D. M. Chapin, C. S. Fuller, and G. L. Pearson, Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, vol.25, issue.5, pp.25-676, 1954.
DOI : 10.1063/1.1721711

C. ?. Liu, Z. C. Holman, and U. R. Kortshagen, Optimization of Si NC/P3HT Hybrid Solar Cells, Advanced Functional Materials, vol.80, issue.13, pp.20-2157, 2010.
DOI : 10.1002/adfm.200902471

F. T. Zhang, Air Stable, Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures, Chemistry of Materials, vol.23, issue.8, pp.23-2084, 2011.
DOI : 10.1021/cm103221a

C. Y. Kuo and C. Gau, Arrangement of band structure for organic-inorganic photovoltaics embedded with silicon nanowire arrays grown on indium tin oxide glass, Applied Physics Letters, vol.95, issue.5, pp.95-053302, 2009.
DOI : 10.1063/1.3189088

K. Golap, Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes, Journal of Physics D: Applied Physics, issue.11, pp.42-115104, 2009.

E. C. Garnett, Silicon nanowire hybrid photovoltaics, 2010 35th IEEE Photovoltaic Specialists Conference, 2010.
DOI : 10.1109/PVSC.2010.5614661

E. C. Garnett and P. Yang, Silicon Nanowire Radial p???n Junction Solar Cells, Journal of the American Chemical Society, vol.130, issue.29, pp.130-9224, 2008.
DOI : 10.1021/ja8032907

L. Tsakalakos, Silicon nanowire solar cells, Applied Physics Letters, vol.91, issue.23, pp.91-233117, 2007.
DOI : 10.1063/1.2821113

H. ?. Syu, S. ?. Shiu, and C. ?. Lin, Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%, Solar Energy Materials and Solar Cells, vol.98, issue.0, pp.98-267, 2012.
DOI : 10.1016/j.solmat.2011.11.003

J. Davenas, Silicon nanowire/poly(3-hexylthiophene) hybrids for thin film solar cells, Journal of Non-Crystalline Solids, vol.358, issue.17, pp.358-2534, 2012.
DOI : 10.1016/j.jnoncrysol.2011.12.044

S. Th, Silicon nanowire?based solar cells, Nanotechnology, vol.19, issue.29, p.295203, 2008.

J. Cho, Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass, Progress in Photovoltaics: Research and Applications, 2012.
DOI : 10.1002/pip.1245

URL : https://hal.archives-ouvertes.fr/hal-00778960

L. He, Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells, Applied Physics Letters, vol.99, issue.2, pp.21104-21107, 2011.
DOI : 10.1063/1.3610461

Y. Qu and X. Duan, One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion, Journal of Materials Chemistry, vol.5, issue.32, pp.22-16171, 2012.
DOI : 10.1039/c2jm32267f

R. G. Treuting and S. M. Arnold, Orientation habits of metal whiskers, Acta Metallurgica, vol.5, issue.10, p.598, 1957.
DOI : 10.1016/0001-6160(57)90128-1

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, pp.89-90, 1964.
DOI : 10.1063/1.1753975

V. Schmidt, Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties, Advanced Materials, vol.420, issue.3, pp.2681-2702, 2009.
DOI : 10.1002/adma.200803754

E. Garnett and P. Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Letters, vol.10, issue.3, pp.1082-1087, 2010.
DOI : 10.1021/nl100161z

S. Abdul and M. , A stamped PEDOT:PSS?silicon nanowire hybrid solar cell, Nanotechnology, vol.23, issue.14, p.145401, 2012.

L. Hu and G. Chen, Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications, Nano Letters, vol.7, issue.11, pp.3249-3252, 2007.
DOI : 10.1021/nl071018b

Y. Linwei, Radial junction amorphous silicon solar cells on PECVD? grown silicon nanowires, Nanotechnology, vol.23, 2012.

L. He, High-Efficiency Si/Polymer Hybrid Solar Cells Based on Synergistic Surface Texturing of Si Nanowires on Pyramids, Small, vol.451, issue.11, pp.1664-1668, 2012.
DOI : 10.1002/smll.201102095

Z. Pei, An amorphous silicon random nanocone/polymer hybrid solar cell. Solar Energy Materials and Solar Cells, pp.95-2431, 2011.

