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Abstract

Side Channel attacks are nowadays well known and most designers of secure embed-
ded systems are aware of them. Since the first public reporting of these threats in
1996, a lot of effort has been devoted towards the research about side channel at-
tacks and the development of corresponding countermeasures. Side channel attacks
take advantage of the fact that the power consumption of a cryptographic device
depends on the internally used secret key. Since this property can be exploited with
relatively cheap equipment, these attacks pose a serious practical threat to crypto-
graphic embedded systems. A very common countermeasure against side channel
attacks is masking. It consists in splitting the sensitive variable of cryptographic
algorithms into random shares (the masked data and the random mask) so that the
knowledge on a subpart of the shares does not give information on the sensitive data
itself. However, other attacks, such as higher-order side channel attacks, can defeat
masking schemes. These attacks consist in combining the shares in order to cancel
(at least partially) the effects of the mask.

The overall goal of this thesis is to give a deep analysis of higher-order attacks
and to improve the robustness of masking schemes. The first part of this thesis
focuses on higher-order attacks. We propose three novel distinguishers. Theoretical
and experimental results show the advantages of these attacks when applied to a
masking countermeasure. The second part of this thesis is devoted to a formal
security evaluation of hardware masking schemes. We propose a new side channel
metric to jointly cover the attacks efficiency and the leakage estimation. In the last
part, we propose three novel masking schemes remaining more efficient than the
state-of-the-art masking. They remove (or at least reduce) the dependency between
the leakage and the sensitive variable when the leakage function is known (e.g. the
Hamming weight or the Hamming distance leakage model). The new solutions have
been evaluated within a security framework proving their excellent resistance against
higher-order attacks.
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Résumé de la thèse en français

Les circuits électroniques réalisés avec les méthodes de conception assistée par ordi-
nateur usuelles présentent une piètre résistance par rapport aux attaques physiques.
Parmi les attaques physiques les plus redoutables figurent les attaques sur les canaux
cachés, comme la “timing attack” ou la DPA, qui consistent à enregistrer une quan-
tité physique (temps, consommation) fuie par le circuit pendant qu’il calcule. Cette
information peut être exploitée pour remonter aux secrets utilisés dans des calculs
de chiffrement ou de signature. Plusieurs méthodes de durcissement des circuits
contre les attaques sur les canaux cachés ont été proposées. On peut en distinguer
deux catégories :

1. Les contre-mesures par dissimulation (ou par logique différentielle), visant à
rendre la fuite constante, donc statiquement indépendante des secrets.

2. Les contre-mesures par masquage, visant à rendre la fuite aléatoire, donc
statistiquement indépendante des secrets.

La contre-mesure par masquage est la moins complexe et la plus simple à mettre en
oeuvre, car elle peut s’appliquer au niveau algorithmique comme au niveau logique.
Idéalement, le concepteur s’affranchit donc d’un placement-routage manuel, comme
cela est le cas des contre-mesures statiques. En revanche, elle est la cible d’attaques
du second ordre, voire d’ordre plus élevé, permettant d’exhiber le secret en attaquant
plusieurs variables simultanément.

Cette thèse se fixe comme objectifs l’analyse en robustesse et complexité des
implémentations de contre-mesures par masquage et la proposition des nouvelles
structures de masquage qui permettent de faire face aux attaques d’ordre élevé.

Ce manuscrit de thèse s’articule en cinq parties que nous détaillerons dans ce
qui suit.

Première Partie : Préliminaires

Dans cette première partie, nous exposons les bases de la cryptographie moderne et

développons un peu plus la question de leur implémentation sur les circuits cryp-
tographiques (carte à puce, FPGA) et de la fuite d’information qui accompagne
sa mise en oeuvre. Ensuite, nous introduisons la notion des attaques par canaux
cachés et nous présentons quelques modèles classiques utilisés pour leur analyse.
Enfin, nous décrivons les principales attaques et contre-mesures existantes dans la
littérature et nous mettons l’accent sur le contexte d’attaques d’ordre supérieur.

Chapitre 1 : Contexte Général

La cryptographie est définie comme la science de la protection des informations sensi-
bles. Elle se repose sur l’étude des méthodes qui permettent d’envoyer des messages à
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l’aide d’une information secrète key (chiffrement / cryptage) de telle sorte que seul le

destinataire puisse lire le message (déchiffrement/décryptage). Le message d’origine

est appelé plaintext et sous une forme cryptée est appelé ciphertext. La Crypt-

analyse confronte la cryptographie et vise à briser des moyens cryptographiques et

lire les informations sensibles. Plus précisément, elle consiste à analyser les textes

chiffrés afin de trouver les textes en clair sans connaissance a priori du processus

de déchiffrement. Ces deux branches : cryptographie et cryptanalyse constituent la

cryptologie: la science du secret.

Il existe deux types d’algorithmes cryptographiques. Les plus anciens sont les

algorithmes cryptographiques dits symétriques : l’émetteur et le récepteur partage la

même clef. On parlera de chiffrement symétrique ou à clef privée. La cryptographie

moderne a vue naître au XXe siècle le chiffrement à clef privée ou asymétrique :

émetteur et récepteur disposent chacun d’une clef privée et utilise une clef publique.

La clef publique sera utilisée pour chiffrer un message, alors que la clef privée qui

doit rester confidentielle sera utilisée pour le déchiffrer.

Dans la suite nous utilisons principalement les algorithmes symétriques de chiffre-

ments par blocs : l’AES Advanced Encryption Standard et le DES Data Encryption

Standard. Ces algorithmes cryptographiques réputés sûrs d’un point de vue math-

ématiques deviennent vulnérables du fait de leur implantation sur des composants

électroniques comme par exemple les FPGA, les cartes à Puce: ces objets qui en-

vahissent peu à peu notre vie quotidienne.

En effet, ces dispositifs cryptographiques, lors de l’exécution d’un calcul, fuient

de l’information sur la variable sensible. Cette fuite peut être le temps d’exécution, la

consommation ou le rayonnement électromagnétique produit au cours du calcul. Les

attaques qui ciblent la mise en oeuvre physique et non pas la faiblesse mathématique

de l’algorithme afin d’en extraire la clef secrète sont appelés attaques physiques.

Ces attaques physiques sont essentiellement de deux types : les attaques par

injection de fautes (FA) et les attaques par canaux cachés (SCA). L"attaque FA

tente d’injecter des modifications physiques (des fautes) dans l’environnement de la

carte (lumineuses, impulsions électriques, magnétiques, etc...) pour introduire des

modifications dans le contenu des mémoires de la carte afin de provoquer des résul-

tats erronées exploitables. Contrairement à l’attaque FA, une attaque par canaux

cachés est une attaque passive qui vise à analyser et exploiter les fuites physiques

du dispositif cryptographique pendant le chiffrement.

Chapitre 2 : Introduction Générale sur les SCA

Les attaques par canaux cachées peut être divisée en fonction de la nature de

l’information physique exploitée:

• le temps de calcul,

• la consommation de courant,

• le rayonnement électromagnétique,
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Ces informations nous renseignent sur le fonctionnement du composant, et donne
des indices à un attaquant pour retrouver les éléments secrets.

Dans la littérature, la mise en oeuvre d’une attaque par canaux cachés se dé-

compose de deux étapes comme le montre la figure. 1. Une étape expérimentale
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K hypothèses de clef

Figure 1: Illustration d’une attaque par canaux cachés.

qui consiste à acquérir les traces de consommations (leakage/fuite) lors d’un chiffre-
ment; et une étape de prédiction qui consiste à étudier l’algorithme cryptographique

et construire des modèles de la fuite. Ce modèle théorique sert à prédire l’activité

d’une partie du circuit en faisant des hypothèses sur la clef. Le but est de trouver la
bonne hypothèse qui correspond à la clef secrète. Pour comparer le degré de dépen-

dance entre la fuite et le modèle, l’attaquant applique un test statistique appelé
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distingueur. Ce test peut être par exemple un calcul de différence de moyenne, de
l’information mutuelle ou de maximum de vraisemblance. L’hypothèse de clef qui

maximise le score de ce distingueur correspond à la bonne hypothèse de clef.

Pour faire face à ces attaques, plusieurs contre-mesures ont été développées.

Nous citons essentiellement deux catégories:

• La dissimulation “Hiding” : dont l’objectif est d’équilibrer la consommation et
de la rendre constante à chaque instant quelque soient les données manipulées

par l’algorithme.

• Le masquage : dont l’objectif est de “randomiser” la consommation. En effet
la variable sensible portant le secret Z est divisée en deux parties: une variable

aléatoire inconnue pour l’attaquant appelé le masque M et la donnée masquée

qui combine le masque et la variable sensible Z⊥M .

Une implémentation masquée est robuste contre les attaques SCA de premier

ordre. En revanche, elle est la cible d’attaques du second ordre, voire d’ordre plus

élevé, permettant d’exhiber le secret en attaquant plusieurs variables simultanément.

En effet, un attaquant peut toujours combiner les activités liées à la manipulation

des deux variables (masque, donnée masquée) afin de trouver la clef de chiffrement.

Comme le montre la figure. 2, on distingue essentiellement deux types d’attaques

d’ordre élevé : les attaques multivariées (si la manipulation du masque et de la

donnée masquée se produit à deux instants différents) et les attaques univariées (si

la manipulation du masque et de la donnée masquée est simultanée).

Deuxième Partie : Attaques SCA d’ordre élevé

La deuxième partie de cette thèse concerne l’étude des attaques SCA d’ordre supérieur.

Nous avons proposé trois nouveaux distingueurs: l’analyse de puissance basé sur la

variance (VPA), l’analyse de puissance basée sur l’entropie (EPA) et l’analyse de

l’information inter-classe (IIA). Nous étudions leur efficacité en présence de contre-

mesure basée sur la technique de masquage.

Chapitre 1 : “Variance-based Power Attack”

La figure. 3 illustre l’architecture d’une implémentation masquée. En supposant que

le modèle de la fuite est en distance de Hamming, la partie déterministe de la fuite

L d’un masquage de premier ordre peut être exprimée comme : L = HW(Z⊕M ′′)+
HW(M), où Z = X ⊕S(X ⊕ k) est la variable sensible, M ′′ =M ⊕M ′ est la mise à
jour du masque et X, S et k sont respectivement le plaintext, la fonction SubByte

et la clef de chiffrement.

Considérant des variables codées sur 4 bits, il existe cinq distributions possibles

de la fuite en fonction du poids de Hamming de la valeurs sensibles HW(Z), comme le

montre la figure. 4. Une conséquences importante peut être soulignée sur le résultat
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Figure 2: Illustration des attaques d’ordre élevé.

de la figure. 4 : les distributions P[L | HW(Z)] pour la bonne clef ont la même valeur
de moyenne et ne diffèrent que par leurs variances.

Cela nous amène à définir en conséquence l’attaque Variance-based Power Anal-

ysis. La stratégie de cette attaque est la suivante:

1. Appliquer N messages (Xi avec i dans [1, N ]) et collecter N observations de

la consommation d’énergie (traces Li).

2. Pour chaque S-Box, faire des hypothèses sur la clef k dans [0, 63]:

• Trier les traces Li pour obtenir les cinq partitions de l’activité correspon-

dant aux cinq valeurs possibles HW(Z).

• Calculer la variance vl pour chaque partition.

• Calculer l’indicateur VPA(k) comme étant une combinaison linéaire des

variances pondérées par les poids wl: VPA(k) =
∑4

l=0wl • vl.

3. La bonne hypothèse de clef k∗ correspond à argmaxk VPA(k).

L’attaque VPA a été testée sur 200.000 traces de consommation acquises dur

une implémentation FPGA d’un DES masquée. Les 8 sous-clefs utilisées lors du

premier tour du DES masqué ont été trouvées par cette attaque ce qui prouve sa

robustesse.
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Figure 3: Architecture d’une implémentation masquée.

Chapitre 2 : “Entropy-based Power Attack”

On a également proposé une nouvelle approche d’attaque basée sur les principes

de la théorie de l’information (à savoir le calcul d’entropie), appelé Entropy-based

Power analysis (EPA). Cette nouvelle attaque permet d’exploiter davantage la fuite

d’information dans un circuit et offre une meilleure distinction entre les hypothèses

de clefs. Une évaluation empirique approfondie de l’attaque proposée confirme

l’immense avantage de cette nouvelle approche par rapport aux autres attaques

telles que la “Mutual Information Analysis Attack” (MIA). La stratégie de l’EPA

est similaire à la VPA, sauf qu’on calculera une entropie conditionnelle au lien de la

variance :

1. Appliquer N messages (Xi avec i dans [1, N ]) et collecter N observations de

la consommation d’énergie (traces Li).

2. Pour chaque S-Box, faire des hypothèses sur la clef k dans [0, 63]:

• Trier les traces Li pour obtenir les cinq partitions de l’activité correspon-

dant aux cinq valeurs possibles HW(Z).

• Calculer l’entropie conditionnelle H[L | HW(Z) = l] pour chaque parti-

tion.

• Calculer l’indicateur EPA(k) comme étant une combinaison linéaire des

entropies pondérées par les poids wl: EPA(k) =
∑4

l=0wl×H[L | HW(L) =

l].

3. La bonne hypothèse de clef k∗ correspond à argmaxk EPA(k).
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Figure 4: PDFs correspondants aux cinq valeurs possibles du HW(Z).

L’attaque EPA a été testée sur une implémentation d’un DES masquée et toutes

les 8 sous-clefs utilisées lors du premier tour du DES masquée ont été trouvées.

Chapitre 3 : “Inter-class Information Analysis”

Nous avons proposé également un nouveau distingueur appelé “Inter-class Informa-

tion Analysis” (IIA). A l’inverse de MIA ou KSA, ce distingueur consiste à comparer

les fuites conditionnelles entre elles, deux à deux comme le montre la figure. 5.

Nous avons prouvé théoriquement que le distingueur IIA partage les mêmes
propriétés mathématiques qu’un calcul de l’information mutuelle. A savoir, le dis-

tingueur IIA vérifie:

• Symétrie: II[L;Z] = II[Z;L].

• Dépendance: II[L;Z] = 0 ⇐⇒ L, Z sont indépendants.

• Relation avec l’information mutuelle: 2II[L;Z] ≥ I[L;Z].

• Soundness: II[L;Z] ≤ II[L;Z∗].
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Figure 5: Le distingueur “Inter-class Information Analysis”

Pour comparer le distingueur IIA à l’attaque MIA, nous nous sommes basés sur le

calcul de la métrique du taux de succès. Les résultats de simulations ont montré

que l’attaque IIA est plus discriminante que l’attaque MIA en utilisant les mêmes

techniques d’estimation (la même erreur d’estimation). Dans un deuxième temps,

nous avons appliqué cette notion d’inter-classe au distingueur KSA. Nous avons

prouvé que l’attaque IKSA résultante permet d’obtenir des taux de succès beaucoup

plus élevés qu’une simple attaque KSA.

Enfin pour comparer tout les distingueurs que nous avons proposés, nous avons

suggéré une méthode de réduction de l’erreur d’estimation sur le taux de succès.

Le principe consiste à augmenter le nombre d’essais utilisés pour le calcul du taux

de succès. Les résultats de simulation montrent le gain significatif sur le nombre

de mesures nécessaires pour réussir l’attaque si on applique la notion d’inter-classe.

Par conséquent, à travers cette nouvelle notion, nous définissons une nouvelle classe

de distingueur non-équivalente à celle de MIA/KSA.

Troisième Partie : Caractérisation des procédés de masquage

La troisième partie présente les schémas de masquage de premier ordre les plus

utilisés dans la littérature et discute leurs vulnérabilités aux attaques SCA de second

ordre. Ensuite, nous proposons une nouvelle mesure appelée “HO-CPA Immunity”

(HCI). Cette métrique intervient pour évaluer à la fois l’efficacité des attaques HO-

CPA et les fuites d’ordre supérieur d’une implémentation masquée.

Chapitre 1 : Nouvelle Métrique d’évaluation

Pour évaluer la robustesse des implémentations masquées contre les attaques SCA

d’ordre élevé, François-Xavier Standaert et al. ont montré qu’il est nécessaire
d’enquêter soigneusement sur les fuites d’information et les adversaires qui exploitent
ces fuites, séparément. Ainsi, les évaluations des implémentations protégées par
masquage devrait tenir en deux étapes. Tout d’abord, une analyse de théorie de
l’information détermine la réelle quantité d’information fuite par le circuit. Ensuite,
une analyse de la sécurité détermine l’efficacité de divers distingueurs pour exploiter
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Figure 6: Le HCI une nouvelle métrique d’évaluation.

cette fuite. En appliquant cette méthodologie en utilisant des traces simulées ou

des mesures réelles, nous obtenons une évaluation juste et complète du niveau de le
sécurité qu’un système protégé par la technique de masquage peut assurer.

Dans le cas d’une implémentation matérielle (sur FPGA) d’un algorithme de

chiffrement masquée, nous avons proposé une nouvelle métrique appelée “HO-CPA

immunité” qui permet d’évaluer à la fois la résistance contre les attaques d’ordre

supérieur et la quantité de l’information fuite. En tant que métrique de sécurité, la

“HO-CPA immunité” peut être définit comme étant le nombre de moments statiques

de la distribution L|HW(Z) qui sont égaux plus un. Ensuite, nous avons prouvé

mathématiquement que la quantité de l’information mutuelle fuite par le circuit

décroît en σ−2×HCI quand l’écart type du bruit σ tend vers l’infini. Les résultats

de simulation reportés sur la figure. 6 confirment les résultats théoriques que nous

avons démontrés pour les différents ordres de masquage étudié.

Chapitre 2 : Évaluation des Contre-mesures par Masquage

Dans ce chapitre, nous avons appliqué la métrique HCI dans le cas d’un masquage

de premier ordre. Nous avons évalué la sécurité de cette contre-mesure dans le cas

d’une implémentation matérielle et logicielle. En effet, nous avons montré que:

• pour les implémentations matérielles : l’information mutuelle fuite est équiv-

alente à σ−4 (HCI = 2)
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• pour les implémentations logicielles : l’information mutuelle fuite est équiva-

lente à σ−2 (HCI = 1),

Dans le cas des attaques CPA multivariées combinées par le produit, nous avons
exhibé une relation entre l’information mutuelle et cette attaque. Asymptotique-
ment, nous avons obtenu que MIM

CPA = constant. Ce résultat nous a permis d’établir
le lien entre le nombre de messages qui permettent d’avoir un taux de succès de 90%

et l’écart type de bruit σ : N90% ∝ σ4.

Quatrième Partie : Nouvelles Contre-mesures masquées

Dans cette quatrième partie, nous proposons trois nouvelles contre-mesures par

masquage de premier ordre pour contrer non seulement les attaques du premier

ordre, mais aussi les attaques d’ordre supérieur. Le première contre-mesure est

appelée “Leak-free”. Nous montrons que, avec un masquage de premier ordre, et

en supposant une fonction de fuite à distance, il est possible d’annuler la fuite
d’information sensible. Nous proposons également une deuxième façon d’appliquer

le masquage où la mise à jour du masque est basé sur un code de Gray. Son principal

avantage par rapport à la contre-mesure “Leak-free” est la réduction des besoins en

ressources matérielles (mémoire) pour l’implémenter. Nous présentons une nouvelle

contre-mesure appelée “Leakage Squeezing”. Elle consiste à manipuler le masque à

travers une bijection de F , visant à réduire la dépendance entre le masque et la don-

née masquée. Enfin nous étendons cette contre-mesure dans le contexte du second

ordre.

Chapitre 1 : La Contre-mesure “Leak-Free”

Nous avons démontré dans les parties précédentes que la distribution de la fuite

L = HW(Z ⊕M ′′) + HW(M ′′) (et en particulier sa variance) dépend de la variable

sensible Z. Dans ce chapitre, nous proposons une méthode pour annuler cette

dépendance en remplaçant l’opération de masquage des données X ⊕M par une

nouvelle notée X α©M .

Une solution simple, profondément analysée dans ce travail, est de choisir une

fonction α© tel que X α©M = X ⊕ F (M) pour une certaine fonction F bien choisie.

Dans ce qui suit, on désigne par p la dimension de M et on suppose que F est une

(p, n)-fonction, i.e. F : Fp
2 7→ F

n
2 . Dans ce cas, la fonction de la fuite s’écrit:

A(X α©M,X ′ α©M ′) +A(M,M ′) = A(Z ⊕ F (M)⊕ F (M ′)) +A(M ′′) ,

où A est une fonction de l’activité. En vue de cette équation, deux conditions

suffisantes sont à satisfaire pour garantir que L est indépendant de Z:

1. M ⊕M ′ est constant et

2. F (M)⊕ F (M ′) est uniforme.
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Pour satisfaire la première condition, nous avons fixé M ′ = M ⊕ α avec α une
constante non nulle. Ensuite, nous avons proposé deux constructions de F pour
satisfaire que F (M)⊕F (M ⊕α) soit uniforme pour cette constante α. Cependant,
ces deux constructions imposent que la dimension du masque p soit strictement
supérieure à celle de la donnée n. Nous montrons dans la figure. 7 l’architecture de

notre contre-mesure.

En ce qui concerne l’évaluation de la sécurité de cette contre-mesure, nous avons

montré que la fuite d’information mutuelle est nulle et par conséquent notre solu-

tion permet de se protéger contre toutes les attaques univariées de tout les ordres.

Lorsque la fonction de l’activité s’écarte légèrement du modèle de distance de Ham-
ming, nous avons montré par simulation que notre solution fuit de l’information
mais reste plus performante qu’un masquage classique de premier ordre.

Chapitre 2 : La Contre-mesure utilisant un Code de Gray

En dépit de ses avantages (protection contre toutes les attaques univariées dans le
modèle de distance de Hamming, l’efficacité, la simplicité, etc), la contre-mesure

“Leak-free” présente deux inconvénients. Tout d’abord, une seule paire de masques

(M , M ′ = M ⊕ α) est utilisée durant tout le calcul. Cette propriété n’a aucun

impact sur la sécurité de la contre-mesure contre les attaques univariées, mais peut

la rendre vulnérable aux attaques multivariées. Un deuxième problème avec cette

contre-mesure, c’est que la dimension du masque p doit être strictement supérieur à

celle de la donnée n pour construire une fonction F satisfaisant les deux conditions

suffisantes précédentes ce qui induit un sur-coût temps/mémoire par rapport à un

masquage classique du premier ordre.

Dans ce chapitre, nous présentons une alternative à cette contre-mesure. Plus

précisément, nous avons montré qu’en utilisant un compteur de Gray pour mettre à

jour les valeurs du masque il est possible de définir un nouveau schéma de masquage

qui partage toutes les propriétés de la solution “Leak-free” avec un atout supplé-
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mentaire est que le masque et la donnée ont la même taille (p = n). Ensuite, nous

avons prouvé qu’il existe une construction de la fonction F qui satisfait la deuxième

condition. La figure. 8 illustre une l’architecture de l’algorithme AES tirant profit

de cette nouvelle contre-mesure. Ce nouveau schéma de masquage a été évalué avec

des vraies mesures FPGA. Les résultats de cette étape d’évaluation ont confirmé nos

résultats théoriques, à savoir la protection contre les attaques SCA d’ordre élevé.

Chapitre 3 : La Contre-mesure “Leakage Squeezing”

Une troisième contre-mesure que nous avons proposée est le “Leakage squeezing”.

L’objectif est de réduire la dépendance entre la distribution de la fuite et la variable

sensible et de résister aux attaques d’ordre élevé bornées par un certain degré d. Une

approche simple consiste à modifier le masque M par une transformation bijective

F avant de manipuler la valeur F (M) dans le registre de masque. La figure. 9

illustre ce nouveau schéma de masquage. La fuite de cette contre-mesure est L =

HW(Z ⊕M ⊕M ′)) + HW(F (M)⊕ F (M ′))
Notre but est de trouver des bijections F telles que la fonction optimale qui

maximise une attaque CPA d’ordre d :

fopt(z) = E[
(
HW(Z ⊕M ′′) + HW(F (M)⊕ F (M ′))

)d | Z = z]

soit indépendante de la variable sensible Z. En développant fopt(z), on fait appa-

raître des termes : Term[p, q](fopt)(z)
.
= E[HWp[z ⊕M ′′]× HWq[F (M)⊕ F (M ′)]],

avec p et q deux entiers positifs tels que p + q ≤ d. Par conséquent, pour résister

aux attaques HO-CPA, les termes Term[p, q](fopt)(z) doivent être indépendants de z

pour tout p et q. Nous avons fixé donc trois conditions équivalentes, que la bijection

F doit satisfaire :

• Condition en terme de transformation de “Walsh-Hadamard” : Pour

tous entiers positifs P et Q, fopt(z) est constante pour p ∈ J0, P K et q ∈ J0, QK

si et seulement si: ∀a, b ∈ F
n
2 , 0 ≤ HW(a) ≤ P, 0 ≤ HW(b) ≤ Q la transformée

de Walsh-Hadamard ÿ (b · F )χ(a) = 0.

• Condition en terme de fonction “Correlation-Immunity"" : fopt(z)

est constante si et seulement si l’indicateur du graphe C de la fonction F est

“correlation-immune” d’ordre d.

• Condition en terme de code : fopt(z) est constante si et seulement si le

code C égal au graphe de la fonction F a la plus grande distance duale.

Nous avons démontré que tout code linéaire de rendement 1/2 qui s’écrit sous

la forme [2n, n, δ], avec δ > d sa distance minimale, permet de résister aux attaques

HO-CPA d’ordre d = δ − 1. Avec des F linéaires, il est possible de protéger:

• DES contre toute attaque HO-CPA d’ordre d ≤ 3, et

• AES contre toute attaque HO-CPA d’ordre d ≤ 4.
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Nous avons aussi étudié les bijections non-linéaires et nous avons prouvé qu’elles

permettent de mieux résister. Par exemple, le code Nordstrom-Robinson (16, 256, 6)

a une distance duale plus grande que les codes linéaires et par la suite permet de

protéger l’AES contre toute HO-CPA d’ordre d ≤ 5.

Les phases d’évaluation de la technique “Leakage Squeezing” ont montré, d’une

part, la réduction de la quantité d’information mutuelle fuite par le circuit. D’autre

part, nous avons montré que cette contre-mesure, contrairement au masquage “Leak-

free”, est peu sensible aux déviations du modèle.

Nous avons proposé deux implémentations de DES maqués basées sur le principe

du “Leakage Squeezing”. Ces deux architectures ont été synthétisées sur une carte

FPGA STARTIX II et comparées en termes de complexité et de débit aux archi-

tectures d’un masquage classique. Les résultats ont montré que la technique “Leak-

age Squeezing” n’introduit pas de sur-coût par rapport aux solutions existantes.

L’évaluation avec des vraies mesures acquises sur la carte FPGA confirme nos ré-

sultats théoriques obtenus.

Chapitre 4 : La Contre-mesure “Leakage Squeezing” d’ordre deux

La dernière étape de ce travail a consisté à étendre la technique “Leakage squeezing”.

La figure. 10 illustre l’architecture de cette solution.

Pour résister aux attaques HO-CPA d’ordre élevé, nous avons considéré des

bijections linéaires F1 et F2. Ensuite, nous avons prouvé que les codes linaires de

rendement 1/3 avec trois ensembles d’information disjoints permettent d’atteindre

des niveaux de protection assez élevés.

En effet, il est possible de protéger:
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• DES avec le code [12, 4,6] contre toute attaque HO-CPA d’ordre d ≤ 5.

• AES avec le code [24, 8,8] contre toute attaque HO-CPA d’ordre d ≤ 7.

Cinquième Partie : Conclusions et Perspectives

Chapitre 1 : Conclusions

Nous listons les axes de recherches qui ont été développés durant ces trois années

de thèse :

• Étude de l’état de l’art sur les contre-mesures basées sur le masquage Booléen.

• Élaboration de trois attaques de second ordre testées sur des circuits protégés.

• Proposition d’une métrique d’évaluation de la sécurité.

• Mise en place de trois contre-mesures contre les attaques d’ordre élevé.

• Caractérisation des implémentations masquées d’ordre élevé.

Chapitre 2 : Perspectives

En termes de perspectives, il est important de souligner qu’il reste beaucoup de

pistes d’amélioration. Quelques grands défis à relever sont listés ci-après:

• Trouver les poids optimaux pour l’attaque EPA afin d’améliorer sa robustesse.
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• Comparer les attaques VPA et EPA avec des attaques SCA multivariées (par

exemple l’attaque MMIA), en utilisant plusieurs capteurs (par exemple deux

sondes magnétiques) placés à différents (X,Y, Z, ϑ) emplacements sur un cryp-

toprocesseur masqué (cartographie).

• Analyser la robustesse du distingueur IIA sur des mesures réelles.

• Comparer nos contre-mesures basées fondamentalement sur le masquage booléen

avec d’autres solutions telles que le masquage multiplicatif ou affine qui offrent
également un bon compromis performance/sécurité.

• Trouver des nouvelles primitives de mise à jour du masque pour la contre-

mesure “Leak-free’ pour obtenir une protection également contre les attaques

SCA multivariées.

• Étendre la contre-mesure “Leakage squeezing” à l’ordre d > 2 en étudiant les
codes de rendements 1/d.

• Étudier l’effet de “glitches” sur nos contre-mesures.
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Thesis Context

Motivations

Side channel attacks are a serious threat against modern cryptographic implemen-
tations. They exploit information that leaks from physical implementations of cryp-
tographic algorithms. This leakage (e.g. the power consumption or the electromag-
netic emanations) may indeed reveal information on the secret data manipulated by
the implementation. During the two last decades, the development of the smart card
industry has urged the cryptographic research community to carry on with this new
concept of attacks and many papers describing either countermeasures (CMs) or at-
tacks improvement have been published (see [CJRR99, BCO04, OMHT06, NRS08]
for instance). In particular, the original attacks in [KJJ96, KJJ99] have been im-
proved and the concept of higher-order side channel analysis (HO-SCA) has been
introduced in [Mes00b].
Masking is one of the most efficient countermeasures to thwart SCA attacks. The

idea of masking is to conceal the sensitive variable through arithmetic or Boolean
operations with random values in order to avoid the correlation between the crypto-
graphic device’s power consumption and the data being processed [CJRR99, GP99,
AG01].
The masking can be characterized by the number of random masks used per

sensitive variable. So, it is possible to give a formal definition for a higher-order
masking scheme: a dth-order masking scheme involves d + 1 shares. The security
is reached at order d provided that any combination of d shares during the entire
computation conveys no information about the sensitive variable.
We must concur that computing with d+1 shares without revealing information

from any set of size d of intermediate values can be challenging. In fact, masked
implementations can always be attacked, since all shares [GBPV10] or a judicious
combination [PRB09] of them unambiguously leaks information about the sensitive
variable. The construction of an efficient masking scheme thus became of great
interest.
In this thesis, focus is laid upon the study of masking schemes and the enhance-

ment of their security against higher-order SCA attacks. Our objectives are:

• To develop novel higher-order SCA distinguishers.

• To efficiently evaluate the security of masking countermeasures.

• To devise new masking functions which resist higher-order SCA attacks.
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Organization

This thesis is organised as follows:
The first part gives a general background about modern cryptography and phys-

ical attacks. Chapter 1 discusses the state-of-the-art of the most common crypto-
graphic algorithms. These algorithms are designed to be used in real-life applications
and implemented in electronic device. This physical implementation leaks informa-
tion about the secret information that can be exploited by side channel attacks.
Chapter 2 gives a general introduction to side channel attacks and presents some
classical models and metrics used for their analysis. A general survey of the main
existing attacks and countermeasures is described. Moreover, the higher-order SCA
context is introduced.
The second part of this thesis deals with the study of higher-order SCA attacks.

We proposed three novel distinguishers: the Variance-based Power Analysis (VPA),
the Entropy-based Power Analysis (EPA) and the Inter-class Information Analysis
(IIA). The VPA attack, introduced in Chapter 3, is based on a variance analysis of
the observed power consumption. This distinguisher was tested against an FPGA
implementation of a masked DES. The EPA attack is described in Chapter 4. It is an
information-theoretic attack that uses a weighted sum of conditional entropies as a
distinguisher. It is designed to ease the distinguishability between key hypotheses.
Like VPA, the EPA is tested in a real context. Finally, the IIA is presented in
Chapter 5. Unlike the most common information-theoretic distinguisher (e.g. the
Mutual Information Analysis (MIA)), the IIA consists in comparing the conditional
leakages between themselves, pairwise. We study its efficiency in the presence of
masking countermeasures.
The third part is divided in two chapters. Chapter 6 presents the most widely

used first-order masking schemes in the literature and discusses their vulnerabilities
against second-order SCA attacks. Moreover, we propose a new SCA metric called
HO-CPA immunity. It intervenes to assess both the efficiency of HO-CPA attacks
and the amount of leakage of higher-order masking countermeasures. In Chapter 7,
we deal with a formal security evaluation of Boolean hardware masking schemes.
Mainly, we propose to extend the results presented in [SVCO+10] to the case of
hardware implementations.
In the fourth part, we propose three novel masking countermeasures to counter-

act not only first-order but also higher-order SCA attacks. The first CM is called
leakage-free masking and described in Chapter 8. We show that with a first-order
masking, and assuming any distance leakage function (or even some small variations
of it), it is possible to zero the sensible information leaked. In Chapter 9, we propose
a second way to apply masking to secure hardware implementations of block ciphers.
The mask update is based on a Gray code and its main advantage over the leakage-
free CM is the reduction of the memory requirements. This countermeasure has
been applied on an AES hardware implementation and evaluated in a real context.
In Chapter 10, we present a novel masking countermeasure called leakage squeez-
ing. It consists in manipulating the mask through a bijection F , aimed at reducing
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the dependency between the shares’ leakage. We mathematically demonstrate that
optimal choices for F relate to optimal binary codes (in the sense of communication
theory). This countermeasure protects against all HO-CPA attacks of order d ≤ 5

and is shown to be resilient to imperfect leakage models. In Chapter 11, we extend
the leakage squeezing countermeasure to the second-order context. We proved that
with two masks, we provide resistance against all HO-CPA attacks of order d ≤ 7.
Finally, Chapter 12 gives a general conclusion and opens some perspectives for

future work.
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Preliminaries





Chapter 1

General Background

In this chapter, we discuss the state-of-the-art of cryptographic algorithms. We
will revisit the main branches of modern cryptography: the symmetric
cryptography and the asymmetric cryptography. Even if these cryptographic
algorithms are secure from a mathematical point of view, they become a target of
physical attacks when they are implemented on electronic devices. Therefore, a
theoretically secure cryptographic algorithm could leak information about the
secret information due to its physical implementation.

Contents
1.1 Introduction to Cryptography . . . . . . . . . . . . . . . . . . 3

1.2 Symmetric Cryptography . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Stream Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Standard Block Ciphers . . . . . . . . . . . . . . . . . . . . . 5

1.3 Asymmetric Cryptography . . . . . . . . . . . . . . . . . . . . 8

1.4 Cryptographic Devices and Physical Attacks . . . . . . . . . 10

1.4.1 Cryptographic Devices . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Physical Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Introduction to Cryptography

Cryptography is defined as the science of protecting sensitive information. It refers
to the study of methods for sending messages with the help of a secret informa-
tion key (ciphering / encryption) so that only the intended recipient can read the
message (deciphering / decryption). The original message is called plaintext and un-
der an encrypted form is called ciphertext or cryptogram. Cryptanalysis confronts
cryptography and aims at breaking cryptographic means and reading the sensitive
information. Namely, it consists in analyzing the ciphertexts in order to find the
plaintexts without a priori knowledge of the deciphering process. Both cryptography
and cryptanalysis make up cryptology : the “science of secrecy” .
Depending on the system to secure and the nature of the secret information,

usually one or all of the following security aspects, that cryptography can provide,
are required:
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• Confidentiality: is to make information unintelligible to others as the allowed
parties (or users).

• Authenticity: is to ensure that the corresponding to each partner is who he
believed to be.

• Integrity: is to guarantee that the message has been correctly transmitted.

• Non repudiation: is to guarantee that the sender (respectively the receiver)
cannot deny sending (respectively receiving) the message.

Theoretically cryptographic algorithms can be broken by using a brute force at-
tack, i.e. an exhaustive key search. The attacker needs a single plaintext-ciphertext
pair to retrieve the secret key. Then, he can test every possible key and check if the
plaintext encryption is similar to the ciphertext. But, the cryptographic algorithms
are based on computational impossibility : a cipher uses a large key space so that such
exhaustive research is computationally impossible. For instance, if a key is coded in
128 bits, then 2128 key values have to be tested; such an exhaustive research require
about one billion billion years when using the faster supercomputer on the market
today.
Cryptographic algorithms are sorted into two main branches: the symmetric

cryptography and the asymmetric cryptography. In next sections, we present the
outlines of those cryptographic algorithms.

1.2 Symmetric Cryptography

Also called secret key cryptography, it relies on a unique secret key k shared between
two communicating entities. The encryption of a message m is defined as c =

Ek(m), where Ek is an invertible function indexed by the shared key k. Then, to
decipher the ciphertext c, the inverse function m = E−1k (c) is computed. Symmetric
cryptography is classified into two main types which are presented hereafter: stream
ciphers and block ciphers.

1.2.1 Stream Ciphers

Stream ciphers are based on the one-time pad cipher (also called Vernam cipher),
which encrypts every plaintext with a pseudo random cipher bit stream (key-stream)
using a simple XOR1 operation (⊕). Basically, the key-stream is generated at ran-
dom using one or several Linear Feedback Shift Register (LFSR) parametrized by a
fixed length secret key k whose content is filtered by for instance a boolean func-
tion to produce the necessary non linearity. In the open literature, stream ciphers
are split in two common types. There are synchronous stream ciphers where the
key-stream is computed independently of the ciphertext, and asynchronous stream
ciphers, called also self-synchronizing, where the key-stream is computed as a func-
tion of the ciphertext.

1XOR stands for exclusive OR
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1.2.2 Block Ciphers

The block cipher algorithms aim at dividing an arbitrary length plaintext into several
blocks of fixed length (i.e. 64 bits, 128 bits, . . . ) and then each is encrypted
according to a particular mode of operation chosen depending on the context (the
needed requirements and security features). Commonly, block ciphers are related to
four modes of operation [Dwo01]:

• Electronic Code Book (ECB) mode: Each block is encrypted separately.
From a security point of view, the ECB mode has a flaw since identical plain-
texts yield identical ciphertexts.

