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Résumé

Cette thèse a pour but de certifier des bornes inférieures de fonctions multivariées à
valeurs réelles, définies par des expressions semi-algébriques ou transcendantes et de
prouver leur validité en vérifiant les certificats dans l’assistant de preuves COQ.

De nombreuses inégalités de cette nature apparaissent par exemple dans la preuve
par Thomas Hales de la conjecture de Kepler.

Dans le cadre de cette étude, on s’intéresse à des fonctions non-linéaires, faisant in-
tervenir des opérations semi-algébriques ainsi que des fonctions transcendantes uni-
variées (cos, arctan, exp, etc).

L’utilisation de différentes méthodes d’approximation permet de relâcher le prob-
lème initial en un problème d’optimisation semi-algébrique. On se ramène ainsi à des
problèmes d’optimisation polynomiale, qu’on résout par des techniques de sommes
de carrés creuses.

Dans un premier temps, nous présentons une technique classique d’optimisation
globale. Les fonctions transcendantes univariées sont approchées par les meilleurs
estimateurs polynomiaux uniformes de degré d.

Par la suite, nous présentons une méthode alternative, qui consiste a borner cer-
tains des constituants de la fonction non-linéaire par des suprema de formes quadra-
tiques (approximation maxplus, introduite à l’origine en contrôle optimal) de cour-
bures judicieusement choisies.

Enfin, cet algorithme d’approximation est amélioré, en combinant l’idée des es-
timateurs maxplus et de la méthode des gabarits développée par Manna et al. (en
analyse statique). Les gabarits non-linéaires permettent un compromis sur la pre-
cision des approximations maxplus afin de contrôler la complexité des estimateurs
semi-algébriques. Ainsi, on obtient une nouvelle technique d’optimisation globale,
basée sur les gabarits, qui exploite à la fois la precision des sommes de carrés et la
capacité de passage à l’échelle des méthodes d’abstraction.

L’implémentation de ces méthodes d’approximation a abouti à un outil logiciel :
NLCertify. Cet outil génère des certificats à partir d’approximations semi-algébriques
et de sommes de carrés. Son interface avec COQ permet de bénéficier de l’arithmétique
certifiée disponible dans l’assistant de preuves, et ainsi d’obtenir des estimateurs et
des bornes valides pour chaque approximation.

Nous démontrons les performances de cet outil de certification sur divers prob-
lèmes d’optimisation globale ainsi que sur des inégalités serrées qui interviennent
dans la preuve de Hales.
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Abstract

The aim of this work is to certify lower bounds for real-valued multivariate functions,
defined by semialgebraic or transcendental expressions and to prove their correctness
by checking the certificates in the COQ proof system.

The application range for such a tool is widespread; for instance Hales’ proof of
Kepler’s conjecture involves thousands of nonlinear inequalities.

The functions we are dealing with are nonlinear and involve semialgebraic oper-
ations as well as some transcendental functions like cos, arctan, exp, etc. Our general
framework is to use different approximation methods to relax the original problem
into a semialgebraic optimization problem. It leads to polynomial optimization prob-
lems which we solve by sparse sums of squares relaxations.

First, we implement a classical scheme in global optimization. Namely, we ap-
proximate univariate transcendental functions with best uniform degree-d polyno-
mial estimators.

Then, we present an alternative method, which consists in bounding some of the
constituents of the nonlinear function by suprema or infima of quadratic polynomi-
als (max-plus approximation method, initially introduced in optimal control) with a
carefully chosen curvature.

Finally, we improve this approximation algorithm, by combining the ideas of the
maxplus estimators and of the linear template method developed by Manna et al. (in
static analysis). The nonlinear templates control the complexity of the semialgebraic
estimators at the price of coarsening the maxplus approximations. In that way, we
arrive at a new - template based - global optimization method, which exploits both
the precision of sums of squares/SDP relaxations and the scalability of abstraction
methods.

We successfully implemented these approximation methods in a software package
named NLCertify. This tool interleaves semialgebraic approximations with sums of
squares witnesses to form certificates. It is interfaced with COQ and thus benefits
from the trusted arithmetic available inside the proof assistant. This feature is used to
produce, from the certificates, both valid underestimators and lower bounds for each
approximated constituent.

We illustrate the efficiency of NLCertify with various examples from the global
optimization literature, as well as tight inequalities issued from the Flyspeck project.
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Chapter 1

Introduction: from Computer
Assisted Proofs to Formal Global
Optimization

1.1 Problems Involving Computer Assisted Proofs

Numerous problems coming from different fields of mathematics (like combinatorics,
geometry or group theory) have led to computer assisted proofs. Two classical exam-
ples are the proof of the Four Colours Theorem by Appel and Haken [AH77] and the
Kepler conjecture.

The latter can be stated as follows:

Conjecture 1.1 (Kepler (1611)). The maximal density of sphere packings in three dimen-
sional space is π/

√
18.

This conjecture was proved by Thomas Hales.

Theorem 1.2 (Hales [Hal94, Hal05]). Kepler’s conjecture is true.

One of the chapters of [Hal05] is coauthored by Ferguson. The publication of
the proof, one of the “most complicated [...] that has been ever produced”, to quote
his author1, took several years and its verification required “unprecedented” efforts
by a team of referees. The verification of proofs with this degree of complexity has
motivated the use of formal proof techniques.

The computer-checked proofs of both problems contain computational and math-
ematical parts. The formal proof of the Four Colours Theorem has been done by
Gonthier [Gon08] with the COQ [Coq] proof assistant. The formal proof of Conjec-
ture 1.1 is an ambitious goal addressed by the Flyspeck project, launched by Hales
himself [Hal06].

Some other problems can be solved by proof assistants (or “interactive theorem
provers”) but do not rely on mechanical computation. As an example, one can men-
tion the formal proof of the Feit-Thompson Odd Order Theorem [GAA+].

1https://code.google.com/p/flyspeck/wiki/FlyspeckFactSheet

1

https://code.google.com/p/flyspeck/wiki/FlyspeckFactSheet


2 CHAPTER 1. INTRODUCTION

1.1.1 Nonlinear Inequalities arising in the Flyspeck Project

Recent efforts have been made to complete the formal verification of Kepler’s conjec-
ture. Flyspeck [Hal06] is a large-scale effort which needs to tackle various mathemat-
ical tools in a formal setting.

In Flyspeck, extensive computation are mandatory to handle the formal gener-
ation of some special planar graphs. The formal proofs of the bounds of linear and
nonlinear programs also require major computational time. Details about the two for-
mer issues are available in Solovyev’s doctoral dissertation [Sol]. Here we focus on
the latter issue, namely checking the correctness of hundreds of nonlinear inequali-
ties with an interactive theorem prover. We will often refer to the following inequality
taken from Hales’ proof:

Example 1.3 (Lemma9922699028 Flyspeck). Let K, ∆x, l, t and f be defined as follows:

K := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2 ,
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+x2x5(x1 − x2 + x3 + x4 − x5 + x6)
+x3x6(x1 + x2 − x3 + x4 + x5 − x6)
−x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6 ,

l(x) := −π/2 + 1.6294 − 0.2213(
√

x2 +
√

x3 +
√

x5 +
√

x6 − 8.0)
+0.913(

√
x4 − 2.52) + 0.728(

√
x1 − 2.0) ,

t(x) := arctan ∂4∆x√
4x1∆x

,
f (x) := l(x) + t(x) .

Then, ∀x ∈ K, f (x) > 0 .

Other examples of inequalities can be found in Appendix A. Note that the in-
equality of Example 1.3 would be much simpler to check if l was a constant (rather
than a function of x). Indeed, semialgebraic optimization methods would provide
precise lower and upper bounds for the argument of arctan. Then we could conclude
by monotonicity of arctan using interval arithmetic. Here, both l and t depend on
x. Hence, by using interval arithmetic addition (without any domain subdivision) on
the sum l + t, which ignores the correlation between the argument of arctan and the
function l, we only obtain a coarse lower bound (equal to −0.87, see Example 2.12
for details); too coarse to assert the inequality . A standard way to improve this
bound consists in subdividing the initial box K and performing interval arithmetic
on smaller boxes. However, this approach suffers from the so called curse of dimen-
sionality. Therefore, it is desirable to develop alternative certified global optimization
methods, applicable to a wide class of problems involving semialgebraic and tran-
scendental functions. This is the goal of this dissertation.

Moreover, the nonlinear inequalities of Flyspeck are challenging for numerical
solvers for two reasons. First, they involve a medium-scale number of variables
(6∼10). Then, they are essentially tight. For instance, the function f involved in
Example 1.3 has a nonnegative infimum which is less than 10−3. The tightness of
the inequalities to be certified is actually a frequent feature in mathematical proofs.
Hence, we will pay a special attention in the present work to scalability and numerical
precision issues.
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1.1.2 Formal Global Optimization Problems

We now describe the global optimization problems that we shall consider. Let 〈D〉sa

be the set of functions obtained by composing (multivariate) semialgebraic functions
with special functions taken from a dictionary D. We will typically include in D the
usual functions tan, arctan, cos, arccos, sin, arcsin, exp, log, (·)r with r ∈ R \ {0}.
As we allow the composition with semi-algebraic functions in our setting, elemen-
tary functions like +,−,×, /, | · |, sup(·, ·), inf(·, ·) are of course covered. Actually,
we shall see that some of the present results remain valid if the dictionary includes
semiconcave or semiconvex functions with effective lower and upper bounds on the
Hessian, see Chapter 5.

Given f , f1, . . . , fp ∈ 〈D〉sa, we will address the following global optimization
problem:

inf
x∈Rn

f (x) , (1.1.1)

s.t. f1(x) > 0, . . . , fp(x) > 0 .

The inequalities issued from Flyspeck actually deal with special cases of compu-
tation of a certified lower bound for a real-valued multivariate function f : Rn → R

over a compact semialgebraic set K ⊂ Rn. Checking these inequalities boils down to
automatically provide lower bounds for the following instance of Problem (1.1.1):

f ∗ := inf
x∈K

f (x) , (1.1.2)

We shall also search for certificates to assess that:

∀x ∈ K, f (x) > 0 . (1.1.3)

A well studied case is when D is reduced to the identity map {Id}. Then, f = fsa

belongs to the algebra A of semialgebraic functions and Problem (1.1.1) specializes to
the semialgebraic optimization problem:

f ∗sa := inf
x∈K

fsa(x) . (1.1.4)

Another important sub-case is Polynomial Optimization Problems (POP), when
f = fpop is a multivariate polynomial and K = Kpop is given by finitely many poly-
nomial inequalities. Thus, Problem (1.1.4) becomes:

f ∗pop := inf
x∈Kpop

fpop(x) . (1.1.5)

We shall see that the presented methods also provide certified lower bounds (pos-
sibly coarse), for optimization problems which are hard to solve by traditional POP
techniques. Such problems have a relatively large number of variables (10∼100) or
are polynomial inequalities of a moderate degree. For illustration purposes, we con-
sider the following running example coming from the global optimization literature

Example 1.4 (Modified Schwefel Problem 43 from Appendix B in [AKZ05]).

min
x∈[1,500]n

f (x) = −
n−1

∑
i=1

(xi + ǫxi+1) sin(
√

xi) ,
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where ǫ is a fixed parameter in {0, 1}. In the original problem, ǫ = 0, i.e. the objective
function f is the sum of independent functions involving a single variable. This prop-
erty may be exploited by a global optimization solver by reducing it to the problem
minx∈[1,500] x sin(

√
x). Hence, we also consider a modified version of this problem

with ǫ = 1.

The following test examples are taken from Appendix B in [AKZ05]. Some of
these examples involve functions that depend on numerical constants, the values of
which can be found there. Numerical experiments are performed with the different
algorithms described in this dissertation to return certified lower bounds of these
functions (see Sections 4.3, 5.4 and 6.5).

• Hartman 3 (H3): min
x∈[0,1]3

f (x) = −
4
∑

i=1
ci exp

[
−

3
∑

j=1
aij(xj − pij)

2

]
.

• Hartman 6 (H6): min
x∈[0,1]6

f (x) = −
4
∑

i=1
ci exp

[
−

6
∑

j=1
aij(xj − pij)

2

]
.

• Mc Cormick (MC), with K = [−1.5, 4]× [−3, 3]:
min
x∈K

f (x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 .

• Modified Langerman (ML):

min
x∈[0,10]n

f (x) =
5
∑

j=1
cj cos(dj/π) exp(−πdj), with dj =

n
∑

i=1
(xi − aji)

2 .

• Paviani Problem (PP), with K = [2.01, 9.99]10:

min
x∈K

f (x) =
10
∑

i=1

[
(log(xi − 2))2 − log(10 − xi))

2
]
−

(
10
∏
i=1

xi

)0.2

.

• Shubert (SBT): min
x∈[−10,10]n

f (x) =
n
∏
i=1

( 5
∑

j=1
j cos((j + 1)xi + j)

)
.

• Schwefel Problem (SWF): min
x∈[1,500]n

f (x) = −∑
n
i=1 xi sin(

√
xi) .

1.1.3 Non Commutative Optimization

Further motivations of the present work arise from global optimization of real poly-
nomials of non-commutative variables.

One recent open problem is the generalized Lax conjecture [Lax58], which states
that it is always possible to realize hyperbolicity cones as spectrahedra. A new ap-
proach [NT12] to this problem involves non commutative sums of squares (in the
Clifford algebras) and has formal computational applications.

The problem of proving non commutative polynomial inequalities has also oc-
curred in a conjecture formulated by Bessis, Moussa and Villani in 1975. This conjec-
ture can be restated as follows:

Conjecture 1.5 (Lieb and Seiringer [LS04]). For all positive semidefinite matrices A and
B and all m ∈ N, the single variable polynomial p(t) := Tr((1 + tB)m) ∈ R[t] has only
nonnegative coefficients.
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Using semidefinite programming and sums of hermitian squares, Schweighofer
and Klep [KS08] established a proof of the conjecture for m 6 13. Non commuta-
tive sums of squares certificates are also amenable to the present techniques. How-
ever, we mention that the BMV conjecture has been recently established by Herbert R
Stahl [Sta11], following a different line of analysis.

1.2 Certified Global Optimization in the Literature

A common idea to handle Problem (1.1.2) is to first estimate f by multivariate poly-
nomials and then obtain a lower bound of the resulting approximation by polynomial
optimization techniques.

Computing lower bounds in constrained POP (see Problem(1.1.5)) is already a dif-
ficult problem, which has received much attention. Sums of squares (SOS) relaxation
based methods, leading to the resolution of semidefinite programs (SDP) have been
developed in [Las01, PS03]. They can be applied to the more general class of semi-
algebraic problems [Put93]. Moreover, Kojima has developed a sparse refinement
of the hierarchy of SDP relaxations (see [WKKM06]). This has been implemented
in the SPARSEPOP solver. Checking the validity of the lower bound of POP im-
plies being able to control and certify the numerical error, as SDP solvers are typi-
cally implemented using floating point arithmetic. Such techniques rely on hybrid
symbolic-numeric certification methods, see Peyrl and Parrilo [PP08] and Kaltofen et
al. [KLYZ12]. They allow one to produce positivity certificates for such POP which
can be checked in proof assistants such as COQ [MC11, Bes07], HOL-LIGHT [Har07]
or MetiTarski [AP10]. Alternative approaches to SOS/SDP are based on Bernstein
polynomials [Zum08].

The task is obviously more difficult in presence of transcendental functions. Other
methods of choice, not restricted to polynomial systems, include global optimization
by interval methods (see e.g. [Han06]), branch and bound methods with Taylor mod-
els [CGT11, BM09]. Other methods involve rigorous Chebyshev estimators. An im-
plementation of such approximations is available in the Sollya tool [CJL10]. We also
mention procedures that solve SMT problems over the real numbers, using interval
constraint propagation [GAC12].

Recent efforts have been made to perform a formal verification of several Flyspeck
inequalities with Taylor interval approximations in the HOL-LIGHT proof assistant
[SH13]. The Flocq library formalizes floating-point arithmetic inside COQ [Mel12].
The tactic interval, built on top of Flocq, can simplify inequalities on expressions of
real numbers.

1.3 Contribution

1.3.1 A General Certification Scheme

In this thesis, we develop a general certification framework, combining methods from
semialgebraic programming (SOS certificates, SDP relaxations) and from approxima-
tion theory. This includes classical methods like best uniform polynomials and less
classical like maxplus approximation (inspired by optimal control and static analysis
by abstract interpretation).
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The present approach exploits both the accuracy of SOS relaxations and the scala-
bility of the approximation and abstraction procedure. This leads to a new method in
global optimization, the nonlinear template method, that produces certificates, which
are ultimately proved in COQ.

The general principle of our framework is explained in Chapter 3. We alternate
steps of semialgebraic approximation for some constituents of the objective function
f and semialgebraic optimization. The resulting constrained polynomial optimiza-
tion problems are solved with sums of squares relaxation from Lasserre hierarchy, by
calling a semidefinite solver. In this way, each iteration of the algorithms refines the
following inequalities:

f ∗ > f ∗sa > f ∗pop , (1.3.1)

where f ∗ is the optimal value of the original problem, f ∗sa the optimal value of its
current semialgebraic approximation and f ∗pop the optimal value of the SDP relaxation
which we solve. Under certain moderate assumptions, the lower estimate f ∗pop does
converge to f ∗ (see Corollary 3.9).

Different semialgebraic approximation schemes for transcendental functions are
presented, namely minimax estimators (Chapter 4), maxplus approximations (Chap-
ter 5) and templates abstractions (Chapter 6).

Minimax Polynomial Approximations

A natural workaround to deal with non-polynomial optimization problems is to esti-
mate the objective function f with its best uniform (also called “minimax”) degree-d
polynomial approximation.

Thus, we obtain a hierarchy of minimax semialgebraic approximations, which
leads to the algorithm minimax_optim. In practice, an interface with the software
Sollya [CJL10] provides the univariate minimax polynomials.

Maxplus Estimators

The second method uses maxplus approximation of semiconvex transcendental func-
tions by quadratic functions. The idea of maxplus approximation comes from op-
timal control: it was originally introduced by Fleming and McEneaney [FM00] and
developed by several authors [AGL08a, MDG08, McE07, SGJM10, GMQ11], to rep-
resent the value function by a “maxplus linear combination”, which is a supremum
of certain basis functions, like quadratic polynomials. When applied to the present
context, this idea leads to approximate from above and from below every transcen-
dental function appearing in the description of the problem by infima and suprema
of finitely many quadratic polynomials.

In that way, we are reduced to a converging sequence of semialgebraic problems.
A geometrical way to interpret the method is to think of it in terms of “quadratic
cuts” quadratic inequalities are successively added to approximate the graph of a
transcendental function.

This work was published in the Proceedings of the 12th European Control Con-
ference [AGMW13b].
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Templates Abstractions

The nonlinear template method is an improved version of the maxplus approxima-
tion. By comparison, the new component is the introduction of the template tech-
nique (approximating projections of the feasible sets), leading to an increase in scala-
bility.

This technique is an abstraction method, which is inspired by the linear template
of Sankaranarayanan, Sipma and Manna in static analysis [SSM05], their nonlinear
extensions by Adjé et al. [AGG12], and the maxplus basis method [SGJM10].

In the present application, templates are used both to approximate transcenden-
tal functions, and to produce coarser but still tractable relaxations when the standard
SDP relaxation of the semialgebraic problem is too complex to be handled. As a mat-
ter of fact, SDP relaxations are a powerful tool to get tight certified lower bound for
semialgebraic optimization problems, but applying them is currently limited to small
or medium size problems: their execution time grows very rapidly with the relax-
ation order, which itself grows with the degree of the polynomials involved in the
semialgebraic relaxations. The template method allows to reduce these degrees, by
approximating certain projections of the feasible set by a moderate number of nonlin-
ear inequalities.

They are also useful as a replacement of standard Taylor approximations of tran-
scendental functions: instead of increasing the degree of the approximation, one in-
creases the number of functions in the template.

In this dissertation, we present two families of templates:

• Non-convex quadratic templates for POP The objective polynomial of a non
tractable POP is replaced by a suprema of quadratic polynomials (see Section
6.2).

• Polynomial underestimators templates for semialgebraic functions Given a
degree d and a semialgebraic function fsa that involves a large number of lifting
variables, we build a hierarchy of polynomial approximations, that converge
to the best (for the L1-norm) degree-d polynomial underestimator of fsa (see
Section 6.3).

A part of this work was published in the Proceedings of the Conferences on In-
telligent Computer Mathematics, in the Lecture Notes in Artificial Intelligence (LNAI
7961) [AGMW13a].

1.3.2 Software Implementation in OCAML and COQ

The final achievement of this work is the software implementation of our general
optimization algorithm, leading to the package NLCertify.

Given a nonlinear inequality and an approximation method as input, our pack-
age NLCertify builds a hierarchy of approximations and generates the corresponding
semidefinite relaxations, using OCAML libraries and external programs (Sollya and
SDPA). The correctness of the bounds for semialgebraic optimization problems can be
verified using the interface of NLCertify with COQ. Thus, the certificate search and
the proof checking inside COQ are separated, a so called sceptical approach.

When solving a POP, the sums of squares certificate does not match with the sys-
tem of polynomial inequalities, due to a rounding error. A certified upper bound
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of this error is obtained inside COQ (Section 7.3.2). This verification procedure is
carefully implemented, using an equality test in the ring of polynomials whose co-
efficients are arbitrary-size rationals (Section 7.2.2). It ensures efficient computation
inside the proof assistant.

Moreover, these verifications for POP relaxations are combined to deduce the cor-
rectness of semialgebraic optimization procedures, which requires in particular to
assert that the semialgebraic functions are well-defined. It allows to handle more
complex certificates for non-polynomial problems. Finally, the datatype structure of
these certificates allows to reconstruct the steps of the optimization algorithm.

The software implementation package NLCertify, is described in Appendix B. At
the time the author writes this PhD dissertation, the NLCertify tool contains more
than 2600 lines of code for the COQ proof scripts and more than 15000 lines of code
for the OCAML informal certification program.

1.4 Outline

This dissertation is organized as follows:
Part I introduces the required background about semialgebraic optimization and

presents a general global optimization framework, which relies on an approximation
algorithm approx and the optimization procedure optim.

• In Chapter 2, we recall the basic principles of semidefinite programming, the
definition and properties of Lasserre relaxations of polynomial problems, to-
gether with reformulations by Lasserre and Putinar of semialgebraic problems
classes. The sparse variant of these relaxations is also presented.

• In Chapter 3, we describe our general approximation scheme for global opti-
mization. Then, we give a proof of convergence of this algorithm.

Part II instantiates the algorithm approx with minimax, maxplus and templates
approximations.

• In Chapter 4, we recall some fundamental statements about best uniform poly-
nomial approximations. Then we present the performance results of our algo-
rithm minimax_optim, which combines minimax estimators and SOS.

• In Chapter 5, the maxplus approximation and the samp_optim algorithm are
presented. We show how this algorithm can be combined with standard domain
subdivision methods, to reduce the relaxation gap.

• In Chapter 6, we present the nonlinear extension of the template method. We
explain how to control the complexity of semialgebraic optimization problems
with our algorithm template_optim.

Part III focuses on formal proofs for global optimization via templates and sums
of squares.

• In Chapter 7, we recall the required background on the arithmetic available in-
side COQ. Then, we explain how to check in COQ nonlinear inequalities involv-
ing multivariate transcendental functions.

• In Chapter 8, we conclude and discuss the perspectives of this work.
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A General Framework for Certified
Global Optimization
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Chapter 2

Sums of Squares based
Optimization

In this chapter, we describe the foundations on which several parts of our work lie.
Semidefinite programming (SDP) is introduced in (Section 2.1). We use a hierarchy of
SDP relaxations by Lasserre to solve polynomial optimization problems (Section 2.2)
as well as semialgebraic optimization problems (Section 2.3). Then, we recall the
sparse variant of these relaxations by Kojima (Section 2.4). Finally, we explain how to
extract an SOS certificate from the solution of an SDP (Section 2.5).

2.1 Semidefinite Programming and
Interior-Points methods

Semidefinite programming is relevant to a wide range of applications. The interested
reader can find more details on the connection between SDP and combinatorial op-
timization in [GLV09], control theory in [BEFB94], positive semidefinite matrix com-
pletion in [Lau09]. A survey on semidefinite programming is available in the paper
of Vandenberghe and Boyd [VB94]. Here, we give the basic definitions of primal
and dual semidefinite programs, then explain how to solve these programs with the
interior-points methods and recall some complexity results regarding the cost of these
techniques. Even though semidefinite programming is not our main topic of interest,
several encountered problems can be cast as semidefinite programs. We emphasize
the fact that semidefinite programs can be solved efficiently (up to a few thousand op-
timization variables) by freely available software (e.g. SeDuMi [Stu98], CSDP [Bor97],
SDPA [YFN+10]).

First, we introduce some useful notations. We consider the vector space Sn of
real symmetric n × n matrices. Given X ∈ Sn, let λmax(X) (resp. λmin(X)) be the
maximum (resp. minimum) eigenvalue of X. It is equipped with the usual inner
product 〈X, Y〉 = Tr(XY) for X, Y ∈ Sn. Let In be the n × n identity matrix. The
Frobenius norm of a matrix X ∈ Sn is defined by ‖X‖F :=

√
Tr(X2). A matrix M ∈ Sn

is called positive semidefinite if xT Mx > 0, ∀x ∈ Rn. In this case, we write M < 0 and
define a partial order by writing X < Y (resp. X ≻ Y) if and only if X − Y is positive
semidefinite (resp. positive definite).

In semidefinite programming, one minimizes a linear objective function subject to
a linear matrix inequality (LMI). The variable of the problem is the vector x ∈ Rm and

11
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the problem input data are the vector c ∈ Rm and symmetric matrices F0, . . . , Fm ∈ Sn.
The primal semidefinite program is defined as follows:

p∗sdp := min
x∈Rm

cTx

s.t. F(x) < 0 ,
(2.1.1)

where

F(x) := F0 +
m

∑
i=1

xiFi .

The primal problem 2.1.1 is convex since the linear objective function and the
linear matrix inequality constraint are both convex. We say that x is primal feasible
(resp. strictly feasible) if F(x) < 0 (resp. F(x) ≻ 0). Furthermore, we associate the
following dual problem with the primal problem 2.1.1:

d∗sdp :=max
Z∈Sn

− Tr(F0Z)

s.t. Tr(FiZ) = ci, i = 1, . . . , m ,

Z < 0 .

(2.1.2)

The variable of the dual program 2.1.2 is the real symmetric matrix Z ∈ Sn. We
say that Z is dual feasible (resp. strictly feasible) if Tr(FiZ) = ci, i = 1, . . . , m and
Z < 0 (resp. Z ≻ 0).

We will describe briefly the primal-dual interior-point method (used for instance
by the SDPA software), that solves the following primal-dual optimization problem:

min
x∈Rm,Z∈Sn

η(x, Z)

s.t. Tr(FiZ) = ci, i = 1, . . . , m ,

F(x) < 0, Z < 0 ,

(2.1.3)

where,
η(x, Z) := cTx + Tr(F0Z) .

We notice that the objective function η of the program 2.1.3 is the difference be-
tween the objective function of the primal program 2.1.1 and its dual version 2.1.2.
We call this function the duality gap. Let suppose that x is primal feasible and Z is
dual feasible, then η is nonnegative. Indeed, we have:

η(x, Z) =
m

∑
i=1

Tr(FiZ)xi + Tr(F0Z) = Tr(F(x)Z) > 0 . (2.1.4)

The last inequality comes from the fact that the matrices F(x) and Z are both positive
semidefinite.

Then, one can easily prove that the nonnegativity of η implies the following in-
equalities:

d∗sdp 6 −Tr(F0Z) 6 cTx 6 p∗sdp . (2.1.5)

Our problems that can be cast as semidefinite programs (SDP) satisfy certain as-
sumptions, so that there exists a (strictly feasible) primal-dual optimal solution (i.e. a
primal strictly feasible x solving 2.1.1 and a dual strictly feasible Z solving 2.1.2).
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Then, all inequalities in 2.1.5 become equalities and there is no duality gap (η(x, Z) =
0):

d∗sdp = −Tr(F0Z) = cTx = p∗sdp . (2.1.6)

Thus, we will assume that such a primal-dual optimal solution exists in the sequel.
We also introduce the barrier function

Φ(x) :=
{

log det(F(x)−1) if F(x) ≻ 0
+∞ otherwise .

(2.1.7)

This barrier-function exhibits several nice properties: Φ is strictly convex, analytic
and self-concordant (see [NN94] for more details). The unique minimizer x∗ of Φ is
called the analytic center of the LMI F(x) < 0. This self-concordant barrier function
guarantees that the number of iterations of the interior-point method is bounded by
a polynomial in the dimension (n and m) and the number of accuracy digits of the
solution.

We report the best known complexity bounds results for SDPs, from [BTN01,
§4.6.3]. We consider an instance (p) of the primal SDP program 2.1.1. An ǫsdp-solution
of (p) is a solution x ∈ Rm of the following feasibility problem:

cTx − p∗sdp 6 ǫsdp

F(x) < −ǫsdp In .
(2.1.8)

We note Compl(p, ǫsdp) the number of real arithmetic operations needed to obtain
an ǫsdp-solution of (p) and Digits(p, ǫsdp) the number of accuracy digits in an ǫsdp-
solution of (p) (following the definition of [BTN01, §4.1.2]). We rewrite the result
of [BTN01, §4.6.3] for the arithmetic complexity of ǫsdp-solution with k1 = n (for the
sake of simplicity, the matrices Fj, j = 1, . . . , m are symmetric matrices with a single
block of size k1 × k1 = n × n):

Compl(p, ǫsdp) := O(1)(1 +
√

n)(m3 + n2m2 + mn3)Digits(p, ǫsdp) , (2.1.9)

where the number of accuracy digits is given by the following (see [BTN01, §4.6.3] for
the definitions of Size(p) and Data(p)):

Digits(p, ǫsdp) := log
(Size(p) + ‖Data(p)‖1 + ǫsdp

ǫ2
sdp

)
. (2.1.10)

2.2 Application of SDP to Polynomial Optimization

Here, we explain how to cast a polynomial optimization problem into a semidefi-
nite program. We consider the general constrained polynomial optimization problem
(POP):

f ∗pop := inf
x∈Kpop

fpop(x) , (2.2.1)

where fpop : Rn → R is a d-degree multivariate polynomial, Kpop is a compact set
defined by polynomials inequalities g1(x) > 0, . . . , gm(x) > 0 with gi(x) : Rn → R



14 CHAPTER 2. SUMS OF SQUARES BASED OPTIMIZATION

being a real-valued polynomial of degree ωi, i = 1, . . . , m. We call the feasible set of
Problem (2.2.1) the domain over which the optimum is taken, i.e. , here Kpop.