C. Chao and . ?h, Efficient hybrid organic/inorganic photovoltaic cells utilizing n-type pentacene and intrinsic/p-type hydrogenated amorphous silicon, Solar Energy Materials and Solar Cells, vol.95, issue.8, pp.95-2407, 2011.
DOI : 10.1016/j.solmat.2011.04.014

K. L. Chopra, P. D. Paulson, and V. Dutta, Thin-film solar cells: an overview, Progress in Photovoltaics: Research and Applications, pp.12-69, 2004.
DOI : 10.1002/pip.541

M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers1999

Y. Kim, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, Nature Materials, vol.60, issue.3, p.197, 2006.
DOI : 10.1038/nmat1574

Y. Kim and D. D. Bradley, Bright red emission from single layer polymer light-emitting devices based on blends of regioregular P3HT and F8BT, Current Applied Physics, vol.5, issue.3, pp.222-226, 2005.
DOI : 10.1016/j.cap.2003.11.090

K. M. Coakley and M. D. Mcgehee, Conjugated Polymer Photovoltaic Cells, Chemistry of Materials, vol.16, issue.23, pp.16-4533, 2004.
DOI : 10.1021/cm049654n

R. Dietmueller, Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals, Applied Physics Letters, vol.94, issue.11, pp.94-113301, 2009.
DOI : 10.1063/1.3086299

M. Al?ibrahim, The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells, Organic Electronics, vol.6, issue.2, pp.65-77, 2005.
DOI : 10.1016/j.orgel.2005.02.004

D. Chirvase, Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells, Synthetic Metals, vol.138, issue.1-2, pp.138-299, 2003.
DOI : 10.1016/S0379-6779(03)00027-4

V. D. Mihailetchi, Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells, Advanced Functional Materials, vol.51, issue.5, pp.699-708, 2006.
DOI : 10.1002/adfm.200500420

J. C. Hummelen, Preparation and Characterization of Fulleroid and Methanofullerene Derivatives, The Journal of Organic Chemistry, vol.60, issue.3, pp.532-538, 1995.
DOI : 10.1021/jo00108a012

Y. Kim, Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells, Organic Electronics, vol.10, issue.1, pp.205-209, 2009.
DOI : 10.1016/j.orgel.2008.10.003

T. Jeon, Effects of acid-treated silicon nanowires on hybrid solar cells performance, Solar Energy Materials and Solar Cells, vol.117, pp.632-637, 2013.
DOI : 10.1016/j.solmat.2012.09.015

URL : https://hal.archives-ouvertes.fr/hal-00829850

M. M. Wienk, Narrow???Bandgap Diketo???Pyrrolo???Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance, Advanced Materials, vol.42, issue.13, pp.20-2556, 2008.
DOI : 10.1002/adma.200800456

M. T. Dang, L. Hirsch, and G. Wantz, P3HT:PCBM, Best Seller in Polymer Photovoltaic Research, Advanced Materials, vol.3, issue.31, pp.23-3579, 2011.
DOI : 10.1002/adma.201100792

URL : https://hal.archives-ouvertes.fr/hal-00616962

T. Ikenoue, H. Nishinaka, and S. Fujita, Fabrication of conducting poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) thin films by ultrasonic spray-assisted mist deposition method, Thin Solid Films, vol.520, issue.6, p.520, 2012.
DOI : 10.1016/j.tsf.2011.09.067

S. R. Hammond, Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics, Journal of Materials Chemistry, vol.19, issue.7, pp.22-3249, 2012.
DOI : 10.1039/c2jm14911g

J. Y. Kim, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals, vol.126, issue.2-3, pp.2-3, 2002.
DOI : 10.1016/S0379-6779(01)00576-8

Y. H. Kim, Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells, Advanced Functional Materials, vol.13, issue.6, pp.1076-1081, 2011.
DOI : 10.1002/adfm.201002290

T. Kawashima, Raman Scattering Studies of Electrically Active Impurities in in Situ B-Doped Silicon Nanowires: Effects of Annealing and Oxidation, The Journal of Physical Chemistry C, vol.111, issue.42, pp.111-15160, 2007.
DOI : 10.1021/jp074495r

S. Avasthi, Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells, Advanced Materials, vol.137, issue.48, pp.23-5762, 2011.
DOI : 10.1002/adma.201102712

