̂ij − ui − vj where ui and vj are the dual variables of constraints

(7.22) and (7.23). The reduced cost indicates the impact on the cost of the solution when

replacing edges which are part of the current solution with edges outside the solution.

Note that several possible solutions with similar cost exist, because there are at least

n+m− 1 arcs with reduced cost equal to 0, but which are not used in the optimal solution.

In other words, the solution of the assignment problem proposes the way in which requests

in the same cluster may be served by the same vehicle. Nevertheless, there are pairs of

requests which in the current solution are placed in different clusters, but which could be

served by the same vehicle without increasing the cost of the solution too much.

Let us consider a small example instance consisting of four requests {1, 2, 3, 4} which can

be served by two vehicles. A possible feasible solution is the following: requests 1 and 2 are

served by vehicle (A) and requests 3 and 4 are served by vehicle (B) (see Figure 7.2). The

graph Ĝ = (R̂, Â) associated with this solution is reported in Figure 7.3.

depot 4+ 3−
3+

2−1+ 2+
depot

−1

ROUTE 2

depot

ROUTE 1

depot

4−

Figure 7.2: The complete initial solution.

Each arc of this graph represents two possible moves, e.g, arc (3, 2) suggests to move

requests 3 to the vehicle serving request 2 or to move request 2 to the vehicle serving 3. The

resulting two new solutions would be (d, 4, d), (d, 1, 3, 2, d) and (d, 1, d), (d, 3, 2, 4, d). In a

similar way, by applying the moves represented by arc (2, 3), the two new solutions would be

(d, 4, d), (d, 1, 2, 3, d) and (d, 1, d), (d, 2, 3, 4, d). Note that the difference between considering

arc (3, 2) and (2, 3) is the position of the pick-up nodes of requests 3 and 2.

Now let us suppose that the table in Figure 7.4 represents the reduced cost matrix given

by the solution of the assignment problem. We are interested in low reduced costs, as we

suppose that they indicate the most promising moves. In order to limit the number of moves,

100 Chapter 7. Dial-A-Ride

1 2

3 4

Figure 7.3: The graph Ĝ = (R̂, Â) associated with the solution (d, 1, 2, d), (d, 3, 4, d), without
nodes representing vehicles.

we define a granular threshold TGran and ignore moves with reduced cost c̄ij > TGran. See

Figure 7.5.

���
���
���

���
���
���

Arcs used in the solution

Values close to infinity

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

37417

0 104

1097

1097

0

000

0 0

0

00

0

0 0

902 9021

4

3

2

1 2 3 4Bus BBus A

Bus B

Bus A

233

0

0

Figure 7.4: Matrix of reduced costs given by the assignment solution.

Granular threshold 0

Request 2

Request 4

Request 1

Request 3

Granular graph

Complete graph

Request 2

Request 4

Request 1

Request 3

Granular threshold 200

Figure 7.5: Allowed moves by varying the granular threshold (bold).

7.3.2 Preprocessing

We apply graph pruning and time window tightening techniques as described in [29] before

the optimization procedure is started. First, time windows are tightened. In case of an

outbound request, the time window at the pick-up node i+ is set to ei+ = max(0, ei−−T trip−
di+) and li+ = min(li−−ti+,i−−di+ , H), where H is the end of the planning horizon. In case

of an inbound request, the time window at delivery node i− is set to ei− = ei+ + di+ + ti+i−

and li− = min(li+ +di+ +T trip, H). Then we assign a very high value in the distance matrix

to all the arcs which cannot be part of a feasible solution: arcs which connect start and

end depots with delivery and pick-up nodes, respectively, arcs which connect delivery nodes

7.3. Solution Framework 101

with its pick-up nodes, and arcs connecting nodes which are incompatible regarding their

time-windows and travel time.

7.3.3 Initial Solution

The solution of the assignment problem can be used to construct a feasible initial solution

for the Granular Tabu Search as first discussed in [129]. The assignment problem produces

clusters of close requests. Some clusters include a vehicle, others do not. We first set all

requests which belong to clusters which have no vehicle as unserved. For each cluster which

includes a vehicle, we apply a simple step-by-step procedure to produce a feasible route.

Initially the route consists only of the depot. Then, for each request of the cluster, the

procedure attempts to insert the request into the route. If this fails, the request is set as

unserved. Lastly, the procedure tries to insert the unserved requests into any of the feasible

routes that have been produced.

7.3.4 Local search

Each iteration of the Granular Tabu Search optimization process requires the evaluation of

the whole granular neighborhood. The local search algorithm executes exactly one simple

move and explores all the feasible positions in a route where the request can be inserted. In

the worst case the complexity is O(n). See Figure 7.6 for an example of generated solutions

when considering arc (3, 2) in the reduced cost matrix.

3
+

3
−

4
+ −

4

2−1+ 2+
depot

−1

ROUTE 2

depot

ROUTE 1

depot

depot

(a) Request 3 is moved into route 1

3
+ 3

−
4+ 4

−

2−1+ 2+ 1
−

depot

depot

ROUTE 2

ROUTE 1

depot

depot

(b) Request 2 is moved into route 2

Figure 7.6: Two possible solutions induced by arc (3, 2).

To evaluate a route, we use an adapted version of the eight-step evaluation scheme

introduced by [29], see Table 7.2. The difference lies in the fact that their algorithm also

considers non-feasible solutions by penalizing constraint violations. In our Tabu Search

algorithm we only consider feasible solutions. The eight-step evaluation scheme uses the

forward time slack Fi for a node i ∈ N defined by [115], adapted to the darp:

102 Chapter 7. Dial-A-Ride

1. Set D0 := e0

2. Compute Ai, wi, Bi, Di, yi for each node i along the route
if some Bi > li or yi > Q, return false

3. Compute F0

4. Set D0 := e0 + min{F0,
∑

0<p<q wp}
5. Update Ai, wi, Bi and Di

6. Compute all T ride
i

if all T ride
i < T ride return true

7. for every node j that is an origin
a) Compute Fj
b) set wj := wj + min(Fj ,

∑
j<p<q wp); Bj := Aj + wj ; Dj := Bj + dj

c) Update Ai, wi, Bi and Di for each node i that comes after j in the route
d) Update T ride

i for each request i whose destination is after j
e) If all T ride

i ≤ T ride of requests whose destinations lie after j, return true
8. return false

Table 7.2: Eight-step evaluation scheme.

Fi = min
i≤j≤q

(
∑
i<p≤j

wp + (min(lj −Bj , T trip − Pj))+).

wp denotes the waiting time at node p, q is the last node on the route, and Pj the ride time

of the passenger whose destination is j− ∈ N− given that j− is visited before i on the route;

Pj = 0 for all other j. Fi gives the maximum amount of time by which the departure from

a node i can be delayed without violating time windows and passenger ride time.

7.3.5 Tabu list and aspiration criteria

In a TS framework, the search is guided by a short term memory called tabu list. It is used

to avoid cycling and to help the search process to escape local minima. At each iteration

the executed move is declared tabu for a given number of iterations (tabu tenure Tt), which

forbids its reversal (see [63]). Moves involving arcs which are tabu can be executed only

if they lead to a solution whose objective function value is better than the best solution

found so far: this is called aspiration criterion. Our algorithm declares all those edges as

tabu which are involved when moving a request. For example, Figure 7.7 shows which arcs

become tabu after the removal of request j from a route. Note that the number of arcs to

be inserted in the tabu list depends on the position of the pickup and delivery node in the

route.

7.3.6 Diversification and intensification

Diversification and intensification strategies serve to improve the effectiveness of the Tabu

Search method [63]. During intensification the search focuses on promising portions of the

solutions space, while diversification moves the algorithm to other unexplored regions. Three

diversification strategies have been used in this work: dynamic variation of tabu tenure,

frequency-based penalization, and the variation of the granularity threshold.

Dynamic variation of Tabu tenure The Tabu tenure Tt can remain constant or vary

according to several strategies. In our algorithm the variation is based on the objective

7.3. Solution Framework 103

+k −− k+ +ji −i j

− −k+ jj +i k+ i −

depot

depot

depot

depot

− −j k+ i − k+ +j i

j − −j k+ i − ki + +

depot

depot

depot

depot

Figure 7.7: The figure shows four routes. From each route, request j is removed. After their
removal, the arcs in bold are declared tabu and are inserted into the tabu list.

2− 3+ 1− 3−1+ 2+

depot

4+ 4−

ROUTE 1

depot

ROUTE 2

depot depot

Figure 7.8: Arcs to be saved when a move is executed.

function evolution. If the value of the objective function has improved at least once in Nit

consecutive number of iterations, then the search process is probably exploring an interesting

portion of the solutions space, thus intensification is required and the Tabu tenure value

is reduced. On the other hand, if the objective function value did not improve for Nit

iterations, the search process may have reached a local minimum, thus diversification is

required and the Tabu tenure value is increased. The function used to increase or to decrease

Tt is the following: Tt = Tt ± εT t. The maximal value and the minimal value for Tt are

bounded by Tt = Tt+ ϑTt and Tt = Tt− ϑTt, respectively.

Frequency-based penalization Frequency-based penalization uses a long-term memory

for recording the number of times an arc appeared in the incumbent solution. Let s be the

current solution then each solution s̄ ∈ N(s) such that f(s̄) > f(s) is penalized by a factor

p (s) = λρ
√
n ·mf (s̄). ρ gives the mean value of the number of times the considered arc

has been added to the current solution, λ is a parameter used to control the intensity of the

diversification, and
√
n ·m is a scaling factor required to adjust the penalties with respect

to the problem size. This strategy has been proposed by [124] and successfully applied in

many other Tabu Search algorithms for vehicle routing problems, see [29].