Let Bd be the basis of monomials for the d-degree real-valued polynomials in n
variables :

1, x1, x2, . . . , x2
1, x1x2, . . . , x1xn, x2x3, . . . , x2

n, . . . , xd
1, . . . , xd

n . (2.2.2)

We define s(d) = (n+d
d ) the cardinal of Bd. Let Rd[x] be the vector space of real forms

in n variables of degree at most d and R[x] the set of multivariate polynomials in n
variables. The dual space V∗ of a given vector space V on R consists of all linear
functionals from V to R. Define Rd[x]∗ to be the dual space of Rd[x]. If fpop : Rn → R

is a d-degree multivariate polynomial, we write

fpop(x) = ∑
α∈Nn

d

pαxα , (2.2.3)

where xα := xα1
1 . . . xαn

n and Nn
d := {α ∈ Nn : ∑i αi 6 d}. For a finite set C ⊂ Nn such

that ∅ 6= C ⊂ {1, . . . , n}, we also define the support of fully dense polynomials of
degree at most d:

NC
d := {α ∈ Nn

d : αi = 0 if i /∈ C} .

Let #NC
d be the cardinal of NC

d .
Let supp( fpop) stand for the support of fpop:

supp( fpop) := {α ∈ Nn
d : pα 6= 0} .

We assume without loss of generality that p0 = 0. Let Rd[x, C] denote the set of
polynomials whose support is included in C:

Rd[x, C] := { fpop ∈ Rd[x] : supp( fpop) ⊂ C} .

We also define the cone of SOS of degree 2d, i.e.

Σd[x] =
{

∑
i

q2
i , with qi ∈ Rd[x]

}
. (2.2.4)

The set Σd[x] is a closed, fully dimensional convex cone in R2d[x]. Let Σ[x] be the cone
of SOS of polynomials in n variables.

We introduce the quadratic module QM(Kpop) ⊂ R[x] associated with g1, . . . , gm:

QM(Kpop) =
{ m

∑
j=0

σj(x)gj(x) : σj ∈ Σ[x]
}

.

Definition 2.1. We say that a quadratic module QM(Kpop) is Archimedean if there
exists a positive constant M such that the polynomial x 7→ M − ‖x‖2

2 belongs to
QM(Kpop).

We also need the following assumption that will be always satisfied in our case:

Assumption 2.2. The feasible set Kpop is compact and there exists a polynomial u ∈ Rd[x]
such that the level set {x ∈ Rn : u(x) > 0} is compact and u lies in QM(Kpop).
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We refer the reader to [Sch05] for a comprehensive discussion about equivalent
statements for this assumption. In our case, we can always ensure that this assump-
tion holds. Indeed, the nonlinear inequalities that the Flyspeck project tries to prove
involve typically a variable x lying in a box K ⊂ Rn,

K := [m1, M1]× · · · × [mn, Mn] . (2.2.5)

After normalization and indexing the box inequalities as follows:

g1(x) := 1 − x2
1, . . . , gn(x) := 1 − x2

n , (2.2.6)

the polynomial u(x) := n − ∑
n
j=1 x2

j satisfies the Assumption 2.2 since one has:

n

∑
j=1

gj(x) = n −
n

∑
j=1

x2
j ,

and the level set {x ∈ Rn : n − ∑
n
j=1 x2

j > 0} is compact. Hence, one way to ensure
that Assumption (2.2) holds is to add the redundant constraint n − ∑

n
j=1 x2

j > 0 to the
set of constraints.

To convexify the problem, we write the equivalent formulation:

f ∗pop = inf
x∈Kpop

fpop(x) = inf
µ∈P(Kpop)

∫
fpopdµ , (2.2.7)

where P(Kpop) is the set of all probability measures µ supported on the set Kpop.

Theorem 2.3 (Putinar [Put93]). Suppose that the set Kpop satisfies Assumption 2.2. Given
a multivariate linear form L : R[x] → R, the following are equivalent:

1. ∃µ ∈ P(Kpop), ∀p ∈ R[x], L(p) =
∫

p dµ.

2. L(1) = 1 and L(s0 + ∑
m
j=1 sjgj) > 0 for any sum of squares s0, . . . , sm ∈ Σ[x].

Hence, we can restate 2.2.7 as:

f ∗pop = min {L( f ) : L : R[x] → R linear , L(1) = 1

and each Lgj is semidefinite positive} ,

with g0 = 1,Lg0 , . . . ,Lgm defined by:

Lgj : R[x]× R[x] → R

(p, q) 7→ L(p · q · gj) .

For any α ∈ Nn
d , we can define the moment variable yα = L(xα) and associate the

d-truncated moment matrix Md to the finite sequence (yα)α∈Nn
d
:

Md(y)u,v := L(u · v), u, v ∈ Bd . (2.2.8)

Similarly for each gj, define the d-truncated localizing matrix Md(gjy)

Md(gjy)u,v := Lgj(u · v) = L(u · v · gj), u, v ∈ Bd . (2.2.9)
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Define ω 7→ ⌈ω/2⌉ to be the function , that returns the least integer value greater
than or equal to ω/2. Let k > k0 := max(⌈d/2⌉, max16j6m⌈ωj/2⌉). Consider the
following hierarchy of semidefinite relaxations

(Qk) :





infy L( fpop)
Mk−⌈ωj/2⌉(gjy) < 0, 0 6 j 6 m ,

y0,...,0 = 1 ,

with
L( fpop) = ∑

α

pαyα .

Let give a simple example to illustrate the construction of moment and localizing
matrices.

Example 2.4. Consider the quadratic polynomial g1(x) := 2− x2
1 − x2

2. One has ω1 = 2
and the moment matrix M2(y) can be written:

M2(y) =




1 | y1,0 y0,1 | y2,0 y1,1 y0,2
− − − − − − −

y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2
y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

− − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2
y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3
y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4




From the first order moment matrix:

M1(y) =




1 | y1,0 y0,1
− − −

y1,0 | y2,0 y1,1
y0,1 | y1,1 y0,2


 ,

we obtain the following localizing matrix (2 − ⌈ω1/2⌉ = 1):

M1(g1y) =




2 − y2,0 − y0,2 2y1,0 − y3,0 − y1,2 2y0,1 − y2,1 − y0,3
2y1,0 − y3,0 − y1,2 2y2,0 − y4,0 − y2,2 2y1,1 − y3,1 − y1,3
2y0,1 − y2,1 − y0,3 2y1,1 − y3,1 − y1,3 2y0,2 − y2,2 − y0,4




For instance, the last entry is equal to M1(g1y)(3, 3) = L(g1(x) · x2 · x2) = L(2x2
2 −

x2
1x2

2 − x4
2) = 2y0,2 − y2,2 − y0,4.

Proposition 2.5 (Lasserre [Las01]). Let us call inf(Qk) the optimal value of Problem Qk.
The sequence (inf(Qk))k>k0 is non-decreasing. Under Assumption (2.2), it converges to f ∗pop.

Example 2.6 (from Lemma4717061266 Flyspeck). Consider the inequality ∀x ∈ K, ∆x >
0, where K := [4, 6.3504]6 and ∆x is the polynomial defined in Example 1.3. The
optimal value of 128 for the problem infx∈K ∆x is obtained at the Q2 relaxation with
ǫsdp = 10−8.

Now, we explain how to obtain the dual semidefinite program of Qk.
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Proposition 2.7 (Putinar [Put93]). When the quadratic module QM(Kpop) is Archimedean,
every polynomial strictly positive on Kpop belongs to QM(Kpop).

Under Assumption (2.2), the following holds for all positive ǫ:

( fpop − f ∗pop + ǫ) ∈ QM(Kpop) .

The search space for a certificate σ0, . . . , σm ∈ Σ[x] that satisfy fpop − f ∗pop + ǫ =

∑
m
j=0 σj(x)gj(x) is infinite, thus we introduce QMk(Kpop) ⊂ QM(Kpop), which is the

k-truncated quadratic module associated with g1, . . . , gm:

QMk(Kpop) =
{ m

∑
j=0

σj(x)gj(x) : σj ∈ Σk−⌈ωj/2⌉[x]
}

.

Furthermore, we consider the following hierarchy of semidefinite relaxations for
Problem (2.2.1), consisting of the optimization problems (Qk)

∗, k > k0,

(Qk)
∗ :





supµ,σj
µ ,

s.t. fpop(x)− µ =
m
∑

j=0
σj(x)gj(x) ,

µ ∈ R, σj ∈ Σk−⌈ωj/2⌉[x], j = 0, . . . , m .

Let µk := sup((Qk)
∗) be the optimal value of (Qk)

∗. A feasible point (µk, σ0, . . . , σm)
of Problem (Qk)

∗ is said to be an SOS certificate, showing the implication g1(x) >
0, . . . , gm(x) > 0 =⇒ fpop(x) > µk. We can refer to the SOS polynomials σ1, . . . , σm as
multipliers associated with the generalized Lagrangian function [KKW04a] (x,ϕ) 7→
fpop(x)−

m
∑

j=1
σj(x)gj(x), where ϕ = (σ1, . . . , σm).

Moreover, let mk(x) be the vector of monomials (xα), α ∈ Nn
k−⌈ωj/2⌉, j = 0, . . . , m

and consider the expansion:

x 7→ gj(x)m
j
k(x)m

j
k(x)

T
= ∑

α

Cj
αxα . (2.2.10)

Lemma 2.8. The following statements are equivalent:

1. ( fpop(x)− µ) ∈ Mk(Kpop)

2. There exist some real symmetric matrices Z0, Z1, . . . , Zm such that:




−µ =
m
∑

j=0
Tr(ZjC

j
0) ,

pα =
m
∑

j=0
Tr(ZjC

j
α), α ∈ Nn

2k, α 6= 0 ,

Zj ∈ Ss(k−⌈ωj/2⌉), j = 0, . . . , m ,
Zj < 0, j = 0, . . . , m .

Proof. It follows from the fact that a polynomial u ∈ R[x]2k is of the form σjgj if and
only if there exists some real semidefinite positive symmetric matrix Zj such that

Zj ∈ Ss(k−⌈ωj/2⌉) and uα = Tr(ZjC
j
α), α ∈ Nn

2k.
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Therefore, (Qk)
∗ is equivalent to:

(̃Qk)∗





supZj,µ
−

m
∑

j=0
Tr(ZjC

j
0) ,

0 =
m
∑

j=0
Tr(ZjC

j
0) + µ ,

s.t. pα =
m
∑

j=0
Tr(ZjC

j
α), α ∈ Nn

2k, α 6= 0 ,

Zj ∈ Ss(k−⌈ωj/2⌉), j = 0, . . . , m ,
Zj < 0, j = 0, . . . , m .

To see that (̃Qk)∗ is the dual semidefinite program of Qk, one can rewrite the lo-
calizing matrices:

Mk−⌈ωj/2⌉(gjy) = ∑
α

Cj
αyα, j = 0, . . . , m .

This reformulation can be seen as the linearisation of (2.2.10).

2.3 Application of SDP to Semialgebraic Optimization

In this section, we describe how to extend the previous approach to semialgebraic
optimization by introducing lifting variables.

Let A be the semialgebraic functions algebra obtained by composition of polyno-

mials with |·|,+,−,×, /, sup(·, ·), inf(·, ·), (·)
1
q (q ∈ N0). Given a semialgebraic func-

tion fsa ∈ A, we consider the problem:

f ∗sa = inf
x∈Ksa

fsa(x) , (2.3.1)

where Ksa := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} is a basic semialgebraic set.

Definition 2.9 (Basic Semialgebraic Lifting). A semialgebraic function fsa is said to
have a basic semialgebraic lifting if there exist p, s ∈ N, polynomials h1, . . . , hs ∈
R[x, z1, . . . , zp] and a basic semialgebraic set Kpop defined by:

Kpop := {(x, z1, . . . , zp) ∈ Rn+p : x ∈ Ksa, h1(x, z) > 0, . . . , hs(x, z) > 0} ,

such that the graph of fsa (denoted Ψ fsa) satisfies:

Ψ fsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, zp) : (x, z) ∈ Kpop} .

Lemma 2.10 (Lasserre, Putinar [LP10]). Every well-defined fsa ∈ A has a basic semialge-
braic lifting.

To ensure that Assumption 2.2 is preserved, we add bound constraints over the
lifting variables. These bounds are computed by solving semialgebraic optimization
subproblems. The lower (resp. upper) bounds are obtained by calling the function
min_sa (resp. max_sa). The function min_sa is described in Figure 2.1. Given a func-
tion fsa assimilated with its abstract syntax tree, a semialgebraic set Ksa and an SDP
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relaxation order k, one wants to obtain a lower bound of infx∈Ksa fsa(x). The first step
of the algorithm is to call the auxiliary function sa_lift (see Line 1), which intro-
duces extra lifting variables z, a polynomial objective function fpop and a semialge-
braic set Kpop. Then, the auxiliary function min_pop (at Line 2) returns a lower bound
of inf(x,z)∈Kpop

fpop(x, z) by solving the semidefinite relaxation Qk.

Input: Semialgebraic objective function tree fsa, semialgebraic set Ksa, variables x :=
(x1, . . . , xn), SDP relaxation order k

Output: lower bound m
1: fpop, Kpop, (x, z) := sa_lift( fsa, Ksa, x, k)
2: return min_pop( fpop, K′

pop, (x, z), k)

Figure 2.1: min_sa

The auxiliary function sa_lift (Figure 2.2) reduces the semialgebraic optimiza-
tion problems to polynomial optimization problems. To describe this algorithm, we
assimilate the objective function fsa with its abstract syntax tree.

We assume that the leaves of fsa are multivariate polynomial functions and other

nodes are monadic operations uop ∈ {(·)
1
q (q ∈ N0), |·|} or dyadic operations bop ∈

{max(·, ·), min(·, ·),+,−,×, /}.
The simplest case occurs when fsa is a multivariate polynomial. The function

sa_lift returns the polynomial objective function fsa := fpop, the semialgebraic set
Kpop := Ksa and the initial set of variables x (Line 1).

If the root of the tree corresponds to a binary operation bop with children f1 and
f2 (Line 2), the function sa_lift is applied recursively to get two semialgebraic sets
(Kpop,1 for f1 and Kpop,2 for f2), two sets of lifting variables and two objective poly-
nomial functions ( fpop,1 for f1 and fpop,2 for f2). We merge the two sets of lifting
variables (Line 5) and we define a semialgebraic set K′

pop obtained by combining the
polynomial inequality constraints that define Kpop,1 and Kpop,2 (Line 6). Moreover, we
distinguish six cases, according to bop. When fsa = max( f1, f2) (Line 7), then we use
the following identity:

2 max( f1, f2) = f1 + f2 +
√
( f1 + f2)2,

and introduce an additional lifting variable zp+1 to represent the square root. Thus,
we define the semialgebraic set Kpop by adding the equality z2

p+1 − ( fpop,1 − fpop,2)2 =
0 (that can be written with two inequalities) and the inequality zp+1 > 0 to the
inequality constraints of K′

pop (see Line 9). The lifting strategy is analogous when
bop := min (Line 11). Another interesting case is when bop is the division operator
(Line 18). One needs to check if the denominator f2 has a constant sign on Ksa and
raise an exception otherwise. The other cases are analogous.

Remark 2.11. We emphasize the fact that our current implementation contains some
optimizations to obtain less lifting variables. In particular, when bop is the multiplica-
tion operator and when a child (let say f1 without loss of generality) is a multivariate
polynomial, it is not mandatory to use a lifting variable to represent f1. However, the
degree of the resulting polynomial objective function becomes (deg( f1) + 1) (instead
of 2 with a full lifting strategy). This issue is discussed in more details in Chapter 6.
The reader can get an overview of the algorithm behaviour with the Example 2.12.
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Input: Semialgebraic objective function tree fsa ∈ A, semialgebraic set Ksa, variables
x := (x1, . . . , xn), SDP relaxation order k

Output: Polynomial objective function tree fpop, semialgebraic set Kpop, variables
(x, z) := (x1, . . . , xn, z1, . . . , zp)

1: if fsa is a multivariate polynomial then return fsa, Ksa, x
2: else if fsa = bop( f1, f2) then
3: fpop,1, Kpop,1, (x1, z1) := sa_lift( f1, Ksa, x, k)
4: fpop,2, Kpop,2, (x2, z2) := sa_lift( f2, Ksa, x, k)
5: (x, z1, . . . , zp) := (x1, z1) ∪ (x2, z2)
6: K′

pop := {(x, z) : (x1, z1) ∈ Kpop,1, (x2, z2) ∈ Kpop,2}
7: if fsa = max( f1, f2) then
8: fpop := ( fpop,1 + fpop,2 + zp+1)/2
9: Kpop := {(x, z, zp+1) : (x, z) ∈ K′

pop, z2
p+1 − ( fpop,1 − fpop,2)2 = 0, zp+1 > 0}

10: return fpop, Kpop, (x, z, zp+1)
11: else if fsa = min( f1, f2) then
12: fpop := ( fpop,1 + fpop,2 − zp+1)/2
13: Kpop := {(x, z, zp+1) : (x, z) ∈ K′

pop, z2
p+1 − ( fpop,1 − fpop,2)2 = 0, zp+1 > 0}

14: return fpop, Kpop, (x, z, zp+1)
15: else if fsa = f1 × f2 then return fpop,1 × fpop,2, K′

pop, (x, z)
16: else if fsa = f1 − f2 then return fpop,1 − fpop,2, K′

pop, (x, z)
17: else if fsa = f1 + f2 then return fpop,1 + fpop,2, K′

pop, (x, z)
18: else if fsa = f1/ f2 then
19: m = min_pop( fpop,2, K′

pop, k)
20: M = max_pop( fpop,2, K′

pop, k)
21: if 0 ∈ [m, M] then return Division Exception
22: end
23: Kpop := {(x, z, zp+1) : (x, z) ∈ K′

pop, zp+1 fpop,2 = fpop,1}
24: return zp+1, Kpop, (x, z, zp+1)
25: end
26: else if fsa = ( f )

1
q then

27: fpop, K′
pop, (x, z) := sa_lift( f , Ksa, x, k)

28: m = min_pop( fpop, K′
pop, k)

29: if m < 0 then return Inverse Power Exception
30: end
31: Kpop := {(x, z, zp+1) : (x, z) ∈ K′

pop, zq
p+1 = fpop, zp+1 > 0}

32: return zp+1, Kpop, (x, z, zp+1)

33: else if fsa = | f | then return sa_lift(
√

f 2, Ksa, x, k)
34: end

Figure 2.2: sa_lift

The max_sa function is obtained using the following:

sup
x∈Ksa

fsa(x) = − inf
x∈Ksa

fsa(x) .

Example 2.12 (from Lemma9922699028 Flyspeck). Continuing Example 1.3, we consider
the function fsa := ∂4∆x√

4x1∆x
and the set Ksa := [4, 6.3504]3 × [6.3504, 8] × [4, 6.3504]2.
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The latter can be equivalently rewritten as

Ksa := {x ∈ R6 : g1(x) > 0, . . . , g12(x) > 0} ,

where g1(x) := x1 − 4, g2(x) := 6.3504 − x1, . . . , g11(x) := x6 − 4, g12(x) := 6.3504 −
x6.

We introduce two lifting variables z1 and z2, respectively representing the terms√
4x1∆x and ∂4∆x√

4x1∆x
.

We also use a lower bound m1 of infx∈Ksa
√

4x1∆x and an upper bound M1 of
supx∈Ksa

√
4x1∆x which can be both computed by solving auxiliary subproblems.

Now the basic semialgebraic set Kpop and the graph Ψ fsa of fsa can be defined as
follows:

Kpop := {(x, z1, z2) ∈ R6+2 : x ∈ Ksa, hj(x, z1, z2) > 0, j = 1, . . . , 6} ,

Ψ fsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, z2) : (x, z1, z2) ∈ Kpop} ,

where the multivariate polynomials hj are defined by:

h1(x, z) := z1 − m1 , h4(x, z) := −z2
1 + 4x1∆x ,

h2(x, z) := M1 − z1 , h5(x, z) := z2z1 − ∂4∆x ,

h3(x, z) := z2
1 − 4x1∆x , h6(x, z) := −z2z1 + ∂4∆x .

Let ωj := deg hj, 1 6 j 6 7. The moment variable associated with z2 is y0,...,0,1. Then,
consider the following semidefinite relaxations:

Qsa
k :





infy y0,...,0,1
Mk−1(gi y) < 0, 1 6 i 6 12 ,

Mk−⌈ωj/2⌉(hj y) < 0, 1 6 j 6 6 ,
y0,...,0 = 1 .

If k > k0 := max16j67{⌈ωj/2⌉} = 2, then as a special case of Proposition 2.5, the
sequence (inf(Qsa

k ))k>2 is monotonically non-decreasing and converges to f ∗sa. The
lower bound m2 = −0.618 computed at the Qsa

2 relaxation is too coarse. A tighter
lower bound m3 = −0.445 is obtained at the third relaxation, but it consumes more
CPU time.

Next, we recall how to reduce the size of the SDP relaxations (Qk), by using a
sparse variant of Lasserre’s hierarchy.

2.4 Exploiting the System Properties

Let fsa ∈ A be a semialgebraic function and consider Problem (2.3.1). Let n be the
number of variables involved in the polynomials that define the semialgebraic set Ksa

and p the number of lifting variables that is needed to define a basic semialgebraic
lifting for fsa. Let note m the number of inequalities that define Kpop.

The size of the truncated moment SDP matrices Mk(y) (as well as the size of the
localizing matrices) grows polynomially with the SDP-relaxation order k. Indeed, at
fixed npop, the relaxation Qk involves O((2k)npop) SDP moment variables and (m + 1)
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linear matrix inequalities (LMIs) of size O(knpop). When k increases, then more accu-
rate lower bounds of f ∗pop (as well as f ∗sa) can be obtained, at an increasing computa-
tional cost, even though the theoretical convergence of the sequence (inf(Qk))k holds.
At fixed k, the relaxation Qk involves O(n2k

pop) SDP moment variables and (m + 1)
linear matrix inequalities (LMIs) of size O(nk

pop).
There are several ways to decrease the size of these matrices. First, symmetries

in SDP relaxations for polynomial optimization problems can be exploited to replace
one SDP problem Qk by several smaller SDPs [RTAL11]. Notice that it is possible only
if the multivariate polynomials of the initial problem are invariant under the action
of a finite subgroup G of the group GLnpop(R).

Here we describe how to exploit the structured sparsity of the problem to replace
one SDP problem Qk by an SDP problem of size O(κ2k) where κ is the average size of
the maximal cliques correlation pattern of the polynomial variables (see [WKK+08]).
These techniques have been successfully implemented in our NLCertify tool (see Ap-
pendix B).

For the sake of simplicity, we set xn+i := zi, i = 1, . . . , p, Kpop := {x ∈ Rnpop :
g1(x) > 0, . . . , gm(x) > 0} and consider the polynomial optimization problem:

inf
x∈Kpop

fpop(x) , (2.4.1)

Let Fk be the index set of variables which are involved in the polynomial gk.
The correlative sparsity is represented by the npop × npop correlative sparsity ma-

trix (csp matrix) R defined by:

R(i, j) =





1 if i = j ,
1 if ∃α ∈ supp( fpop) such that αi > 1 and αj > 1 ,
1 if ∃k ∈ {1, . . . , m} such that i ∈ Fk and j ∈ Fk ,
0 otherwise .

(2.4.2)

We define the undirected csp graph G(Npop, Epop) with:

Npop = {1, . . . , npop} and Epop = {{i, j} : i, j ∈ Npop, i < j, R(i, j) = 1} .

Then, let C1, . . . , Cl ⊂ Npop denote the maximal cliques of G(Npop, Epop) and define
the sets of supports:

N
Cq

d := {α ∈ N
npop

d : αi = 0 if i /∈ Cq}, (q = 1, . . . , l) .

Define nq := #Cq (q = 1, . . . , l).
We assume that the module QM(Kpop) is archimedean and that there is some

M > 0 such that M − ∑
npop

i=1 x2
i > 0. Hence, we can add the q redundant additional

constraints:
gm+q := nq M2 − ∑

i∈Cq

x2
i > 0, q = 1, . . . , l , (2.4.3)

set m′ = m + q, define the compact semialgebraic set:

K′
pop := {x ∈ Rnpop : g1(x) > 0, . . . , g′m(x) > 0} ,

and modify Problem (2.4.1) into the following optimization problem:

f ∗pop := inf
x∈K′

pop

fpop(x) , (2.4.4)
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For each clique Cq, we also define the sparse d-truncated moment matrix Md(y, Cq)

Md(y, Cq)u,v := L(u · v), u, v ∈ Bd ∩ Rd[x, N
Cq

d ] . (2.4.5)

Similarly for each gj (and the associated index set Fj), define the sparse d-truncated
localizing matrix Md(gjy, Fj):

Md(gjy, Fj)u,v := Lgj(u · v) = L(u · v · gj), u, v ∈ Bd ∩ Rd[x, N
Fj

d ] . (2.4.6)

Hence, we can define the sparse variant of the primal semidefinite relaxations Qk:

Qsparse
k :





infy L( fpop)
Mk(gjy, Cq) < 0, 1 6 q 6 l ,

Mk−⌈ωj/2⌉(gjy, Fj) < 0, 1 6 j 6 m′ ,
y0,...,0 = 1 .

For each q = 1, . . . , l, We also define the cone of sums of squares of polynomials

in Rd[x, N
Cq

d ], (q = 1, . . . , l):

Σ[x, N
Cq

d ] :=
{
∑

i
q2

i , with qi ∈ Rd[x, N
Cq

d ]
}

. (2.4.7)

Notice that the sums of squares of polynomials that belong to Σ[x, N
Cq

d ] only in-
volve variables xi(i ∈ Cq).

The dual of Qsparse
k is the sparse variant of the dual semidefinite relaxations (Qk)

∗:

(Qsparse
k )∗ :





supµ,σj
µ ,

s.t. fpop(x)− µ =
m′

∑
j=0

σj(x)gj(x) ,

µ ∈ R, σj ∈ Σ[x, N
Fj

k−⌈ωj/2⌉], j = 1, . . . , m′ ,

σ0 ∈
l

∑
q=1

Σ[x, N
Cq

k ] .

The interested reader can find more details about the properties of these semidef-
inite relaxations in [WKKM06]. Since the cliques C1, . . . , Cl satisfy the running inter-
section property (see Definition 2.13 below), the optimal values of Qsparse

k converge to
the global minimum f ∗pop, as a corollary of [Las, Theorem 3.6].

Definition 2.13 (Running Intersection Property). Let q ∈ N0, I1, . . . , Iq ⊂ {1, . . . , n}.
We say that I1, . . . , Iq satisfy the running intersection property if:

∀i = 2, . . . , r, (∃k < i, (Ii ∩
⋃

j<i

Ij) ⊂ Ik) .

We illustrate the benefits of these sparse semidefinite relaxations with the follow-
ing example:

Example 2.14 (from Lemma9922699028 Flyspeck). Consider the polynomial ∂4∆x of the
inequality of Example 2.12:

∂4∆x := x1(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5 + x3x6 − x2x3 − x5x6 .
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Here, npop = 6, d = 2, Npop = {1, . . . , 6}. The 6 × 6 correlative sparsity matrix R is:

R =




1 1 1 1 1 1
1 1 1 0 1 0
1 1 1 0 1 1
1 0 0 1 0 0
1 1 1 0 1 1
1 0 1 0 1 1




The csp graph G associated to R is depicted in Figure 2.3. The maximal cliques of G
are:

C1 := {1, 4}, C2 := {1, 2, 3, 5}, C3 := {1, 3, 5, 6} .

For instance, the set of supports associated with the maximal clique C1 for mono-
mials of degree at most 2 is:

N
C1
2 :={(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0) ,

(2, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0), (0, 0, 0, 2, 0, 0)} .

Now consider the second order semidefinite relaxation. In the case of the dense
semidefinite relaxation, the number of SDP variables is #N6

4 = (6+4
4 ) = 210 since we

are considering sums of squares of degree at most 4. Conversely, in the case of the
sparse relaxation, this number is #(NC1

4 ∪ N
C2
4 ∪ N

C3
4 ) = 115. The dense moment

matrix is a single block diagonal matrix of size 28, while the sparse moment matrix is
a block diagonal matrix with a 6 × 6 block and two 15 × 15 blocks.

6

4

5

1

2

3

Figure 2.3: Correlative sparsity pattern graph for the variables of ∂4∆x

One can also reduce the size of the sparse semidefinite relaxations by eliminating
the redundant elements that never appear in any SOS representations of the general-
ized Lagrangian fL

fL : (x,ϕ) 7→ fpop(x)−
m

∑
j=1

σj(x)gj(x) ,

where ϕ = (σ1, . . . , σm). Let FL be the support of the polynomial fL and let G0 :=
l⋃

q=1
N

Cq

k . One also need to define the set of integer vectors of FL with even coordi-

nates F e
L := FL ∩ (2Nn). Then, following the phase 2 of the algorithm described
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type vertex = Gp of alpha | Fe of alpha

module G = Graph . Persistent . Digraph . ConcreteBidirectional (

struct

type t = vertex let compare = compare_vertex

let hash = Hashtbl .hash let equal = eq_vertex end)

exception Noedges of vertex

let raise_no_outgoing_edges g vertex = match vertex with

| Gp alpha when G. out_degree g vertex = 0 -> raise (

Noedges vertex )

| Fe _ -> ()

let rec elim_sos_phase2 g =

try G. iter_vertex ( raise_no_outgoing_edges g) g; g

with Noedges vertex ->

begin

let g = G. remove_vertex g vertex in

elim_sos_phase2 g

end

Figure 2.4: A procedure to eliminate the redundant vectors for any SOS representa-
tions

in [KKW04b], we build the directed graph G(V, E), where the set of vertices V is
defined this way:

V := VG0 ∪ VF e
L

,

with
VG0 := {vα,G0 : α ∈ G0}, VF e

L
:= {vα,F e

L
: α ∈ F e

L} .

One has two types of edges for E := EG0,F e
L
∪ EG0 :

EG0,F e
L

:= {{vα,G0 , vγ,F e
L
} : vα,G0 ∈ VG0 , vγ,F e

L
∈ VF e

L
and 2α = γ} ,

EG0 := {{vα,G0 , vγ,G0} : vα,G0 , vγ,G0 ∈ VG0 and (2α − γ) ∈ G0 and α 6= γ}.

If a node vα,G0 ∈ V has no outgoing edges, then the integer vector α is redundant
(see [KKW04b] for more details), thus we can eliminate α from G0. Then, we actu-
alise G0 and repeat the procedure until the digraph G has no nodes vα,G0 such that
α is redundant. We implemented this procedure in OCAML using the ocamlgraph

library [CFS07]. The code of the main function is available in Figure 2.4.