L. He, Si Nanowires Organic Semiconductor Hybrid Heterojunction Solar Cells Toward 10% Efficiency, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1704-1708, 2012.
DOI : 10.1021/am201838y

L. He, High efficiency planar Si/organic heterojunction hybrid solar cells, Applied Physics Letters, vol.100, issue.7, pp.73503-73506, 2012.
DOI : 10.1063/1.3684872

V. Gowrishankar, Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells, Journal of Applied Physics, vol.103, issue.6, pp.64511-64519, 2008.
DOI : 10.1063/1.2896583

C. ?. Liu, Z. C. Holman, and U. R. Kortshagen, Hybrid Solar Cells from P3HT and Silicon Nanocrystals, Nano Letters, vol.9, issue.1, pp.449-452, 2008.
DOI : 10.1021/nl8034338

J. Huang and . ?s, Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass, Solar Energy Materials and Solar Cells, vol.93, issue.5, pp.93-621, 2009.
DOI : 10.1016/j.solmat.2008.12.016

S. Jeong, Hybrid Silicon Nanocone???Polymer Solar Cells, Nano Letters, vol.12, issue.6, pp.2971-2976, 2012.
DOI : 10.1021/nl300713x

B. A. Gregg, Excitonic Solar Cells, The Journal of Physical Chemistry B, vol.107, issue.20, pp.4688-4698, 2003.
DOI : 10.1021/jp022507x

R. 1. Garnett, E. , and P. Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Letters, vol.10, issue.3, pp.1082-1087, 2010.
DOI : 10.1021/nl100161z

S. Abdul and M. , A stamped PEDOT:PSS?silicon nanowire hybrid solar cell, Nanotechnology, vol.23, issue.14, p.145401, 2012.

L. He, Si Nanowires Organic Semiconductor Hybrid Heterojunction Solar Cells Toward 10% Efficiency, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1704-1708, 2012.
DOI : 10.1021/am201838y

L. He, Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells, Applied Physics Letters, vol.99, issue.2, pp.21104-21107, 2011.
DOI : 10.1063/1.3610461

L. He, High-Efficiency Si/Polymer Hybrid Solar Cells Based on Synergistic Surface Texturing of Si Nanowires on Pyramids, Small, vol.451, issue.11, pp.1664-1668, 2012.
DOI : 10.1002/smll.201102095

L. He, High efficiency planar Si/organic heterojunction hybrid solar cells, Applied Physics Letters, vol.100, issue.7, pp.73503-73506, 2012.
DOI : 10.1063/1.3684872

S. Avasthi, Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells, Advanced Materials, vol.137, issue.48, pp.5762-5766, 2011.
DOI : 10.1002/adma.201102712

S. Th, Silicon nanowire?based solar cells, Nanotechnology, vol.19, issue.29, p.295203, 2008.

K. Peng, S. ?q, . ?t, and . Lee, Silicon Nanowires for Photovoltaic Solar Energy Conversion, Advanced Materials, vol.132, issue.11, pp.198-215, 2010.
DOI : 10.1002/adma.201002410

Y. Linwei, Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO 2 substrates, Nanotechnology, issue.48, pp.19-485605, 2008.

L. Yu, Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires, Applied Physics Letters, vol.98, issue.12, pp.98-123113, 2011.
DOI : 10.1063/1.3569817

URL : https://hal.archives-ouvertes.fr/in2p3-00596147

J. Cho, Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass, Progress in Photovoltaics: Research and Applications, pp.77-81, 2012.
DOI : 10.1002/pip.1245

URL : https://hal.archives-ouvertes.fr/hal-00778960

Y. Linwei, Radial junction amorphous silicon solar cells on PECVD? grown silicon nanowires, Nanotechnology, vol.23, 2012.

Y. Linwei, Plasma?enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts, Nanotechnology, issue.22, pp.20-225604, 2009.