• Cipher Block Chaining (CBC) mode: During encryption, the value of
each input block is XORed with the previous ciphertext block. To guaran-
tee the uniqueness of the message, the initial input block is XORed with an
initialization vector. But, the use of a fixed initialization vector results a po-
tential security flaw (two plaintexts with the same prefix yield to two identical
ciphertexts).

• Cipher Feedback (CFB) mode: It operates in the same way as the self-
synchronizing stream cipher.

• Output Feedback (OFB) mode: It operates in the same way as the syn-
chronous stream ciphers.

Commonly, a block cipher processes an encryption through a number of itera-
tions called rounds. Each round operates on a fixed length block and involves the
computation of linear operations (i.e. permutations) and non-linear operations (i.e.
substitutions). A round subkey used during these iterative rounds, is derived from
a secret master key by applying a key scheduling function. We present hereafter the
two main architectures of block ciphers: a Feistel Network with the Data Encryption
Standard (DES) and a Substitution Permutation Network (SPN) with the Advanced
Encryption Standard (AES). Both standard block ciphers are widely used.

1.2.3 Standard Block Ciphers

1.2.3.1 Feistel Network: the Data Encryption Standard

The Feistel network was designed by Horst Feistel in 1970 and originally called
Lucifer. It is a symmetric structure based on complex mathematical functions used
since in the construction of several block ciphers including the DES. The round
transformation of a Feistel network is shown in Fig. 1.1.

In practice, the plaintext is divided into two parts L0 and R0. If we denote by
f the round function and Ki the subkey for the round i, then at the (i+1)th round
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f

L i R i

K i

RLi+1 i+1

Figure 1.1: Feistel global structure.

we compute:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri,Ki) .

By iterating this round transformation we obtain the ciphertext (Lr, Rr), where r
denotes the total rounds number. The choice of the round function f depends on
the security of the scheme.
The DES is the most famous Feistel scheme [NIS99]. It processes on 64-bit

blocks and uses a 56-bit key (represented on 64 bits including 8 parity check bits).
The encryption starts with an initial bit permutation on 64-bit blocks followed by
16 iterations applying the same round function f and finally a permutation which
is the inverse of the initial one.
Every round function f takes a 48-bit round subkey as a parameter, derived from

the secret master key by applying the key scheduling function, and operates on a
32-bit block. After the initial permutation, the 64-bit block is split into two 32-bit
parts L (left part) and R (right part). The round function operates only on one half
of the block and can be defined at the (i+ 1)th round by the following equation:

f(Ri+1,Ki+1) = P (S(E(Ri)⊕Ki+1)),

where:

• E: is the expansion function that expands the 32-bit input to a 48-bit output
by duplicating 16 of them. Then, the outputs are XORed with the round
subkey.

• S: is the substitution function composed of 8 different substitution box (S-
box). The key mixing operation output is split into 8 blocks of 6 bits, each
entering into a different S-box produces a 4-bit output block.

• P : is the bit permutation function applied on the 32-bit output of the substi-
tution layer.



1.2. Symmetric Cryptography 7

The DES algorithm is illustrated in Fig. 1.2.
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Figure 1.2: Data encryption standard.

1.2.3.2 Substitution Permutation Network: the Advanced Encryption

Standard (AES)

The Substitution Permutation Network (SPN) is the second most common block
cipher architecture. Unlike the Feistel network, the SPN round function operates
on the hole input block. Each round function consists of three stages, or layers:
the key-mixing stage, the substitution stage and the linear transformation stage.
Figure 1.3 describes the SPN structure.
The Advanced Encryption Standard (AES) [NIS01] is an SPN based algorithm.

It processes data using blocks of 128 bits and a variable secret key block size (128,
192 or 256 bits). Hence, the standard [14001] specifies three different block-ciphers:
AES-128, AES-192, AES-256. Depending on the key size, we need 10 rounds for
AES-128, 12 rounds for AES-192 and 14 rounds for AES-256 to compute the ci-
phertext. The plaintext, the key and the ciphertext can be represented by a 4x4
matrix of bytes, the same for the intermediate values of the rounds that we call state
matrix.
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Figure 1.3: Substitution permutation network (this figure is taken from [web]).

Each round of AES is composed of four stages:

• SubBytes: modifies each byte in the state using an 8 bits non-linear S-box.

• ShiftRows: rotates the bytes in each row of the state. The shift value is 1
for the second row, 2 for the third and 3 for the fourth.

• MixColumns: performs a matrix multiplication on the state.

• AddRoundKey: mixes the state with a subkey by a bit-wise XOR.
We noticed that the AES-128 encryption starts with an AddRoundKey operation
computed between the input key and the plaintext followed by 9 round functions.
Finally, the tenth round omits the MixColumns operation. The AES encryption is
illustrated in Fig. 1.4.
Symmetric ciphers are computationally strong but the key exchange management

is an important issue. Asymmetric ciphers provide a solution to this problem.

1.3 Asymmetric Cryptography

Asymmetric cryptography is also called public-key cryptography as it does not use
the same key for the encryption and decryption process. It was invented in 1976 by
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Diffie and Hellman as a solution to the key exchange issue. They proposed the use of
two separate but dependent keys: the public key and the private key. More precisely,
the public key is used for encryption (or signature); and alternatively the private
key is used for decryption (or signature verification). Anyone can use the public key
to cipher a message since it is publicly deployed. However, the private key is kept
secret by its owner. In the literature, several asymmetric cryptography algorithms
have been proposed. The RSA cryptosystem, developed by R. Rivest, A. Shamir,
and L. Adleman, is the most commonly used public-key cryptosystem. Essentially,
“it is based on the intractability of the integer factorization problem” [Yan09]. Re-
cently, public-key algorithms have started using the elliptic curve cryptography,
introduced by Neal Koblitz and Victor Miller, they provide smaller key sizes and
faster enciphering/ deciphering operations.

The interested reader is refereed to [Sal96, DM09] for detailed explanations about
public-key cryptography.
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1.4 Cryptographic Devices and Physical Attacks

1.4.1 Cryptographic Devices

Cryptographic modules are “the set of hardware, software, firmware, or some com-
bination thereof that implements cryptographic logic or processes, including crypto-

graphic algorithms, and is contained within the cryptographic boundary of the mod-

ule” [14009]. They are currently used in many electronic devices of everyday’s life.
The most common cryptographic module is the smart card. This device was in-
vented in 1970 as a practical answer to the key storage issue. In fact, secret key
used in modern cryptography must be stored in a physical device such as a personal
computer memory. The first smart cards werememory cards using an inhibitors (e.g.
password) to protect the memory access. Since 1986, the microprocessor cards were
widely used in many everyday life applications. Those are composed of a micropro-
cessor to execute the cryptographic operations and several types of memory (ROM,
EEPROM, RAM). In this type of device, operations are sequentially performed by
the microprocessor at a speed dependent on its clock frequency. Nowadays, smart
cards are used in different applications of everyone’s daily life (e.g. SIM (Subscriber
Identity Module) card, credit card, electronic passport, etc.).

The cryptographic cipher can also be implemented in a hardware device such as
FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated
Circuit). FPGAs offer high performance and are used in many domains including
software-defined radio, aerospace, medical imaging, cryptography and in a growing
range of other areas. In this thesis, we try to answer the question: Do cryptographic
module really provide the secrecy? Do hardware implementations of cryptographic
ciphers protect our secret key?

1.4.2 Physical Attacks

Modern cryptography is mathematically secure against several analytical cryptanal-
ysis attacks. But, the cryptographic algorithms are designed to be used in real-life
applications. In fact, these algorithms are implemented as explained in the previous
section in cryptographic modules or devices using some program codes (software im-
plementation) or logic components (hardware implementation). So, the mathemati-
cal representation of the algorithm is converted to a physical implementation where
the secret key is embedded or processed. The cryptographic device, while running
cryptographic computation, leaks some information about the sensitive variable.
The leakage can be the execution time, the power consumption and the electro-
magnetic radiation produced during the computation. The attacks that target the
physical implementation and not the weakness of the algorithm in order to extract
the secret key are called physical attacks. Such kinds of attack are very powerful
and must be considered when designing a cryptographic device.

Physical attacks include two main types: fault attacks (FA) [BS97] and side

channel analysis (SCA) [KJJ99]. The fault attack is an active attack : aims at shift-
ing the attacked device from its normal behavior and analysing its response. A fault
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attack consists in injecting hardware malfunctions (e.g. power spikes, clock glitches)
in order to produce erroneous results exploitable to recover the secret information
from electronic devices. Unlike FA, a side channel attack is a passive attack : does
not disturb the system resources and behavior. It analyses and exploits the physical
leakage from the cryptographic device while running cryptographic computations.
Physical attacks can be further divided into three classes [MOP06] depending

on how the adversary breaches the cryptographic boundary:

• Invasive attacks: First, the chip is depackaged, then the passivation layer is
removed at least part to perform probing attacks [HPS99].

• Semi-invasive attacks: Like invasive attacks, the chip is removed. However,
the system surface is not altered.

• Non-invasive attacks: The adversary does not alter the physical integrity of
the device; he performs power measurements (SCA) or disturbs its behaviour
by injecting faults (FA).

1.5 Conclusions

In this chapter, we introduced few basics of modern cryptography. We described the
most used cryptographic algorithms and especially block cipher standards. Then, we
concluded that these algorithms are designed to be used in real-life applications and
implemented in electronic devices. This physical implementation leaks information
about the sensitive secret, even if the algorithm is mathematically secure.
In this thesis, we focus mainly on the protection against side channel attacks.

Therefore, we explore the know-how of SCA in the next chapter.





Chapter 2

Introduction to Side Channel

Analysis

In this chapter, we give a general introduction to side channel analysis. Then, we
present some classical SCA models and metrics used for the security evaluation.
Thereafter, we provide a general survey of the main existing attacks and counter-
measures. Finally, we introduce the higher-order SCA context.
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2.1 SCA: General Background

SCA is a branch of cryptography that exploits the information leaking from the
physical implementation of a cryptographic cipher. The first historical example of
analysing the electromagnetic emanations is the US project, so-called TEMPEST.
It provides solutions and some standards to avoid the physical emanations based
attacks. In 1985, Wim Van Eck published the first paper [Eck85] that demonstrated
how to display a nearby computer electromagnetic emission on a video monitor. In
the mid-1990s, Paul Kocher et .al [KJJ99] proposed the first side channel attack that
broke several classical implementations including DES and RSA. These publications
gave rise to many developments of new attacks and countermeasures. SCA became
an established scientific discipline: several conferences and workshops took place and
present considerable works in this field. Side channel can be divided depending on
the nature of the exploited physical information: execution time, power consumption
and electromagnetic radiations.

2.1.1 Timing Attacks

The timing attacks were introduced by Kocher et al. in [KJJ96]. Every logical
instruction takes time to execute which can differ depending on the input. An
attacker can select the plaintext inputs and analyze the computation time. For
instance, in case of RSA algorithm the execution time depends on the key bit values:
the circuit will perform a square operation when the key bit is 0 else a square
operation followed by a multiplication. Therefore, the attacker by detecting the
difference of execution time can reveal the secret information.

2.1.2 Power Attacks

Most recent electronic devices mainly consist of Complementary Metal Oxide Semi-
conductor (CMOS) cells. The root of vulnerability to side channel attacks is related
to the behaviour of those CMOS cell. In fact, the power consumption of these com-
ponents depends on the outputs transitions. There is a clear difference, in terms of
power consumption, between transition from 0 → 1 or 1 → 0 where the bit value
changes and from 0 → 0 or 1 → 1 where it doesn’t. An adversary, by observing
these transitions via the global power consumption of the cryptographic module,
can reveal information about the sensitive variable.

2.1.3 Electromagnetic Attacks

Electromagnetic (EM) attacks are similar to power consumption based attacks. The
attacker captures the EM radiations from the target device using an EM probe.
Depending on the used probe, the EM radiations could be global or localized. The
main advantages of localised EM are to isolate some specific part of the circuit and
to reduce the noise level.
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The power consumption and the EM emanations depend on the variable being
processed. Both attacks shall be treated together and referred to as power attacks
in the rest of this thesis. After identifying the physical leakage, the attacker collects
a large set of power consumption measurements (traces) with different plaintexts.
Figure 2.1 shows a power consumption trace of the DES algorithm with its 16 rounds.
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Figure 2.1: Power consumption of an FPGA implementation of the DES algorithm.

Thereafter, the adversary makes hypotheses about the secret key and builds an
appropriate leakage model. Finally, he uses a distinguisher to identify the statistical
dependency between the power measurements and the leakage model to extract
the secret key. In next sections, we discuss further side channel models and some
classical distinguishers commonly used.

2.2 Side Channel Analysis Models

2.2.1 Attack Model

The goal of this section is to formalize the attack model and introduce some notation
needed to explain the state-of-the-art of some classical attacks. Let us denote:

• L: a random variable (RV) that represents the leakage (e.g. the measured
current drawn by a cryptographic design).

• K: the secret cryptographic key, an n-bit data; unknown to the attacker and
assumed to be uniformly distributed on F

n
2 .

• X: the input or the output of the cryptographic design (i.e. its plaintext or
ciphertext); known by the attacker.
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• Z = f(X,K) for a given function f : a sensitive variable used internally, that
depends only on X and K. We assume that this sensitive variable Z can be
computed exhaustively from all possible K by the attacker, furthermore Z
causes the leakages; put differently, when the key guess is correct, Z and L
are dependent.

SCA consists in estimating, for every key guess (i.e. for every value k of K),
whether the RVs Z and L are dependent. The analysis is said “sound” if the greatest
dependence is obtained for the correct value of the key, noted k∗. In this case, the
key can be extracted successfully from the device. In practice, the values taken
by L are noisy, because they consist in physical measurements and thus the link
between Z and L is imperfect. Therefore, many couples (X,Z) are required for the
2n estimations (for each value k of K) to find the correct key.

2.2.2 Leakage Models

In SCA, the attacker tries to find the relation between the data being processed and
the leakage measurements. The leakage can be represented as the sum of two parts:
a deterministic part ϕ(.) (depending on the sensitive variable Z) and an independent
noise N such that:

L = ϕ(Z) +N ,

where ϕ(.) represents the leakage function. We assume that the noise N has a
Gaussian distribution. This approximation is fairly realistic and commonly used
in the literature [CRR02, SLP05, MOP06]. As discussed in Sec. 2.1.2, the leakage
results from logical transitions during the computation. So, it is reasonable to
assume that the leakage comes from the state update of each bit. This model is
the so-called Hamming distance model (HD) and the leakage can be expressed as
follows:

L = HD(Z,R) +N

= HW(Z ⊕R) +N ,

where R is the reference state. A particular case is when the reference state is
initialized to zero. This yields the Hamming weight model (HW) which is expressed
as:

L = HW(Z) +N .

After choosing the appropriate leakage model, the adversary has to select a
statistical tool (distinguisher) in order to determine the dependency between the
leakage measurements and the model. We review in what follows the most common
distinguishers used in side channel key recovery attacks.
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2.3 Classical Side Channel Distinguishers

2.3.1 Correlation

Distinguishers based on correlation are the most commonly deployed to achieve a
successful recovery attack. We give hereafter two examples of those distinguishers:
the Difference of Means (DOM) which is used in the original Differential Power
Analysis (DPA) [KJJ99] and the Pearson correlation coefficient used in the Corre-
lation Power Analysis (CPA) [BCO04].

2.3.1.1 Difference of Means

In practice, the attacker collects the power traces corresponding to the encryption
of many randomly selected plaintexts (or context’s). Then, he makes a guess on the
key k and predicts one bit value of the sensitive variable Z = f(X, k), let’s say the
bit Zj . The leakage measurements L are separated in two partitions according to the
hypothetically predicted value Zj = 0 or Zj = 1 computed for each key hypothesis.
Finally, the adversary computes the difference of means of the two partitions:

∆(k) = E[L | Zj = 0]− E[L | Zj = 1] ,

where E[.] denotes the expectation (the mean). The correct key k∗ is identified as
the argument that maximizes the difference of means ∆(k). Later, the so-called
mono-bit DPA, was generalised to the multi-bit DPA. This distinguisher targets the
consumption activity of several bits of the sensitive variable Z and computes a sum
of the centered weights of the considered partitions sets.

2.3.1.2 Pearson Correlation Coefficient

This distinguisher was introduced by Éric Brier et al. in [BCO04] as a natural
generalisation of DPA. The CPA attack based on this distinguisher is the most
widely used technique in side channel field. The attacker predicts the appropriate
leakage model function ϕ(Z), then estimates the Pearson correlation coefficient ρk
for every key guess k:

ρ(k) =
Cov[L;ϕ(Z)]

σL × σϕ(Z)
,

where Cov[.; .] is the covariance and σL and σϕ(Z) are respectively the standard
deviation of the physical leakage and the leakage model. We notice that CPA and
DPA are almost equivalent. The main advantage of the CPA over DPA is that it
reduces the noise affecting the leakage measurements.

2.3.2 Mutual Information

In 2008, Gierlichs et al. propose a new side channel distinguisher called Mutual Infor-
mation Analysis (MIA) [GBTP08]. It is an attractive alternative to the previous dis-
tinguishers. In fact, it exploits any kind of dependency between the leakage measure-
ments and the predicted data, as opposed to correlation distinguishers which require
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a linear relationship to successfully recover the good key. The MIA has been largely
studied and tested on several implementations [GBTP08, VCS09, PR09, BGP+11].
Once the leakage model is chosen, the adversary estimates the mutual information
between the leakage measurements and the leakage model for every key guess k:

MIA(k) = H[L]− H[L | ϕ(Z)] ,

where H[.] is the entropy. The correct guess of the key k∗ corresponds to argmaxkMIA(k).
The issue with mutual information is that it is based on the Probability Density

Function (PDF) estimation techniques. Several methods have been proposed in the
literature: histograms, kernel density function, parametric estimation. The choice
of the appropriate estimation method is a real challenge. We further discuss those
methods in Chapter 4.

2.3.3 Kolmogorov-Smirnov

In the context of SCA, the Kolmogorov-Smirnov (KS) test has been suggested first
in [VCS09] as a non-parametric statistical tool to distinguish between distributions.
Then, the authors in [WOM11] investigate the potential of the Kolmogorov-Smirnov
Analysis (KSA) and compare it with MIA. The KSA distance is a simple mea-
sure which is defined as the maximum value of the absolute difference between
the cumulative distribution functions (CDFs) of two RVs X1 and X2: DKSA =

supx∈X |FX1
(x)− FX2

(x)|, where FX1
and FX2

are the empirical CDFs (ECDFs).
By definition an ECDF is a step function defined as: FX(x) = 1

n

∑n
i=1 Ixi≤x, where

the tuple {xi}i∈J1,nK denotes the values realized by the RV X.

Like MIA, the KSA distinguisher measures the maximum distance between the
leakage L and the hypothesis-dependent conditional observations L | ϕ(Z):

KSA(k) = EZ sup
l∈L

∣∣FL(l)− FL|ϕ(Z)(l)
∣∣ .

The KSA returns the largest difference when the key is correct, i.e. when k = k⋆.

2.3.4 Likelihood

The likelihood distinguisher is used in the context of the so-called profiled attack.
In such SCA, the attacker proceeds in two steps. First, a profiling phase where an
adversary has access to a clone device that allows him characterizing its physical
leakage model. Second, he exploits these information on a similar target device
in order to perform a key recovery based on the maximum likelihood principle.
Profiled attacks include template attacks [CRR02] and stochastic models [SLP05].
Despite the disadvantage of the necessity of the profiling phase, these attacks are
very powerful and very useful for evaluating SCA countermeasures.
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2.4 Side Channel Metrics

Many tools have been devised to analyse the leakage of cryptographic devices and to
attack them. Notably, leakage metrics are used to quantify the leakage of a device,
and the security metrics are used to measure the strength of an attack [SMY09].
We list hereafter the most common metrics used in side channel.

2.4.1 Leakage Metrics

2.4.1.1 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a relevant metric to characterize any analog phe-
nomena, such as the side channel measurements. The SNR is defined as:

SNR =
Var[ϕ(Z)]

Var[N ]
,

where Var[.] is the variance. The signal is characterised by the leakage model ϕ(Z).
The noise is traditionally estimated by computing the variance of all the traces.
The noise of a side channel acquisition campaign has at least two kinds of origins
as stated in [MDS02, §3.1], namely:

1. the quantization (vertical and horizontal) and the environmental parasitics
(intrinsic and external), and

2. the algorithmic noise (i.e. the rest of the circuit).

2.4.1.2 Correlation

Another metric used to evaluate the physical leakage is to compute the Pearson
correlation coefficient between the leakage and the leakage model. Eventually, the
Pearson correlation coefficient involved in CPA [BCO04] is proportional to SNR;
thus, it is directly connected to the quality of the acquisition. Moreover, It has
been demonstrated that the number of waveforms required to break a cryptographic
implementation by CPA is equal to [Man04]:

3 + 8


 Z1−α

ln
(
1+ρ
1−ρ

)




2

,

where Z1−α is a quantile of a normal distribution for the 2-sided confidence interval
with error 1− α. Some values of quantiles are given in Tab. 2.1.

2.4.1.3 Mutual Information Metric (MIM)

This metric is based on an information-theoretic evaluation of the leakage. To quan-
tify the information contained in the leakage measurements, the attacker computes
the mutual information between the physical leakage L and the secret key K (or



20 Chapter 2. Introduction to Side Channel Analysis

Table 2.1: Some precomputed values for the quantiles of a normal distribution.

Confidence level [%] (1− α) Z1−α/2
60 0.842
80 1.282
90 1.645
95 1.960
98 2.326
99 2.576

the sensitive variable Z). Mutual information metric measures the quality of an
implementation; higher the information leaks, lesser is the resistance of the imple-
mentation. Thus, MIM is often used to compare the strength of countermeasures.

2.4.2 Attack Metrics

2.4.2.1 The Minimum Traces to Disclosure (MTD)

The MTD quantifies the side channel attack efficiency. It indicates the average
number of measurements needed to perform a successful attack.

2.4.2.2 Success Rate

The success rate is defined as the probability that the attack’s best guessed key is
the correct key given a set of leakage measurements. In [SMY09], Standaert et al.
extend the notion of success rate to the higher-order context. For instance, if we
consider success rate of order d, this implies that the attacker still has at most d key
candidates to test after the attack in order to recover the good one. In this thesis,
we use the first-order success rate in our security evaluation.

2.4.2.3 Guessing Entropy

Success rate is useful only when the attack is successful. Sometimes, when analyzing
countermeasures the attack does not find the good key. In such cases, guessing
entropy is a useful metric [SMY09]. It measures the average number of key guesses
to test before finding the correct key. It can be defined also as the position of the
target key in a list of key hypotheses ranked by a distinguisher.

2.5 Side Channel Countermeasures

We review hereafter the most common countermeasures proposed to hinder SCA
attacks.
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2.5.1 Noise Generators

One classical countermeasure consists in adding a hardware module, called noise

generator [Man04], aiming at introducing some noise to the leakage measurements.
To amount a successful key recovery attack, the adversary needs more power con-
sumption traces which is time consuming (and needs much more memory to be
stored). The amount of noise added to the implementation allowed reaching a high
security level. For these reasons, noise generators are considered as a sound coun-
termeasure in practice. But theoretically, it is not sufficient to counteract practical
attacks.

2.5.2 Shuffling

Shuffling is one of the most frequently considered countermeasures to improve the
security of cryptographic devices in software against side channel attacks. It consists

in randomizing the execution order of independent operations [RPD09].

2.5.3 Hiding

One common countermeasure widely used against side channel attack is hiding. In

literature, we can find several papers dealing with this solution also called dual-

rail [CZ06, BZ08, AKM+08, GCS+08, GSF+10, KV10]. It is applied at the logic

gate level and consists in making the activity of the physical implementation con-

stant by adding complementary logic to the existing logic. Therefore, making this

activity constant would theoretically remove the correlation between the leakage

measurements and the data being processed (the secret key). However, in practice

it is very difficult to guarantee a symmetry hypothesis in the hardware due to small

load imbalances between the two complementary circuits, process variations, rout-

ing, etc. This imbalance always leaks some information that can be exploited by a

SCA attacker.

2.5.4 Masking

Masking is one of the most widespread countermeasures. It can be implemented at

the gate level or at the algorithmic level. When masking is used to secure a circuit at

the gate level, every input of the logic gate is XORed with a random value called the

mask. Hence, the logic gate outputs are statistically independent of the input value.

This technique suffers several problems such as the occurrence of glitches [FG05,

NRS08]. In this thesis, we are interested in the study of the algorithmic masking

technique. We refer the interested reader to [Tri03, SSI04, FG05, CZ06] for more

detailed explanations about masking solutions at the logic level.

When applied at the algorithmic level, a dth-order masking scheme aims at re-

placing the manipulation of the sensitive variable Z by the manipulation of a vector

of d + 1 variables S0, · · · , Sd called shares, such that Z = S0 ⊥ · · · ⊥ Sd, where ⊥
is a group operation. Obviously, a dth-order masking can always be theoretically
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defeated by a (d+ 1)th-order SCA attack that jointly involves all the d+ 1 shares.
The design of masking scheme is further discussed in the third part of this thesis.

2.6 Higher-Order Side Channel Analysis

We call higher-order side channel attack [CJRR99, Mes00b, WW04, JPS05, PSDQ05,
OMHT06, SP06] (abridged HO-SCA), any attack that combines all shares [GBPV10]
or a judicious combination [PRB09] of them in order to turn a successful key recov-
ery. Later, the attacker computes the dependency between the combined leakage
and the leakage model for every key guess k using a distinguisher. When the cor-
relation (respectively the mutual information) is used as a distinguisher, the attack
is called higher-order differential power analysis (HO-DPA/ HO-CPA) (respectively
higher-order MIA (HO-MIA)).

Several combining functions are used in HO-SCA. The choice of the combination
depends on the implementation (e.g. software or hardware implementation). In
fact, the SCA attacker of a dth-order masking scheme gets direct observations of the
(d + 1)-tuple L in the software case since the variables are evaluated sequentially.
So, the leakage L is a multivariate signal and such an attack is called multivariate

attack. Then, the adversary can thus choose adequate combining functions using
several measurements [PR07]. Mainly two combining functions have been previously
studied:

• In [CJRR99], Chari suggests performing the product of the shares.

• In [Mes00b], Messerges combines the shares using the absolute difference.

In [PRB09], Prouff et al. analyzed both the product and the absolute difference
combining functions and they show that the product combining is the best published
function to perform a second-order DPA when devices leak the Hamming weight of
the processed data.

In hardware implementations, ASIC or FPGA, the variables are evaluated in
parallel. So, the only combination function available to the attacker is the arithmetic
sum of individual leakages of the shares. This is done physically because of the
parallelism in hardware devices execution. Hence, the leakage L corresponds to a
univariate signal and such an attack is called univariate attack.

2.7 Conclusions

In this chapter, we described the general background about side channel metrics, at-
tacks and the corresponding countermeasures. Amongst hiding and masking, which
are the two major countermeasures against SCA (see respectively Chapter 7 and
9 of [MOP06]), the latter is certainly the simplest one to implement when applied
at the algorithmic level. As shown by Chari et al. in [CJRR99], it moreover en-
ables to have a lower bound on the achieved security level in terms of the number of
measurements needed to retrieve secret information with a given success probability.
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In this thesis, the focus is laid upon the study of Boolean hardware masking
countermeasure and the enhancement of its resistance against higher-order attacks.
In the next part, we propose new higher-order distinguishers that can defeat masking
countermeasures.
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Chapter 3

Variance-based Power Analysis

In this chapter, we propose a new distinguisher, called Variance-based Power Anal-
ysis (VPA). This attack is based on a variance analysis of the observed power con-
sumption. We performed it against an FPGA implementation of a masked DES.
The experimental results confirm the overwhelming advantage of this distinguisher.
As for the most common univariate SCA attacks, VPA can be reformulated to reveal
a correlation coefficient computation by changing the leakage model.
Parts of the results presented in this chapter have been published in collaboration

with Sylvain Guilley, Florent Flament and Jean-Luc Danger in the international
conference on Signals, Circuits and Systems (SCS 2009) [MDFG09].
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3.1 Vulnerability of Masking in Practice

Masking can be defeated if the attacker knows how to combine the leakages corre-
sponding to the masked data Z ⊕M and its mask M . This is known as second-
order power analysis (abridged 2O-DPA) and was originally suggested by Messerges
in [Mes00b]. Investigating 2O-DPA is of major importance for practitioners as it
remains a good alternative that is powerful enough to break real-life DPA-protected
security products. In the sequel, we overview univariate second-order attacks since
we are interested in the hardware setting.
In [WW04], Jason Waddle and David Wagner proposed a second-order attack

that consists in computing the difference of means of the square of the power con-

sumption traces in order to obtain key-dependent measurements, instead of the

difference of means of the traces as in DPA. Peeters et al. present in [PSDQ05]

another attack against a masked FPGA countermeasure based on the maximum

likelihood distinguisher.
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In the next section, we review the attack proposed in [PSDQ05]. Then, we
propose a new second-order attack called Variance-based Power Analysis. The VPA
is similar to the variance test proposed by Standaert et al. in [SGV08] where the
variance is used as substitute to the entropy used in the computation of the mutual
information, albeit with little variations.

3.2 Evaluation of the VPA Attack

3.2.1 Peeters’s Attack

Assuming a Hamming weight model, the deterministic part of the leakage L of a first-
order masking scheme can be expressed as: L = HW(Z⊕M)+HW(M). Considering
4-bit variables, there are five possible distributions of the leakage depending on the
Hamming weight of the secret state values HW(Z), when the key is correct, as
shown in the top of Fig. 3.1. For instance, if HW(Z) = 0 (i.e. Z is equal to
the hexadecimal value 0x0), then the corresponding leakage is L = 2 × HW(M)

and thus takes value in {0, 2, 4, 6, 8} since the mask M is random and unknown by
the attacker. If HW(Z) = 4 (i.e. Z is equal to the hexadecimal value 0xf), the
corresponding leakage is L = HW(M)+HW(M) and is constantly equal to 4. When
the key is incorrect (bottom of Fig. 3.1), the leakage corresponds to that of the
function L where:

• Z is uniformly distributed in [0x0, 0xf], because the guessed key is wrong,

• M is uniformly distributed in [0x0, 0xf].

Two important consequences can be emphasized from Fig. 3.1:

• The distributions P[L | HW(Z)] for the correct key have the same mean value
and only differ in their variances.

• Knowing the Hamming weight value of the secret intermediate variable HW(Z) =

a, the attacker knows the probability density function P[L | HW(Z) = a].

The attack proposed in [PSDQ05] consists in analysing the probability density func-
tion based on a maximum likelihood approach to amount a successful key recovery.
The attack algorithm is the following:

1. Encrypt n plaintexts (xi, i ∈ [1, n]) and collect n observations of power con-
sumption leakages (traces Li).

2. For each assumption about the key kj with j ∈ [0, 63], compute a set of secret
states according to HW(Zj) = HW(S(X ⊕ kj)), where S is the DES S-box
function:





HW(Z0) = HW(S(x0 ⊕ k0)),HW(S(x1 ⊕ k0)), · · · ,HW(S(xn ⊕ k0)),
HW(Z1) = HW(S(x0 ⊕ k1)),HW(S(x1 ⊕ k1)), · · · ,HW(S(xn ⊕ k1)),

. . .

HW(Z63) = HW(S(x0 ⊕ k63)),HW(S(x1 ⊕ k63)), · · · ,HW(S(xn ⊕ k63)).
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Figure 3.1: PDFs corresponding to the five possible values of HW(Z).

3. For each set HW(Zj), compute the probability:

P[L | HW(Zj)] =

n−1∏

i=0

P[L = Li | HW(S(xi ⊕ kj))] .

4. Apply the maximum likelihood approach: the correct key corresponds to the
maximum probability P[L | HW(Zj)].

We reproduce this attack on a fully-fledged masked DES implementation in
an Altera Stratix II FPGA on the SASEBO-B evaluation board provided by the
RCIS [Jap]. The choice of DES algorithm was motivated by the hardware area
constraints. In fact, we did not target the masked AES implementation since it re-
quires huge memories resources in FPGA. We implemented the masked DES studied
in [SRQ06], whose principle is illustrated in Fig. 3.2 and used as a target scheme
in [PSDQ05]. We have designed a complete System on Programmable Chip (SoC)
including a master processor for inputs/outputs communications and the masked
DES cryptoprocessor.
The attack platform is described in Fig. 3.3. The design communicates with a

monitoring PC via a RS-232 serial link. The EM field is collected from the FPGA,
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Figure 3.2: Masked DES implementation.
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RJ45
Probes

RS232

Figure 3.3: Experimental attack platform.

while encrypting messages, with an 54855 Infinium Agilent oscilloscope with 6 GHz
bandwidth and a maximal sampling rate of 40 GSa/s and with an antenna of the
“HZ-15 kit” from “Rohde and Schwarz’ [Roh].
The attack implementation succeeded on noisy simulated traces, but failed when

applied to our real world DES implementation even when using 200, 000 power
consumption traces. This comes mainly from the high level of noise (especially the
algorithmic one) when attacking a fully-fledged implementation in FPGA. In fact,
the noise coming from other computing blocks and the environment shapes the PDF
as a sum of Gaussian distributions. This can be intuitively illustrated through the
example of Fig. 3.4. The top left image of the figure shows the PDF that corresponds
to the partition HW(Z) = 0 in a noise-free context. The rest of the images show
the same leakage model partition with some increasing additive standard deviation
of noise (0 < σ1 < σ2 < σ3). Obviously, the shape of the leakage distribution
is converging towards the normal distribution, when the noise standard deviation
is getting higher. So, it is hardly possible to discriminate the different Gaussians.
Thus, in this case, the Peeters’s attack might lose its efficiency when computing the

probability P[L | HW(Z)].

3.2.2 Proposed VPA Attack

The VPA takes advantage from the fact that the distribution of power consumption

has the same mean, but a different variance as shown in Fig. 3.1. For instance, the
variance difference between the PDF for HW(Z) = 0 and HW(Z) = 4 should be
enough discriminating even without the knowledge of the exact probability density
functions. VPA is based on the variance computation of the power consumption
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traces during a time window corresponding to the first DES round, while ciphering
random messages. The VPA algorithm is the following:

1. Encrypt n plaintexts (xi, i ∈ [1, n]) and collect n observations of power con-
sumption (traces Li).

2. For each S-box, make assumptions about the key k ∈ [0, 63] :

• Sort the traces Li to get five activity sets setl, l ∈ [0, 4], corresponding
to the five HW(Z) = HW(S(xi ⊕ k)) possible values.

• Compute the variance vl for each set setl.
• Compute a VPA indicator VPA(k) being a linear combination of the
variances with weights wl: VPA(k) =

∑4
l=0wl • vl.

3. The correct guess of the key k∗ corresponds to argmaxk VPA(k).

3.2.3 Experimental Results

The VPA is carried out on a masked DES implementation. It is tested on 200, 000

with different weights (w0, w1, w2, w3, w4) values. The weights of the VPA indicator
producing the best results were (14 , 1, 0,−1,−1

4). This result was validated empiri-
cally, i.e. we tested several weight vectors until we found the good combination.
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Figure 3.5 shows the 10 keys having the higher VPA indicator values for each
DES S-box. These indicators have been normalized such that the best key candidate
has an indicator value equal to 1. Then, for each S-box, the round subkey guessed
by our VPA algorithm is the key corresponding to the highest indicator value (the
most left one on the figures). The eight DES S-boxes subkeys used during the first
round of our DES implementation have been guessed by the VPA.
Note that the indicator illustrated by these results does not only use the sets pro-

ducing maximum and minimum variance observations (HW(Z) = 0 and HW(Z) = 4,
see Fig. 3.1). The use of such sets decreased the overall performance of the attack.
The fact that there are four times less traces for HW(Z) = 0 and HW(Z) = 4 than
for HW(Z) = 1 and HW(Z) = 3 could explain this behaviour.

3.3 Link between VPA and Second-Order CPA

In [DPRS11], the authors demonstrated that even the most commonly used uni-
variate attacks (DPA, PPA [LCC+06], CPA, . . . ) do not share the same efficiency,
they can be reformulated one in the function of the other. Especially, most univari-
ate attacks can be rewritten as a correlation coefficient computation with different

leakage models. In this section, we try to find the link between the VPA and the

univariate second-order CPA attack. The results in this section have been founded

in collaboration with Emmanuel Prouff.

The VPA distinguisher, is defined with respect to a family of coefficients (ωi)i∈[0,4]
such that:

VPA(k) =
∑

i

ωiVar[L | HW(Z) = i]

=
∑

i

ωi

P[Mh = i]
P[Mh = i]Var[L | Mh = i] ,

whereMh is the Hamming weight leakage model (i.e. HW(Z)). Now, if we denote by
g the function defined over the set definition of Mh by g(i) =

ωi
P[Mh=i] , we eventually

get:

VPA(k) =
∑

i

g(i)P[Mh = i]Var[L |Mh = i]

=
∑

α∈Im(g)

αP[Mh ∈ g−1(α)]Var[L |Mh ∈ g−1(α)]

=
∑

α∈Im(g)

αP[g(Mh) = α]Var[L | g(Mh) = α]

=
∑

α∈Im(g)

αP[g(Mh) = α]E[(L− E[L])2 | g(Mh) = α]

=
∑

α∈Im(g)

P[g(Mh) = α]E[(L− E[L])2α | g(Mh) = α] .
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Figure 3.5: VPA results on 200, 000 power consumption traces of a masked DES
implementation.
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Hence, the VPA attack can be written as:

VPA(k) = E[(L− E[L])2g(Mh)] . (3.1)

On the other hand, the second-order CPA attack can be expressed as:

ρ((L− E[L])2, g(Mh)) =
E[(L− E[L])2g(Mh)]− E[(L− E[L])2]E[g(Mh)]√

Var[(L− E[L])2]
√

Var[g(Mh)]
.

In most of (if not all) cryptographic contexts, the terms Var[g(Mh)] and E[g(Mh)] are
not key-hypothesis dependent (i.e. do not depend on k) and are therefore constant
with respect to k. Hence, the coefficient ρ((L−E[L])2, g(Mh)) viewed as a function
of k can be written:

ρ((L− E[L])2, g(Mh)) = aE[(L− E[L])2g(Mh)] + b , (3.2)

where a and b are some constant terms (w.r.t k). We eventually conclude on the
following relation:

VPA(k) =
1

a

(
ρ
(
(L− E[L])2, g(Mh)

)
− b

)
. (3.3)

The relation above says that a VPA is equivalent to a second-order correlation power
attack thanks to a change of model g. It moreover implies that the choice of the
coefficients ωi that optimizes the efficiency of the VPA is that corresponding to the
function g such that the correlation coefficient ρ

(
(L− E[L])2, g(Mh)

)
is maximal,

or in other terms, s.t. g(Mh) is the best affine approximation of the random variable
(L− E[L])2. Methods exist to design such a function g.

