C. Jordy, G. Cailon, N. Roumegous, T. Gacoin, F. Ozanam et al., Matière active à base de silicium greffé pour électrode négative d'accumulateur au lithium, FR, vol.10, p.50613, 2010.

T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohjiya et al., Solid state ionics for batteries, 2005.
DOI : 10.1007/4-431-27714-5

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.
DOI : 10.1142/9789814317665_0024

J. Armand and . Tarascon, Building better batteries, Nature, vol.128, issue.7179, pp.652-657, 2008.
DOI : 10.1038/451652a

URL : https://hal.archives-ouvertes.fr/hal-00258391

C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang et al., High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, vol.4, issue.8, pp.31-35, 2008.
DOI : 10.1038/nnano.2007.411

D. Larcher, S. Beattie, M. Morcrette, K. Edström, J. Jumas et al., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, Journal of Materials Chemistry, vol.146, issue.17, pp.3759-3772, 2007.
DOI : 10.1039/b705421c

URL : https://hal.archives-ouvertes.fr/hal-00181051

H. Okamoto, Li-Si (Lithium-Silicon), Journal of Phase Equilibria and Diffusion, vol.173, issue.3, pp.118-119, 2009.
DOI : 10.1007/s11669-008-9431-8

Y. He, X. Yu, G. Li, R. Wang, H. Li et al., Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction, Journal of Power Sources, vol.216, pp.131-138, 2012.
DOI : 10.1016/j.jpowsour.2012.04.105

W. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.3, pp.877-885, 2011.
DOI : 10.1016/j.jpowsour.2010.08.114

J. Li and J. R. Dahn, An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si, Journal of The Electrochemical Society, vol.154, issue.3, pp.154-157, 2007.
DOI : 10.1149/1.2409862

L. Y. Beaulieu, K. W. Eberman, R. L. Turner, J. L. Krause, and J. R. Dahn, Colossal Reversible Volume Changes in Lithium Alloys, Electrochemical and Solid-State Letters, vol.4, issue.9, pp.137-140, 2001.
DOI : 10.1149/1.1388178

M. Ulldemolins, F. Le-cras, B. Pecquenard, V. P. Phan, L. Martin et al., Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries, Journal of Power Sources, vol.206, pp.245-252, 2012.
DOI : 10.1016/j.jpowsour.2012.01.095

URL : https://hal.archives-ouvertes.fr/cea-00677078

J. H. Ryu, J. W. Kim, Y. Sung, and S. M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries, Electrochemical and Solid-State Letters, vol.7, issue.10, pp.306-309, 2004.
DOI : 10.1149/1.1792242

W. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.1, pp.13-24, 2011.
DOI : 10.1016/j.jpowsour.2010.07.020

S. S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, vol.162, issue.2, pp.1379-1394, 2006.
DOI : 10.1016/j.jpowsour.2006.07.074

E. Peled, D. Bar, A. Tow, A. Merson, L. Gladkich et al., Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies, Journal of Power Sources, vol.97, issue.98, pp.52-57, 2001.
DOI : 10.1016/S0378-7753(01)00505-5

D. Bar-tow, E. Peled, and L. Burstein, A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries, Journal of The Electrochemical Society, vol.146, issue.3, pp.824-832, 1999.
DOI : 10.1149/1.1391688

J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. Möller et al., Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, issue.1-2, pp.269-281, 2005.
DOI : 10.1016/j.jpowsour.2005.01.006

L. Chen, K. Wang, X. Xie, and J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, Journal of Power Sources, vol.174, issue.2, pp.538-543, 2007.
DOI : 10.1016/j.jpowsour.2007.06.149

N. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim et al., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, Journal of Power Sources, vol.161, issue.2, pp.1254-1259, 2006.
DOI : 10.1016/j.jpowsour.2006.05.049

I. Solomon, M. P. Schmidt, and H. Tran-quoc, Selective low-power plasma decomposition of silane-methane mixtures for the preparation of methylated amorphous silicon, Physical Review B, vol.38, issue.14, pp.9895-9901, 1988.
DOI : 10.1103/PhysRevB.38.9895