Variation of Granularity threshold The granularization process intensifies the search

by reducing the neighborhood search space. Several diversification strategies can be defined

by ways how to change dynamically granularity threshold TGran and thus the neighborhood

size. We use the following strategy. At the beginning TGran = 0. TGran is increased, i.e.,

TGran = TGran + δ, when at least one of the following conditions are verified: (a) all the

feasible solutions in the current neighborhood are tabu or (b) the algorithm is unable to

improve the best solution found so far for a fixed number of iterations (FIt). TGran is set

104 Chapter 7. Dial-A-Ride

T_Gran

#iterations
new best solution found

FIt

Figure 7.9: Variation of granularity threshold TGran.

to 0 again when the algorithm improves the best solution found so far. δ is defined as

δ = γ
(

max(ij)∈Â c̄ij −min(ij)∈Â c̄ij

)
(see Figure 7.9).

7.3.7 Stopping criterion

We applied two simple stopping criteria. We set a run time limit and a maximum number of

consecutive iterations (4000) during which the best global optimal solution did not improve.

7.4 Experimental Results

The Granular Tabu Search was implemented in C++. All experiments were conducted on

a Bi AMD Opteron Dual Core computer with 3.2 GHz. Following guidelines of [29] and

results of preliminary testing we used λ = 0.01, Tt = 7.5 log10 n, Nit = 3, ε = 20%, and

ϑ = 70%. For the granular threshold we used γ = 10% and FIt = 40.

7.4.1 Test instances

[29] produced a data set of 20 randomly generated darp instances. They contain between

24 and 144 requests; n/2 requests were defined as inbound requests while the remaining

n/2 requests were defined as outbound requests. The service time at pickup and delivery

nodes was set to di = 10. At each node exactly one passenger mounts or leaves the vehicle

(qi = 1). Travel times tij are equal to the Euclidean distance between nodes i and j. Pickup

nodes of outbound requests and arrival nodes of inbound requests were assigned a large time

window [0, 1440] equal to the length of the planning horizon. The data set was split into two

groups. Group (a) was assigned narrow time windows whereas the time windows of group

(b) were wider. Furthermore, for instances R1a-R6a and R1b-R6b the number of vehicles

was set such that routes are only moderately full; instances R7a-R10a and R7b-R10b might

be unfeasible with fewer vehicles. Maximum route duration for all instances was set to

T route = 480, vehicle capacity to Q = 6, and maximum passenger ride time to T ride = 90.

7.4.2 Evaluation of Granular Tabu Search

A direct comparison with the results of [29] was not possible, as they only minimize routing

cost. Therefore, we compared our results with the results of tests conducted on the instances

7.4. Experimental Results 105

of [29] of a Variable Neighborhood Search algorithm (VNS) reported in [103]1 and a Genetic

Algorithm (GA) presented in [78], detailed results can be found in [23]. Note that they

only provide results for 13 test instances. Of the remaining seven, two instances were used

for parameter tuning and the others were excluded because detailed information about the

solution (number of vehicles used, sequence of nodes served by each vehicle, etc.) is not

available. Therefore, we also restrict our tests to these 13 test instances. We used the same

weights for f ′ as proposed in [78] and [103]: ω1 = 8, ω2 = 3, ω3 = 1, ω4 = 1, and ω4 = n. The

coefficient α was set to 10 000. We applied the same CPU time for the optimization process

as [103], 3min to 50min depending on the test instance. The main objective of a Granular

Tabu Search is to find good solutions in a short amount of time by concentrating on potential

good moves ([126]). Therefore, we recorded intermediate values of the objective function

every 10s during the optimization process. We compared these values to intermediate values

of the objective function of the VNS algorithm presented in [103]2. Note that all values

reported for the VNS and the GA are average values over 5 runs. Our algorithm does not

include a random component. We tested our Granular Tabu Search which uses the reduced

costs (called GTS RC, hereafter), as well as a second version of the Granular Tabu Search

which applies the value D̄ij which we call GTS P. As discussed above, D̄ij gives a measure

of the temporal and spatial closeness of two requests. GTS P treats moves involving close

requests first, i.e., moves with low D̄ij . Finally, we also ran a classical Tabu Search (TS)

which investigates the entire neighborhood at each step.

7.4.3 Comparison on f ′(s)

In Figures 7.10 and 7.11 we present the evolution of the values of f ′ during the first 3 minutes

of the computation time. The red, green, violet, and dashed blue lines represent GTS RC,

GTS P, TS, and VNS, respectively. The continuous blue line marks best known results for

each instance which have all been calculated with the VNS. These are reported in [103] and

in Table 7.3 (column VNS). See Table 7.4 for the exact values of the objective functions

after 30s, 60s, and 180s. Table 7.3 reports the results of VNS, GA, and our Tabu Search

variants after long CPU times, depending on the instance between 3 to 50 minutes.

7.4.4 Comparison on f ′′(s)

[103] only reported values for the objective function f ′, but they gained these values by

optimizing a reduced objective function f ′′ (see Equation 7.25) which includes all factors of

f ′(s), except excess ride time e(s). They obtained f ′ at the end of the optimization process

by calculating e(s) of the final solution and by adding it to f ′′. For this reason, we ran a

second test set and compared VNS with the Tabu Search variants on objective function f ′′.

We calculated the values for f ′′(s) of the VNS using data reported in [103]. Unfortunately,

this could not be done for the GA, as the necessary data was not available.

f ′′(s) =ω1 · c(s) + ω2 · r(s) + ω3 · l(s) + ω4 · g(s) + α · k(s) (7.25)

1We use updated results which differ slightly from the results originally published in [103]. They are
available from http://prolog.univie.ac.at/research/DARP.

2Results provided to us by the authors of [103], not included in their paper.

106 Chapter 7. Dial-A-Ride

Table 7.3: Results for GA [78], VNS [103], Tabu Search (TS) and Granular Tabu Search
(GTS RC) for objective function f ′. CPU indicates CPU time in minutes of the optimization
process. CPU times for VNS, TS, GTS P, and GTS RC are the same.

n m GAc CPU VNSa TSb GTS Pb GTS RCb CPU

R1a 24 3 4694 5.57 3152.22 3167.40 3236.14 3167.40 2.70
R2a 48 5 19426 11.42 14622.40 6027.29 6202.98 6130.38 5.16
R3a 72 6 65306 21.58 15985.90 9965.29 9952.00 9962.26 6.38
R5a 120 11 213420 58.23 25478.78 13054.80 13716.60 13050.30 13.93
R9a 108 8 333283 40.78 13912.96 16475.90 16599.90 19449.50 33.53

R10a 144 10 740890 65.98 25791.02 18260.20 18259.40 18487.50 40.27
R1b 24 3 4762 5.46 2875.37 2908.66 2908.66 2907.18 3.78
R2b 48 5 13580 11.72 5003.11 4969.28 5037.06 5004.26 8.29
R5b 120 11 98111 58.93 12373.00 11747.20 13241.90 11969.90 23.19
R6b 144 13 185169 81.23 16486.78 15000.50 18438.30 15063.50 26.39
R7b 36 4 9169 8.29 4592.52 4365.98 4587.97 4401.78 4.49
R9b 108 8 167709 44.66 13433.32 12265.50 12487.70 12274.80 30.32

R10b 144 10 474758 66.41 16478.16 16391.00 18572.10 16730.80 51.81
a Intel Pentium D computer 3.2 GHz, b Bi AMD Opteron Dual Core computer 3.2 GHz, c Intel Celeron 2 GHz

Again, we present the evolution of the objective function, this time f ′′(s) (see Figures 7.12

and 7.13, and Table 7.5), and the results after long CPU times, depending on the instance,

between 3 to 50 minutes (see Table 7.6). We compare the results of VNS, GTS RC, GTS P,

and TS.

7.4.5 Discussion

Comparing the results of the Tabu Search variants, it can be observed that almost always

GTS RC produces a good solution in a short amount of CPU time and dominates TS.

Therefore, it can be said that the choice of using the reduced cost as an indicator for good

moves proves to be efficient. In the long run, as expected, TS performs better, as it explores

a larger search space. On the other hand, GTS P performs poorly. See Figures 7.10, 7.11,

7.12, and 7.13 for detailed results.

By looking at the results gained after 60s of CPU time, we observe that GTS RC for f ′

produces better results in most instances than VNS (9 out of 13 instances, Table 7.4). Also

when optimizing f ′′, GTS RC performs strongly and provides better results than VNS in 6

out of 13 instances (Table 7.5).

Although not the main goal of this work, we provide also results of the algorithms for

long CPU times (see Tables 7.3 and 7.6). We observe that when optimizing f ′ it is important

to include excess ride time in the optimisation process and that the results of GA are not

competitive. More in detail, for f ′, TS dominates GTS RC, which dominates VNS for most

instances. TS provides better solutions than VNS for 10 out of 13 instances. The GA is

outperformed by all other algorithms. When comparing f ′′, VNS performs very strongly.

Still, TS and GTS RC provide better solutions than VNS for 2 and 1 instances, respectively,

and the results of TS are close to the results of VNS (which are average values over 5 runs).

7.4. Experimental Results 107

T
ab

le
7.