Example 1. Let us assume that X is a 4-bit variable with uniform distribution. Let

us assume that ω0 = 1/4, ω1 = 1, ω2 = 0, ω3 = −1 and ω4 = −1/4 and that Z has

a uniform distribution. In this case the definition set of Mh is {0, 1, 2, 3, 4} and g
is the function defined such that:

g(0) = 1
4

g(1) = 4

g(2) = 0

g(3) = −4
g(4) = −1

4

.

Since Mh equals by definition HW(Z), we deduce that g(Mh) = g ◦ HW(Z) can be

viewed as a new model M ′
h defined such that:

M ′
h =





1
4 ifHW(Z) = 0

4 ifHW(Z) = 1

0 ifHW(Z) = 2

−4 ifHW(Z) = 3

−1
4 ifHW(Z) = 4

.

Our previous analysis here implies that the VPA distinguisher is affinely equiv-
alent with ρ((L− E[L])2,M ′

h) for the model function defined above.
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3.4 Conclusions

In this chapter we proposed a second-order attack based on variance analysis which is
powerful enough to attack a masked implementation in an FPGA using a reasonable
number of traces. VPA attack can be expressed as a second-order CPA by changing
the leakage model. Both distinguishers have the same soundness if the leakage model
is perfectly known. In the next chapter, we discuss another interesting distinguisher:
the mutual information which is a generic one since it detects any kind of statistical
dependency between the leakage measurements and the secret key.



Chapter 4

Entropy-based Power Analysis

In this chapter, we study the mutual information analysis (MIA) in the context of
both unprotected and protected implementations. Then, we propose a new approach
called the Entropy-based Power Analysis (EPA) using a weighted sum of conditional
entropies as a distinguisher. It is designed to promote partitions of high informative
content and to ease the distinguishability between key candidates. It is carried out
on a masked DES coprocessor which is part of a SoC programmed in an FPGA.
EPA attack is compared with the MIA and VPA attacks.
The results presented in this chapter have been published in collaboration with

Sylvain Guilley and Jean-Luc Danger in the international symposium on
Hardware-Oriented Security and Trust (HOST 2010) [MGDF10].
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4.1 Probability Density Function Estimation

In order to compute the mutual information, one has to estimate the probability
density functions for which several solutions exist. For instance, the probability
density function can be estimated non-parametrically, by using histograms or ker-
nel density estimation, or parametrically by using the Expectation Maximization
(EM) algorithm. In the context of SCA attacks, the authors of the original MIA
attack [GBTP08] used the histogram method for density estimation. In [PR09],
Emmanuel Prouff and Matthieu Rivain emphasize the use of parametric PDF es-
timation tools since they are more relevant to side channel key recovery attacks.
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Table 4.1: Some kernel functions for PDF estimation.

Kernel name Function Θ(t) Optimal bin width h

Uniform 1
2I(t) σ(12

√
π

n )1/5

Triangle (1− |t|)I(t) σ(64
√
π

n )1/5

Epanechnikov 3
4(1− t2)I(t) σ(40

√
π

n )1/5

Triweight 35
32(1− t2)3I(t) σ(25200

√
143π

n )1/5

Gaussian 1√
2π

exp(−1
2 t

2) σ( 4
3n)

1/5

The main disadvantages of using advanced estimation tools are the memory re-
quirements and the higher computation load. Hereafter, we detail these widely used
PDF estimation tools.

4.1.0.1 Histogram Method

A very common method to estimate a PDF is to calculate a histogram. First, we
split the data into fixed size bins. Second, we compute the frequency of each bin
to find the probability. For relatively simple distribution, reasonable choices of the
bin width h can be done using Scott’s rule (h = 3.49 × σ × n−1/3, where σ is the
empirical data standard deviation and n is the number of bins) and Freedman-
Diaconis’ rule [Wan96].

4.1.0.2 Kernel Density Estimation

The probability density function is estimated as:

f(x) =
1

nh

n∑

i=0

Θ

(
x− xi
h

)
,

where the function Θ is the kernel function. Some commonly used kernel functions
are listed in Tab. 4.1 (all refer to [Sil86]), where I is a step function defined as
I(t) = 1 if |t| ≤ 1, 0 otherwise.

4.1.0.3 Parametric Estimation

If we consider the observations xi to be a mixture of Gaussians, the parametric
method models the probability density function as:

f(x) =

n−1∑

i=0

wi · N(x, µi, σi) ,

where the wi, µi and σi are respectively the weight, the mean and the standard
deviation of each component. An efficient algorithm called the Expectation Maxi-
mization algorithm [DLR77] allows one to give a good approximation of a probability
density function in the form of a finite mixture.
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Table 4.2: Conditional entropy estimation.

Conditional entropy Good key Bad key

Histogram method −9.16542± 2× 10−5 −9.16367± 2× 10−5

4.2 Practical MIA Attack

To test the MIA in a real-life context, we performed it against two DES hardware
implementations. The first one is an unprotected DES and the second one is the
same masked DES implementation used to test the VPA attack (see Chapter 3
Sec. 3.2.1).

4.2.1 MIA Attack on Unprotected DES

Before performing the MIA attack, we tried to estimate the conditional entropy of
the first DES S-box when HW(Z) = 0. We use two hypotheses of the key, the first
is right and the second is false. We carried out the conditional entropy estimation
using real power consumption measurements of our circuit. We summarize the result
in Tab. 4.2 and we validated that the estimated conditional entropy is minimum for
the good key, so the MIA attack can be carried out on the unprotected DES. We
have estimated the accuracy of 2 × 10−5 bit as the quadratic error with respect to
the theoretical value log2(σ

√
2πe), where σ is the empirical standard deviation.

Assuming a Hamming weight leakage model1, the MIA attack is described in
the following procedure:

1. Encrypt n plaintexts (xi, i ∈ [1, n]) and collect n observations of power con-
sumption (traces Li).

2. Compute the entropy of the observations H[L].

3. For each S-box, make assumptions about the key k ∈ [0, 63]:

• Sort the traces Li to get five activity partitions setl, l ∈ [0, 4], corre-
sponding to the five possible values HW(Z) = HW(S(xi ⊕ k)), where S
is the DES S-box function.

• Compute the conditional entropy H[L | HW(Z) = l] for each setl.

• Compute the mutual information MIA(k), as the difference between the
observations entropy and the sum of the conditional entropy weighted

1Since the distribution of the leakage in unprotected implementation only depends on HW(Z),

therefore I[L;HW(Z)] = I[L;Z]. One can choose the identity leakage model (i.e. Z) to perform the

MIA attack and obtain the same results. The same argument holds for masking countermeasure

at any order.
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with the probability pl = P[HW(Z) = l]:

MIA(k) = H[L]−
4∑

l=0

pl × H[L | HW(Z) = l] .

4. The correct guess of the key k∗ corresponds to argmaxkMIA(k).

We performed the MIA attack using the histogram estimation method. For
the choice of bins, we follow the rule used in the original MIA attack described
in [GBTP08, BGP+11]: the number of bins is equal to the number of the distinct
leakage model values (i.e. 5 in our case).
The MIA is tested on 50, 000 traces of an unprotected DES implementation.

Figure 4.3 shows the mutual information values according to each subkey predicted
for the first DES S-box. Consequently, the round subkey guessed by the MIA attack
is the key corresponding to the highest mutual information.
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Figure 4.1: MIA results on 50, 000 power consumption traces of an unprotected DES
implementation. The correct key is k = 56.

The eight subkeys used during the first round of our DES implementation have
been guessed by the MIA attack. The number of traces to break the first round
subkeys is given in Tab. 4.3. In the next subsection we try to answer the question:
Is the masked DES sensitive to the MIA attack?

4.2.2 MIA Attack on Masked DES

In software implementations, the masked data Z ⊕M and the mask M are manip-
ulated sequentially. Then, the leakage is a multivariate signal (i.e. L = (L1, L2),
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Table 4.3: Minimum traces to disclose (MTD) the subkey for each S-box of the
unprotected DES module on the first round.

S-box # 1 2 3 4 5 6 7 8

MTD 12,133 10,827 12,974 12,317 11,034 13,578 10,651 11,635

where L1, L2 denote respectively the masked variable and the mask leakage) and
combined attacks can be carried out. Of special interest is the multivariate MIA
(MMIA) introduced recently by Gierlich et al. in [GBPV10] and deeply analysed
in [BGP+11]. It uses I[(L1, L2);HW(Z)] as a distinguisher. However, in a hardware
implementation (our study), Z⊕M andM are used simultaneously. In this case, the
MMIA cannot be applied since the leakage is univariate. In the sequel, we consider
the univariate MIA attack.
Table 4.4 summarizes the theoretical values of the conditional entropy of each

values of HW(Z), when considering 4-bit variables, in the two cases good and bad
key. The entropy, in the case of a bad key, is equal to: 2.5442 bit. Hence a contrast
in mutual information of:

I[L;HW(Z∗)]− I[L;HW(Z)] =
✟
✟✟H[L]− H[L | HW(Z∗)]−

✟
✟✟H[L] + H[L | HW(Z)]

= −1.3922 + 2.5442

= 1.1520bit ,

where Z∗ denotes the sensitive variable using the good key k∗. So, theoretically,
with ideal S-boxes, the univariate MIA attack can succeed on a first-order mask-
ing implementation: it does distinguish the correct key guess from the wrong ones.
However, it clearly appears that the partitions do not contribute equally to disam-
biguate the correct key from the incorrect ones: the smaller the value H[L | HW(Z)]

is, the better the entropy difference is. This noting is the first motivation to devise
an improved version of the MIA.

Additionally, we simulated the computation of the conditional entropy H[L |
HW(Z)] for all key hypotheses. Figure 4.2 describes the result for the 4th DES S-box
using good key equal to 38. We observe that the conditional entropy H[L | HW(Z)]

for some keys is under the theoretic value 2.5442 bit. We explain this result by
the fact that the activity of the S-box itself leaks information and decreases the
entropy. This phenomenon had already been observed in [BCO04] and referred to
as “ghost peaks”, characterized in [GHP04]. It is a second compelling reason to
define an upgraded version of the MIA. So, in practice, it is harder than expected
to discriminate the right key in the context of masked implementations.

We reproduce the MIA attack described in Sec. 4.2.1 on the masked DES im-
plementation; the attack failed even with up to 200, 000 power consumption traces.
This result is in line with that of Standaert et al. in [SVCO+10, §7]. More pre-
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Table 4.4: Theoretical conditional entropy of the masked DES.

Theoretical entropies The correct key Any wrong key

H[L | HW(Z) = 0] 2.0306 bit 2.5442 bit

H[L | HW(Z) = 1] 1.8113 bit 2.5442 bit

H[L | HW(Z) = 2] 1.5000 bit 2.5442 bit

H[L | HW(Z) = 3] 1.0000 bit 2.5442 bit

H[L | HW(Z) = 4] 0.0000 bit 2.5442 bit

H[L | HW(Z)] 1.3992 bit 2.5442 bit

cisely, the univariate MIA attack (MIA with the sum combining function) is strongly
affected by the algorithmic noise addition.

4.3 Evaluation of the EPA Attack

4.3.1 Proposed EPA Attack

Table 4.5: Conditional entropy estimation of the masked DES.

Conditional entropy Good key

HW(Z) = 0 23.2842549755

HW(Z) = 1 23.2460651542

HW(Z) = 2 23.2185655678

HW(Z) = 3 23.189564065

HW(Z) = 4 23.1286079923

Table 4.5 shows that the distribution of power consumption has different condi-
tional entropy. For instance the conditional entropy difference between the PDF for
HW(Z) = 0 and HW(Z) = 4 (see Tab. 4.5) should be enough discriminating, since it
is maximum when using the good key. This leads us to define accordingly the EPA
attack, which is an improved partition distinguisher. The EPA is a combination
of conditional entropies of the power consumption traces computed during the first
DES round, while ciphering random messages. The EPA algorithm is made explicit
below:

1. Encrypt n plaintexts (xi, i ∈ [1, n]) and collect n observations of power con-
sumption (traces Li).

2. For each S-box, make assumptions about the key k ∈ [0, 63]:
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Figure 4.2: Comparison between the reference and the estimated conditional entropy
for each key in S-box #4. The correct key is k = 38.

• Sort the traces Li to get five activity partitions setl, l ∈ [0, 4], corre-
sponding to the five HW(Z) = l possible values.

• Compute the conditional entropy H[L | HW(Z) = l] for each set setl.

• Compute an EPA indicator EPA(k) being a linear combination of the
conditional entropy with weights wl:

EPA(k) =

4∑

l=0

wl × H[L | HW(L) = l] .

3. The correct guess of the key k∗ corresponds to argmaxk EPA(k).

4.3.2 Experimental Results

The EPA is carried out on a masked DES implementation. It is tested on 200, 000

power measurements with different weights (w0, w1, w2, w3, w4) values. The weights
of the EPA indicator producing the best results are (0.25, 1, 0,−1,−0.25), the same
empirical result as for the VPA attack.

Figure 4.3 shows the EPA indicator values according to each key hypothesis for
the first DES S-box. Then, for each S-box, the round subkey guessed by the EPA
attack is the key corresponding to the highest indicator value. The eight DES S-
boxes subkeys used during the first round of our masked DES have been guessed by
the EPA attack.
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Figure 4.3: EPA results on 200, 000 power consumption traces of a masked DES
implementation. The correct key is k = 56.

4.3.3 EPA Vs VPA Vs MIA

In this subsection, we compare the EPA attack to the MIA [GBTP08] and VPA
attacks. Following the recent advances concerning the comparison of univariate
side-channel distinguishers [SGV08], we apply the first-order success rate to assess
the performance of the three attacks. Figure 4.4 shows our experimental results for
those three attacks on the masked DES implementation in FPGA.
We can see that VPA performs well in this scenario. About 5, 000 traces suffice to

achieve a success rate of 50% and starting from about 14, 000 traces the VPA attack
reveals the correct key with success rate of 95%. The EPA attack performs well
also. The success rate stays well above 50% even when using 11, 000 measurements,
but eventually reaches success rate of 95% using 18, 000 traces. The MIA attack
performs much worse. The success rate stays under 10% even when using 25, 000

measurements. We conclude that the distinguisher based on the computation of the
difference between entropy is more efficient than the MIA attack in the context of
attacking a masked implementation. This is expected since the algorithmic noise
level is high. The VPA remains the best attack, since the leakage model is well
known.
This result is in line with that in [PR09, SVCO+10]: CPA-like attacks enable

a better discrimination of the correct key than the MIA attack even if masking is
used to ensure the protection. However, in the context of an unknown model (e.g.
algorithms protected with logic style that do not exhibit a simple Hamming weight
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Figure 4.4: First-order success rate of 3 distinguishers on a masked DES implemen-
tation in FPGA.

leakage model), an information-theoretic attack would be necessary; the EPA would
be more appropriate, since it would outperform the MIA.

4.4 Conclusions

In this chapter we showed the limitations of the mutual information attack when
masking is used to protect the implementation. We presented a new attack based
on entropy analysis, which succeeds in breaking a hardware masked DES implemen-
tation. This attack is quite efficient (all the S-boxes are cracked) and requires a
reasonable number of traces (15K).
In the next chapter, we propose another information-theoretic distinguisher

which compares also favorably to the MIA attack.





Chapter 5

Inter-class Information Analysis

In this chapter, we suggest a new information-theoretic distinguisher, termed Inter-
class Information Analysis (IIA). Conversely to MIA or KSA, it consists in compar-
ing the conditional leakages between themselves, pairwise. First, we theoretically
compare IIA and MIA, including a proof of soundness in the case of arbitrary noise
and a theoretical analysis about the ability to discriminate. Second, we confirm
our results using simulations of a protected PRESENT implementation. Then, we
extend the notion of inter-class to KSA attack and we propose finally a simulation-
based fair framework to evaluate and compare several distinguishers.
Parts of the results presented in this chapter have been published in

collaboration with Sylvain Guilley, Olivier Rioul and Jean-Luc Danger in the
International Conference on Information and Communications Security (ICICS
2012) [MRGD12].
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5.1 Inter-class Distinguishers

In this section we first highlight methods to generally compare two probability distri-
butions and, second, describe strategies in order to compare conditional probability
distributions, which are required in order to decide which key is the most likely one.
Note that, the following statements consider discrete RVs, however, they can be
easily adapted for continuous RVs. The term PMF is used for the Probability Mass
Function of discrete RVs.

5.1.1 On Comparing Conditional Probability Distributions

Definition 1. Let us consider two PMFs P[X] and Q[X] of a discrete RV X, then

the Kullback-Leibler divergence is defined as:

DKL[P ‖ Q] =
∑

x

P[X = x] · log P[X = x]

Q[X = x]
.

Other examples for divergences D are total variation D(P,Q) =
∑ | P − Q |

for discrete probabilities, Hellinger distance D(P,Q) =
∫
| P − Q |2 for densities,

Renyi α-divergence, Wasserstein distance, Kolmogorov-Smirnov distance (L∞-norm
between cumulative distribution functions), etc.

In the area of side channel analysis one is not only interested in the PMF of one
RV but the conditional PMF between two RVs, e.g. the probability of measuring
a specific current consumption while processing a certain value. Let us therefore
consider the two RVs L and Z representing respectively the leakage measurements
and the sensitive variable.

5.1.2 Conditional-to-Unconditional

As introduced in [GBTP08], one option for a side channel distinguisher D0 is to com-
pare the average Kullback-Leibler distance DKL between the conditional probability
P[L | Z = z] for each value z and its average P[L]:

D0 = E
(
DKL[P[L] ‖ P[L | Z = z]]

)
=

∑

z

P[Z = z]DKL[P[L] ‖ P[L | Z = z]] .

Accordingly, this approach compares the conditional probabilities P[L | Z = z] with
the unconditional probability P[L] (see the left of Fig. 5.1).

Remark 1. It is straightforward to prove that the distinguisher D0 = E
(
DKL[P[L] ‖

P[L | Z]] results in MIA, more precisely:

I[L;Z] = E
(
DKL[P[L] ‖ P[L | Z]]

)
.



5.1. Inter-class Distinguishers 49

Mutual Analysis Inter-class Analysis

L | Z = 0

L | Z = 4L | Z = 1

L | Z = 2 L | Z = 3

L

L | Z = 0

L | Z = 4L | Z = 1

L | Z = 2 L | Z = 3

Figure 5.1: Reflecting different strategies to compare classes of conditional proba-
bility distributions (the distance between A and B is depicted with an arrow).

5.1.3 Conditional-to-Conditional

Instead of taking the average E(P[L | Z = z]) = P[L] into account, another possi-
bility is to directly consider the distance between two classes z, z′:

DKL[P[L | Z = z] ‖ P[L | Z = z′]] .

Accordingly, the distinguisher DI would be defined as the average distance between
all possible tuples of classes (z, z′) with z 6= z′:

DI =
1

2
E
(
DKL[P[L | Z = z] ‖ P[L | Z = z′]]

)

=
1

2

∑

z,z′

P[Z = z]P[Z = z′]DKL[P[L | Z = z] ‖ P[L | Z = z′]] .

Note that, due to symmetry each term for z 6= z′ in the sum is counted twice, hence
we add the factor 1/2. Thus, in contrast to MIA, this strategy only determines the
average distance between two conditional probabilities, without the comparison to
the unconditional distribution of P[L] which is not a key-hypothesis dependant (see
the right of Fig. 5.1).

Remark 2. Let X be a RV, then the divergence:

DKL[P[X = x] ‖ P[X = x′]] +DKL[P[X = x′] ‖ P[X = x]] ,

for different classes x, x′ is named as inter-class divergence (see for instance [SP00]).

In our case, we keep this inter-class notion and define the inter-class information
distinguisher as:

Definition 2. Let L,Z be (discrete) random variables with PMF P[L = l, Z = z]

and marginal PMFs P[L = l],P[Z = z], then the inter-class information analysis is
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defined as:

II[L;Z] =
1

2
E
(
DKL[P[L | Z = z] ‖ P[L | Z = z′]]

)
(5.1)

=
1

2

∑

z 6=z′

P[Z = z]P[Z = z′]DKL[P[L | Z = z] ‖ P[L | Z = z′]]

=
∑

z<z′

P[Z = z]P[Z = z′]DKL[P[L | Z = z] ‖ P[L | Z = z′]] ,

where the expectation is taken on the probability distribution of Z.

5.1.4 More than One Definition

In the following we provide the reader with equivalent definitions of II[L;Z] since
they are required later on. It is well known that mutual information is symmetric
in the sense that I[L;Z] = I[Z;L]. Yet, Kullback divergence is not as DKL[L ‖
Z] 6= DKL[Z ‖ L] in general. For this reason Kullback (and Hajek) introduced a
symmetric divergence:

Definition 3. Let P,Q be two probability distributions, then the symmetric Kullback-

Leibler divergence is defined as:

δ(P ‖ Q) =
DKL[P ‖ Q] +DKL[Q ‖ P ]

2
=

1

2

∑
(P −Q) log

P

Q
.

So, the IIA metric can also be expressed as:

Definition 4. Let L,Z be RVs with probability distribution P[L = l],P[Z = z], and

P[L = l, Z = z] then the inter-class information is defined as:

II[L;Z] = E
(
δ(P[L | Z] ‖ P[L])

)

=
E
(
DKL[P[L | Z] ‖ P[L]]

)
+ E

(
DKL[P[L] ‖ P[L | Z]]

)

2
(5.2)

=

∑
l,z(P[L = l, Z = z]− P[L = l]P[Z = z]) log P[L=l,Z=z]

P[L=l]P[Z=z]

2
, (5.3)

where the expectation is taken over Z.

Moreover, we give an entropic definition of II[L;Z]. Let the conditional cross-
entropy H′[L;Z] be defined as:

H′[L;Z] = −
∑

l

∑

z

P[L = l]P[Z = z] logP[L = l | Z = z] . (5.4)

Then, II[L;Z] can also be expressed as:

Definition 5.

II[L;Z] =
H′[L;Z]− H[L | Z]

2
. (5.5)
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Theorem 1. II[L;Z] in Definitions 2, 4, and 5 coincide.

Proof. Equivalence of Definition 2 and 4:

We start from Eqn. (5.2):

=
E
(
DKL[P[L = l | Z] ‖ P[L = l]]

)
+ E

(
DKL[P[L = l] ‖ P[L = l | Z]]

)

2

=
1

2

∑

l

∑

z

P[Z = z]P[L = l | Z = z] log
P[L = l | Z = z]

P[L = l]

+
1

2

∑

l

∑

z′

P[Z = z′]P[L = l] log
P[L = l]

P[L = l | Z = z′]

=
1

2

∑

l

∑

z

∑

z′

P[Z = z]P[Z = z′]P[L = l | Z = z] log
P[L = l | Z = z]

P[L = l]

+
1

2

∑

l

∑

z

∑

z′

P[Z = z′]P[Z = z]P[L = l | Z = z] log
P[L = l]

P[L = l | Z = z′]

=
1

2

∑

z

∑

z′

P[Z = z]P[Z = z′]
∑

l

P[L = l | Z = z] log
P[L = l | Z = z]

P[L = l | Z = z′]

=
1

2

∑

z 6=z′

P[Z = z]P[Z = z′]DKL[P[L | Z = z] ‖ P[L | Z = z′]] .

Equivalence of Definition 4 and 5:

We start from Eqn. (5.3). Since we can remove P[L = l] inside the logarithm as∑
z P[L = l, Z = z]− P[L = l]P[Z = z] = 0 and furthermore P[L = l, Z = z]/P[Z =

z] = P[L = l | Z = z], we reformulate:

1

2

∑

l,z

(P[L = l, Z = z]− P[L = l]P[Z = z]) log
P[L = l, Z = z]

P[L = l]P[Z = z]

=
1

2

∑

l,z

(P[L = l, Z = z]− P[L = l]P[Z = z]) logP[L = l | Z = z]

=
H′[L;Z]− H[L | Z]

2
.

The following theorem highlights properties for II[L;Z] that are well-known for
I[L;Z] and a relation between both distinguishers.

Theorem 2. Let L,Z be two RVs, then:

1. (Symmetry): II[L;Z] = II[Z;L].

2. (Dependence): II[L;Z] = 0 ⇐⇒ L, Z are independent.

3. (Relation to Mutual Information): 2II[L;Z] ≥ I[L;Z].
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Proof. Symmetry: Since Eqn. (5.3) is symmetric in l, z, one can easily see that
symmetry holds for II[L;Z]. Alternatively, symmetry is obvious from:

2II[L;Z] = I[L;Z] +
∑

l

∑

z

P[L = l]P[Z = z] log
P[L = l]P[Z = z]

p(L = l, Z = z)
.

Dependence: Dependence is a consequence of a well-known property of the
symmetric Kullback-Leibler divergence δ [CT06]:

δ(P ‖ Q) = 0 ⇐⇒ P and Q are independent RVs .

Relation to Mutual Information: One can see from

2II[L;Z] = I[L;Z] +
∑

l

∑

z

P[L = l]P[Z = z] log
P[L = l]P[Z = z]

p(L = l, Z = z)
,

that 2II[L;Z] ≥ I[L;Z].

5.1.5 Non-Equivalence of MIA and IIA

Even though I[L;Z] and II[L;Z] have the same properties (cf. Theorem 2), we
show in the following that they are not equivalent. We therefore use the following
definition of equivalence.

Definition 6. Two distances D(P,Q) and D′(P,Q) are said to be equivalent if there

exist finite constants α, β ≥ 0 such that:

D(P,Q) ≤ αD′(P,Q) and D′(P,Q) ≤ βD(P,Q) .

In particular, whenever one of two distances becomes small, so does the other
and both distances define the same “topology”. For the sake of illustration, we
consider the following example:

Example 2. Let us consider linear correlation ρ(L;Z) = Cov[L;Z]
σLσZ

vs. mutual infor-

mation I[L;Z]. Since it is possible that L and Z are linearly uncorrelated while being

dependent (take e.g. Z = L2 where L ∼ N (0, 1)), it follows that an inequality of the

form I[L;Z] ≤ αρ(L;Z) cannot hold and therefore, that correlation and mutual in-

formation are not equivalent. The same conclusion goes unchanged for higher-order

or nonlinear correlation, i.e. L ∼ N (0, 1) and Z = ±L. Even L,Z being dependent

they are (non-linearly) uncorrelated.

In case of comparing inter-class and mutual information the inequality I[L;Z] ≤
2II[L;Z] (cf. Theorem 2) is satisfied. However, we formulate the following theorem
in case of Gaussian noise.

Theorem 3. Let (L,Z) be jointly Gaussian. Then, I[L;Z] and II[L;Z] are not

equivalent.

Proof. Let λ = 1
1−ρ2 . Since (L,Z) are jointly Gaussian, 2I[L;Z] = log λ and

2II[L;Z] = (λ − 1) log e. So as ρ → 1 the inequality II[L;Z] ≤ βI[L;Z] cannot
hold for a constant β ≥ 0.
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5.2 Side Channel Analysis Scenario

Let the noise N be modeled by an arbitrary RV that is not necessarily Gaussian.
Note that, the measured leakage L = Z(k∗)+N = f(X, k∗)+N is continuous, while
the sensitive variable Z is discrete. To be general, we should write L = ϕ(Z(k∗))+N ,
however, our theoretical outcomes are independent of the leakage model function
ϕ. So, we assume ϕ = Id, while we choose ϕ = Hamming Weight in our simulation
in Sec. 5.4.3. The conditional PMF P[L = l | Z = z], i.e. the distribution of the
measured current L knowing the model Z, is given by:

P[L = l | Z = z] =
∑

x ; f(x,k)=z P[X = x | Z(k) = z] · P[L = l | Z = z,X = x] (Bayes Rule)

=
∑

x ; f(x,k)=z
P[X=x,Z(k)=z]

P[Z(k)=z] · P[X = x | Z = z,X = x] (X the plaintext is known)

=
∑

x ; f(x,k)=z
P[X=x]

P[Z(k)=z] · P[L = l | X = x] (referring to N)

=
∑

x ; f(x,k)=z
P[X=x]

P[Z(k)=z] · P[l − f(x, k∗) | N ] .

Next, we rearrange the last equation as the sum over all possible Z(k∗) = z∗:

P[L = l | Z = z] =
∑

z∗
∑

x ;
f(x,k)=z

f(x,k∗)=z∗

P[X=x]
P[Z(k)=z] · P[(l − z∗) | N ]

=
∑

z∗
P[Z(k)=z,Z(k∗)=z∗]

P[Z(k)=z] · P[(l − z∗) | N ] (Bayes Rule)

=
∑

z∗ P[Z(k
∗) = z∗ | Z(k) = z] · P[(l − z∗) | N ] .

In short, we have:

P[L = l | Z = z] =
∑

z∗

P[z∗ | z] · P[(l − z∗) | N ] . (5.6)

In particular, when one selects the correct key, i.e. k = k∗, one has the Kronecker
symbol: P[Z(k∗) = z∗ | Z(k) = z] = δz,z∗ , so that the density mixture simplifies to:

P[L = l | Z = z] = P[l − z∗ | N ] . (5.7)

Concluding, we formulate the following analysis scenario:

• Wrong key hypothesis: If k 6= k∗ then the conditional PDF of (L | Z = z)
for all z is a PDF mixture whose coefficients depend on z, and whose modes z∗

take values on a finite set (including z), cf. Eqn. (5.6). We shall also assume
that the linear mixture is non trivial for any k 6= k∗, otherwise we would have
P[z∗ | z] = δz,z∗ , Z(k) = Z(k∗) almost surely and it would be impossible to
distinguish k from k∗ and therefore precludes soundness.

• Correct key hypothesis: In case k = k∗, the conditional PDF of (L | Z = z)
is simply identically distributed (i.d.) as N + z, cf. Eqn. (5.7).
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5.3 Soundness Proofs for MIA and IIA

The first step in order to prove soundness is to compute MIA and IIA from our
model defined in the previous section. Second, we prove soundness for arbitrary
noise. Note that, since L is continuous and Z is discrete, we compute conditional
entropies or cross-entropies as discrete means in z of integrals in l.

5.3.1 Soundness Proof for Mutual Information Analysis

We recall that I[L;Z] = H[L] − H[L | Z] = H[L] −∑
z P[Z = z]H[L | Z = z]. So,

in case of k 6= k∗, the distribution of (L | Z = z) follows a mixture of densities
of P[(l − z∗) | N ] (see Eqn. (5.6)), whereas each density has the same entropy
as N . Furthermore, when k = k∗, this mixture boils down to the noise density
P[(l− z∗) | N ], so that I[L;Z∗] = H[L]−H[N ]. This allows us to give a simpler and
more general proof of soundness for MIA than in [PR09, MMPS09], since we do not
necessarily require Gaussian noise.

Soundness proof 1. Let k 6= k∗. Since L | Z = z is a non trivial linear mixture

of densities P[(l− z∗) | N ] of the same entropy as H[N ] as well as the property that

H(L) is concave [CT06, Theorem 2.7.3], we have:

H[N ] < H[L | Z = z] (5.8)

for all z. Taking the expectation over Z, results in:

H[N ] < H[L | Z],

which already yields the soundness:

I[L;Z∗] > I[L;Z] .

5.3.2 Soundness Proof for Inter-class Information Analysis

As in Definition 5, the inter-class information II[L;Z] can be represented as:

II[L;Z] =
H′[L;Z]− H[L | Z]

2
,

where H[L | Z] is as above and:

H′[L;Z] =
∑

z

P[Z = z]

∫

l
P[L = l] log

1

P[L = l | Z = z]
dl, (5.9)

where P[L = l | Z = z] =
∑

z∗ P[z
∗ | z]P[(l − z∗) | N ] and P[L = l] =

∑
z P[Z =

z]P[L = l | Z = z]. So, inserting P[L = l | Z = z] and P[L = l] in Eqn. (5.9) gives:

H′[L;Z] =
∑

z,z′

P[Z = z]P[Z = z′]
∑

z′∗

P[z′∗ | z′]
∫

l
P[(l−z′∗) | N ] log

1∑
z∗ P[z

∗ | z]P[(l − z∗) | N ]
dl .
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When k = k∗, this boils down to:

H′[L;Z∗] =
∑

z∗,z′∗

P[z∗]P[z′∗]
∫

l
P[(l − z′∗) | N ] log

1

P[(l − z∗) | N ]
dl .

Again, we give a general proof of soundness without any restriction on the distribu-
tion of the noise N .

Soundness proof 2. Let k 6= k∗. By strict concavity of the logarithm (or convexity

of x 7→ log(1/x)):

H′[L;Z] =
∑

z,z′

P[Z = z]P[Z = z′]
∑

z′∗

P[z′∗ | z′]
∫

l
P[(l − z′∗) | N ] log

1∑
z∗ P[z

∗ | z]P[(l − z∗) | N ]
dl

<
∑

z,z′

P[Z = z]P[Z = z′]
∑

z∗,z′∗

P[z′∗ | z′]P[z∗ | z]
∫

l
P[(l − z′∗) | N ] log

1

P[(l − z∗) | N ]
dl

=
∑

z∗,z′∗

P[z′∗]P[z∗]
∫

l
P[(l − z′∗) | N ] log

1

P[(l − z∗) | N ]
dl = H′[L;Z∗] .

As for MIA, cf. Eqn. (5.8), H[L | Z] > H[N ] = H[L | Z∗], we end up with:

II[L;Z] =
H′[L;Z]− H[L | Z]

2
<

H′[L;Z]− H[L | Z∗]
2

<
H′[L;Z∗]− H[L | Z∗]

2
= II[L;Z∗] ,

which is the soundness statement for IIA.

5.4 Mutual Vs Inter-class Information

Previously, we have shown that both, mutual and inter-class information, are sound
under the stated scenario, more precisely, I[L;Z] < I[L;Z∗] and II[L;Z] < II[L;Z∗].
Furthermore, we have shown that in case of Gaussian noise I[L;Z] and II[L;Z] are
not equivalent (see Theorem 3). Concluding, we will theoretically show that in case
of Gaussian noise II[L;Z] is more discriminating than I[L;Z], which will also be
underlined with practical results.

5.4.1 Inter-class Information for a Gaussian Mixture

In Subsect. 5.3.2 we derived that if k∗ = k:

H′[L;Z∗] =
∑

z∗,z′∗

P[z∗]P[z′∗]
∫

l
P[(l − z′∗) | N ] log

1

P[(l − z∗) | N ]
dl

︸ ︷︷ ︸
(∗)

.

Substituting ξ = l − z′∗ in (∗) and assuming N ∼ N (0, σ2), results in:
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∫

l
P[ξ | N ] log

1

P[ξ + z′∗ − z∗ | N ]
dξ =

1

2
log(2πσ2) +

log(e)

2σ2
E
((
N + z∗ − z′∗

)2)

=
1

2
log(2πσ2) +

log(e)

2σ2
(
σ2 + (z∗ − z′∗)2

)

=
1

2
log(2πeσ2) +

log(e)

2σ2
(
z∗ − z′∗

)2

= H[N ] +
log(e)

2σ2
(
z∗ − z′∗

)2
.

So, by letting Z ′∗ be independent and identically distributed (i.i.d.) as Z∗, we
obtain for H′[L;Z∗]:

∑

z∗,z′∗

P[z∗]P[z′∗](z∗ − z′∗)2 = E
(
(Z∗ − Z ′∗)2

)
= 2E

(
(Z∗ − E[Z∗])2

)
= 2σ2Z∗ .

Concluding, as H[L | Z∗] = H[N ], it follows that:

II[L;Z∗] =
H′[L;Z∗]− H[N ]

2
=

log e

2
· σ

2
Z∗

σ2
. (5.10)

5.4.2 Why IIA is more Discriminating than MIA?

In general it is not true that I[L;Z∗] < II[L;Z∗]. However, we show in the following
that this holds in case of Gaussian noise. Since differential entropy (continuous en-
tropy) is maximal for normal variables and log x ≤ (log e)(x−1), we use Eqn. (5.10)
to estimate:

I[L;Z∗] = H[Z∗ +N ]− H[N ] ≤ 1

2
log

σ2Z∗ + σ2

σ2
≤ log e

2

σ2Z∗

σ2
= II[L;Z∗] .

Note that, the difference II[L;Z∗]− I[L;Z∗] increases with
σ2
Z∗

σ2 (high SNR).
Let us now investigate the ability to distinguish between the correct key k∗ and

the incorrect keys k 6= k∗ for MIA as well as for IIA. Of course, the practical outcome
will depend on the numerous experimental conditions (e.g. number of traces, noise
level, etc.). Our aim is to gain an insight that will be confirmed by simulations in
the next section.

Let further ζ denote the nearest-rival distinguishability:

ζMIA(k) = I[L;Z(k∗)]−max
k 6=k∗

I[L;Z(k)] (5.11)

ζIIA(k) = II[L;Z(k∗)]−max
k 6=k∗

II[L;Z(k)]. (5.12)

Assume that Z depends in a non-linear way on the key k, for instance when Z =

S(X⊕k) where S is a substitution box, then Z∗ is nearly independent on Z for k 6=
k∗. Therefore, the Gaussian mixture coefficients P[Z∗|Z] are essentially independent



5.4. Mutual Vs Inter-class Information 57

of the particular value of Z(k) = z. So, we can deduce that I[Z;Z∗]≪ I[L;Z∗] and
also II[Z;Z∗]≪ II[L;Z∗].
Also, due to the Markov chain condition on Z → Z∗ → L, it follows I[L;Z] ≤

I[Z;Z∗] ≪ I[L;Z∗] and II[L;Z] ≤ II[Z;Z∗] ≪ II[L;Z∗], so I[Z;Z∗] and II[Z;Z∗] are
negligible compared to I[L;Z] ≤ II[L;Z]. Thus we have:

ζIIA(k) & ζMIA(k) ,

especially for a high SNR.

5.4.3 Simulation Results

In our practical attack scenario, we considered a protected PRESENT [BKL+07]
implementation, more precisely, we considered the leakage:

L = HW(S−1(X ⊕ k∗)⊕M) + HW(M) +N ,

with S−1 being the inverse S-box operation in PRESENT, and X and M randomly
chosen 4-bit values. Moreover, we used N ∼ N (0, σ2) with σ = {1, 2} for our
simulations. Although the assumption of additive white Gaussian noise may not be
always realistic, the investigation is justified by the numerous works carried out with
this hypothesis in the community. Note that, we used Z(k) = HW(S−1(X ⊕ k)) as
the sensitive variable for the attack. For both distinguishers, the maximum value
reflects the key prediction, more precisely:

k∗ = argmax
k

I[L;Z] or k∗ = argmax
k

II[L;Z] .

