Skip to Main content Skip to Navigation
Theses

Méthodes de méta-analyse pour l’estimation des émissions de N2O par les sols agricoles

Résumé : Le terme de méta-analyse désigne l'analyse statique d'un large ensemble de résultats provenant d'études individuelles pour un même sujet donné. Cette approche est de plus en plus étudiée dans différents domaines, notamment en agronomie. Dans cette discipline, une revue bibliographique réalisée dans le cadre de la thèse a cependant montré que les méta-analyses n'étaient pas toujours de bonne qualité. Les méta-analyses effectuées en agronomie étudient ainsi très rarement la robustesse de leurs conclusions aux données utilisées et aux méthodes statistiques. L'objectif de cette thèse est de démontrer et d'illustrer l'importance des analyses de sensibilité dans le cadre de la méta-analyse en s'appuyant sur l'exemple de l'estimation des émissions de N2O provenant des sols agricoles. L'estimation des émissions de protoxyde d'azote (N2O) est réalisée à l'échelle mondaile par le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC). Le N2O est un puissant gaz à effet de serre avec un pouvoir de réchauffement 298 fois plus puissant que le CO2 sur une période de 100 ans. Les émissions de N2O ont la particularité de présenter une forte variabilité spatiale et temporelle. Deux bases de données sont utilisées dans ce travail : la base de données de Rochette et Janzen (2005) et celle de Stehfest et Bouwman (2006). Elles recensent de nombreuses mesures d'émissions de N2O réparties dans le monde provenant d'études publiées et ont joué un rôle important lors des estimations d'émissions de N2O réalisées par le GIEC. Les résultats montrent l'intérêt des modèles à effets aléatoires pour estimer les émissions de NO2 issues de sols agricoles. Ils sont bien adaptés à la structure des données (observations répétées sur un même site pour différentes doses d'engrais, avec plusieurs sites considérés). Ils permettent de distinguer la variabilité inter-sites de la variabilité intra-site et d'estimer l'effet de la dose d'engrais azoté sur les émissions de NO2. Dans ce mémoire, l'analyse de la sensibilité des estimations à la forme de la relation "Emission de N2O / Dose d'engrais azoté" a montré qu'une relation exponentielle était plus adaptée. Il apparait ainsi souhaitable de remplacer le facteur d'émission constant du GIEC (1% d'émission quelque soit la dose d'engrais azoté) par un facteur variable qui augmenterait en fonction de la dose. Nous n'avons par contre pas identifié de différence importante entre les méthodes d'inférence fréquentiste et bayésienne. Deux approches ont été proposées pour inclure des variables de milieu et de pratiques culturales dans les estimations de N2O. La méthode Random Forest permet de gérer les données manquantes et présente les meilleures prédictions d'émission de N2O. Les modèles à effets aléatoires permettent eux de prendre en compte ces variables explicatives par le biais d'une ou plusieurs mesures d'émission de N2O. Cette méthode permet de prédire les émissions de N2O pour des doses non testées comme le cas non fertilisé en parcelles agricoles. Les résultats de cette méthode sont cependant sensibles au plan d'expérience utilisé localement pour mesurer les émissions de N2O.
Document type :
Theses
Complete list of metadatas

Cited literature [177 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/pastel-00913760
Contributor : Abes Star :  Contact
Submitted on : Wednesday, December 4, 2013 - 1:37:08 PM
Last modification on : Tuesday, March 17, 2020 - 1:40:21 AM
Document(s) archivé(s) le : Wednesday, March 5, 2014 - 1:13:30 AM

File

Philibert.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : pastel-00913760, version 1

Citation

Aurore Philibert. Méthodes de méta-analyse pour l’estimation des émissions de N2O par les sols agricoles. Autre. AgroParisTech, 2012. Français. ⟨NNT : 2012AGPT0072⟩. ⟨pastel-00913760⟩

Share

Metrics

Record views

1238

Files downloads

834