4:
R

es
u

lt
s

fo
r

V
N

S
[1

03
],

T
ab

u
S

ea
rc

h
(T

S
)

an
d

G
ra

n
u

la
r

T
a
b

u
S

ea
rc

h
(G

T
S

R
C

)
fo

r
o
b

je
ct

iv
e

fu
n

ct
io

n
f
′ ,

a
ft

er
3
0
s,

6
0
s,

a
n
d

1
8
0
s

o
f

C
P

U
ti

m
e.

3
0
s

6
0
s

1
8
0
s

n
m

V
N

S
a

T
S

G
T

S
P

G
T

S
R

C
V

N
S
a

T
S

G
T

S
P

G
T

S
R

C
V

N
S
a

T
S

G
T

S
P

G
T

S
R

C

R
1
a

2
4

3
3
1
5
6
.3
1

3
1
6
7
.4

0
3
2
3
6
.1

4
3
1
8
4
.3

3
3
1
5
6
.3
1

3
1
6
7
.4

0
3
2
3
6
.1

4
3
1
7
8
.7

8
3
1
5
3
.4
8

3
1
6
7
.4

0
3
2
3
6
.4

0
3
1
6
7
.4

0
R

2
a

4
8

5
1
5
1
5
9
.4

6
7
8
2
2
.9

3
6
3
3
3
.0
1

6
4
8
0
.5

1
1
5
3
0
9
.9

0
6
7
3
3
.5

9
6
3
3
3
.0
1

6
3
4
6
.8

2
1
3
0
2
4
.5

2
6
2
3
5
.9

3
6
2
3
0
.4

1
6
1
3
0
.3
8

R
3
a

7
2

7
1
4
9
5
3
.3

2
1
0
0
9
6
.5
0

1
1
6
5
5
.8

0
1
0
1
2
5
.2

0
1
5
5
7
0
.6

6
1
0
0
1
4
.0
0

1
0
7
3
4
.7

0
1
0
0
7
4
.7

0
1
4
9
4
9
.0

0
9
9
6
5
.2

9
1
0
4
5
7
.6

0
9
9
6
2
.2
6

R
5
a

1
2
0

1
1

2
9
1
8
1
.6

2
2
1
8
6
8
.4

0
3
5
1
3
1
.8

0
1
4
1
3
9
.3
0

2
5
2
1
2
.5

8
1
6
2
1
8
.3

0
3
0
0
1
2
.0

0
1
3
8
4
4
.9
0

2
2
0
4
2
.3

8
1
3
4
4
3
.1

0
1
9
6
2
0
.4

0
1
3
2
8
0
.5
0

R
9
a

1
0
8

8
-b

2
6
6
2
0
.0

0
3
7
4
1
6
.0

0
2
0
9
8
2
.1
0

1
6
4
3
3
.1
6

2
0
3
2
7
.9

0
2
5
3
5
0
.3

0
2
0
9
8
2
.1

0
1
5
6
3
5
.1
4

1
7
9
4
9
.3

0
1
6
9
7
1
.7

0
2
0
7
1
3
.8

0
R

1
0
a

1
4
4

1
0

-
2
4
4
5
3
.2

0
3
6
7
0
8
.1

0
2
0
9
8
7
.0
0

-
2
1
8
3
9
.1

0
3
5
5
0
9
.0

0
2
0
0
7
2
.4
0

2
4
7
7
1
.7

6
2
0
3
7
6
.4

0
3
2
0
5
6
.9

0
1
9
3
2
5
.7
0

R
1
b

2
4

3
2
8
7
4
.7
4

2
9
1
6
.2

5
2
9
0
7
.1

8
2
9
5
5
.1

4
2
8
7
4
.7
4

2
9
1
6
.2

5
2
9
0
7
.1

8
2
9
0
8
.6

6
2
8
7
4
.7
4

2
9
0
8
.6

6
2
9
0
7
.1

8
2
9
0
8
.6

6
R

2
b

4
8

5
5
1
4
1
.8

1
4
9
8
6
.5
0

5
8
6
1
.4

8
5
0
6
7
.5

3
5
0
5
2
.6

5
4
9
8
6
.5
0

5
2
0
7
.7

0
5
0
4
9
.9

7
4
9
4
5
.3
0

4
9
8
6
.5

0
5
1
3
9
.6

9
5
0
3
3
.2

3
R

5
b

1
2
0

1
1

1
5
6
6
0
.0

2
2
2
4
0
2
.8

0
2
4
5
5
2
.5

0
1
2
7
5
5
.8
0

1
4
9
1
4
.3

6
1
8
6
8
6
.9

0
2
3
3
0
1
.6

0
1
2
5
5
8
.3
0

1
3
5
7
9
.2

2
1
3
3
7
2
.2

0
1
7
7
2
6
.7

0
1
2
2
1
0
.9
0

R
6
b

1
4
4

1
3

2
2
7
3
6
.9

6
3
0
0
3
6
.9

0
3
4
1
5
3
.1

0
1
6
2
9
2
.0
0

2
1
8
8
0
.4

0
2
6
7
9
4
.6

0
3
2
1
1
0
.9

0
1
5
8
6
5
.7
0

1
6
5
6
3
.4

4
2
0
4
8
2
.9

0
3
0
6
9
5
.9

0
1
5
3
8
5
.5
0

R
7
b

3
6

4
4
6
1
5
.8

6
4
3
8
7
.1
6

4
5
8
7
.9

7
4
4
1
2
.3

1
4
5
9
9
.4

7
4
3
6
5
.9
8

4
5
8
7
.9

7
4
4
1
2
.3

1
4
5
7
5
.3

3
4
3
6
5
.9
8

4
5
8
7
.9

7
4
4
1
2
.3

1
R

9
b

1
0
8

8
1
5
9
7
7
.0

8
1
7
9
4
6
.8

0
2
2
6
6
1
.7

0
1
2
8
3
9
.4
0

1
6
4
0
8
.2

8
1
4
4
2
6
.5

0
2
1
4
4
3
.7

0
1
2
5
0
0
.6
0

1
3
1
7
8
.6

4
1
2
5
8
5
.2

0
2
0
2
8
4
.2

0
1
2
4
6
1
.2
0

R
1
0
b

1
4
4

1
0

2
1
5
2
0
.8
8

4
7
6
7
7
.2

0
5
4
5
2
6
.7

0
2
1
9
7
2
.1

0
1
9
6
2
5
.4
0

2
7
7
8
5
.6

0
5
3
1
8
4
.5

0
2
0
7
4
6
.1

0
1
9
6
4
6
.4

0
1
8
0
3
0
.6

0
4
7
7
5
1
.3

0
1
7
3
9
3
.9
0

a
R
e
s
u
lt
s

p
r
o
v
id

e
d

t
o

u
s

b
y

t
h
e

a
u
t
h
o
r
s

o
f
[1

0
3
],

n
o
t

in
c
lu

d
e
d

in
t
h
e

o
r
ig

in
a
l
p
a
p
e
r
.

A
v
e
r
a
g
e

v
a
lu

e
s

o
v
e
r

5
r
u
n
s

b
y

u
s
in

g
a

X
e
o
n

c
o
m

p
u
t
e
r

w
it
h

2
.6

7
G

h
z
.

b
A

h
y
p
h
e
n

(
-)

in
d
ic

a
t
e
s

t
h
a
t

n
o

fe
a
s
ib

le
s
o
lu

t
io

n
h
a
s

b
e
e
n

fo
u
n
d

y
e
t
.

108 Chapter 7. Dial-A-Ride

T
ab

le
7
.5:

R
esu

lts
fo

r
V

N
S

[103
],

T
ab

u
S

ea
rch

(T
S

)
a
n
d

G
ra

n
u

la
r

T
a
b
u

S
ea

rch
(G

T
S

R
C

)
fo

r
o
b

jective
fu

n
ction

s
f
′′,

after
30s,

60s,
an

d
180s

of
C

P
U

tim
e.