In order to compare the performance of MIA and IIA as side channel distinguish-
ers, we used the first-order success rate as proposed in [SMY09], which we computed
over a set of 300 independent experiments, while the secret key was chosen randomly
for each experiment. Note that, in order to guarantee a fair comparison, we choose
the same data set for MIA and IIA. Furthermore, we used the same histogram-based
probability estimation method, using the same number of bins for both attacks.
Even though, it is shown in [VCS09] that using the histogram for PDF estimation
as suggested in [GBTP08] might not be optimal, our goal is to show and prove the
difference in comparing conditional probability distribution and not to find the best
method to estimate conditional probabilities.

Figure 5.2 shows the first order success rate for σ = 1, 2. One can see that
the success rate for IIA is above that of MIA in both settings, which confirms our
theoretical results made so far.

In addition to this, the ability to distinguish may also depend on the variance
of I[L;Z∗] and II[L;Z∗] that is estimated from the drawn samples. So, let us recall
the following statistical properties of a parameter θ = I[L;Z∗] or θ = II[L;Z∗] and
its estimator θ̂:

Stdev(θ̂) =

√
Var(θ̂) =

√
E[(θ̂ − E(θ̂))2] ,

Bias(θ, θ̂) = θ − E(θ̂) ,

MSE(θ, θ̂) = Var(θ̂) + (Bias(θ, θ̂))2 .
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Figure 5.2: First-order success rate for MIA and IIA distinguishers when attacking
one masked S-box of PRESENT.

We compute these statistical properties and we show the results for σ = 2 in
Fig. 5.3. The following observations can be emphasized:

• Obviously, the averaged IIA is grater that the averaged MIA, respectively
denoted by E(IIA) and E(MIA). This is in line with our previous theoretical
study (i.e. II[L;Z∗] ≥ I[L;Z∗]).

• The standard deviations, the bias and MSE are of the same degree for both
mutual and inter-class information.

Through the theoretical and practical results, we conclude that IIA is more
discriminating than MIA.
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Figure 5.3: Statistical Properties of I[L;Z∗] and II[L;Z∗] (cf. Sec. 5.4.2) for σ = 2.

5.5 Inter-class Approach and the Kolmogorov-Smirnov

Test

In this section, we apply the inter-class approach to the Kolmogorov-Smirnov test,
introduced in Chapter 2 Sec. 2.3.3, which yield the Inter-class Kolmogorov-Smirnov
Analysis (IKSA). In contrast to KSA, IKSA consists in comparing the conditional
leakages between themselves, pairwise. The inter-class KSA distinguisher can be
written as:

DIKSA =
1

2
· EZ,Z′

(
sup
l∈L

| FL|Z(l)− FL|Z′(l) |
)
, (5.13)

where FX is the cumulative distribution function of a RVX and Z ′ is an independent
copy of Z.
In order to compare the KSA and IKSA distinguishers, we propose a simulation-

based “fair” framework which takes into account the different errors of the estimation
tools used in the simulation process.

5.5.1 Existing Frameworks

In this section, we analyze previous comparison frameworks, highlight possible lim-
itations and motivate for a new setting. The first evaluation framework was pro-
posed by Standaert et al. in [SMY09]. For the comparison of distinguishers, the
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authors suggest metrics like oth-order success rate (with o ∈ J1, 2nK) or guessing
entropy. In another framework [WOM11, WO11], the distance to the nearest rival
is employed; it is the same definition as previously termed “Correlation Contrast”
in [BP10]. Many other metrics can be invented, such as the signal (distinguisher
expected value for the correct key k⋆) to noise (distinguisher variance over incorrect
keys k ∈ F

n
2\{k⋆}) ratio [GHP04] or the norm-2 of the characterized coefficients in

a stochastic profiling [HSS12].
Recent analyses [WO11] suggest pitfalls in the evaluation methodologies for dis-

tinguishers. Errors can arise from many sources:

• Estimation bias: The estimator does not converge to the correct value. For
instance, the MIA with few bins for the PDF estimation can have a square
bias significantly larger than its variance.

• Estimation algorithm: It can approximate the data. Whatever the kernels
used in PDF constructions [PR09], the binning of the observed side channel
reduces its accuracy.

• Success rate error: It is a random variable that has its own variance.

• Sampling errors: The random variables are not drawn a sufficient number
of times and thus do not obey to their law. As a rule of thumb, estimations
are incorrect if a discrete RV has been measured a fewer number of times than
the size of its set of possible values.

In the sequel, we intend to compare KSA [WOM11] and IKSA on a fair basis.

5.5.2 Increasing the Fairness of the Estimations

We try here to eliminate or at least bound the errors listed in the previous subsection.

• The KS distance is shown to be unbiased by the Glivenko-Cantelli theo-
rem [Wel77], (and furthermore there is a uniform convergence). This is never
true for entropy estimators (for instance, all the estimation methods presented
in [PR09] are biased).

• We use an estimation algorithm that keeps the data unchanged (see Eqn. (5.13)).
Our estimation for KSA is the same as that of Whitnall, Oswald and Mather [WOM11].

• We quantify the success rate error. An upper bound of the variance of the
success rate error is shown below to behave as 1/

√
Q, where Q is the number

of experiments.

• We consider attacks with a noise large enough for the success rate to be well
below 100% for a number of queries smaller than the size of its definition set.1

1For instance, it can be seen in Fig. 5.6 that for the unprotected (resp. Boolean masked) AES,

the number of traces to recover the key successfully with probability > 80% is about 2, 000 (resp.

70, 000), which is significantly greater than the number of possible plaintexts (i.e. 2n = 256) for

σ > 8.
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5.5.3 Bounding the Success Rate

Let Si denote i.i.d. Bernoulli variables that take binary values in {0, 1} with proba-
bilities p and 1−p, where p is the success probability. The success rate is defined as
SR = 1

Q

∑Q
i=1 Si and has expectation E[SR] = p, i.e. SR is an unbiased estimator

of the success probability. According to the strong law of large numbers the success
rate converges to p almost surely: SR

a.s.−→ p. In addition, E[SR] = p, i.e. SR
is an unbiased estimator of the success rate. Now, the standard deviation of SR is
easily computed:

σ(SR) =
√

1
Q2 ·Q · σ2(Sj) =

√
p·(1−p)

Q . (5.14)

Thus, the estimation error on the success rate is maximized when p is close to 1/2,
and is minimized when p is almost equal to 0 or 1.
In practice, one wishes to compare the success rates of two distinguishers by

examining the values of intermediate p (i.e. p ≈ 1/2). Note that there is a uniform
bound σ(SR) 6 1

2
√
Q
, but the error bars can be a function of p and Q. The criterion

for analyzing experiments will be that errors bars never overlap. Otherwise (see
Fig. 5.4 for Q = 10), more experiments must be done, so as to reach a situation
such as Fig. 5.4 for Q = 200. The exact number of experiments depends on the
distinguishers to be relatively characterized. The closer they are in success rate, the
more experiments are required.

5.5.4 Simulation Results

In this section, we perform several attack experiments to compare KSA and IKSA.
Our methodology allows to observe how the different attacks behave against unpro-
tected reference and a masking scheme, and to compare their resistance for different
noise’s standard deviations.

In what follows, we consider the same simulation setting described in Sec. 5.4.3.
For comparison purposes, we compute the same metric for other univariate distin-
guishers: MIA, DPA, CPA, VPA and 2O-CPA. Figure 5.6 summarizes the number of
leakage measurements required to observe a success rate of 90% in retrieving k⋆ for
those SCA attacks. This figure is the compilation of success rates curves obtained
for different values of the noise standard deviation (see examples in Fig. 5.5).

The results presented in Fig. 5.6 show the significant gain in the number of
measurements needed induced when using IKSA compared to KSA attack. Our new
distinguisher compares favorably to KSA: the IKSA attack outperforms the KSA
attack when targeting the unprotected implementation or even when the Boolean
masking scheme is used for the protection. As expected, CPA performs well in both
scenarios since the dependency between the leakage and the model is linear. But,
we like to stress that we focus only on information-theoretic distinguishers which
are generic.

In [MOS11], a notion of asymptotic equivalence (noted “≡”) for side channel
distinguishers is introduced: two distinguishers are said equivalent if the number of
traces to overcome a given success rate (say 90%) decreases when the noise variance
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Figure 5.4: Examples of success rates errors (Eqn. (5.14)) for various numbers of
experiments.
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Figure 5.5: Success rate of both IKSA and KSA distinguishers when attacking one
S-box of an unprotected AES (left) and of a Boolean masking scheme (right).

increases. For example, the likelihood and the Pearson correlation are equivalent in
this sense.

A look at N90% curves in Fig. 5.6 shows that other univariate distinguishers
exhibit a similar equivalence law:
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Figure 5.6: Evaluation of N90%, the number of messages to achieve a success rate
greater than 90%, according to the noise standard deviation when attacking unpro-
tected (left) and Boolean masking (right) AES implementation.

• DPA ≡ CPA on an unprotected implementation (left);

• 2O-CPA ≡ VPA on a first-order masked implementation (right);

• KSA ≡ MIA on both implementations (already proved in [WOM11]).

However, IKSA and KSA are not equivalent. The difference between IKSA and
KSA ≡ MIA is materialized in Fig. 5.6 as a circle in cyan color. To the best
of our knowledge, it is the first time that two distinguishers that do not become
equivalent in the sense of [MOS11] are put forward. Incidentally, we note that this
conclusion could not have been derived mathematically under the usual Gaussian
approximation, because under this approximation equivalence holds as σ → +∞.

5.6 Conclusions

In this chapter, we introduced the new inter-class concept to distinguish between
various partitionings. We applied this concept to the mutual information (IIA)
and the Kolmogorov-Smirnov test (IKSA). Additionally, we made a first theoretical
analysis why IIA may be more discriminating than MIA, which we also confirmed
by simulations. We also proposed a simulation-based fair framework to compare the
two distinguishers KSA and IKSA. Our framework takes in account the different
sources of errors estimations. We used this framework to compare KSA to IKSA
using the success rate metric. Security metrics are clearly in favor of inter-class
distinguishers even when the implementation is unprotected or protected using a
first-order Boolean masking countermeasure (with a linear leakage model).
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Chapter 6

Introduction to Higher-Order

Masking Countermeasures

Masking [CJRR99, GP99] is a countermeasure against side channel attacks, that is
suitable for both hardware and software cryptographic implementations. It consists
in changing the variable representation into randomized shares [CJRR99], and can
thus be qualified as an algorithmic countermeasure. Notably, masking does not
rely on specific hardware properties: as opposed to dual-rail protection [MOP06,
Chp. 7] that demands some physical indiscernibility. We present in this chapter
a brief overview of masking theory. Then, we introduce the notion of HO-CPA
immunity as a new SCA metric allowing us to assess both the resistance against
higher-order CPA attacks and the amount of leakage. Finally, we overview some
widely used first-order masking schemes.
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6.1 State-of-the-Art: Higher-Order Masking

As stated in Chapter 2 Sec. 2.5.4, a dth-order masking scheme consists in splitting
a sensitive variable Z ∈ F

n
2 (that can be deduced from either the plaintext or the

ciphertext through few subkeys hypotheses) into d + 1 random shares, noted ~S =

(Si)i∈J0,dK, in such a way that the relation S0 ⊥ · · · ⊥ Sd = Z is satisfied for a group
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operation ⊥ (e.g. the XOR operation in Boolean masking). We recall hereafter the
definition of the masking soundness.

Definition 7. (Masking dth-Order Soundness): The masking is sound at dth-

order if:

• Z can be deterministically reconstructed knowing the d+ 1 shares, while

• no information about Z can be extracted from strictly less than d+ 1 shares.

In order to study a masking scheme resistance in a SCA context, one usually
associates each share with a noisy observation of it, modeled by a noisy function
ℓi : X 7→ ϕi(X) + Ni where Ni is an independent and Gaussian noise and ϕi

is a deterministic but unknown function sometimes approximated by the Hamming
weight. We denote by Li the RV ℓi(Si) and summarize by ~L the tuple of (Li)i∈J0,dK

1.
Depending on the contexts (e.g. software or hardware implementation), the SCA

attacker of a masking scheme gets either direct observations of the (d+ 1)-tuple ~L
(in the software case) or observations of a RV in the form Cdevice(~L) (in the hardware
case), where Cdevice : Rd+1 → R

a is an unknown function determined by the hard-
ware architecture (a ∈ N

∗). After collecting the side channel leakage, the attacker
can apply a pre-processing of his choice before performing any statistical analysis.
It is denoted by Cattacker and defined on sets Ra → R

b, where the positive integer b is
chosen according to the subsequent statistical test (e.g. b = 1 for univariate analyses
such as those based on a correlation coefficient, or b = a for multivariate analyses
such as those based on mutual information [GBPV10]). Eventually, the exploited
leakage is the RV Ctotal(~L), which is equal to Cattacker(Cdevice(~L)). In the sequel, we
focus on univariate combinations, i.e. b = 1, that are more efficient to estimate.
Thus, the function Ctotal

.
= Cattacker ◦ Cdevice can be developed as a polynomial in

R[L0, · · · , Ld] = R[~L], noted Ctotal(~L) =
∑

~α=(α0,··· ,αd)
a~α~L

~α, where ~α ∈ N
d+1, ~L~α

denotes the monomial term
∏d

i=0 L
αi
i and a~α are real coefficients. We recall that the

degree of a multivariate polynomial is the maximum over the sum of the exponents
of the variables in any monomial term. The degree of Ctotal(~L) is denoted by δ and
we denote by ~̂α one of the vectors that satisfy a~α 6= 0 and ||~α||1 =

∑d
i=0 αi = δ.

6.1.1 Notation and Basics of Statistics

We introduce some notation which will be useful in the sequel. We denote by µh and

σ2h the mean and the variance of the conditional RV
(
Ctotal(~L) | HW(Z) = h

)
. We

call µtot =
∑

h P[HW(Z) = h] · µh the mean of Ctotal(~L). The total variance σ2tot of
Ctotal(~L) decomposes into the sum of inter- and intra-class variance, denoted by σ2inter

and σ2intra respectively. Those quantities are defined using the law of total variance
as: σ2inter

.
=

∑
h P[HW(Z) = h] · (µh − µtot)

2 and σ2intra
.
=

∑
h P[HW(Z) = h] · σ2h.

1This definition forbids the modelling of glitches (as those put forward in [MS06]), that are a

function of simultaneously at least two different shares Si, Sj . But it complies with our strategy of

allocating one dedicated hardware resource for each share.
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In the presence of countermeasures, the central moment µi(Ctotal(~L) | HW(Z) =

h)
.
= E[

(
Ctotal(~L)− µtot

)i
| HW(Z) = h] of order i can be independent of h. For

instance, we have seen in the previous part of this thesis that when the first-order

masking is applied, the RVs
(
Ctotal(~L) | HW(Z) = h

)
have the same mean. So in

practice, the attacker will typically try to compute the moments starting from low
orders i ≥ 1, because their estimation is less affected by the measurement noise.

6.1.2 Attack Efficiency and Degree of Ctotal
The attacker builds the quantity Ctotal before distinguishing between subkey hy-
potheses. Hence, this quantity is all the more suitable from the attacker point of
view as its variance is low, since the capability of distinguishing depends on the
SNR; the conclusions in [WO11] can be generalized to any order. The variance of
the noise in the signal Ctotal(~L) is equal to Var[Ctotal(~L) | ~S = ~s]. Assuming that the
means of Li are positive (which is the case in practice when the measurements cor-
respond to the power consumption and the noise has a zero mean) and the variances
are greater than 1, it can be checked that we have:

Var[Ctotal(~L) | ~S = ~s)]

≥
∑

~α=(α0,··· ,αd)∈Nd+1

a2~αVar[
~L~α | ~S = ~s]

≥
∑

~α=(α0,··· ,αd)∈Nd+1

a2~α

d∏

i=0

Var[Lαi
i | Si = si] . (6.1)

When Li | Si = si has a normal distribution, it can be checked2 that Var[Lαi
i | Si =

si]
.
= E[L2αi

i | Si = si]− E[Lαi
i | Si = si]

2 is always greater than Var[Li | Si = si]
αi .

So, we have:

Var[Ctotal(~L) | ~S = ~s] ≥ a2~̂α

d∏

i=0

σ2α̂i = a2~̂α × (σδ)2 . (6.2)

In view of Eqn. (6.2), it comes that the amount of noise in Ctotal(~L) is upper
bounded by a bound that increases exponentially with the degree δ of Ctotal(~L).
Therefore, it is preferable for the attacker to minimize the total degree of the poly-
nomial Ctotal.

6.1.3 Information-Theoretic Characterization of Masking

In order to characterize the Ctotal(~L) polynomial from an information-theoretic point
of view, we introduce the notion of multivariate degree3. The multivariate degree of

2In [WL03, Eqn. (16)], an analytical formula for the variance of a product normal distribution

is given. It allows to check the inequality for αi = 2. For higher-orders, we need to refer to

the difference between the raw moment of a Gaussian RV X: E[X2αi ] − E[Xαi ]2 is greater than

Var[X]αi . The proof relies on the development of generalized Hermite polynomials.
3In the context of polynomials in variables L0, · · · , Ld over the field K (e.g. K = R), our

definition of multivariate degree coincides with the “usual” degree of polynomials in the algebra



70 Chapter 6. Introduction to Higher-Order Masking Countermeasures

a monomial
∏d

i=0 L
αi
i is equal to

∑d
i=0(αi 6= 0), where αi are natural numbers, i.e.

αi ∈ N, and where (αi 6= 0) is a notation for the function that equals 1 if αi 6= 0

and 0 otherwise. We also emphasize that the multivariate degree is smaller than the
degree. We start with this basic lemma:

Lemma 1. If a masking scheme is dth-order sound, then the mutual information

between any monomial in Li, of multivariate degree lower than or equal to d, and Z

is null.

Proof. If a masking scheme is dth-order sound, then I[Z; (Si)i∈I ] = 0 if#I ≤ d. Now,
for any function ψ, I[Z; (Si)i∈I ] ≥ I[Z;ψ((Si)i∈I)]. So, if ψ is taken as a monomial
in (Li)i∈J0,dK = (ℓi(Si))i∈J0,dK of multivariate degree less than or equal to d, we have
I[Z;ψ((Si)i∈I)] ≤ 0, hence I[Z;ψ((Si)i∈I)] = 0.

As a consequence of Lemma 1, for any sound dth-order masking schemes, every
moment of order lower than or equal to d is constant. Hence, an attacker may
attempt to apply the following strategy: choose a Cattacker such as Ctotal is of multi-
variate degree strictly greater than d. Together with Eqn. (6.2), this result implies
that the adversary must choose Cattacker such that the multivariate degree of Ctotal

is at least d + 1, and that the (regular) degree must not be too high otherwise the
SCA attack efficiency decreases. For hardware implementations of dth-order mask-
ing schemes, it may happen that the d+1 shares ~S are manipulated simultaneously.
This can be the consequence of some undesired synchronization issues or even this
can be wanted by the hardware designer. Indeed, processing the shares in parallel
allows keeping the throughput unchanged. In the following, we assume that the
hardware implementation of the masking scheme which is considered indeed has
this property. Under this assumption, the univariate leakage exploitable by SCA
depends on all the shares which implies that Cdevice has output dimension equal to
1. We denote by ddevice the multivariate degree of Cdevice(~L). Since, according to
Lemma 1, the multivariate degree of Ctotal = Cattacker◦Cdevice must be at least d+1 to
enable effective SCA attack, having the degree of Cdevice equal to ddevice implies that

Cattacker must be chosen with a multivariate degree dattacker greater than or equal to

d + 1 − ddevice. This implies that Cattacker, viewed as a polynomial over R[X] must

contain monomials in the form Xi with i greater than or equal to d+ 1− ddevice.

For software implementations of dth-order masking schemes, the d + 1 shares

Si are manipulated sequentially. It therefore makes sense to assume that their

manipulation leaks independently, which in turn implies that Cdevice is the identity

function (i.e. ddevice = 0). In this case and according to Lemma 1, Cattacker must be

chosen with a multivariate degree greater than or equal to d+ 1 to enable effective

SCA attack.

K[L0, · · · , Ld]/(
∏d

i=0
L2

i − Li), also called sometimes the algebraic degree.
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6.2 HO-CPA Attacks and HO-CPA Immunity

In this section, we propose a new SCA metric, called HO-CPA immunity, that allows
estimating both the efficiency of existing attacks and the quantity of information
leaked.

6.2.1 HO-CPA Immunity

Definition 8. The HO-CPA immunity of the RV Ctotal(~L) is the order of the smallest
(central) moment of

(
Ctotal(~L) | HW(Z) = h

)
which is dependent on h.

The HO-CPA immunity of Ctotal is denoted by HCI in the following. The minimal
value of the HO-CPA immunity is 1 and it is reached when the distributions of the
RV

(
Ctotal(~L) | HW(Z) = h

)
do not have the same mean. This is the case of

unprotected circuits, for which a first-order CPA [BCO04] works.
The HO-CPA immunity is larger than or equal to 2 when the distributions are

balanced (i.e. ∀h, µh = µtot). In this case, the inter-class variance is null and the
total variance σ2tot is equal to the intra-class variance σ

2
intra =

∑
h P[HW(Z) = h]×

µ2(Ctotal(~L) | HW(Z) = h). If the µ2(Ctotal(~L) | HW(Z) = h) are not all equal, then
HCI = 2 and a second-order CPA using the moments of order 2 (or a variance-based
attack) is possible.

The motivation of the HO-CPA immunity definition is thus straightforward. All
HO-CPA using the moments of order i < HCI will fail, because the moments are
independent of h. Thus the HO-CPA immunity is equal to the smallest order of
the moments for which an HO-CPA attack can be successful. This is illustrated for
4-bit variables in Tab. 6.1. In this table, the number of lines in gray is equal to
HCI− 1 (Definition 8).

6.2.2 Link between I[Ctotal(~L);Z] and the HO-CPA Immunity

The HO-CPA reveals linear dependencies between the RVs Ctotal(~L) and Z. Unless
the RVs

(
Ctotal(~L) | HW(Z) = h

)
are identically distributed for every h, the mutual

information I[Ctotal(~L);Z] will be non-zero. We show in the following theorem that
HCI is also relevant to quantify the amount of information leaked when the noise
level is high.

In terms of mutual information, the impact of the noise N ∼ N (0, σ2) is quanti-
fied by Theorem 4, that extends that of Waddle and Wagner [WW04] to the multibit
case.

Theorem 4. Let σ denote the standard deviation of the noise, the mutual informa-

tion I[Ctotal(~L);Z] tends towards O
(
σ−2×HCI

)
when σ tends towards infinity.

To prove the theorem, we introduce the notions of cumulants of the RV X,
denoted by ki(X), that correspond to the monomials in the Taylor series of the
function t ∈ R 7→ ln(E(exp(t ·X))) =

∑+∞
i=0 ki(X) t

i

i! , for t ∈ R. The proof will use
the following lemma.
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s Table 6.1: Statistics about some leakage models on words of n = 4 bitwidth, without noise (i.e. σ = 0).

R.V. L L |HW(Z) = 0 L |HW(Z) = 1 L |HW(Z) = 2 L |HW(Z) = 3 L |HW(Z) = 4

Plain hardware implementation with d = 0 mask (unprotected reference).

H
C
I
=

1

µ1 = E( · ) 2.000 0.000 1.000 2.000 3.000 4.000

µ2 = E(( · − µ1)
2) 1.000 0.000 0.000 0.000 0.000 0.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 2.500 0.000 0.000 0.000 0.000 0.000

Entropy [bit] 2.031 0.000 0.000 0.000 0.000 0.000

Plain hardware implementation with d = 1 mask.

H
C
I
=

2

µ1 = E( · ) 4.000 4.000 4.000 4.000 4.000 4.000

µ2 = E(( · − µ1)
2) 2.000 4.000 3.000 2.000 1.000 0.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 11.000 40.000 21.000 8.000 1.000 0.000

Entropy [bit] 2.544 2.031 1.811 1.500 1.000 0.000

Plain hardware implementation with d = 2 masks.

H
C
I
=

3

µ1 = E( · ) 6.000 6.000 6.000 6.000 6.000 6.000

µ2 = E(( · − µ1)
2) 3.000 3.000 3.000 3.000 3.000 3.000

µ3 = E(( · − µ1)
3) 0.000 -3.000 -1.500 0.000 1.500 3.000

µ4 = E(( · − µ1)
4) 25.500 25.500 25.500 25.500 25.500 25.500

Entropy [bit] 2.839 1.762 1.822 1.836 1.822 1.762

Plain hardware implementation with d = 3 masks.

H
C
I
=

4

µ1 = E( · ) 8.000 8.000 8.000 8.000 8.000 8.000

µ2 = E(( · − µ1)
2) 4.000 4.000 4.000 4.000 4.000 4.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 46.000 52.000 49.000 46.000 43.000 40.000

Entropy [bit] 3.047 2.044 2.047 2.046 2.043 2.031

Plain hardware implementation with d = 4 masks.

H
C
I
=

5

µ1 = E( · ) 10.000 10.000 10.000 10.000 10.000 10.000

µ2 = E(( · − µ1)
2) 5.000 5.000 5.000 5.000 5.000 5.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 72.500 72.500 72.500 72.500 72.500 72.500

Entropy [bit] 3.208 2.207 2.208 2.208 2.208 2.207
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Lemma 2. If Ctotal(~L) has a HO-CPA immunity equal to HCI, then for every i in

J0,HCIJ and every Z in F
n
2 we have, ki(Ctotal(~L) | HW(Z) = h) = ki(Ctotal(~L)).

Proof. First of all, we notice that ∀i ∈ J0,HCIJ, the cumulants ki(Ctotal(~L) | HW(Z) =

h) are equal. The reason is that for any law X, kj(X) can be expressed as a function
of µi(X) for 0 ≤ i ≤ j (and reciprocally). For instance k3(X) = µ3(X), k4(X) =

µ4(X)− 3µ22(X), k5(X) = µ5(X)− 10µ3(X)µ2(X), etc. Now, according to Defini-
tion 8, if Ctotal(~L) has HO-CPA immunity HCI, then all µj(Ctotal(~L) | HW(Z) = h)

for 0 ≤ i < HCI are independent of HW(Z). Consequently, the same holds for the
cumulants of orders i ∈ J0,HCIJ. Eventually, as:

∀i < HCI, ∀HW(Z) = h, µi(Ctotal(~L) | HW(Z) = h) = µi(Ctotal(~L)) ,

we also have ki(Ctotal(~L) | HW(Z) = h) = ki(Ctotal(~L)).

We give hereafter the proof of Theorem 4.

Proof. After using the Edgeworth expansion to approximate the PDFs of
(
Ctotal(~L) |

HW(Z) = h
)
, we deduce from Lemma 2 in [LB10] (extended to laws of common

variance σ2tot + σ2 6= 1) that:

I[Ctotal(~L);Z] = (6.3)

+∞∑

i=0

1

2i!

∑

h

P[HW(Z) = h]

(
ki(Ctotal(~L) | Z=h)− ki(Ctotal(~L))

)2

(
σ2tot + σ2

)i .

Then, according to Lemma 2, the first non-zero term in the summation in Eqn. (6.3)
is at index i = HCI. So, we have:

I[Ctotal(~L);Z] =
+∞∑

i=HCI

1

2 · i!
∑

h

P[HW(Z) = h]

(
ki(Ctotal(~L) | HW(Z) = h)− ki(Ctotal(~L))

)2

(
σ2tot + σ2

)i

= O
(
σ−2×HCI

)
,

which achieves to prove Theorem 4.

Our main interest in Theorem 4 is that it gives the dependence between the
leakage, the noise variance σ2 and the HCI order. It shows that the higher HCI (i.e.

the more statistical moments of
(
Ctotal(~L) | HW(Z) = h

)
are constant with respect

to HW(Z), the less information is leaked by the device.

6.3 First-Order Boolean Masking Schemes in the Liter-

ature

In the rest of this chapter, we focus on d = 1 mask. The leakage function for the
first-order masking countermeasure can be expressed as:

Ctotal

(
~L
)
= Ctotal (L0, L1) ,
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where L0 = HW(Z ⊕M) +N0 and L1 = HW(M) +N1. Two cases are considered:

• In hardware: We note “Cdevice = sum” to say that the device already sums
the leakages, i.e. Cdevice(~L) = L0 + L1;

• In software: We note “Cdevice = id” to say that the device leaks each leakage
identically i.e. Cdevice(~L) = (L0, L1).

When a first-order Boolean masking is involved to secure the manipulation of
Z, the latter variable is randomly split into two shares S0, S1 such that:

Z = S0 ⊕ S1 . (6.4)

The share S1 = M is usually called the mask and is a random variable uniformly
distributed over Fn

2 . The share S0 = Z⊕M is called the masked variable. Variables
Z and M are assumed to be mutually independent. To enable the application of a
transformation S on a variable Z split in two shares, as in Eqn. (6.4), a so-called
first-order masking scheme must be designed. It leads to the processing of two new
shares S′0 and S

′
1 such that:

S(Z) = S′0 ⊕ S′1 .

Once again, the share S′1 = M ′ is usually generated at random (the new mask)
and the share S′0 is defined such that S

′
0 = S(Z)⊕M ′. The critical point is to deduce

S(Z)⊕M ′ from the variablesM , Z⊕M andM ′ without compromising the security
of the scheme (w.r.t. first-order SCA attack). When S is linear for the law ⊕, then
deducing S(Z)⊕M ′ is an easy task. The variable S(Z)⊕M ′ can be simply chosen
as the direct sum of the variables M , Z ⊕M and M ′. When S is non-linear for
the law ⊕ (which occurs when S is a S-box), achieving first-order security is much
more difficult. The latter security indeed implies that no univariate leakage during
the processing leaks information on Z and hence, particular attention must be paid
on each elementary calculus or memory manipulation. Several solutions have been
proposed to deal with this issue. Commonly, there are three strategies [PR07]: the
re-computation method, the global look-up table and the S-box secure calculation.

6.3.1 The Re-Computation Method

This technique involves the computation of a precomputed table corresponding to
the masked S-box and the generation of one or several random value(s) [Mes00a,
AG01]. In its most elementary version, two random values M andM ′ are generated
and a look-up table representing the function S′ : Y 7→ S(Y ⊕M)⊕M ′ is computed
from S and stored in RAM. Then, each time the masked variable S(Z)⊕M ′ has to
be computed from the masked input Z ⊕M , the RAM is accessed.

6.3.2 The Global Look-up Table Method

This method also involves the computation of a precomputed look-up table, denoted
T ⋆, associated to the function S′ : (X,Y, Y ′) 7→ S(X ⊕ Y ) ⊕ Y ′. To compute the
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masked variable S(Z) ⊕ M ′, the global look-up table method (GLUT for short)
performs a single operation: the look-up table T ⋆[Z⊕M,M,M ′] [PR07, SVCO+10].
The main and important difference with the first method is that the value S(X ⊕
Y ) ⊕ Y ′ has been precomputed for every possible 3-tuple of values. Consequently,
there is no need to re-compute before each algorithm processing and it can be
stored in ROM4. In a simplified version (sufficient to thwart only first-order SCA),

the output mask and the input mask are chosen equal (i.e. M = M ′). In this

case, the dimension of the table is 2n instead of 3n and the look-up table becomes

T ⋆[Z ⊕M,M ].

6.3.3 The S-box Secure Calculation Method

The S-box outputs are computed on-the-fly by using a mathematical (e.g. polyno-

mial) representation of the S-box [CJRR99, RDJ+01, Tri03, PGA06, RP10]. Then,

each time the masked value S(Z)⊕M ′ has to be computed, an algorithm performing

S and parametrized by the 3-tuple (Z ⊕M,M,M ′) is executed. The computation

of S is split into elementary operations (bit-wise addition, bit-wise multiplication,

. . . ) performed by accessing one or several look-up table(s).

Moreover, depending on the number of masks generated to protect the S-box

calculations, we can distinguish two modes of protections:

1. The single mask protection mode: in this mode, every computation S(Z) per-

formed during the execution is protected with a single pair of input/output

masks (M,M ′).

2. The multi-mask protection mode: in this mode, the pair of masks (M,M ′) is
re-generated each time a computation S(Z) must be protected and thus many

times per algorithm execution.

In [PR07], the authors have shown that the choice between the three methods de-

pends on the protection mode in which the algorithm is implemented. In fact, when

the algorithm is protected in the single-mask protection mode, the re-computation

method is more appropriate and induces a smaller timing/memory overhead. In the

multi-mask protection mode, the re-computation method is often much more costly

since the re-computation must be done before every S-box processing. Moreover,

in both contexts it requires 2n bytes of RAM to be free, which can be impossible

in some very constrained environments. Concerning the S-box secure computation,

it is secure against first-order SCA and does not need particular RAM allocation.

However, it is often more time consuming than the first two methods and can only

be used to secure S-boxes with a simple algebraic structure (as e.g. the AES or the

SEED S-boxes).

Regarding the GLUT method, it seems at a first glance to be the most appro-

priate method. Its timing performances are ideal since it requires only one memory

transfer. Moreover, it can be applied in both protection modes described above.

4Recall that in embedded systems, ROM is a much less costly resource than RAM.
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From a security point of view, the GLUT method has however a flaw since it ma-
nipulates the masked data Z ⊕M and the mask M at the same time. Actually,
Z⊕M and M are concatenated to address the look-up table T ⋆ and thus, the value
Z ⊕M ||M is transferred through the bus. Since the latter variable is statistically
dependent on Z, any leakage on it is potentially exploitable by a first-order DPA
involving the higher-order moments of the concatenated random variable. It must
however be noted that such a leakage on the address does not necessarily occurs
during the bus transfers or the registers update. Indeed, when for instance the lat-
ter ones leak the Hamming weight between an independent and random initial state
and the address Z ⊕M || M , then the leakage is independent on Z and no first-
order DPA is hence applicable. This example shows the importance of the device
architecture when assessing a countermeasure soundness.

6.4 Conclusions

This chapter deeply analyses higher-order Boolean masking countermeasures against
side channel attacks in contexts where the masks are manipulated simultaneously.
The relationship between the leakage characteristics and the HO-CPA attacks effi-
ciency is focused, leading to the introduction of the notion of HO-CPA immunity
as a new SCA metric. Then, we described the most widely used first-order masking
schemes in the literature. We showed that the problem of securing an algorithm by
using masking techniques could be reduced to the problem of securing the S-box
computation.



Chapter 7

Security Evaluation of Masking

Countermeasures

In this chapter, we are concerned with a formal security evaluation of Boolean
hardware masking schemes. Following a practice-oriented evaluation framework
introduced by Standaert et al. at EUROCRYPT’2009 [SMY09], we compute both
leakage and attack metrics. Then, we prove that a leakage metric (namely the
mutual information) allows characterizing perfectly the best attack. Moreover, we
exhibit explicitly the link between leakage and attacks metrics.
The results presented in this chapter have been published in collaboration with

Sylvain Guilley and Jean-Luc Danger in the international symposium on Hardware-
Oriented Security and Trust (HOST 2011) [MGD11a].
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7.1 On Comparing Side Channel Attacks

In a recent work [MOS11], Mangard et al. showed that under some assumptions, the
standard univariate side channel attacks using a distance-of-means test, correlation
analysis and Gaussian templates are essentially equivalent. So, in the important
scenario of standard DPA attacks, all distinguishers are equally efficient. Hence,
testing does not always require investigating all distinguishers exhaustively. It is
sound to use “one distinguisher for all”. Then, they established a link between the
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CPA and the MIA in the first-order side channel attack scenario:

MIA =
1

2
log2

(
1 + CPA2

)
≈ 1

2 ln 2
CPA2 (if |CPA| ≪ 1) .

This relationship allows linking currently used metrics to evaluate standard DPA
attacks (such as the number of power traces needed to perform a key recovery) with
an information theoretic metric (the mutual information).
In [SVCO+10], authors show that in the context of multivariate attacks against

masked implementations, understanding second-order attacks requires to carefully
investigate the information leakages and the adversaries exploiting these leakages,
separately. So, the evaluations of protected implementations should hold in two
steps. First, an information theoretic analysis determines the actual information
leakage (i.e. the impact of the countermeasure, independently of the adversary).
Second, a security analysis determines the efficiency of various distinguishers in
exploiting this leakage. By applying such a methodology to simulations and practical
experiments, we consequently obtain a fair and comprehensive evaluation of the
security level that a masking scheme can ensure.
In next sections, we extend the work done in [SVCO+10] so as to conclude

about the efficiency of hardware masking implementation. The first topic of interest
consists in exhibiting the asymptotical evolution of the mutual information metric
(MIM), as described in [SVCO+10], for high value of noise standard deviation and
for several leakages combining functions (for instance: the sum, the product and
the absolute difference). The second topic of interest is to bring to the fore the

link between leakage and security metrics for second-order attacks on masked im-

plementations. The goal is to decide whether the combining function leading to the

greatest vulnerabilities identified by the MIM also leads to the best attack. More-

over, we show the relationship between the MIM and the number of traces to reach

a certain success rate of non-profiled attack which was experimentally exhibited

in [SVCO+10].

7.2 Leakage Estimation with Information Theory

7.2.1 Leakage Metric Computation

In the sequel, we denote the variable L as the combining of the individual leakages

of the masked data L1 = HW(Z ⊕ M) and the mask L2 = HW(M). Thus, the

leakage can be expressed as L = C(L1, L2) +N , where C is the combining function

and N ∼ N (0, σ2) with σ is the noise standard deviation. Assuming a Hamming

weight leakage model, the MIM, expressed in bits and defined as I[L;HW(Z)], can

be written as:

I[L;HW(Z)] = −
n∑

h=0

P[HW(Z)=h] ·
(
log2 P[HW(Z)=h]

−
∫

R

P[L= l |HW(Z)=h] · log2 P[HW(Z)=h |L= l] dl
)
. (7.1)
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The MIM is represented in the case of DES (the bitwidth of the sensitive variable
under analysis n = 4) in Fig. 7.1(a), with the same scale for the noise standard
deviation σ as in [SVCO+10], and in Fig. 7.1(b) with a larger range for σ. The overall
shape of the leakage metric of Fig. 7.1(a) complies with Fig. 3 page 9 of [SVCO+10]:

• the sum or the difference in absolute value combining functions leak more
when the noise is low (σ small, like in “software”), whereas

• the product leaks more otherwise (σ high, like in “hardware”, with large
amounts of noise due to the intense algorithmic parallelism).