2.5 Hybrid Symbolic-Numeric Certification

The previous semidefinite relaxations Qk and (Qk)
∗ (as well as the sparse variants

mentioned in Section 2.4) can be solved with SDP solvers (e.g. SDPA [YFN+10]). These
solvers are implemented using floating-point arithmetic. In order to build formal
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proofs, we currently rely on exact rational certificates which are needed to make for-
mal proofs: COQ, being built on a computational formalism, is well equipped for
checking the correctness of such certificates.

Such rational certificates can be obtained by the rationalization scheme (round-
ing and projection algorithm) developed by Peyrl and Parrilo [PP08], with an im-
provement of Kaltofen et al. [KLYZ12]. Note that when the SDP formulation of the
polynomial optimization problem is not strictly feasible, then the rounding and pro-
jection algorithm may fail. However, Monniaux and Corbineau proposed a partial
workaround for this issue [MC11]. In this way, except in degenerate situations, we
arrive at a candidate SOS certificate with rational coefficients, (µ, σ0, . . . , σm) from the
floating point solution of (Qk)

∗.

In practice, the SDP solvers solve the formulation (̃Qk)∗ (which is equivalent to
(Qk)

∗) and return floating-point symmetric matrices Z0, . . . , Zm and a lower bound µk.

We know that for every optimal solution Z0, . . . , Zm of (̃Qk)∗ (from [Las01, Theorem
4.2 (b)]):

fpop(x)− µk =
m

∑
j=0

gj(x)
rj

∑
i=1

λijv
2
ij(x) , (2.5.1)

where the vectors of coefficients of the polynomials vij are the eigenvectors of Zj
with the associated rj eigenvalues λij. One has the following decomposition:

σj :=
rj

∑
i=1

λijv
2
ij, j = 0, . . . , m . (2.5.2)

Unfortunately from a practical point of view, the solution (µk, σ0, . . . , σm) satisfies
approximately the equality constraint in (Qk)

∗:

fpop(x)− µk ≃
m

∑
j=0

σj(x)gj(x) .

Then, let us note θk := ‖ fpop(x) − µk − ∑
m
j=0 σj(x)gj(x)‖ the error for the problem

(Qk)
∗. The method of Kaltofen et al. [KLYZ12] consists in applying first Gauss-

Newton iterations to refine the approximate SOS certificate, until θk is less than a
given tolerance and then, to apply the algorithm of [PP08]. The number µk is ap-
proximated by a nearby rational number µk

Q / µk and the approximate SOS certifi-
cate (σ0, . . . , σm) is converted to a rational SOS (for more details, see [PP08]). Then
the refined SOS is projected orthogonally to to the set of rational SOS certificates
(µk

Q, σ0
Q, . . . , σm

Q), which satisfy (exactly) the equality constraint in (Qk)
∗. This can

be done by solving a least squares problem, see [PP08] for more information.
In our case, we do not use the rounding and projection algorithm of Peyrl and Par-

rilo. Instead, we perform a rational SOS extraction, following the procedure depicted
in Figure 2.5 (this is an implementation feature of our solver NLCertify).

The procedure relies on the LACAML (Linear Algebra with OCAML) library, which
implements the BLAS/LAPACK-interface and the ZARITH OCAML library, which im-
plements arithmetic and logical operations over arbitrary-precision integers. Eigen-
values and eigenvectors are computed with the syev routine of LACAML (Line 2), then
converted into arbitrary precision rationals using the function Q.of_float of ZARITH

(Line 3). The floating-point SDP optimal value µk is also converted into a rational µ̃k.
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Input: Objective polynomial function fpop, polynomial constraints g1, . . . , gm, SDP
relaxation order k

Output: Rational bound µ̃k, rational SOS certificates σ̃0, . . . , σ̃m, polynomial remain-
der ǫpop, polynomial remainder lower bound ǫ∗pop

1: Extract a numerical solution µk, Z0, . . . , Zm returned by the SDP solver after solv-
ing Qk

2: σ0, . . . , σm := from_syev(Z0, . . . , Zm)
3: µ̃k, σ̃0, . . . , σ̃m := float_to_rat(µk, σ0, . . . , σm)
4: ǫpop(x) := fpop(x)− µ̃k − ∑

m
j=0 σ̃j(x)gj(x)

5: ǫ∗pop := ∑ǫα60 ǫα

6: return µ̃k, σ̃0, . . . , σ̃m, ǫpop, ǫ∗pop

Figure 2.5: extract_sos

The next step is simpler than the projection algorithm of Parrilo. We consider the
following polynomial (Line 4):

ǫpop(x) := fpop(x)− µ̃k −
m

∑
j=0

σ̃j(x)gj(x) .

Remark 2.15. The SOS numerical certificate is first extracted from the SDP solvers out-
put data and represented with OCAML floating points polynomials. The coefficients
of the SOS certificate polynomials (σ̃0, . . . , σ̃m) (as well as ǫpop) lie in Q after conver-
sion in our implementation. Notice also the relation between the error considered in
the rounding algorithm of Parrilo and Peyrl and the polynomial ǫpop:

θk := ‖ǫpop‖ .

A lower bound ǫ∗pop of infx∈Kpop ǫpop(x) can be obtained using certified interval
arithmetic. Then µ̃k + ǫ∗pop is a valid lower bound of fpop on Kpop.

One has:
ǫpop(x) := ∑

α∈N
npop
2k

ǫαxα .

Then, after normalization and indexing the box inequalities as in 2.2.6, the following
holds for each x ∈ [0, 1]n:

ǫpop(x) > ∑
ǫα60

ǫα . (2.5.3)

Hence, this procedure allows to compute directly a lower bound ǫ∗pop (Line 5) from
the right-hand side of (2.5.3).





Chapter 3

A General Approximation Scheme
for Global Optimization

This chapter is devoted to the general framework to solve nonlinear inequalities in-
volving transcendental functions. We first describe the abstract syntax representation
of these functions (Section 3.1). Given some approximation tools for univariate or
semialgebraic functions, we obtain a hierarchy of semialgebraic estimators, which we
bound using SOS relaxations (Section 3.2). We prove the consistency of this approxi-
mation scheme under certain assumptions (Section 3.3).

3.1 Abstract Syntax Tree of Multivariate Transcendental Func-
tions

Let f ∈ 〈D〉sa be a function and K a box issued from a Flyspeck inequality or a general
global optimization problem described in 1.1.2. We assimilate the objective function
f with its abstract syntax tree t. We assume that the leaves of t are semialgebraic
functions in the set A and other nodes are univariate transcendental functions (arctan,
etc ) or basic operations (+,×,−, /). For the sake of the simplicity, we suppose that
each univariate transcendental function is monotonic.

Example 3.1. Continuing Example 1.3, we represent the function f with the syntax
abstract tree depicted in Figure 3.1.

+

l(x) arctan

∂4∆x√
4x1∆x

Figure 3.1: The syntax abstract tree of the function f defined in Example 1.3

29



30 CHAPTER 3. A GENERAL APPROXIMATION SCHEME

3.2 Combining Semialgebraic Approximations and
Sums of Squares

Here we consider an instance of Problem (1.1.3) and explain how to combine semial-
gebraic optimization techniques with approximation tools for univariate or semialge-
braic functions. The auxiliary algorithm approx is presented in Figure 3.2.

We identify the objective function f with its abstract syntax tree t. Given an ab-
stract syntax tree t, a semialgebraic set K, an SOS relaxation order k and a precision p
which can be either a finite sequence of control points x1, . . . , xp ∈ K or a polynomial
approximation degree d, the algorithm approx computes a lower bound m (resp. up-
per bound M) of t over K and an underestimator t− (resp. an overestimator t+) of t
by means of semialgebraic functions.

It relies on an approximation method unary_approx for univariate (possibly tran-
scendental) functions and an approximation method reduce_lift for semialgebraic
functions. The algorithms presented in Part II use particular instances of the proce-
dures unary_approx and reduce_lift.

The simplest way to define reduce_lift is to consider the identity over semialge-
braic functions (see Section 4.2 and 5.3). Semialgebraic functions can also be approxi-
mated by polynomials (see Section 6.3).

We shall need to consider various approximation schemes, including the approx-
imation of univariate functions by polynomials of increasing degrees, or maxplus
approximations in which the precision is determined by certain sets of control points.
For some other schemes, the precision may be controlled by the fineness of a mesh. A
convenient way to express the refinement of the precision, for general schemes, is to
use the vocabulary of nets.

We recall the following definitions, using [Nag74]:

Definition 3.2. A directed set is a set D with a relation 6 which is reflexive, transitive
and directed, i.e. for each a, b ∈ D, there exists some c ∈ D such that a 6 c and b 6 c.

Definition 3.3. A net in a set X is a map λ : D → X. If X is a topological space,
we say that the net λ converges to x ∈ X and write λ → x if and only if for every
neighbourhood U of x, there exists some tail Λ := {λ(c) : d 6 c ∈ D} such that
Λ ⊆ U.

A classical way to approximate an univariate function on a given interval I is to
use best uniform polynomials. In this case, the precision parameter is the approxima-
tion degree d and unary_approx calls the Remez algorithm (Figure 4.1 in Chapter 4.1).
The sequence of approximation degrees defines the net.

An alternative approach is to build maxplus estimators from the control points
sequence s (Chapter 5). We shall see that for maxplus approximations, the net is the
set of finite subsets of I.

More generally, we represent the precision p by an element of a directed set P .
For the sequel, we need to make the following assumption on unary_approx and
reduce_lift:

Assumption 3.4. For every function r of the dictionary D, defined on a closed interval I,
the procedure unary_approx returns two nets of univariate lower semialgebraic estimators
(r−p )p∈P and upper semialgebraic estimators (r+p )p∈P , that uniformly converge to r on I.
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Input: abstract syntax tree t, semialgebraic set K, SOS relaxation order k, precision p
Output: lower bound m, upper bound M, lower semialgebraic estimator t−, upper

semialgebraic estimator t+

1: if t ∈ A then
2: t− := t, t+ := t
3: else if r := root(t) with child c then
4: mc, Mc, c−, c+ := approx(c, K, k, p)
5: I := [mc, Mc]
6: r−, r+ := unary_approx(r, I, c, p)
7: t−, t+ := compose_approx(r, r−, r+, I, c−, c+)
8: else if bop := root(t) is a binary operation with children c1 and c2 then
9: mci , Mci , c−i , c+i := approx(ci, K, k, p) for i ∈ {1, 2}

10: I2 := [mc2 , Mc2 ]
11: t−, t+ := compose_bop(c−1 , c+1 , c−2 , c+2 , bop, I2)
12: end
13: t− := reduce_lift(t−, K, k, p), t+ := reduce_lift(t+, K, k, p)
14: x− := vars(t−, K), x+ := vars(t+, K)
15: return min_sa(t−, K, x−, k), max_sa(t+, K, x+, k), t−, t+

Figure 3.2: approx: General Semialgebraic Approximation Algorithm

Input: univariate function r, lower estimator r−, upper estimator r+, interval I, lower
estimator c−, upper estimator c+

Output: lower estimator t−, upper estimator t+

1: if r is increasing on I then
2: t− := r− ◦ c−, t+ := r+ ◦ c+

3: else if r is decreasing on I then
4: t− := r− ◦ c+, t+ := r+ ◦ c−

5: end
6: return t−, t+

Figure 3.3: compose_approx : Estimators Composition Algorithm

For every semialgebraic function fsa ∈ A, defined on a compact semialgebraic set K,
the procedure reduce_lift returns two nets of lower semialgebraic estimators (t−p )p∈P and
upper semialgebraic estimators (t+p )p∈P , that uniformly converge to fsa on K.

The general approximation algorithm approx is defined by induction on the ab-
stract syntax tree t.

When t is reduced to a leaf (Line 2), i.e. it represents a semialgebraic function of A,
we call the functions min_sa and max_sa, which determine lower and upper bounds
using techniques presented in Section 2.4 (see the algorithm presented in Figure 2.1).
In this case, the tree t provides an exact semialgebraic estimator.

If the root of t is an univariate function node r taking a single child c as argument,
lower and upper bounds mc and Mc are recursively obtained (Line 4), as well as esti-
mators c− and c+. Then we define I := [mc, Mc] and apply the function unary_approx

to get estimators r− and r+ of r over I. These estimators can be parametrized either
by the given control points x1, . . . , xp (see e.g. Figure 5.3) or a polynomial approxima-
tion degree d and are composed with c− and c+ (so-called compose_approx function)
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Input: lower estimator c−1 , upper estimator c+1 , lower estimator c−2 , upper estimator
c+2 , binary operation bop, interval I2 (optional parameter for the division case)

Output: lower estimator t−, upper estimator t+

1: if bop = + then
2: t− := c−1 + c−2 , t+ := c+1 + c+2
3: else if bop = − then
4: t− := c−1 − c+2 , t+ := c+1 − c−2
5: else if bop = × then
6: t− := min{c−1 c−2 , c+1 c−2 , c−1 c+2 , c+1 c+2 }
7: t+ := max{c−1 c−2 , c+1 c−2 , c−1 c+2 , c+1 c+2 }
8: else if bop = / then
9: if 0 ∈ I2 then return Division Exception

10: end
11: t− := inf{c−1 /c−2 , c+1 /c−2 , c−1 /c+2 , c+1 /c+2 }
12: t+ := sup{c−1 /c−2 , c+1 /c−2 , c−1 /c+2 , c+1 /c+2 }
13: end
14: return t−, t+

Figure 3.4: compose_bop : Semialgebraic Arithmetic Algorithm

to obtain an underestimator t− as well as an overestimator t+. The compose_approx

function is depicted in Figure 3.3. The composition depends on the monotonicity
properties of r (from Line 1 to Line 4). For instance, if r is increasing, an underestima-
tor of t is obtained by composing the underestimator r− of r with the underestimator
c− of c.

Remark 3.5. When the root of t is the power function (·)1/p (p ∈ N0), taking a single
child c as argument, the estimators of t are obtained by composition of this power
function approximation with the estimators of c. In practice, we raise an exception
if the lower bound of the child argument (mc) is negative. This exception can be
handled by increasing either the SOS relaxation order k or the degree d of the best
uniform approximation polynomial.

The last case occurs when the root of t is a binary operation whose arguments
are two children c1 and c2. We can apply recursively approx to each child and get
semialgebraic underestimators c−1 , c−2 and overestimators c+1 , c+2 . The compose_bop

algorithm, depicted in Figure 3.4, presents the different operations between semial-
gebraic estimators. We emphasize that the semialgebraic arithmetic rules are analo-
gous with the interval arithmetic operations. For instance, when the binary operation
is the multiplication (or the division), one has to consider the four possible prod-
ucts (Line 5) between an estimator of c1 and an estimator of c2: c−1 c−2 , c+1 c−2 , c−1 c+2 and
c+1 c+2 . We obtain a valid underestimator (resp. overestimator) by taking the minimum
(resp. maximum) of the four possible products. When the binary operation is the
division, we raise an exception if the sign of each of the estimators of c2 is not con-
stant (Line 9). This exception can be handled by getting more accurate bounds with
either the semialgebraic optimization function min_sa (with a higher order k) or the
approximation function reduce_lift.

Finally, we obtain a semialgebraic underestimator t− of t− (resp. an overestimator
t+ of t+) with the algorithm reduce_lift. We get the list of variables of the semi-
algebraic optimization problems using the auxiliary vars algorithm (Line 14). Then,
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Input: abstract syntax tree t, semialgebraic set K, itermax (optional argument), preci-
sion p

Output: lower bound m
1: s := [argmin(randeval(t))] ⊲ s ∈ K
2: m := −∞

3: iter := 0
4: while iter 6 itermax do
5: Choose an SDP relaxation order k > k0
6: m, M, t−, t+ := approx(t, K, k, p)
7: xopt := guess_argmin(t−) ⊲ t−(xopt) ≃ m
8: s := s ∪ {xopt}
9: p := update_precision(p)

10: iter := iter + 1
11: done
12: return m, xopt

Figure 3.5: optim : General Semialgebraic Optimization Algorithm

we call the functions min_sa and max_sa which determine lower and upper bounds
using techniques presented in Section 2.4 (see the algorithm presented in Figure 2.1).

Remark 3.6. The implementation of the multiplication can be improved by inspecting
the sign of the estimators. Suppose that c1 has a constant sign. We can assume that c1
is positive without loss of generality (this can be inferred from the nonnegativity of
mc1). Then, it follows that:

inf{c−1 c−2 , c+1 c−2 } 6 c1c−2 6 c1c2 6 c1c+2 6 sup{c−1 c+2 , c+1 c+2 }.

Thus, one has to consider semialgebraic estimators that involve either infimum or
supremum of two products (instead of four when no sign information is available).
We have observed that in practice, all the inequalities that we consider in the Flyspeck
project satisfy this restriction.

Let c1, . . . , cs be the components of the tree t, on which one calls approximation
algorithms with respective precisions p1 ∈ P1, . . . , ps ∈ Ps. Let P = P1 × · · · × Ps be
the set of precisions, ordered with the product order. The global precision parameter
p ∈ P can be updated with the update_precision procedure.

Now we describe our main semialgebraic optimization algorithm optim (see Fig-
ure 3.5). Given an abstract syntax tree t and a compact semialgebraic set K this al-
gorithm returns a lower bound m of t using semialgebraic minimax estimators com-
puted recursively with approx. The relaxation order k (Line 5) is a parameter of the
semialgebraic optimization functions min_sa (as well as max_sa) and reduce_lift.
Let suppose that K is described by polynomial inequalities g1(x) > 0, . . . , gm(x) > 0.

The semidefinite relaxation order must be at least k0 := max16j6m{⌈deg(gj)/2⌉)}.
In practice, we solve semialgebraic optimization problems with the second or third
SDP Lasserre’s relaxation and take k = k0. At the beginning, the set of control points
consists of a single point of the box K. This point is chosen so that it minimizes the
value of the function associated to the tree t among a set of random points (Line 1).
Then, at each iteration of the loop from Lines 4 to 11, the auxiliary function approx

is called to compute a lower bound m of the function t (Line 6), using the estima-
tors t− and t+. At Line 7, a minimizer candidate xopt of the underestimator tree t− is
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computed. It is obtained by projecting a solution xsdp of the SDP relaxation of Sec-
tion 2.4 on the coordinates representing the first order moments, following [Las01,
Theorem 4.2]. However, the projection may not belong to K when the relaxation or-
der k is not large enough. This is why tools like SPARSEPOP use local optimization
solver in a post-processing step to provide a point in K which may not be a global
minimizer. In any case, xopt is then added to the set of control points (Line 8). Alter-
natively, if we are only interested in determining whether the infimum of t over K is
nonnegative (Problem (1.1.3)), the loop can be stopped as soon as m > 0.

3.3 Convergence of the General Semialgebraic
Approximation Algorithm

Under certain assumptions and given an accuracy ǫ > 0, we prove that the objective
function f can be uniformly ǫ-approximated over the semialgebraic set K with the
algorithm approx. Let the relaxation order k be fixed and t−p (resp. t+p ) be the underes-
timator (resp. overestimator) of t on K obtained with the approx function at precision
p.

The limit of a net indexed by p ∈ P is obtained by increasing the precision of each
elementary approximation algorithms applied to c1, . . . , cs.

To prove this proposition, we recall the definition of the modulus of continuity.

Definition 3.7 (Modulus of continuity). Let u be a function defined on an interval I.
The modulus of continuity is defined as:

ω(δ) := sup
x1,x2∈I

|x1−x2|<δ

| u(x1)− u(x2) |

Proposition 3.8 (Convergence of the general semialgebraic approximation algorithm).
Under Assumption (3.4), the nets (t−p )p and (t+p )p uniformly converge to t on K.

Proof. By induction on the structure of t.

• When t represents a semialgebraic function of A, the underestimator (resp. over-
estimator) net (t−p )p (resp. (t+p )p) converges uniformly to t by the assumption
made on reduce_lift in 3.4.

• The second case occurs when the root of t is an univariate function r ∈ U with
the single child c. Suppose that r is increasing without loss of generality. We
consider the net of underestimators (c−p )p (resp. overestimators (c+p )p) as well
as lower and upper bounds mcp and Mcp which are obtained recursively. Since
K is a compact semialgebraic set, one can always find an interval I0 enclosing
the values of r+p (i.e. such that [mcp , Mcp ] ⊂ I0), for all p.

The induction hypothesis is the uniform convergence of (c−p )p (resp. (c+p )p) to c
on K. Now, we prove the uniform convergence of (t+p )p to t on K. One has:

‖t − t+p ‖∞ 6 ‖r ◦ c − r+p ◦ c‖∞ + ‖r+p ◦ c − t+p ‖∞. (3.3.1)

Let note ω the modulus of continuity of r+p on I0. Thus, the following holds:
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‖r+p ◦ c − r+p ◦ c+p ‖∞ 6 ω(‖c − c+p ‖∞). (3.3.2)

Let ǫ > 0 be given. The univariate function r+p is uniformly continuous on I0,
thus there exists δ > 0 such that:

ω(δ) 6 ǫ/2. (3.3.3)

Let choose such a δ. By induction hypothesis, there exists a precision p0 such
that for all p > p0, ‖c − c+p ‖∞ 6 δ. Hence, using (3.3.2), the following holds:

‖r+p ◦ c − r+p ◦ c+p ‖∞ 6 ǫ/2. (3.3.4)

Moreover, from the uniform convergence of (r+p )p∈N to r on K, there exists a
precision p1 such that for all p > p1:

‖r ◦ c − r+p ◦ c‖∞ 6 ǫ/2. (3.3.5)

Using (3.3.1) together with (3.3.4) and (3.3.5) yield the desired result. The proof
of the uniform convergence of the underestimators is analogous.

• If the root of t is a binary operation whose arguments are two children c1 and
c2, then by induction hypothesis, we obtain semialgebraic estimators c−1,p, c−2,p,
c+1,p, c+2,p that verify:

lim
p→∞

‖c1 − c−1,p‖∞ = 0, lim
p→∞

‖c1 − c+1,p‖∞ = 0, (3.3.6)

lim
p→∞

‖c2 − c−2,p‖∞ = 0, lim
p→∞

‖c2 − c+2,p‖∞ = 0. (3.3.7)

If bop = +, by using the triangle inequality:

‖c1 + c2 − c−1,p − c−2,p‖∞ 6 ‖c1 − c−1,p‖∞ + ‖c2 − c−2,p‖∞,

‖c1 + c2 − c+1,p − c+2,p‖∞ 6 ‖c1 − c+1,p‖∞ + ‖c2 − c+2,p‖∞.

Then, the uniform convergence comes from (3.3.6) and (3.3.7). The proof for the
other cases is analogous.

For a precision p, define m∗
p to be the optimal value of the underestimator t−p on K:

m∗
p := inf

x∈K
t−p .

Notice that if we suppose that the SOS Assumption (2.2) holds, then we can theoret-
ically obtain the optimal value m∗

p of the semialgebraic underestimator t−p , using the
semialgebraic optimization techniques described in Section 2.4.

Corollary 3.9 (Convergence of the estimators optimal values). Suppose that Assump-
tion (3.4) holds. Then, the net (m∗

p)p converges to the optimal value t∗ of t.
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Proof. Let x∗p be a minimizer of t−p on K and note x∗ one minimizer of t on K, then one
has:

t(x∗) = t∗, t−p (x
∗
p) = m∗

p.

By definition, the following inequalities hold:

t−p (x
∗
p) 6 t−p (x

∗) 6 t(x∗) 6 t(x∗p). (3.3.8)

From (3.3.8), one has:
0 6 t(x∗)− t−p (x

∗
p). (3.3.9)

Let ǫ > 0 be given. From Proposition 3.8, there exists a precision d0 such that for
all d > d0, one has:

t(x∗)− t−p (x
∗) < ǫ/2, (3.3.10)

t(x∗p)− t−p (x
∗
p) < ǫ/2. (3.3.11)

From (3.3.8), t−p (x
∗) 6 t(x∗p), thus one has the following:

t(x∗)− t−p (x
∗
p) 6 [t(x∗)− t−p (x

∗)] + [t(x∗p)− t−p (x
∗
p)].

Then, as a consequence of (3.3.10) and (3.3.11), one has:

t(x∗)− t−p (x
∗
p) < ǫ. (3.3.12)

The inequalities from (3.3.9) and (3.3.12) yield the desired result.

To study the convergence of the minimizers of t−p , we first introduce some back-
ground on the Γ-convergence (we refer the reader to [Mas93] for more details) and
the lower semicontinuous envelope.

The topology of Γ-Convergence is known to be metrizable hence, we shall con-
sider the Γ-Convergence of sequences (rather than nets).

Definition 3.10 (Γ-Convergence). The sequence (tp)p∈N Γ-converges to t if the fol-
lowing two conditions hold:

1. (asymptotic common lower bound) for all x ∈ K and every (xp)p∈N such that
limp→∞ xp = x,

t(x) 6 lim inf
p→∞

tp(xp).

2. (existence of recovery sequences) for all x ∈ K, there exists some (xp)p∈N such
that limp→∞ xp = x and

lim sup
p→∞

tp(xp) > t(x).

Define R := R ∪ {−∞, ∞} to be the extended real number line.

Definition 3.11 (Lower Semicontinuous Envelope). Given t : K 7→ R, the lower semi-
continuous envelope of t is defined by:

tlsc(x) := sup{g(x) | g : K 7→ R is lower semicontinuous and g 6 f on K}.

If t is continuous, then tlsc := t.
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Theorem 3.12 (Fundamental Theorem of Γ-Convergence [Mas93]). Suppose that the
sequence (tp)p∈N Γ-converges to t and xp minimizes tp. Then every limit point of the sequence
(xp)p∈N is a global minimizer of t.

Theorem 3.13 (Γ and Uniform Convergence [Mas93]). If (tp)p∈N uniformly converges
to t, then (tp)p∈N Γ-converges to tlsc.

Theorem 3.13 also holds for nets, since the topology of Γ-Convergence is metriz-
able.

The following corollary describes the correspondence between the minimizers of
the underestimators net (t−p )p and the global minimizers of t.

Corollary 3.14 (Convergence of the Minimizers Net). Suppose that Assumption (3.4)
holds. Then, every limit point of the net of minimizers (x∗p)p∈N is a global minimizer of t over
K.

Proof. From Proposition 3.8, the underestimators net (t−p )p∈N uniformly converge to
t on K. Then, by using Theorem 3.13, the net (t−p )p∈N Γ-converges to tlsc := t (by
continuity of t). It follows from the fundamental Theorem of Γ-Convergence 3.12 that
every limit point of the net of minimizers (x∗p)p∈N is a global minimizer of t over
K.
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Chapter 4

Minimax Semialgebraic
Optimization

In this chapter, we present a method which combines minimax estimators and semi-
algebraic optimization. We first focus on the approximation of univariate functions
using best uniform polynomials (Section 4.1). It leads to an approximation algorithm
(Section 4.2), parametrized by the degrees of polynomial estimators. Numerical re-
sults are presented in Section 4.3. The convergence of the approximation algorithm is
a consequence of the uniform convergence property of the minimax polynomials (Sec-
tion 4.4). We conclude this chapter by presenting a natural extension of this method
using Taylor polynomials (Section 4.5).

In the sequel, we consider an instance of Problem (1.1.3) and we assume that K is
a box. We suppose that the univariate functions involved in the objective function f
are differentiable.

4.1 Minimax Polynomials for Univariate Functions

We first recall the principles of the best uniform polynomial approximation algorithm
for a transcendental univariate function u on a given interval I := [m, M] ⊂ R, with
m < M. The infinite norm of u (also called Chebyshev norm or sup norm) is ‖u‖∞ :=
supx∈I |u(x)|.

For the following definition, we use [MH03, Definition 3.2]:

Definition 4.1 (Best Uniform Polynomial Approximation). An approximation fd ∈
Rd[x] is said to be best, if the following holds for any other approximation p ∈ Rd[x]:

‖u − fd‖∞ 6 ‖u − p‖∞ .

This best approximation fd exists and is unique if u is continuous on I. The best
uniform degree-d polynomial approximation (or minimax polynomial) solves the fol-
lowing optimization problem:

min
p∈Rd[x]

‖u − p‖∞ = min
p∈Rd[x]

(sup
x∈I

|u(x)− p(x)|) .

The degree-d minimax polynomial fd can be obtained through an iterative al-
gorithm designed by Remez. The algorithm computes a sequence of polynomials

41



42 CHAPTER 4. MINIMAX SEMIALGEBRAIC OPTIMIZATION

f (1)d , . . . , f (k)d until the approximation error ‖u − f (k)d ‖∞ becomes closed enough to the
optimal value of the previous optimization problem. We refer the reader to [Che09]
for more details about the Remez algorithm implementations.

In our approximation algorithm (see Figure 4.1), we use the function remez avail-
able in the Sollya tool [CJL10]. The parameters of remez are the univariate function
u, the degree-d of the minimax polynomial estimator and the closed interval I ⊂ R

where u must be approximated.
If the algorithm converges and returns a degree-d polynomial fd, then a numerical

approximation of the infinity norm of the error function (u − fd) on the interval I
can be obtained with the so-called sollyainfnorm function. This function can call
either the infnorm or dirtyinfnorm routine from Sollya (see remark 4.2). Then, if
the numerical result of the function is ǫd, let consider the functions u− and u+ defined
as follows:

u− : x 7→ fd(x)− ǫd, u+ : x 7→ fd(x) + ǫd . (4.1.1)

It is straightforward to prove that u− (resp. u+) is a degree-d underestimator (resp.
overestimator) of u on the interval I.

Remark 4.2. The dirtyinfnorm procedure is based on an algorithm which detects
where the derivative of (u − fd) changes its sign for consecutive points in the inter-
val I. Even though the returned result bound of dirtyinfnorm is generally accurate,
more rigorous supremum norms can be used as an alternative for sollyainfnorm. For
instance, the function infnorm is based on interval arithmetic combined with Taylor
recursions, L’Hopital recursions as well as bisection techniques [CJL10]. Another al-
gorithm using automatic differentiation is described in [CJL09].

Example 4.3. Continuing Example 1.3, we consider the function f , defined on the box
K := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2:

f (x) := l(x) + arctan
∂4∆x√
4x1∆x

.

In Example 2.12, we already computed lower bounds for the argument of the
arctan function. We obtained m2 := −0.618 and m3 := −0.445. Similarly, we can
obtain upper bounds M2 := 0.891 and M3 := 0.874. Hence, we apply the remez

function of the Sollya tool on the arctan function either on the interval [m2, M2] (SDP
relaxation Qsa

2 ) or [m3, M3] (SDP relaxation Qsa
3 ). On the other hand, the function l

involves a linear combination of square roots of the components of x. Thus, we apply
remez on the square root function either on the interval [4, 6.3504] or [6.3504, 8].