3
0
s

6
0
s

1
8
0
s

n
m

V
N

S
a

T
S

G
T

S
P

G
T

S
R

C
V

N
S
a

T
S

G
T

S
P

G
T

S
R

C
V

N
S
a

T
S

G
T

S
P

G
T

S
R

C

R
1
a

2
4

3
3
1
2
2
.6
4

3
1
4
6
.6

7
3
1
3
0
.1

6
3
1
5
6
.5

7
3
1
2
2
.6

4
3
1
1
8
.3
3

3
1
1
9
.0

4
3
1
5
6
.5

7
3
1
1
9
.8

1
3
1
1
8
.3
3

3
1
1
8
.3
3

3
1
2
4
.9

1
R

2
a

4
8

5
5
6
2
2
.8
6

5
7
2
9
.2

5
5
8
1
1
.4

8
5
7
1
5
.8

4
5
6
0
1
.5
1

5
7
2
9
.2

5
5
7
4
5
.0

8
5
6
6
3
.7

3
5
5
1
1
.9
8

5
6
2
9
.6

4
5
6
7
8
.7

6
5
6
5
6
.6

7
R

3
a

7
2

7
9
9
1
3
.0
0

9
9
8
4
.8

0
1
1
9
3
0
.2

0
1
0
0
0
9
.2

0
9
8
0
7
.7
2

9
8
3
6
.2

1
1
0
4
6
0
.7

0
9
9
3
1
.2

8
9
6
7
0
.0
4

9
8
1
1
.9

2
9
9
2
1
.2

2
9
9
3
1
.2

8
R

5
a

1
2
0

1
1

1
4
0
9
2
.8

6
2
0
1
2
2
.6

0
2
0
7
8
4
.2

0
1
3
6
4
2
.4
0

1
3
7
8
3
.5

0
1
5
0
2
3
.2

0
1
9
6
4
6
.1

0
1
3
4
0
0
.9
0

1
3
3
2
8
.5

6
1
2
9
9
0
.1
0

1
6
2
0
0
.7

0
1
3
0
9
6
.6

0

R
9
a

1
0
8

8
-
b

2
4
3
4
7
.7

0
2
6
8
4
7
.3

0
2
0
0
5
6
.5
0

1
5
7
3
0
.5
4

2
4
1
3
0
.7

0
2
0
1
3
8
.1

0
1
7
9
5
5
.9

0
1
4
3
9
9
.2
8

1
7
1
7
1
.7

0
1
9
6
5
2
.1

0
1
7
0
2
2
.3

0
R

1
0
a

1
4
4

1
0

-
2
4
0
4
9
.1

0
3
5
8
9
9
.2

0
1
9
5
6
9
.2
0

-
1
9
7
6
0
.3

0
3
4
2
1
2
.2

0
1
9
2
5
1
.6
0

1
9
6
4
6
.1

4
1
8
7
7
5
.7

0
3
1
7
3
4
.0

0
1
8
4
1
9
.0
0

R
1
b

2
4

3
2
8
7
4
.7
4

2
9
1
3
.6

8
2
9
5
1
.4

5
2
9
7
4
.8

7
2
8
7
4
.7
4

2
9
1
3
.6

8
2
9
5
1
.4

5
2
9
7
4
.8

7
2
8
7
4
.7
4

2
9
0
5
.5

1
2
9
5
1
.4

5
2
9
1
6
.8

2
R

2
b

4
8

5
4
9
9
4
.3
5

5
0
5
9
.6

1
5
7
2
4
.7

7
5
0
5
8
.7

1
4
9
7
9
.2
4

5
0
5
9
.6

1
5
1
4
7
.3

7
5
0
5
8
.7

1
4
9
4
5
.3
0

4
9
7
5
.3

5
5
0
1
7
.0

5
5
0
2
6
.1

3
R

5
b

1
2
0

1
1

1
3
0
1
1
.7

0
2
1
3
4
6
.4

0
1
9
3
2
5
.7

0
1
2
5
2
3
.6
0

1
2
7
3
2
.8

4
1
7
9
2
1
.4

0
1
8
5
7
4
.8

0
1
2
3
3
5
.3
0

1
2
2
3
8
.2

4
1
2
8
6
9
.0

0
1
7
5
9
5
.3

0
1
1
9
8
0
.0
0

R
6
b

1
4
4

1
3

1
6
7
1
7
.7

6
2
8
6
2
0
.8

0
2
5
2
5
9
.5

0
1
6
4
2
7
.8
0

1
6
4
6
2
.5

0
2
5
7
0
7
.0

0
2
4
5
4
9
.4

0
1
5
8
1
7
.1
0

1
5
9
9
2
.0

8
1
9
6
7
7
.6

0
2
3
0
3
6
.0

0
1
5
5
0
3
.2
0

R
7
b

3
6

4
4
3
2
5
.9

1
4
3
6
8
.2

1
4
4
1
2
.0

7
4
3
1
0
.2
1

4
3
0
9
.5

2
4
3
6
8
.2

1
4
4
1
2
.0

7
4
3
0
6
.4
4

4
2
8
3
.0
3

4
2
9
9
.1

7
4
3
8
1
.8

6
4
3
0
6
.4

4
R

9
b

1
0
8

8
1
3
2
4
7
.0

0
1
7
8
5
4
.8

0
2
1
4
9
1
.5

0
1
2
9
1
0
.2
0

1
3
0
3
0
.0

8
1
4
3
7
8
.2

0
2
1
2
0
7
.5

0
1
2
4
7
6
.5
0

1
2
6
1
2
.8

6
1
2
5
3
0
.8

0
1
9
4
5
2
.9

0
1
2
4
2
9
.9
0

R
1
0
b

1
4
4

1
0

1
9
5
2
5
.8
8

4
0
2
8
1
.5

0
5
4
5
2
2
.3

0
2
3
6
7
9
.6

0
1
8
8
4
8
.4
8

2
7
1
4
7
.9

0
5
0
0
1
2
.4

0
2
3
6
5
0
.4

0
1
7
9
6
8
.4

4
1
7
6
3
1
.4
0

4
7
6
1
7
.0

0
1
7
9
9
5
.5

0
a

R
e
s
u
lt
s

p
r
o
v
id

e
d

t
o

u
s

b
y

t
h
e

a
u
t
h
o
r
s

o
f
[1

0
3
],

n
o
t

in
c
lu

d
e
d

in
t
h
e

o
r
ig

in
a
l
p
a
p
e
r
.

A
v
e
r
a
g
e

v
a
lu

e
s

o
v
e
r

5
r
u
n
s

b
y

u
s
in

g
a

X
e
o
n

c
o
m

p
u
t
e
r

w
it
h

2
.6

7
G

h
z
.

b
A

h
y
p
h
e
n

(
-)

in
d
ic

a
t
e
s

t
h
a
t

n
o

fe
a
s
ib

le
s
o
lu

t
io

n
h
a
s

b
e
e
n

fo
u
n
d

y
e
t
.

7.4. Experimental Results 109

R1a f'

3131

3162

3193

3224

3255

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ● ●
● ● ● ● ●

● ●

R2a f'

5567

8135

10703

13272

15840

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ●

● ● ● ● ●

●

●

●

●

●

VNS Opt.
VNS
GTS_RC
GTS_P
TS

R3a f'

9297

11212

13127

15042

16957

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●
● ●

●
●

●
●

●

R5a f'

9695

16827

23960

31093

38226

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●

●

●

●

●

●

●

●

R9a f'

10626

15556

20486

25416

30347

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●
● ●

●
● ●

R10a f'

11744

24215

36686

49157

61628

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ● ●

R1b f'

2858

2882

2906

2931

2955

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●
● ● ● ● ● ● ● ● ●

R2b f'

4764

5035

5307

5579

5850

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●
●

● ●

● ● ●
●

● ●

Figure 7.10: Evolution of objective function f ′ over time (x-axis: CPU time, y-axis: value
of f ′).

110 Chapter 7. Dial-A-Ride

R5b f'

8898

13907

18915

23924

28932

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●
●

●

●

●

●

●
●

R6b f'

2447

22129

41812

61494

81177

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

●

●

●
●

● ● ●
● ●

●

R7b f'

4352

4424

4496

4568

4640

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●
●

●
●

●

● ● ●

R9b f'

10439

13651

16863

20074

23286

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●
● ●

●

●

●

●
●

●

R10b f'

5099

22167

39235

56302

73370

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ●
● ● ●

●
●

Figure 7.11: Evolution of objective function f ′ over time (x-axis: CPU time, y-axis: value
of f ′).

Table 7.6: Results for VNS [103], Tabu Search (TS) and Granular Tabu Search (GTS RC)
for objective function f ′′, CPU indicates CPU time in minutes of the optimization process.
CPU times for VNS, TS, GTS P, and GTS RC are the same.

n m VNSa TSb GTS Pb GTS RCb CPU

R1a 24 3 3118.56 3118.33 3118.33 3124.91 2.70
R2a 48 5 5546.55 5623.06 5677.85 5656.67 5.16
R3a 72 6 9632.47 9775.78 9921.22 9859.95 6.38
R5a 120 11 12642.77 12770.50 13338.00 13002.80 13.93
R9a 108 8 13301.65 15419.70 19652.10 16789.50 33.53

R10a 144 10 17459.16 18295.50 17986.00 18069.20 40.27
R1b 24 3 2875.36 2905.51 2932.89 2916.82 3.78
R2b 48 5 4929.08 4975.35 5001.14 5020.86 8.29
R5b 120 11 11635.79 11731.60 14045.30 11896.10 23.19
R6b 144 13 14927.10 14963.80 18138.40 15127.50 26.39
R7b 36 4 4297.89 4299.17 4360.23 4290.11 4.49
R9b 108 8 12067.00 12021.80 12429.70 12243.10 30.32

R10b 144 10 16238.27 16641.80 17786.30 16753.30 51.81
a Pentium D computer 3.2 GHz, b Bi AMD Opteron Dual Core computer with 3.2 GHz

7.4. Experimental Results 111

R1a f''

3112

3128

3144

3160

3176

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ● ●

● ● ● ● ●

● ●

R2a f''

5449

5540

5632

5723

5814

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●
● ●

● ●

●

●

●

●

●

VNS Opt.
VNS
GTS_RC
GTS_P
TS

R3a f''

9517

9815

10113

10411

10709

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●
●

● ●
●

●

●
●

R5a f''

11250

15079

18909

22738

26568

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●
●

● ●
● ● ● ● ● ●

R9a f''

11876

15796

19716

23637

27557

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●
●

●

● ●
●

R10a f''

13801

23860

33918

43977

54035

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ●
●

R1b f''

2864

2892

2919

2947

2974

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●
● ● ● ● ● ● ● ● ●

R2b f''

4883

4999

5115

5230

5346

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●
●

●
● ● ●

●
● ●

Figure 7.12: Evolution of objective function f ′′ over time (x-axis: CPU time, y-axis: value
of f ′′).

