N. =. Td and .. , The continuous, marked, lines show the mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10) plus one standard deviation (1.4.11), Condition number (1.4.9), p.34

T. , M. =. , and ·. #?, The continuous, marked, lines show the mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10) plus one standard deviation (1.4.11), Condition number (1.4.9), p.34

N. =. Td and .. , The continuous, marked, lines show the mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10) plus one standard deviation (1.4.11), Condition number (1.4.9), p.35

H. , M. =. , and ·. #?, The continuous, marked, lines show the mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10) plus one standard deviation (1.4.11), Condition number (1.4.9), p.35

·. Gaussian-density.-m-=-c, Left: condition number (1.4.9) Right: approximation error (1.4.6) for the function (3.5.4). The continuous marked lines show the mean error over 100 repetitions. The dashed lines show the mean error plus one standard deviation, p.79

·. Gaussian-density.-m-=-c, #?) 2 . Left: approximation error (1.4.6) for the function (3.5.6) Right: approximation error (1.4.6) for the function (3.5.1). The continuous marked lines show the mean error over 100 repetitions. The dashed lines show the mean error plus one standard deviation, p.79

. Gaussian-density, Condition number (1.4.9) Left: M = c · (#?) #?/2 . Right: M = c · (#?) #?/3 . The continuous marked lines show the mean error over 1000 repetitions. The dashed lines show the mean error plus one standard deviation, p.80

·. Gaussian-density.-m-=-c, Left: condition number (1.4.9) Right: approximation error (1.4.6) for the function (3.5.1). The continuous marked lines show the mean error over 1000 repetitions. The dashed lines show the mean error plus one standard deviation, p.80

. Gaussian-density, Approximation error (1.4.6) for the target functions (3.5.2) and (3.5.3). The continuous marked lines show the mean error over 1000 repetitions. The dashed lines show the mean error plus one standard deviation, p.81

·. Gaussian-density.-m-=-c and . #?, Approximation error (1.4.6) for nonsmooth target functions (3.5.4), (3.5.5). The continuous marked lines show the mean error over 1000 repetitions. The dashed lines show the mean error plus one standard deviation, p.81

M. =. Gamma and ·. , Condition number (1.4.9) averaged over 1000 repetitions, p.82

·. Arcsine-distribution.-m-=-c, Top-left: mean condition number (1.4.9) Top-right: approximation error (1.4.6) for the function (3.4.2) with ? = 0.5. Bottom-left: approximation error (1.4.6) for the function (3.4.5) Bottom-right: approximation error (1.4.6) for the function (3.4.4). The continuous marked lines show the mean error over 1000 repetitions. The dashed lines show the mean error plus one standard deviation, p.85

A. Test-case, Top: Tikhonov regularization: ? = 5 × 10 ?1 (left), ? = 5 × 10 ?2 (center), ? = 5 × 10 ?3 (right) Bottom: Picard criterion, pp.50-127

C. Min, Top: Tikhonov regularization with ? = 5 × 10 ?3 (left), ? = 10 ?3 (center), ? = 5 × 10 ?4 (right) Bottom: Picard criterion, pp.50-128

C. Min, Top: Tikhonov regularization with ? = 5 × 10 ?2 (left), ? = 10 ?2 (center), ? = 5 × 10 ?3 (right) Bottom: Picard criterion, pp.50-129

I. Test-case, Tikhonov regularization: ? = 5 × 10 ?2 (left), ? = 10 ?2 (center), ? = 5 × 10 ?3 (right) Picard criterion, m = 10 (left), m = 25 (center), m = 50 (right), p.131

I. Test-case, Tikhonov regularization, ? = 5×10 ?2 (left), ? = 10 ?2 (center), ? = 5 × 10?3 (right) Picard criterion, m = 10 (left), m = 25 (center), m = 50 (right), p.132

I. Test-case, Isolines of C(?) in [C 0.5 min , C max ] Left: Tikhonov regularization, ? = 10 ?1 . Center: Tikhonov regularization, ? = 5 × 10 ?2, p.132

I. Test-case, Isolines of C(?) in [C 0.5 min , C max ]. Left: Tikhonov regularization, ? = 5 × 10 ?1 . Right: Picard criterion, m = 10, p.132

I. Test-case, Isolines of C(?) Left: Tikhonov regularization, ? = 5 × 10 ?3 . Center: Tikhonov regularization, ? = 10 ?3 . Right: Picard criterion, m = 25, p.133