In Table 4.1, we present the corresponding test results for these two univariate
functions involved in the Flyspeck Lemma9922699028. The integer d represents the de-
gree of the minimax polynomial used to approximate the function u on the interval I.
For each approximation, an upper bound of the approximation error ǫd is also given.

First, consider the approximation error ǫd on the arctan function over the interval
[m2, M2] obtained at a low SDP relaxation order. When the minimax degree-d in-
creases, the value of ǫd decreases, as expected. Now if we fix the degree-d, we notice
that the error also decreases when the interval is tighter.

Then, consider the approximations of the square root function. On the interval
[6.3504, 8], a quadratic minimax polynomial already provides a good approximation
since the upper bound on ǫ2 is less than 10−7. On the other hand, the polynomial
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Table 4.1: Upper Bounds of Minimax Approximation Errors for the Univariate Func-
tions involved in Lemma9922699028 Flyspeck

u I d Upper bound of ǫd

arctan
[−0.618, 0.891]

4 1.47 × 10−3

5 3.08 × 10−4

6 1.03 × 10−4

[−0.445, 0.874]
4 6.34 × 10−4

5 2.00 × 10−4

6 2.64 × 10−5

√ [4, 6.3504]
2 4.31 × 10−5

3 3.10 × 10−5

4 2.50 × 10−5

[6.3504, 8] 2 9.34 × 10−8

approximation on the interval [4, 6.3504] is less accurate and increasing the degree
does not significantly improve the upper bounds of the error.

4.2 Combining Minimax Approximations and Sums
of Squares

The approximation algorithm minimax_approx is obtained from the recursive algo-
rithm approx (see Figure 3.2) by taking the identity function for reduce_lift and the
minimax_unary_approx procedure for unary_approx.

The auxiliary algorithm minimax_unary_approx is presented in Figure 4.1. Given
an univariate function r (which has a single child c), an approximation degree-d, the
child c and a closed interval I, this algorithm returns an underestimator r− as well as
an overestimator r+ of r. If the function r belongs to U \ D (i.e. r is either the absolute
value or a power function) and the child is a linear polynomial (the two conditions in
Line 1), then r provides an exact estimator.

Otherwise, we apply the function remez that builds the best uniform polynomial
approximation fd of a given degree-d on the interval I (Line 4), by using the Remez
algorithm on r, as explained above. Then, we use the sollyainfnorm function on
the error function (r − fd), defined on I and we obtain an upper bound of the error
induced by this approximation (Line 5). Note that minimax_unary_approx does not
depend on the sequence of control points s = (x1, . . . , xp).

Now we present the optimization algorithm minimax_optim, obtained from the
general optim algorithm (depicted in Figure 3.5). Given an abstract syntax tree t and
a compact semialgebraic set K this algorithm returns a lower bound m of t using semi-
algebraic minimax estimators computed recursively with approx = minimax_approx.
The resulting procedure is depicted in Figure 4.2. Here, we set iter = dmin (resp.
itermax = dmax), which is the minimal (resp. maximal) degree of the minimax polyno-
mial approximations. The condition dmin 6 k0 allows to obtain valid SOS relaxations,
when we call the auxiliary functions min_sa and max_sa. The parameter dmax shall
be selected after consideration of the computational power available since one may
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Input: univariate function r, interval I, child c, polynomial approximation degree-d
Output: underestimator r−, overestimator r+

1: if r ∈ U \ D and c ∈ R1[x] then
2: r− := r, r+ := r
3: else if r ∈ U then
4: fd := remez(r, d, I)
5: ǫd := sollyainfnorm(r − fd, I)
6: r− := fd − ǫd, r+ := fd + ǫd
7: end
8: return r−, r+

Figure 4.1: minimax_unary_approx: Minimax Approximation Algorithm

Input: abstract syntax tree t, semialgebraic set K, dmin, dmax

Output: lower bound m
1: s := [argmin(randeval(t))]
2: m := −∞

3: d := dmin ⊲ dmin 6 k0
4: while d 6 dmax do
5: Choose an SDP relaxation order k > k0
6: m, M, t−, t+ := minimax_approx(t, K, k, s)
7: xopt := guess_argmin(t−)
8: s := s ∪ {xopt}
9: d := d + 1

10: done
11: return m, xopt

Figure 4.2: minimax_optim : Minimax Semialgebraic Optimization Algorithm

need to solve semidefinite programs involving at most O(dn
max) variables with matri-

ces of size O(⌈dmax/2⌉n). In practice, we often consider quartic (dmax = 4) or sextic
(dmax = 6) minimax polynomial to approximate the univariate functions involved in
t.

At step d, t is approximated by a semialgebraic function involving minimax poly-
nomials of degree-d (Line 6).

4.3 Numerical Test Results

We now present some numerical test results by applying the semialgebraic minimax
optimization method to examples from the global optimization literature, as well as
inequalities from the Flyspeck project. Our tool is implemented in OCAML and inter-
faced with the Sollya tool. Experiments are performed on an Intel Core i5 CPU (2.40
GHz).

For each problem presented in Table 4.2, our aim is to certify a lower bound m
of a function f on a box K. We build minimax approximations of degree at most
dmax for the univariate transcendental functions involved in f . The semialgebraic
optimization problems are solved at the SDP relaxation order k.

If the bound mdmax obtained at the final iteration with degree-dmax minimax ap-
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proximations is lower than m, then the relaxation gap (t∗−mdmax) is too high to certify
the requested bound.

Then, we perform a domain subdivision in order to reduce this gap: we divide
the maximal width interval of K in two halves to get two sub-boxes K1 and K2 such
that K = K1 ∪ K2. We repeat this subdivision procedure, by applying minimax_optim

on a finite set of sub-boxes, until we succeed to certify that m is a lower bound of
f . We denote by #boxes the total number of sub-boxes generated by the algorithm.
In Table 4.2, the time column indicates the total informal verification time, i.e. we
certify neither the minimax estimators nor the lower bounds with COQ (we refer the
reader to Chapter 7 for more details about the formal computation of lower bounds).
When the minimax approximations are composed with nonlinear polynomials, we
use lifting variables to bound the degree of the resulting polynomial optimization
problem. We illustrate this technique with the following Example 4.4.

Example 4.4. Let consider Problem Hartman 3 (H3):

min
x∈[0,1]3

f (x) = −
4

∑
i=1

ci exp(−
3

∑
j=1

aij(xj − pij)
2) .

Our strategy to solve (H3) consists in approximating the exp function with quartic
minimax polynomials, then solving the resulting semialgebraic optimization prob-
lems with a low SDP relaxation order k = 2.

First, for all (i = 1, . . . , 4), we compute the intervals Ii enclosing the values of
the polynomials −∑

3
j=1 aij(xj − pij)

2. Then, for each (i = 1, . . . , 4), we apply the
Remez algorithm to obtain valid overestimators u+

i of the exponential function over
the intervals Ii. We use nlifting = 4 auxiliary variables (z1, . . . , z4) to represent the
four quadratic polynomials. Finally, we solve the following polynomial optimization
problem: 




min
x∈[0,1]3

−∑
4
i=1 u+

i (zi)

s.t. zi = −
3
∑

j=1
aij(xj − pij)

2, i = 1, . . . , 4,

z1 ∈ I1, . . . , z4 ∈ I4 .

All test problems with a small number of variables (n < 6) can be solved within
a couple of minutes. For a given problem, when the minimax approximation degree
is higher, the verification time may also increase, even though the number of branch
and bound iterations becomes smaller. It comes from the fact that the number of SDP
variables grows rapidly with the relaxation order.

Then, we discuss about the numerical performance of the method for medium-
scale problems. For instance, consider SWF for n = 10. The quartic minimax approx-
imation of the function x 7→ sin

√
x over the interval I = [1, 500] has poor accuracy.

Thus, obtaining accurate approximations requires 170 times more number of branch
and bound iterations #boxes (compared to the n = 5 case), hence the computation
time blows up.

The last two rows show the results obtained for Flyspeck inequalities involving
a single transcendental function (arctan) and six square roots. Each square root is
approximated by a quartic minimax polynomial (see 4.1 for the error upper bounds).
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Table 4.2: Numerical results for minimax_optim

Problem n m nlifting k dmax #boxes time

H3 3 −3.863 4
1 2 53 132 s
2 4 19 57 s
3 6 12 101 s

H6 6 −3.33 4 2 4 53 51 s

MC 2 −1.92 0

1 2 8 6.3 s
2 4 4 3.2 s
3 6 2 3.0 s
4 8 0 1.9 s

ML 10 −0.966 5
1 2 1 6.4 s
2 4 1 8.1 s
3 6 2 20 s

SWF (ǫ = 0)
5 −430 0 2 4

3 21 s
10 512 2280 s

9922699028 Flyspeck
6 0 2 2 4

14 244 s
3318775219 Flyspeck 266 4423 s

4.4 Convergence of the Semialgebraic Minimax Approxima-
tion Algorithm

Let the relaxation order k be fixed and let denote by t−d (resp. t+d ) the semialgebraic
underestimator (resp. overestimator) of t on K obtained with the minimax_approx

function with a degree-d parameter and the relaxation order k. Given an accuracy
ǫ > 0, we prove that the objective function f can be uniformly approximated with
absolute accuracy ǫ over the semialgebraic set K with the algorithm minimax_approx.

Let I := [m, M], u ∈ C(I) and denote by fd the degree-d minimax polynomial of u
on I.

Theorem 4.5 (Jackson’s Theorem). The sequence of best uniform polynomial approxima-
tions ( fd)d∈N to a function u, continuous on [−1, 1], satisfies:

‖u − fd‖∞ 6 Cω(1/d),

C being a constant.

Proof. For the proof, see [GST07, Chap. 3].

Corollary 4.6. It follows from Theorem 4.5 that the sequence ( fd)d∈N uniformly converge to
u on I.

Assumption 4.7. The Haar condition is fulfilled, so that the Remez algorithm always con-
verges towards a polynomial which is optimal.

The interested reader can find more details about the Haar condition in [Che82,
page 74] and the convergence of the first and second algorithms of Remez in [Che82,
Chapter 3, Section 8].
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Lemma 4.8. Suppose that Assumption 4.7 holds. Let r be a continuous univariate function
defined on the closed interval I and let r−d (resp. r+d ) be the underestimator (resp. overestima-
tor) of r over I obtained at step d of the minimax_optim iteration loop. Then the sequences
(r−d )d∈N and (r+d )d∈N uniformly converge to r on I.

Proof. When r ∈ U \D, then it comes from the fact that r−d = r and r+d = r. Otherwise,
by Assumption 4.7, the Remez procedure yields the sequence of degree-d minimax
polynomials ( fd)d∈N. This sequence uniformly converges to r on I, as a consequence
of Corollary 4.6.

The reduce_lift function is the identity. Thus, Assumption 3.4 holds as a con-
sequence of Lemma 4.8. Finally, the convergence of the algorithm minimax_approx

follows from Proposition 3.8.
Now, suppose that the SDP relaxation order k is chosen to be large enough so that

xd is a global minimizer of t−d .

Lemma 4.9. Under Assumption 4.7, every accumulation point of the sequence (xd)d∈N is a
global minimizer of t over K.

Proof. It follows from Corollary 3.14.

4.5 Taylor Expansions

It is also possible to approximate the univariate functions with Taylor expansions. In
practice, this leads to call an appropriate taylor procedure (also available in Sollya)
instead of the remez algorithm (Line 4 of the minimax_approx function). An upper
bound of the approximation error can be similarly obtained with the sollyainfnorm

function. Thus, we can derive an optimization algorithm combining Taylor polyno-
mials and SOS.

Definition 4.10 (Real analytic functions). A real analytic function u is an infinitely
differentiable function such that the Taylor series at any point c in its domain T(x) =

∑
∞
d=0

u(c)d

d!
(x − c)d converges to u(x) for x in a neighbourhood of c point-wise and

uniformly.

As we consider smooth univariate functions (which are real analytic), then this
Taylor polynomials based optimization algorithm shares the same theoretical conver-
gence properties than minimax_optim (Lemma 4.9).





Chapter 5

Maxplus Semialgebraic Estimators
and Sum of Squares

In Chapter 4 we obtained an optimization method, where the degree was the pre-
cision parameter. We now present an algorithm involving low degree maxplus es-
timators, in which the precision depends on a finite set of control points. We first
recall some required background about maxplus approximation (Section 5.1). We
next examine the special case of maxplus approximation for semiconvex functions
(Section 5.2). The main algorithms based on this maxplus approach are presented
in Section 5.3. Numerical experiments on various problems (including Flyspeck in-
equalities and random inequalities) are depicted in Section 5.4. In this chapter, we
assume that the univariate functions are of class C2.

5.1 The Basis of Maxplus Functions

Let B be a set of functions Rn → R, whose elements will be called maxplus basis
functions. Given a function f : Rn → R, we look for a representation of f as a linear
combination of basis functions in the maxplus sense, i.e.,

f = sup
w∈B

(a(w) + w) , (5.1.1)

where (a(w))w∈B is a family of elements of R ∪ {−∞} (the “coefficients”). The cor-
respondence between the function x 7→ f (x) and the coefficient function w 7→ a(w)
is a well studied problem, which has appeared in various guises (Moreau conjuga-
cies, generalized Fenchel transforms, Galois correspondences, see [AGK05] for more
background).

The idea of maxplus approximation [FM00, McE06, AGL08a] is to choose a space
of functions f and a corresponding set B of basis functions w and to approximate
from below a given f in this space by a finite maxplus linear combination, f ≃
supw∈F (a(w) + w) , where F ⊂ B is a finite subset. Note that supw∈F (a(w) + w)
is not only an approximation but a valid lower bound of f . This is reminiscent of
classical linear approximation methods and in particular of the finite element meth-
ods, in which a function in an finite dimensional space is approximated by a linear
combination of prescribed elementary functions. Note that the term “basis” is abu-
sive in the maxplus setting, as the family of functions w ∈ F is generally not free in
the tropical sense.

49
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A convenient choice of maxplus basis functions is the following [FM00, AGL08a].
For each constant γ ∈ R, we shall consider the family of quadratic functions B =
{wy | y ∈ Rn} where

wy(x) := −γ

2
‖x − y‖2

2 . (5.1.2)

Whereas in classical approximation problems, the ambient function spaces of interest
are Sobolev spaces Hk, or spaces Ck of k times differentiable functions, in the tropical
settings, the appropriate spaces, consistent with the choice of quadratic maxplus basis
functions, turn out to consist of semiconvex functions, which we next examine.

5.2 Maxplus Approximation for Semiconvex Functions

The following definition is standard in variational analysis.

Definition 5.1 (Semiconvex function). Let γ denote a nonnegative constant. A func-
tion φ : Rn → R is said to be γ-semiconvex if the function x 7→ φ(x) + γ

2 ‖x‖2
2 is convex.

Proposition 5.2. Let B denote the set of quadratic functions wy of the form (5.1.2) with
y ∈ Rn. Then, the set of functions f which can be written as a maxplus linear combina-
tion (5.1.1) for some function a : B → R∪{−∞} is precisely the set of lower semicontinuous
γ-semiconvex functions.

Proof. Let us note h⋆ : Rn → R ∪ {±∞} the Legendre-Fenchel transform of a function
h : Rn → R ∪ {±∞}, so that

h⋆(p) := sup
x∈Rn

〈p, x〉 − h(x) .

A known fact is that a convex lower semicontinuous function g : Rn → R ∪ {±∞} is
the supremum of the affine functions that it dominates [Roc70, Th. 12.1]. Actually, it
is shown there that

g(x) = g⋆⋆(x) = sup
p∈Rn

〈p, x〉 − g⋆(p) .

By applying this result to the function g(x) = f (x) + γ
2 ‖x‖2

2, we deduce that

f (x) = sup
p∈Rn

〈p, x〉 − γ

2
‖x‖2

2 − g⋆(p)

= sup
p∈Rn

−γ

2
‖x − 1

γ
p‖2

2 − g⋆(p) +
1

2γ
‖p‖2

2 ,

which is of the form (5.1.2).
Conversely, since an arbitrary supremum of γ-semiconvex and lower semicontin-

uous is also γ-semiconvex and lower semicontinuous, the supremum in (5.1.2) defines
a γ-semiconvex and lower semicontinuous function.

The transcendental functions which we consider here are twice continuously dif-
ferentiable. Hence, their restriction to any bounded convex set is γ-semiconvex for a
sufficiently large γ, so that they can be approximated by finite suprema of the form
supw∈F (a(w) + w) with F ⊂ B.
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The following Theorem 5.3 (see [GMQ11, Theorem 3.2] for the original statement)
shows that if N = |F | basis functions are used, then the best approximation error
is O(1/N2/n) (the error is the sup-norm, over any compact set), provided that the
function to be approximated is of class C2. We call D2(φ)(x) the Hessian matrix of φ
at x and suppose that we approximate the function φ by the finite supremum of N
γ-semiconvex functions parametrized by pi(i = 1, . . . , N) and ai(i = 1, . . . , N):

φ ≃ φ̃N := max
16i6N

{γ

2
‖x‖2

2 + pT
i x + a(pi)} .

Theorem 5.3 (sup approximation error). Let γ ∈ R, ǫ > 0 and let K ⊂ Rn denote any
full dimensional compact convex subset. If φ : Rn 7→ R is (γ − ǫ)-semiconvex of class C2,
then there exists a positive constant α depending only on n such that:

‖φ − φ̃N‖∞ ∼ α

N2/n

(∫

K
[det(D2(φ)(x) + γIn)]

1
2 dx

) 2
n

as N → ∞ .

Thus, the best approximation satisfies

‖φ − φ̃N‖∞ ≃ C(φ)
N2/n , (5.2.1)

where the constant C(φ) is explicit (it depends of det(D2(φ) + γIn) and is bounded
away from 0 when ǫ is fixed). This estimate indicates that some curse of dimension-
ality is unavoidable: to get a uniform error of order ǫ, one needs a number of basis
functions of order 1/ǫn/2. Equivalently, the approximation error is of order O(h

2
n )

where h is a space discretization step. However, in what follows, we shall always
apply the approximation to small dimensional constituents of the optimization prob-
lems. For the applications considered in this chapter, n = 1.

Remark 5.4. One may notice that the error of maxplus approximation is of the same or-
der as the one obtained by conventional P1 finite elements under the same regularity
assumption.

Remark 5.5. The assumption that φ̃N is of class C2 in Theorem 5.3 is needed to obtain
the asymptotics of the approximation error. However, the best maxplus approxima-
tion φ̃N does converge uniformly to φ under a milder assumption: it suffices that φ
be γ-semiconvex and Lipschitz continuous, as shown in [AGL08b]. This is due to
the asymmetrical character of the maxplus approximation (a “one-sided” regularity,
captured by the semiconvexity condition, is involved).

In this way, starting from a transcendental univariate elementary function f ∈ D,
such as arctan, exp, etc , defined on a real bounded interval I, we arrive at a semi-
algebraic lower bound of f , which is nothing but a supremum of a finite number of
quadratic functions.

Example 5.6. Consider the function f = arctan on an interval I := [m, M]. For every
point a ∈ I, we can find a constant γ such that

arctan(x) > par−a (x) := −γ

2
(x − a)2 + f ′(a)(x − a) + f (a) .

Choosing γ = supx∈I − f ′′(x) always work. However, it will be convenient to allow
γ to depend on the choice of a to get tighter lower bounds. Choosing a finite subset
A ⊂ I, we arrive at an approximation

∀x ∈ I, arctan (x) > max
a∈A

par−a (x) . (5.2.2)
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Semialgebraic overestimators x 7→ mina∈A par+a (x) can be defined in a similar
way. Examples of such underestimators and overestimators are depicted in Figure 5.1.

a

y

par+a1

par+a2

par−a2

par−a1

a2a1

arctan

m M

Figure 5.1: Semialgebraic Underestimators and Overestimators for arctan

Example 5.7. Consider the bivariate function g : (x1, x2) 7→ sin(x1 + x2), defined on
K := [−1.5, 4]× [−3, 3], which is a component of the objective function from Problem
MC. As in the previous example, we can build underestimators for the sin function.
Choosing γ = 1, for every (x1, x2) ∈ K and every a ∈ [−4.5, 7], one has:

sin(x1 + x2) > −1
2
(x1 + x2 − a)2 + cos(a)(x1 + x2 − a) + sin(a) .

Figure5.2 displays the function g (the red surface) and two underestimators of g on K
(the green surfaces) obtained with a := −4.5 and a := −2/3.

0
2

4 −2 0 2
−2

−1

0

1

Figure 5.2: Semialgebraic Underestimators for (x1, x2) 7→ sin(x1 + x2)
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5.3 Combining Maxplus Approximations and Semialgebraic
Optimization

5.3.1 An Adaptive Semialgebraic Approximation
Algorithm

We consider an instance of Problem (1.1.3). We assume as in Section 4.1 that K is a box.
We assimilate the objective function f with its abstract syntax tree t. We assume that
the leaves of t are semialgebraic functions in the set A. Other nodes are univariate
transcendental functions (arctan, etc ) or basic operations (+, ×, −, /). Moreover, we
suppose that the univariate transcendental functions are lower semicontinuous and
semiconvex.

We first introduce the auxiliary algorithm samp_approx, which relies on the uni-
variate approximation function samp_unary_approx described in Figure 5.3. As for
the minimax approximation algorithm minimax_approx, we take the identity func-
tion for reduce_lift.

Given an abstract syntax tree t and a box K, this algorithm computes lower and
upper bounds of t over K and maxplus approximations of t by means of semialgebraic
functions. It is also parametrized by a finite sequence of control points x1, . . . , xp ∈ K
used to approximate transcendental functions by means of parabola.

Input: univariate function r, I, child c, control points sequence s = x1, . . . , xp ∈ K
Output: underestimator r−, overestimator r+

1: if r ∈ D then
2: aj := c(xj) for j ∈ {1, . . . , p}
3: par−aj

, par+aj
:= build_par(r, I, aj) for j ∈ {1, . . . , d}

4: r− := max16j6p par−aj

5: r+ := min16j6p par+aj

6: else if r ∈ U \ D then
7: r− := r, r+ := r
8: end
9: return r−, r+

Figure 5.3: samp_unary_approx: Maxplus Approximation Algorithm

The algorithm samp_approx is defined by induction on the abstract syntax tree t.
If t is a semialgebraic function, we obtain estimators and bounds, following the

general procedure approx (Figure 3.2, Line 2), using the semialgebraic optimization
functions min_sa and max_sa.

If the root of t corresponds to a univariate function node r ∈ U taking a single child
c as argument, we obtain recursively an interval I, enclosing the values of c over K. We
compute a finite sequence of points a1, . . . , ap ∈ I from the control points sequence s =
x1, . . . , xp ∈ K (Figure 5.3, Line 2). Then we apply the function build_par (Line 3) that
builds the parabola at a1, . . . , ap, by using the convexity/semiconvexity properties of
r on I, as explained in Section 5.2. An underestimator t− as well as an overestimator
t+ are determined by composition (recall the compose_approx function, described
in Figure 3.3) of the parabola with c− and c+. These approximations t− and t+ are
semialgebraic functions of A, whence we can also compute their lower and upper
bounds using min_sa and max_sa.
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If t is a binary operation whose arguments are two children c1 and c2, we use the
semialgebraic arithmetic algorithm compose_bop (see Figure 3.4) to determine valid
estimators.

5.3.2 An Optimization Algorithm based on Maxplus
Estimators

Our main optimization algorithm samp_optim, relies on samp_approx and chooses
the sequence of control points s dynamically. It is obtained by taking approx :=
samp_approx (see Figure 3.5) and unary_approx := samp_unary_approx. Here, we
choose iter := 0 and we call itermax times samp_approx inside the loop from Lines 4

to 11 in optim.

Remark 5.8. It is not mandatory to always compute recursively the underestimators
and overestimators as well as bounds of all the nodes and the leaves of the abstract
syntax tree. Instead, we “decorate” the tree with interval and semialgebraic values
containing these information, based on previous iterations. When we call the proce-
dure samp_unary_approx at step p (the sequence of control points is s = x1, . . . , xp),
we only need to get the equations of the parabola par−ap

and par+ap
.

Example 5.9 (Lemma9922699028 Flyspeck). We continue Example 2.12. Since we com-
puted lower and upper bounds (m and M) for fsa := ∂4∆x√

4x1∆x
, we know that the fsa

argument of arctan lies in I := [m, M]. We describe three iterations of the algorithm
samp_approx. Figure 5.4 illustrates the related semialgebraic underestimators hierar-
chy.

0. Multiple evaluations of f return a set of values and we obtain a first minimizer
guess x1 := argmin(randeval( f )) corresponding to the minimal value of the
set. One has x1 := (4.8684, 4.0987, 4.0987, 7.8859, 4.0987, 4.0987).

1. We compute a1 := fsa(x1) = 0.3962, get the equation of par−a1
with build_par

and finally compute m1 6 minx∈K{l(x) + par−a1
( fsa(x))}. For k = 2, we obtain

m1 = −0.2816 < 0 and x2 := (4, 6.3504, 6.3504, 6.3504, 6.3504, 6.3504).

2. From the second control point, we get a2 := fsa(x2) = −0.4449 and m2 6
minx∈K{l(x) + max16i62{par−ai

( fsa(x))}}. For k = 2, we get m2 = −0.0442 < 0
and x3 := (4.0121, 4.0650, 4.0650, 6.7455, 4.0650, 4.0650).

3. From the third control point, we get a3 := fsa(x3) = 0.1020, par−a3
and m3 6

minx∈K{l(x) +max16i63{par−ai
( fsa(x))}}. For k = 2, we obtain m3 = −0.0337 <

0 and get a new minimizer x4.

Example 5.9 illustrates two common difficulties we encountered so far.
First, many iterations of samp_optim are required to get a good underestimator of

f . Hence, the number of lifting variables and equalities constraints may become large
enough to make interior-point methods fail (when no strictly feasible solutions exist)
and SDP solvers return bad numerical results.

Moreover, if we cannot increase the SDP relaxation order k sufficiently, then we
cannot ensure convergence of samp_optim (see Corollary 3.14). For a given relaxation
order and a control points sequence (x1, . . . , xp), we always compute the images se-
quence a1 := fsa(x1), . . . , ap := fsa(xp), then a lower bound of the minimum of the



5.3. COMBINING MAXPLUS APPROXIMATIONS AND SOS 55

a

y

par−a1

par−a2

par−a3

arctan

m Ma1a2 a3

Figure 5.4: A hierarchy of Semialgebraic Underestimators for arctan

semialgebraic function x 7→ max
16i6d

{par−ai
( fsa(x))}. If the number of parabola becomes

large enough, this lower bound could be negative even though the actual minimum
of the semialgebraic underestimator is positive. Section 5.3.4 describes a subdivision
algorithm to handle this problem.

5.3.3 Convergence Results

We note t−p the underestimator (resp. t+p the overestimator) computed at the pth itera-
tion of the algorithm samp_optim and by xp the corresponding minimizer candidate.

Lemma 5.10 (Uniform convergence of the semialgebraic maxplus estimators). The
estimators sequences (t−p )p and (t+p )p uniformly converge to t on the box K.

Proof. First, we prove that if r is a univariate function defined on an interval I, then
the function minimax_unary_approx provides a sequence of underestimators (r−p )p

(resp. overestimators (r+p )p), which uniformly converge to r on I. This is trivial when
r is not transcendental, since r− := r and r+ := r. Otherwise, r ∈ D and we can
apply Theorem 5.3 that implies the uniform convergence of the maxplus estimators,
obtained with the build_par procedure.

As for Lemma 4.8, Assumption 3.4 holds and the convergence of the algorithm
samp_approx is a direct consequence of Proposition 3.8.

Furthermore, by applying Corollary 3.14, each limit point of the sequence of con-
trol points yields a global minimizer of t over K.

5.3.4 Refining Bounds by Domain Subdivisions

The time complexity of our algorithm strongly depends on the relaxation order k.
Indeed, if p is the number of the control points, then the number of moment variables
in the SDP problem Qk is in O((2k)n+p) and the size of linear matrix inequalities
involved are in O(kn+p). The complexity of samp_optim is therefore polynomial in k.

A small relaxation order ensures fast computation of the lower bounds but the re-
laxation gap may remain too high to ensure the convergence of the algorithm. This is
particularly critical when we want to certify that a given transcendental multivariate
function is non-negative. In this section, we explain how to reduce the relaxation gap
using domain subdivision in order to solve problems of the form (1.1.3).
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Suppose that the algorithm samp_optim returns a negative lower bound m and a
global minimizer candidate xc. Our approach consists in cutting the initial box K in
several boxes (Ki)16i6N . We explain the partitioning of K with the following heuristic.

Let Bxc,r be the intersection of the sup-ball of center xc and radius r with the set K.
Then, let fxc,r be the quadratic polynomial defined by:

fxc,r : Bxc,r −→ R

x 7−→ f (xc) +D( f )(xc)(x − xc) (5.3.1)

+
1
2
(x − xc)

TD2( f )(xc)(x − xc)

+
1
2

λ‖x − xc‖2
2 ,

with λ given by:

λ := min
x∈Bxc ,r

{λmin(D2( f )(x)−D2( f )(xc))} . (5.3.2)

Lemma 5.11. ∀x ∈ Bxc,r, f (x) > fxc,r.

Proof. From the first order Taylor expansion with the integral form for the remainder,
the following holds:

f (x) = f (xc) +D( f )(xc)(x − xc) (5.3.3)

+
∫ 1

0
(1 − τ)(x − xc)

TD2( f )(xc + τ(x − xc))(x − xc)dτ,

for all x ∈ Bxc,r. Then, notice that, for all x ∈ Bxc,r:

∫ 1

0
(1 − τ)(x − xc)

TD2( f )(xc)(x − xc)dτ =
1
2
(x − xc)

TD2( f )(xc)(x − xc) .

Define δτ,xc(x) := xc + τ(x − xc) and the quadratic polynomial qxc,r:

qxc,r(x) := f (xc) +D( f )(xc)(x − xc) +
1
2
(x − xc)

TD2( f )(xc)(x − xc) .

Then, for all x ∈ Bxc,r,

f (x) = qxc,r(x) (5.3.4)

+
∫ 1

0
(1 − τ)(x − xc)

T
[
D2( f )(δτ,xc(x))−D2( f )(xc)

]
(x − xc)dτ.

Let Hτ,xc(x) := D2( f )(δτ,xc(x))−D2( f )(xc). By definition of the minimal eigenvalue,
for all τ ∈ [0, 1], for all x ∈ Bxc,r,

(x − xc)
T Hτ,xc(x)(x − xc) > λmin(Hτ,xc(x))‖x − xc‖2

2 .