S. P. Nadimpalli, V. A. Sethuraman, S. Dalavi, B. Lucht, M. J. Chon et al., Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries, Journal of Power Sources, vol.215, pp.145-151, 2012.
DOI : 10.1016/j.jpowsour.2012.05.004

L. Touahir, A. Cheriet, D. A. Dalla-corte, J. Chazaviel, C. H. De-villeneuve et al., Methylated silicon: A longer cycle-life material for Li-ion batteries, Journal of Power Sources, vol.240, pp.551-557, 2013.
DOI : 10.1016/j.jpowsour.2013.04.089

B. Racine, A. C. Ferrari, N. A. Morisson, I. Hutchings, W. I. Milne et al., Properties of amorphous carbon???silicon alloys deposited by a high plasma density source, Journal of Applied Physics, vol.90, issue.10, pp.5002-5012, 2001.
DOI : 10.1063/1.1406966

M. J. Chon, V. A. Sethuraman, A. Mccormick, V. Srinivasan, P. R. Guduru-gao et al., Real-time measurement of stress and damage evolution during initial lithiationof crystalline silicon Alloy Formation in Nanostructured Silicon, Physical Review Letters Advanced Materials, vol.13, pp.816-819, 2001.

G. G. Amatucci and N. Pereira, Fluoride based electrode materials for advanced energy storage devices, Journal of Fluorine Chemistry, vol.128, issue.4, pp.243-262, 2007.
DOI : 10.1016/j.jfluchem.2006.11.016

L. Dupont, S. Grugeon, S. Laruelle, and J. Tarascon, Structure, texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations, Journal of Power Sources, vol.164, issue.2, pp.839-848, 2007.
DOI : 10.1016/j.jpowsour.2006.10.096

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.
DOI : 10.1016/j.electacta.2010.05.072

B. Philippe, R. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi et al., Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy, Chemistry of Materials, vol.24, issue.6, pp.1107-1115, 2012.
DOI : 10.1021/cm2034195

P. Verma and P. Novák, Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite, Carbon, vol.50, issue.7, pp.2599-2614, 2012.
DOI : 10.1016/j.carbon.2012.02.019

S. Ciampi, J. B. Harper, and J. J. Gooding, Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si???C bonds: surface preparation, passivation and functionalization, Chemical Society Reviews, vol.78, issue.551, pp.2158-2183, 2010.
DOI : 10.1002/chem.200903316

D. Bélanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.31, issue.551, pp.3995-4048, 2011.
DOI : 10.1021/la104125n

M. M. Chehimi, H. Wang, and Y. Jiang, Aryl Diazonium Salts: New coupling agents in polymer and surface science Wiley- VCH, 2012. 35 Q. Pan, Y. Jiang. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries, Journal of Power Sources Journal of Materials Chemistry, vol.178, issue.17, pp.379-386, 2007.
DOI : 10.1002/9783527650446

Q. Pan, H. Wang, and Y. Jiang, Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries, Electrochemistry Communications, vol.9, issue.4, pp.754-760, 2007.
DOI : 10.1016/j.elecom.2006.11.013

C. Martin, M. Alias, F. Christien, O. Crosnier, D. Bélanger et al., Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-Ion Batteries, Advanced Materials, vol.9, issue.46, pp.46-4735, 2009.
DOI : 10.1002/adma.200900235

U. Lafont, L. Simonin, M. Gaberscek, and E. M. Kelder, Carbon coating via an alkyl phosphonic acid grafting route: Application on TiO2, Journal of Power Sources, vol.174, issue.2, pp.1104-1108, 2007.
DOI : 10.1016/j.jpowsour.2007.06.186

W. Xu, S. S. Sai, S. Vegunta, and J. C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.20, pp.8582-8589, 2011.
DOI : 10.1016/j.jpowsour.2011.05.059

P. Thissen, O. Seitz, and Y. J. , Wet chemical surface functionalization of oxide-free silicon, Progress in Surface Science, vol.87, issue.9-12, pp.272-290, 2012.
DOI : 10.1016/j.progsurf.2012.10.003

V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of infrared spectroscopy of ultrathin films, p.44, 2003.
DOI : 10.1002/047123432X

A. Lehner, G. Steinhoff, M. S. Brandt, M. Eickhoff, and M. Stuzmann, Hydrolisation of crystalline silicon (111) and hydrogenated amorphous silicon surfaces: a comparative x-ray photoelectron spectroscopy study, Journal of Applied Physics, pp.94-98, 2003.