I. Test-case, Isolines of C(?) Left: Tikhonov regularization, ? = 5 × 10 ?3 . Center: Tikhonov regularization, ? = 10 ?3 . Right: Picard criterion, m = 25, p.134

V. Test-case, Isolines of C(?) in [C 0.7 min , C max ]. Left: Tikhonov regularization

V. Test-case, Isolines of C(?) in [C 0.7 min , C max ]. Left: Tikhonov regularization, ? = 10 ?1 . Right: Picard criterion, p.134

. Tikhonov-regularization, I. Test-case, and =. , Test case II, ? = 5×10 ?2 (top-right) Test case IIIa, ? = 10 ?1 (bottom-left) Test case VI, ? = 10 ?2 (bottom-right), pp.10-12

A. Test-case, Tikhonov regularization, ? = 5 × 10 ?3 . Left: 0.1% noise. Right: 1% noise, p.136

C. Test-case, Tikhonov regularization, ? = 5 × 10 ?4 . Left: 0.1% noise. Right: 1% noise, p.136

I. Test-case, Tikhonov regularization, ? = 5 × 10 ?2 . Left: 0.1% noise. Right: 1% noise, p.137

I. Test-case, Tikhonov regularization, ? = 10 ?1 Left: 0.1% noise. Right: 1% noise, p.137

I. Test-case, Tikhonov regularization, ? = 10 ?3 Left: 0.1% noise. Right: 1% noise, p.137

. Bottom-left, Bottom-right, p.143

T. , T. Hc-spaces, and ·. , Right: same as left but in log?log scale, Left: Condition number, p.164

M. [. Azzouz, C. Hanke, K. Oesterlein, and . Schilcher, The Factorization Method for Electrical Impedance Tomography Data from a New Planar Device, International Journal of Biomedical Imaging, vol.25, issue.1, 2007.
DOI : 10.1088/0266-5611/16/4/310

H. [. Ammari and . Kang, Polarization and moment tensors, Applied Mathematical Sciences, vol.162, 2007.

A. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, vol.1975, issue.1-3, pp.1-3, 1988.
DOI : 10.2307/1971291

J. [. Ainsworth and . Oden, A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, vol.142, issue.1-2, 2000.
DOI : 10.1016/S0045-7825(96)01107-3

L. [. Astala and . Päivärinta, Calder??n???s inverse conductivity problem in the plane, Annals of Mathematics, vol.163, issue.1, pp.265-299, 2006.
DOI : 10.4007/annals.2006.163.265

]. R. Ask75 and . Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, 1975.

. Bbp-+-09-]-g, M. Bozza, M. Brignone, A. Pastorino, M. Randazzo et al., Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering, Inverse Probl. Imaging, vol.3, issue.2, pp.231-241, 2009.

. Bcd-+-05-]-p, A. Binev, W. Cohen, R. Dahmen, V. Devore et al., Universal algorithms for learning theory. I. Piecewise constant functions, J. Mach. Learn. Res, vol.6, pp.1297-1321, 2005.

P. Binev, A. Cohen, W. Dahmen, and R. Devore, Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions, Constructive Approximation, vol.26, issue.2, pp.127-152, 2007.
DOI : 10.1007/s00365-006-0658-z

C. [. Bagirov, M. Clausen, and . Kohler, Estimation of a Regression Function by Maxima of Minima of Linear Functions, IEEE Transactions on Information Theory, vol.55, issue.2, pp.833-845, 2009.
DOI : 10.1109/TIT.2008.2009835

V. [. Borcea, V. F. Druskin, and . Guevara, Electrical impedance tomography with resistor networks, Inverse Problems, vol.24, issue.3, p.24, 2008.
DOI : 10.1088/0266-5611/24/3/035013

M. [. Burkardt and . Eldred, Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification, 2009.

M. [. Bungartz and . Griebel, Sparse grids, Acta Numerica, vol.13, pp.147-269, 2004.
DOI : 10.1017/S0962492904000182

M. [. Brühl, M. S. Hanke, and . Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numerische Mathematik, vol.93, issue.4, pp.635-654, 2003.
DOI : 10.1007/s002110200409

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ???empirical interpolation??? method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
DOI : 10.1016/j.crma.2004.08.006

URL : https://hal.archives-ouvertes.fr/hal-00021702

E. [. Barthelmann, K. Novak, and . Ritter, High dimensional polynomial interpolation on sparse grids, Advances in Computational Mathematics, vol.12, issue.4, pp.273-288, 2000.
DOI : 10.1023/A:1018977404843

F. [. Babu?ka, R. Nobile, and . Tempone, A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data, SIAM Journal on Numerical Analysis, vol.45, issue.3, pp.1005-1034, 2007.
DOI : 10.1137/050645142

J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, Spectral and High Order Methods for Partial Differential Equations, pp.43-62, 2011.