Furthermore, for all τ ∈ [0, 1], for all x ∈ Bxc,r:

λmin(Hτ,xc(x)) > min
x∈Bxc ,r ,τ∈[0,1]

{λmin(Hτ,xc(x))} .
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Moreover, for all τ ∈ [0, 1], for all x ∈ Bxc,r,

‖δτ,xc(x)‖∞ = ‖(1 − τ)xc + τx‖∞ 6 (1 − τ)r + τr = r ,

then, one can write the following:

Bxc,r := {δτ,xc(x) | τ ∈ [0, 1], x ∈ Bxc,r} .

Hence, one has:

min
x∈Bxc ,r ,τ∈[0,1]

λmin(Hτ,xc(x)) = min
x∈Bxc ,r

{λmin(D2( f )(x)−D2( f )(xc))} = λ .

Therefore, we obtain a lower bound of 1
2 λ‖x − xc‖2

2 for the integral of the right hand
side of (5.3.4), that completes the proof.

To underestimate the value of λ, we determine the following interval matrix:

D̃2( f ) := ([dij, dij])16i,j6n ,

containing coarse bounds of the difference (D2( f )(x)−D2( f )(xc)) on Bxc,r using in-
terval arithmetic or samp_approx with a small number of control points and a low

SDP relaxation order. We then apply on D̃2( f ) a robust SDP method on interval ma-
trix described by Calafiore and Dabbene in [CD08] and obtain a lower bound λ′ of
λ.

Now, we detail this procedure in our particular case.
Let H̃ := ([dij, dij])16i,j6n be such an interval matrix. The problem is to find the

minimal eigenvalue of H̃:
λ′ := λmin(H̃) . (5.3.5)

For each interval [dij, dij], define the symmetric matrix B:

Bij := max{| dij |, | dij |}, 1 6 i, j 6 n .

Let Sn be the set of diagonal matrices of sign:

Sn := {diag (s1, . . . , sn), s1 = ±1, . . . sn = ±1} .

The following lemma specializes the result of the robust optimization procedure
with reduced vertex set [CD08, Theorem 2.1].

Lemma 5.12 (Interval matrix eigenvalue optimization with reduced vertex set). The
robust interval SDP Problem (5.3.5) is equivalent to the following SDP in the single variable
t ∈ R: 




mint −t
s.t. −tI − SBS < 0 ,

S = diag (1, S′), ∀S′ ∈ Sn−1 .
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In practice, we solve the Problem λ′ := λmin(D̃2( f )) and obtain a valid underesti-
mator f−xc,r of fxc,r on Bxc,r:

f−xc,r := qxc,r(x) + λ′‖x − xc‖2
2 .

Notice that f−xc,r underestimates f on Bxc,r, as a consequence of Lemma 5.11.

Our branch and bound algorithm samp_bb (see Figure 5.5) relies on the semial-
gebraic optimization procedure samp_optim. The dicho_ball function (Line 3) com-
putes by dichotomy the sup-ball Bxc,r of maximal radius r such that the underestima-
tor fxc,r is nonnegative on Bxc,r. The nonnegativity of f−xc,r can be certified with min_sa.

Remark 5.13. For the sake of clarity, we mention that λ and λ′ depend both on the
choice of the sup-ball Bxc,r. At each step of the dichotomy performed in the auxiliary
function dicho_ball, we solve an instance of Problem (5.3.5).

Input: tree t, box K, itermax

Output: lower bound m
1: m, xc := samp_optim(t, K, itermax)
2: if m < 0 then
3: Bxc,r := dicho_ball(t, K, xc)
4: Obtain a partition of K �Bxc,r := (Ki)16i6N
5: K0 := Bxc,r

6: m := min
06i6N

{samp_bb(t, Ki, itermax)}
7: return m
8: else
9: return m

10: end

Figure 5.5: Description of samp_bb

An illustration of our subdivision algorithm is given in Figure 5.6 in the two di-
mensional case.

x∗c•

Bx∗c , r
⇒

x∗c•

K0
K1

K2

K3

K4

Figure 5.6: A two dimensional example for our box subdivision
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5.4 Numerical Results

5.4.1 Flyspeck Inequalities

We next present the numerical results obtained with our method for both small and
medium-sized inequalities taken from the Flyspeck project.

In Tables 5.1 and 5.2, the inequalities are indexed by the first four digits of the hash
code. We also indicate in subscript the number of variables involved in each inequal-
ity. The integer nD represents the number of transcendental univariate nodes in the
corresponding abstract syntax trees. The parameter kmax is the highest SDP relaxation
order used to solve the polynomial optimization problems with SPARSEPOP. We note
#POP the total number of polynomial optimization problems that have to be solved
to prove the inequality and by #boxes the number of domain cuts that are performed
during the subdivision algorithm. Finally, m is the lower bound of the function f on K
that we obtain with our method, i.e. the minimum of all the computed lower bounds
of f among the #boxes sub-boxes of K.

The inequalities reported in Table 5.1 are similar to the one presented in Exam-
ple 1.3. They involve the addition of the function x 7→ arctan ∂4∆x√

4x1∆x
with an affine

function over
√

xi (1 6 i 6 6).

Table 5.1: Results for small-sized Flyspeck inequalities

Inequality id nD kmax #POP #boxes m time
99226 1 2 222 27 3.07 × 10−5 1200 s
35266 1 2 156 17 4.89 × 10−6 780 s
68366 1 2 173 22 4.68 × 10−5 840 s
66196 1 2 163 21 4.57 × 10−5 783 s
38726 1 2 250 30 7.72 × 10−5 1224 s
31396 1 2 162 17 1.03 × 10−5 775 s
48416 1 2 624 73 2.34 × 10−6 3014 s
30205 1 3 80 9 2.96 × 10−5 1847 s
33186 1 3 26 2 3.12 × 10−5 4324 s

Table 5.2 provides the numerical results obtained on medium-sized Flyspeck in-
equalities. Inequalities 7394i (3 6 i 6 5) are obtained from a same inequality 73946
involving six variables, by instantiating some of the variables by a constant value.
Inequalities 77266 and 73946 are both of the form l(x) + ∑

3
i=1 arctan(qi(x)) where l

is an affine function over
√

xi, q1(x) := ∂4∆x√
4x1∆x

, q2(x) := q1(x2, x1, x3, x5, x4, x6) and
q3(x) := q1(x3, x1, x2, x6, x4, x5).

Table 5.2: Results for medium-size Flyspeck inequalities

Inequality id nD kmax #POP #boxes m time
77266 3 2 450 70 1.22 × 10−6 12240 s
73943 3 3 1 0 3.44 × 10−5 11 s
73944 3 3 47 10 3.55 × 10−5 1560 s
73945 3 3 290 55 3.55 × 10−5 43200 s
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5.4.2 Random Inequalities

In Table 5.3, we compared samp_optim with the MATLAB intsolver toolbox [Mon09]
(based on the Newton interval method [HG83]) for random inequalities involving
two transcendental functions. Let n be the number of variables and m the lower
bound that we obtain.

The functions that we consider are of the form x 7→ arctan(p(x)) + arctan(q(x)),
where p is a four-degree polynomial and q is a quadratic polynomial. All variables
lie in [0, 1]. Both p and q have random coefficients (taken in [0, 1]) and are sparse. The
speed-up factor results indicate that for such medium-scale examples, our method
may outperform interval arithmetic.

Table 5.3: Comparison results for random examples

n m
time t1 time t2 Speed-up Factor

(samp_optim with k = 3) (intsolver) (t2/t1)
3 0.4581 3.8 s 15.5 s 4.1
4 0.4157 12.9 s 172.1 s 13.3
5 0.4746 58 s 612 s 10.6
6 0.4476 276 s 12240 s 44.3

5.4.3 Certification of MetiTarski Bounds

Here we explain how to certify the semialgebraic univariate estimators of MetiTarski
with our tool.

MetiTarski [AP10] is a theorem prover that can handle nonlinear inequalities in-
volving special functions such as ln, cos, etc . These univariate transcendental func-
tions (as well as the square root) are approximated by a hierarchy of estimators which
are rational functions derived from Taylor expansions or continued fractions expan-
sions (for more details, see Cuyt et al. [CBBH08]).

The framework available in MetiTarski to check inequalities is similar to the opti-
mization algorithms minimax_optim or samp_optim. The rational function estimators
are used instead of the best uniform approximation polynomials. This may provide
more accurate bounds.

For instance, consider the logarithm function on the interval [1.1, 9]. The second
(resp. third) overestimator ln+

2 (resp. ln+
3 ) are defined as follows, for all x ∈ I:

ln+
2 (x) :=

(x + 5)(x − 1)
2(2x + 1)

,

ln+
3 (x) :=

(x2 + 19x − 10)(x − 1)
3(3x2 + 6x + 1)

.

Checking the validity of these estimators on real closed intervals leads to give
formal proofs of nonlinear univariate inequalities. For the two overestimators of ln,
the inequalities are:

∀x ∈ [1.1, 10], ln(x) 6 ln+
2 (x) , (ln+

2 )

∀x ∈ [2, 10], ln(x) 6 ln+
3 (x) . (ln+

3 )
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Table 5.4: Comparison results for MetiTarski estimators certification

Inequality Id.
samp_optim minimax_optim

#s #boxes time d #boxes time

ln+
2

1 56 18.3 s 2 9 4.3 s
2 33 13.5 s 4 6 3.4 s
3 28 14.2 s 6 6 3.7 s

ln+
3

1 56 14.4 s 2 39 26 s
2 56 19.1 s 5 3 2 s
3 30 16.4 s 6 3 2.4 s

arctan+
2

1 81 16.5 s 2 76 20 s
2 19 7.6 s 4 6 4.1 s
3 12 7.3 s 6 2 1.4 s

arctan+
5

1 171 60 s 2 10 7.4 s
2 86 57 s 4 5 3.9 s
3 47 39 s 6 4 3.4 s

Similarly, the inequalities that imply the validity of MetiTarski overestimators for
the arctan function are:

∀x ∈ [−1,−0.01], arctan(x) 6
3x

x2 + 3
, (arctan+

2 )

∀x ∈ [0.5, 5], arctan(x) 6
(64x4 + 735x2 + 945)x
15(15x4 + 70x2 + 63)

. (arctan+
5 )

In table 5.4, we present some comparison results obtained with the procedure
minimax_optim, using a sequence of control points of length #s and samp_optim, using
a degree-d minimax polynomial.

The results indicate that univariate inequalities are easier to solve by minimax
polynomial approximation since the number of subdivisions decreases, as well as the
computation time.





Chapter 6

The Templates Method

Here, we improve the maxplus approximation method presented in Chapter 5 by re-
ducing the complexity of semialgebraic optimization problems that we solve. We ex-
plain how templates are related with maxplus estimators (Section 6.1). Maxplus based
template approximation can be used to obtain coarse bounds for non-trivial POP (Sec-
tion 6.2). Furthermore, semialgebraic functions can be approached by a sequence of
polynomial templates which converge to the best polynomial underestimators for the
L1 norm (Section 6.3). The nonlinear template optimization algorithm is presented in
Section 6.4. Finally, we analyse the performance of the algorithm (Section 6.5).

6.1 Max-plus Approximations and Nonlinear Templates

The non-linear template method is a refinement of polyhedral based methods in static
analysis [SSM05]. It can also be closely related to the non-linear extension [AGG12]
of the template method and to the class of affine relaxation methods [Mes99].

Templates allow one to determine invariants of programs by considering para-
metric families of subsets of Rn of the form S(α) = {x | wi(x) 6 αi, 1 6 i 6 p},
where the vector α ∈ Rp is the parameter, and w1, . . . , wp (the template) are fixed
possibly non-linear functions, tailored to the program characteristics.

Notice that by taking a trivial template (bound constraints, i.e. , functions of the
form ±xi), the template method specializes to a version of interval calculus, in which
bounds are derived by SDP techniques. By comparison, templates allow one to get
tighter bounds, taking into account the correlations between the different variables.
In most basic examples, the functions wi of the template are linear or quadratic func-
tions.

The max-plus basis method introduced in Section 5.1 is equivalent to the approx-
imation of the epigraph of a function by a set S(α). This method involves the approx-
imation from below of a function f in n variables by a supremum

f ' g := sup
16i6p

λi + wi . (6.1.1)

The functions wi are fixed in advance, or dynamically adapted by exploiting the prob-
lem structure. The parameters λi are degrees of freedom.

The template method consists in propagating approximations of the set of reach-
able values of the variables of a program by sets of the form S(α). The non-linear

63
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template and max-plus approximation methods are somehow related. Indeed, the
0-level set of g, {x | g(x) 6 0}, is nothing but S(−λ), so templates can be recovered
from max-plus approximations and vice versa.

The functions wi are usually required to be quadratic polynomials,

wi(x) = pT
i x +

1
2

xT Aix ,

where pi ∈ Rn and Ai is a symmetric matrix. A basic choice is Ai = −γIn, where γ is
a fixed constant. Then, the parameters p remain the only degrees of freedom.

A basic question here is to estimate the number of template basis functions needed
to attain a prescribed accuracy. The typical result stated in Theorem 5.3 is a corol-
lary of techniques of Grüber concerning the approximation of convex bodies by cir-
cumscribed polytopes. For optimization purposes, a uniform approximation is not
needed (one only needs an approximation tight enough near the optimum, for which
fewer basis functions are enough).

We shall also apply the approximation by templates to certain relevant small di-
mensional projections of the set of lifted variables, leading to a smaller effective n.

6.2 Reducing the Size of SOS Relaxations for Polynomial Op-
timization Problems

Let f be a degree-d multivariate polynomial. When d is too high, then the first SDP
Lasserre relaxation of order kmin := ⌈d/2⌉ may be intractable. The aim of this section
is to present an approximation scheme which allows to provide coarse lower bounds
for such intractable cases.

We first recall some basic definitions.

Definition 6.1. Given a symmetric real-valued matrix M ∈ Sn, the spectral radius of
M is given by:

ρ(M) := max(λmax(M),−λmin(M)) .

Definition 6.2. The L1 matrix norm, subordinate to the L1 vector norm, is given by:

‖M‖1 := max
x 6=0

‖Mx‖1

‖x‖1
.

One can easily prove that ‖M‖1 is the maximum column sum of the absolute val-
ues of the entries of M. In the sequel, we use the following inequality:

Proposition 6.3.
ρ(M) 6 ‖M‖1 .

Let K ⊂ Rn be a box and consider a multivariate nonlinear function f : K → R.
In Section 5.3.4, we derived coarse underestimators of f on sup-balls, using robust
Semidefinite programming. Here, we define similar quadratic polynomials on the
box K.
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Definition 6.4. Given xc ∈ K, we define the quadratic polynomial fxc as follows:

fxc : K −→ R

x 7−→ f (xc) +D( f )(xc) (x − xc) (6.2.1)

+
1
2
(x − xc)

TD2( f )(xc)(x − xc)

+
1
2

λ′‖x − xc‖2
2 ,

with,
λ′ 6 λ := min

x∈K
{λmin(D2( f )(x)−D2( f )(xc))} . (6.2.2)

The following statement is analogous to Lemma 5.11:

Lemma 6.5. ∀x ∈ K, f (x) > fxc .

In this particular case, notice that the entries of the matrix (D2( f )(x)−D2( f )(xc))
are degree-(d − 2) polynomials. To underestimate the value of λ, we determine an

interval matrix D̃2( f ) := ([dij, dij])16i,j6n, using SOS techniques on the entries of the
Hessian difference on K. It leads to SDP relaxations of minimal order (kmin − 1).

6.2.1 Lower Bounds of Interval Matrix Minimal Eigenvalues

Different approximations of λ can be considered.

Tight lower bound of λ

Let λ′
1 be the solution of the single variable semidefinite program described in Lemma

5.12.

Proposition 6.6. λ′
1 6 λ.

Proof. Let us consider the minimal eigenvalue λ′ of the interval matrix D̃2( f ), where
each entry is obtained by solving SOS relaxations by Lasserre. This hierarchy pro-
vides lower (resp. upper) bounds for polynomial minimization (resp. maximization)
problems, thus λ′ is a lower bound of λ. Moreover λ′

1 is a lower bound of λ′ thus one
has λ′

1 6 λ, the desired result.

However this method introduces a subset of sign matrices of cardinal 2n−1, thus
reduces the problem to a manageable size only if n is small.

Coarse lower bound of λ

Here, one writes D̃2( f ) := X + Y, where X and Y are defined as follows:

Xij :=
[dij + dij

2
,

dij + dij

2

]
, Yij :=

[
−

dij − dij

2
,

dij − dij

2

]
.

Define λ′
2 := λmin(X)− max16i6n

{
∑

n
j=1

dij − dij

2

}
.
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Proposition 6.7. λ′
2 6 λ.

Proof. By concavity and homogeneity of the λmin function, one has:

λmin(X + Y) > λmin(X) + λmin(Y) = λmin(X)− λmax(−Y) . (6.2.3)

Using Proposition 6.3, the following inequality holds:

λmax(−Y) 6 max
16i6n

{ n

∑
j=1

dij − dij

2

}
. (6.2.4)

The matrix X is real valued and symmetric matrix, thus one can compute its min-
imal eigenvalue with the classical semidefinite program:

{
min −t
s.t. X − tI < 0 .

Finally, we can compute a coarse lower bound λ′
2 of λ with a procedure which is

polynomial in n.

6.2.2 A Template Algorithm for POP

We present a first template optimization algorithm pop_template_optim (depicted in
Figure 6.1), derived from the general procedure optim (Figure 3.5). Here, instead of
taking the identity function for reduce_lift, we provide non-trivial estimators of the
degree-d multivariate polynomial f , using the techniques presented in Section 6.2.1.

A sub-routine build_quadratic_form returns the polynomial defined in (6.2.1).
In particular, one has fxc,1 := build_quadratic_form( f , xc, λ′

1), which is built with
the tight eigenvalue approximation λ′

1. Similarly, fxc,2 is defined with the coarse
eigenvalue approximation λ′

2. In the sequel, the input index i (i = 1 or 2) refers to
one of the previous eigenvalue approximation methods (Section 6.2.1).

First, we select the control point x1 randomly to build either the estimator fx1,1 or
fx1,2.

At each iteration of the loop (from Line 3 to Line 12), we compute an underestima-
tor of f , using the sequence of control points s = x1, . . . , xp. We consider the supre-
mum fp of the p quadratic polynomials fx1,i, . . . , fxp,i (Line 6) and get a lower bound
of fp using the semialgebraic optimization procedure min_sa at SDP relaxation order
k. We compute a minimizer candidate xopt and update the control points sequence,
which allows to refine the approximation of f .

6.2.3 Numerical Results

Let K = [0, 1]n and r1, . . . , rn be positive random numbers. We consider the following
instance of Problem (1.1.2):

min
x∈[0,1]n

f (x) :=
( 1

n

n

∑
i=1

4
r2

i

xi(ri − xi)
)⌈d/2⌉

. (6.2.5)
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Input: polynomial f , box K, iter, approximation method index i
Output: lower bound m

1: p := 0
2: s := [argmin(randeval( f ))] ⊲ control point sequence initialization
3: while p 6 iter do
4: ⊲ At step p, the control point sequence is s = x1, . . . , xp

5: For c ∈ {1, . . . , p}: fxc,i := build_quadratic_form(t, xj, λ′
i)

6: fp := max16c6p{ fxc,i}
7: Choose and SDP relaxation order k
8: m := min_sa( fp, k)
9: xopt := guess_argmin( fp)

10: p := p + 1
11: s := s ∪ {xopt}
12: done

Figure 6.1: pop_template_optim : Quadratic Template Optimization Algorithm for
POP

Notice that the range of the degree-d polynomial f is [0, 1]. We also emphasize the
fact that f has no sparsity pattern.

Now we describe several experiments, performed on an Intel Core i5 CPU (2.40
GHz). Figure 6.2 displays the results of successive lower bounds computation using
tight or coarse approximations of λ. For a given value of n, hundred instances of
Problem (6.2.5) have been generated with d = 4. Here, we solve quadratically con-
strained nonconvex quadratic problems (Line8) at the first SDP relaxation order (Shor
relaxation). The cardinal of the finite control points sequence corresponds to a given
number of quadratic cuts (x-coordinate). The curves are obtained by averaging the
resulting lower bounds for a given number of quadratic cuts.

n = 2
n = 3
n = 4
n = 5
n = 6

Tight Bound

Coarse Bound

0 10 20 30 40 50

−8

−6

−4

−2

0

Quadratic cuts

Relaxation

Gap

Figure 6.2: Comparison of lower bounds sequences for POP, using tight and coarse
approximations of λ

The sequence of lower bounds converges towards a negative value. The relax-
ation gap (y-coordinate) between this value and the actual infimum of f (which is 0)
is a consequence of keeping low the relaxation order. Notice also that the speed of
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convergence of this sequences decreases when n is larger. The tight approximation
of minimal eigenvalues (SDP robust approach) yields more precise lower bounds for
the POP. Besides, the computation cost of the coarse approximation is much cheaper.
Indeed, for a given instance of Problem 6.2.5, the lower bound λ′

2 computation algo-
rithm is polynomial in n.

We next compare Problem (6.2.5) with quartic (d = 4) and sextic (d = 6) random
polynomials. The lower bounds computation are displayed on Figure 6.3. They rely
on coarse approximations of the Hessian matrix minimal eigenvalues. We explain
this specific choice below.

For the quartic case, it takes 2 min to compute λ′
1 when n = 15 and only 2 ms

to obtain λ′
2. When n = 30, it takes about 10 ms to compute λ′

2 with the second
approach whereas it is impossible to get λ′

1 (the semidefinite solver SDPA returns an

out of memory exception). Moreover, one needs to compute D̃2( f ) only once when
using the second approach by choosing appropriate X and Y.

n = 2

n = 10

n = 20

0 5 10 15 20

−6

−4

−2

0

Quadratic cuts

Gap

(a) d = 4

n = 2

n = 9

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

Quadratic cuts

Gap

(b) d = 6

Figure 6.3: Lower bounds computation for medium-scale POP, using coarse approxi-
mations of λ

Table 6.1: Comparisons between the lower bound CPU time t and the coarse eigen-
value approximation CPU time t2 for medium-scale POP after 20 quadratic cuts

n 2 3 4 5 6 7 8 9

d = 4
t (s) 2.02 2.12 2.75 3.03 3.72 5.75 5.87 7.01

t2/t (%) 19.4 21.9 30.3 42.2 48.7 56.7 61.2 68.5

d = 6
t (s) 1.88 2.48 4.11 6.52 12.43 21.80 47.34 108.19

t2/t (%) 18.7 31.5 42.4 72.0 83.3 87.8 93.0 96.3

In Table 6.1, we report some computation time results to get the lower bounds of
Figures 6.3 after 20 quadratic cuts. We consider the total time t spent to get the lower
bounds m and the time t2 spent to obtain the first coarse approximation λ′

2.
For medium-scale POP (n . 9), the ratio t2/t is closed to 1. The bottleneck of

the algorithm pop_template_optim becomes the computation of the Hessian matrix

D̃2( f ) entries, which requires to solve n(n + 1) semidefinite relaxations of order at
least (kmin − 1). By comparison, the size of the semidefinite relaxation of the noncon-
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vex quadratic optimization problem (Line 8) is polynomial in the number of variables
and quadratic cuts.

6.3 Polynomial Underestimators for Semialgebraic
Functions

Given a box K ⊂ Rn and a semialgebraic leaf fsa : K → R of the abstract syntax tree of
f , we consider an instance of Problem (1.1.2), where fsa is involved. A common way
to represent fsa is to use its semialgebraic lifting, which leads to solve semialgebraic
optimization problems with a possibly large number of lifting variables nlifting. One
way to reduce this number is to underestimate fsa with a degree-d polynomial hd,
which should involve less variables than nlifting. This section describes how to obtain
such an hd, which has the property to minimize the L1-norm of the difference ( fsa − h),
over all degree-d polynomial underestimators h of fsa.

We exploit a technique of Lasserre and Thanh [LT13], who showed how to obtain
convex underestimators of polynomials. The method of [LT13] can be summarized
as follows. Given a polynomial fpop, a box K and a positive integer d, one can build
a sequence of convex polynomials, which converge to the best convex degree-d poly-
nomial underestimator of fpop. This sequence is obtained with the optimal solutions
of semidefinite programs.

Here, we derive a similar hierarchy of SDP relaxations, whose optimal solutions
are the best (for the L1-norm) degree-d (but possibly non convex) polynomial under-
estimators of t on K. We assume without loss of generality that K is hypercube [0, 1]n.
By comparison with [LT13], the main difference is that the input is a semialgebraic
function, rather than a polynomial.

6.3.1 Best Polynomial Underestimators of Semialgebraic Functions for the
L1 norm

Let fsa : K → R be a semialgebraic leaf of the abstract syntax tree of f and λn be
the standard Lebesgue measure on Rn, which is normalized so that λn([0, 1]n) =
1. We also introduce some auxiliary material. Define g1 := x1(1 − x1), . . . , gn :=
xn(1 − xn). The function fsa has a basic semialgebraic lifting, thus there exist p, s ∈
N, polynomials gn+1, . . . , gn+s ∈ R[x, z1, . . . , zp] and a basic semialgebraic set Kpop

defined by:

Kpop := {(x, z) ∈ Rn+p : g1(x, z) > 0, . . . , gm(x, z) > 0, gm+1(x, z) > 0} ,

such that the graph Ψ fsa satisfies:

Ψ fsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, zp) : (x, z) ∈ Kpop} ,

with m := n + s and gm+1 := M − ‖z‖2
2, for some positive constant M obtained by

adding bound constraints over the lifting variables z (to preserve Assumption 2.2).
Define the polynomial fpop(x, z) := zp and the total number of variables npop :=
n + p.

Consider the following optimization problem with optimal value md:
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(Psa)





min
h∈Rd[x]

∫

K
( fsa − h)dλn

s.t. fsa − h > 0 on K .

Lemma 6.8. Problem (Psa) has a degree-d polynomial minimizer hd.

Proof. Let us equip the vector space Rd[x] of polynomials h of degree at most d with
the norm ‖h‖∞ := sup|α|6d{|hα|}.

Let H be the admissible set of Problem (Psa). Observe that H is closed in the
topology of the latter norm. Moreover, the objective function of Problem (Psa) can
be written as φ : h ∈ H 7→ ‖ fsa − h‖L1(K), where ‖ · ‖L1(K) is the norm of the space
L1(K, λn). The function φ is continuous in the topology of ‖ · ‖∞ (for polynomials of
bounded degree, the convergence of the coefficients implies the uniform convergence
on every bounded set for the associated polynomial functions, and a fortiori the con-
vergence of these polynomial functions in L1(K, λn)). We claim that for every t ∈ R,
the sub-level set St := {h ∈ H | φ(h) 6 t} is bounded. Indeed, when φ(h) 6 t, we
have:

‖h‖L1(K) 6 ‖ fsa − h‖L1(K) + ‖ fsa‖L1(K) 6 t + ‖ fsa‖L1(K) .

Since on a finite dimensional vector space, all the norms are equivalent, there exists
a constant C > 0 such that ‖h‖∞ 6 C‖h‖L1(K) for all h ∈ H, so we deduce that
‖h‖∞ 6 C(t + ‖ fsa‖L1(K)) for all h ∈ St, which shows the claim. Since φ is contin-
uous, it follows that every sublevel set of φ, which is a closed bounded subset of a
finite dimensional vector space, is compact. Hence, the minimum of Problem (Psa) is
attained.

Let QM(Kpop) be the quadratic module associated with g1, . . . , gm+1:

QM(Kpop) =
{m+1

∑
j=0

σj(x, z)gj(x, z) : σj ∈ Σ[x, z]
}

.

By Proposition 2.7, the optimal solution hd of (Psa) is a maximizer of the following
problem:

(Pd)





max
h∈Rd[x]

∫

[0,1]n
h dλn

s.t. ( fpop − h) ∈ QM(Kpop) .

Let µd be the optimal value of (Pd). Then, one has md =
∫

K fsa dλ − µd. Note also
that

∫
[0,1]n h dλn =

∫
[0,1]n h(x) dλn(x) =

∫
[0,1]n+p h(x, z) dλn+p(x, z) =:

∫
[0,1]n+p h dλn+p.

6.3.2 A Convergent Hierarchy of Semidefinite Relaxations

Let ω̃0 := ⌈(deg g0)/2⌉, . . . , ω̃m+1 := ⌈(deg gm+1)/2⌉ and let k0 be defined as follows:

k0 := max{⌈d/2⌉, ⌈(deg fpop)/2⌉, ω̃0, . . . , ω̃m+1} .

Now, we define the following sums of squares relaxation (Pdk) of (Pd), with opti-
mal value µdk:
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(Pdk)





max
h∈Rd[x],σj

∫

[0,1]n+p
h dλn+p

s.t. fpop(x, z) = h(x) +
m+1

∑
j=0

σj(x, z)gj(x, z), ∀(x, z) ,

σj ∈ Σk−ω̃j
[x, z], 0 6 j 6 m + 1 ,

with k > k0.
This problem is an SDP program with variables (hd, σ0, . . . , σm+1). Notice that

h = ∑α∈Nn
d

hαxα. Then, the objective function of the optimization problem (Pdk) can
be written ∑α∈Nn

d
hαγα, with γα :=

∫
[0,1]n xαdx for all α ∈ Nn

d .
Define the moment sequence y ∈ R2k[x, z]∗ associated with the Lebesgue measure

λn+p on [0, 1]n+p, and in particular, let ypop :=
∫
[0,1]n+p zp dλn+p denote the entry of y

corresponding to the moment arising from the variable zp. Hence, the dual semidefi-
nite program of (Pdk) can be defined as follows:

(P∗
dk)





min
y∈R2k [x,z]∗

ypop

s.t. Mk−ω̃j
(gjy) < 0, 0 6 j 6 m + 1 ,

yα = γα, ∀α ∈ Nn
d .

Lemma 6.9. For sufficiently large k > k0, the semidefinite program (Pdk) has a maximizer
hdk.

Proof. This is a special case of the proof of [LT13, Lemma 3.2], with T∗ being the null
operator, so that the dual program (P∗

dk) has a strictly feasible solution y = γ. Hence,
there is no duality gap between (Pdk) and (P∗

dk). Moreover,
∫
[0,1]n+p h dλn+p is bounded

above by
∫
[0,1]n+p fpop dλn+p, so the optimal value µdk is finite and the problem (Pdk)

has an optimal solution.

Let md be the optimal value of Problem (Psa). As in [LT13], the optimal value
of the hierarchy of semidefinite relaxations (Pdk) can become as close as desired to
md − f ∗sa.