W. Cai, Z. Lin, T. Strother, and R. J. Hamers, Chemical Modification and Patterning of Iodine-Terminated Silicon Surfaces Using Visible Light, The Journal of Physical Chemistry B, vol.106, issue.10, pp.2656-2664, 2002.
DOI : 10.1021/jp013523h

A. Bansal, X. Li, I. Lauermann, N. S. Lewis, S. I. Yi et al., Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route, Journal of the American Chemical Society, vol.118, issue.30, pp.7225-7226, 1996.
DOI : 10.1021/ja960348n

B. R. Weinberger, H. W. Deckman, E. Yablonovitch, T. Gmitter, W. Kobasz et al., The passivation of electrically active sites on the surface of crystalline silicon by fluorination, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.3, issue.3, pp.887-891, 1985.
DOI : 10.1116/1.573340

P. Thissen, O. Seitz, and Y. J. , Wet chemical surface functionalization of oxide-free silicon, Progress in Surface Science, vol.87, issue.9-12, pp.272-290, 2012.
DOI : 10.1016/j.progsurf.2012.10.003

P. Allongue, V. Costa-kieling, and H. Gerischer, Etching of Silicon in NaOH Solutions, Journal of The Electrochemical Society, vol.140, issue.4, pp.1009-1018, 1993.
DOI : 10.1149/1.2056189

P. Allongue, V. Costa-kieling, and H. Gerischer, Etching of Silicon in NaOH Solutions, Journal of The Electrochemical Society, vol.140, issue.4, pp.1018-1026, 1993.
DOI : 10.1149/1.2056190

E. R. Lippincott, A. Van-valkenburg, C. E. Weir, and E. N. Bunting, Infrared studies on polymorphs of silicon dioxide and germanium dioxide, Journal of Research of the National Bureau of Standards, vol.61, issue.1, pp.61-61, 1958.
DOI : 10.6028/jres.061.009

P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, Infrared spectroscopic study of SiO x films produced by plasma enhanced chemical vapor deposition, Journal of Vacuum Science Technology A, pp.4-7, 1986.

G. Lucovsky, P. D. Richard, D. V. Tsu, S. Y. Lin, and R. J. Markunas, Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.4, issue.3, pp.4-7, 1986.
DOI : 10.1116/1.573832

S. Lin, Vibrational local modes of a-SiO2:H and variation of local modes in different local environments, Journal of Applied Physics, vol.82, issue.12, pp.5976-5982, 1997.
DOI : 10.1063/1.366488

C. T. Kirk, Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica, Physical Review B, vol.38, issue.2, pp.1255-1273, 1988.
DOI : 10.1103/PhysRevB.38.1255

J. Lambers and P. Hess, Infrared spectra of photochemically grown suboxides at the Si/SiO2 interface, Journal of Applied Physics, vol.94, issue.5, pp.2937-2941, 2003.
DOI : 10.1063/1.1594269

A. Ermolieff, F. Martin, A. Amouroux, S. Marthon, and J. F. Westendorp, Surface composition analysis of HF vapour cleaned silicon by x-ray photoelectron s[ectroscopy, Applied Surface Science, vol.48, pp.178-184, 1991.

. Tarascon, Towards a fundamental understanding of the improved electrochemical performances of silicon-carbon composites, Advanced Functional Materials, vol.17, issue.11, pp.1765-1774, 2007.