However, in hardware implementations, the only combining function available to the
attacker is the sum (that is achieved physically by the global side channel measure-
ments). Thus, the masking is even more relevant in hardware, because the attacker
cannot choose the best attacks.

When σ is large, we observe (and will show in Sec. 7.2.1.2) that log(MIM) ≈
−4 · log(σ) for the sum combining function. Thus, the combining by sum leaks very
few information. On the contrary, log(MIM) ≈ −2·log(σ) for the absolute difference
or the product combining function. Those ways of combining information lead to
greatest leaks, and thus better extract the information despite the mask.

7.2.1.1 MIM Asymptotic Value when σ → +∞

When the noise gets high, the conditional distributions tend to become indiscernible.
In terms of probabilities, this can be expressed by the independence of L and HW(Z).
Thus, to study the asymptotic values of the MIM (Eqn. (7.1)), we will assume that:

∀l, h,P[L = l,HW(Z) = h] = P[L = l]× P[HW(Z) = h] .

This implies that:

P[L = l |HW(Z) = h] =
P[L = l,HW(Z) = h]

P[HW(Z) = h]
=

P[L = l]×
✭✭✭✭✭✭✭✭

P[HW(Z) = h]

✭✭✭✭✭✭✭✭

P[HW(Z) = h]
= P[L = l] ,

and symmetrically that:

P[HW(Z) = h |L = l] = P[HW(Z) = h] .

The asymptotical MIM rewrites as:

MIM = H[HW(Z)]−
n∑

h=0

P[HW(Z) = h]

∫

R

P[L = l] · log2 P[HW(Z) = h] dl

= H[HW(Z)]− 1× H[HW(Z)]

= 0 bit .

However, the first-order dependency of MIM with σ would be more interesting than
the limit. This law is computed in the next subsection.
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Figure 7.1: Leakage metrics for the 4-bit leakage model of an architecture protected
against second-order DPA.
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Table 7.1: Mean and variance of the distributions for the studied combining func-
tions on n = 4 bits, in the absence of noise.

R.V. L |HW(Z)=0 L |HW(Z)=1 L |HW(Z)=2 L |HW(Z)=3 L |HW(Z)=4 L

Centered product combining function

µ̄{h|tot} 5.000 4.500 4.000 3.500 3.000 4.000

σ̄2{h|tot} 17.500 12.750 8.500 4.750 1.500 9.000

Absolute difference combining function

µ̄{h|tot} 0.000 1.000 1.000 1.500 1.500 1.094

σ̄2{h|tot} 0.000 0.000 1.000 0.750 1.750 0.804

Sum combining function

µ̄{h|tot} 4.000 4.000 4.000 4.000 4.000 4.000

σ̄2{h|tot} 4.000 3.000 2.000 1.000 0.000 2.000

7.2.1.2 Analytical Expression of Eqn. (7.1) under the Gaussian Approx-
imation

We assume that σ is large enough to consider that ∀h, the RVs (L |HW(Z) = h) and
L follow normal distributions. This is obviously not the case for small values of σ.
But, it is a viable assumption in an implementation with 64 bits of state computing
in parallel with the n = 4 targeted ones. We apply the Gaussian assumption by
adopting the following assimilations:

• ∀h, L |HW(Z) = h ∼ N (µh, σ
2
h) and

• L ∼ N (µtot, σ
2
tot).

Then, it is straightforward to show that µ{h|tot} = µ̄{h|tot} and σ
2
{h|tot} = σ2+σ̄2{h|tot},

where the quantities over-lined are respectively the mean and variance without noise.
They are given for n = 4 in Tab. 7.1. Therefore, we can derive an analytical formula
for the MIM, as a function of the constants presented in Tab. 7.1 and of the noise
variance σ2:

−∑n
h=0 P[HW(Z)=h]

∫
R
P[L= l |HW(Z)=h] · log2 P[L=l|HW(Z)=h]

P[L=l] dl=

−
n∑

h=0

P[HW(Z)=h]
(µ̄h − µ̄tot)

2

2σ2 + 2σ̄2tot︸ ︷︷ ︸
Term1

+

n∑

h=0

P[HW(Z)=h]

2 ln 2
ln

1 + σ̄2h/σ
2

1 + σ̄2tot/σ
2

︸ ︷︷ ︸
Term2

.

This result is directly deduced from the formula of the Kullback-Leibler divergence
for two independent normal laws. We can now derive the expression of the two
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terms. First of all:

Term1 =
−1/2

σ2 + σ̄2tot

n∑

h=0

P[HW(Z) = h] (µ̄h − µ̄tot)
2 ∝ 1

σ2
, (7.2)

because in the large noise hypothesis, σ ≫ σ̄tot.
In order to evaluate the Term2, we expand a Taylor’ series at order two on

variable ε = σh/σ ≪ 1, using ln(1 + ε) = ε− 1
2ε

2 + o(ε2). It yields:

Term2 ≈ 1

4 ln 2× σ4

(

σ̄4tot −
n
∑

h=0

P[HW(Z) = h]σ̄4h

)

∝ 1

σ4
. (7.3)

For the sum combining function, the Term1 is null, because all the µh are the
same. More information leaks with the absolute difference and the product, because
of the preponderant Term1, that uses the even distribution of µh. Thus, MIM ∝
1/σ4 for the sum, whereas MIM ∝ 1/σ2 for the absolute difference and the centered
product combinings. The result is in line with Theorem 4 of Chapter 6. In fact,
from Tab. 7.1 we can see that for the sum the HCI = 2 whereas HCI = 1 for the
absolute difference and the product combinings. This is also consistent with the
exact computation of Eqn. (7.1), notably the observed asymptotical behavior of
Fig. 7.1(b).

Nonetheless, we insist that Fig. 3 of [SVCO+10] tends to let us thing the law
log(MIM) = f(log(σ)) was simply shifted in the ordinate axis. However, we show
that the slopes actually differ.

7.2.2 Discussion

It can be misleading not to study high values of σ. Indeed, for instance, in the
article [SVCO+10], it seems (in Fig. 3, where σ ≤

√
10 ≪ n) that the tendency of

leakage is the same for the sum and the absolute difference combining functions.
However, we show that the later leaks much more.

Apart from this clarification, it remains that the greatest quantity of sensitive
information is leaked when combining the samples with one of these two combining
functions (absolute difference or centered product). Now, in hardware implementa-
tions, only the sum of the samples (done physically because side channel quantities
are additive) is available to the attacker. This is a built-in protection of hardware
implementations, since the simultaneous processing of the masked data and the
mask prevents the attacker from choosing the most adequate combining function.

7.3 Security Estimation with Attacks

The goal of this section is to decide if the combining function leading to the greatest
vulnerabilities identified by the MIM in previous section (i.e. CPA with combining
of product) also leads to the best attack. Moreover, we will study the relationship
between the mutual information and the number of traces to reach a certain success
rate for correlation attacks.



7.3. Security Estimation with Attacks 83

7.3.1 Success Rate Results

The success rates of correlation and MIA simulated attacks (computed over 100 in-
dependent experiments), using different combining functions, are given in Fig. 7.2(a)
and Fig. 7.2(b), without and with noise. The 4-bit output of the first DES S-box is
targeted. CPA with the sum combining function is not shown, because the attack is
perfectly thwarted by the countermeasure. For the MIA attacks, we use histograms
for the PDF estimation with a number of bins computed using the Scott’s rule.

From these figures, two important consequences can be emphasized:

1. In noise free model: The MIA with sum and absolute difference perform
well. About 50 observations are required to achieve 100% success rate. Sim-
ilarly, MIA with product and using joint distribution outperform the attacks
using Pearson’s correlation coefficient. Finally, we can see that the CPA when

combined with the normalized product is better than the CPA when combined

with the absolute difference.

2. With increasing noise: The presence of noise affects the different distin-
guishers in a very different manner. The MIA with the sum and absolute
difference work worst. About 450 and 550 observations are required respec-
tively to achieve 100% success rate. By contrast, CPA combined with the
normalized product works well. MIA using the joint distribution is the worst
efficient attack in our simulation. This is caused by the need of more data to

estimate the probability distributions.

7.3.2 Security Analysis of Masking

Our experiments are consistent to those studied in [SVCO+10]. Hence, the study

of the evolution of these attacks for high values of noise standard deviation is an

interesting direction. It allows giving a hint about the number of measurements

that are required to break the implementation if we estimate the value of the SNR.

In addition, if an attacker has an acquisition campaign, he can conclude on which

attack should be performed to find the secret key.

In Fig. 7.31, the number of messages needed to achieve a success rate of 90% is

recorded for each attack studied before.

The results in Fig. 7.3 can be analysed depending on the noise level:

1. Undersampling: When σ ≤ 4, both distinguishers succeed with few num-

ber of messages (lower than 10K). The CPA attack outperforms the MIA,

whatever the standard deviation of the noise is. In a noise-free context, MIA

with joint distribution needs only 35 messages to reach a success rate of 90%

whereas CPA when combined with the normalized product needs 50 messages

to achieve the same threshold. But, when the standard deviation of noise

1We failed to calculate the number of messages to achieve a success rate of 90% for the MIA

attacks using different combining for σ > 22 because it exceeds 107 (our computational budget).
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Figure 7.3: Evaluation of N90%, the number of messages to achieve a success rate
greater than 90%, according to the noise standard deviation when attacking a
Boolean masking scheme.

increases, the CPA combined with the normalized product becomes the most
efficient attack. This confirms that Pearson’s coefficient is the good tool to
measure a linear correlation in software implementations.

2. Oversampling: When σ ≥ 4, all the distinguishers need a large number
of messages (greater than 10K) to reach 90% success rate. In this case, the
curves do not have the same shape for each distinguisher asymptotically. This
suggests that the noise differently affects the attacks efficiency. The curves
corresponding to MIA using sum and difference absolute combinings and using

joint distribution are superimposed. This implies that those attacks share

approximately the same efficiency and that none of them is emerging as better
candidate than the others. The MIA when combined with the normalized
product is better and it requires less observations to achieve 90% of success
rate.

As expected, The CPA attacks are more powerful than the others are (around
30 times more efficient than MIA with joint distribution). Moreover, the
CPA combined with the normalized product is more efficient than the CPA
combined with the difference absolute (around 5 times more efficient).



86 Chapter 7. Security Evaluation of Masking Countermeasures

In order to exhibit the utility of the previous study, we computed the SNR from
our FPGA acquisitions of a masked DES implementation; we obtained σ = 4.7.
From Fig. 7.3, we observe that we can perform the CPA with normalized product
combining: it is the attack that requires the less measurements (about 20K traces).
For CPA with absolute difference combining, we need about 35K traces. The MIA
with joint distribution requires more than 106 measurements, which demands more
time to be generated and space to be stored. This is probably due to the fact that
MIA needs to estimate PDFs on-line. It is thus noisier than CPA for small numbers
of traces. Therefore, we will focus on correlations attacks in the sequel.

7.3.3 Analytical Derivation of the Security Level for Correlation

Attacks

We showed in Sec. 7.2.1.2 that MIM ∝ 1/σ2 asymptotically when we focus on the
product or the absolute difference combining. From [PRB09], we deduce an approx-
imation of Pearson’s correlation coefficient for those combining functions when the

bitwidth n is negligible compared to the noise standard deviation σ, and for centered

leakages. The correlation in the case of product combining is:

ρC(L1,L2)=(L1−E(L1))×(L2−E(L2)) ∝
√
n

4σ2
, (7.4)

and for the absolute difference combining function:

ρC(L1,L2)=|L1−L2| ∝
√
n

4σ2
√
2π − 4

. (7.5)

Therefore, we can exhibit the relationship between the MIM and the correlation
attack: we have asymptotically MIM

CPA = constant. We mention that our results
differ from that of standard univariate side channel attack (see [MOS11]) where
MIM ∝ 1

2 ln 2CPA
2.

It has been demonstrated that the number of observations required to break a
cryptographic implementation by CPA is equal to [Man04]:

3 + 8× (Z1−α)
2

/(
ln

(
1 + ρ

1− ρ

))2

, (7.6)

where Z1−α is a quantile of a normal distribution for the 2-sided confidence interval
with error 1−α. We can plunge Eqn. (7.4) into Eqn. (7.6). Assuming the number of
traces is large and ρ is small, it yields the number of messages to achieve a success
rate of 90%, denoted N90%:

N90% ≈ 8×
(
Z90%

2ρ

)2

∝ 8×
(

Z90%

2
√
n

4σ2

)2

∝ σ4 .

So we have log(N90%) ∝ 2 · log(σ2). Our result coincides with that of Fig. 8
in [SVCO+10] for the slope in the case of first-order masking.
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7.3.4 Discussion

In presence of large noise, the most powerful attack (namely CPA with centered
product combining, as seen in Sec. 7.3) is based on a combining function that had
also been showed to leak the most in Sec. 7.2. In hardware, it thus seems that
the MIM is a good indicator of the most relevant attack strategy. So, we can
exhibit the unequivocal link between number of messages to achieve a success rate
of 90% of correlation attack (i.e. N90%) and the mutual information (MIM). These
conclusions do not hold for small noises.
The law N90% ≈ f(MIM) conjectured in [SVCO+10, §8.1] was f : x → 1

x for
small values of σ. Here, we prove that this law cannot be true over all the noise
values. Indeed, N90% ≈ 1

MIM2 when σ → +∞.

7.4 Conclusions

Attacks against masking [SP06] are difficult when the noise level is high, which is
typically the case of parallel hardware cryptoprocessors. We showed in this chapter
that the ways to catch the most of the leakage (MIM) and to exploit it (CPA) are
more relevant for software implementation than hardware, as hardware has more
algorithmic noise and is limited to the arithmetic sum of the leakages as combining
function. Therefore, for these two important reasons, masking is a countermeasure
more efficient in hardware than in software. While not in contradiction with pre-
vious results in the field, these investigations reshape the understanding of certain
assumptions and extend the results to the case of hardware implementations.
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Chapter 8

First-Order Leakage-Free Masking

Countermeasure

In this chapter, we are not concerned with higher-order masking, but devise an op-
timised Boolean masking scheme when the leakage function is known. Typically, we
show that with a first-order masking it is possible to zero the sensible information
leaked during the registers update. This countermeasure applies to all devices that
leak a function of the distance between consecutive values of internal variables. In
particular, we illustrate its practicality on both hardware and software implemen-
tations. Moreover, we introduce a framework to evaluate the soundness of the new
first-order masking when the leakage slightly deviates from the rules involved to
design the countermeasure.
The results presented in this chapter have been published in collaboration with

Emmanuel Prouff, Sylvain Guilley and Jean-Luc Danger in the Cryptographers’

Track at RSA conference (CT-RSA 2012) [MPGD12a].
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8.1 The GLUT Masking Method

In this section we recall the GLUT method described in Chapter 6 Sec. 6.3. Our
proposal is to benefit from all seminal assets of this method and to additionally
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achieve a better resistance against univariate side channel attacks.

8.1.1 Detailed Description of the GLUT Method

In hardware, GLUT method can be implemented as shown in Fig. 8.1. This figure
encompasses the masking scheme already presented in [SRQ06]. For the sake of
simplicity, the linear parts, like the expansion (in DES), MixColumns (in AES), etc,
are not represented. So, without loss of generality, we assume that the S-box S is
an (n, n)-function (i.e. S : Fn

2 7→ F
n
2 ). For instance, using AES, n can be chosen

equal to 8 (straightforward tabulation of SubBytes), 4 (with the decomposition of
SubBytes in GF((24)2)), or even 2 (using the GF(((22)2)2) tower field [SMTM01]).
The registers RD and RM contain respectively the masked data (X ⊕M) and the
mask (M).

(b)(a) S

RM
X ⊕M n M

update
mask

S(X)⊕M ′

RD
n

ROM

M ′

ROM
S ′ S ′

Figure 8.1: First-order hardware masking implementation.

For any (n, n)-function S that must be processed in a secure way, the core
principle is to define from S the look-up table representation of a new (3n, n)-
function S′ which is indexed by both the masked data and the masking material.
Thanks to this new function, a masked representation S(X)⊕M ′ of X ′ = S(X) is
securely derived from X ⊕M , M and the output mask M ′ by accessing the look-up
table representing S′. The variables X and X ′ are the two consecutive values of the
sensitive variable. The size of the table can be reduced by defining the output mask
as a deterministic function of the input mask. In such a case, the ROM look-up
table represents a (2n, n)-function S′ such that S′(X ⊕M,M) = S(X)⊕M ′, where
M ′ is a deterministic function of M (e.g. M ′ =M ⊕ α for some constant α).
In the first case, the ROM look-up table has (3n)-bit input words: the two

shares and the new mask for the remasking, and one n-bit output (e.g. option (a)
of Fig. 8.1). In the second case, the new masks are derived deterministically from
the old ones, and thus the ROM look-up table can have only two inputs (e.g. option
(b) of Fig. 8.1). The ROM look-up table thus represents a (2n, 2n)-function.
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8.1.2 Security Analysis of the GLUT Method

During the processing of the scheme depicted in Fig. 8.1, the updating of the registers
RD and RM leaks information. We respectively denote by LRD and LRM the
variables corresponding to their leakage. We assume that they satisfy:

LRD = A(X ⊕M,X ′ ⊕M ′) +NRD ,

LRM = A(M,M ′) +NRM , (8.1)

where A is a deterministic function representing the power consumption during the
register updating (e.g. A may be the Hamming distance as discussed in [PSDQ05])
and where NRD and NRM are two independent noises. Furthermore, we make the
hypothesis that the power consumption related to the simultaneous updating of the
registers RD and RM equals LRD + LRM and is denoted by L. We motivate this
hypothesis in the following:
Assumption 1. (Leakages Adaptivity) During the register update, the global

leakage is the sum of the partial leakages.

In the first part, we will add the following assumption that will be relaxed in
the second part of this chapter.

Assumption 2. (Adaptivity of Memory States) For any pair (X,Y ), we have

A(X,Y ) = A(X⊕Y ), i.e. A depends only on the distance between its two arguments.

Under Assumption 1 and 2, the variable L satisfies:

L = A(Z ⊕M ′′) +A(M ′′) +NRD +NRM , (8.2)

where Z (respectively M ′′) denotes X ⊕X ′ (respectively M ⊕M ′). Except for very
particular definitions of A, the distribution of L (and in particular its variance)
depends on the sensitive variable Z. This dependency has already been exploited in
several attacks (see e.g. [WW04]). In the sequel, we study whether it can be broken
by replacing the bit-wise data masking X⊕M by a new one denoted by X α©M and
by adding conditions on M and M ′.

8.1.3 Towards a New Masking Function

A simple solution, deeply analyzed in this work, is to choose a function α© such that
X α© M = X ⊕ F (M) for some well chosen function F . For such a new masking
function, α© is not commutative and M and X do no longer need to have the same
dimension n. Only the output size of the function F must be n. In the following,
we denote by p the dimension of M and we assume that F is a (p, n)-function, i.e.
F : Fp

2 7→ F
n
2 . We will see in Sec. 8.2.1 that p and n must satisfy some conditions

for the masking to be sound. In this case, the deterministic part in Eqn. (8.2) can
be rewritten:

A(X α©M,X ′ α©M ′) +A(M,M ′)
.
= A(X ⊕X ′ ⊕ F (M)⊕ F (M ′)) +A(M ⊕M ′)

= A(Z ⊕ F (M)⊕ F (M ′)) +A(M ′′) . (8.3)
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In view of Eqn. (8.3), we deduce the two following sufficient conditions for L to
be independent of Z:

1. [Constant Masks Difference]: M ⊕M ′ is constant and

2. [Difference Uniformity]: F (M)⊕ F (M ′) is uniform.

To the two security conditions above, a third one must also be introduced to
enable the bit-wise introduction of the key on the internal state X:

3. [Operations Commutativity]: For every (X,M,K), we have:

X α©M ⊕K = (X ⊕K)α©M .

In the following section, we propose a way to specify M , M ′ and F to satisfy the
three sufficient conditions. We structure our study of this new technique in two steps:
the first one (cf. Sec. 8.2) is performed by assuming that A satisfies Property 2
(i.e. A(X,Y ) = A(X ⊕ Y )) and the second one (cf. Sec. 8.3) is conducted in
an imperfect model where A satisfies A(X,Y ) = P (X,Y ), with P (X,Y ) being a
polynomial function in R[X1, · · · , Xn, Y1, · · · , Yn] that does not satisfy Property 2.

8.2 Study in the Idealized Model

8.2.1 Proposed Masking Function

Under Property 2 and as argued in the previous section, we can render the variable
L independent of Z. It indeed amounts to fix the condition M ′ = M ⊕ α for some
nonzero constant term α and to design a function F s.t. the function Y 7→ F (Y )⊕
F (Y ⊕α) is uniform for this α. The latter function is usually called derivative of F
with respect to α, and noted DαF . This notion is for instance defined in Sec. 8.2.2
of [Car10b]. The construction of functions F having such uniform derivatives has
been highly investigated in the literature [Car10b, Chp. 4]. We give hereafter two
examples of construction of such functions F .

8.2.1.1 First Construction Proposal

We choose p = n+ 1 and we split Fn+1
2 into the direct sum E ⊕ (E ⊕ α), where E

is a n-dimensional vector space and α ∈ F
p
2 − E. One bijective function G from E

into Fn
2 is arbitrarily chosen and F is defined such that for every Y ∈ F

n+1
2 , we have

F (Y ) = G(Y ) if Y ∈ E and F (Y ) = 0 otherwise.

8.2.1.2 Second Construction Proposal

We choose p = n+n′ with n′ < n and we select one injective function G from F
n′
2 into

F
n
2−{0}. Then, for every (X,Y ) ∈ F

n′
2 ×Fn

2 = F
p
2 we define F (X,Y ) = G(X)·Y , with

“·” is the field product over Fn
2 . The outputs of the (p, n)-function F are uniformly

distributed over Fn
2 (since the functions Y 7→ G(X) · Y are linear and non-zero for
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S α

M ′
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p M

F (M ′)
S(X)⊕

M ′
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n

α

α©

α©
ROM
S ′

X ⊕ F (M)

Figure 8.2: Leakage-free masking hardware implementation.

every X). Moreover, for every non-zero element α′ in F
n′
2 , the function DαF defined

with respect to α = (α′, 0) ∈ F
n′
2 × F

n
2 is also balanced. In fact, its outputs are

uniformly distributed over Fn
2 when its inputs are uniformly distributed over F

n′
2 .

Indeed, we haveDαF = (G(X)⊕G(X+α′))·Y and, since the injectivity of G implies
that G(X) ⊕ G(X ⊕ α′) is never zero, the functions Y 7→ (G(X) ⊕ G(X ⊕ α′)) · Y
are linear and non-constant for every X.

The two constructions of F satisfy the difference uniformity condition defined in
Sec. 8.1.3. The mask dimension p for the first construction is only slightly greater
than the dimension n of the data to be masked. This makes it more efficient than
the second construction. However, the second construction ensures that not only
DαF but also F is balanced. This is not mandatory to ensure the security of
the countermeasure in our context where the targeted leakage is assumed to satisfy
Property 2, but it can be of interest if one wishes that the data X and X ′ be masked
with a uniform mask F (M) and F (M ′) respectively.

Figure 8.2 shows a hardware implementation of our countermeasure. The reg-
isters RD and RM contain respectively the masked variable X ⊕ F (M) and the
mask M . The mask update operation is constrained to be a ⊕ operation with a
constant value α in order to satisfy the first condition. Consequently, every compu-
tation in the algorithm is protected with the single pair of masks (M ,M ′ =M⊕α).
Nonetheless, the value of M changes at every computation; thus, the injected en-
tropy in one computation is p bits. The look-up table representing the function
S′ : (X,Y ) 7→ S(X α©Y )α©(Y ⊕ α) = S(X ⊕ F (Y )) ⊕ F (Y ⊕ α) has been pre-
computed and stored in ROM. The new masked variable S(X)⊕F (M ′) is obtained
by accessing the ROM table as described in Fig. 8.2. We assume that this addressing
is not leaking sensitive information but the leakage comes from the updating of the
registers RD and RM following Eqn. (8.2) and (8.3).
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8.2.2 Security Evaluation

In our security analysis, we assume that the attacker can query the targeted crypto-
graphic primitive with an arbitrary number of plaintexts and obtain the correspond-
ing physical observations, but cannot choose its queries in function of the previously
obtained observations (such a model is called non-adaptive known plaintext model

in [SMY09]). We also assume that the attacker has access to the power consump-
tion and electromagnetic emanations of the device and applies any univariate SCA
attack but is not able to perform a multivariate one.
Regarding the leakage model, we assume that the device leaks a function A of the

distance between the processed data and its initial state handled in the register (i.e.
A satisfies Property 2). This situation is more general than the Hamming distance
model, and notably encompasses the imperfect model studied in [VCS09, Sec. 4].
The mutual information I[A(Z ⊕ F (M) ⊕ F (M ′)) + A(M ′′);Z] = 0 since M ′′ is
constant and since F (M)⊕F (M ′) is uniformly distributed over Fn

2 and independent
of Z. Hence, our construction is leakage-free and immune against univariate attacks
of all orders. Furthermore, as A(M ′′) is constant, the mutual information

I[
(
A(Z ⊕ F (M)⊕ F (M ′)), A(M ′′)

)
;Z]

is also null, which means that the masking countermeasure is secure against an
adversary who observes the leakage in the transition from one state during the reg-
isters update and can repeat this as many times as he wants. The adversary recovers
the observations of the variable (LRD + LRM ) and can make all the treatments he
wants (e.g. computation of mutual information, raise to any power the variable
LRD + LRM , . . . ).
Recently in the international conference on Cryptographic Hardware and Em-

bedded Systems (CHES 2012), Amir Moradi and Oliver Mischke [MM12b] have
evaluated the security of our leakage-free countermeasure in a real-world context
(implemented on the SASEBO-GII evaluation board) using the so-called correlation-
collision attacks [MME10]. They demonstrate the high efficiency of our proposal
when assuming a Hamming distance leakage model. In fact, the leakage-free coun-
termeasure remains secure against first- and second-order correlation-collision at-
tacks. However, when assuming a S-box input model (i.e. targeting the inputs of
the S-box rather than the register update) our countermeasure shows vulnerabilities
against correlation-collision attacks when using one million of power consumption
traces. Nonetheless, we insist that our leakage-free countermeasure was not devised
to withstand such an attack. Since the results of [MME10] are not analysed precisely
enough, we cannot decide whether the implementation or the CM is responsible for
the observed leakage. We study the impact of the leakage model deviations on our
countermeasure in Sec. 8.3.

8.2.3 Application to the Software Implementation Case

Our proposal can be applied also in some particular software implementations. In
some access memory schemes, the address and the read value are transferred through
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the same bus (e.g. Von-Neumann architecture). Thus, when accessing a table, the
value overwrites the address and a leakage as in Eqn. (8.2) occurs. Such access is
obtained with a code such as:

mov dptr, #tab

mov acc, y

movc acc, @acc+dptr

In the code above, dptr refers to a data memory pointer and #tab to the address
of a table stored in data. The variable y is assumed to contain the index of the
value that must be read in table tab. After the third step, the accumulator register
acc contains the value tab[y]. During this processing, the accumulator goes from
state y to state tab[y]. Let us now assume that tab refers to the look-up table
defined in Sec. 8.2.1 and that y refers to the variable (X α©M,M). If we associate
the most significant bits of the accumulator acc to a (sub-)register RD and its
least significant bits to a (sub-)register RM then we are in the same context as
the analysis conducted in Secs. 8.2.1 and 8.2.2. A first-order DPA attack can be
conducted on this register to reveal information about the sensitive data. Taking
advantage from our proposal, the memory access is made completely secure under
the assumption of Property 2.

8.3 Study in the Imperfect Model

8.3.1 Description

In this section we assume that the hardware has been protected under the assump-
tion that A satisfies Property 2, while the assumption is wrong. Namely, A was
assumed to be s.t. A(X,Y ) = A(X ⊕ Y ) whereas in reality, it is a polynomial that
does not satisfy this property. In fact, the Hamming distance leakage model is in
practice an idealization of the reality. Indeed, the assumption that all the bits leak
identically, and without interfering, does not hold in real hardware [VCS09]. Also,
it has been shown that with specific side channel capturing systems the attacker can
distort the measurement. For instance, in [PSQ07], the authors show that with a
home-made magnetic coil probing the circuit at a crucial location, the rising edges
can be forced to dissipate 17% more than the falling edges. Therefore, we study
how the CM is resilient to imperfections of the leakage model.
To do so, we define a general model that depends on random variables. The

variability is quantified in units of the side channel dissipation of a bit-flip. The
model is affected by small imperfections (due to process variation, or small para-
sitic cross-coupling) when the variability is about 10%. We also consider the 20%
case, that would reflect a distortion of the leakage due to measurements in weird
conditions. Eventually, the cases of a 50% and of a 100% deviation indicate that
the designer has few or no a prior knowledge about the device leakage’s model.

More precisely, we assume that the leakage model satisfies A(X,Y ) = P (X,Y ),
with P (X,Y ) being a multivariate polynomial function in R[X1, · · · , Xn, Y1, · · · , Yn]
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of degree less or equal to τ ∈ J1, 2nK, where Xi and Yi denote the ith Boolean
coordinate of X and Y respectively. We recall that a polynomial of degree τ in
R[X1, · · · , Xn, Y1, · · · , Yn] takes the following form:

P (X1, · · · , Xn, Y1, · · · , Yn) .
=

∑

(u,v)∈Fn
2
×Fn

2
,

HW(u)+HW(v)≤τ

C(u,v) ·
n∏

i=1

Xui
i Y

vi
i , (8.4)

where the C(u,v) are real coefficients. For example, it is shown in [PRB09, Eqn. (3)]
that P (X1, · · · , Xn, Y1, · · · , Yn) is equal to HW(X⊕Y ) when the coefficients C(u,v)

.
=

c(u,v) satisfy:

c(u,v) =





+1 if HW(u) + HW(v) = 1 ,

−2 if HW(u) = 1 and v = u ,

0 otherwise .

(8.5)

In the following experiments, we study experimentally the amount of information
that the leakage L defined in Eqn. (8.2) leaks on Z when τ = {2, 3} and when the
coefficients C(u,v) deviate randomly from those of Eqn. (8.5). More precisely, C(u,v)

are respectively drawn at random from this law:

C(u,v) ∼ c(u,v) + U(
[
− δ

2 ,+
δ
2

]
) . (8.6)

The randomness lays in the uniform law U(
[
− δ

2 ,+
δ
2

]
), that we parametrize by the

deviation δ ∈ {0.1, 0.2, 0.5, 1.0}. The computed mutual information is I[L;Z], where
L = P (X ⊕ F (M), X ′ ⊕ F (M ⊕ α)) + P (M,M ⊕ α) +N and N = NRD +NRM .

8.3.2 Simulation Parameters

We assume that F has been designed thanks to the first construction presented in
Sec. 8.2.1. Hence, it is a function from F

n+1
2 into Fn

2 . The maskM and the constant
α are of dimension n+ 1, whereas X is n-bit long.
The mutual information I[L;Z] is computed for:

• a Gaussian noise N of standard deviation σ varying in ]0, 5],

• n = 3 bits (to speed up the computations),

• E = {0} × F
n
2 ⊂ F

n+1
2 and the constant α is equal to the binary word 1000,

and

• F (x3x2x1x0) = 0 if x3 = 1 or x2x1x0 otherwise.

For each experiment, we also compute the mutual information for the straightfor-
ward CM of the state-of-the-art (implementation of [SRQ06] represented in Fig. 8.1).
We also give the mutual information of this CM if the model is exactly the Hamming
distance, and indicate the corresponding leakage without any countermeasure. We
recall that, still with a perfect model, the mutual information for our countermeasure
with Z is null, whatever sigma is.
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8.3.3 Simulation Results

The results are shown in Tab. 8.1. It appears that the degree τ has minor influence
on the leakage. The major factor is the deviation from the Hamming distance model.
As expected, for low deviations (much smaller than 1, e.g. 10% or 20%), the leakage-
free countermeasure of Fig. 8.2 definitely outperforms the CM of Fig. 8.1. However,
in the presence of deviations close to the unity, the state-of-the-art CM remains the
best. In this case, the proposed countermeasure still leaks less than an unprotected
design. Nonetheless, we insist that this situation is unlikely, as the deviations from
the assumed Hamming distance model is of the order of one bit flip. This means
that the designer has a very poor knowledge of the technology as he applies the
countermeasure without checking the assumption (Property 2).
Eventually, it is noteworthy that state-of-the-art CM is even slightly improved

by the imperfection of the leakage function A. This reflects the fact that the random
variable HW(Z ⊕M ′′)+HW(M ′′) do carry a lot of information on Z, and the noise
help reduce the dependency (and thus favors the defender). Also, both CMs are
equivalent for an intermediate deviation of 50%. As this value is already quite
large, we can conclude that our countermeasure is relevant even if the assumptions
on the hardware leakage are extremely approximate.

8.4 Conclusions

In this chapter, we presented a new masking scheme for hardware S-box implemen-
tations. We argued that our proposal is a leakage-free countermeasure under some
realistic assumptions about the device architecture. The solution has been evalu-
ated within an information-theoretic study, proving its security against univariate
SCA attacks under the Hamming distance assumption. When the leakage function
deviates slightly from this assumption (by a few tens of percent), our solution still
achieves excellent results. However, if the model is very noisy (the model deviates
from the Hamming distance by ≈ 50%), then our countermeasure remains all the
same as good as state-of-the-art countermeasure.
It has been underlined (in the second construction) that some functions F have

a balanced derivative in more than one direction α 6= 0. As a perspective, we
mention that this feature can be taken advantage of to increase the security of the
countermeasure. Indeed, in the perfect model, the leakage remains null. However,
using many “αs” certainly helps to counter model imperfections, thus reducing the
leakage in this case.
Also, we underline that the proposed countermeasure can be adapted to the

hypothetical case where the perfect model is not the Hamming distance A(X,Y ) =

HW(X⊕Y ), but is asymmetrical in rising and falling edges (e.g. A(X,Y ) = HW(X ·
¬Y )). Such leakages can be found in near-field electromagnetic measurements (refer
to: [PSQ07] or [SGD+09, Fig. 4, left]).
In the next chapter, we propose an enhancement version of the leakage-free

countermeasure.
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Table 8.1: Leakage comparison of one state-of-the-art CM and our proposed CM in
the imperfect HD leakage model.
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Chapter 9

Register Leakage Masking Using

Gray Counter

In this chapter, we propose a new way to apply masking to secure hardware imple-
mentations of block ciphers. The new countermeasure is highly inspired from the
leakage-free masking scheme presented in the previous chapter. The main advantage
of the new proposed solution is that not only the masked variables and the masking
material can be manipulated simultaneously without leaking sensitive information
in the Hamming distance model, but also they have the same bitwidth. This should
reduce the memory requirements. Moreover, we show that the leaking information
stays very limited when the deterministic part of the real leakage slightly deviates
from the Hamming distance. Finally, we apply our method to protect an AES hard-
ware implementation and we show that the performances are suitable for practical
implementations.
The results presented in this chapter have been published in collaboration with

Emmanuel Prouff, Sylvain Guilley and Jean-Luc Danger in the international
symposium on Hardware-Oriented Security and Trust (HOST 2012) [MPGD12b].
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9.1 Core Principle, Existing Works and Novelties

In this section, we recall the leakage of the first-order masking scheme related to
the simultaneous updating of the register RD and RM (i.e. register of the masked
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Figure 9.1: Leakage-free masking implementation.

data and the register of the mask) depicted in Fig. 8.1 of Chapter 8. The leakage L
can be expressed as:

L = A(X ⊕M,X ′ ⊕M ′) +A(M,M ′) +NRD +NRM , (9.1)

where A is a deterministic function representing the power consumption during the
register updating and where NRD and NRM are two independent noises. Further-
more, when A satisfies A(X,Y ) = A(X ⊕ Y ) for any pair (X,Y ), then the leakage
can be rewritten as:

L = A(Z ⊕M ′′) +A(M ′′) +NRD +NRM , (9.2)

where Z (respectivelyM ′′) denotes X⊕X ′ (respectivelyM⊕M ′). Since the leakage
variable L is statistically dependent on Z, any leakage on it is potentially exploitable
by an univariate SCA involving its higher-order moments (and in particular its
variance [MDFG09]).
In order to balance the distributions of the leakage L, we suggest in the leakage-

free countermeasure (Chapter 8) to involve a function α© such that X α© M =

X ⊕ F (M) for some well chosen function F from F
p
2 into F

n
2 with p ≥ n (see

Fig. 9.1). For such a masking, the deterministic part in Eqn. (9.2) can be rewritten:

A(Z ⊕ F (M)⊕ F (M ′)) +A(M ′′) . (9.3)

Based on Eqn. (9.3), we deduce two sufficient conditions for the leakage to be
independent of Z:

1. [Constant Mask Difference]: M ⊕M ′ is constant,

2. [Difference Uniformity]: Y = F (M)⊕ F (M ′) is uniform.
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To fulfill the two conditions above, we fix the condition M ′ = M ⊕ α for some
nonzero constant term α and design a function F s.t. Y 7→ F (Y ) ⊕ F (Y ⊕ α) is
uniform for this α.
Despite its advantages (perfect first-order security in the Hamming distance

model, efficiency, simplicity, etc.), the leakage-free countermeasure has two draw-
backs. First, all the computations during the algorithm processing are protected
with the single pair of masks (M , M ′ = M ⊕ α). This property has no impact
on the first-order security but potentially weakens the implementation resistance
with respect to higher-order SCA (and especially the second-order ones). A second
issue with the leakage-free countermeasure is that the input and output dimensions
p and n of a function F satisfying the two sufficient conditions cannot be equal.
Essentially because for every permutation F on F

n
2 and every constant α ∈ F

n
2 , the

function x 7→ F (x)⊕F (x⊕α) is not bijective. This implies that the mask bitwidth
p is strictly greater than the bitwidth n of the data to be masked, which induces a
time/memory overhead compared to classical first-order Boolean maskings.
In the following section, we present an alternative to the leakage-free CM which

does not suffer from the two drawbacks cited above. More precisely, thanks to the

so-called Gray code, we will show that it is possible to define a masking scheme which

shares almost all the good properties of the leakage-free solution with the additional

asset that the mask and the masked data have the same size (p = n). This makes

the new countermeasure an optimal one in terms of randomness consumption per

datum to mask. Moreover, we will show that this strategy enables more variability

of the mask values used during the overall algorithm processing which strengthens

the countermeasure resistance against higher-order SCA. For such a purpose, we

however have to relax the first condition which is replaced by the following new

constraint:

1. [Constant Mask Difference Weight]: HW(M ⊕M ′) is constant.