Theorem 6.10. Let us call µdk the optimal value of the semidefinite program (Pdk), k ∈ N.
The sequence (

∫
K fsadλ − µdk)k>k0 is non-increasing and converges to md. Moreover, if hdk is

a maximizer of (Pdk), then the sequence (‖ fsa − hdk‖1)k>k0 is non-increasing and converges
to md. Furthermore, any accumulation point of the sequence (hdk)k>k0 is an optimal solution
of Problem (Psa).

Proof. The proof is analogous with [LT13, Theorem 3.3].

Remark 6.11. Given xc ∈ K, the constraints of Problem Psa can be reinforced so that
fsa and the underestimator h share the same value at xc. This can be formulated as
follows:

(Psa
c )





min
h∈Rd[x]

∫

K
( fsa − h)dλ

s.t. fsa − h > 0 on K ,
h(xc) = fsa(xc) .

In this case, we solve the following variant of the SDP relaxation (P∗
dk):
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(P∗
dkc)





min
y∈R2k [x,z]∗,yc

ypop + fsa(xc)yc

s.t. Mk−ω̃j
(gjy) < 0, 0 6 j 6 m + 1 ,

yα = γα − xα
c yc, ∀α ∈ Nn

d .

However, the relaxation (P∗
dk) involves fewer SDP variables than (P∗

dkc). Indeed,
the equality constraints yα = γα(α ∈ Nn

d) fix the values of (n+d
d ) variables for (P∗

dk).

6.3.3 Exploiting Sparsity and the Running Intersection Property

Let I1, . . . , Il be the cliques obtained from the chordal extension of the csp graph of the
variables x (for more details, see Section 2.4). The collection {I1, . . . , Il} satisfies the
running intersection property. We also add the l redundant additional constraints:

gm+q := nq M2 − ∑
i∈Cq

x2
i > 0, q = 1, . . . , l , (6.3.1)

set m′ = m + 1 + l, define the compact semialgebraic set:

K′
pop := {x ∈ Rnpop : g1(x) > 0, . . . , g′m(x) > 0}.

Let Fk be the index set of variables which are involved in the polynomial gk.
Now, we can define the sparse variant of the primal semidefinite relaxations Pdk,

for k > k0:

(Psparse
dk )





max
h∈Rd[x],σj

∫

K′
pop

h dλpop

s.t. fpop(x, z) = h(x) +
m′

∑
j=0

σj(x, z)gj(x, z), ∀(x, z) ,

σj ∈ Σ[x, z, N
Fj

k−ω̃j
], 1 6 j 6 m′ ,

σ0 ∈ ∑
16q6l

Σ[x, z, N
Cq

k ] .

The dual of (Psparse
dk ) is the sparse variant of the dual semidefinite relaxations (Pdk)

∗:

(Psparse
dk )∗





min
y∈R2k [x,z]∗

ypop

s.t. Mk(y, Cq) < 0, 1 6 q 6 l ,
Mk−ω̃j

(gjy, Fj) < 0, 1 6 j 6 m′ ,

yα = γα, ∀α ∈ N
Iq

d , 1 6 q 6 l .

Remark 6.12 (Reducing the computational complexity). The semidefinite relaxation
(Psparse

dk )∗ involves at most (∑l
q=1 (

nq+2k
2k ) − ∑

l
q=1 (

nq+d
d )) SDP moment variables. Let

assume that the integers nq are close to each other, in such a way that nq ≃ npop/l,
then the number of variables is bounded by:

nsparse
sdp := O

(
l
(npop

l

)2k − l(
n
l
)d) .

Now we shall compare nsparse
sdp with the number of SDP variables involved in Prob-

lem (Pdk)
∗, which is nsdp := O(n2k

pop − nd). When the degrees of the polynomials
involved in the semialgebraic lifting of fsa are larger than d, then k0 (resp. k) is larger
than d and the computational cost saving is more significant.
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Theorem 6.13. Let µ
sparse
dk be the optimal value of the semidefinite program (Psparse

dk ), k ∈ N.
The sequence (

∫
K fsadλ − µ

sparse
dk )k>k0 is non-increasing and converges to md.

Proof. To prove the result, we use the running intersection property of the cliques
and the redundant conditions defined in (6.3.1). For an analogous proof, we refer the
reader to [Las, §4.1].

6.3.4 Numerical Experiments

We present the numerical results obtained when computing the best polynomial un-
derestimators of semialgebraic functions for the L1 norm, using the techniques pre-
sented in Section 6.3.3. Given a semialgebraic function fsa defined on a compact semi-
algebraic set Ksa and an approximation degree d, we underestimate fsa by a degree
d polynomial obtained at the relaxation order k of (Psparse

dk ) (denoted by hdk). This
polynomial hdk only depends on the variables x. The “tightness” score ‖ fsa − hdk‖1
evaluates the quality of the estimator hdk, together with its lower bound µdk. The
semidefinite relaxations of Problem (Psa) have been implemented with OCAML (us-
ing SDPA), on an Intel Core i5 CPU (2.40 GHz).

Example 6.14. In Example 2.12, we considered the semialgebraic function
fsa := ∂4∆x√

4x1∆x
and the set Ksa := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2. One can eas-

ily obtain the lower bound m2 = −0.618 of fsa at the second relaxation (resp. m3 =
−0.445 at the third relaxation), using two lifting variables that represent

√
4x1∆x and

∂4∆x√
4x1∆x

, as well as additional inequality constraints. However, when solving inequal-
ities involving fsa, one would like to solve POP that do not necessarily include these
two lifting variables and the associated constraints. The Table 6.2 displays the tight-
ness scores and the lower bounds of the estimators obtained for various values of the
approximation degree d and the relaxation order k. Notice that µdk only bounds from
below the actual infimum h∗dk of the underestimator hdk. It requires a few seconds to
compute estimators at k = 2 against 10 minutes at k = 3, but one shall consider to
take advantage of replacing fsa by its estimator h63 to solve more complex POP.

Table 6.2: Comparing the tightness score ‖ fsa − hdk‖1 and µdk for various values of d
and k

d k Upper bound of ‖ fsa − hdk‖1 µdk

2
2 0.8024 -1.171
3 0.3709 -0.4479

4
2 1.617 -1.056
3 0.1766 -0.4493

6 3 0.08826 -0.4471

Example 6.15. To illustrate the method, we consider the six variables function rad2_x
issued from Flyspeck and its projection rad2_x2 with respect to the first two coordi-
nates (x1, x2) on the box [4, 8]2 (we instantiated the remaining variables by the con-
stant value 8):

rad2_x2 : (x1, x2) 7→
−64x2

1 + 128x1x2 + 1024x1 − 64x2
2 + 1024x2 − 4096

−8x2
1 + 8x1x2 + 128x1 − 8x2

2 + 128x2 − 512
.
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In Figure 6.4 is displayed rad2_x2 after scaling on [0, 1]2 (the red surface), as well as
the linear underestimator h13 (blue surface) and quadratic underestimator h23 (green
surface). Both underestimators are obtained at the third relaxation order.

0 0.2 0.4 0.6 0.8 1 0
0.5

10.11

0.11

0.12

0.12

Figure 6.4: Linear and Quadratic Polynomial Underestimators for the rad2_x2 func-
tion

6.4 The Template Optimization Algorithm

We now consider an instance of Problem (1.1.2). We assume that K is a box and we
identify the objective function f with its abstract syntax tree t. The approximation
algorithm template_approx is very close to the one defined in Chapter 5, but it can
now limit the complexity of a given semialgebraic underestimator t− (or overestima-
tor t+). Indeed, instead of taking the identity function for reduce_lift, we select a
semialgebraic approximation procedure build_template.

Bounding the objective function by semialgebraic estimators.

Semialgebraic lower and upper estimators t− and t+ are computed by induction, fol-
lowing exactly the procedure samp_approx described in Section 5.3.1. For the sake of
clarity, we briefly recall this inductive procedure:

When the tree is reduced to a leaf, i.e. t ∈ A, it suffices to set t− = t+ := t.
When the root of the tree corresponds to a binary operation, then the semialge-

braic estimators of the two children are composed using the function compose_bop.
Finally, if t corresponds to the composition of a transcendental (unary) function φ

with a child c, we first bound c with semialgebraic functions c+ and c−. We bound
φ from above and below by computing parabola at given control points (function
build_par), thanks to the semiconvexity properties of φ. These parabola are com-
posed with c+ and c− (function samp_unary_approx depicted in Figure 5.3).

These steps correspond to the part of the algorithm template_approx from Lines 1

to 12.
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Reducing the complexity of semialgebraic estimators using templates

The semialgebraic estimators previously computed are used to determine lower and
upper bounds of the function associated with the tree t, at each step of the induction.
The bounds are obtained by calling the functions min_sa and max_sa respectively,
which reduce the semialgebraic optimization problems to polynomial optimization
problems by introducing extra lifting variables (see Section 2.4).

However, the complexity of solving the POPs can grow significantly because of
the number nlifting of lifting variables. If k denotes the relaxation order, the corre-
sponding SDP problem Qk indeed involve linear matrix inequalities of size O((n +
nlifting)

k) over O((n + nlifting)
2k) variables.

Consequently, this is crucial to control the number of lifting variables, or equiva-
lently, the complexity of the semialgebraic estimators. For this purpose, we introduce
the function build_template. This function can call two different procedures, as ex-
plained below.

1. The first method build_quadratic_template is an extension of the previous
pop_template_optim algorithm (see Section 6.2, Figure 6.1). It allows to approx-
imate of the tree t by means of suprema/infima of quadratic functions, when the
number of lifting variables exceeds a user-defined threshold value nmax

lifting. The
algorithm is depicted in Figure 6.6. Using a heuristics, it first builds candidate
quadratic polynomials q−j approximating t at each control point xj (function
build_quadratic_form, previously described). Since each q−j does not neces-
sarily underestimate the function t, we then determine the lower bound m−

j of
the semialgebraic function t− − q−j , which ensures that q−j + m−

j is a quadratic
lower-approximation of t.

2. An alternative approach is the semidefinite relaxation Pdk described in Section
6.3.2: the semialgebraic function t− is replaced with its degree-d polynomial
underestimator hdk. We denote this method by build_l1_template.

The returned semialgebraic expression (either max16j6r{q−j + m−
j } or hdk) now

generates only one lifting variable (representing max). Similarly, we can obtain a
coarser upper-approximation by calling the procedure build_template on the oppo-
site of the semialgebraic overestimator t+.

Remark 6.16 (Dynamic choice of the control points). As in Section 5.3, the sequence s
of control points is computed iteratively. We initialize the set s to a single point of K,
chosen so as to be a minimizer candidate for t (e.g. with a local optimization solver).
Calling the algorithm template_approx on the main objective function t yields an
underestimator t−. Then, we compute a minimizer candidate xopt of the underesti-
mator tree t−. We add xopt to the set of control points s. Consequently, we can refine
dynamically our templates based max-plus approximations by iterating the previous
procedure to get tighter lower bounds. This procedure can be stopped as soon as the
requested lower bound is attained.

Example 6.17 (Modified Schwefel Problem). We illustrate our method with the func-
tion f from Example 1.4 and the finite set {135, 251, 500} of control points. For each
i = 1, . . . , n, consider the sub-tree sin(

√
xi). First, we represent each sub-tree

√
xi by

a lifting variable yi and compute b1 :=
√

135, b2 :=
√

251, b3 :=
√

500. Then, we
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Input: tree t, box K, semidefinite relaxation order k, control points sequence s =
{x1, . . . , xp} ⊂ K

Output: lower bound m, upper bound M, lower semialgebraic estimator t−2 , upper
semialgebraic estimator t+2

1: if t ∈ A then
2: t− := t, t+ := t
3: else if bop := root (t) is a binary operation with children c1 and c2 then
4: mci , Mci , c−i , c+i := template_approx(ci, K, k, s) for i ∈ {1, 2}
5: I2 := [mc2 , Mc2 ]
6: t−, t+ := compose_bop(c−1 , c+1 , c−2 , c+2 , bop, I2)
7: else if r := root(t) ∈ D with child c then
8: mc, Mc, c−, c+ := template_approx(c, K, k, s)
9: I := [mc, Mc]

10: par−, par+ := samp_unary_approx(r, I, c, s)
11: t−, t+ := compose_approx(r, par−, par+, I, c−, c+)
12: end
13: t−2 := build_template(t, K, k, s, t−), t+ := −build_template(t, K, k, s,−t+)
14: x− := vars(t−2 , K), x+ := vars(t+2 , K)
15: return min_sa(t−2 , K, x−, k), max_sa(t+2 , K, x+, k), t−, t+

Figure 6.5: template_approx

get the equations of par−b1
, par−b2

and par−b3
with buildpar, which are three underes-

timators of the function sin on the real interval I := [1,
√

500]. Similarly we obtain
three overestimators par+b1

, par+b2
and par+b3

. Finally, we obtain the underestimator
t−1,i := maxj∈{1,2,3}{par−bj

(yi)} and the overestimator t+1,i := minj∈{1,2,3}{par+bj
(yi)}. To

solve the modified Schwefel problem, we consider the following POP:




min
x∈[1,500]n,y∈[1,

√
500]n,z∈[−1,1]n

−∑
n
i=1(xi + ǫxi+1)zi

s.t. zi 6 par+bj
(yi), j ∈ {1, 2, 3}, i = 1, . . . , n ,

y2
i = xi, i = 1, . . . , n .

Notice that the number of lifting variables is 2n and the number of equality con-
straints is n, thus we can obtain coarser semialgebraic approximations of f by con-
sidering the function b 7→ sin(

√
b) (see Figure 6.7). We get new estimators t−2,i and

t+2,i of sin(
√

xi) with the functions min_sa, max_sa and build_quadratic_form. The
resulting POP involves only n lifting variables. Besides, it does not contain equality
constraints anymore, which improves in practice the numerical stability of the POP
solver.

Convergence of the nonlinear template method

Let t−p and t+p be the estimators obtained at the pth iteration of the template_optim

algorithm. Here, we suppose that the semialgebraic functions are underestimated
with the procedure build_l1_template (SDP relaxation Pdk in Section 6.3.2).

Lemma 6.18 (Uniform convergence of the semialgebraic templates). The estimators
sequences (t−p )p and (t+p )p uniformly converge to t on the box K.
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Input: tree t, box K, relaxation order k, control points sequence s = {x1, . . . , xr} ⊂ K,
semialgebraic underestimator t−

Output: lower semialgebraic estimator t−2
1: if the number of lifting variables exceeds nmax

lifting then
2: for xc ∈ s do
3: fxc := build_quadratic_form(t, xj, λ)
4: m−

j := min_sa(t− − q−j , k) ⊲ q−j + m−
j 6 t− 6 t

5: done
6: return max16j6r{q−j + m−

j }
7: else
8: return t−

9: end

Figure 6.6: build_quadratic_template

b

y

b 7→ sin(
√

b)

par−b1

par−b2

par−b3

par+b1

par+b2

par+b3

1 b1 b2 b3 = 500

Figure 6.7: Templates based on Maxplus Semialgebraic Estimators for b 7→ sin(
√

b):
maxj∈{1,2,3}{par−bj

(xi)} 6 sin
√

xi 6 minj∈{1,2,3}{par+bj
(xi)}

Proof. We claim that Assumption 3.4 holds for the particular choice unary_approx =
minimax_unary_approx and reduce_lift = build_l1_template. First, the uniform
convergence of minimax_unary_approx comes from Theorem 5.3. Next, for suffi-
ciently large relaxation order, the build_l1_template procedure returns the best (for
the L1 norm) degree-d polynomial underestimator of a given semialgebraic function
(Theorem 6.10). Applying Proposition 3.8 yields the desired result.

6.5 Benchmarks

6.5.1 Comparing three certification methods.

We next present numerical results obtained by applying the present template method
to examples from the global optimization literature, as well as inequalities from the
Flyspeck project. These experiments have been performed by interfacing our tool
NLCertify with the SPARSEPOP solver [WKK+08].

In each example, our aim is to certify a lower bound m of a function f on a box
K. We use the algorithm template_optim, keeping the SOS relaxation order k suf-
ficiently small to ensure the fast computation of the lower bounds. The algorithm
template_optim returns more precise bounds by successive updates of the control
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points sequence s. Then, we perform a domain subdivision to reduce the relaxation
gap (as explained in Section 4.3).

For the sake of comparison, we have implemented a template-free SOS method
ia_sos, which coincides with the particular case of the algorithm template_optim in
which #s = 0 and nlifting = 0. It computes the bounds of semialgebraic functions with
standard SOS relaxations and bounds the univariate transcendental functions by in-
terval arithmetic. We also tested the MATLAB toolbox algorithm intsolver [Mon09],
which is based on the Newton interval method [HG83]. Experiments are performed
on an Intel Core i5 CPU (2.40 GHz).

6.5.2 Global optimization problems.

Certification of lower bounds of non-linear problems

In Table 6.3, the time column indicates the total informal verification time, i.e. without
the exact certification of the lower bound m with COQ. Each occurrence of the symbol
“−” means that m could not be determined within one day of computation by the
corresponding solver. We see that ia_sos already outperforms the interval arithmetic
solver intsolver on these examples. However, it can only be used for problems with
a moderate number of variables. The algorithm template_optim allows us to over-
come this restriction, while keeping a similar performance (or occasionally improving
this performance) on moderate size examples.

Notice that reducing the number of lifting variables allows us to provide more
quickly coarse bounds for large-scale instances of SWF. We discuss the results ap-
pearing in the two last lines of Table 6.3. Without any box subdivision, we can certify
a better lower bound m = −967n with nlifting = 2n since our semialgebraic estimator
is more precise. However the last lower bound m = −968n can be computed twice
faster by considering only n lifting variables, thus reducing the size of the POP de-
scribed in Example 1.4. This indicates that the method is able to avoid the explosion
for certain hard sub-classes of problems where a standard (full lifting) POP formula-
tion would involve a large number of lifting variables.

Table 6.3: Comparison results for global optimization examples

Pb n m
template_optim ia_sos intsolver

k #s nlifting #boxes time #boxes time time
H3 3 −3.863 2 3 4 99 101 s 1096 247 s 3.73 h
H6 6 −3.33 2 1 6 113 102 s 113 45 s > 4 h
MC 2 −1.92 1 2 1 17 1.8 s 92 7.6 s 4.4 s
ML 10 −0.966 1 1 6 8 8.2 s 8 6.6 s > 4 h
PP 10 −46 1 3 2 135 89 s 3133 115 s 56 min
SBT 2 −190 2 3 2 150 36 s 258 0.6 s 57 s

SWF
10 −430n 2 6 2n 16 40 s 3830 129 s 18.5 min
102 −440n 2 6 2n 274 1.9 h > 104 > 10 h −

ǫ = 0
103 −486n 2 4 2n 1 450 s − − −
103 −488n 2 4 n 1 250 s − − −

SWF 103 −967n 3 2 2n 1 543 s − − −
ǫ = 1 103 −968n 3 2 n 1 272 s − − −



6.5. BENCHMARKS 79

High-degree polynomial approximations.

We interfaced our tool with Sollya and performed some numerical tests. The mini-
max approximation based method is eventually faster than the template method for
moderate instances. For the examples H3 and H6, the speed-up factor is 8 when the
function exp is approximated by a quartic minimax polynomial.

However, this approach is much slower to compute lower bounds of problems in-
volving a large number of variables. It requires 57 times more CPU time to solve SWF
(ǫ = 1) with n = 10 by considering a cubic minimax polynomial approximation of the
function b 7→ sin(

√
b) on a floating-point interval I ⊇ [1,

√
500]. These experiments

indicate that a high-degree polynomial approximation is not suitable for large-scale
problems.

6.5.3 Certification of various Flyspeck inequalities.

In Table 6.4, we present some test results for several non-linear Flyspeck inequali-
ties. The information in the columns time, #boxes and nlifting is the same as above.
The integer nD represents the number of transcendental univariate nodes in the cor-
responding abstract syntax trees.

Table 6.4: Results for Flyspeck inequalities using template_optim with n = 6, k = 2
and m = 0

Inequality id nD #s nlifting #boxes time
9922699028 1 4 9 47 241 s
9922699028 1 4 3 39 190 s
9922699028 1 1 1 170 1080 s
3318775219 1 2 9 338 26 min
7726998381 3 4 15 70 43 min
7394240696 3 2 15 351 1.8 h
4652969746_1 6 4 15 81 1.3 h
OXLZLEZ 6346351218_2_0 6 4 24 200 5.7 h

These inequalities are known to be tight and involve sum of arctan of correlated
functions in many variables, whence we keep high the number of lifting variables to
get precise max-plus estimators. However, some inequalities (e.g. 9922699028) are
easier to solve by using coarser semialgebraic estimators. For instance, the first line
(nlifting = 9) corresponds to the algorithm described in [AGMW13b]. The second and
third line illustrate our improved template method. For the former (nlifting = 3), we
do not use any lifting variables to represent square roots of univariate functions. For
the latter (nlifting = 1), we underestimate the semialgebraic function ∂4∆x√

4x1∆x
with the

build_l1_template procedure. Thus, we save two more lifting variables.





Part III

From Certified to Formal Global
Optimization

81





Chapter 7

Formal Nonlinear Global
Optimization

In the first two sections, we remind some basics on the COQ system. In particular, we
focus on computational reflection (Section 7.1.3), which is used to handle formal poly-
nomial optimization (Section 7.3). Finally, we explain how to derive formal bounds
of semialgebraic functions (Section 7.4).

7.1 The COQ Proof Assistant

The aim of this section is to briefly recall some fundamental notions about the mech-
anisms of theorem proving within the COQ proof assistant. For more details on the
topic, we recommend the documentation available in [BC04].

7.1.1 A Formal Theorem Prover

A formal proof assistant is a software which can represent mathematical definitions,
theorems, propositions in a formal specification language. The COQ proof assistant
provides such a language, called Gallina. A crucial point is that the system also has
an abstract syntax to represent proofs. Because this syntax is cumbersome, proofs are
generally built incrementally and interactively by the user using commands called
proof tactics.

Once a proof is completed, it is checked by a specific part of COQ, called the kernel.
The soundness of proofs is thus guaranteed by the consistency of the logical formal-
ism implemented by COQ and the correctness of the kernel. In software engineering
terms, the kernel is thus the trusted computing base of the whole system.

The COQ system is implemented, using the language (ML) OCAML. An interest-
ing point is that Gallina is actually very similar to ML: it is a typed functional lan-
guage, supporting a form of e.g. pattern-matching, and more generally a precisely
defined notion of computation. There are of course differences between COQ’s lan-
guage and ML. On the one hand, the strength of the COQ type system enables to build
dependant types. On the other hand, side-effects are not allowed and the programs
written in COQ always terminate. Thus, COQ’s language is essentially a dependently
typed purely functional programming language.

83
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7.1.2 Logic and Computation

In COQ, types of terms have also types. The type of types are specific constants called
sorts. Because propositions (logical formulas) in Coq can be viewed as types, one
such sort is Prop, the type of propositions. Another sort is Type, which is the type
of computational types (and also, technically, of Prop). For historical reasons, Type is
also sometimes written Set.

The COQ language allows to define complex datatypes, as inductive types. Ob-
jects of a given inductive type are built with constructors. A simple example is the
type bool which has two constructors:

Inductive bool : Set :=

| true : bool

| false : bool.

Since the two constructors true and false have no arguments, we say that bool

is an enumerated type. A slightly more complex inductive type is the type of natural
numbers:

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Here, the constructor 0 stands for the integer 0. Given a natural number n rep-
resented by n, (S n) stands for its successor n + 1. For instance 2 is represented by
S (S 0) and 4 by S (S (S (S 0))). It is because the constructor S is recursive (its
argument is itself a natural number) that this type has infinitively many inhabitants.

We have mentioned above that the language of COQ is at the same time a math-
ematical language and a programming language, which supports computation. This
has consequences on the way proofs can be performed which are absolutely crucial
for our work. We can illustrate this feature through a classic example.

In the traditional setting, arithmetic involves the following constant and axioms :

+ : nat -> nat -> nat

addO : forall n, 0 + n = n

addS : forall n m, (S n) + m = n + (S m)

The goal “2 + 2 = 4” can be written in COQ as:

Lemma two_plus_two : S (S 0) + S (S 0) = S (S (S (S 0))).

By using the axiom addS, we go from the initial goal to S 0 + S (S (S 0))= S (S

(S (S 0))). By using addS one more time, the goal is rewritten as 0 + S (S (S

(S 0)))= S (S (S (S 0))). Then, we use the first axiom to obtain the goal S (S

(S (S 0)))= S (S (S (S 0))), that we solve by using the reflexivity of equality
(refl_equal in COQ). Here the symbol “+” has no computational content.

The good way to define addition in COQ however is construct is as a computable
function/program:

Fixpoint add n m : nat :=

match n with

| 0 ⇒ m

| S n’ ⇒ add n’ (S m)
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In consequence, and this is no surprise, “2+2” (or (plus (S (S O))(S (S O))))
computes to 4 (or (S (S (S (S O))))). This means that these two objects are logi-
cally identified, and by congruence, so are the propositions “2+2=4” and “4=4”. In
turn, the proposition “2+2=4” can be proved using a single deduction step (reflexiv-
ity), the rest by taken care of the computation mechanism.

The computational (COQ) proof is thus shorter than its traditional, purely deduc-
tive, counterpart: the formalism of COQ allows to replace some deduction steps un-
written by computation steps. Of course, this short-cut becomes much more impor-
tant when proving “200+200=400”, or “2000+2000=4000”.

Note that several conversion rules define the internal notion of computation in
COQ but for the sake of clarity, we do not detail these rules.

7.1.3 Computational Reflection

The programming language provided inside the formalism of COQ can be used in
more sophisticated ways. In particular, it allows to build decision procedures or au-
tomatized reasoning, thus providing a way to prove classes of propositions in a sys-
tematic and efficient way. Because this involves formalizing a fragment of the logic
in COQ itself, this technique is called computational reflection and was introduced in
[BRB96] (see also [BM81] for details about reflection).

We illustrate this concept with arithmetic expressions, which can be encoded us-
ing the following inductive type:

Inductive nat_expr :=

| Cst : nat → nat_expr

| Var : id → nat_expr

| Add : nat → nat → nat_expr .

where id is some data-type representing identifiers. Thus, the expression x + (y+
1) is represented by Add (Var x)(Add (Var y)(Cst (S O))).

Suppose now we have a decidable ordering over the type id. This allows us to
define a normalization function over expressions:

norm_expr : expr → expr.

Basically, this function will flatten expressions, group the numerical constants and
sort the identifiers. So that x + (y + 1), y + ((x + 0) + 1) and (1 + y) + x are all
normalized to 1 + (x + y) (that is Add (Cst (S O))(Add (Var x)(Var y))).

We can then prove that the values of expressions are unchanged by normalization.
To make that statement precise, we need to define an interpretation, which maps
expressions to their numerical values :

Fixpoint interp_expr e ( ivar : id -> nat ) : nat :=

match e with

| Cst n ⇒ n

| Var x ⇒ ivar x

| Add n m ⇒ interp_expr ivar n + interp_expr ivar m

end.

Because of the symbolic part of expressions, corresponding to the case of the Var

constructor, this interpretation is parametrized by an arbitrary interpretation of the
identifiers.
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Given two expressions e1 and e2, one can prove that if the normalization of e1

is equal to the normalization of e2, then e1 and e2 have also equal interpretations,
whatever the interpretation of identifiers is. In COQ, one writes this statement as
follows:

Lemma norm_expr_correct : forall e1 e2 I,

norm_expr e1 = norm_expr e2 →
interp_expr e1 I = interp_expr e2 I.

Proof. By induction on the structure of arithmetic expressions.

Figure 7.1 illustrates the reflection proof of the proposition “β + ((α + 0) + 1) =
1 + α + β”, where α and β are arbitrary expressions of type nat. The trick is to have
an interpretation function I which maps x to α and y to β. Then, the left-hand-side of
the goal is reified into the expression Add (Var y)(Add (Add (Var x)(Cst 0))(Cst

(S O))). Finally, the proof of the equality is:

norm_expr_correct ( norm_expr (Add (Var y) (Add (Add (Var x)

(Cst 0))

(Cst (S O))))) I

( refl_equal ( norm_expr (Add (Cst (S

O)) (Add (Var x)(Var y))))).

One understand that such a proof is easy to generate for any given pair of expressions.
Let us also point out that the verification of this proof essentially boils down to:

• normalizing the two expressions,

• verifying that the two normal forms are equal.

The rest, that is the proof of the correctness lemma is proved once for all.

1 + α + β
Add (Cst (S O))

(Add (Var x)(Var y))

β + ((α + 0) + 1)
Add (Var y)(Add

(Add(Var x)(Cst 0))(Cst (S O)))

reflexive tactic

reification

interpretation

normalization

Figure 7.1: An illustration of Computational Reflection for Arithmetic Proofs

The tactics ring [GM05] and micromega [Bes07] are famous examples illustrating
this methodology. The implementation of our SOS certificates checker (described in
Section 7.3) is inspired from the development libraries of these two tactics. We use
computational reflection to check the equality between polynomial expressions and
Putinar certificates (Section 7.3.3).

7.2 Polynomial Arithmetic in COQ

As for proofs involving equalities of arithmetic expressions, one first needs to define
the data-structure to represent polynomials as well as SOS certificates.
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7.2.1 From Binary Integers to Arbitrary-size Rationals

In COQ, the set N0 of positive binary integers is represented by the following induc-
tive type:

Inductive positive : Set :=

| xI : positive → positive

| xO : positive → positive

| xH : positive .

The constructor xH stands for 1. When x is represented by the positive x, then
(xO x) (resp. (xI x)) represents 2x (resp. 2x + 1). For instance, (xI xH) stands for 3.

One can extend the positive integers with a zero (represented by the constructor
N0) to obtain the set of natural numbers N:

Inductive N : Set :=

| N0 : N

| Npos : positive → N.

The set Z of integers is defined as:

Inductive Z : Set :=

| Z0 : Z

| Zpos : positive → Z

| Zneg : positive → Z.

However, a more efficient implementation of numbers is mandatory to check the
correctness of SOS certificates. As a matter of fact, several theorem proving appli-
cations (see Remark 7.1) has required fast integers computation, which is currently
available inside COQ.

Remark 7.1 (Checking primality certificates). In May 2013, Helfgott and Platt [HP13]
(see also [Hel13]) presented a numerical verification of the ternary Goldbach Con-
jecture (up to 8.875 · 1030). The approach described in [GTW06] could be applied to
eliminate all uncertainties on this verification.

The type C that is used to represent the coefficients of polynomials can be instan-
tiated by an efficient implementation of rational numbers BigQ. We give more details
about this implementation in the sequel.