112 Chapter 7. Dial-A-Ride

R5b f''

10205

14139

18072

22006

25940

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ● ● ● ● ● ● ● ● ●

R6b f''

12895

18482

24068

29655

35241

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

●
● ● ● ● ● ● ● ● ●

R7b f''

4264

4316

4368

4420

4473

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●

●
●

●
●

●

● ●
●

R9b f''

11016

13905

16793

19682

22570

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

●

●
●

● ● ● ● ●
● ●

R10b f''

11662

24245

36827

49410

61993

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

● ● ● ● ● ● ●

Figure 7.13: Evolution of objective function f ′′ over time (x-axis: CPU time, y-axis: value
of f ′′).

7.5. Summary 113

7.5 Summary

In this paper, a fast algorithm for solving the static Dial-a-Ride Problem (darp) has been

proposed. The Granular Tabu Search method has been applied for the first time to solve this

kind of problem. A major characteristic of the proposed algorithm is how the granularity has

been produced: we reduced the original problem to an assignment problem and we exploited

the reduced costs to build clusters of close requests. The computational results prove that

our algorithm performs well in comparison to other solution methods and that it is able to

provide good solutions in the first three minutes of CPU time of the optimization process.

Directions for future research include: study of the applicability of the technique presented

in this paper to other routing problems and the on-line scenario, as well as the analysis of

the time-dependent case (traffic information).

114 Chapter 7. Dial-A-Ride

Chapter 8

Conclusions

In this thesis, we discussed multi-modal routing and the Dial-a-Ride system. Both respond

to the need of innovative routing services and a more efficient utilization of the available

transportation infrastructure, which is an important component of sustainable development.

The major contributions of this thesis are:

Network modeling. We showed how to produce a model of a complete transportation

network of an inter-urban region by means of a labeled graph. It includes all major modes

of transportation, i.e., car and bicycle, walking and public transportation. Furthermore, it

includes traffic conditions, road types, and timetable information. We used time-dependent

arc costs to include traffic information and timetable information. We produced graphs of

the multi-modal transportation networks of the French region Ile-de-France (including the

city of Paris) and New York City. To our knowledge, this is the first work to consider a

multi-modal network in this configuration and on this scale.

SDALT. We introduced a new algorithm SDALT which solves the regular language con-

strained shortest path problem on a multi-modal network. A generalization of Dijkstra’s

algorithms may be used to solve this kind of routing problems. However, its performance

may not be sufficient for real world applications. For this reason, this thesis introduced SDALT

which is an adaption of the speed-up technique ALT. The experiments show that SDALT per-

forms well, with speed-ups of a factor 1.5 to 40 (up to a factor of 60 with approximation)

with respect to the basic algorithm.

2-Way Multi-Modal Shortest Path Problem (2WMMSP). We introduced the 2-way

multi-modal shortest path problem. When using a private vehicle for parts of the outgoing

path, it has to be picked up during the incoming path so that it can be taken to the

starting location. For this reason, the parking location must be chosen in order to optimize

the combined travel times of the outgoing and incoming path. We proposed an efficient

algorithm which solves this problem and various improvements including the application of

SDALT.

Dial-A-Ride problem. We presented a new algorithm to produce in a short time good

solutions for the Dial-A-Ride problem. The objective of the Dial-A-Ride problem is to

115

116 Chapter 8. Conclusions

maximize the number of passengers served and the quality of service, as well as to minimize

overall system cost. The main contribution here is the development of an efficient and fast

heuristic to produce good solutions in a short amount of time (less than 3 minutes). We

proposed a new Granular Tabu Search which uses information provided by the solution of a

simple and useful sub-problem to guide the local search process. This sub-problem provides

distance information and clusters of close requests. The idea is that passengers who are close

both spatially (in terms of the distance between pick-up and delivery points) and temporally

(with respect to time windows) are probably best served by the same vehicle in order to

produce good solutions. Our algorithm produces better results for more than half of the test

instances after 60s of optimization time in comparison with other methods.

Future Work

Recent works on finding constrained shortest paths on multi-modal networks report speed-

ups of different orders of magnitude. They achieve this by using contraction hierarchies and

by either limiting the constraints which can be imposed on the shortest paths [109] or by

identifying homogeneous regions (arcs with the same label) of the network and by applying

contractions only to those regions [50]. Our algorithm SDALT can solve more general routing

problems and proves to work well even when considering more difficult constraints than the

one considered in [109] and on a highly dis-homogeneous graph. Also, time-dependent cost

functions on arcs can be easily incorporated. SDALT provides speed-ups of a factor 1.5 to 60

(up to a factor of 60 with approximation and depending on the constraints) with respect

to the basic algorithm DRegLC. Nevertheless, the objective for future research is to further

increase speed-ups. The application of contraction is a viable option, although handling

time-dependency and considering the labels on arcs during the contraction is not straight-

forward. A further area of future research is to study the multi-criteria scenario, where not

only travel time but also travel cost, the number of changes, etc., are minimized.

Regarding the algorithm 2-WAY-PATH-SEARCH to solve the 2-way multi-modal shortest

path problem (Chapter 6), stronger stopping conditions and techniques to further decrease

the number of parking nodes which have to be re-evaluated should be studied. This is

necessary to also solve difficult instances in a reasonable time. The application of clustering

could assist in the grouping of parking nodes which are close to each other and prevent all

these nodes from having to be re-evaluated singularly. A further preprocessing phase which

precalculates a limited set of good parking nodes for queries with similar source and target

nodes could also be useful.

The solutions quality of the Dial-A-Ride algorithm proposed in Chapter 7 could be

improved by introducing more complex moves during the local search process. Instead of

just evaluating all the positions where one request can be inserted, moves could involve two

or more requests. Furthermore, allowing unfeasible solutions (by penalizing the violation

of constraints) would probably result in a better exploration of the search space. As the

techniques presented in this thesis proved to be quite efficient, it would be interesting to study

the applicability to other similar routing problems such as the vehicle routing problem with

time windows (VRPTW). The extension of our algorithm to the real-time scenario, where

requests arrive during operation time, as well as the analysis of the time-dependent case,

where traffic information is considered, are other possible future research directions.

Bibliography

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A Hub-Based Labeling

Algorithm for Shortest Paths on Road Networks. In R. Klasing, editor, Proceedings

of the 11th International Symposium on Experimental Algorithms (SEA’11), volume

6630 of Lecture Notes in Computer Science, pages 376–387. Springer, Berlin, 2010.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. Hierarchical Hub

Labelings for Shortest Paths. In L. Epstein and P. Ferragina, editors, Proceedings of

the 20th Annual European Symposium of Algorithms (ESA’12), volume 7501 of Lecture

Notes in Computer Science, pages 24–35. Springer, Berlin, 2012.

[3] I. Abraham, A. Fiat, A. V. Goldberg, and R. Werneck. Highway Dimension, Shortest

Paths, and Provably Efficient Algorithms. In M. Charikar, editor, Proceedings of

the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10), SODA,

pages 782–793. SIAM, Philadelphia, 2010.

[4] R. Ahuja, J. Orlin, S. Pallottino, and M. G. Scutellà. Dynamic Shortest Paths Mini-

mizing Travel Times and Costs. Networks, 41(4):197–205, 2003.

[5] C. Artigues, M.-J. Huguet, F. Gueye, F. Schettini, and L. Dezou. State-based accel-

erations and bidirectional search for bi-objective multi modal shortest paths. Trans-

portation research Part C, 27:233–259, 2013.

[6] C. L. Barrett, K. R. Bisset, M. Holzer, G. Konjevod, M. Marathe, and D. Wagner.

Engineering label-constrained shortest-path algorithms. The Shortest Path Problem:

Ninth Dimacs Implementation Challenge, 74:309–327, 2009.

[7] C. L. Barrett, K. R. Bisset, R. Jacob, G. Konjevod, and M. V. Marath. Classical

and contemporary shortest path problems in road networks: Implementation and ex-

perimental analysis of the TRANSIMS router. In R. H. Mohring and R. Raman,

editors, European Symposium on Algorithms (ESA), volume 2461 of Lecture Notes in

Computer Science, pages 126–138. Springer, Berlin, 2002.

[8] C. L. Barrett, R. Jacob, and M. Marathe. Formal-Language-Constrained Path Prob-

lems. SIAM Journal on Computing, 30(3):809–837, 2000.

[9] H. Bast. Car or public transport - two worlds. Efficient Algorithms, 5760:355–367,

2009.

[10] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev,

and F. Viger. Fast Routing in Very Large Public Transportation Networks Using

118 Bibliography

Transfer Patterns. In Proceedings of the 18th Annual European Symposium on Algo-

rithms (ESA’10), volume 6346 of Lecture Notes in Computer Science, pages 290–301.

Springer, Berlin, 2010.

[11] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant

time shortest-path queries in road networks. In Proceedings of the 9th Workshop on Al-

gorithm Engineering and Experiments (Alenex’07), pages 46–59. SIAM, Philadelphia,

2007.

[12] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road networks with

transit nodes. Science, 316(5824):566, 2007.

[13] G. Batz, R. Geisberger, S. Neubauer, and P. Sanders. Time-Dependent Contraction

Hierarchies and Approximation. In P. Festa, editor, Proceedings of the 9th Inter-

national Symposium on Experimental Algorithms (SEA’10), volume 6049 of Lecture

Notes in Computer Science, pages 166–177. Springer, Berlin, 2010.