If the device is leaking in the Hamming distance model, we will argue that this

replacement has no impact on the implementation security w.r.t. first-order SCA.

9.2 A New masking Function

We structure our study of the new proposal in two steps as in the previous chapter:

the first one is performed by assuming that A satisfies the property A(X,Y ) =

A(X ⊕ Y ) for any pair (X,Y ) and the second one is conducted in an imperfect

model where A deviates from the Hamming distance model.

9.2.1 Introduction of the New Proposal

In order to ensure that HW(M ⊕M ′) is constant between two consecutive iterations

of the algorithm loop in Fig. 9.1, we propose to define M ′ as the successor of M in

the Gray counter. Indeed, as a property of this code, we have HW(M ⊕M ′) = 1.

In the following, we denote by M (i) the value of M at the ith application of an
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n-bit Gray code (i.e. for the ith iteration of the loop in Fig. 9.1). For example,
we have M (0) = M , M (1) = M ′, M (2) = (M ′)′, etc. As a Gray code is a bijective
(n, n)-function, we have M (2n) = M (0). Moreover, all the M (i), 0 ≤ i < 2n, are
different. With this specification of the relationship between two consecutive mask
values, we ensure that the scheme satisfies the first Constant Mask Difference Weight

condition. In order to finalize the countermeasure specification, it remains to define
a function F such that the Difference Uniformity is satisfied when M and M ′ are
two consecutive states in a Gray code. Actually, we will see that there is a huge
amount of possible choices for F .

Let us first denote by i the integer value corresponding to the binary repre-
sentation of an element in F

n
2 (by construction i ranges over all integer values in

J0, 2n−1K). For a function F to satisfy the second condition of Sec. 9.1 (Difference
Uniformity), there must exist a permutation G on J0, 2n−1K such that F is a solution
of the following system SG:

SG :





F (M (0))⊕ F (M (1)) = G(0) ,

F (M (1))⊕ F (M (2)) = G(1) ,

· · · ... · · ·
F (M (2n−1))⊕ F (M (0)) = G(2n − 1) .

Proposition 1. For every permutation G on J0, 2n− 1K, there exists 2n function F

that satisfy SG.

Proof. As the values M (i) fill Fn
2 , if we choose one value of F (M

(0)) (amongst the
2n possibilities), then SG has one unique solution, since ∀i > 0, F (M (i+1)) =

F (M (i))⊕G(i).

In view of this proposition, there exists a huge number of functions to select a
candidate F satisfying the Difference Uniformity condition. A construction strategy
to define one of them may simply consist in randomly generating a permutation G
and a value for F (M (0)). Then, the function F is designed by solving the system
SG. This construction of F is very efficient (quadratic in 2n for small n) and must

be done only once for an implementation (the same function F can be used for all

the executions of the implementation).

9.2.2 Analysis of the New Proposal in the Idealized Model

In our security analysis, we assume that the attacker has access to the power con-

sumption of the device and applies HO-SCA attacks. Regarding the leakage model,

we assume that the device leaks the Hamming distance between two consecutive

values handled in the register. Since our proposed masking scheme satisfies that

F (M)⊕ F (M ′) is uniformly distributed over Fn
2 and independent of Z, the mutual

information I[A(Z ⊕ F (M)⊕ F (M ′)) +A(M ′′);Z] is zero. Hence, our construction
is leakage-free and immune against univariate SCA attacks.
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9.2.3 Study in the Imperfect Model

In this section, we study how the countermeasure is resilient to imperfections of
the leakage model. Namely, we quantify the amount of information leaked when
the leakage function A is a multivariate polynomial P (X1, · · · , Xn, Y1, . . . , Yn) that
does not satisfy the property A(X,Y ) = A(X⊕Y ) as detailed in Chapter 8 Sec. 8.3.
In the following experiments, we compute the mutual information between L and
Z when the degree of the multivariate polynomial of Eqn. (8.4) is equal to 2 (i.e.
τ = 2) and when its coefficients C(u,v) are drawn at random from the law defined
in Eqn. (8.6). Three bit variables are considered in our simulation. The results are
shown in Tab. 9.1. They represent the leakage for:

• an unprotected device (in red color),

• a straightforward masking, as in Fig. 8.1 (in green color),

• our CMs (in purple color), with an imperfect model (otherwise the leakage is
null) of order τ = 2.

It appears that the leakage-free CM and the one using the Gray counter have com-
parable values. This was indeed expected, as both use the same amount of masking
entropy (after the application of F ), namely n bits. They remain unambiguously
better than the straightforward first-order masking when the deviation δ < 0.5.
Now, this order of magnitude is already quite large. A deviation δ ≥ 0.5 is more
likely to be due to the CM designer assuming a wrong leakage model than the
hardware behaving strangely. In addition, the designer is able to reproduce in silico
those characterizations, and can thus notice that the model was indeed 50% or more
erroneous. Consequently, the characterizations presented in Tab. 9.1 confirm that a
large diminution of leakage can be obtained with this CM.

9.3 Hardware Implementation of the Countermeasure

9.3.1 New Masking Architecture

In this section, we apply our proposal to the AES block cipher. The registers RD
and RM contain respectively the masked variable X ⊕F (M) and the mask M . We
assume that the leakage comes mainly from the activity of these registers, following
Eqn. (9.2) and (9.3). The maskM is considered Gray encoded, thus the mask update
to M ′ is an incrementation such as HW(M ⊕M ′) = 1 which can be pre-computed
in ROM or synthesized in logic gates.
A first implementation would be to use the GLUT architecture as shown in

Fig. 9.1 with a look-up table representing the function S′ : (X,Y, Y ′) 7→ S(X ⊕
F (Y ))⊕F (Y ′) being pre-computed and stored in ROM. However, this would involve
huge ROM look-up tables (e.g. of size 224 for n = 8). In our case,M ′ can be deduced
from M (it is the successor of M in the Gray code): thus, the table input size can
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Table 9.1: Leakage comparison of the leakage-free CM (left column) and of the one
using the Gray counter (right column) in the imperfect HD leakage model.
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be reduced from 3n to 2n bits. However, the ROM remains quite large: it contains
216 bytes for n = 8.
In a second implementation, we eliminate the ROM with 2n inputs by resort-

ing to a more simple structure called Universal S-box Masking (USM) presented
in [MDFG09]. In this architecture, the input and output XOR with respectively
F (M) and F (M ′) of the GLUT S′ give place to ROMs surrounding the S-box S.
Each table uses external encodings with bijections B1 and B2 (e.g. a simple XOR
operation with a constant value) in order to avoid nets with unmasked variables, for
instance:

S(X ⊕ F (Y ))⊕ F (Y ′)︸ ︷︷ ︸
ROM

= F (Y ′)⊕B−12︸ ︷︷ ︸
ROM #3

◦B2 ◦ S ◦B−11︸ ︷︷ ︸
ROM #2

◦B1(X ⊕ F (Y ))︸ ︷︷ ︸
ROM #1

.

Figure 9.2 illustrates the mask path of AES with the USM implementation taking
advantage of the Gray code encoding with the use of three n inputs ROMs. The
linear part (ShiftRows and MixColumns) inserted before the third ROM allows to
remove the linear computation of the mask. In order to reduce the memory size,
B1 and B2 are split in two 4-bit bijections. So, memories #1 and #3 could be
implemented in two 256 × 4 ROMs as shown in Fig. 9.2. Hence, the total ROM
complexity is 3 × 28 bytes for the masked variable path and 28 bytes for the mask
path: thus 210 bytes.
If the bijections B1 and B2 are public, an attacker can target the variables

between the tables. Thus, in order to ensure an optimal security and remove all
possible leakage, we propose hereafter three solutions to avoid this issue.

9.3.1.1 Time-Security Trade-off

The first idea is to pause the encryption every once in awhile, in order to compute
a new sets of ROM using different bijections. If we denote by η the amount of
measurements for which the implementation is DPA-resistant, then we perform the
encryption η times before changing the bijections used. This strategy looks like the
so-called leakage-resilient countermeasure [Koc05, GSD+11] (the key is regularly
updated to avoid passive and active attacks).

9.3.1.2 Surface-Security Trade-off

The second idea is to use RAMs, rather than ROMs. Then, the bijections should be
refreshed regularly. For instance, the simultaneous read-write facility of the dual-
port Block RAM (BRAM) in FPGA can be used. While a given set of data is read
from one port of the BRAM (say Port A), the next data using new bijections are
computed and written to other port (Port B). The read and write ports are switched
every η encryptions. Thus, the data which was written earlier to port B, would now
be read. The port A would now be used to write the next data values. A control
bit is used to toggle the operation of switching the ports.
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Figure 9.2: The USM hardware implementation.
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Eventually the area consumption of this solution would be roughly twice the
regular one (for memory blocks), for the same performances, but the implementation
security is enhanced.

9.3.1.3 Partial Reconfiguration

Another way to update the RAMs is to partially re-configure the FPGA. The idea is
to modify a portion of the bitstream, i.e. the one containing the RAM using different
bijections. This way, the countermeasure size and performances would be almost
unchanged, except for the reconfiguration times, during which the computations
must be paused.

9.3.2 Complexity and Throughput Results

The proposed implementation has been tested in a StratixII FPGA of the SASEBO-
B evaluation board. It has been compared with an unprotected AES and with a
straightforward first-order masked AES (see Fig. 8.1 of Chapter 8). The table 9.2
summarizes the memory complexity for each implementation and the estimated fre-
quency.

Table 9.2: Implementation results for reference and protected AES

Unprotected
First-Order Our Difference

masked AES Proposal vs Unprot.

Number of ALUTs 783 1287 951 +21%

Number of M4K 20 32 80 × 4

ROM Blocs

Frequency (MHz) 133 90 103 -29%

These results show that the proposed method on hardware implementations has
little impact on complexity and speed compared with the reference implementation.
As we can see, the overheads in terms of logical cells, ROM blocks and clock fre-
quency are all within reasonable ranges, even for real-life applications where several
IPs are included in the same FPGA.

9.3.3 Attack Experiments

The security evaluation of this countermeasure was made in a real-life context.
First, the power consumption is measured by acquiring the magnetic field radiated
by the FPGA’s decoupling capacitors. This non-intrusive methodology yields high
quality measurements. Second, we applied several side channel distinguishers (e.g.
first- and second-order CPA, MIA) to the leakage measurements in order to check
them. For each scenario, we acquired a set of 100K power consumption traces using
random masks and plaintexts. Finally, we performed the first-order success rate as
in [SMY09].
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For our proposed CM, the attacks performed worse. The success rates stay under
10% even when using all the 100K measurements. We conclude that the experiments
on a real circuit shows the evident benefit of our CM against univariate side channel
attacks.

9.4 Conclusions

In this chapter, we presented a new masking scheme for hardware S-box implementa-
tions which aims at blanking the leakage under the Hamming distance assumption.
This method consists in using the Gray counter for the mask update and modifying
the mask value by applying some specific functions F . When the leakage function
deviates slightly from the model assumption, our solution still achieves excellent
results. Practical implementations showed that the performances decrease in terms
of complexity and speed are very limited, which is particularly true for the USM
implementation which does not require large memories.
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First-Order Leakage Squeezing

Countermeasure

In this chapter, we propose a new masking countermeasure called leakage squeezing.
It consists in manipulating the mask through a bijection F , aimed at reducing the
dependency between the shares’ leakage. In particular, we explore the functions F
that thwart HO-CPA of maximal order d. We mathematically demonstrate that
optimal choices for F relate to optimal binary codes (in the sense of communication
theory). First, we exhibit optimal linear F functions. Second, we note that for
bitwidth values of n for which non-linear codes exist with better parameters than
linear ones. These results are exemplified in the case n = 8, where the optimal F
can be identified: it is derived from the optimal rate 1/2 binary code of size 2n,
namely the Nordstrom-Robinson (16, 256, 6) code. This example provides explicitly
with the optimal protection that limits to one mask of byte-oriented algorithms such
as the AES block cipher. It protects against all HO-CPA attacks of order d ≤ 5.
Eventually, the countermeasure is shown to be resilient to imperfect leakage models.
The results presented in this chapter have been published in collaboration with

Sylvain Guilley and Jean-Luc Danger in the international Workshop in
Information Security Theory and Practice (WISTP 2011) [MGD11b] and in
collaboration with Claude Carlet, Sylvain Guilley and Jean-Luc Danger in the
international conference on Cryptology AfricaCrypt 2012 [MCGD12].
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10.1 Studied Implementation and its Leakage

The two shares manipulated in a Boolean first-order countermeasure are (X⊕M,M).
In the “leakage squeezing” CM we propose in this chapter, a bijection F is applied
on the mask share in order to break the too strong link between the shares. Thus,
the new shares are now (X⊕M,F (M)). The schematic of this scheme is illustrated
in Fig. 10.1. This figure highlights two registers, able to hold each one n-bit word.
The left register hosts the masked data, X ⊕M , whereas the register on the right
holds F (M), i.e. the mask M passed through the bijection F . In this chapter, we
are also concerned with the leakage from those two registers only. Indeed, they are
undoubtedly the resource that leaks the most. Also, the rest of the logic can be ad-
vantageously hidden in tables, thereby limiting their side channel leakage [SVKH10].
It is referred to as “tabulated round logic” in Fig. 10.1.

n bits n bits

X ⊕M F (M) simultaneous
leakage

a b

Tabulated round logicMemory

X ′ ⊕M ′ F (M ′)

b′a′

Figure 10.1: Setup of the first-order masking countermeasure with bijection F .

The computation of the bijection F shall not leak. Actually, F can be merged
into memories, hence being totally dissolved. Therefore, the two shares (X ⊕
M,F (M)) remain manipulated concomitantly only once, namely at the clock rising
edge. For the sake of illustration, we provide with a typical functionality of this
combinational logic hidden in memory. If we denote by C the round function and
by R the mask refresh function, then the table implements:

• a′ = C(a⊕ F−1(b))⊕R(F−1(b)) and
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• b′ = F (R(F−1(b))).

The detail of the tabulated round logic is represented in Fig. 10.2.

n bits

X ⊕M F (M)

n bits

simultaneous
leakage

a b

C R

F

Memory

F−1

F (M ′)X ′ ⊕M ′
b′a′

Figure 10.2: Detail of the function implemented in the tabulated round logic shown
in Fig. 10.1.

In the context of a side channel attack against a block cipher, either the first
round or the last round is targeted. Thus either the input X (plaintext) or the
output X ′ (ciphertext) is known by the attacker. We assume that the device leaks
in the Hamming distance model. Therefore, the sensitive variable to protect is
Z = X ⊕X ′. The leakage of the studied hardware (Fig. 10.1) is thus:

L = HD(X ⊕M,X ′ ⊕M ′) + HD(F (M), F (M ′))

= HW(Z ⊕M ⊕M ′) + HW(F (M)⊕ F (M ′)) . (10.1)

10.2 Optimal Function in dth-Order CPA

10.2.1 Optimal Function fopt

We recall the optimal function defined in [PRB09] that optimize the CPA attack
fopt(z) = E[L−E[L] | Z = z]. If z 7→ fopt(z) is constant (i.e. fopt(Z) is determinis-
tic), then the authors in [PRB09] show that the correlation coefficient of the attack
is null, which means that the attack fails.
This result can be applied on the studied leakage function of Eqn. (10.1), without

F (i.e. with F equal to the identity function Id). The leakage function therefore
simplifies in HW(Z⊕M ′′)+HW(M ′′), whereM ′′ =M⊕M ′ is a uniformly distributed
random variable in F

n
2 .
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• In a first-order attack, the attacker uses fopt(Z) = E[HW(Z⊕M ′′)+HW(M ′′)−
n | Z] = 0, which is deterministic,

• whereas in a second-order attack, the attacker uses fopt(Z) = E[
(
HW(Z ⊕

M ′′) + HW(M ′′) − n
)2 | Z] = n − HW(Z), which depends on Z. This result

is easily obtained by developing the square. The only non-trivial term in this
computation is E[HW(z ⊕M ′′) × HW(M ′′)], which is proved to be equal to
n2+n

4 − 1
2HW(z) in [PRB09, Eqn. (19)].

In summary, without F , a first-order attack is thwarted, but a second-order attack
will succeed. In the sequel, when mentioning HO-CPA attack, we implicitly mean
the univariate correlation attack that uses a higher-order moment of the traces
instead of the raw traces. Nonetheless, as explained in [WW04], this second-order
attack requires more traces than a first-order attack on an unprotected version that
do not use any mask. Indeed, the noise is squared and thus its effect is exacerbated.
More generally, the higher the order d of a HO-CPA attack, the greater the impact of
the noise. Thus, attacks are still possible for small d, but get more and more difficult

when d increases. Therefore, our objective is to improve the masking CM so that

the HO-CPA fails for orders J1, dK, with d being as high as possible. This translates

in terms of fopt(Z) by having E[
(
HW(Z⊕M⊕M ′)+HW(F (M)⊕F (M ′))−n

)d | Z]
deterministic (i.e. independent of the sensitive variable Z) for the highest possible

values of the integer d. Thus, when developing the sum raised at the power d, we

are led to study terms of this form:

Term[p, q](fopt)(z)
.
= E[HWp(z ⊕M ⊕M ′)× HWq(F (M)⊕ F (M ′))]

= E[HWp(z ⊕M ′′)× HWq(F (M)⊕ F (M ⊕M ′′))] ,(10.2)

where p and q are two positive integers. If either p or q is null, then trivially,

Term[p, q](fopt) is constant. We are thus interested more specifically in p and q

values that are strictly positive. We note that in order to resist dth-order HO-CPA,

Term[p, q](fopt)(z) must not depend on z for all p and q that satisfy p+ q ≤ d.

Incidentally, the same condition would hold if the two shares were:

• F0(X ⊕M) and F1(M), where F0 and F1 are two bijections, with F0 linear,

instead of merely

• X ⊕M and F (M), as in Fig. 10.2.

This new setting is more general, since by choosing F0 = Id (linear bijection) and

F1 = F (arbitrary bijection), it comes down to that of Fig. 10.2. The generalization

of Eqn. (10.2) is:

E[HWp(F0(z ⊕M ⊕M ′))× HWq(F1(M)⊕ F1(M
′))] (because F0 is linear)

= E[HWp(F0(z)⊕ F0(M)⊕ F0(M
′))× HWq(F1(M)⊕ F1(M

′))] (idem)

= E[HWp(z̃ ⊕ M̃ ⊕ M̃ ′)× HWq(F1(F
−1
0 (M̃))⊕ F1(F

−1
0 (M̃ ′)))] , (10.3)
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where z̃
.
= F0(z), M̃

.
= F0(M) and M̃ ′′ .= F0(M

′′). The random variable M̃ (resp.
M̃ ′′) is uniformly distributed becauseM (resp. M ′′) is also uniformly distributed and
F0 (resp. F1) is a bijection. Thus, the more general setting is secure if Eqn. (10.3)
does not depend on z̃ for all p+ q ≤ d, which is equivalent to having the setting of
Fig. 10.2 secure with F = F1 ◦F−10 . For this reason, we simply reason in the sequel
with only one bijection applied to the mask, i.e. the masked sensitive data being
manipulated plain.

10.2.2 Sequential Leakage

If the shares X ⊕M and F (M) are manipulated at different dates (i.e. not simul-
taneously as in Fig. 10.2), then the attacker could typically attempt to combine
their leakage. The paper [PRB09] precisely covers this topic: it proves that the best
combination tool is the centered product. Thus, the attacker’s strategy remains in
line with that discussed on parallel leakage: terms such as Term[p, q](fopt)(z) are
checked for dependence in z. So, the results discussed here also apply to software
implementations that handle the shares sequentially.

10.2.3 Condition on F for the Resistance Against Second-Order

CPA

To resist second-order CPA, the term in Eqn. (10.2) must be constant for p+ q ≤ 2.
As just mentioned, the cases (p, q) = (2, 0) and (0, 2) are trivial. This subsection
thus focuses on the case where p = q = 1.

The term F (M) ⊕ F (M ⊕M ′′) is the value at M of the derivative of F in the
direction M ′′, noted DM ′′F (M). It can be observed that Eqn. (10.2) also writes
as a convolution product: Term[p, q](fopt)(z) = 1

2n

(
HW ⊗ E[HW(D(·)F (M))]

)
(z),

where ⊗ denotes the convolution operation. In this expression, E[HW(D(·)F (M))]

designates the function:

E[HW(D(·)F (M))] : F
n
2 → Z

m′′ 7→ E[HW(Dm′′F (M))] = 1
2n

∑
m HW(Dm′′F (m)) .

The Fourier transform of a function f : Fn
2 → Z is defined as f̂ : Fn

2 → Z, z 7→∑
y∈Fn

2
f(y)(−1)y·z. An appealing property of this Fourier transform is that it turns

a convolution into a product. So, we have:

fopt(z) = cst ⇐⇒ ‘fopt(a) ∝ δ(a)
// where ∝ means “is proportional to”,
// a ∈ F

n
2 and δ( · ) is the Kronecker symbol.

⇐⇒ ‘HW(a)× ¤ 
E[HW ◦D(·)F (M)](a) =

(
n× 2n−1

)2 × δ(a)

⇐⇒ ∀a 6= 0,‘HW(a) = 0 or ¤ 
E[HW ◦D(·)F (M)](a) = 0 . (10.4)

To prove the second line, we note that on the one hand:

‘HW(0) =
∑

z

HW(z) · (−1)0·z = n

2
2n ,
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and on the other hand:

¤ 
E[HW ◦D(·)F (M)](0)

=
∑

z E[HW(DzF (M))(−1)0·z]
= E[

∑
z HW(F (M)⊕ F (M ⊕ z))]

= E[
∑

z′ HW(z′)] // Because ∀m, z 7→ F (m)⊕ F (m⊕ z) is bijective
= E[n2 2

n] = n
2 2

n .

Now, if we denote by ei the lines of the identity matrix In of size n× n,

‘HW(a) =
∑

z

1

2

n∑

i=1

(1− (−1)zi) (−1)a·z

= n · 2n−1δ(a)− 1
2

∑
z

∑n
i=1(−1)(a⊕ei)·z

=





n · 2n−1 if a = 0,

−2n−1 if ∃i ∈ J1, nK, such that a = ei,
0 otherwise.

(10.5)

Thus, the problem comes down to finding a function F such that:
¤ 

E[HW ◦D(·)F (M)](a) = 0 for all a = ei. This condition rewrites:

∀a = ei,
∑

z,m

HW(F (m)⊕ F (m⊕ z))(−1)a·z = 0 . (10.6)

Let a 6= 0. Then:

∑
z,m HW(F (m)⊕ F (m⊕ z))(−1)a·z

=
∑

z,m
1
2

∑n
i=1

(
1− (−1)Fi(m)⊕Fi(m⊕z)

)
(−1)a·z

=
✘✘✘✘✘✘❳❳❳❳❳❳
n22n−1δ(a)− 1

2

∑n
i=1

∑
z,m(−1)Fi(m)⊕Fi(m⊕z)⊕a·z

= −1
2

∑n
i=1

∑
m(−1)Fi(m)

∑
z(−1)a·z⊕Fi(m⊕z)

= −1
2

∑n
i=1

∑
m(−1)Fi(m)

∑
z(−1)a·(z⊕m)⊕Fi(z) // z ← z ⊕m

= −1
2

∑n
i=1

∑
m(−1)a·m⊕Fi(m)

∑
z(−1)

a·z⊕Fi(z)

= −1
2

∑n
i=1

(∑
m(−1)a·m⊕Fi(m)

)2

= −1
2

∑n
i=1

(
◊ (−1)Fi(a)

)2
.

Thus, this quantity is null if and only if ∀i ∈ J1, nK, ◊ (−1)Fi(a) = 0. Generalizing
the Fourier transform on vectorial Boolean functions (by applying the transfor-
mation component-wise), and using the notation fχ for the sign function of f (also
component-wise), then Eqn. (10.6) is equivalent to: ∀a = ei,”Fχ(a) = 0. The Fourier
transform of a sign function is also known as the Walsh-Hadamard transform1. Now,
as F is balanced (since bijective), this equality also holds for a = 0. By definition,

1Both notions are linked through the relationship ∀a, F̂χ(a) = 2nδ(a)− 2F̂ (a).
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a Boolean function g is d-resilient if its Walsh-Hadamard transform ĝχ(a) is null for
all a such as HW(a) ≤ d. Thus every coordinate of F is 1-resilient. Constructions
for such functions exist, as explained in [Car10a, Sec. 8.7].
In the next subsection, we use P -resilient functions F : according to the defini-

tion, they are balanced when up to P input bits are fixed.

10.2.4 Condition on F for the Resistance Against dth-Order CPA

A generalization of the previous result for arbitrary p, q ∈ N
⋆ .
= N\{0} is presented

in this section. We have the following theorem:

Theorem 5. Let P and Q be two positive integers, and F a bijection of Fn
2 .

Eqn. (10.2) is constant for all p ∈ J0, P K and q ∈ J0, QK if and only if:

∀a, b ∈ F
n
2 , 0 < HW(a) ≤ P, 0 ≤ HW(b) ≤ Q, ÿ (b · F )χ(a) = 0 . (10.7)

Before proving Theorem 5, let us introduce the following intermediate result.

10.2.4.1 First Intermediate Result for the Proof of Theorem 5

Theorem 6. ∀a ∈ F
n
2 , ∀p ∈ N, ’HWp(a) = 0 ⇐⇒ HW(a) > p.

Let us define the function H(n, p, h)
.
=

∑
z∈Fn

2
HWp(z)(−1)z·⊕

h
i=1

ei , for n ∈ N
⋆,

p ∈ N and h ∈ J0, nK. It is tabulated for n = 4 in Tab. 10.1. The value H(n, n, n),
indicated by dagger sign (i.e. “†”) in the table, is equal to (−1)nn!.

Table 10.1: Some values of H(n = 4, p, h).

h

0 1 2 3 4

p

0 16 0 0 0 0

1 32 −8 0 0 0

2 80 −32 8 0 0

3 224 −116 48 −12 0

4 680 −416 224 −96 24†

... > 0 < 0 > 0 < 0 > 0

As the order of the bits of the dummy variable z is indifferent in the term∑
z HW

p(z)(−1)a·z, we have ’HWp(a) = H(n, p,HW(a)).

Lemma 3.

H(n, p, n)





= 0 if p < n,

> 0 if p ≥ n and n is even,

< 0 if p ≥ n and n is odd.
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Proof.

H(n, p, n) =
∑

z

HWp(z)(−1)z·⊕n
i=1

ei =
∑

z

HWp(z)(−1)HW(z)

=
n∑

j=0

(
n

j

)
jp(−1)j = (−1)n

n∑

j=0

(
n

j

)
jp(−1)n−j = (−1)nn!

{
p

n

}
,

where

{
p

n

}
is a Stirling number of the second kind [Ed.09]. More precisely, it

is the number of ways of partitioning a set of p elements into n nonempty sets.

Consequently,

{
p

n

}
= 0 if n > p, because otherwise at least one set would be

empty. Also,

{
p

n

}
> 0 if n ≤ p. Now, the sign of H(n, p, n) depends on the parity

of n if n ≤ p. It is positive (resp. negative) if n is even (resp. odd).

Lemma 4.

H(n, p, h)





= 0 if p < h,

> 0 if p ≥ h and h is even,

< 0 if p ≥ h and h is odd.

Proof. This lemma has already been proved in Lemma 3 if h = n. Thus, we assume
in the remainder of this proof that h < n. For z ∈ F

n
2 , we note z = (zL, zH), where

zL ∈ F
h
2 and zH ∈ F

n−h
2 .

H(n, p, h) =
∑

(zL,zH)

HWp((zL, 0)⊕ (0, zH))(−1)(zL·⊕h
i=1

ei)⊕(zH ·0)

=
∑

(zL,zH)

(HW(zL) + HW(zH))p(−1)zL·⊕h
i=1

ei

=
∑

(zL,zH)

p∑

j=0

(
p

j

)
× HWj(zL)× HWp−j(zH)(−1)zL·⊕h

i=1
ei

=

p∑

j=0

(
p

j

)∑

zL

HWj(zL)(−1)zL·⊕
h
i=1

ei ×
∑

zH

HWp−j(zH)

=

p∑

j=0

(
p

j

)
×H(h, j, h)×H(n− h, p− j, 0) . (10.8)

Now, given Lemma 3, ∀j < h, H(h, j, h) = 0. Thus, if p < h, then all the terms
H(h, j, h) involved in Eqn. (10.8) are null, since j ∈ J0, pK is strictly inferior to h.
Besides, for all j ∈ J0, pK,

(
p
j

)
and H(n − h, p − j, 0) are strictly positive. If p ≥ h,

the terms H(h, j, h) for j ≤ p are:

• either all strictly positive if h is even, or

• all strictly negative if h is odd.
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Hence, so is the sum in Eqn. (10.8)

We give hereafter the proof of Theorem 6.

Proof. As already noticed, ’HWp(a) = H(n, p,HW(a)). According to Lemma 4, this
quantity is null if and only if p < HW(a).

10.2.4.2 Second Intermediate Result for the Proof of Theorem 5

For every X ∈ F
n
2 , we have:

(

n
∑

i=1

(−1)X·ei

)j

=
∑

i1,··· ,ij∈J1,nKj

j
∏

l=1

(−1)X·eil

=
∑

i1,··· ,ij∈J1,nKj

(−1)X·⊕
j
l=1

eil







Under this form,
some terms appear
multiple times.

=
∑

(k1,··· ,kn)∈Nn,
k1+···+kn=j

(

j

k1, · · · , kn

)

(−1)X·(⊕
n
i=1

kiei) , (10.9)

where each vector kiei in
⊕n

i=1 kiei is either ei if ki is odd or 0 otherwise. In the
Eqn. (10.9), the term

(

j
k1,··· ,kn

)

is a multinomial coefficient. Then:

∑

z,m

HWq(F (m)⊕ F (m⊕ z))(−1)a·z

=
1

2q

∑

z,m

(

n−
n
∑

i=1

(−1)Fi(m)⊕Fi(m⊕z)
)q

(−1)a·z

=
1

2q

∑

z,m

q
∑

j=0

(

q

j

)

nq−j(−1)j
(

n
∑

i=1

(−1)Fi(m)⊕Fi(m⊕z)
)j

(−1)a·z // See Eqn. (10.9)

=
1

2q

q
∑

j=0

(

q

j

)

nq−j(−1)j
∑

k1+···+kn=j

(

j

k1, · · · , kn

)

∑

z,m

(−1)(F (m)⊕F (m⊕z))·(⊕n
i=1

kiei)(−1)a·z

=
1

2q

q
∑

j=0

(

q

j

)

nq−j(−1)j
∑

k1+···+kn=j

(

j

k1, · · · , kn

)

(

¤ ((⊕n
i=1kiei) · F )χ(a)

)2
. (10.10)

10.2.4.3 The Complete Proof of Theorem 5

Based on the previous intermediate results, we give hereafter the complete proof of
Theorem 5.

Proof. As requested by Theorem 5, we introduce P and Q, two positive integers,
and F , a bijection of Fn

2 . With a reasoning close to that of Eqn. (10.4) for the case
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p = q = 1, we get:

∀p ∈ J0, P K, ∀q ∈ J0, QK, the function fopt, defined in Eqn. (10.2), is constant

⇐⇒ ∀p ∈ J0, P K, ∀q ∈ J0, QK, ∀a ∈ F
n
2
⋆,’HWp(a) = 0 or ¤ 

E[HWq ◦D(·)F (M)](a) = 0

⇐⇒ ∀p ∈ J0, P K, ∀q ∈ J0, QK, ∀a ∈ F
n
2
⋆,

{
either HW(a) > p (See Theorem 6)
or Eqn. (10.10) is zero

⇐⇒ ∀p ∈ J0, P K, ∀q ∈ J0, QK, ∀a ∈ F
n
2
⋆,HW(a) ≤ p =⇒ Eqn. (10.10) is zero

⇐⇒





∀p ∈ J0, P K,

∀q ∈ J0, QK,

∀a ∈ F
n
2
⋆,

HW(a) ≤ p

=⇒





q = 1 : ∀b,HW(b) ≤ 1 =⇒ ÿ (b · F )χ(a) = 0,

q = 2 : ∀b,HW(b) ≤ 2 =⇒ ÿ (b · F )χ(a) = 0,
...

q = Q : ∀b,HW(b) ≤ Q =⇒ ÿ (b · F )χ(a) = 0.

(10.11)

We provide with an explanation for the last part of Eqn. (10.11). The terms of
Eqn. (10.10) corresponding to a given j are a sum of squares (weighted by quantities
of the same sign). Thus, if those terms for j < q are null, then the ones for j = q

must also be null, because the complete sum (of squares) is null by hypothesis.

Remark 3. The condition expressed in Eqn. (10.7) of Theorem 5 can be reformulated

as follows. Every restriction of the bijective (n, n)-function F to Q components is

an (n,Q)-function that is P -resilient.

10.3 Existence of Bijections Meeting Eqn. (10.7)

In this section, we find bijections that meet Eqn. (10.7).

10.3.1 Three Conditions on Optimal Bijections F

10.3.1.1 Condition in Terms of Walsh-Hadamard Transform

The condition expressed in Eqn. (10.7) for Theorem 5 rewrites:

∀b ∈ F
n
2
⋆ .
= F

n
2\{0} and ∀a ∈ F

n
2 ,

if HW(a) ≤ d− HW(b) then ÿ (b · F )χ(a) = 0 . (10.12)

10.3.1.2 Condition in Terms of Correlation-Immunity

Given any (n, n)-function F , let C
.
= {(x, F (x));x ∈ F

n
2} be the graph of F . The

indicator 1C of C is the Boolean function:

1C : ξ ∈ F
2n
2 7→

{
1 if ξ ∈ C ,
0 otherwise .

The condition on F given in Eqn. (10.12) is satisfied if and only if the indicator
of the graph C of F is dth-order correlation-immune (see definition in [CCCS91]);
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this result comes from the characterization of correlation-immune functions by their
Fourier transform available in [XM88].
By the definition of correlation-immune functions, we also have this character-

ization on F . For all subset I of {1, · · · , 2n} of cardinality |I| at most d, and for
all a ∈ F

I
2, there are

|C|
2|I|
codewords of C whose coordinates of indices i ∈ I coincide

with those of a. This means that, by fixing some coordinates of x and some coor-
dinates of F (x), it is impossible to bias C = {(x, F (x));x ∈ F

n
2} if the number of

fixed coordinates does not exceed d.

10.3.1.3 Condition in Terms of Code

Given any (n, n)-function F , the weight enumerator WC(X,Y ) and distance enu-
merator DC(X,Y ) of the code C are:

• WC(X,Y )
.
=

∑
x∈Fn

2
X2n−HW(x,F (x))Y HW(x,F (x)) and

• DC(X,Y )
.
= 1
|C|

∑
x,y∈Fn

2
X2n−HW(x⊕y,F (x)⊕F (y))Y HW(x⊕y,F (x)⊕F (y)).

We haveWC(X+Y,X−Y ) =
∑

a,b∈Fn
2

(∑
x∈Fn

2
(−1)b·F (x)+a·x

)
X2n−HW(a,b)Y HW(a,b)

and DC(X+Y,X−Y ) = 1
|C|

∑
a,b∈Fn

2

(∑
x∈Fn

2
(−1)b·F (x)⊕a·x

)2
X2n−HW(a,b)Y HW(a,b).

Hence d + 1 is exactly the minimum value of the nonzero exponents of Y with
nonzero coefficients in DC(X+Y,X−Y ), called the dual distance of C in the sense
of Delsarte [Del73, MS77].
In summary, our goal can also be restated as follows: we seek to find a bijection

F such as the code C equal to the graph of F has the largest possible dual distance.

10.3.2 Optimal Linear Bijections

The bijection F can be chosen linear. All linear (n, n)-functions write F (x) =

(x·v1, · · · , x·vn), where vi are elements of Fn
2 . F is bijective if and only if (v1, · · · , vn)

is a basis of Fn
2 . We have:

ÿ (b · F )χ(a) = 0 ⇐⇒ ∑
x(−1)b·F (x)⊕x·a = 0

⇐⇒ ∑
x(−1)⊕

n
i=1

bi(x·vi)⊕x·a = 0

⇐⇒ ∑
x(−1)x·⊕

n
i=1

(bivi)⊕x·a = 0

⇐⇒ ∑
x(−1)x·(⊕

n
i=1

(bivi)⊕a) = 0

⇐⇒ ⊕n
i=1 bivi 6= a .

As this is true for all a such that HW(a) ≤ d − HW(b), we have the necessary and
sufficient condition:

∀b 6= 0, HW(
⊕n

i=1 bivi) > d− HW(b) . (10.13)

We notice that the set of ordered pairs C ′
.
= {(b,⊕n

i=1 bivi) ; b ∈ F
n
2} forms a

vector subspace of F2n
2 . Therefore, it defines a [2n, n, δ] binary linear code, where δ is
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Table 10.2: Minimal distance of some binary optimal linear rate 1/2 codes.