J. Beck, F. Nobile, L. Tamellini, and R. Tempone, ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS, M3AS), pp.23-2011
DOI : 10.1142/S0218202512500236

]. L. Bor02 and . Borcea, Electrical impedance tomography, Inverse Problems, vol.18, issue.6, pp.99-136, 2002.

R. [. Bangerth and . Rannacher, Adaptive finite element methods for differential equations, Lectures in Mathematics ETH Zürich, 2003.
DOI : 10.1007/978-3-0348-7605-6

]. M. Brü01 and . Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM J. Math. Anal, vol.32, issue.6, pp.1327-1341, 2001.

B. [. Blatman and . Sudret, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus M??canique, vol.336, issue.6, pp.518-523, 2008.
DOI : 10.1016/j.crme.2008.02.013

C. [. Bieri and . Schwab, Sparse high order FEM for elliptic sPDEs, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.13-14, pp.13-14, 2009.
DOI : 10.1016/j.cma.2008.08.019

B. [. Blatman and . Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, vol.230, issue.6, pp.2345-2367, 2011.
DOI : 10.1016/j.jcp.2010.12.021

R. [. Brown and . Torres, Uniqueness in the Inverse Conductivity Problem for Conductivities with 3/2 Derivatives in L p , p > 2 n, Journal of Fourier Analysis and Applications, vol.9, issue.6, pp.563-574, 2003.
DOI : 10.1007/s00041-003-0902-3

K. [. Bui-thanh, O. Willcox, and . Ghattas, Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space, SIAM Journal on Scientific Computing, vol.30, issue.6, pp.3270-3288, 2008.
DOI : 10.1137/070694855

R. [. Babu?ka, G. E. Tempone, and . Zouraris, Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.800-825, 2004.
DOI : 10.1137/S0036142902418680

D. [. Cakoni and . Colton, Qualitative methods in inverse scattering theory, 2006.

A. [. Chkifa, R. Cohen, C. Devore, and . Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.1, pp.47-253, 2013.
DOI : 10.1051/m2an/2012027

A. A. Chkifa, G. Cohen, F. Migliorati, R. Nobile, and . Tempone, Discrete least squares polynomial approximation with random evaluations ??? application to parametric and stochastic elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.3, 2013.
DOI : 10.1051/m2an/2014050

URL : https://hal.archives-ouvertes.fr/hal-01352276

R. [. Cohen, C. Devore, and . Schwab, Convergence rates of best N -term Galerkin approximations for a class of elliptic sPDEs, Found, Comput. Math, vol.10, issue.6, pp.615-646, 2010.

S. [. Cedio-fengya, M. S. Moskow, and . Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, vol.14, issue.3, pp.553-595, 1998.
DOI : 10.1088/0266-5611/14/3/011

]. H. Che02 and . Chen, Stochastic approximation and its applications, 2002.

H. [. Colton, M. Haddar, and . Piana, The linear sampling method in inverse electromagnetic scattering theory, Inverse Problems, vol.19, issue.6, pp.105-137, 2003.
DOI : 10.1088/0266-5611/19/6/057

URL : https://hal.archives-ouvertes.fr/hal-00744163

D. [. Cheney, J. Isaacson, and . Newell, Electrical Impedance Tomography, SIAM Review, vol.41, issue.1, pp.85-101, 1999.
DOI : 10.1137/S0036144598333613

R. [. Colton and . Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, vol.93, 1998.

W. [. Cameron and . Martin, The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals, The Annals of Mathematics, vol.48, issue.2, pp.48-385, 1947.
DOI : 10.2307/1969178

M. [. Colton, R. Piana, and . Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, vol.13, issue.6, pp.1477-1493, 1997.
DOI : 10.1088/0266-5611/13/6/005

A. [. Canuto and . Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Mathematics of Computation, vol.38, issue.157, pp.67-86, 1982.
DOI : 10.1090/S0025-5718-1982-0637287-3

A. Doostan, R. G. Ghanem, and J. , Red-Horse, Stochastic model reduction for chaos representations, Comput. Methods Appl. Mech. Engrg, vol.196, pp.37-40, 2007.