S. Xun, X. Song, L. Wang, M. E. Grass, Z. Liu et al., The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes, Journal of The Electrochemical Society, vol.158, issue.12, pp.1260-1266, 2011.
DOI : 10.1149/2.007112jes

A. Fidélis, F. Ozanam, and J. Chazaviel, Fully methylated, atomically flat (111) silicon surface, Surface Science, vol.444, issue.1-3, pp.7-10, 2000.
DOI : 10.1016/S0039-6028(99)01065-1

A. Teyssot, A. Fidélis, S. Fellah, F. Ozanam, and J. Chazalviel, Anodic grafting of organic groups on the silicon surface, Electrochimica Acta, vol.47, issue.16, pp.2565-2571, 2002.
DOI : 10.1016/S0013-4686(02)00116-0

X. Wang, R. E. Ruther, J. A. Streifer, and R. J. Hamers, UV-Induced Grafting of Alkenes to Silicon Surfaces: Photoemission versus Excitons, Journal of the American Chemical Society, vol.132, issue.12, pp.4048-4049, 2010.
DOI : 10.1021/ja910498z

A. B. Sieval, A. L. Demirel, J. W. Nissink, M. R. Linford, J. H. Van-der-maas et al., Highly Stable Si???C Linked Functionalized Monolayers on the Silicon (100) Surface, Langmuir, vol.14, issue.7, pp.1759-1768, 1998.
DOI : 10.1021/la971139z

M. R. Linford and C. E. Chidsey, Alkyl monolayers covalently bonded to silicon surfaces, Journal of the American Chemical Society, vol.115, issue.26, pp.12631-12632, 1993.
DOI : 10.1021/ja00079a071

R. L. Cicero, M. R. Linford, and C. E. Chidsey, Photoreactivity of Unsaturated Compounds with Hydrogen-Terminated Silicon(111), Langmuir, vol.16, issue.13, pp.5688-5695, 2000.
DOI : 10.1021/la9911990

X. Wallart, C. Henry-de-villeneuve, and P. Allongue, Truly Quantitative XPS Characterization of Organic Monolayers on Silicon: Study of Alkyl and Alkoxy Monolayers on H???Si(111), Journal of the American Chemical Society, vol.127, issue.21, pp.7871-7878, 2005.
DOI : 10.1021/ja0430797

URL : https://hal.archives-ouvertes.fr/hal-00125385

P. Gorostiza, C. Henry-de-villeneuve, Q. Y. Sun, F. Sans, X. Wallart et al., Water Exclusion at the Nanometer Scale Provides Long-Term Passivation of Silicon (111) Grafted with Alkyl Monolayers, The Journal of Physical Chemistry B, vol.110, issue.11, pp.5576-5585, 2006.
DOI : 10.1021/jp054825c

URL : https://hal.archives-ouvertes.fr/hal-00127062

B. Zdyrko, S. K. Varshney, and I. Luzinov, Effect of Molecular Weight on Synthesis and Surface Morphology of High-Density Poly(ethylene glycol) Grafted Layers, Langmuir, vol.20, issue.16, pp.627-6735, 2004.
DOI : 10.1021/la049359h

J. Allongue and . Chazaviel, Well-defined carboxyl-terminated alkyl monolayers grafted onto H-Si(111): packing density from a combined AFM and quantitative IR study, Langmuir, vol.22, pp.153-162, 2006.

Q. Sun, L. C. De-smet, B. Van-lagen, M. Giesbers, P. C. Thuene et al., Covalently Attached Monolayers on Crystalline Hydrogen-Terminated Silicon:?? Extremely Mild Attachment by Visible Light, Journal of the American Chemical Society, vol.127, issue.8, pp.2514-2523, 2005.
DOI : 10.1021/ja045359s

A. Faucheux, A. C. Gouget-laemmel, P. Allongue, C. Henry-de-villeneuve, F. Ozanam et al., Mechanisms of Thermal Decomposition of Organic Monolayers Grafted on (111) Silicon, Langmuir, vol.23, issue.3, pp.1326-1332, 2007.
DOI : 10.1021/la061260i

J. H. Lee, H. B. Lee, and J. D. Andrade, Blood compatibility of polyethylene oxide surfaces, Progress in Polymer Science, pp.20-26, 1995.
DOI : 10.1016/0079-6700(95)00011-4

B. Zdyrko, S. K. Varshney, I. Luzinov, K. Kato, and Y. Ikada, Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers Surface modification of polymer by grafting, Langmuir Advances in Polymer Sciences, vol.20, issue.137, pp.6727-6735, 1998.