L. Yu, An In-Plane Solid-Liquid-Solid Growth Mode for Self-Avoiding Lateral Silicon Nanowires, Physical Review Letters, vol.102, issue.12, p.125501, 2009.
DOI : 10.1103/PhysRevLett.102.125501

P. Alet and . ?j, In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO, Journal of Materials Chemistry, vol.62, issue.43, pp.18-5187, 2008.
DOI : 10.1039/b813046a

URL : https://hal.archives-ouvertes.fr/cea-01056562

L. Yu, Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells, Nano Letters, vol.12, issue.8, pp.12-4153, 2012.
DOI : 10.1021/nl3017187

URL : https://hal.archives-ouvertes.fr/hal-00757353

S. H. Oh, Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires, Science, vol.330, issue.6003, pp.330-489, 2010.
DOI : 10.1126/science.1190596

S. Hofmann, Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, Journal of Applied Physics, vol.94, issue.9, pp.94-6005, 2003.
DOI : 10.1063/1.1614432

P. Alet and . ?j, Transition from thin gold layers to nano?islands on TCO for catalyzing the growth of one?dimensional nanostructures. physica status solidi (a), pp.205-1429, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00329882

S. Sharma, T. I. Kamins, and R. S. Williams, Synthesis of thin silicon nanowires using gold-catalyzed chemical vapor deposition, Applied Physics A, vol.108, issue.6, pp.1225-1229, 2005.
DOI : 10.1149/1.2428182

M. Hertog, Gold Catalyzed Silicon Nanowires: Defects in the Wires and Gold on the Wires, Microscopy of Semiconducting Materials, pp.217-220, 2007.
DOI : 10.1007/978-1-4020-8615-1_47

O. Demichel, Surface Recombination Velocity Measurements of Efficiently Passivated Gold-Catalyzed Silicon Nanowires by a New Optical Method, Nano Letters, vol.10, issue.7, pp.2323-2329, 2010.
DOI : 10.1021/nl903166t

URL : https://hal.archives-ouvertes.fr/hal-00623427

M. Koto, Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon, Small, vol.61, issue.9, pp.1032-1037, 2010.
DOI : 10.1002/smll.200901764

R. S. Wagner, Study of the Filamentary Growth of Silicon Crystals from the Vapor, Journal of Applied Physics, vol.35, issue.10, pp.35-2993, 1964.
DOI : 10.1063/1.1713143

H. ?. Tuan, D. C. Lee, and B. A. , Nanocrystal?Mediated Crystallization of Silicon and Germanium Nanowires in Organic Solvents: The Role of Catalysis and Solid?Phase Seeding, Angewandte Chemie International Edition, issue.31, pp.45-5184, 2006.

A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, vol.279, issue.5348, pp.279-208, 1998.
DOI : 10.1126/science.279.5348.208

Y. F. Zhang, Silicon nanowires prepared by laser ablation at high temperature, Applied Physics Letters, vol.72, issue.15, pp.72-1835, 1998.
DOI : 10.1063/1.121199

T. I. Kamins, Chemical vapor deposition of Si nanowires nucleated by TiSi[sub 2] islands on Si, Applied Physics Letters, issue.5, pp.76-562, 2000.

Y. Wang, Epitaxial growth of silicon nanowires using an aluminium catalyst, Nature Nanotechnology, vol.10, issue.3, pp.186-189, 2006.
DOI : 10.1038/nnano.2006.133

M. K. Sunkara, Bulk synthesis of silicon nanowires using a low-temperature vapor???liquid???solid method, Applied Physics Letters, vol.79, issue.10, pp.79-1546, 2001.
DOI : 10.1063/1.1401089

V. C. Holmberg, K. A. Collier, and B. A. , Real-Time Observation of Impurity Diffusion in Silicon Nanowires, Nano Letters, vol.11, issue.9, pp.3803-3808, 2011.
DOI : 10.1021/nl201879u

V. Schmidt, J. V. Wittemann, and U. , Go? sele, Growth, Thermodynamics, and Electrical Properties of, Silicon Nanowires ?. Chemical Reviews, vol.110, issue.1, pp.361-388, 2010.

V. Schmidt, Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties, Advanced Materials, vol.420, issue.3, pp.2681-2702, 2009.
DOI : 10.1002/adma.200803754

O. Donnell and B. , Plasma Growth Silicon Nanoaiwres Catalyzed By Post? Transition Metals & Applications in Radial Junction Solar Cells, 2012.