R. [. Desceliers, C. Ghanem, and . Soize, Polynomial chaos representation of a stochastic preconditioner, International Journal for Numerical Methods in Engineering, vol.31, issue.5, pp.618-634, 2005.
DOI : 10.1002/nme.1382

URL : https://hal.archives-ouvertes.fr/hal-00686183

H. Debusschere, P. Najm, O. Pebray, R. Knio, O. L. Ghanem et al., Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes, Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes, pp.698-719, 2004.
DOI : 10.1137/S1064827503427741

H. [. Doostan and . Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, Journal of Computational Physics, vol.230, issue.8, pp.3015-3034, 2011.
DOI : 10.1016/j.jcp.2011.01.002

F. [. Dick and . Pillichshammer, Digital nets and sequences: Discrepancy Theory and Quasi?Monte Carlo Integration, 2010.
DOI : 10.1017/CBO9780511761188

O. [. Eiermann, E. Ernst, and . Ullmann, Computational aspects of the stochastic finite element method, Computing and Visualization in Science, vol.191, issue.2, pp.3-15, 2007.
DOI : 10.1007/s00791-006-0047-4

M. [. Engl, A. Hanke, and . Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol.375, 1996.

O. G. Ernst, A. Mugler, H. Starkloff, and E. Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.2, pp.317-339, 2012.
DOI : 10.1051/m2an/2011045

C. [. Eldred, P. G. Webster, and . Constantine, Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference <br> 16th AIAA/ASME/AHS Adaptive Structures Conference<br> 10t, 2008.
DOI : 10.2514/6.2008-1892

M. [. Gerstner and . Griebel, Dimension?Adaptive Tensor?Product Quadrature, Computing, vol.71, issue.1, pp.65-87, 2003.
DOI : 10.1007/s00607-003-0015-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2434

D. [. Ghanem and . Ghosh, Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition, International Journal for Numerical Methods in Engineering, vol.64, issue.4, pp.486-504, 2007.
DOI : 10.1002/nme.2025

N. [. Gebauer and . Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems, vol.23, issue.5, pp.2159-2170, 2007.
DOI : 10.1088/0266-5611/23/5/020

]. R. Gha99 and . Ghanem, Ingredients for a general purpose stochastic finite elements implementation, Comput. Methods Appl. Mech. Engrg, vol.168, issue.14, pp.19-34, 1999.

]. M. Gil08 and . Giles, Multilevel Monte Carlo path simulation, Oper. Res, vol.56, issue.3, pp.607-617, 2008.

L. Gyørfi, M. Kohler, A. Krzy?ak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression, 2002.
DOI : 10.1007/b97848

. G. Gkn-+-11-]-i, F. Y. Graham, D. Kuo, R. Nuyens, I. H. Scheichl et al., Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications, J. Comput. Phys, vol.230, issue.10, pp.3668-3694, 2011.

. Gkw-+-08-]-b, H. Ganis, M. F. Klie, T. Wheeler, I. Wildey et al., Stochastic collocation and mixed finite elements for flow in porous media, Comput. Methods Appl. Mech. Engrg, vol.197, pp.43-44, 2008.

M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.3, pp.41-575, 2007.
DOI : 10.1051/m2an:2007031

URL : https://hal.archives-ouvertes.fr/hal-00112154

D. [. Gorban and . Roose, Coping with Complexity: Model Reduction and Data Analysis, 2011.
DOI : 10.1007/978-3-642-14941-2

P. [. Ghanem and . Spanos, Stochastic Finite Elements: a spectral approach, 2003.
DOI : 10.1007/978-1-4612-3094-6

Y. [. Guo and . Zou, A review of electrical impedance techniques for breast cancer detection, Medical Engineering and Physics, vol.25, issue.2, pp.79-90, 2003.

]. B. Gz07a, N. Ganapathysubramanian, and . Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, J. Comput. Phys, vol.225, issue.1, pp.652-685, 2007.

F. [. Helton and . Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliability Engineering & System Safety, vol.81, issue.1, pp.23-69, 2003.
DOI : 10.1016/S0951-8320(03)00058-9

H. [. Hyvönen, S. Hakula, and . Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Probl. Imaging, vol.1, issue.2, pp.299-317, 2007.