S. J. Blanksby and G. B. Ellison, Bond Dissociation Energies of Organic Molecules, ChemInform, vol.36, issue.24, pp.255-263, 2003.
DOI : 10.1002/chin.200324299

B. De and B. Darwent, Bond dissociation energy in simple molecules. National Standard Reference Data System ? National Bereau of Standars (U.S.), 1970. 80 A. de Klerk. Fischer-Tropsch Refining, 2012.

J. Fossey, D. Lefort, and J. Sorba, Free radicals in organic chemistry, 1995.

D. F. Mcmillen and D. M. Golden, Hydrocarbon Bond Dissociation Energies, Annual Review of Physical Chemistry, vol.33, issue.1, pp.493-532, 1982.
DOI : 10.1146/annurev.pc.33.100182.002425

M. Baklanov, P. S. Ho, E. Zschech, P. Harder, M. Grunze et al., Advanced Interconnects for ULSI Technology Molecular conformation in oligo(ethylene glycol-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption, situ characterization of the n-Si/acetonitrile interface by electromodulated infrared internal-relfection spectroscopy, pp.426-436, 1986.

J. Chazalviel and A. V. Rao, Optical Absorption by Surface States and Atomic Reorganization Effects at the Semiconductor/Electrolyte Interface, Journal of The Electrochemical Society, vol.134, issue.5, pp.1138-1143, 1987.
DOI : 10.1149/1.2100631

F. Ozanam, C. Da-fonseca, A. V. Rao, and J. Chazalviel, In Situ Spectroelectrochemical Study of the Anodic Dissolution of Silicon by Potential-Difference and Electromodulated FT-IR Spectroscopy, Applied Spectroscopy, vol.51, issue.4, pp.519-525, 1997.
DOI : 10.1366/0003702971940512

J. Chazalviel, B. H. Erné, F. Maroun, and F. Ozanam, In situ infrared spectroscopy of the semiconductor | electrolyte interface 108-118. 89 N.J. Harrick. Vertical double-pass multiple reflection element for internal reflection spectroscopy, Journal of Electroanalytical Chemistry Applied Optics, vol.509, issue.5 1, 1966.

A. Tardella and J. Chazalviel, chemical information at the semiconductor/electrolyte interface from infrared vibrational spectroscopy, Applied Physics Letters, vol.47, issue.3, pp.334-338, 1985.
DOI : 10.1063/1.96155

Y. J. Chabal, L. R. Bard, and . Faulkner, Surface infrared spectroscopy 211-357. 92 A Electrochemical methods: Fundamental and Applications The intensity of infrared absorption bands, Surface Science Reports Physical Review, vol.8, issue.40, pp.813-828, 1932.

Y. Ikezawa and T. Ariga, In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface, Electrochimica Acta, vol.52, issue.7, pp.2710-2715, 2007.
DOI : 10.1016/j.electacta.2006.09.050

F. Joho and P. Novák, SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells, Electrochimica Acta, vol.45, issue.21, pp.3589-3599, 2000.
DOI : 10.1016/S0013-4686(00)00480-1

K. Nishikawa, M. Ota, S. Izuo, Y. Fukunaka, E. R. Kusaka et al., Transient natural convection induced by electrodeposition of Li + ions onto a lithium metal vertical cathode in propylene carbonate, Journal of Solid State Electrochemistry, vol.8, issue.3, pp.174-181, 2004.
DOI : 10.1007/s10008-003-0447-z

K. Nishikawa, Y. Fukunaka, T. Sakka, Y. H. Ogata, and J. R. Selman, Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte, Electrochimica Acta, vol.53, issue.1, pp.218-223, 2007.
DOI : 10.1016/j.electacta.2007.06.034