[14] G. V. Batz, D. Delling, P. Sanders, and C. Vetter. Time-dependent contraction hier-

archies. In I. Finocchi and J. Hershberger, editors, Proceedings of the 11th Workshop

on Algorithm Engineering and Experiments (ALENEX’09), ALENEX, pages 97–105.

SIAM, Philadelphia, 2009.

[15] R. Bauer and D. Delling. SHARC: Fast and robust unidirectional routing. Journal of

Experimental Algorithmics (JEA), 14:2.4–2.29, 2009.

[16] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner.

Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm.

ACM Journal of Experimental Algorithmics, 15:2.3:1–31, Mar. 2010.

[17] R. Bauer, D. Delling, and D. Wagner. Experimental study of speed up techniques for

timetable information systems. Networks, 57(1):38–52, Jan. 2011.

[18] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of

Transportation. Technical Report RM-1488, 1956.

[19] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, Paper P-10,

1956.

[20] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, Sept. 1975.

[21] G. Berbeglia, J.-F. Cordeau, and G. Laporte. Dynamic pickup and delivery problems.

European Journal of Operational Research, 202(1):8–15, 2010.

[22] A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemann. Accelerating time-

dependent multi-criteria timetable information is harder than expected. In J. Clausen

and G. D. Stefano, editors, Proceedings of the 9th Workshop on Algorithmic Ap-

proaches for Transportation Modeling, Optimization, and Systems (ATMOS’09), vol-

ume 12 of ATMOS. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,

2009.

Bibliography 119

[23] K. B. Bergvinsdottir. The genetic algorithm for solving the dial-a-ride problem. Master

thesis, Technical University of Denmark, 2004.

[24] A. Bousquet, S. Constans, and E. F. Nour-Eddin. On the adaptation of a label-

setting shortest path algorithm for one-way and two-way routing in multimodal urban

transport networks. In International Network Optimisation Conference (INOC’09),

2009.

[25] L. S. Buriol, M. G. C. Resende, and M. Thorup. Speeding Up Dynamic Shortest-Path

Algorithms. INFORMS Journal on Computing, 20(2):191–204, Sept. 2008.

[26] I. Chabini. Discrete dynamic shortest path problems in transportation applications :

Complexity and algorithms with optimal run time. Transportation research records,

1645:170–175, 1998.

[27] K. Cooke and E. Halsey. The shortest route through a network with time-dependent in-

ternodal transit times. Journal of Mathematical Analysis and Applications, 14(3):493–

498, 1966.

[28] J.-F. Cordeau. A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations

Research, 54(3):573–586, 2006.

[29] J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multi-vehicle

dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579–594,

2003.

[30] J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algorithms.

Annals of Operations Research, 153(1):29–46, 2007.

[31] G. B. Dantzig. Linear Programming and Extensions, volume 4. Princeton University

Press, 1962.

[32] B. Dean. Continuous-time dynamic shortest path algorithms. Master thesis, Mas-

sachussets Institute of Technology, 1999.

[33] D. Delling. Time-dependent SHARC-routing. Algorithmica, 60(1):60–94, 2011.

[34] D. Delling, J. Dibbelt, T. Pajor, D. Wagner, and R. F. Werneck. Computing Mul-

timodal Journeys in Practice. In Proceedings of the 12th International Symposium

on Experimental Algorithms (SEA’13), Lecture Nodes in Computer Science. Springer,

Berlin, 2013.

[35] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable Route Plan-

ning. In P. M. Pardalos and S. Rebennack, editors, Proceedings of the 19th Inter-

national Symposium on Experimental Algorithms (SEA’11), volume 6630 of Lecture

Notes in Computer Science, pages 376–387. Springer, Berlin, 2011.

[36] D. Delling and G. Nannicini. Bidirectional Core-Based Routing in Dynamic Time-

Dependent Road Networks. In S.-H. Hong, H. Nagamochi, and T. Fukunaga, edi-

tors, Proceedings of the 19th International Symposium on Algorithms and Computa-

tion (ISAAC’08), volume 5369 of Lecture Nodes in Computer Science, pages 812–823.

Springer, Berlin, 2008.

120 Bibliography

[37] D. Delling, T. Pajor, and D. Wagner. Accelerating multi-modal route planning by

access-nodes. In A. Fiat and P. Sanders, editors, Proceedings of the 17th Annual Euro-

pean Symposium on Algorithms (ESA’09), volume 5757 of Lecture Notes in Computer

Science, pages 587–598. Springer, Berlin, 2009.

[38] D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded graphs for faster

timetable information. Robust and Online Large-Scale Optimization: Models and Tech-

niques for Transportation Systems, 5868:182–206, 2009.

[39] D. Delling, T. Pajor, and R. Werneck. Round-based public transit routing. In D. A.

Bader and P. Mutzel, editors, Proceedings of the 2012 Meeting on Algorithm Engineer-

ing and Experiments (ALENEX’12), ALENEX, pages 130–140. SIAM, Philadelphia,

2012.

[40] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning

algorithms. In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of Large

and Complex Networks - Design, Analysis, and Simulation, volume 5515 of Lecture

Nodes in Computer Science, pages 117–139. Springer, Berlin, 2009.

[41] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Highway hierarchies star. In

C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Prob-

lem: Ninth DIMACS Implementation Challenge, volume 2, pages 141–175. American

Mathematical Society, 2009.

[42] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. Experimental

Algorithms, 2:52–65, 2007.

[43] D. Delling and D. Wagner. Pareto Paths with SHARC. Proceedings of the 8th Inter-

national Symposium on Experimental Algorithms (SEA’09), 5526:125–136, 2009.

[44] D. Delling and D. Wagner. Time-Dependent Route Planning. In R. K. Ahuja, R. H.

Mohring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization:

Models and Techniques for Transportation Systems, volume 5868 of Lecture Notes in

Computer Science, pages 207–230. Springer, Berlin, 2009.

[45] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors. The Shortest Path Prob-

lem: Ninth Dimacs Implementation Challenge, volume 74 of DIMACS: Discrete Math-

ematics and Theoretical Computer Science Series. American Mathematical Society,

2009.

[46] J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic programming solution of the

large-scale single-vehicle dial-a-ride problem with time windows. American Journal of

Mathematical and Management Sciences, 6:301–325, 1986.

[47] M. Diana and M. M. Dessouky. A new regret insertion heuristic for solving large-scale

dial-a-ride problems with time windows. Transportation Research Part B: Methodolog-

ical, 38(6):539–557, 2004.

[48] M. Diana, M. M. Dessouky, and N. Xia. A model for the fleet sizing of demand

responsive transportation services with time windows. Transportation Research Part

B: Methodological, 40(8):651–666, 2006.

Bibliography 121

[49] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Intriguingly Simple and Fast Tran-

sit Routing. In Proceedings of the 12th International Symposium on Experimental

Algorithms (SEA’13), Lecture Nodes of Computer Science. Springer, Berlin, 2013.

[50] J. Dibbelt, T. Pajor, and D. Wagner. User-Constrained Multi-Modal Route Planning.

In D. A. Bader and P. Mutzel, editors, Proceedings of the 14th Meeting on Algo-

rithm Engineering and Experiments (ALENEX’12), pages 118–129. SIAM, Philadel-

phia, 2012.

[51] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, Dec. 1959.

[52] Y. Disser, M. Müller-Hannemann, and M. Schnee. Multi-criteria shortest paths in time-

dependent train networks. In C. McGeoch, editor, Proceedings of the 7th Workshop

on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer

Science, pages 347–361. Springer, Berlin, 2008.

[53] S. E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. Operations Research,

17(3):395–412, May 1969.

[54] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time

windows. European Journal Of Operational Research, 54(1):7–22, 1991.

[55] L. R. Ford. Network Flow Theory. Paper P-92, 1956.

[56] L. R. Ford and D. R. Fulkerson. Modern Heuristic Techniques for Combinatorial

Problems. 1962.

[57] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[58] R. Geisberger. Contraction hierarchies: Faster and simpler hierarchical routing in road

networks. Master thesis, Universitat Karlsruhe (TH), 2008.

[59] R. Geisberger. Contraction of timetable networks with realistic transfers. In P. Festa,

editor, Proceedings of the 9th International Symposium on Experimental Algorithms

(SEA’10), volume 6049 of Lecture Notes in Computer Science, pages 71–82. Springer,

Berlin, 2010.

[60] R. Geisberger, M. Kobitzsch, and P. Sanders. Route planning with flexible objective

functions. In G. E. Blelloch and D. Halperin, editors, Proceedings of the 12th Workshop

on Algorithm Engineering and Experiments (ALENEX’10), ALENEX, pages 124–137.

SIAM, Philadelphia, 2010.

[61] R. Geisberger, P. Sanders, D. Schultes, and D. Contraction hierarchies: Faster and

simpler hierarchical routing in road networks. In C. C. McGeoch, editor, Proceedings

of the 7th Workshop on Experimental Algorithms (WEA’08), volume 5038 of Lecture

Notes in Computer Science, pages 319–333. Springer, Berlin, 2008.

[62] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact Routing in Large Road

Networks Using Contraction Hierarchies. In Transportation Science, volume 46, pages

388–404, 2012.

122 Bibliography

[63] M. Gendreau. An Introduction to Tabu Search. Handbook of Metaheuristics, 57:37–54,

2003.

[64] F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research, 13(5):533–549, 1986.