Tree representation of integers

The BigN library relies on a functional modular arithmetic developed by Grégoire and
Théry [GT06]. Now, we recall the basic principles of this arithmetic.

From a given one-word set w, the two-words set w2 w (that depends on w) is de-
fined as follows:

Inductive w2 (w : Set) : Set :=

| WO : w2 w

| WW : w → w → w2 w.

The constructor WW takes two arguments, so we can arbitrary decide that the first
(resp. last) one stands for high (resp. low) bits. The empty word constructor WO allows
to manipulate binary trees, which are not systematically complete.

The type of numbers of height n is represented by the inductive type word:
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Fixpoint word (w : Set) (n : nat) : Set :=

match n with

| O ⇒ w

| S n ⇒ w2 (word w n)

end.

Then, one defines the arithmetic (as well as the comparison function) of the two-word
set from the arithmetic of the single-word one. The interested reader can find more
details about their implementation in [GT06]. One important feature is the logarith-
mic complexity for accessing digits. Thus, the order of bytes (the so-called “Endian-
ness” choice) does not matter to perform arithmetic operations. This representation
allows to split a number in two for free, which is particularly adapted for divide and
conquer algorithms (Karatsuba-Ofman multiplication [KO63], recursive square root
and division).

In the current state of the BigN library, w is the type int31. This type has a unique
constructor I31 that expects 31 arguments of type digits:

Inductive digits : Type := D0 | D1.

Inductive int31 : Type := I31 of digits &

& digits & digits & digits & digits & digits

& digits & digits & digits & digits & digits

& digits & digits & digits & digits & digits

& digits & digits & digits & digits & digits

& digits & digits & digits & digits & digits .

This definition of int31 allows to use a mechanism for hardware efficient com-
putation. Spiwack [Spi06] has modified the virtual machine to handle 31-bits inte-
gers natively, so that arithmetic operations are delegated to the CPU. Namely, one
can benefit from the machine modular arithmetic (32 bits with int31) and perform
native arithmetic operations on Z/31Z inside COQ. Such developments made pos-
sible to deal with cpu-intensive tasks such as handling the proof checking of SAT
traces [AGST10].

From integers to rational numbers

This type is built out of the type BigN (resp. BigZ) of arbitrary-size natural numbers
(resp. integers) in base 231 (binary trees with int31 leaves). More generally, given
a type of integers ZZ.t (e.g. bigZ := BigZ.t) for numerators and natural numbers
NN.t (e.g. bigN := BigN.t) for denominators, the library QMake implements the type
t of rationals. Notice that this inductive type allows multiple representations of the
zero.

Inductive t :=

| Qz : ZZ.t → t

| Qq : ZZ.t → NN.t → t.

Let denote the zero of integers by:

Notation "0" := ZZ.zero.

The expression (Qz z) is interpreted as the integer z and (Qq n d) is interpreted
as “n/d”. The zero has the representations (Qq 0 n), (Qz 0), (Qq n 0) (e.g. 0, 0/4,
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2/0, etc ). The inverse function is defined on zero, thus is a total function. The speci-
fications of the rationals library ensure that this definition does not lead to any math-
ematical inconsistencies.

For the ease of presentation, one defines:

Notation "p # q" := Qq p q.

Definition zero: t := Qz 0.

Definition one: t := Qz ZZ.one.

By using the comparison function of NN, one can check whether a reduced frac-
tion n/d is an integer and return the corresponding rational number. Notice that the
check_int procedure makes a comparison test but does not return a boolean value.

Definition check_int n d :=

match NN. compare NN.one d with

| Lt ⇒ n # d

| Eq ⇒ Qz n

| Gt ⇒ zero

end.

When 1 < d, check_int returns the fraction n/d. When d = 1, it returns the
integer n. Otherwise, d = 0 and the pair of arguments represents 0.

The normalization function is defined from check_int and the greatest common
divisor function gcd of the natural numbers:

Definition norm n d : t :=

let gcd := NN.gcd ( Zabs_N n) d in

match NN. compare NN.one gcd with

| Lt ⇒ check_int (ZZ.div n ( Z_of_N gcd)) (NN.div d gcd)

| Eq ⇒ check_int n d

| Gt ⇒ zero

end.

First, one computes g := gcd(|n|, d). When 1 < g, the procedure returns the result
of check_int on (n/g) and (d/g). When n and d are coprime, the result is the same
than check_int. Otherwise, both numbers n and d are zero.

Now, one can provide an unique representation of rationals, using irreducible
fractions:

Definition red (x : t) : t :=

match x with

| Qz z ⇒ x

| n # d ⇒ norm n d

end.

We emphasize the fact that the equality is decidable on rationals, which is crucial
for checking our certificates. Indeed, it allows to prove the equality between poly-
nomials built on top of rationals (Section 7.3.3) then to assert the nonnegativity of
nonlinear expressions (Section 7.3.4).
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7.2.2 The polynomial ring structure

In order to prove the equality between polynomials and sums of squares certificates,
we build a so-called “customized” (see the documentation of the ring tactic1) polyno-
mial ring. This requires to provide a type of coefficients C for polynomial expressions
(bigQ in our current implementation), as well as a ring morphism IQR.

Injecting BigQ in R

The morphism IQR injects arbitrary-size rationals into the carrier type R. In our devel-
opment, R is the type of COQ classical real numbers.

We often use the following notation in the sequel:

Notation "[ c ]" := IQR c.

We denote real addition, subtraction, multiplication and division by the respective
notations +, -, *, /. To avoid confusions, we add the symbol ! to denote the same
operations on BigQ.

Let == be the propositional equality on real numbers and ?=! be the boolean equal-
ity on rationals.

The injection of arbitrary-size rational constants in R relies on the injection of in-
tegers (denoted by IZR) in R. The arbitrary-size rational q is first converted into a
number of type Q (rationals of the COQ standard library) with the function to_Q, thus
one can apply the procedure IZR:

Definition IQR (q : bigQ) : R :=

match (BigQ.to_Q q) with

n # d ⇒ IZR n / IZR (Zpos d)

end.

The morphism IQR has to satisfy the following properties:

(∗ IQR p r e s e r v e s t h e n e u t r a l e lements o f t h e r i n g ∗ )
iqr0 : [zero] == 0;

iqr1 : [one] == 1;

(∗ IQR r e s p e c t s t h e o p e r a t i o n s o f a d d i t i o n , s u b t r a c t i o n and
m u l t i p l i c a t i o n ∗ )

iqr_add : forall x y, [x +! y] == [x]+[y];

iqr_sub : forall x y, [x -! y] == [x]-[y];

iqr_mul : forall x y, [x *! y] == [x]*[y];

iqr_opp : forall x, [-!x] == -[x];

(∗ IQR s a t i s f i e s t h e f o l l o w i n g c o r r e c t n e s s lemma ∗ )
iqr_eqb_eq : forall x y, x?=!y = true → [x] == [y].

Two representations for polynomials

For the ring tactic [GM05], two representations of polynomials are used, namely
PExpr and PolC. The former is for uninterpreted ring expressions, while the latter
is for uninterpreted normalized polynomial expressions.

One defines the inductive type PExpr:

1http://coq.inria.fr/refman/Reference-Manual027.html

http://coq.inria.fr/refman/Reference-Manual027.html
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Inductive PExpr : Type :=

| PEc : bigQ → PExpr

| PEX : positive → PExpr

| PEadd : PExpr → PExpr → PExpr

| PEsub : PExpr → PExpr → PExpr

| PEmul : PExpr → PExpr → PExpr

| PEopp : PExpr → PExpr

| PEpow : PExpr → N → PExpr .

Moreover, the sparse Horner representation is the normal form:

Inductive PolC : Type :=

| Pc : bigQ → PolC

| Pinj : positive → PolC → PolC

| PX : PolC → positive → PolC → PolC.

The three constructors Pc, Pinj and PX satisfy the following conditions:

1. The polynomial (Pc c) is the constant polynomial that evaluates to [c].

2. The polynomial (Pinj i p) is obtained by shifting the index of i in the vari-
ables of p. In other words, when p is interpreted as the value of the (n − i) vari-
ables polynomial p(x1, . . . , xn−i), then one interprets (Pinj i p) as the value of
p(xi, . . . , xn).

3. Let p (resp. q) represents p(resp. q(x1, . . . , xn−1)). Then (PX p j q) evaluates to
pxj

1 + q(x2, . . . , xn).

We define the zero polynomial as well as the polynomial whose values are all
equal to one:

Definition p0 := Pc zero.

Definition p1 := Pc one.

Example 7.2. Consider the polynomials x12 := x1 − x2 and q12 := x1 − 2x2. The ratio-
nal number 2 is encoded by c2. The Horner normal forms that represent x12 and q12
are:

Definition x_12 := PX p1 xH (PX (Pc (-! one)) xH p0).

Definition q_12 := PX p1 xH (PX (Pc (-! c2)) xH p0).

Then, the polynomial p12 := x2
1 − 2x1x2 + x2

2 = x1(x1 − 2x2) + x2
2 = q12x1 + x2

2 is
represented by:

Definition p_12 := PX q_12 xH (PX p1 (x0 xH) p0).

The boolean equality test Peq between two normalized polynomials relies on the
positive (resp. BigQ) boolean equality test Pos.eqb (resp. ?=!):

Fixpoint Peq (p p’ : PolC) { struct p ’} : bool :=

match p, p’ with

| Pc c , Pc c’ ⇒ c ?=! c’

| Pinj j q, Pinj j’ q’ ⇒ Pos.eqb j j’ && Peq q q’

| [...]

end.

Notation "?==" := Peq.
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One also defines the basic operations on sparse Horner polynomials. The addition
between two polynomials is padd : PolC → PolC → PolC. The multiplication of a
polynomial by a rational constant is pmulC : PolC → bigQ → PolC and the multi-
plication of two polynomials is pmul : PolC → PolC → PolC. The square of (p :

PolC) is given by (psquare p).
The function norm converts a polynomial expression to a normalized form:

Definition norm (pe : PExpr ) : PolC :=

match pe with

| PEc c ⇒ Pc c

[...]

end.

The environment function Env := positive → R binds positive integers to the
polynomial real variables. One also needs the jump and tail functions:

Definition jump (j : positive ) (l : Env) : Env :=

fun x ⇒ l (j + x).

Definition tail (l : Env) : Env := jump xH l.

The function PolCeval (resp. PEeval) maps a sparse Horner polynomial (resp. a
polynomial expression) to the carrier type R:

Fixpoint PolCeval (l : Env) (P:PolC) : R :=

match P with

| Pc c ⇒ [c]

| Pinj j Q ⇒ PolCeval (jump j l) Q

| PX P i Q ⇒ PolCeval l P * (l xH) ^ i

+ PolCeval (tail l) Q

end.

Fixpoint PEeval (l : Env) (pe : PExpr ) : R :=

match pe with

| PEc c ⇒ [c]

| PEadd pe1 pe2 ⇒ ( PEeval l pe1) + ( PEeval l pe2)

[...]

end.

The following correctness lemma is analogous with iqr_eqb_eq:

Lemma pol_eqb_eq p1 p2 : (norm p1 ?== norm p2) = true →
forall (l : Env), PEeval l p1 == PEeval l p2.

For instance, one can prove that a polynomial expression pe always evaluates to
zero by checking the equivalence between (norm pe) and p0. We next detail how to
use this lemma to verify the correctness of SOS certificates.

7.3 Formal Polynomial Optimization

Let us recall the scaled version of the polynomial optimization problem (2.2.1):
{

infx∈[0,1]n fpop(x) ,
s.t. g1(x) > 0, . . . , gm(x) > 0 .
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Following the procedure described in Section 2.5, we extract a rational certificate
(µ̃k, σ̃0, . . . , σ̃m, ǫpop, ǫ∗pop).

By definition, this certificate satisfies the following, for all x ∈ [0, 1]n:

fpop(x)− (µ̃k + ǫ∗pop) :=
m

∑
j=0

σ̃j(x)gj(x) + (ǫpop(x)− ǫ∗pop) . (7.3.1)

Here, we consider the following goal, for all x ∈ [0, 1]n:

g1(x) > 0, . . . , gm(x) > 0 ⇒ fpop(x) > µ̃k + ǫ∗pop.

We solve this goal by proving first the nonnegativity of ∑
m
j=0 σ̃j(x)gj(x) and (ǫpop(x)−

ǫ∗pop) over [0, 1]n. Then, we use computational reflection to check the correctness of
the above equality (7.3.1), which allows to conclude.

7.3.1 Encoding Putinar Certificates

Sums of squares can be decomposed as follows (see (2.5.2)):

σ̃j :=
rj

∑
i=1

λijv
2
ij, j = 0, . . . , m .

In COQ, we index the rational coefficients λij and the inequalities gj using positive
integers. We encode an SOS block using a tuple composed of a positive index and
a sparse horner polynomial. An SOS σ is represented by a sequence of SOS blocks
[(1, v_1); ... ; (r, v_r)].

Definition Lambda_idx := positive .

Definition Ineq_idx := positive .

Definition Sos_block := ( Lambda_idx * PolC).

Definition Sos := seq Sos_block .

Definition Putinar_psatz := seq (Sos * Ineq_idx ).

The notation “λij” is abusive in our setting, as it does not refer to the eigenvalues
of the SDP matrix. A Putinar certificate summand can be defined as a tuple composed
of an SOS σj and an inequality index j. Then, a Putinar certificate is encoded using a
sequence of such tuples: [(sos_0, 1); ... ; (sos_m, m + 1)].

Our certificate also contains a map lambda : Lambda_idx → bigQ that associates
positive indexes to their rational weights. Similarly, the map ineq : Ineq_idx →
PolC returns the polynomials gj(j = 0, . . . , m).

Interpretation of Putinar Certificates

SOS blocks are converted into Horner polynomials with Sos_block_toPolC:

Definition Sos_block_toPolC lambda sos_block :=

let ( lambda_idx , v) := sos_block in

pmulC ( psquare v) ( lambda lambda_idx ).

Then, Putinar certificates can be interpreted as sparse Horner polynomials. Given
a type A and an interpretation function interp : A → PolC, one defines recursively
the interpretation of a sequence of type A objects:
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Fixpoint foldr_psatz (s : seq A) : PolC :=

match s with

| [::] ⇒ p0

| [:: hd] ⇒ interp hd

| x:: tl ⇒ padd ( interp x) ( foldr_psatz tl)

end.

Hence, sums of squares are converted to polynomials, by instantiating A with
Sos_block and interp with Sos_block_toPolC.

Definition Sos_toPolC lambda sos :=

foldr_psatz padd ( Sos_block_toPolC lambda ) sos.

Definition summand_toPolC ineq lambda summand :=

let (sos , ineq_idx ) := summand in

pmul ( Sos_toPolC lambda sos) (ineq ineq_idx ).

Definition Psatz_toPolC ineq lambda s :=

foldr_psatz padd ( summand_toPolC ineq lambda ) s.

Finally, Putinar certificates are converted to polynomials by using, again, the func-
tion foldr_psatz. In this case, A is the product type (Sos * Ineq_idx) and interp

is summand_toPolC.

Nonnegativity of Putinar Certificates

To prove that a Putinar certificate s is nonnegative, one needs to verify the two con-
ditions:

1. All the coefficients (lambda lambda_idx) involved in s are nonnegative.

2. All the polynomials (ineq ineq_idx) have nonnegative evaluation. This re-
quires to match them with the hypotheses g1 > 0, . . . , gm > 0.

Lemma Putinar_Psatz_Nonnegative l lambda ineq s :

forall lambda_idx , 0 [ <=] lambda lambda_idx →
forall ineq_idx , 0 <= PolCeval l (ineq ineq_idx ) →
0 <= PolCeval l ( Psatz_toPolC ineq lambda s).

Proof. By induction on the structure of the Putinar certificate s.

7.3.2 Bounding the Polynomial Remainder

Recall that a coarse lower bound of a polynomial ǫpop := ∑ ǫαxα over [0, 1]n can be
obtained as follows:

ǫ∗pop := ∑
ǫα60

ǫα .

Let cmin be the procedure which computes the minimum of two rational num-
bers. The recursive function lower_bound_0_1 computes the rational lower bound of
a sparse Horner polynomial eps_pol on [0, 1]n:
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Fixpoint lower_bound_0_1 ( eps_pol : PolC) : bigQ :=

match eps_pol with

| Pc c ⇒ cmin c zero

| Pinj _ p ⇒ lower_bound_0_1 p

| PX p _ q ⇒ lower_bound_0_1 p +! lower_bound_0_1 q

end.

Using the function vars : PolC → seq positive which returns the variables of
a given polynomial, the predicate “∀x ∈ [0, 1]n” can be written:

forall i, i \in vars eps_pol → 0 <= l i ∧ l i <= 1

It allows to state the remainder inequality of Lemma (2.5.3) inside COQ:

Lemma remainder_lemma l eps_pol :

( forall i, i \in vars eps_pol → 0 <= l i ∧ l i <= 1) →
[ lower_bound_0_1 eps_pol ] <= PolCeval l eps_pol .

Proof. By induction on the structure of sparse Horner polynomials.

7.3.3 Checking Polynomial Equalities

The procedure which checks the polynomial equality (7.3.1) relies on computational
reflexion: logical deduction steps are replaced by a conversion rule. Here, we ap-
ply the reflexive tactic ring, by using the customized polynomial ring described in
Section 7.2.2 and the encoding of Putinar certificates of Section 7.3.1. Example 7.3 il-
lustrates the behaviour of this customized ring with computable interpretation and
normalization functions.

Example 7.3. We consider the polynomial p12 := x2
1 − 2x1x2 + x2

2 defined in Exam-
ple 7.2 and we prove the goal “p12 = (x1 − x2)2”. This is a simple case of (7.3.1) with
ǫpop = 0, ǫ∗pop = µ̃k = 0, m = 0, g0 = 1, σ0 = (x1 − x2)2. One defines the following
environment function:

Definition env (x: positive ) : R :=

match x with

| xH ⇒ x1

| x0 xH ⇒ x2

| _ ⇒ 0

end.

As depicted in Figure 7.2, the right-hand-side expression (x1 − x2)2 is reified into
the expression [([(one, x_12)], xH)] of type Putinar_psatz (xH stands for the
inequality index, one for the rational one and x_12 represents x1 − x2). Then, it is
normalized into the sparse Horner polynomial p_12 of type PolC. Finally, the in-
terpretation (PolCeval env p_12) returns the left-hand-side polynomial expression
p12.

7.3.4 Checking Polynomial Nonnegativity

The main correctness lemma

Our main correctness lemma Putinar_Psatz_correct relies on the following boolean
function pol_checker, which computes the coarse lower bound ǫ∗pop of ǫpop (repre-
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x2

1
− 2x1x2 + x2

2
p 12

(x1 − x2)
2 [([(one, x 12)], xH)]

reflexive tactic

reification

interpretation

normalization

Figure 7.2: An illustration of computational reflection

sented by r) and verifies equality 7.3.1:

Definition pol_checker obj r ineq lambda s : bool :=

norm obj ?== padd ( Psatz_toPolC ineq lambda s)

( psubC r ( lower_bound_0_1 r)).

Lemma Putinar_Psatz_correct l obj r ineq lambda s :

( forall i, i \in vars r → 0 <= l i ∧ l i <= 1 ) →
forall lambda_idx , 0 [ <=] lambda lambda_idx →
forall ineq_idx , 0 <= PolCeval l (ineq ineq_idx ) →
pol_checker obj r ineq lambda s = true →

0 <= PEeval l obj.

Proof. Assuming that pol_checker = true, one can apply Lemma pol_eqb_eq and
obtain the following equality:

PEeval l obj = PolCeval l ( Psatz_toPolC ineq lambda s)

+ PolCeval l r - [ lower_bound_0_1 r].

The nonnegativity of (Psatz_toPolC ineq lambda s) comes from the applica-
tion of Lemma Putinar_Psatz_Nonnegative. Then, Lemma remainder_lemma im-
plies the nonnegativity of (PolCeval l r - [lower_bound_0_1 r]).

Benchmarks

We tested our formal verification procedure on the following polynomial inequalities
(K = [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2, see Appendix A for the definition of ∆x):

• POP1 : ∀x ∈ K, ∂4∆x > −41.

• POP2 : ∀x ∈ K, ∆x > 0.

We also compared our time results with the micromega tactic. This tactic, available
with COQ, uses a more general version of the Positivstellensatz (due to Stengle) to
find witnesses of unfeasibility of a set of polynomial constraints [Bes07]. The tactic
relies on the external SDP solver CSDP. To deal with the numerical errors of CSDP, a
projection algorithm is performed in such a way that ǫ∗pop = 0. Thus, the procedure
returns a rational SOS certificate that matches exactly fpop − µ̃k.

Table 7.1 indicates that our tool outperforms the micromega decision procedure,
thanks to the sparse variant of Lasserre relaxation and a simpler projection method.
Notice that for POP2, we considered the projection of ∆x with respect to the first n co-
ordinates on the box K (fixing the other variables to 6.3504). The symbol “−” means
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that the inequality could not be checked by micromega within one hour of computa-
tion. A preliminary phase consists in scaling the POP to apply the correctness Lemma
Putinar_Psatz_Nonnegative.

Table 7.1: Comparing our formal POP checker with micromega

Problem n NLCertify micromega

POP1 6 0.08 s 9 s

POP2
2 0.09 s 0.36 s
3 0.39 s −
6 13.2 s −

Remark 7.4 (Improving micromega). A part of our work could form the basis of an
improved version of micromega:

1. The modularity of the tactic micromega allows to call the external library de-
scribed in [MC11] to handle degenerate situations (when the SDP formulation
of the POP is not strictly feasible). We interfaced our solver with this library and
successfully solved small size instances of POP. The formal verification is much
slower than the informal procedure (see the results presented in Section 6.5). As
an example, for the MC problem, it is 36 times slower to generate exact SOS cer-
tificates and 13 times slower to prove its correctness in COQ. This track was not
further pursued, since computation were faster with the algorithms described
in this section. However, we mention that this library could handle the for-
mal verification of unconstrained POP, which is not possible with our current
implementation.

2. The relaxation based on Stengle Positivstellensatz can be replaced by the sparse
variant described in Section 2.4.

As explained in the sequel, the formal bounds obtained for POP are mandatory to
certify semialgebraic optimization problems.

7.4 Beyond Polynomial Inequalities

This section describes how to solve semialgebraic inequalities inside COQ (see (2.3.1)):

∀x ∈ K, fsa(x) > f ∗sa , (7.4.1)

where fsa ∈ A and K := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} is a basic semialgebraic
set.

A proper encoding of both intervals and semialgebraic expressions is required to
describe the certificates of such inequalities.

7.4.1 Intervals

Intervals are encoded using two rational coefficients:

Inductive itv : Type := | Itv : bigQ → bigQ → itv.
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For instance, the interval [0, 1] is represented by (Itv zero one). We define sev-
eral routines to handle interval arithmetic. For instance, (itv_without_0 (Itv i1

i2)) verifies that 0 belongs to [i1, i2].

7.4.2 Semialgebraic expressions

Semialgebraic functions are represented by the inductive type Fsa:

Inductive Fsa : Type :=

| Poly : PExpr → itv → Fsa

| Fdivp : PExpr → Fsa → itv → Fsa

| Fdiv : Fsa → Fsa → itv → Fsa

| Fmul : Fsa → Fsa → itv → Fsa

| Fsub : Fsa → Fsa → itv → Fsa

| Fopp : Fsa → itv → Fsa

| Fadd : Fsa → Fsa → itv → Fsa

| Fsqrt : Fsa → itv → Fsa.

The interpretation of semialgebraic functions relies on the polynomial expressions
evaluation procedure PEeval:

Fixpoint Feval (l:Env) fsa : R :=

match fsa with

| Poly pe _ ⇒ PEeval l pe

| Fdivp pe f _ ⇒ ( PEeval l pe) / ( Feval l f)

| Fdiv f1 f2 _ ⇒ ( Feval l f1) / ( Feval l f2)

| Fmul f1 f2 _ ⇒ ( Feval l f1) * ( Feval l f2)

| Fsub f1 f2 _ ⇒ ( Feval l f1) - ( Feval l f2)

| Fopp f1 _ ⇒ - ( Feval l f1)

| Fadd f1 f2 _ ⇒ ( Feval l f1) + ( Feval l f2)

| Fsqrt f1 _ ⇒ rsqrt ( Feval l f1)

end.

An fsa object is a certificate obtained from one of the informal certification pro-
cedures described in Part II (e.g. template_optim). The function get_itv returns an
interval, which should enclose the range of values of fsa. In the sequel, we explain
how to prove that an interval obtained with (get_itv fsa) satisfies this specification.

7.4.3 POP relaxations

To relax semialgebraic optimization problems into POP inside COQ, we first define
the pop record construction:

Record pop := mk_pop {

cstr : seq PExpr ;

obj : PExpr ;

lift_idx : positive }.

The entry lift_idx indicates the total number of variables of a given pop. One
builds objects of type pop by using the constructor mk_pop. From this definition, three
projections are automatically available:
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cstr p : seq PExpr := let (cstr , _, _) := p in cstr

obj p : PExpr := let (obj , _, _) := p in obj

lift_idx p := let (lift_idx , _, _) := p in lift_idx

Example 7.5. Let a POP be defined by a finite sequence of polynomials g1, . . . , gm (rep-
resented by hyps), an objective polynomial p (encoded by pe). Let var be the number
of variables involved in p, g1, . . . , gm. Then, we build this POP with (mk_pop hyps

pe var).

Let p be a polynomial represented by pe and [i1, i2] an interval represented by (

Itv i1 i2). The procedure gen_cstr_itv : PExpr → itv → seq PExpr returns
the two polynomials p − i1 and i2 − p. The function pol_in_itv : Env → PExpr

→ itv → Prop returns the proposition which states that these two polynomial ex-
pressions are nonnegative. Similarly, (fsa_in_itv l f itv) returns the proposition
which states that the values of a semialgebraic function are enclosed by the interval
[i1, i2].

The following inductive procedure is the implementation in COQ of the algorithm
sa_lift depicted in Figure 2.2. For the sake of simplicity, we only show the case
analysis for the constructors Poly, Fadd and Fdiv:

Fixpoint sa_lift (hyps : seq PExpr ) f var : pop :=

match f with

| Poly pe itv ⇒ mk_pop hyps pe var

| Fadd f1 f2 _ ⇒
let pop1 := sa_lift hyps f1 var in

let pop2 := sa_lift hyps f2 ( lift_idx pop1) in

let (obj1 , obj2) := (obj pop1 , obj pop2) in

let (cstr1 , cstr2 ):= (cstr pop1 , cstr pop2) in

mk_pop ( cstr1 ++ cstr2 ) ( PEadd obj1 obj2) ( lift_idx

pop2)

| Fdiv f1 f2 itv ⇒
let (itv1 , itv2) := ( get_itv f1 , get_itv f2) in

let pop1 := sa_lift hyps f1 var in

let pop2 := sa_lift hyps f2 ( lift_idx pop1) in

let (obj1 , obj2) := (obj pop1 , obj pop2) in

let (cstr1 , cstr2 ):= (cstr pop1 , cstr pop2) in

let lift_idx_div := lift_idx pop2 + 1 in

let obj_div := PEX lift_idx_div in

let lhs_cstr := PEsub ( PEmul obj2 obj_div ) obj1 in

let rhs_cstr := PEsub obj1 ( PEmul obj2 obj_div ) in

let cstr_div := lhs_cstr :: rhs_cstr :: cstr1 ++ cstr2

++ gen_cstr_itv obj1 itv1

++ gen_cstr_itv obj2 itv2 in

mk_pop cstr_div obj_div lift_idx_div

| [...]

end.

• When f is a polynomial, the basic semialgebraic lifting is constructed as in Ex-
ample 7.5.
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• When f is the addition of two semialgebraic functions f1 and f2, the function
sa_lift is applied recursively to f1 (resp. f2) to obtain the polynomial con-
straints sequence cstr1 (resp. cstr2) and the objective function obj1 (resp. obj2

). The sequence of constraints of the resulting POP is obtained by merging the
polynomial inequality constraints cstr1 and cstr2.

• When f is the division of two semialgebraic functions f1 and f2, we also ap-
ply recursively sa_lift to f1 and f2. Moreover, we use gen_cstr_itv to add
bounds on the polynomial obj1 (resp. obj2) that represents f1 (resp. f2). The
polynomial expression obj_div is built from the lifting variable which repre-
sents f . Finally, we add the polynomial (PEsub (PEmul obj2 obj_div)obj1)

and its opposite to the sequence of constraints in order to encode the polynomial
equality (obj2 obj_div = obj_1).

For the sequel, one also needs the auxiliary procedures:

(∗ P r o p o s i t i o n a l e q u a l i t y between a s e m i a l g e b r a i c f u n c t i o n
and a polynomial ∗ )

Definition fsa_pol_eq l (f : Fsa) (p : PExpr ) : Prop :=

Feval l f = PEeval l p.

(∗ Access t o t h e f i e l d s o f a pop record , b u i l t a f t e r a
s e m i a l g e b r a i c l i f t i n g ∗ )

Definition get_obj hyps f var := obj ( sa_lift hyps f var).

Definition get_cstr hyps f var := [...].

Definition get_var hyps f var := [...].

By using Lemma Putinar_Psatz_correct (see Section 7.3), one can prove that
a conjunction of polynomial constraints (returned by conj_PExpr_nonneg l hyps)
implies the nonnegativity of a polynomial expression. Hence, one can prove that the
range of a polynomial p is enclosed by an interval itv. In COQ, this implication is
stated as follows:

Definition pop_valid l hyps p itv :=

conj_PExpr_nonneg l hyps → pol_in_itv l p itv.

7.4.4 Formal Bounds for Semialgebraic Functions

Given a semialgebraic expression (f : Fsa), the next algorithm returns a conjunction
of propositions that involve either polynomials (e.g. pop_valid l cstr obj itv), in-
tervals (e.g. itv_without_0 (get_itv f2)) or environments (e.g. fsa_pol_eq l f).

Fixpoint fsa_valid l hyps f var :=

let cstr := get_cstr hyps f var in

let obj := get_obj hyps f var in

match f with

| Poly p itv ⇒ pop_valid l hyps p itv

| Fdiv f1 f2 itv ⇒
fsa_valid l hyps f1 var

∧ fsa_valid l hyps f2 ( get_var hyps f1 var)

∧ fsa_pol_eq l f obj ∧ itv_without_0 ( get_itv f2)
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∧ pop_valid l cstr obj itv

| [...]

end.

Our main correctness lemma states that Problem 7.4.1 can be solved by proving
the conjunction of propositions obtained with fsa_valid:

Lemma fsa_lifting_correct l hyps f var:

fsa_valid l hyps f var →
( conj_PExpr_nonneg l hyps → fsa_in_itv l f ( get_itv f)).