D. E. Arrega-salas, A. K. Sra, K. Roodenko, Y. J. Chabal, and C. L. Hinkle, Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries, The Journal of Physical Chemistry C, vol.116, issue.16, pp.9072-9077, 2012.
DOI : 10.1021/jp300787p

S. Grugeon, S. Laruelle, R. Herrera-urbina, L. Dupont, P. Poizot et al., Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium, Journal of The Electrochemical Society, vol.148, issue.4, pp.285-292, 2001.
DOI : 10.1149/1.1353566

X. H. Huang, J. P. Tu, X. H. Xia, X. L. Wang, J. Y. Xiang et al., Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries, Journal of Power Sources, vol.188, issue.2, pp.588-591, 2009.
DOI : 10.1016/j.jpowsour.2008.11.111

X. Li, J. Yang, Y. Hu, J. Wang, Y. Li et al., Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage, Journal of Materials Chemistry, vol.41, issue.121, pp.18847-18853, 2012.
DOI : 10.1039/c2jm33297c

K. Striebel, E. Sakai, and E. Cairns, Impedance studies of the LiMn 2 O 4 /LiPF 6 -DMC-EC interface, pp.569-574, 2000.

D. C. Marra, W. M. Kessels, M. C. Van-de-sanden, K. Kashefizadeh, and E. S. , Surface hydride composition of plasma deposited hydrogenated amorphous silicon: in situ infrared study of ion flux and temperature dependence, Surface Science, vol.530, issue.1-2, pp.1-16, 2003.
DOI : 10.1016/S0039-6028(03)00396-0

D. M. Goldie and S. K. Persheyev, Quantitative hydrogen measurements in PECVD and HWCVD a-Si:H using FTIR spectroscopy, Journal of Materials Science, vol.74, issue.166, pp.5287-5291, 2006.
DOI : 10.1007/s10853-006-0302-6

B. Key, M. Morcrette, J. Tarascon, and C. P. Grey, Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms, Journal of the American Chemical Society, vol.133, issue.3, pp.503-512, 2011.
DOI : 10.1021/ja108085d

H. Kim, C. Chou, J. G. Ekerdt, and G. S. Hwang, Structure and Properties of Li???Si Alloys: A First-Principles Study, The Journal of Physical Chemistry C, vol.115, issue.5, pp.2514-2521, 2011.
DOI : 10.1021/jp1083899

T. F. Young, C. P. Chen, J. F. Liou, Y. L. Yang, and T. C. Chang, Study on the Si-Si vibrational states of the near surface region of porous silicon, Journal of Porous Materials, vol.7, issue.1/3, pp.339-343, 2000.
DOI : 10.1023/A:1009622601723

H. Touir, K. Zellama, J. Morhange, M. Shinohara, D. Shoji et al., Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities Oxidation processes on the H 2 Ochemisorbed Si(100) surface studied by in-situ infrared spectroscopy, Physicla Review B Surface Sciences, vol.59, issue.401, pp.364-370, 1998.

R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J. Tarascon et al., Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study, The Journal of Physical Chemistry B, vol.109, issue.33, pp.15868-15875, 2005.
DOI : 10.1021/jp051626k

K. Xu, G. V. Zhuang, J. L. Allen, U. Lee, S. S. Zhang et al., Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries, The Journal of Physical Chemistry B, vol.110, issue.15, pp.7708-7719, 2006.
DOI : 10.1021/jp0601522

S. Matsuta, T. Asada, and K. Kitaura, Vibrational Assignments of Lithium Alkyl Carbonate and Lithium Alkoxide in the Infrared Spectra An Ab Initio MO Study, Journal of The Electrochemical Society, vol.147, issue.5, pp.1695-1702, 2000.
DOI : 10.1149/1.1393420

Y. Wang and P. B. Balbuena, Theoretical Insights into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate:?? Density Functional Theory Studies, The Journal of Physical Chemistry B, vol.106, issue.17, pp.4486-4495, 2002.
DOI : 10.1021/jp014371t