[65] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets

graph theory. In Proceedings of the Symposium on Discrete Algorithms (SODA’05),

pages 156–165. SIAM, Philadelphia, 2005.

[66] A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from

external memory. In C. Demetrescu, R. Sedgewick, and R. Tamassia, editors, Pro-

ceedings of the 7th Workshop on Algorithm Engineering and Experiments and the 2th

Workshop on Analytic Algorithmics and Combinatorics (ALENEX /ANALCO ’05),

ALENEX/ANALCO, pages 26–40. SIAM, Philadelphia, 2005.

[67] L. Häme and H. Hakula. Dynamic journeying under uncertainty. European Journal

of Operational Research, 225(3):455–471, Mar. 2013.

[68] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determina-

tion of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,

4(2):100–107, 1968.

[69] M. Holzer. Engineering Planar-Separator and Shortest-Path Algorithms. Phd thesis,

University of Karlsruhe, 2008.

[70] M. Holzer, F. Schulz, and D. Wagner. Engineering multi-level overlay graphs for

shortest-path queries. ACM Journal of Experimental Algorithmics, 13(2.5):1–26, 2008.

[71] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Pearson/Addison Wesley, third edition, 2007.

[72] Y.-W. Huang, N. Jing, and E. a. Rundensteiner. Effective graph clustering for path

queries in digital map databases. Proceedings of the fifth International Conference on

Information and knowledge management (CIKM’96), pages 215–222, 1996.

[73] M.-J. Huguet, D. Kirchler, P. Parent, and R. Wolfler Calvo. Efficient algorithms for the

2-Way Multi Modal Shortest Path Problem. Electronic Notes in Discrete Mathematics,

41:431–437, June 2013.

[74] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku,

and K. Mitoh. A fast algorithm for finding better routes by AI search techniques. In

Proceedings of Vehicle Navigation and Information Systems Conference, pages 291–

296. IEEE, 1994.

[75] I. Ioachim, J. Desrosiers, Y. Dumas, M. M. Solomon, and D. Villeneuve. A Request

Clustering Algorithm for Door-to-Door Handicapped Transportation. Transportation

Science, 29(1):63–78, 1995.

[76] R. Jacob, M. V. Marathe, and K. Nagel. A computational study of routing algorithms

for realistic transportation networks. ACM Journal of Experimental Algorithmics, 4,

1999.

Bibliography 123

[77] J.-J. Jaw, A. Odoni, H. N. Psaraftis, and N. H. Wilson. A heuristic algorithm for the

multi-vehicle advance request dial-a-ride problem with time windows. Transportation

Research Part B: Methodological, 2(3):243–257, 1986.

[78] R. M. Jorgensen, J. Larsen, and K. B. Bergvinsdottir. Solving the Dial-a-Ride problem

using genetic algorithms. Journal of the Operational Research Society, 58(10):1321–

1331, 2006.

[79] S. Jung and S. Pramanik. An efficient path computation model for hierarchically

structured topographical road maps. IEEE Transactions on Knowledge and Data

Engineering, 14(5):1029 – 1046, 2002.

[80] E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks for intelligent

vehicle-highway systems applications. Journal of Intelligent Transportation Systems,

1(1):1–11, 1993.

[81] M. B. Kennel. KDTREE 2: Fortran 95 and C++ software to efficiently search for

near neighbors in a multi-dimensional Euclidean space. Technical report, 2004.

[82] B. S. Kerner. Introduction to Modern Traffic Flow Theory and Control. Springer,

Berlin, 2009.

[83] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In

C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3 – 42. Princeton

University Press, 1956.

[84] N. Labadie, R. Mansini, J. Melechovský, and R. Wolfler Calvo. The Team Orienteering

Problem with Time Windows: An LP-based Granular Variable Neighborhood Search.

European Journal of Operational Research, 220(1):15–27, Jan. 2012.

[85] U. Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static

Networks with Geographical Background. Geoinformation und Mobilität - von der

Forschung zur praktischen Anwendung, 22:219–230, 2004.

[86] A. Lozano and G. Storchi. Shortest viable path algorithm in multimodal networks.

Transportation Research Part A, 35:225–241, Mar. 2001.

[87] Q. Lu and M. M. Dessouky. A new insertion-based construction heuristic for solving

the pickup and delivery problem with time windows. European Journal Of Operational

Research, 175(2):672–687, 2006.

[88] O. B. G. Madsen, H. F. Ravn, and J. M. Rygaard. A heuristic algorithm for a dial-a-

ride problem with time windows, multiple capacities, and multiple objectives. Annals

of Operations Research, 60(1):193–208, 1995.

[89] J. Maue, P. Sanders, and D. Matijevic. Goal-directed shortest-path queries using

precomputed cluster distances. ACM Journal of Experimental Algorithmics, 14, 2009.

[90] A. O. Mendelzon and P. T. Wood. Finding Regular Simple Paths in Graph Databases.

SIAM Journal on Computing, 24(6):1235–1258, 1995.

124 Bibliography

[91] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulations and

traveling salesman problems. Journal of the ACM, 7(4):326–329, 1960.

[92] A. Moore. An intoductory tutorial on kd-trees. Technical Report, (209), 1991.

[93] E. Moore. The Shortest Path Through a Maze. In Proceedings of an International

Symposium on the Theory of Switching, pages 285–292. Harvard University Press,

1959.

[94] H. Moritz. Geodetic Reference System 1980. Journal of Geodesy, 66(2):187–192, 1992.

[95] M. Müller-Hannemann and M. Schnee. Finding all attractive train connections by

multi-criteria pareto search. In F. Geraets, L. G. Kroon, A. Schöbel, D. Wagner, and

C. D. Zaroliagis, editors, International Dagstuhl Workshop on Algorithmic Methods

for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages

246–263. Springer, Berlin, 2007.

[96] G. Nannicini. Point-to-Point Shortest Paths on Dynamic Time-Dependent Road Net-

works. Phd thesis, Ecole Polytechnique, 2009.

[97] G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional A* search for time-

dependent fast paths. In C. C. McGeoch, editor, Proceedings of the 7th Conference

on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer

Science, pages 334–346. Springer, Berlin, 2008.

[98] G. Nannicini, D. Delling, and D. Schultes. Bidirectional A* search on time-dependent

road networks. Networks, 59(2):240–251, 2012.

[99] G. Nannicini and L. Liberti. Shortest paths in dynamic graphs. International Trans-

actions in Operational Research, 15:551–563, 2008.

[100] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

[101] J. Paquette, J.-F. Cordeau, G. Laporte, and M. M. B. Pascoal. Combining Multicrite-

ria Analysis and Tabu Search for Dial-a-Ride Problems. Technical Report CIRRELT,

(4), 2012.

[102] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery

problems Part II : Transportation between pickup and delivery locations. Journal für

Betriebswirtschaft, (58):81–117, 2008.

[103] S. N. Parragh, K. F. Doerner, and R. F. Hartl. Variable neighborhood search for the

dial-a-ride problem. Computers & Operations Research, 37(6):1129–1138, 2010.

[104] S. N. Parragh and V. Schmid. Hybrid column generation and large neighborhood

search for the dial-a-ride problem. Computers & Operations Research, 40(1):490–497,

2012.

[105] I. Pohl. Bi-directional Search. In B. Meltzer and D. Michie, editors, Machine Intelli-

gence 6, volume 6, pages 127–140. Edinburgh University Press, Edinburgh, 1971.

Bibliography 125

[106] H. N. Psaraftis. An exact algorithm for the single vehicle many-to-many dial-a-ride

problem with time windows. Transportation Science, 17(3):351–357, 1983.

[107] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models for timetable

information in public transportation systems. Journal of Experimental Algorithmics

(JEA), 12:Article 2.4, June 2007.

[108] M. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal

of Research and Development, 3(April):114–125, 1959.

[109] M. Rice and V. J. Tsotras. Graph indexing of road networks for shortest path queries

with label restrictions. Proceedings of the VLDB endowment, 4(2):69–80, 2010.

[110] J. Romeuf. Shortest path under rational constraint. Information processing letters,

28(5):245–248, 1988.

[111] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries.

In G. Stolting Brodal and S. Leonardi, editors, Proceedings of the 13th Annual Euro-

pean Symposium on Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer

Science, pages 568–579. Springer, Berlin, 2005.

[112] P. Sanders and D. Schultes. Engineering highway hierarchies. In Y. Azar and

T. Erlebach, editors, Proceedings of the 14th Annual European Symposium on Algo-

rithms (ESA’06), volume 4168 of Lecture Notes in Computer Science, pages 804–816.

Springer, Berlin, 2006.

[113] P. Sanders and D. Schultes. Robust, almost constant time shortest-path queries in

road networks. In C. Demetrescu, A. V. Goldberg, and J. E. Hopcroft, editors, 9th DI-

MACS Implementation Challenge - Shortest Paths, volume 74, pages 193–218. Amer-

ican Mathematical Society, 2006.

[114] G. Sauvanet. Recherche de chemins multiobjectifs pour la conception et la realisation

d’une centrale de mobilité destinée aux cyclistes. Phd thesis, University of Tours

(France), 2011.

[115] M. W. P. Savelsbergh. Local search in routing problems with time windows. Annals

of Operations Research, 4(1):285–305, 1985.

[116] D. Schultes. Route planning in road networks. Phd thesis, TH Karlsruhe, 2008.

[117] F. Schulz. Timetable Information and Shortest Paths. Phd thesis, University of Karl-

sruhe (TH), 2005.