S-boxes of DES, MISTY1,
n/a n/a n/a

AES, Camellia,

algorithm [iso] CAST-128, HIGHT SEED

Value of 2n 8 10 12 14 16

Value of δmax(n) 4 4 4 4 5

its minimum (direct) distance. Because of Eqn. (10.13), the necessary and sufficient
condition becomes merely δ > d.
The codes C and C ′ have rate 1/2; and F being bijective, each of these codes

admits the two information sets J1, nK and Jn+1, 2nK. We recall that a set of indices
I is called an information set of a code if every possible tuple occurs in exactly one
codeword within the specified coordinates xi; i ∈ I. More generally, a rate 1/2

code which admits two complementary information sets is called a Complementary
Information Set code, or CIS code in short. These codes are studied in [CGKS12].
From any such linear CIS code, it is possible to deduce a linear bijection F . Indeed,
by permuting the coordinates, these two information sets can be respectively avail-
able at coordinates of indices J1, nK and Jn+1, 2nK in the codewords. The [2n, n, δ]
binary linear code can thus be spawned by a generator matrix (A B), where A
and B are two n × n invertible matrices. A left-hand side multiplication by the
inverse of A turns the generic generator matrix into the systematic representation
of the code, namely (In G), where G

.
= A−1 × B. This corresponds to a code

{(x, F (x));x ∈ F
n
2} where F is bijective because G is invertible (in the general case

of 1/2 rate codes, the systematic representation also writes as (In G), but G in not
necessarily invertible). It also corresponds to a code C ′ = {(b,

⊕n
i=1 bivi; b ∈ F

n
2}

giving a bijection F .
Now, [2n, n, δ] binary linear codes have been well studied. From the condition

δ > d, we deduce that the best achievable d using a linear bijection F is δmax(n)−1.
Consequently, d ≤ n, and this bound is met if and only if C is Maximum Dis-

tance Separable (MDS), which is equivalent to saying that F is a multipermuta-
tion [Vau94]. However, binary MDS codes exist only if the code dimension is equal
to 0, 1, the code length or the code length minus 1. Thus, binary MDS codes not
exist if n > 1, hence the bound d ≤ n− 1.
The greatest minimal distance δmax(n) of rate 1/2 binary linear codes is known

(refer for instance to [GO04]); corresponding codes are called “optimal”. For some
practical values of n, they are recalled in Tab. 10.2.
In particular, this result proves that with linear F , it is possible to protect:

• DES against all HO-CPA of order d ≤ 3, and

• AES against all HO-CPA of order d ≤ 4.

Indeed, there exist optimal linear codes that also enjoy the CIS property; as men-
tioned in [CGKS12], this notion is not trivial, since for instance there exists a
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[34, 17, 8] code which is not CIS. Now, for n = 4, the matrix G = I4 is invert-

ible since I4
−1

= I4.
The optimal linear function in the case n = 8 is generated by the non-identity

half of the systematic matrix of [16, 8, 5] code. This matrix is2:



1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 L1

0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 L2

0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 L3

0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 L4

0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 L5

0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 L6

0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 L7

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 L8




. (10.14)

It is already in row echelon form. Therefore, it can be turned into systematic
form with a Gauss-Jordan elimination. It involves the following linear operations
on the rows:



1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 L′1 ← L1 ⊕ L2 ⊕ L4 ⊕ L7

0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 L′2 ← L2 ⊕ L3 ⊕ L5 ⊕ L8

0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 L′3 ← L3 ⊕ L4 ⊕ L6

0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 L′4 ← L4 ⊕ L5 ⊕ L7

0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 L′5 ← L5 ⊕ L6 ⊕ L8

0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 L′6 ← L6 ⊕ L7

0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 L′7 ← L7 ⊕ L8

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 L′8 ← L8




,

which yields, after execution:



1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 L′1 = 0x80 ‖ 0x9e

0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 L′2 = 0x40 ‖ 0x4f

0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 L′3 = 0x20 ‖ 0xcc

0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 L′4 = 0x10 ‖ 0x66

0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 L′5 = 0x08 ‖ 0x33

0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 L′6 = 0x04 ‖ 0xf2

0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 L′7 = 0x02 ‖ 0x79

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 L′8 = 0x01 ‖ 0xd7




,

that has the expected form (I8 G4). The bijection F4 : x 7→ G4× x is the optimal
linear one for n = 8.
For n = 4, the bound d ≤ n− 1 is met, but not for n = 8, since the best d = 4

is at distance 3 from n− 1 = 7.
We note that C ′ is a permuted code of the dual C⊥ of C, obtained by swapping

the leftmost half of the codewords (i.e. b) with the rightmost half (i.e.
⊕n

i=1 bivi).

2This code is a subcode of the BCH [17, 9, 5] code. For more details, please refer to:

http://www.math.colostate.edu/~betten/research/codes/BOUNDS/sub_16_8_5-7_2.code.
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Indeed, C and C ′ have the same dimension n hence C⊥ and C ′ have the same
dimension n, and the scalar product between (

⊕n
i=1 bivi, b) and (x, F (x)) is equal

to (
⊕n

i=1 bivi) · x⊕ b · F (x) = b · F (x)⊕ b · F (x) = 0. Thus, finding the largest dual
distance of C is equivalent to finding the largest direct distance of C ′.
Incidentally, when no bijection is used (i.e. like for the genuine masking [WW04]),

F is the identity (hence a linear function) and C ′ is the repetition code. This code
is autodual (C ′⊥ = C ′) and furthermore C = C ′ (because the generating matrix
(In In) is invariant under left-right halves exchange). Its minimal distance is δ = 2,
and thus the maximal resistance order is d = 2− 1 = 1, as expected.
Now, the minimal order d for leakage squeezing with CIS codes (linear or not) is

δ = 2. Indeed the distance between two different codewords (x, F (x)) and (y, F (y))

is HW(x⊕y)+HW(F (x)⊕F (y)) ≥ 1+1 = 2 because the code has two complementary
information sets. As a consequence, the minimal order d for CIS codes is δmin ≥ 2.
As it is equal to 2 for the identity, the protection order is exactly at least 1. This
worst case for the security is thus attained when the leakage squeezing is not used,
which positively motivates for its usage.

10.3.3 Optimal Non-Linear Bijections

Under some circumstances, a non-linear bijection F allows to reach better perfor-
mances. There is no non-linear code for n = 4 that has a better dual distance than
linear codes of the same length and size, but there are some for n = 8. A non-linear
optimal code for n = 8 is the Nordstrom-Robinson (16, 256, 6) code (that is also
CIS, as discussed in details in [CGKS12, Example III.4]). With these parameters,
this code coincides with Preparata and Kerdock codes [Sno73] and has same mini-
mum distance and dual distance. Some codewords, as obtained from Golay code in
standard form [FST92], are listed in Tab. 10.3.

Table 10.3: Some codewords of the Nordstrom-Robinson (16, 256, 6) code.

Bit index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Codeword x = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Codeword x = 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Codeword x = 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Codeword x = 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Codeword x = 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Codeword x = 5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Codeword x = 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Codeword x = 7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Codeword x = 8 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Codeword x = 254 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1

Codeword x = 255 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1

It happens that the code cannot be trivially split into two halves that each fill
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exactly F
n
2 . Indeed, if the codewords are partitioned with bits J15, 8K on the one

hand, and bits J7, 0K on the other,

• then (11111111)2 — also noted 0xff in the sequel — is present (at least) twice
in the first half (from the high byte of codewords x = 3 and x = 7),

• and (00000000)2 — also noted 0x00 in the sequel — is present (at least) twice
in the second half (from the low byte of codewords x = 0 and x = 7).

We tested all the
(
16
8

)
partitionings. For 2760 of them, the code can be cut in two bi-

jections Fhigh and Flow of F8
2. This means that if we note x ∈ F

8
2 the codewords index

in Tab. 10.3, the Nordstrom-Robinson (16, 256, 6) code writes as Fhigh(x) ||Flow(x).
The codewords can be reordered according to the first column, so that the code
rewrites x ||Flow(F

−1
high(x)) [CGKS12]. So the bijection F can be chosen equal to

F = Flow ◦ F
−1
high. For example, when Fhigh consists in bits J15, 9K ∪ {7} of the code

(and Flow in bits {8} ∪ J6, 0K), F takes the values tabulated in Tab. 10.4.
Thus byte-oriented cryptographic implementations can be protected with this

code against all HO-CPA of order d ≤ 5.

10.3.4 Cost Optimality of the Leakage Squeezing

The leakage squeezing CM can be generalized to any injective (n,m)-function F ,
wherem ≥ n. The corresponding hardware architecture is depicted in Fig. 10.3. For
instance, the first-order leakage-free CM presented in Chapter 8 also uses a mask
size greater than that of the sensitive variable to protect.
In terms of codes, relaxing F from a bijection to an injection means that codes

of rates smaller than 1/2 are also eligible. For linear codes (i.e. linear F functions),
this is tantamount to saying that there exists an information set I such that the
restriction of the code to the complement of I is of same dimension as the code.
Unfortunately, this strategy does not bring any improvement. Indeed, codes

{(x, F (x));x ∈ F
n
2} ⊆ F

n+m
2 can have a greater direct distance when m increases

(for instance by padding the code with new columns), but in the meantime their
dual distance decreases. Consequently the cost of the CM increases with m, while
the security of the masking scheme decreases.
The best situation is thus to have m minimal, i.e. m = n. The leakage squeezing

CM initially presented (in Fig. 10.2) is thus optimal.

10.4 Security and Leakage Evaluations of the Optimal

Linear and Non-Linear Bijections

As argued in [SMY09], the robustness evaluation of a CM encompasses two dimen-
sions: its resistance to specific attacks, and its amount of leakage irrespective of any
attack strategy. Indeed, a CM could resist some attacks, but still be vulnerable to
others. For instance, in our study, we have focused on HO-CPA, but we have dis-
regarded other attacks, such as MIA attack [BGP+11] or attacks based on generic
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Table 10.4: Truth table for the found non-linear bijection.

{
F (x);x ∈ F

8
2

}
=

{ 0x00, 0xb3, 0xe5, 0x6a, 0x2f, 0xc6, 0x5c, 0x89,

0x79, 0xac, 0x36, 0xdf, 0x9a, 0x15, 0x43, 0xf0,

0xcb, 0x1e, 0xb8, 0x51, 0x72, 0xfd, 0x97, 0x24,

0xd4, 0x67, 0x0d, 0x82, 0xa1, 0x48, 0xee, 0x3b,

0x9d, 0x74, 0xd2, 0x07, 0xe8, 0x5b, 0x31, 0xbe,

0x4e, 0xc1, 0xab, 0x18, 0xf7, 0x22, 0x84, 0x6d,

0xa6, 0x29, 0x7f, 0xcc, 0x45, 0x90, 0x0a, 0xe3,

0x13, 0xfa, 0x60, 0xb5, 0x3c, 0x8f, 0xd9, 0x56,

0x57, 0xd8, 0x8e, 0x3d, 0xb4, 0x61, 0xfb, 0x12,

0xe2, 0x0b, 0x91, 0x44, 0xcd, 0x7e, 0x28, 0xa7,

0x6c, 0x85, 0x23, 0xf6, 0x19, 0xaa, 0xc0, 0x4f,

0xbf, 0x30, 0x5a, 0xe9, 0x06, 0xd3, 0x75, 0x9c,

0x3a, 0xef, 0x49, 0xa0, 0x83, 0x0c, 0x66, 0xd5,

0x25, 0x96, 0xfc, 0x73, 0x50, 0xb9, 0x1f, 0xca,

0xf1, 0x42, 0x14, 0x9b, 0xde, 0x37, 0xad, 0x78,

0x88, 0x5d, 0xc7, 0x2e, 0x6b, 0xe4, 0xb2, 0x01,

0xfe, 0x4d, 0x1b, 0x94, 0xd1, 0x38, 0xa2, 0x77,

0x87, 0x52, 0xc8, 0x21, 0x64, 0xeb, 0xbd, 0x0e,

0x35, 0xe0, 0x46, 0xaf, 0x8c, 0x03, 0x69, 0xda,

0x2a, 0x99, 0xf3, 0x7c, 0x5f, 0xb6, 0x10, 0xc5,

0x63, 0x8a, 0x2c, 0xf9, 0x16, 0xa5, 0xcf, 0x40,

0xb0, 0x3f, 0x55, 0xe6, 0x09, 0xdc, 0x7a, 0x93,

0x58, 0xd7, 0x81, 0x32, 0xbb, 0x6e, 0xf4, 0x1d,

0xed, 0x04, 0x9e, 0x4b, 0xc2, 0x71, 0x27, 0xa8,

0xa9, 0x26, 0x70, 0xc3, 0x4a, 0x9f, 0x05, 0xec,

0x1c, 0xf5, 0x6f, 0xba, 0x33, 0x80, 0xd6, 0x59,

0x92, 0x7b, 0xdd, 0x08, 0xe7, 0x54, 0x3e, 0xb1,

0x41, 0xce, 0xa4, 0x17, 0xf8, 0x2d, 0x8b, 0x62,

0xc4, 0x11, 0xb7, 0x5e, 0x7d, 0xf2, 0x98, 0x2b,

0xdb, 0x68, 0x02, 0x8d, 0xae, 0x47, 0xe1, 0x34,

0x0f, 0xbc, 0xea, 0x65, 0x20, 0xc9, 0x53, 0x86,

0x76, 0xa3, 0x39, 0xd0, 0x95, 0x1a, 0x4c, 0xff }.
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Figure 10.3: Generalization of the leakage squeezing countermeasure to any injective
function n→ m.

side channel distinguishers [VCS11]. Therefore, in addition to a security evaluation
conducted in Sec. 10.4.1, we will also estimate the leakage of the CM in Sec. 10.4.2.

10.4.1 Verification of the Security for n = 8

In this section, we illustrate the efficiency of the identified bijection from an HO-
CPA point of view. We focus more specifically on the n = 8 bit case, because of
its applicability to AES. We compute the values of fopt(z) for the centered leakage
raised at power 1 ≤ d ≤ 6 for four linear bijections (noted F1, F2, F3 and F4) and
the non-linear bijection given in Sec. 10.3.3 (noted F5). The linear functions are
defined from their matrix:

• G1 is the identity I8, i.e. the Boolean masking function without F ;

• G2 is a matrix that allows second-order resistance and is found without method;

• G3 is the circulant matrix involved in the AES block cipher;

• G4 is non-systematic half of the [16, 8, 5] code matrix (see Eqn. (10.14)).
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The G2, G3 and G4 matrices are:

G2 =




0 0 0 0 0 1 1 1
0 0 0 1 1 0 1 1
1 0 1 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0




, G3 =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1



,

G4 =




1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 1 0 1 0 1 1 1




.

It can be checked that they are invertible. Namely, their inverses are:

G2−1 =




0 1 1 1 0 0 0 0
1 1 1 0 0 1 0 0
1 0 0 1 1 1 0 0
0 0 1 0 1 1 1 0
1 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1




, G3−1 =




0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0



,

G4−1 =




1 1 1 0 1 0 1 1
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1




.

Table 10.5 reports some values of the optimal functions. The lines represented
in gray are those for which the fopt(z) are the same for all the values of the sensitive
variable z ∈ F

n
2 . For the sake of clarity, we represent only n + 1 values of z, i.e.

one per value of HW(z). But we are aware that unlike in the case where F = Id,
the optimal functions are not invariant in the bits reordering of z. If the line d is
represented in gray, then a dth-order HO-CPA cannot succeed. The last column

shows the optimal correlation coefficient ρopt =
√

Var[E[(L−E[L])|Z]]
Var[(L−E[L])] that an attacker

can expect [PRB09, Eqn. (15)].

It can be seen that the first nonzero ρopt approximately decreases with the CM
strength: it is about 25% for F1, about 4% for F2 and F3, and about 2% for F4
and F5. The table shows that amongst the linear functions, F4 : x 7→ G4 × x is
indeed the best, since it protects against HO-CPA of orders 1, 2, 3 and 4. It can also
be seen that the non-linear function F5 further protects against 5th-order HO-CPA,
as announced in Sec. 10.3.3.
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Table 10.5: Computation of fopt(z) for centered traces raised at several powers d,
and optimal correlation coefficient ρopt.

fopt(z) ρopt
z 0x00 0x01 0x03 0x07 0x0f 0x1f 0x3f 0x7f 0xff

Bijection F = F1 (reference F1 : x 7→ I8 × x = x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 8 7 6 5 4 3 2 1 0 0.258199

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 176 133 96 65 40 21 8 1 0 0.235341

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 5888 3787 2256 1205 544 183 32 1 0 0.197908

Bijection F = F2 (linear F2 : x 7→ G2× x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 −1.5 −1.5 −1.5 −1.5 0 0 0 0 1.5 0.036509

d = 4 49 49 49 49 49 46 49 46 46 0.015548

d = 5 −120 −75 −37.5 −30 7.5 22.5 15 22.5 67.5 0.051072

d = 6 1399 1061 949 971.5 971.5 821.5 971.5 821.5 979 0.027247

Bijection F = F3 (linear F3 : x 7→ G3× x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 70 61 52 43 40 37 40 43 46 0.043976

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 2584 1684 1144 694 544 484 544 694 664 0.067175

Bijection F = F4 (linear F4 : x 7→ G4× x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 46 46 46 46 46 46 46 46 46 0.000000

d = 5 −90 −37.5 −15 15 7.5 −22.5 7.5 7.5 0 0.023231

d = 6 1339 956.5 799 799 866.5 821.5 776.5 821.5 844 0.016173

Bijection F = F5 (non-linear F tabulated in Sec. 10.3.3)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 46 46 46 46 46 46 46 46 46 0.000000

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 2104 1159 844 799 664 799 844 1159 844 0.023258
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10.4.2 Verification of the Leakage of the Identified Bijections

As a complement to the security analysis carried out in Sec. 10.4.1, the leakage of
the CM using the bijections F1, F2, F3, F4 and F5 is computed. It consists in the
mutual information metric (MIM), defined as I[HW(Z⊕M ′′)+HW(F (M)⊕F (M ⊕

M ′′))−n+N ;Z]. The random variable N is an additive noise, that follows a normal
law of variance σ2. The result of the MIM computation is shown in Fig. 10.4. In
the ordinate, the smaller the MIM, the more secure the CM. Now, there are at least
two ways to interpret the abscissa:

1. In terms of attacker budget: an attacker who is able to develop advanced
denoising filters and who can buy accurate side channel probes will be placed
in the low noise areas (i.e. at the left-hand side of the graph).

2. In terms of defender budget: the designer can integrate more logic to in-
crease the algorithmic noise, or he can even add artificial noise sources [GM11];
however, the more noise the designer wishes to inject in a view to obscure the
leakage (i.e. at the right-hand side of the graph), the more area and power
are required.
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Figure 10.4: Mutual information of the leakage with the sensitive variable Z for
n = 8 bits.

It appears that the leakage agrees with the strength of the CM against HO-
CPA: the greater the order of resistance against HO-CPA, the smaller the mutual
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information, at least for a reasonably large noise. This simulated characterization
validates (in the particular scheme of Fig. 10.2) the relevance of choosing F based
on a HO-CPA criterion.
Furthermore, Fig. 10.4 represents the leakage of a similar CM, where more than

two shares would be used. More precisely, the shares would be the triple (x⊕m1⊕

m2,m1,m2), where the masks mi are not transformed by bijections. This CM is
obviously more costly than our proposal of keeping one single mask, but passed
through F . We notice that all the proposed bijections (suboptimal F2 and F3,
optimal linear F4 and optimal non-linear F5) perform better, in that they leak less
irrespective of σ.

10.4.3 Results in Imperfect Models

Masking schemes randomize more or less properly the leakage. In the straightfor-
ward example studied in this chapter (Eqn. (10.1) with F = Id), when the sen-
sitive variable z has all its bits equal to ‘1’ (i.e. Z = 0xff), then the mask has
no effect whatsoever on the leakage. Indeed, this is due to a well-known prop-
erty of the Hamming weight function: ∀M ′′ ∈ F

n
2 ,HW(0xff ⊕M ′′) + HW(M ′′) =

HW(M ′′) + HW(M ′′) = n. To avoid this situation, the proposed CM based on the
bijection F consists in tuning the leakage, so that the masks indeed dispatch ran-
domly the leakage for most (if not all as for the leakage-free countermeasure) values
of the sensitive data. The working factor of its improvement is the introduction of
a specially crafted Boolean function F aiming at weakening the link between the
data to protect and the leakage function.

This technique has been shown to be very effective in the previous sections when
the analysis assumed a perfect leakage model. But the Hamming distance leakage
model is in practice an idealization of the reality. Therefore, we study the impact of
the leakage model imperfections on the leakage squeezing countermeasure. As stated
in Chapter 8 Sec. 8.3, we assume that the leakage model is written as a multivariate
polynomial in R[X1, · · · , Xn, X

′
1, · · · , X

′
n] of degree less or equal to τ ∈ J1, 2nK. It

takes the following form:

L
.
= P (X1, · · · , Xn, X

′
1, · · · , X

′
n) =

∑

(u,v)∈Fn
2
×Fn

2
,

HW(u)+HW(v)≤τ

C(u,v) ·

n∏

i=1

Xui
i X

′vi
i , (10.15)

where the C(u,v) are real coefficients. This leakage formulation is similar to that

of the higher-order stochastic model [SLP05]. In the following experiments, we

compute the mutual information between L = HW(Z ⊕M ⊕M ′) + HW(F (M) ⊕

F (M ′)) +N and Z when τ ≤ 3 and when the coefficients C(u,v) deviate randomly

from those of Eqn. (8.5) in Chapter 8 Sec. 8.3 or are completely random (i.e. deviate

from a “Null” model). More precisely, the coefficients C(u,v) are respectively drawn

at random from one of these laws:

CHD

(u,v) ∼ cHD

(u,v) + U(
[
− δ

2 ,+
δ
2

]
) ,

CNull

(u,v) ∼ 0 + U(
[
− δ

2 ,+
δ
2

]
) .

(10.16)
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Four bit variables (case useful for DES) are considered. The study is conducted on
three bijections:

F1′ : the identity (Id), that acts as a reference,

F2′ : one bijection that cancels the first-order leakage but not the second-order,

F3′ : another that cancels both first- and second-order leakage.

They are linear, i.e. write Fi′(x) = Gi′ × x, where the generating matrices Gi′ are
given below:

G1′ = I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , G2′ =




0 0 1 1
0 1 0 1
1 1 1 0
1 0 0 1


 , G3′ = I4 =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

(10.17)
In this section, we use bijections Fi′ from F

4
2 to F

4
2, noted with a prime, to mark

the difference with the bijections Fi : F8
2 → F

8
2 that were studied in Sec. 10.4.1

and 10.4.2.
The results are plotted in Tab. 10.6, 10.7 & 10.8 for the randomized HD model

and in Tab. 10.9, 10.10 & 10.11 for the randomized “Null” model.
The curves are represented for a noise standard deviation σ in the interval [0, 5].

We insist that the comparison between the different curves shall only be done when
the noise is larger than the leakage of one sensitive bit, i.e. for σ ≥ 1. This
recommendation also applies to the interpretation of Fig. 10.4. Indeed, too low a
noise is not realistic in practice.

In Tab. 10.6, 10.7 & 10.8, it can be seen that despite the HD model degradation,
the leakage of the CM:

• remains ordered (F3′ leaks less than F2′, and F2′ in turn leaks less than F1′),

• and remains low, irrespective of δ.

The average leakage is unchanged, and the leakage values are simply getting slightly
scattered. The reason for this resilience comes from the rationale of the CM: the
masked value and the mask are decorrelated as much as possible. The dispatching
is guided by a randomized pigeon-hole of the values in the image of the leakage
function. The CM thus looses efficiency only in the case where two different values of
leakage become similar due to the imperfection. This can happen for some variables,
but it is very unlikely that it occurs coherently for all variables at the same time.
Rather, given the way the imperfect model is built (Eqn. (10.16)), it is almost as
likely that two classes get nearer or further away. This explains why, in average, the
leakage is not affected: the model noise acts as a random walk, that has an impact
on the variance but not on the average. Of course, some samples (with a degraded
model) will be weaker than the others (because the variance of the MIA increases
with the variance3 δ2/12 of the model).

3The variance of a uniform law of amplitude δ is indeed equal to Var (U([−δ/2,+δ/2])) =

1

δ

∫

+δ/2

−δ/2
(u− 0)2 du =

[

u3

3δ

]u=+δ/2

u=−δ/2
= δ2

12
.
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Table 10.6: Leakage comparison of the leakage squeezing CM (left column) and the
leakage-free CM (right column) in the imperfect HD leakage model (τ = 1).

Leakage squeezing CM Leakage-free CM
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Table 10.7: Leakage comparison of the leakage squeezing CM (left column) and the
leakage-free CM (right column) in the imperfect HD leakage model (τ = 2).

Leakage squeezing CM Leakage-free CM
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Table 10.8: Leakage comparison of the leakage squeezing CM (left column) and the
leakage-free CM (right column) in the imperfect HD leakage model (τ = 3).

Leakage squeezing CM Leakage-free CM
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Table 10.9: Leakage comparison of the leakage squeezing CM (left column) and the
leakage-free CM (right column) in the imperfect “NULL” leakage model (τ = 1).

Leakage squeezing CM Leakage-free CM
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Table 10.10: Leakage comparison of the leakage squeezing CM (left column) and the
leakage-free CM (right column) in the imperfect “NULL” leakage model (τ = 2).
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Table 10.11: Leakage comparison of the leakage squeezing CM (left column) and the
leakage-free CM (right column) in the imperfect “NULL” leakage model (τ = 3).
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It is interesting to contrast the leakage squeezing with the first-order leakage-free
CM presented in Chapter 8. This CM aims at leaking no information when the HD
leakage model is perfect. A study for model imperfection has also been conducted
(see right column of Tab. 10.6, 10.7 & 10.8). It appears that this CM is much less
robust to deviations from the ideal model. Indeed, the working factor of the CM
is to have one share leak nothing. But as soon as there is some imperfection, the
very principle of the CM is violated, and it starts to function badly. Concretely the
leaked information increases with the model variance, up to a point where the CM
is less efficient than the straightforward first-order Boolean masking (starting from
δ > 50%).

For the sake of comparison, we also computed the same curves when the unnoised
model is a constant one (called “Null” model in Eqn. (10.16)). The simulation re-
sults are shown in Tab. 10.9, 10.10 & 10.11. The reference leakage (when δ = 0)
is null; consequently only the noisy curves are shown. It is noticeable that despite
this “Null” leakage model is random, the different CMs have clearly distinguish-

able efficiencies. This had already been noticed by Doget et al. in [DPRS11]. In
particular, it appears that our CM (the leakage squeezing) continues to work (F3
leaks less than F2, that leaks less than F1), at least for large enough noise standard
deviations σ. On the contrary, the leakage-free CM is not resilient to this random
model: it leaks more than the straightforward masking (i.e. with F1).

Eventually, the impact of the leakage degree τ can be studied. Results are com-
puted for τ in {1, 2, 3}. In all the cases, τ does not impact the general conclusions.
Regarding the deviation from the HD model, the greater the multivariate degree τ ,
the more possible deviations from the genuine ideal model. Indeed, the number of
random terms in Eqn. (10.15) is increasing with τ (and is equal to

∑τ
t=0

(
2n
t

)
). This

explains the greatest variability in the mutual information results. In the meantime,
the argumentation for the robustness of the CM against the model deviation still
holds, which explains why the average leakage is unchanged. In the “Null” model,
the greater τ , the less singularities in the leakage. This explains why the mutual
information curves get smoother despite the additional noise. But with higher τ ,
the leaking sources are higher (because the more non-zero terms in the polynomial),
which explains why the leaked mutual information increases in average with τ .

10.5 FPGA Implementation of the Leakage Squeezing

Countermeasure

In this section, we apply the principle of leakage squeezing to the masked DES
algorithm. Two implementations are proposed: a GLUT based architecture and a
simpler structure using the USM architecture.
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Figure 10.5: Leakage squeezing of DES with a masked ROM implementation.

10.5.1 The GLUT Hardware Implementation

For DES we can use eight different bijections4, denoted B1, one for each S-box. To
further protect the new mask M ′, we compose the DES parts by using external
encodings with bijection B2, for instance:

B−11 ◦ E ◦ S ◦ P ◦ XOR(L) ◦B1︸ ︷︷ ︸
ROM

= B−11 ◦ E ◦ S ◦B2︸ ︷︷ ︸
ROM

◦ P ◦B−12 ◦ XOR(L) ◦B1︸ ︷︷ ︸
LUT network

,

(10.18)
where B1 and B2 are 4-bit bijections, E, S, P and XOR(L) are respectively the ex-
pansion, S-Box, permutation and left part recombination of the DES algorithm.
This principle of internal encodings has already been proposed by Chow et al.

in [CEJvO02] in the context of white box cryptography. This protection method
has already been attacked for the DES [WMGP07] and for the AES [BGEC04].
However, these attacks should not apply for the mask path as it is random and
consequently no values can be imposed at the table inputs.

The general GLUT hardware implementation is given in Fig. 10.5. We choose

4The same bijection can be reused eight times without compromising the security.
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the bijection B1 to be equal to F3′ studied in Sec. 10.4.3. The intermediate data
(e.g. S-box outputs) have been protected by the same strategy, so as to provide a
seamless “squeezing” throughout the combinational logic.
The bijection B2 is constrained to be a XOR operation with a constant, as the

permutation P on 32 bits causes the ROM output bits to be split for the next
round. The implementation of the mixing L with the left part can be done by a
LUT network in FPGAs rather than a ROM in order to reduce the complexity. If
we compare this implementation to the one proposed in [SRQ06] and described in
Fig. 3.2 of Chapter 3, we have the same ROM complexity which is of eight 28 words
of four bits.

10.5.2 The USM Hardware Implementation

The GLUT implementation can be replaced by a more simple structure which is
the USM masking scheme. Figure 10.6 illustrates the mask path of DES with USM
implementation taking advantage of the leakage squeezing method. It is made up
of four stages which can be protected by using bijections B1, B2, B3 and B4. All
the bijection are on four bits except B2 which is on six bits.
Every stage can be implemented by a set of LUT networks or a ROM. The bijec-

tion B4 is constrained to be a XOR operation with a constant, as the permutation P
on 32 bits causes the output bits to split. In order to enhance the implementation
security, the bijections should be refreshed regularly by using RAMs rather than
ROMs or by using partial reconfiguration as detailed in Chapter 9 Sec. 9.3.1.

10.5.3 Complexity and Throughput Results

The proposed implementations have been tested in a StratixII FPGA which is
based on Adaptative LUT Module (ALM) cell. They have been compared with
unprotected DES, masked GLUT and masked USM implementations of DES with-
out any leakage squeezing. Table 10.12 summarizes the memories needed for each
implementation and the estimated throughput.

Table 10.12: Complexity and speed results. “l. s.” denotes the “leakage squeezing”
countermeasure.

Implementation ALMs Block mem- M4Ks Throughput

-ory [bit] [Mbit/s]

Unprotected DES (reference) 276 0 0 929.4

DES masked USM 447 0 0 689.1

DES masked ROM 366 131072 32 398.4

DES masked ROM with l. s. 408 131072 32 320.8

DES masked USM with l. s. 488 0 0 582.8
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Figure 10.6: Leakage squeezing of DES with a masked USM implementation.

These results show that the leakage squeezing method on hardware implementa-
tions has little impact on complexity and speed compared with the straightforward
first-order masking CM. Moreover, the USM implementation is particularly efficient
as it avoids the use of large ROMs while keeping a high throughput.

In order to validate our implementations, we conduct in the next section a se-
curity evaluation of the proposed schemes.
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Figure 10.7: First-order success rate of 3 distinguishers.

10.5.4 Evaluation of the Implementations against Second-Order

Attacks

The security evaluation of our leakage squeezing CM was made on a real implementa-
tion. We applied two side channel distinguishers to the leakage measurements: VPA
and EPA attacks. For each scenario, we acquired a set of 25, 000 power consumption
traces using random masks and plaintexts and we performed the first-order success
rate. We showed in Fig. 10.7 our experimental results also for these attacks on the
first-order hardware masking implementation used here for comparison purposes
with our hardware solution based on the leakage squeezing technique.
We can see that the attacks perform well when applied to the straightforward

masking implementation. For the EPA, the success rates stay well above 50% even
when using 11, 000 measurements, but eventually reaches success rate of 95% us-
ing 18, 000 traces. For our proposed countermeasure, the attacks perform worse.
The success rates stay under 10% even when using 25, 000 measurements. We con-
clude that the experiments on a real circuit shows the evidence of benefit of our
countermeasure.

10.6 Conclusions

In this chapter, we showed that when we know that the device leaks in Hamming
distance, the highest order d of a successful attack can be increased significantly
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thanks to the “leakage squeezing”. Its principle is to store F (m) (the image of m by
a bijection F ) instead of m in the mask register. Typically, when the data to protect
are bytes, the state-of-the-art implementations with one mask could be attacked
with HO-CPA of order d = 2. We demonstrated how to find optimal linear F , that
protects against HO-CPA of orders 1, 2, 3 and 4. We also proved that optimal non-
linear functions F protect against HO-CPA of orders 1, 2, 3, 4 and 5. This security
increase also translates into a leakage reduction. An information-theoretic study
reveals that the mutual information between the leakage and the sensitive variable
is lower than the same metric computed on a similar CM without F but that uses two
masks (instead of one). Two implementations have been proposed and evaluated in
a real-life context. They provide a great robustness against higher-order attacks as
none of the subkeys have been guessed using 25K traces. Moreover, the performances
decrease in terms of complexity and speed are very limited, which is particularly
true for the USM implementation which does not require large memories.
In the next chapter, we extend the notion of leakage squeezing to the second-

order context.



Chapter 11

Leakage Squeezing of Order Two

In this chapter, we study second-order leakage squeezing, i.e. leakage squeezing
with two independent random masks. It is proved that, compared to first-order
masking, second-order masking at least increments (by one unit) the resistance
against higher-order attacks, such as HO-CPA attacks. Now, better improvements
over first-order masking countermeasure are possible by relevant constructions of
squeezing bijections. Specifically, optimal leakage squeezing with one mask resists
HO-CPA of orders up to 5. In this chapter, with two masks, we provide resistance
against HO-CPA not only of order 5 + 1 = 6, but also of order 7.
The results presented in this chapter have been published in collaboration with

Claude Carlet, Sylvain Guilley and Jean-Luc Danger in the international conference
on Cryptology IndoCrypt 2012 [CDGM12].
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11.1 Reminder on First-Order Leakage Squeezing

11.1.1 Leakage Squeezing in the Hamming Distance Model

The principle of first-order leakage squeezing is sketched in Fig. 11.1. As opposed
to straightforward first-order masking, the two registers contain X ⊕M and F (M),
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Figure 11.1: Setup of the first-order masking countermeasure with bijection F .

where the function F is a bijection. In Fig. 11.1, the computational logic is concealed
in memory tables (to ensure a glitch-free computation). The scheme presented in
Fig. 11.1 allows computing (X ′,M ′) from (X,M) in one clock cycle: X ′ = C(X)

and M ′ = R(M), where C and R are respectively the round function and the mask
refresh function.
In a hardware setup, the shares leak in the Hamming distance model. The

leakage is thus equal to L = HW((X ⊕M) ⊕ (X ′ ⊕M ′)) + HW(F (M) ⊕ F (M ′)),
that can be rewritten as:

L = HW(Z ⊕M ′′) + HW(F (M)⊕ F (M ⊕M ′′))

= HW(Z ⊕M ′′) + HW(DM ′′F (M)) ,

where Z = X⊕X ′ andM ′′ =M⊕M ′. In the rest of this section, we recapitulate the
key steps described extensively in last chapter to find the first-order optimal leakage
squeezing. The section 11.2 will conduct step-by-step an accurate and self-contained
analysis of the two-mask case.
It is shown in Chapter 10 that this leakage function is unexploitable by a dth-

order correlation power analysis if all the terms E[HW(Z⊕M ′′)p×HW(DM ′′F (M))q |

Z = z], whatever p, q such as p+ q ≤ d do not depend on z. This equation can be
simplified as Theorem 7 below, that was proved in Chapter 10 Sec. 10.2.4.

Theorem 7. ∀a ∈ F
n
2 , ∀p ∈ N, ’HWp(a) = 0 ⇐⇒ HW(a) > p .

So the condition for the leakage squeezing to reach order d is simply to have:
for all a ∈ F

n
2
∗ and for all p such that HW(a) ≤ p and for all q such as q ≤ d − p,

¤ 
E[HWq ◦D(·)F (M)](a) = 0.
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This condition is also equivalent to:

∀p, ∀(a, b) such that HW(a) ≤ p and HW(b) ≤ d− q, we have ÿ (b · F )χ(a) = 0 .

As shown in Chapter 10 Sec. 10.3, this condition can be related to “comple-
mentary information set” codes (CIS codes [CGKS12]). It is equivalent that the
indicator of the graph {(x, F (x));x ∈ F

n
2} of F is d

th-order correlation immune.

11.1.2 Leakage Squeezing in the Hamming Weight Model

If the device leaks in Hamming weight, then the relations are still valid if we replace
the derivative of F by F itself. It is also worthwhile mentioning that if F is linear, the
two problems are the same, because DmF (x) = F (x⊕m)⊕F (x) = F (x⊕m⊕x) =

F (m), irrespective of x. This property is important, as a recent scholar work has
shown empirically that on FPGAs, both Hamming distance and Hamming weight
leakage models should be envisioned [MM12b].

11.2 Second-Order Leakage Squeezing

11.2.1 Goal

In this section, an improvement of the leakage squeezing where two masks are used
is studied. More precisely,

• the masked data (X ⊕M1 ⊕M2, also noted X ⊕M , where M
.
=M1 ⊕M2) is

processed as is, i.e. through a bijection that is the identity (denoted by Id),

• the first mask (M1) is processed through bijection F1 and

• the second mask (M2) is processed through bijection F2.

This second-order masking scheme is illustrated in Fig. 11.2. With respect to the
first-order masking scheme (see Fig. 11.1), the processing of the masked sensitive
data is unchanged, and only the masks processing differs: each mask can be seeded
independently and evolves from a different diversification function (noted R1 and
R2). The leakage function is thus:

L = HW((X⊕M1⊕M2)⊕(X
′⊕M ′

1⊕M
′
2))+HW(F1(M1)⊕F1(M

′
1))+HW(F2(M2)⊕F2(M

′
2)) .

We denote by M ′′
1
.
= M1 ⊕M ′

1 and M ′′
2
.
= M2 ⊕M ′

2. Hence, the leakage can be
expressed as:

L = HW(Z ⊕M ′′
1 ⊕M

′′
2 ) + HW(F1(M1)⊕ F1(M1 ⊕M

′′
1 )) + HW(F2(M2)⊕ F2(M2 ⊕M

′′
2 ))

= HW(Z ⊕M ′′
1 ⊕M

′′
2 ) + HW(DM ′′

1
F1(M1)) + HW(DM ′′

2
F2(M2)) . (11.1)



148 Chapter 11. Leakage Squeezing of Order Two

n bits

simultaneous
leakage L

Initial values of
the registers

Final values of
the registers

C

X

X ′

X ⊕M

a

n bits

n bits
R2

F2

F2(M2)

n bits

c

M1

R1

F1

F1(M1)

n bits

b

M ′
1

M2

M ′
2

n bits

n bits

a′

F−11 F−12

b′ c′

Combinational
glitch-free logic
(e.g. memory)

X ′ ⊕M ′ F1(M
′
1) F2(M

′
2)

(a
lg
o
ri
th
m

it
e
ra
ti
o
n
s
)

Figure 11.2: Setup of the second-order leakage squeezing masking countermeasure
with bijections F1 and F2.