P. B. Balbuena and Y. Wang, Lithium-ion batteries: solid electrolyte interphase, 2004.
DOI : 10.1142/p291

C. Emmeluth, B. L. Poad, G. H. Thompson, E. J. Weddle, and . Bieske, Infrared spectra of the Li+???(H2)n (n=1???3) cation complexes, The Journal of Chemical Physics, vol.126, issue.20, p.116, 2007.
DOI : 10.1063/1.2738464

B. Simon and J. Boeuve, Rechargeable lithium electrochemical cell, U.S. Patent, vol.5626, p.981, 1997.

K. Tasaki, K. Kanda, T. Kobayashi, S. Nakamura, and M. Ue, Theoretical Studies on the Reductive Decompositions of Solvents and Additives for Lithium-Ion Batteries near Lithium Anodes, Journal of The Electrochemical Society, vol.153, issue.12, pp.2192-2197, 2006.
DOI : 10.1149/1.2354460

D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, vol.47, issue.9, pp.1423-1439, 2002.
DOI : 10.1016/S0013-4686(01)00858-1

L. Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud et al., The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, vol.156, issue.2, pp.103-113, 2009.
DOI : 10.1149/1.3029674

R. Mcmillan, H. Slegr, Z. X. Shu, and W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, Journal of Power Sources, vol.81, issue.82, pp.81-82
DOI : 10.1016/S0378-7753(98)00201-8

C. Jung, Electrochemical absorption effect of BF4 anion salt on SEI layer formation, Solid State Ionics, vol.179, issue.27-32, pp.1717-1720, 2008.
DOI : 10.1016/j.ssi.2008.03.026

I. A. Profatilova, S. Kim, and N. Choi, Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate, Electrochimica Acta, vol.54, issue.19, pp.4445-4450, 2009.
DOI : 10.1016/j.electacta.2009.03.032

V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan et al., Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes, Langmuir, vol.28, issue.1, pp.965-976, 2012.
DOI : 10.1021/la203712s

I. A. Profatilova, T. Langer, J. P. Badillo, A. Schmitz, H. Orthner et al., Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.159, issue.5, pp.657-663, 2012.
DOI : 10.1149/2.095205jes

J. E. Katon and M. D. Cohen, The Vibrational Spectra and Structure of Dimethyl Carbonate and its Conformational Behavior, Canadian Journal of Chemistry, vol.53, issue.9, pp.1378-1386, 1975.
DOI : 10.1139/v75-191

B. P. Kar, N. Ramanathan, K. Sundararajan, and K. S. Viswanathan, Conformations of dimethyl carbonate and its complexes with water: A matrix isolation infrared and ab initio study, Journal of Molecular Structure, vol.1024, pp.84-93, 2012.
DOI : 10.1016/j.molstruc.2012.05.007

D. Aurbach, Y. Gofer, and J. Langzam, The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems, Journal of The Electrochemical Society, vol.136, issue.11, pp.3198-3205, 1989.
DOI : 10.1149/1.2096425

D. Aurbach, M. D. Levi, E. Levi, and A. Schechter, Failure and Stabilization Mechanisms of Graphite Electrodes, The Journal of Physical Chemistry B, vol.101, issue.12, pp.2195-2206, 1997.
DOI : 10.1021/jp962815t

H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode, Journal of The Electrochemical Society, vol.151, issue.10, pp.1659-1669, 2004.
DOI : 10.1149/1.1785795

N. Delpuech, N. Dupré, D. Mazouzi, J. Gaubicher, P. Moreau et al., Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell, Electrochemistry Communications, vol.33, pp.72-75, 2013.
DOI : 10.1016/j.elecom.2013.05.001

URL : https://hal.archives-ouvertes.fr/hal-00961240

R. Mogi, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, Study of the Decomposition of Propylene Carbonate on Lithium Metal Surface by Pyrolysis???Gas Chromatography???Mass Spectroscopy, Langmuir, vol.19, issue.3, pp.814-821, 2003.
DOI : 10.1021/la026299b