[118] F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-level graphs for timetable in-

formation in railway systems. In D. M. Mount and C. Stein, editors, In Proceed-

ings of the 4th International Workshop on Algorithm Engineering and Experiments

(ALENEX’02), volume 2409 of Lecture Notes in Computer Science, pages 43–59.

Springer, Berlin, 2002.

[119] R. Sedgewick and J. S. Vitter. Shortest Paths in Euclidean Graphs. Algorithmica,

1(1):31–48, 1986.

126 Bibliography

[120] T. R. Sexton and Y. M. Choi. Pickup and delivery of partial loads with ”soft” time

windows. American Journal of Mathematical and Management Sciences, 6(3-4):369–

398, 1986.

[121] H. D. Sherali, A. G. Hobeika, and S. Kangwalklai. Time-Dependent, Label-

Constrained Shortest Path Problems with Applications. Transportation Science,

37(3):278–293, 2003.

[122] H. D. Sherali, C. Jeenanunta, and A. G. Hobeika. The approach-dependent, time-

dependent, label-constrained shortest path problem. Networks, 48(2):57–67, 2006.

[123] M. Sipser. Introduction to the Theory of Computation. Course Technology Ptr, third

edition, 2012.

[124] E. Taillard. Parallel iterative search methods for vehicle routing problems. Networks,

23(8):661–673, 1993.

[125] P. Toth and D. Vigo. Heuristic algorithms for the handicapped persons transportation

problem. Transportation Science, 31(1):60–71, 1997.

[126] P. Toth and D. Vigo. The Granular Tabu Search and Its Application to the Vehicle-

Routing Problem. INFORMS Journal on Computing, 15(4):333–346, 2003.

[127] M. Treiber, A. Kesting, and C. Thiemann. Traffic Flow Dynamics. Springer, Berlin,

2013.

[128] D. Wagner and T. Willhalm. Geometric speed-up techniques for finding shortest paths

in large sparse graphs. In G. Di Battista and U. Zwick, editors, Proceedings of the

11th Annual European Symbosium on Algorithms (ESA’03), volume 2832 of Lecture

Notes in Computer Science, pages 776–787. Springer, Berlin, 2003.

[129] R. Wolfler Calvo and A. Colorni. An effective and fast heuristic for the Dial-a-Ride

problem. 4or, 5(1):61–73, 2006.

[130] M. Yannakakis. Graph-theoretic methods in database theory. In Proceedings of Sym-

posium on Principles of Database Systems, pages 230–242. ACM, New York, 1990.

Appendix

Appendix A

SDALT: Examples

A.1 Details for IVa

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

b bftv

Figure A.1: Scenario IVa

s0

s2

s1

s3

s4tb

f tb
tp

p

tp

f

b bftv

Figure A.2: Scenario IVa: backward automaton

sx Lbas

s0, s1, s2, s3, s4
s0

bfptbtptv

Table A.1: Scenario IVa: automaton for landmark distance calculation of bas_ls and
bas_bivx.

130 Appendix A. SDALT: Examples

sx Ladv,sx

s0, s1
s0

bfptbtptv

s2, s3
s0

bfptptv

s4
s0

bftv

Table A.2: Scenario IVa: automata for landmark distance calculation of adv_ls and adv_lc

forward search backward search

sx Ladv,sx Ladv,sx

s0, s1
s0

bfptbtptv

s0

btb

s2

s0

bfptptv
s0

bftb

s3
s0

bfptbtp

s4
s0

bftv

s0

bfptbtptv

Table A.3: Scenario IVa: automata for landmark distance calculation of adv_bivx

A.1. Details for IVa 131

L`→vsx Lv→`sx
sx L`→tsx Lt→`sx

s0
s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

bftv

s1

s0

s1

tb

f

b

s0

s1

s2

s3

tb

tp

p

tp

f

b bftv

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

bftv

s2

s0

s2

s1

tb

f

tb

b

f

f s0 s1

s2

tp

p

tp

f

bftv

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

bftv

Table A.4: Scenario IVa: automata for landmark distance calculation of spe_ls and forward
search of spe_bivx, part 1

132 Appendix A. SDALT: Examples

L`→vsx Lv→`sx
sx L`→tsx Lt→`sx

s3
s0

s2

s1

s3
f

tb

f

tb

tp

pf

b

s0

s1

p

tp

bftv

s0

s2

s1

s3

s4

f

tb

f

tb

tp

p

tp

f

b bftv

s0

bftv

s4
s0

s2

s1

s3

s4

f

tb

f

tb

tp

p

tp

f

b bftv

s0

bftv

s0

s2

s1

s3

s4

f

tb

f

tb

tp

p

tp

f

b bftv

s0

bftv

Table A.5: Scenario IVa: automata for landmark distance calculation of spe_ls and forward
search of spe_bivx, part 2

A.1. Details for IVa 133

L`→vsx Lv→`sx
sx L`→tsx Lt→`sx

s0, s1, s2
s0

bfptbtptv

s0

bfptbtptv

s0

bfptbtptv

s0

bfptbtptv

s3
s0

s2

s1

s3
f

tb

f

tb

tp

pf

b

s0

s1

p

tp

bftv

s0

s2

s1

s3

s4

f

tb

f

tb

tp

p

tp

f

b bftv

s0

bftv

s4

s0

bftv

s0

bftv

s0

bftv

s0

bftv

Table A.6: Scenario IVa: automata for landmark distance calculation of spe_lc

134 Appendix A. SDALT: Examples

L`→rsx Lr→`sx
sx L`→vsx Lv→`sx

s0
s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

b bftv

s1
s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

s1

tb

f

b

s0

s1

s2

s3

tb

tp

p

tp

f

b bftv

s2
s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

s2

s1

tb

f

tb

b

f

f s0 s1

s2

tp

p

tp

f

bftv

Table A.7: Automata used for backward search of spe_bivx, part 1

A.1. Details for IVa 135

L`→rsx Lr→`sx
sx L`→vsx Lv→`sx

s3
s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

s2

s1

s3
f

tb

f

tb

tp

pf

b

s0

s1

p

tp

bftv

s4
s0

f

s0

s2

s1

s3

s4

tb

f

tb

tp

p

tp

f

f

b bftv

s0

s2

s1

s3

s4

f

tb

f

tb

tp

p

tp

f

b bftv

s0

bftv

Table A.8: Automata used for backward search of spe_bivx, part 2

	1 Introduction
	1.1 Introduction
	1.2 Contribution
	1.3 Overview

	2 Definitions and Notations
	2.1 Languages and Automata
	2.2 Graph Theory
	2.3 Shortest Path Problem
	2.4 Summary

	3 Network Modeling
	3.1 Single Networks
	3.1.1 Foot network
	3.1.2 Bicycle network
	3.1.3 Road network
	3.1.4 Public transportation network
	3.1.5 Rental bicycle and rental car networks
	3.1.6 Locations of interest

	3.2 Multi-Modal Network
	3.3 Application
	3.3.1 Multi-modal transportation network IDF (Ile-de-France)
	3.3.2 Multi-Modal Transportation Network NY (New York City)

	3.4 Summary

	4 Shortest Path Problem
	4.1 Labeling Method
	4.1.1 Label setting methods and Dijkstra's algorithm
	4.1.2 Label correction methods

	4.2 Uni-Modal Routing
	4.2.1 Bi-directional search
	4.2.2 The ALT algorithm

	4.3 Multi-Modal Routing
	4.3.1 Regular language constrained shortest path problem
	4.3.2 Algorithm to solve RegLCSP

	4.4 Summary

	5 SDALT
	5.1 State Dependent ALT: SDALT
	5.1.1 Query phase
	5.1.2 Preprocessing phase
	5.1.3 Constrained landmark distances

	5.2 Label Setting SDALT: lsSDALT
	5.2.1 Feasible potential functions
	5.2.2 Correctness
	5.2.3 Complexity and memory requirements

	5.3 Label Correcting SDALT: lcSDALT
	5.3.1 Query
	5.3.2 Correctness
	5.3.3 Constrained landmark distances
	5.3.4 Complexity and memory requirements

	5.4 Bi-directional SDALT: biSDALT
	5.4.1 Query
	5.4.2 Constrained landmark distances and potential function
	5.4.3 Correctness
	5.4.4 Memory requirements

	5.5 Experimental Results
	5.5.1 Test instances
	5.5.2 Discussion

	5.6 Summary

	6 2-Way Multi-Modal Shortest Path Problem
	6.1 Problem Definition
	6.2 Basic Algorithm
	6.2.1 Correctness
	6.2.2 Complexity

	6.3 Speed-up Techniques
	6.4 Experimental Results
	6.5 Summary

	7 Dial-A-Ride
	7.1 Introduction
	7.2 The dial-a-ride problem
	7.3 Solution Framework
	7.3.1 The granular neighborhood
	7.3.2 Preprocessing
	7.3.3 Initial Solution
	7.3.4 Local search
	7.3.5 Tabu list and aspiration criteria
	7.3.6 Diversification and intensification
	7.3.7 Stopping criterion

	7.4 Experimental Results
	7.4.1 Test instances
	7.4.2 Evaluation of Granular Tabu Search
	7.4.3 Comparison on f'(s)
	7.4.4 Comparison on f''(s)
	7.4.5 Discussion

	7.5 Summary

	8 Conclusions
	A SDALT: Examples
	A.1 Details for IVa