11.2.2 Motivation

It could be argued that the security brought by first-order leakage squeezing is
already high enough, and resisting at still higher orders is a superfluous refinement.
Admittedly, it has seldom been question of higher-order attacks of order strictly
greater than two in the abundant public literature.
However, searching for greater security can be motivated by “forward security”

concerns. Secure elements (e.g. smart cards, RFID chips, hardware security mod-
ules, etc.) contain high-value secrets, and cannot be upgraded. Therefore, one can
imagine buying one of these today, and having it attacked with tomorrow’s know-
how. For instance, with the advance of science, measurements apparati will have a
lower noise figure and a greater vertical resolution in the future, thereby reducing
the noise in side channel acquisitions. Now, it is known that the limiting factor
for the higher-order attacks is the noise variance [WW04]. Also, it is now well un-
derstood how to combine partially successful side channel attacks with brute force
search [Dic11, VCGRS11]. Therefore, computer-assisted side channel attacks might
greatly enhance what can be done today. Thus, to avoid tomorrow successful attacks
of orders greater of one, two, or more orders than what is possible today, precautions
must be envisioned today. A parallel can be made with the evolution of:

• the key size of block ciphers,

• the modulus size of asymmetric primitive, or

• the internal state of hash functions.
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Those have continuously been increasing over the last years. Besides, the regulation
in terms of security compliance standards is always one step ahead the state-of-the-
art attacks. Consequently, it is not absurd that side channel resistance of very high
order be demanded soon (e.g. with the forthcoming standard ISO/IEC 17 825),
hence an incentive for the research in really higher-order countermeasures.
Finally, some products supporting second-order countermeasures are already

deployed in the field. The second-order leakage squeezing can be mapped in the
devices of this installed base at virtually no extra cost, and so the application of
this method in real products does not require further architectural development
costs. The sole modification is the entry of the masking material in the (F1, F2)

bijections, and their leaving at the end of the cryptographic application.

11.3 Formalization of Second-Order Leakage Squeezing

The attack fails at order d if ∀i ≤ d,E
(
Li | Z = z

)
does not depend on z. Indeed,

the attacker has thus no bias to relate the leakage at order i ≥ 1 to the (predictable
and key-dependent) sensitive variable Z. Now, the goal of the attacker is to exhibit a
bias in E

(
Ld | Z = z

)
for an exponent d as small as possible, because the noise in Ld

evolves as
(
σ2

)d
[WW04], where σ2 is the variance of the noise (for d = 1). Taking

into account the formula of L from Eqn. (11.1), we have the following expression for
E
(
Li | Z = z

)
:

E

((
HW(Z ⊕M ′′

1 ⊕M
′′
2 ) + HW(DM ′′

1
F1(M1)) + HW(DM ′′

2
F2(M2))

)i
| Z = z

)

=
1

24n

∑

m′′
1
,m′′

2

∑

m1,m2

(
HW(z ⊕m′′1 ⊕m

′′
2) + HW(Dm′′

1
F1(m1)) + HW(Dm′′

2
F2(m2))

)i

=
1

24n

∑

m′′
1
,m′′

2
m1,m2


HW(z ⊕m′′1 ⊕m

′′
2)︸ ︷︷ ︸

Term #0

+HW(Dm′′
1
F1(m1))︸ ︷︷ ︸

Term #1

+HW(Dm′′
2
F2(m2))︸ ︷︷ ︸

Term #2




i

.

This equation can be developed, to yield a sum of products of the three terms. Let
us denote by p, q and r the degrees of each term, that satisfy p + q + r = i. So
attacks fail at order d if for all p, q and r such as p+ q + r ≤ d, the function

z 7→ f(z)
.
=

∑

m′′
1
,m′′

2

∑

m1,m2

HWp(z ⊕m′′1 ⊕m
′′
2) · HW

q(Dm′′
1
F1(m1)) · HW

r(Dm′′
2
F2(m2))

=
∑

m′′
1
,m′′

2

HWp
(
z ⊕m′′1 ⊕m

′′
2

)
·
∑

m1

HWq
(
Dm′′

1
F1(m1)

)
·
∑

m2

HWr
(
Dm′′

2
F2(m2)

)

=
∑

m′′
1
,m′′

2

HWp
(
z ⊕m′′1 ⊕m

′′
2

)
· E[HWq

(
Dm′′

1
F1(M1)

)
] · E[HWr

(
Dm′′

2
F2(M2)

)
]

=
{
HWp ⊗ E[HWq ◦D(·)F1(M1)] ⊗ E[HWr ◦D(·)F2(M2)]

}
(z) (11.2)
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is constant. From Eqn. (11.2), we see that every term to be kept constant is a double
convolution product.
Keeping f constant is equivalent to having the Fourier transform f̂ of f null

everywhere but in zero. The Fourier transform turns a convolution product into a
product; therefore,

f̂ = ’HWp · ¤ 
E[HWq ◦D(·)F1(M1)] ·

¤ 
E[HWr ◦D(·)F2(M2)] .

In summary, to resist at order d, we are attempting to find two bijections F1

and F2 such as:

∀a ∈ F
n
2
∗, ’HWp(a) = 0 or ¤ 

E[HWq ◦D(·)F1(M)](a) = 0

or ¤ 
E[HWr ◦D(·)F2(M)](a) = 0 , (11.3)

for every triple of integers p, q and r such as p + q + r ≤ d, d being the targeted
protection order.

The Fourier support of a function ψ : Fn
2 → Z is the set

{
a ∈ F

n
2 ; ψ̂(a) 6= 0

}
.

The equation (11.3) expresses the fact that the Fourier supports of HWp, E[HWq ◦

D(·)F1(M)] and E[HWr ◦D(·)F2(M)] intersect only in the singleton {0}.

11.3.1 Gaining at Least one Order with Two Masks instead of One

It is a well known property that adding one mask increases the security by one
order [WW04]. We here prove that the same benefit can be expected from the
leakage squeezing.

Proposition 2. Let F1 be a bijection such that the security is reached at order d

with one mask. Then, by introducing a second mask processed through whatever

bijection F2, the security is reached at order d+ 1 at least.

Proof. Let (p, q, r) be any triple of integers such as p+ q + r ≤ d+ 1. Then:

• if r = 0, ¤ HWr ◦D(·)F2 = ⁄ 1 ◦D(·)F2 = 1̂ = δ is a Kronecker symbol function,
hence null for all a 6= 0,

• otherwise, r > 0 and for all p, q, we have p + q ≤ d + 1 − r (by hypothesis),

and so p + q ≤ d. Thus, we have ’HWp(a) · ⁄ HWq ◦ F1(a) = 0, which implies

that either ’HWp(a) = 0 or ⁄ HWq ◦ F1(a) = 0 for a 6= 0.

11.3.2 Problem Formulation in Terms of Boolean Theory

In the following, we shall need the next lemma.

Lemma 5. Let F : Fn
2 → F

n
2 be any function, let q be an integer such that 0 < q < n

and let a ∈ F
n
2 be nonzero. We have

∑
z,m HWq′(F (m)⊕ F (m⊕ z))(−1)a·z = 0 for

every 0 < q′ ≤ q if and only if ’b · F (a) = 0 for every b ∈ F
n
2 such that HW(b) ≤ q.
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Proof. According to Eqn. (10.9) in Chapter 10, we have:
∑

z,m

HWq′(F (m)⊕ F (m⊕ z))(−1)a·z = (11.4)

1

2q′

q′∑

j=0

(
q′

j

)
nq
′−j(−1)j

∑

k1+···+kn=j

(
j

k1, · · · , kn

)
∑

x∈Fn
2

(−1)(⊕
n
i=1

kiei)·F (x)+a·x




2

.

Since, for b = ⊕n
i=1kiei, we have

∑
x∈Fn

2
(−1)(⊕

n
i=1

kiei)·F (x)+a·x = −2’b · F (a), the

condition “’b · F (a) = 0 for every b ∈ F
n
2 such that HW(b) ≤ q” is then clearly

sufficient. Conversely, let the condition “’b · F (a) = 0 for every b ∈ F
n
2 such that

HW(b) ≤ k” be denoted by P (k). We prove P (k) by induction on k ∈ N. P (0) is
clearly satisfied since a 6= 0. Assume that P (k) is satisfied for some 0 ≤ k ≤ q − 1,
then applying the hypothesis with q′ = k + 1 implies that ’b · F (a) = 0 for every
b such that HW(b) = k + 1 since we have only squares in Eqn. (11.4) multiplied
by coefficients which are all of the same sign and P (k + 1) is then satisfied. This
completes the proof by induction.

Incidentally, we remark that the Theorem 7 of previous Sec. 11.1.1 is also an
immediate consequence of Lemma 5 with F = Id. We characterize now Eqn. (11.3)
in terms of Fourier transform.

Proposition 3. Let F1 and F2 be two permutations of F
n
2 and d an integer smaller

than n. The condition:

∀a 6= 0, ∀(p, q, r), (11.5)

(p+ q + r ≤ d) =⇒





’HWp(a) = 0 or∑
z,m HWq(F1(m)⊕ F1(m⊕ z))(−1)

a·z = 0 or∑
z,m HWr(F2(m)⊕ F2(m⊕ z))(−1)

a·z = 0 .

is satisfied if and only if:

∀a ∈ F
n
2 , a 6= 0, ∃q, r/





HW(a) + q + r = d− 1,

∀b ∈ F
n
2 ,HW(b) ≤ q =⇒ ’b · F1(a) = 0,

∀c ∈ F
n
2 ,HW(c) ≤ r =⇒ ’c · F2(a) = 0.

(11.6)

Proof. Condition (11.5) is satisfied for every (p, q, r) such that p+ q + r ≤ d if and

only if it is satisfied when p is minimal such that ’HWp(a) 6= 0, r is minimal such
that

∑
z,m HWr(F2(m)⊕ F2(m⊕ z))(−1)a·z 6= 0 and p+ q + r ≤ d. We know that

the minimum value of p such that ’HWp(a) 6= 0 equals HW(a). Let r be the minimal
element defined above. Condition (11.5) implies then:

∀q ≤ d− HW(a)− r,
∑

z,m

HWq(F1(m)⊕ F1(m⊕ z))(−1)
a·z = 0.
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According to Lemma 5, this latter condition is equivalent to ∀b,HW(b) ≤ d −

HW(a)− r =⇒ ’b · F1(a) = 0 and we obtain the condition:

∀a 6= 0, ∃r/

{
∀b,HW(b) ≤ d− HW(a)− r =⇒ ’b · F1(a) = 0,

∀c,HW(c) < r =⇒ ’c · F2(a) = 0.

Now, let us replace r by r′
.
= r − 1. Thus HW(c) < r is equivalent to HW(c) ≤ r′,

and condition HW(a) + q + r = d is equivalent to HW(a) + q + r′ = d − 1. This
shows that Eqn. (11.6) is necessary. Clearly, it is also sufficient.

It is clear from Proposition 3 that any choice of F2 allows to increase by one the
resistance order provided by F1 (this has already been mentioned in Sec. 11.3.1).
Indeed, let us denote by d1 the maximal order of resistance of F1 in the one mask
situation. Then, ∀a 6= 0, ∀p, q, p + q ≤ d1 =⇒ ’b · F1(a) = 0. By reference to
Eqn. (11.6), for a given a 6= 0, we choose:

• q = d1 − HW(a), thus ∀b ∈ F
n
2 ,HW(b) ≤ q =⇒ ’b · F1(a) = 0 (by definition of

d1).

• r = 0, thus ∀c ∈ F
n
2 ,HW(c) ≤ r =⇒ ’c · F2(a) = 0 (indeed, c = 0, hence

’c · F2(a) = δ(a) = 0 since a 6= 0).

Consequently, Eqn. (11.6) is met with d = d1 + 1.
So, one strategy can be to start from F1, the optimal solution with one mask

(this solution is known from the previous chapter), and then to choose F2 so as to
increase as much as possible the resistance degree. Another strategy is to find F1

and F2 jointly. This problem seems not to be a classical one in the general case.
In the next section, we show however that it becomes a problem of coding theory
when F1 and F2 are linear.

11.4 Solutions when F1 and F2 are Linear

In this section, F1 and F2 are assumed to be linear. For every b, x ∈ F
n
2 , we have

b · F1(x) = F t
1(b) · x, where F

t
1 is the so-called adjoint operator of F1, that is,

the linear mapping whose matrix is the transpose of the matrix of F1. Then, for
every nonzero a ∈ F

n
2 , we have

’b · F1(a) = −1
2

∑
x∈Fn

2
(−1)(F

t
1
(b)⊕a)·x, which equals

−2n−1 6= 0 if F t
1(b) = a and is null otherwise. Let us denote by L1 (resp. L2) the

inverse of mapping F t
1 (resp. F

t
2). Then,

’b · F1(a) (resp. ’c · F2(a)) equals −2n−1 6= 0

if b = L1(a) (resp. if c = L2(a)) and is null otherwise.
Let also a 6= 0. From Eqn. (11.6) of Proposition 3, we can choose:

• q = HW(L1(a))− 1 and

• r = HW(L2(a))− 1.

Thus d = min {HW(a) + HW(L1(a)) + HW(L2(a))− 1; a 6= 0}, which is exactly the
minimal distance of the code

{
(x, Lt

1(x), L
t
2(x));x ∈ F

n
2

}
(of rate 1/3 and with three

disjoint information sets) minus the number 1.
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11.4.1 Example for Linear F1 and F2 for n = 8

If F1 and F2 are two linear bijections then the linear code {(x, F1(x), F2(x));x ∈ F
n
2}

has {1, · · · , n}, {n+1, · · · , 2n} and {2n+1, · · · , 3n} for information sets, since the
restriction of the generator matrix of this code to the columns indexed in each
of these three sets is invertible. Conversely, if a [3n, n, d] code C is known with
three disjoint information sets, then after rearranging the columns of its generator
matrix so that these three information sets are {1, · · · , n}, {n + 1, · · · , 2n} and
{2n + 1, · · · , 3n}, we have C = {(ϕ0(x), ϕ1(x), ϕ2(x));x ∈ F

n
2} where ϕ0, ϕ1 and

ϕ2 are bijective. Then, by trading the dummy variable x for y = ϕ0(x) through
one-to-one function ϕ0, we get C = {(y, ϕ1 ◦ ϕ

−1
0 (y), ϕ2 ◦ ϕ

−1
0 (y)); y ∈ F

n
2} and we

can take F1 = ϕ1 ◦ ϕ
−1
0 and F2 = ϕ2 ◦ ϕ

−1
0 .

One generator matrix for the [24, 8, 8] code can be obtained as a submatrix of
extended quadratic-residue (QR) code of length 231, such as:

























←
−

1

←
−

2

←
−

3

←
−

4

←
−

5

←
−

6

←
−

7

←
−

8

←
−

9

←
−

1
0

←
−

1
1

←
−

1
2

←
−

1
3

←
−

1
4

←
−

1
5

←
−

1
6

←
−

1
7

←
−

1
8

←
−

1
9

←
−

2
0

←
−

2
1

←
−

2
2

←
−

2
3

←
−

2
4

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0
0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0
1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0
1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0
0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1

























.

The goal is to rearrange the columns of this matrix to get a form:

(
M t

0 M t
1 M t

2

)
, (11.7)

where M0, M1 and M2 are 8 × 8 invertible matrices with elements in F2. The
research algorithm is as follows: first, an invertible 8 × 8 matrix (M0) is searched.
There are

(
24
8

)
= 735, 471 of them2. We find one M t

0 by considering the columns
J2, 9K. Second, the

(
16
8

)
= 12, 870 permutations of columns {1} ∪ J10, 24K are tested

for a partitioning into two invertible matrices
(
M t

1 M t
2

)
. For instance, M t

1 can
be the columns {1, 10, 11, 12, 13, 15, 17, 18} and M t

2 the columns {14, 16} ∪ J19, 24K.
Those define the three bijections ϕi : F

8
2 → F

8
2, x 7→ Mi × x, for i ∈ {0, 1, 2}. After

that, we get a generating matrix in systematic form
(
I8 Lt

1 Lt
2

)
; The matrices Lt

1

and Lt
2 are defined as L

t
1 = M1 ×M−10 =

(
(M t

0)
−1 ×M t

1

)t
and Lt

2 = M2 ×M−10 =

1See: http://www.mathe2.uni-bayreuth.de/cgi-bin/axel/codedb?extensioncodeid+39649+2+

8 [Gra07].
2This amount of tries is still manageable on a standard desktop personal computer; all the

more so as, in practice, we find very quickly a solution as the number of partitionings that yield

an invertible 8× 8 matrix is 310, 400 (which represents around 42% of the possible partitionings).
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(
(M t

0)
−1 ×M t

2

)t
, and their values are given in the following equation:

Lt
1 =




1 0 0 0 0 1 0 1
1 0 0 0 0 1 1 1
1 0 1 1 1 0 0 1
1 0 1 1 1 0 1 0
1 0 1 1 1 1 1 0
0 1 1 0 0 1 1 1
0 1 0 1 0 1 1 1
0 1 0 0 1 0 0 0



, Lt

2 =




0 1 1 0 0 1 1 0
0 0 0 1 1 0 1 0
1 1 1 1 0 1 1 1
1 0 1 0 0 0 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 0
1 0 0 0 1 1 1 1



. (11.8)

Those matrices are of full rank, namely 8, and their inverses are:

(Lt
1)
−1 =




0 1 1 0 1 0 0 0
1 0 1 1 1 1 1 1
1 0 0 1 0 0 1 1
1 0 0 1 0 1 0 1
1 0 1 1 1 1 1 0
0 0 0 1 1 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0



, (Lt

2)
−1 =




0 0 0 0 0 1 1 1
0 1 0 0 1 1 1 1
1 1 1 0 1 0 1 1
0 1 0 1 1 0 1 1
1 1 0 1 1 1 1 0
1 1 1 0 0 0 0 1
1 1 0 0 0 1 0 1
1 1 1 1 1 1 0 0



.

The resulting linear functions F1 and F2 of F8
2, that provide resistance up to

level 7, are tabulated in Tab. 11.1.

We note that the binary linear code {(x, F1(x));x ∈ F
8
2} has minimal distance

3, and that the binary linear code {(x, F2(x));x ∈ F
8
2} has minimal distance 4.

So, those two codes are non-optimal, because the best linear code of length 16

and dimension 8 has minimal distance 5 (see Tab. 10.2 in Chapter 10). This noting
justifies that it is indeed relevant to search for the bijections doublet (F1, F2) together
instead of one after the other, independently. It also suggests that non-linear codes
might still achieve better.

11.4.2 Example for Linear F1 and F2 for n = 4

It is also possible to construct a rate 1/3 linear code of dimension 4 with three
distinct information sets, which is suitable to protect DES. The same research algo-
rithm can be used for the optimal code of length 12 and dimension 4, i.e. [12, 4, 6].
Its minimal distance is 6. One generator matrix for the [12, 4, 6] code is3:









←
−

1

←
−

2

←
−

3

←
−

4

←
−

5

←
−

6

←
−

7

←
−

8

←
−

9

←
−

1
0

←
−

1
1

←
−

1
2

1 0 0 1 1 1 1 0 0 1 1 1
0 1 0 1 1 0 0 1 0 1 1 0
0 0 1 1 0 1 0 0 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1









.

By gathering columns {1, 4, 7, 2} asM t
0, columns {10, 5, 8, 3} asM

t
1 and columns

{11, 6, 9, 12} as M t
2, the code rewrites in the form of Eqn. (11.7) where M0, M1 and

3See: http://www.math.colostate.edu/~betten/research/codes/BOUNDS/bounds_GF2.html.
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Table 11.1: Truth table for the found linear bijections F1 and F2 of F8
2.

{

F1(x);x ∈ F
8
2

}

=
{

F2(x);x ∈ F
8
2

}

=

{ 0x00, 0x70, 0x68, 0x18, 0x58, 0x28, 0x30, 0x40,
0xcc, 0xbc, 0xa4, 0xd4, 0x94, 0xe4, 0xfc, 0x8c,
0x7d, 0x0d, 0x15, 0x65, 0x25, 0x55, 0x4d, 0x3d,
0xb1, 0xc1, 0xd9, 0xa9, 0xe9, 0x99, 0x81, 0xf1,
0xc9, 0xb9, 0xa1, 0xd1, 0x91, 0xe1, 0xf9, 0x89,
0x05, 0x75, 0x6d, 0x1d, 0x5d, 0x2d, 0x35, 0x45,
0xb4, 0xc4, 0xdc, 0xac, 0xec, 0x9c, 0x84, 0xf4,
0x78, 0x08, 0x10, 0x60, 0x20, 0x50, 0x48, 0x38,
0x83, 0xf3, 0xeb, 0x9b, 0xdb, 0xab, 0xb3, 0xc3,
0x4f, 0x3f, 0x27, 0x57, 0x17, 0x67, 0x7f, 0x0f,
0xfe, 0x8e, 0x96, 0xe6, 0xa6, 0xd6, 0xce, 0xbe,
0x32, 0x42, 0x5a, 0x2a, 0x6a, 0x1a, 0x02, 0x72,
0x4a, 0x3a, 0x22, 0x52, 0x12, 0x62, 0x7a, 0x0a,
0x86, 0xf6, 0xee, 0x9e, 0xde, 0xae, 0xb6, 0xc6,
0x37, 0x47, 0x5f, 0x2f, 0x6f, 0x1f, 0x07, 0x77,
0xfb, 0x8b, 0x93, 0xe3, 0xa3, 0xd3, 0xcb, 0xbb,
0x7b, 0x0b, 0x13, 0x63, 0x23, 0x53, 0x4b, 0x3b,
0xb7, 0xc7, 0xdf, 0xaf, 0xef, 0x9f, 0x87, 0xf7,
0x06, 0x76, 0x6e, 0x1e, 0x5e, 0x2e, 0x36, 0x46,
0xca, 0xba, 0xa2, 0xd2, 0x92, 0xe2, 0xfa, 0x8a,
0xb2, 0xc2, 0xda, 0xaa, 0xea, 0x9a, 0x82, 0xf2,
0x7e, 0x0e, 0x16, 0x66, 0x26, 0x56, 0x4e, 0x3e,
0xcf, 0xbf, 0xa7, 0xd7, 0x97, 0xe7, 0xff, 0x8f,
0x03, 0x73, 0x6b, 0x1b, 0x5b, 0x2b, 0x33, 0x43,
0xf8, 0x88, 0x90, 0xe0, 0xa0, 0xd0, 0xc8, 0xb8,
0x34, 0x44, 0x5c, 0x2c, 0x6c, 0x1c, 0x04, 0x74,
0x85, 0xf5, 0xed, 0x9d, 0xdd, 0xad, 0xb5, 0xc5,
0x49, 0x39, 0x21, 0x51, 0x11, 0x61, 0x79, 0x09,
0x31, 0x41, 0x59, 0x29, 0x69, 0x19, 0x01, 0x71,
0xfd, 0x8d, 0x95, 0xe5, 0xa5, 0xd5, 0xcd, 0xbd,
0x4c, 0x3c, 0x24, 0x54, 0x14, 0x64, 0x7c, 0x0c,
0x80, 0xf0, 0xe8, 0x98, 0xd8, 0xa8, 0xb0, 0xc0 },

{ 0x00, 0xf6, 0xf8, 0x0e, 0xcb, 0x3d, 0x33, 0xc5,
0x79, 0x8f, 0x81, 0x77, 0xb2, 0x44, 0x4a, 0xbc,
0x19, 0xef, 0xe1, 0x17, 0xd2, 0x24, 0x2a, 0xdc,
0x60, 0x96, 0x98, 0x6e, 0xab, 0x5d, 0x53, 0xa5,
0x25, 0xd3, 0xdd, 0x2b, 0xee, 0x18, 0x16, 0xe0,
0x5c, 0xaa, 0xa4, 0x52, 0x97, 0x61, 0x6f, 0x99,
0x3c, 0xca, 0xc4, 0x32, 0xf7, 0x01, 0x0f, 0xf9,
0x45, 0xb3, 0xbd, 0x4b, 0x8e, 0x78, 0x76, 0x80,
0x7f, 0x89, 0x87, 0x71, 0xb4, 0x42, 0x4c, 0xba,
0x06, 0xf0, 0xfe, 0x08, 0xcd, 0x3b, 0x35, 0xc3,
0x66, 0x90, 0x9e, 0x68, 0xad, 0x5b, 0x55, 0xa3,
0x1f, 0xe9, 0xe7, 0x11, 0xd4, 0x22, 0x2c, 0xda,
0x5a, 0xac, 0xa2, 0x54, 0x91, 0x67, 0x69, 0x9f,
0x23, 0xd5, 0xdb, 0x2d, 0xe8, 0x1e, 0x10, 0xe6,
0x43, 0xb5, 0xbb, 0x4d, 0x88, 0x7e, 0x70, 0x86,
0x3a, 0xcc, 0xc2, 0x34, 0xf1, 0x07, 0x09, 0xff,
0x2f, 0xd9, 0xd7, 0x21, 0xe4, 0x12, 0x1c, 0xea,
0x56, 0xa0, 0xae, 0x58, 0x9d, 0x6b, 0x65, 0x93,
0x36, 0xc0, 0xce, 0x38, 0xfd, 0x0b, 0x05, 0xf3,
0x4f, 0xb9, 0xb7, 0x41, 0x84, 0x72, 0x7c, 0x8a,
0x0a, 0xfc, 0xf2, 0x04, 0xc1, 0x37, 0x39, 0xcf,
0x73, 0x85, 0x8b, 0x7d, 0xb8, 0x4e, 0x40, 0xb6,
0x13, 0xe5, 0xeb, 0x1d, 0xd8, 0x2e, 0x20, 0xd6,
0x6a, 0x9c, 0x92, 0x64, 0xa1, 0x57, 0x59, 0xaf,
0x50, 0xa6, 0xa8, 0x5e, 0x9b, 0x6d, 0x63, 0x95,
0x29, 0xdf, 0xd1, 0x27, 0xe2, 0x14, 0x1a, 0xec,
0x49, 0xbf, 0xb1, 0x47, 0x82, 0x74, 0x7a, 0x8c,
0x30, 0xc6, 0xc8, 0x3e, 0xfb, 0x0d, 0x03, 0xf5,
0x75, 0x83, 0x8d, 0x7b, 0xbe, 0x48, 0x46, 0xb0,
0x0c, 0xfa, 0xf4, 0x02, 0xc7, 0x31, 0x3f, 0xc9,
0x6c, 0x9a, 0x94, 0x62, 0xa7, 0x51, 0x5f, 0xa9,
0x15, 0xe3, 0xed, 0x1b, 0xde, 0x28, 0x26, 0xd0 }.
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M2 are invertible. Specifically, we have:

M t
0 =




1 1 1 0
0 1 0 1
0 1 0 0
0 0 1 0


 , M t

1 =




1 1 0 0
1 1 1 0
1 0 0 1
1 0 1 0


 , M t

2 =




1 1 0 1
1 0 0 0
0 1 1 1
1 0 1 1


 ;

(M t
0)
−1 =




1 0 1 1
0 0 1 0
0 0 0 1
0 1 1 0


 , (M t

1)
−1 =




1 1 0 1
0 1 0 1
1 1 0 0
1 1 1 1


 , (M t

2)
−1 =




0 1 0 0
0 1 1 1
1 1 1 0
1 0 1 1


 .

So, by seeing x as a column x
.
=




xn−1
...
x0


, we also define:

F1(x)
.
=

[
(M t

1)
−1 ×M t

0

]
× x =




1 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


× x ,

F2(x)
.
=

[
(M t

2)
−1 ×M t

0

]
× x =




0 1 0 1
0 0 1 1
1 1 1 1
1 0 0 0


× x . (11.9)

The resulting linear functions F1 and F2 of F4
2, that provide resistance up to

level 5, are tabulated as follows:

{
F1(x);x ∈ F

4
2

}
=
{ 0x0, 0xf, 0x6, 0x9, 0x5, 0xa, 0x3, 0xc,

0xb, 0x4, 0xd, 0x2, 0xe, 0x1, 0x8, 0x7 },

{
F2(x);x ∈ F

4
2

}
=
{ 0x0, 0xe, 0x6, 0x8, 0xa, 0x4, 0xc, 0x2,

0x3, 0xd, 0x5, 0xb, 0x9, 0x7, 0xf, 0x1 }.

11.5 Security Evaluation

An implementation with a leakage function L is vulnerable at order d if E[(L− E[L])d |

Z = z] depends on z. In this case, the asymptotic HO-CPA correlation coefficient

ρ
(d)
opt, equal to [PRB09, Eqn. (15)]:

ρ
(d)
opt

.
=

√
Var[E[(L− E[L])d | Z]]

Var[(L− E[L])d]
, (11.10)

is non-zero. In the middle of Tab. 11.2, an intermediate case is shown: it corresponds
to a “partial” leakage squeezing, where a bijection is applied only on one mask out
of the two. We notice that the simulation results of partial leakage squeezing are in
line with the theoretical analysis carried out in Sec. 11.3.1: the order of resistance
is indeed incremented by one. The two variances involved in Eqn. (11.10) were

computed using a multiprecision integer library; therefore, when ρ(d)opt is reported as
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0 (integer zero, not the approximated floating number 0.000000), we really mean
that E[(L− E[L])d | Z = z] does not depend on z.
For the sake of comparison, we also report in this table the results obtained

with one mask. In such case, both the best linear and non-linear squeezing bijection
F can be characterized. It is relevant to consider the linear bijections F as they
allow an efficient protection against HO-CPA, whether the device leaks in Hamming
weight or distance. The best linear F for leakage squeezing with one mask is secure
against attacks of orders up to 4. It can be used with two masks, thereby granting a
security up to order 4+1 = 5. Our results, that are not based on the extension of a
single mask solution, provide security against HO-CPA of orders up to 7. Therefore,
our method provides a free advantage of two orders. Now, with one mask, the best
achievable security is gotten by the use of a non-linear F . This function does only
protect against attacks that exploit the Hamming distance (and not the Hamming
weight), but allows to reach a resistance up to HO-CPA of order 5. Here also, our
linear solution with two masks is better than merely this code used with one mask
extended with another mask: it protected at order up to 7 > 5 + 1. Besides, it
is interesting to compare the first nonzero correlation coefficients with and without
leakage squeezing:

• with one mask, ρ(d=2)
opt (no LS)/ρ(d=5)

opt (LS) = 0.258199/0.023258 ≈ 11, and

• with two masks, ρ(d=3)
opt (no LS)/ρ(d=8)

opt (LS) = 0.038886/0.000446 ≈ 87.

So, in front of leakage squeezing, not only the attacker shall conduct an attack of
much higher order, but also he will get a very degraded distinguisher value.
On n = 4 bits, the optimal first-order leakage squeezing is linear and allows to

reach resistance order of 3. The used optimal code is [8, 4, 4]. For the second-order
leakage squeezing, we can resort to the linear code [12, 4, 6], that improves by two (6−
4 = 2) orders the resistance against HO-CPA. By the trivial construct of Sec. 11.3.1,
only one additional order of resistance would have been gained. A summary of the
results is shown in Tab. 11.3. The improvement from the “straightforward” to the
“squeezed” masking is of two orders with one mask and three orders with two masks.

11.6 Conclusions

In this chapter, we investigated the potential of leakage squeezing extension to
second-order leakage squeezing. Our analysis allows to characterize (in Proposi-
tion 3) the conditions to reach higher resistance. The optimal solutions are not as
easy to find as in the case with one mask. Nonetheless, for the special case of linear
bijections, we found that one solution (probably not optimal) consists in finding a
rate 1/3 linear code of maximal minimal distance with three disjoint information
sets. The optimal [24, 8, 8] linear code fulfills this condition, and makes it possible
to resist attacks of all orders from 1 to 7 included. Concretely speaking, this result
means that the same security level as a 7th-order attack is attainable with 2 instead
of 7 masks, thus at a much lower implementation cost.
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Table 11.2: Optimal 2O-CPA correlation coefficient for dth-order attacks, without and with leakage squeezing (LS) on n = 8 bits.
Results are rounded at the sixth decimal.

One mask Two masks

Order
Without LS With LS Without LS With “partial” LS With LS

d F = Id
Optimal linear Optimal non-linear

F1 = F2 = Id
F1 = Id, but F2 F1 = Id, but F2 (Non-optimal)

(Sec. 11.4.1) (Sec. 10.3.3) as (Sec. 11.4.1) as (Sec. 10.3.3) linear (cf. Sec. 11.4)

1 0 0 0 0 0 0 0

2 0.258199 0 0 0 0 0 0

3 0 0 0 0.038886 0 0 0

4 0.235341 0 0 0 0 0 0

5 0 0.023231 0 0.049669 0 0 0

6 0.197908 0.016173 0.023258 0.003403 0.001286 0 0

7 0 0.042217 0 0.045585 0.000868 0.000726 0

8 0.164595 0.032796 0.046721 0.006820 0.002644 0.000682 0.000446
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Table 11.3: Optimal 2O-CPA correlation coefficient for dth-order attacks, without and with leakage squeezing (LS) on n = 4 bits.
Results are rounded at the sixth decimal.

One mask Two masks

Order
Without LS With LS Without LS With “partial” LS With LS

d F = Id
Optimal linear

F1 = F2 = Id
F1 = Id, and (Non-optimal) linear

([MGCD11, Eqn. (13)]) F2 6= Id is [MGCD11, Eqn. (13)] (cf. Sec. 11.4)
1 0 0 0 0 0

2 0.377964 0 0 0 0

3 0 0 0.081289 0 0

4 0.363815 0.191663 0 0 0

5 0 0 0.105175 0.021035 0

6 0.346246 0.283546 0.015973 0.015973 0.022590
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Chapter 12

Conclusions and Perspectives

12.1 Summary

In this thesis, we have investigated new techniques of both higher-order SCA attacks
and countermeasures based on Boolean masking.
The first part of this thesis was focused on the study of higher-order side chan-

nel attacks. We proposed three novel attacks. First, we introduced the VPA attack
based on variance analysis of the leakage measurements. This attack is shown to be
powerful enough to break an FPGA implementation of a masked DES and requires
a reasonable number of traces (12K). We demonstrated that VPA attack can be ex-
pressed as a second-order univariate CPA by changing the leakage model. Therefore,
both distinguishers have the same soundness if the leakage model is perfectly known.
Second, we proposed the EPA attack based on entropy analysis which succeeded also
in breaking a hardware masked DES implementation. We compared it with the VPA
attack, and we observed that the VPA performs better than the EPA attack when
the leakage model is known. Finally, we suggested another distinguisher, termed
IIA. Conversely to MIA or KSA, it consists in comparing the conditional leakages
between themselves, pairwise. We compared theoretically IIA with MIA, and stud-
ied its efficiency in simulation for some types of leakages in the presence of masking
countermeasure. Indeed, our theoretical analysis gives some reasons to show that
IIA is more efficient in discriminating key hypotheses than MIA. Attacks simula-
tions confirm that the new IIA distinguisher compares favorably to MIA, even when
masking is applied to ensure the protection.

The second part was devoted to a formal security evaluation of Boolean hardware
masking schemes. First, we proposed a new SCA metric called HO-CPA immunity
to evaluate the robustness of higher-order Boolean masking countermeasures. Sec-
ond, we showed that the ways to catch most of the leakage and to exploit it are
more relevant for software implementation than hardware, as hardware has more
algorithmic noise and is limited to the arithmetic sum of the leakages as combining
function. Therefore, for these two important reasons, we proved that masking is a
countermeasure more efficient in hardware than in software.

The third part was dedicated to the description and the evaluation of some new
masking countermeasures. The first proposed solution is the leakage-free counter-
measure. We argued that the sensible information leaked is null under some realistic
assumptions about the device architecture, namely the symmetry of the transitions.
The solution was evaluated within an information-theoretic study, proving its secu-
rity against univariate SCA attacks under any distance model. When the leakage
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function deviates slightly from this assumption, our solution still achieves excellent
results. The second countermeasure consists in diversifying the mask update thanks
to the Gray code. Practical implementations showed that the performances decrease
in terms of complexity and speed are very limited, which is particularly true for the
proposed USM implementation. The third solution proposed is the leakage squeez-
ing countermeasure. Its principle consists in modifying the mask value by using
a bijective transformation before it is stored in the mask register. The goal is to
reduce the dependency between the mask and the masked data. We showed how
to find optimal linear (resp. non-linear) bijection, that protects first-order masking
against HO-CPA of orders d ≤ 4 (resp. d ≤ 5). Moreover, an information-theoretic
study reveals that the mutual information between the leakage and the sensitive
variable is lower than the same metric computed on the straightforward second-
order masking CM. Then, we extended the leakage squeezing countermeasure to the
second-order context. Our analysis allows to characterize the conditions to reach
higher resistance when applying the leakage squeezing to the second-order masking
CM. We demonstrated that the optimal [24, 8, 8] linear code fulfills these conditions,
and makes it possible to resist HO-CPA of orders d ≤ 7.

12.2 Perspectives

An immediate perspective to the proposed EPA attack would be to find the opti-
mal theoretical weight set for this distinguisher in order to enhance its robustness.
A second perspective is to compare EPA and VPA attacks with multivariate SCA
attacks (e.g. MMIA [GBPV10]), using multiple sensors (e.g. two magnetic probes)
placed at different (X,Y, Z, ϑ) locations over a masked cryptoprocessor (i.e. cartog-
raphy). Also, the IIA distinguisher should be deeply analysed, in particular when
considering real measurements.

Another future work is to compare our countermeasures based fundamentally
on Boolean masking with others solutions such as the multiplicative or the affine

masking [FMPR10] schemes which also provide good performance-security trade-off
against higher-order SCA attacks.

Another perspective is to find ways for the leakage-free countermeasure (with
“mask update” primitives) to get protection also against multivariate SCA attacks.
A perspective related to the leakage squeezing is to find better bijections, for in-
stance non-linear, to further improve the obtained results. In particular, a thorough
study of rate 1/2 codes with two complementary information sets exists [CGKS12].
However, such work is missing in general for rate 1/d codes with d > 2 distinct
information sets.

Finally, a future work is to integrate the second-order leakage squeezing with
“hyperpipelined” designs [MM12a], “threshold implementations” [NRS08] or “multi-
party computation” [PR11] masking schemes, so as to improve their order of resis-
tance while at the same time removing the latent leakage by glitches (if the logic is
not concealed in memories).
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