R. Marom, I. Halalay, O. Haik, E. Zinigrad, and D. Aurbach, Revisiting LiClO[sub 4] as an Electrolyte for Rechargeable Lithium-Ion Batteries, A972-A983. 133 K.K. Sharma. Optics: principle and applications, 2006.
DOI : 10.1149/1.3447750

H. R. Philipp and E. A. Taft, Optical Constants of Silicon in the Region 1 to 10 ev, Physical Review, vol.120, issue.1, pp.37-38, 1960.
DOI : 10.1103/PhysRev.120.37

V. A. Sethuraman, M. J. Chon, M. Shimshak, V. Srinivasan, and P. R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, Journal of Power Sources, vol.195, issue.15, pp.5062-5066, 2010.
DOI : 10.1016/j.jpowsour.2010.02.013

C. Chou and G. S. Hwang, Surface effects on the structure and lithium behavior in lithiated silicon: A first principles study, Surface Science, vol.612, pp.16-23, 2013.
DOI : 10.1016/j.susc.2013.02.004

X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon, Nature Nanotechnology, vol.109, issue.11, pp.749-756, 2012.
DOI : 10.1016/j.jpowsour.2010.11.155

M. Cross and M. J. Adams, Effects of doping and free carriers on the refractive index of direct-gap semiconductors, Opto-electronics, vol.44, issue.3, pp.199-216, 1974.
DOI : 10.1007/BF01423984

K. Von-rottkay, M. Rubin, and S. Wen, Optical indices of electrochromic tungsten oxide, Thin Solid Films, vol.306, issue.1, pp.10-16, 1997.
DOI : 10.1016/S0040-6090(97)00254-X

N. Özer, M. D. Rubin, and C. M. Lampert, Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison, Solar Energy Materials and Solar Cells, vol.40, issue.4, pp.285-296, 1996.
DOI : 10.1016/0927-0248(95)00147-6

E. Radvanyi, E. De-vito, W. Porcher, J. Danet, P. Desbois et al., Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy, Journal of Materials Chemistry A, vol.21, issue.16, pp.4956-4965, 2013.
DOI : 10.1039/c3ta10212b

P. Cassir and . Marcus, Interphase chemistry of Si electrodes used as anodes in Li-ion batteries, Applied Surface Science, vol.266, pp.5-16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00793814

H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang et al., The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature, Solid State Ionics, vol.135, issue.1-4, pp.181-191, 2000.
DOI : 10.1016/S0167-2738(00)00362-3

U. Kasavajjula, C. Wang, and A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, Journal of Power Sources, vol.163, issue.2, pp.1003-1039, 2007.
DOI : 10.1016/j.jpowsour.2006.09.084

S. P. Nadimpalli, V. A. Sethuraman, S. Dalavi, B. Lucht, M. J. Chon et al., Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries, Journal of Power Sources, vol.215, pp.145-151, 2012.
DOI : 10.1016/j.jpowsour.2012.05.004

P. Allongue, C. Henry-de-villeneuve, J. Pinson, F. Ozanam, J. Chazalviel et al., Organic monolayers on Si(111) by electrochemical method Grafting and polymer formation on silicon from unsaturated Grignards: I-Aromatic precursors, Electrochimica Acta The Journal of Physical Chemistry B, vol.43, issue.110, pp.1665-1672, 1998.

S. Fellah, F. Ozanam, J. Chazalviel, J. Vigneron, A. Etchebery et al., Grafting and Polymer Formation on Silicon from Unsaturated Grignards:?? II. Aliphatic Precursors, The Journal of Physical Chemistry B, vol.111, issue.6, pp.1310-1317, 2007.
DOI : 10.1021/jp063291s

L. R. Tessler and I. Solomon, :H, Physical Review B, vol.52, issue.15, pp.10962-10971, 1995.
DOI : 10.1103/PhysRevB.52.10962

N. J. Harrick, F. M. Mirabella-jr, and N. J. Harrick, Internal Reflection Spectroscopy Harrick Scientific Corporation, 152 F.M. Mirabella Jr. Internal Reflection Spectroscopy, Theory and Applications. Marcel Dekker, 1979.