Proof. We prove the lemma by induction on the structure of semialgebraic expres-
sions. Actually, we need an auxiliary lemma with a stronger conclusion than the one
of fsa_lifting_correct in order to obtain stronger induction hypotheses. This con-
clusion fsa_lifting_goal is built with the conjunction of three propositions:

Definition fsa_lifting_goal l hyps f var :=

pol_in_itv l ( get_obj hyps f var) ( get_itv f)

∧ fsa_pol_eq l f ( get_obj hyps f var)

∧ conj_PExpr_nonneg l ( get_cstr hyps f var)).

We define fobj := get_obj hyps f var to be the objective function that rep-
resents f. Then, the first proposition states that fobj is enclosed by the interval (

get_itv f). The second one denotes the equality between f and fobj. The last one
states that all the constraints generated by sa_lift must hold.

Numerical Results

As previously explained, formal lower bounds for semialgebraic problems can be
obtained by proving propositions built with fsa_valid. The most cpu-intensive task
is checking propositions built with pop_valid.

Table 7.2 presents the results obtained when proving the correctness of lower
bounds for POP relaxations of Flyspeck inequalities. The execution time is compared
with the informal verification time when using either minimax_optim (results from
Table 4.2) or template_optim (results from Table 6.4).

Table 7.2: Formal Bounds Computation Results for POP relaxations of Flyspeck In-
equalities

Inequality Method #boxes
Informal Nonlinear Formal Polynomial
Optimization Time Optimization Time

9922699028
minimax_optim 14 244 s 972 s
template_optim 39 190 s 2218 s

3318775219
minimax_optim 266 4423 s 18255 s
template_optim 338 1560 s 19136 s

The formal verification of SOS certificates is the bottleneck of the computational
certification task. Indeed, it is 22 times slower to prove the correctness of POP lower
bounds for such inequalities. Moreover, the number of domain subdivisions increases
when one certifies the inequalities with template_optim.
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At a first glance, the minimax_optim algorithm seems more efficient for comput-
ing formal bounds of medium-scale problems. However, these results do not take into
account the time required to check the correctness of the semialgebraic estimators (ei-
ther minimax or maxplus) for univariate functions. Validating these estimators could
be handled with the interval tactic [Mel12]. We also mention that recent techniques
have been developed to obtain rigorous error bounds for Chebyshev interpolation
polynomial [BJ10]. As far as our knowledge, these techniques are not yet available in
COQ.



Chapter 8

Conclusion and Perspectives

8.1 Achievements

The present nonlinear template method computes certified lower bounds for global
optimization problems. It can provide tight minimax or maxplus semialgebraic esti-
mators to certify non-linear inequalities involving transcendental multivariate func-
tions. Our algorithms can solve both small and intermediate size inequalities of the
Flyspeck project as well as global optimization problems issued from the literature,
with a moderate order of SDP relaxation.

The proposed approach bears some similarity with the “cutting planes” proofs
in combinatorial optimization, the cutting planes being now replaced by nonlinear
inequalities. It also allows one to limit the growth of the number of lifting variables
as well as of polynomial constraints to be handled in the POP relaxations, at the price
of a coarser approximation.

Thus, our method is helpful when the size of optimization problems increases.
Indeed, the coarse lower bounds obtained (even with a low SDP relaxation order)
are better than those obtained with interval arithmetic or high-degree polynomial
approximation.

We also derived a hierarchy of semidefinite relaxations to approximate semial-
gebraic functions with multivariate polynomials that converge to the best (for the
L1 norm) degree-d polynomial underestimators. Thus, we build more accurate non-
linear templates by constructing a sequence of semialgebraic estimators, which can
be arbitrary close to the “best” maxplus semialgebraic estimators.

Furthermore, the formal part of our implementation, currently can check medium
size semialgebraic certificates. The SOS certificates checker was significantly im-
proved by a careful implementation of informal and formal libraries:

1. Our informal certification tool exploits the system properties of the problems
(sparsity) to derive semialgebraic relaxations involving less SDP variables, thus
yields smaller SOS certificates.

2. On the COQ side, we took benefit from the machine modular arithmetic by
defining a customized ring of polynomials with arbitrary-size rational coeffi-
cients.

103
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8.2 Perspectives

This work provides many directions for further investigation of research. In the se-
quel, we briefly outline some of these tracks.

First, we explain how to derive some error bounds for the estimators obtained
from the nonlinear template method (Section 8.2.1). Then, we present some exten-
sions of our nonlinear template method to handle a more general class of nonlinear
optimization, such as nonlinear optimization with transcendental constraints (Sec-
tion 8.2.2), continuous/discrete time optimal control problems (Section 8.2.3). Finally,
we highlight some improvements of our formal certification framework that would
allow to perform more advanced nonlinear reasoning (Section 8.2.4).

8.2.1 Complexity of the nonlinear template method

For the sake of simplicity, we consider the following sub-case of Problem (1.1.2):

f ∗ := inf
x∈[0,1]n

u(p(x)) , (8.2.1)

where u ∈ D is a smooth univariate function and p is a degree-dp multivariate poly-
nomial, with dp > 2. For the sake of simplicity, we suppose that the range of values
of p is enclosed by the interval [0, 1]. Then, let us call fd the degree-d minimax poly-
nomial approximation of u on [0, 1] and consider the following POP:

md := inf
x∈[0,1]n

fd(p(x)) . (8.2.2)

One also has Md := supx∈[0,1]n fd(p(x)).
Let k > ⌈(ddp)/2⌉. One can obtain a lower bound µk of md by solving the associ-

ated SDP relaxation Qk (see Section 2.2).
The following conjecture allows to derive error bounds for the Lasserre hierarchy

of approximations.

Conjecture 8.1 (De Klerk, Laurent [dKL10]). Let Mn(g) be the n-truncated quadratic
module generated by the polynomials g1 := x1 − x2

1, . . . , gn := xn − x2
n. Then, for n even,

one has:
n

∏
i=1

xi +
1

n(n + 2)
∈ Mn(g) .

Assume that Conjecture 8.1 holds. Then, it would be interesting to extend the
result given in [dKL10] to the polynomial fd ◦ p (see the conclusion for the case of
quadratic polynomials). In this case, we could derive an error bound of md − µk, cor-
responding to the relaxation gap between the optimal values of the SDP (Qk) and
Problem (8.2.2). This error bound would typically depend on n, d, dp, md, Md and
L( fd ◦ p), where L is defined as follows:

L : R[x] → R

q 7→ max
α

|qα| ∏
n
i=1 αi!

(Σn
i=1αi)!

.
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Now, consider the SDP relaxation Qk. The number of moment variables in Qk is
in O(n2k) and the size of the SDP matrix is in O(nk+1).

Let ǫ > 0 be fixed and Compl( f ∗, ǫ) be the number of real arithmetic operations
needed to obtain an ǫ-solution of f ∗ with the minimax_optim algorithm. We note
Digits( f ∗d , ǫ) the number of accuracy digits in an ǫ/2-solution of md (when solving
the SDP relaxation Qk at sufficiently large order). Applying (2.1.9), we have:

Compl( f ∗, ǫ) = O(1)n5/2+7×2nr
Digits( f ∗d , ǫ) . (8.2.3)

Finally, we could combine the error bound of md − µk and Theorem 8.2 to derive
an upper bound on r.

Theorem 8.2. Let I := [m, M], u ∈ Cd+1(I) and denote by fd the degree-d minimax poly-
nomial of u on I. Then, the sequence of best uniform polynomial approximations ( fd)d∈N of
u on I satisfies:

‖u − fd‖∞ 6
(M − m)d+1‖u(d+1)‖∞

22d+1(d + 1)!
.

To study the complexity of the samp_optim algorithm, it seems promising to use
the error bounds derived by Nie and Schweighofer [NS07, Sch04] for constrained
POP (not restricted to the optimization over the hypercube). However, these bounds
involve some constants, that depend on the POP data and are not trivial to compute
in general.

8.2.2 Extension to global optimization with transcendental constraints

We can generalize our modular templates algorithm to solve optimization problems
with non-polynomial constraints. Given f , f1, . . . , fl ∈ 〈D〉sa and h1, . . . , hq ∈ A, we
formulate Problem (1.1.1) as follows:

inf
x∈Ktr

f (x) , (8.2.4)

where,
Ktr := {x ∈ S : f1(x) > 0, . . . , fl(x) > 0} , (8.2.5)

and
S := {x ∈ Rn : h1(x) > 0, . . . , hq(x) > 0} . (8.2.6)

First, we mention that one could optimize a semialgebraic function over such a com-
pact set S, whose inequalities constraints are defined with functions in A (rather than
polynomials). Following the approach described in [Put93], one rewrites S as the
projection of a basic semialgebraic set in a lifted space and solves the POP relaxation
with the min_pop and max_pop procedures. This allows to use the template_approx

algorithm with a compact set S as in (8.2.6).
We assume that f , f1, . . . , fl are defined on S. Given a finite sequence of control

points s, the template_approx method (see Section 6.4 and Figure 6.5) can be used
as an auxiliary procedure to obtain a hierarchy of outer compact approximation sets
K+

s for the feasible set Ktr. This leads to the generalized approximation algorithm
depicted in Figure 8.1.

The generalized optimization algorithm also chooses the finite sequence of control
points s dynamically. After each call to the approximation procedure, we compute a
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Input: tree t, constraints set Ktr, semidefinite relaxation order k, control points se-
quence s = {x1, . . . , xp} ⊂ Ktr

Output: lower bound m, upper bound M, lower semialgebraic estimator t−, upper
semialgebraic estimator t+

1: For c ∈ {1, . . . , l}: mi, Mi, f−i , f+i := template_approx( fi, S, k, s)
2: K+ := {x ∈ S : f−1 (x) > 0, . . . , f−l (x) > 0}
3: return template_approx(t, K+, k, s)

Figure 8.1: An extension of template_approx for non-polynomial constraints

minimizer candidate xopt ∈ K+
s of the underestimator tree t−. Then, the projection of

xopt into Ktr is added to the set of control points s.
Let t−p be the semialgebraic underestimator obtained at step p of the optimization

procedure. We call x∗p the projection of one minimizer of t−p on Ktr.

Corollary 8.3 (Convergence of the Generalized Nonlinear Optimization Algorithm).
Suppose that Assumption (3.4) holds. Then, every limit point of the sequence (x∗p)p∈N is a
global minimizer of t over K.

Proof. It follows from Theorem 6.18 that the semialgebraic estimators obtained with
template_approx uniformly converge to the nonlinear functions which define the
constraints inequalities of Ktr. It implies that each limit point of the sequence K+

s of
outer compact approximation sets is Ktr.

8.2.3 Extension to nonlinear optimal control problems

Our method can also be applied to nonlinear optimal control problems (OCP), for
which the problem data are transcendental. Two different approaches can be consid-
ered.

Nonlinear continuous-time OCP

As a classical example, let us consider the minimal time OCP. Given two integers
n, m ∈ N, let t 7→ x(t) ∈ Rn be the state trajectory and t 7→ u(t) ∈ Rm be a bounded
and measurable input function. Let Xtr, Ktr (resp. Utr) be some compact subsets of Rn

(resp. Rm), defined by a finite number of inequalities constraints, involving functions
in 〈D〉sa (as in (8.2.5)). Let x0 be the initial position, so that x(0) = x0. Let T > 0 be
the final time real variable. Given a smooth endpoint cost function φ : Rn → R and a
smooth dynamics g : [0,+∞)× Rn × Rm → R, we define the Mayer OCP:

min
x,u

φ(xT)

s.t. ẋ(t) = g(t, x, u) , (8.2.7)

(x(t), u(t)) ∈ Xtr × Utr a.e. on [0, T] , (8.2.8)

x(T) ∈ Ktr , (8.2.9)

x(t) is well defined on [0, T] . (8.2.10)
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The constraint (8.2.7) is the differential equation satisfied by a trajectory solution
that starts from x(0). The input, state (resp. the terminal input x(T)) satisfy the con-
straints (8.2.8) (resp. (8.2.9)).

When all the data (φ, g, Xtr, Utr, Ktr) are polynomial, Lasserre et al.(see [LHPT08])
derived a convergent hierarchy of linear matrix inequalities (LMI) relaxations to solve
continuous-time OCP, using the so called occupation measures. Some of these tech-
niques are implemented in the software POCP [HLS08]. They could be combined
with the extension of template_approx (see Figure 8.1) to solve OCP involving tran-
scendental data.

So far, for polynomial data, the combined LMI/occupation measures has been ap-
plied only to instances of relatively small size (dimension 3). Possibly coarse certified
bounds on the value function could be obtained for higher dimensional instances, by
the nonlinear template method - after a time discretization scheme. We next sketch
this method starting from a discrete-time OCP.

Nonlinear template applied to discrete-time OCP

Here, we focus on the discrete-time Mayer problem:

min
x,u

φ(xT)

s.t. xk+1 = g(xk, uk) , (8.2.11)

(xk, uk) ∈ Xtr × Utr (0 6 k 6 T) , (8.2.12)

x(T) ∈ Ktr , (8.2.13)

x(0) = x0 , (8.2.14)

where φ : Rn → R is the endpoint cost function, g is the discrete-time dynamics
and Xtr, Utr, Ktr are compact sets defined as in the previous paragraph. This problem
can be cast as a high-dimensional optimization problem of the form considered in
Chapter 3, in which one minimizes a function f given by an abstract syntax tree. For
a control problem, the variables are of course x1, . . . , xT, u0, . . . , uT and the syntax tree
has the shape of a “gourmand de la vigne” (we borrow the term to Viennot [Vie90]),
i.e. to a very thin binary tree (of linear shape). In this case, for every k, the set of
reachable vectors xk is abstracted by a template. These sets can be computed in a
forward fashion, by exploiting the dynamics, whereas the templates can be refined
in a backward fashion. Hence, the template method includes as a special case a set
theoretical version of the familiar state/co-state optimality conditions in control.

8.2.4 Formal procedures for nonlinear reasoning

Formal non-commutative Polynomial Optimization

Given n ∈ N, we consider the monoid 〈X〉 freely generated by X := (X1, . . . , Xn).
In other words, this monoid is defined with words in the n non-commutative letters
X1, . . . , Xn. Let consider the free algebra R〈X〉 of non-commutative polynomials (NC
polynomials) and equip R〈X〉 with the involution ∗, that reverses words. We call a
hermitian square an NC polynomial of the form f ∗ f . Let Σ〈X〉 be the set of sums of
hermitian squares. A commutator is an element of the form [ f , g] := f g − g f , for
f , g ∈ R〈X〉.
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Given f ∈ R〈X〉, consider the following trace-minimum problem:

f ∗ := inf
A∈Sn

d

Tr( f (A)) , (8.2.15)

where Sn
d is the set of n-tuples of symmetric d × d matrices.

The MATLAB NCSOStools toolbox [CKP11] computes lower bounds of Problem
(8.2.15) by solving the following hierarchy of SDP relaxations:

f ncsos
k := sup{a | f − a ∈ Θk} , (8.2.16)

where Θk is the convex cone of all degree-k NC polynomials that can be written
as sums of hermitian squares and commutators. We refer the reader to [BCKP13]
for more details on these relaxations. Under certain assumptions, the Parrilo-Peyrl
rounding and projection method applies for rational NC polynomials. Hence, as in
the commutative case, a hybrid numeric-symbolic approach may allow one to verify
in COQ the correctness of NC certificates.

This would require to prove equalities in a non-commutative ring in COQ, by ex-
tending the features of some existing reflexive tactics libraries (for instance, the tactic
ring already deals with the commutative case). This development could be manda-
tory to handle computational proofs arising from important open problems such as
Connes’s embedding Conjecture [Con76] or the generalized Lax Conjecture [NT12].
More details on the connection between NC polynomials and polynomial differential
operators can be found in [Cim09].

Towards efficient formal procedures for nonlinear reasoning

The implementation of polynomial arithmetic still needs some streamlining, as check-
ing ring equalities in COQ remains the bottleneck of our verification procedure. An
external tool could reformulate these equalities, so that our problems only involve
polynomials with integer coefficients (using the implementation of arbitrary-size in-
tegers bigZ). Thus, we would get rid of almost all gcd operations inside COQ. One
could consider another type of coefficients, such as dyadic rationals, that can be seen
as arbitrary precision floating-point numbers. Alternative sparse representation of
polynomials might also provide significant improvements.



Appendix A

Flyspeck Nonlinear Inequalities

We recall the following definitions [Hal03]:

h0 := 1.26 ,
h+ := 1.3254 ,
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+x2x5(x1 − x2 + x3 + x4 − x5 + x6)
+x3x6(x1 + x2 − x3 + x4 + x5 − x6)
−x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,

rho_x(x) := −x1x1x4x4 − x2x2x5x5 − x3x3x6x6
+2x1x2x4x5 + 2x1x3x4x6 + 2x2x3x5x6 ,

rad2_x(x) := rho_x(x)
4∆x ,

dih(x) := π/2 + arctan −∂4∆x√
4x1∆x

,
perm2(x) := (x2, x1, x3, x5, x4, x6) ,
perm3(x) := (x3, x1, x2, x6, x4, x5) ,

sol(x) := dih(x) + dih(perm2(x)) + dih(perm3(x))− π ,
const1 := sol(2, 2, 2, 2, 2, 2)/π ,
ly(x) := 1 + 2−x

0.52 ,
lnazim(x) := ly(

√
x1)dih(x) ,

taum(x) := sol(x)(1 + const1)− const1[lnazim(x)
+ lnazim(perm2(x)) + lnazim(perm3(x))] .

In the sequel, we present some inequalities issued from the nonlinear part of Flyspeck.
The classification of these inequalities (semialgebraic, small-sized and medium-size)
is based on the number of transcendental functions that are involved.

A.1 Semialgebraic Flyspeck Inequalities

Lemma A.1 (JNTEFVP 1). ∀x ∈ [4, 4h2
0]

5 × [8, 16h2
0], ∂4∆x > 0.

Lemma A.2 (TSKAJXY TADIAMB). ∀x ∈ [4h2
+, 8]2 × [4, 8]4, rad2_x(x) > 2.
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A.2 Transcendental Flyspeck Inequalities

A.2.1 Small-sized Flyspeck Inequalities

Lemma A.3 (7067938795).

∀x ∈ [4, 6.3504]6, dih(x) + π/2 − 0.46 > 0.

Lemma A.4 (9922699028).

∀x ∈ [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2, 1.6294 − dih(x)− 0.2213(
√

x2

+
√

x3 +
√

x5 +
√

x6 − 8.0) + 0.913(
√

x4 − 2.52) + 0.728(
√

x1 − 2.0) > 0.

Lemma A.5 (3318775219).

∀x ∈ [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2, dih(x)− 1.629 + 0.414(
√

x2

+
√

x3 +
√

x5 +
√

x6 − 8.0)− 0.763(
√

x4 − 2.52)− 0.315(
√

x1 − 2.0) > 0.

A.2.2 Medium-size Flyspeck Inequalities

Lemma A.6 (7394240696).

∀x ∈ [4, 6.3504]6, sol(x)− 0.55125 − 0.196(
√

x4 +
√

x5 +
√

x6 − 6.0)

+ 0.38(
√

x1 +
√

x2 +
√

x3 − 6.0) > 0.

Lemma A.7 (46529697461).

∀x ∈ [4, 6.3504]4 × [4.73976441, 6.3504]× [4, 6.3504], taum(x) > 0.004.
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The NLCertify Package

NLCertify is a software package for handling certification of nonlinear inequalities
involving transcendental multivariate functions. Given a box K := [a1, b1] × · · · ×
[an, bn] and a multivariate transcendental function f , our aim is to assert the inequal-
ity: ∀x ∈ K, f (x) > 0.

B.1 Source Code Organization

The source code of the tool can be downloaded on the web page of the author at the
following url: www.lix.polytechnique.fr/~magron/nlcertify.tar.gz. The code
includes OCAML files (.ml, mll, mly), COQ vernacular files (.v). Some HOL-LIGHT

files (.hl) issued from the Flyspeck repository [Hal13] are also available.
The main directory nlcertify contains several OCAML source files, implement-

ing the algorithms described in Part II. The main function is written in nlcertify.ml.
It also contains the following subdirectories:

• Sphere_parser: it contains some parsing and translation files.

• flyspeck_dir : some HOL-LIGHT files contain the definitions and inequali-
ties issued from the nonlinear part of Flyspeck (see Appendix A for examples).
Their translations from HOL-LIGHT to OCAML (resp. COQ) are also available.

• coq : it contains the source code of the formal checker for SOS certificates.

• log : this folder is created after the first execution of the nlcertify executable.
It contains I/O files (for SDPA, Sollya) and log files.

B.2 Installation of the NLCertify Package

B.2.1 Compilation Dependencies

NLCertify needs external software libraries to be compiled. Optional packages are
also included in the following list and we recommend their installation.

• OCAML : http://caml.inria.fr/download.fr.html

• OPAM (optional) : http://opam.ocamlpro.com/
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• Mandatory OCAML libraries : ocamlfind, ocamlbuild, ocamlgraph, zarith

and lacaml. We highly recommend to install them with OPAM.

• SDPA : http://sdpa.sourceforge.net/download.html

• COQ (optional) : http://coq.inria.fr/download with SSREFLECT : https://

gforge.inria.fr/frs/download.php/31453/ssreflect-1.4-coq8.4.tar.gz

• Sollya (optional) : http://sollya.gforge.inria.fr/

B.2.2 Installation

The NLCertify tool can be compiled using the make command. If no error is dis-
played, the main executable file nlcertify is created in the main directory.

If the SSREFLECT libraries are installed and if the COQ compiler coqc is present
in the path, then one can compile the vernacular files inside the coq folder, using the
following commands:

% cd coq

% coqc Env.v sos_horner .v remainder .v

% cd ..

B.3 User Parameters

The user can tune the parameters of the nonlinear certification scheme, by editing the
param.transc file, whose content looks like:

******* User Parameters *******

[...]

* Number of control points for maxplus approximation

samp_iters = 1

* Sollya parameters

approx_minimax = true

minimax_degree_sqrt = 4

[...]

Now, we detail the purpose of each parameter. Note that the parameters are
typed. For instance, the type of the parameter scale_pol is bool, so the user can
edit the file by writing either scale_pol = true or scale_pol = false. The type
of the relaxation order relax_order is int, thus the user may write relax_order =

2 to solve SDP at first or second relaxation order (when the degree of the minimal
relaxation order is not greater than 2).

B.3.1 General Parameters

• input_ineqs_filename (string) : the file where the inequalities are defined
(the default setting is test.ineq).

http://sdpa.sourceforge.net/download.html
http://coq.inria.fr/download
https://gforge.inria.fr/frs/download.php/31453/ssreflect-1.4-coq8.4.tar.gz
https://gforge.inria.fr/frs/download.php/31453/ssreflect-1.4-coq8.4.tar.gz
http://sollya.gforge.inria.fr/
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• xconvert_variables (bool) : when xconvert_variables = true, then the
objective function x 7→ f (x1, . . . , xn) is replaced by y 7→ f (y1, . . . , yn) with
yi :=

√
xi (i = 1, . . . , n). The input box K := [a1, b1]× · · · × [an, bn] is replaced

by K′ := [a2
1, b2

1]× · · · × [a2
n, b2

n].

• samp_iters (int) : maximal length of the sequence of control points for max-
plus approximation (corresponding to #s in the numerical experiments). The
case samp_iters = 0 coincides with ia_sos (Section 6.5)

• approx_minimax (bool) : when approx_minimax = true, minimax approxi-
mations are used to estimate univariate transcendental functions.

• minimax_sqrt (bool) : when minimax_sqrt = true, minimax approximations
are used to estimate (even if approx_minimax = false) the square roots of uni-
variate functions . As an example, the objective function of the inequalities
presented in Appendix A contains such semialgebraic functions.

• minimax_degree (int) : the degree of minimax approximations (parameter d
in Section 4.3)

• minimax_degree_sqrt (int) : the degree of minimax estimators for square
roots of univariate functions.

• minimax_precision (int) : the working precision used inside the Sollya tool
(see the documentation in [CJL10]). The default value is 165.

• bb (bool) : when bb = true, we perform domain subdivision until we succeed
to certify the inequality.

B.3.2 POP/SDP Relaxations Parameters

Let K := [a1, b1]× · · · × [an, bn] be a box and let fpop, g1, . . . , gm ∈ R[x]. We recall the
general constrained POP:

(POP)
{

infx∈K fpop(x) ,
s.t. g1(x) > 0, . . . , gm(x) > 0 .

Several options are available to handle numerical issues when solving SDP relax-
ations of (POP). In the sequel, we will often refer to this problem to describe the
usage of these options. We also recall that the minimal SDP relaxation order of Prob-
lem (POP) is k0 := max(⌈deg fpop/2⌉, max16j6m⌈deg gj/2⌉). Note that there exists
M > 0 such that M − ∑

n
i=1 x2

i > 0. Let (POP)′ be the scaled POP version of Prob-
lem (POP):

(POP)′
{

infx′∈[0,1]n f ′pop(x
′) ,

s.t. g′1(x
′) > 0, . . . , g′m(x

′) > 0 ,

where
x′i := (xi − ai)/(bi − ai) (i = 1, . . . , n) ,

f ′pop := fpop/‖ fpop‖∞, g′j := gj/‖gj‖∞ (j = 1, . . . , m) .

Note that the function ‖ · ‖∞ returns the maximum magnitude of the coefficients of
polynomials in R[x′].
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After solving Problem (POP), one obtains the following decomposition from the
output of SDPA:

fpop(x)− µk =
m

∑
j=0

gj(x)
rj

∑
i=1

λijv
2
ij(x) . (B.3.1)

• check_certif_coq (bool) : when check_certif_coq = true, the correctness
of the SOS certificates is checked in COQ

• sos_verb (bool) : when sos_verb = true, several information about SOS re-
laxations (moment and localizing matrices, supports of polynomials, etc ). For
each POP, the polynomial data ( fpop, g1, . . . , gm) are also displayed.

• pop_verb (bool) : when pop_verb = true, the objective functions of semial-
gebraic problems are displayed.

• sdp_verb (bool) : when sdp_verb = true, execution time and I/O file names
of SDPA are displayed.

• relax_order (int) : when relax_order = k, SDP relaxations of (POP) are
solved using a relaxation order not greater than max(k, k0).

• reduce_sos (bool) : this option allows to eliminate the redundant vectors for
any SOS representation of fpop − ∑

m
j=1 σjgj (see Figure 2.4).

• scale_pol (bool) : when scale_pol = true, one solves Problem (POP)′ in-
stead of Problem (POP).

• bound_squares_variables (bool) : this option adds the polynomial inequali-
ties (bi − xi)(xi − ai) > 0 (i = 1, . . . , n) to the constraints set of (POP).

• mk_archimedean (bool) : this option adds the single polynomial inequality
constraint ∑

n
i=1 M − x2

i > 0 to the constraints set of (POP).

• eig_tol (float) : This option replaces each λij by 0 in (B.3.1) when eig_tol >
λij .

• eq_tol (float) : when eq_tol = ǫ > 0, then each polynomial equality con-
straint h(x) = 0 is relaxed into two polynomial inequalities h(x) > 0 and
h(x) > ǫ.

• sdp_solver_epsilon (int) : the accuracy of the SDP solver SDPA ( for more
details, see [YFN+10]).

• sdp_solver_print (int) : the number of digits displayed in the output of
SDPA files.

• erase_sdpa_files (bool) : when erase_sdpa_files = true, the I/O SDPA

files are erased. Otherwise, they are stored in the log folder.



B.4. CERTIFICATION OF NONLINEAR INEQUALITIES 115

B.4 Certification of Nonlinear Inequalities

B.4.1 Input Settings

The user can define the input box K := [a1, b1] × · · · × [an, bn] and the multivari-
ate transcendental objective function f in the file input_ineqs. The inequality ∀x ∈
K, f (x) > m is encoded as follows:

let box_ineq x1 ... xn = [( a1 , b1); ... ; (an , bn)];;

let obj_ineq x1 ... xn = [( f, m )];;

Note that it is mandatory to separate each definition (either for a box or an ob-
jective function) with a double semicolon “;;”. Let us give a concrete example for
Problem MC. We recall the formulation of the problem:

min
−1.56x164
−36x263

f (x) = sin(x1 + x2) + (x1 − x2)
2 − 1.5x1 + 2.5x2 + 1 .

Hence we encode the inequality “∀x ∈ K, f (x) > −1.92” in NLCertify as follows:

let box_MC x1 x2 = [ ( -1.5 , 4) ; (-3, 3) ];;

let obj_MC x1 x2 = [ (sin(x1 + x2) + (x1 - x2)**2 - 1.5 *

x1 + 2.5 * x2 + 1, -1.92 )];;

B.4.2 NLCertify Execution

Given a inequality (defined as above) identified with ineq, the following command
line allows to execute the main program:

% ./ nlcertify ineq

For instance, without domain subdivision (setting the option bb = false), and
with the maxplus method (approx_minimax = false) the program returns the fol-
lowing output, after a single iteration (samp_iter = 1):

% ./ nlcertify MC

start Program

1 problem remaining , 0 cuts done

[( -1.5 , 4.0) ; ( -3.0 , 3.0)]

...

min = -62.1516382708

[3.9999984600 ; 2.9999984400]

1 problem solved , 0 cuts done

End of maxplus algorithm

-62.1516382708 <= 0.0000000000

Failed to verify the inequality MC

Total time: 1.149512 seconds

Note that the box is displayed, as well as the lower bound m of the objective func-
tion on this box (m ≃ −62). Here, the minimizer guess is obtained at xopt ≃ (4, 3).
In this case, the relaxation gap is too high to certify the inequality. After 3 iterations,
(samp_iter = 3), the output is:
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% ./ nlcertify MC

...

min = -0.8304673056

[ -1.1951372495 ; -2.3854570200]

-0.8304673056

1 problem solved , 0 cuts done

End of maxplus algorithm

-0.8304673056 <= 0.0000000000

Failed to verify the inequality MC

Total time: 1.828811 seconds

The lower bound is more precise (m ≃ −0.830) but one has to switch the bb option
to true to solve the inequality:

% ./ nlcertify MC

...

13 problems solved , 12 cuts done

End of maxplus algorithm

0.0017452960 >= 0.0000000000

Inequality MC verified

Total time: 19.966771 seconds

Here, the lower bound obtained after the 12 subdivisions is greater than 0 (m ≃
0.002). The verbosity options can be switched to display more information when the
algorithms implemented in NLCertify are called on each sub-box (e.g. the sequence
of control points, the equation of the estimators, the I/O data of the external solvers,
etc ). These information are saved in the log/mc.log file.
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