R. [. Haddar and . Kress, Conformal mapping and impedance tomography, Inverse Problems, vol.26, issue.7, pp.74002-74020, 2010.
DOI : 10.1088/0266-5611/26/7/074002

URL : https://hal.archives-ouvertes.fr/hal-00739325

G. [. Haddar and . Migliorati, Numerical Analysis of the Factorization Method for Electrical Impedance Tomography in Inhomogeneous Medium, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641260

B. [. Hanke and . Schappel, The Factorization Method for Electrical Impedance Tomography in the Half-Space, SIAM Journal on Applied Mathematics, vol.68, issue.4, pp.907-924, 2008.
DOI : 10.1137/06067064X

J. [. Harrach and . Seo, Detecting Inclusions in Electrical Impedance Tomography Without Reference Measurements, SIAM Journal on Applied Mathematics, vol.69, issue.6, pp.1662-1681, 2009.
DOI : 10.1137/08072142X

E. [. Hoel, A. Von-schwerin, R. Szepessy, and . Tempone, Adaptive Multilevel Monte Carlo Simulation, Lecture Notes in Computational Science and Engineering Numerical Analysis of Multiscale Computations, vol.82, issue.82, pp.217-234, 2012.
DOI : 10.1007/978-3-642-21943-6_10

R. [. Hosder, M. Walters, and . Balch, Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics, AIAA Journal, vol.48, issue.12, pp.2721-2730, 2010.
DOI : 10.2514/1.39389

N. [. Kirsch and . Grinberg, The Factorization Method for inverse problems, 2008.
DOI : 10.1093/acprof:oso/9780199213535.001.0001

]. A. Kir96 and . Kirsch, An introduction to the mathematical theory of inverse problems, Applied Mathematical Sciences, vol.120, 1996.

J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Problems, vol.16, issue.5, pp.1487-1522, 2000.
DOI : 10.1088/0266-5611/16/5/321

]. M. Koh00 and . Kohler, Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression, J. Statist. Plann. Inference, vol.89, issue.12, pp.1-23, 2000.

E. [. Kaipio and . Somersalo, Statistical and computational inverse problems, Applied Mathematical Sciences, vol.160, 2005.

Y. Li, M. Anitescu, O. Roderick, and F. Hickernell, ORTHOGONAL BASES FOR POLYNOMIAL REGRESSION WITH DERIVATIVE INFORMATION IN UNCERTAINTY QUANTIFICATION, International Journal for Uncertainty Quantification, vol.1, issue.4, pp.297-320, 2011.
DOI : 10.1615/Int.J.UncertaintyQuantification.2011002790

Z. [. Liu, J. S. Gao, and . Hesthaven, Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty, Applied Numerical Mathematics, vol.61, issue.1, pp.61-85, 2011.
DOI : 10.1016/j.apnum.2010.08.002

N. [. Lechleiter, H. Hyvönen, and . Hakula, The Factorization Method Applied to the Complete Electrode Model of Impedance Tomography, SIAM Journal on Applied Mathematics, vol.68, issue.4, pp.1097-1121, 2008.
DOI : 10.1137/070683295

G. [. Lucor and . Karniadakis, Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.720-735, 2004.
DOI : 10.1137/S1064827503427984

[. Maître, D??veloppement en polyn??mes de chaos d'un mod??le lagrangien d'??coulement autour d'un profil, Comptes Rendus M??canique, vol.334, issue.11, pp.693-698, 2006.
DOI : 10.1016/j.crme.2006.10.001

O. [. Le-maître and . Knio, Spectral Methods for Uncertainty Quantification, 2010.
DOI : 10.1007/978-90-481-3520-2

O. [. Le-maître, H. N. Knio, R. G. Najm, and . Ghanem, A Stochastic Projection Method for Fluid Flow, Journal of Computational Physics, vol.173, issue.2, pp.481-511, 2001.
DOI : 10.1006/jcph.2001.6889

H. [. Le-maître, R. G. Najm, O. M. Ghanem, and . Knio, Multi-resolution analysis of Wiener-type uncertainty propagation schemes, Journal of Computational Physics, vol.197, issue.2, pp.502-531, 2004.
DOI : 10.1016/j.jcp.2003.12.020

. P. Lmrn-+-02-]-o, M. T. Le-maître, H. N. Reagan, R. G. Najm, O. M. Ghanem et al., A stochastic projection method for fluid flow. II. Random process, J. Comput. Phys, vol.181, issue.1, pp.9-44, 2002.

]. W. Loh96 and . Loh, On Latin hypercube sampling, The Annals of Statistics, vol.24, issue.5, pp.2058-2080, 1996.
DOI : 10.1214/aos/1069362310

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions, SIAM Journal on Optimization, vol.9, issue.1, pp.112-147, 1998.
DOI : 10.1137/S1052623496303470

G. [. Lee and . Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Communications on Pure and Applied Mathematics, vol.41, issue.8, pp.1097-1112, 1989.
DOI : 10.1002/cpa.3160420804

R. [. Mckay, W. J. Beckman, and . Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.21, issue.2, pp.239-245, 1979.
DOI : 10.2307/1268522

A. [. Moosegard, . Tarantolant09-]-f, R. Nobile, and . Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients, Probabilistic Approach to Inverse Problems, pp.6-7, 2002.

]. F. Ntw08a, R. Nobile, C. G. Tempone, and . Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal, vol.46, issue.5, pp.2411-2442, 2008.

G. [. Robert and . Casella, Monte Carlo statistical methods, 2004.

D. [. Rozza, A. T. Huynh, and . Patera, Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations, Archives of Computational Methods in Engineering, vol.40, issue.11, pp.229-275, 2008.
DOI : 10.1007/s11831-008-9019-9

R. [. Rockafellar and . Wets, Scenarios and Policy Aggregation in Optimization Under Uncertainty, Mathematics of Operations Research, vol.16, issue.1, pp.119-147, 1991.
DOI : 10.1287/moor.16.1.119

G. Der-mathematischen-wissenschaften, Physical systems with random uncertainties: chaos representations with arbitrary probability measure, Fundamental Principles of Mathematical Sciences] Handbook of Mathematical methods in Imaging SIAM J. Sci. Comput, vol.317, issue.2, pp.26-395, 1998.

R. [. Soize and . Ghanem, Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.21-26, pp.21-26, 1926.
DOI : 10.1016/j.cma.2008.12.035

URL : https://hal.archives-ouvertes.fr/hal-00684487

C. [. Schwab and . Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numerica, vol.15, pp.291-467, 2011.
DOI : 10.1016/0022-247X(77)90186-X

S. [. Sloan and . Joe, Lattice methods for multiple integration, Journal of Computational and Applied Mathematics, vol.12, issue.13, 1994.
DOI : 10.1016/0377-0427(85)90012-3

J. [. Siltanen, D. Mueller, and . Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse Problems, vol.16, issue.3, pp.681-699, 2000.
DOI : 10.1088/0266-5611/16/3/310

]. S. Smo63 and . Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, vol.4, pp.240-243, 1963.

]. C. Soi10 and . Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Comput. Methods Appl. Mech. Engrg, vol.199, pp.33-36, 2010.

]. A. Stu10 and . Stuart, Inverse problems: a Bayesian perspective, Acta Numer, vol.19, pp.451-559, 2010.

]. B. Sud07 and . Sudret, Global sensitivity analysis using polynomial chaos expansion, Reliability Engineering and System Safety, 2007.

]. A. Svv-+-01, M. Seppänen, P. J. Vauhkonen, E. Vauhkonen, J. P. Somersalo et al., State estimation with fluid dynamical evolution models in process tomography?an application to impedance tomography, Inverse Problems, vol.17, issue.3, pp.467-483, 2001.

H. [. Sloan and . Wo?niakowski, When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?, Journal of Complexity, vol.14, issue.1, pp.1-33, 1998.
DOI : 10.1006/jcom.1997.0463

V. [. Tikhonov, Arsenin, Solutions of ill-posed problems, 1977.

]. A. Tar05 and . Tarantola, Inverse problem theory and methods for model parameter estimation, Society for Industrial and Applied Mathematics (SIAM), 2005.

]. C. Vog02 and . Vogel, Computational methods for inverse problems, 2002.

]. N. Wie38 and . Wiener, The Homogeneous Chaos, Amer. J. Math, vol.60, issue.4, pp.897-936, 1938.

J. [. Xiu and . Hesthaven, High-Order Collocation Methods for Differential Equations with Random Inputs, SIAM Journal on Scientific Computing, vol.27, issue.3, pp.1118-1139, 2005.
DOI : 10.1137/040615201

]. D. Xiu09 and . Xiu, Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys, vol.5, issue.2-4, pp.242-272, 2009.

]. D. Xk02a, G. E. Xiu, and . Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg, vol.191, issue.43, pp.4927-4948, 2002.

]. D. Zha02 and . Zhang, Stochastic Methods for Flow in Porous Media: Coping with Uncertainties, 2002.