A. Klein, Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment, Materials, vol.3, issue.11, pp.4892-4914, 2010.
DOI : 10.3390/ma3114892

A. Colli, Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties, Journal of Applied Physics, vol.102, issue.3, pp.34302-34315, 2007.
DOI : 10.1063/1.2764050

I. Zardo, Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition, Applied Physics A, vol.74, issue.6, pp.287-296, 2010.
DOI : 10.1007/s00339-010-5802-1

L. Hu and G. Chen, Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications, Nano Letters, vol.7, issue.11, pp.3249-3252, 2007.
DOI : 10.1021/nl071018b

M. H. Song, Tin catalyzed vertical epitaxial silicon nanowire on crystalline silicon (1 1 1) and radial junction silicon nanowire solar cell Master Thesis, 2011.

R. W. Olesinski, N. Kanani, and G. J. Abbaschian, The In?Si (Indium?Silicon) system. Bulletin of Alloy Phase Diagrams, pp.128-130, 1985.

B. J. Keene, Review of data for the surface tension of pure metals, International Materials Reviews, vol.55, issue.4, pp.157-192, 1993.
DOI : 10.1016/0022-1902(65)80192-0

V. A. Nebol-'sin and A. A. Shchetinin, Role of Surface Energy in the Vapor? Liquid?Solid Growth of Silicon, Inorganic Materials, vol.39, issue.9, pp.899-903, 2003.
DOI : 10.1023/A:1025588601262

R. R. Kumar, K. N. Rao, and A. R. Phani, Bismuth catalyzed growth of silicon nanowires by electron beam evaporation, Materials Letters, vol.82, issue.0, pp.82-163, 2012.
DOI : 10.1016/j.matlet.2012.05.090

T. Jeon, Effects of acid-treated silicon nanowires on hybrid solar cells performance, Solar Energy Materials and Solar Cells, vol.117, pp.632-637, 2013.
DOI : 10.1016/j.solmat.2012.09.015

URL : https://hal.archives-ouvertes.fr/hal-00829850

J. Goldberger, Silicon Vertically Integrated Nanowire Field Effect Transistors, Nano Letters, vol.6, issue.5, pp.973-977, 2006.
DOI : 10.1021/nl060166j

Y. Cui, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, pp.149-152, 2003.
DOI : 10.1021/nl025875l

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.3218

I. Zardo, Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires, Nanotechnology, vol.20, issue.15, p.155602, 2009.
DOI : 10.1088/0957-4484/20/15/155602

H. Griffiths, Plasma assisted growth of nanotubes and nanowires, Surface and Coatings Technology, vol.201, issue.22-23, pp.22-23, 2007.
DOI : 10.1016/j.surfcoat.2007.04.067

R. R. Kumar, K. N. Rao, and A. R. Phani, Growth of silicon nanowires by electron beam evaporation using indium catalyst, Materials Letters, vol.66, issue.1, pp.110-112, 2012.
DOI : 10.1016/j.matlet.2011.08.064

B. Kalache, P. R. Cabarrocas, and A. F. , Morral, Observation of Incubation Times in the Nucleation of Silicon Nanowires Obtained by the Vapor?Liquid? Solid Method, Japan. J. Appl. Phys, issue.45, p.190, 2006.

H. Schmid, Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane, Journal of Applied Physics, vol.103, issue.2, pp.24304-24311, 2008.
DOI : 10.1063/1.2832760

K. Lew, J. M. ?k, and . Redwing, Growth characteristics of silicon nanowires synthesized by vapor???liquid???solid growth in nanoporous alumina templates, Journal of Crystal Growth, vol.254, issue.1-2, pp.14-22, 2003.
DOI : 10.1016/S0022-0248(03)01146-1

J. Westwater, Growth of silicon nanowires via gold/silane vapor???liquid???solid reaction, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.3, pp.554-557, 1997.
DOI : 10.1116/1.589291

U. Kroll, Origins of atmospheric contamination in amorphous silicon prepared by very high frequency (70 MHz) glow discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.13, issue.6, pp.13-2742, 1995.
DOI : 10.1116/1.579698

M. Otobe and M. K. , Selective Etching of Hydrogenated Amorphous Silicon by Hydrogen Plasma, Japanese Journal of Applied Physics, vol.33, issue.Part 1, No. 7B, pp.4442-4445, 1994.
DOI : 10.1143/JJAP.33.4442

S. R. Scully and M. D. Mcgehee, Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors, Journal of Applied Physics, vol.100, issue.3, pp.34907-34912, 2006.
DOI : 10.1063/1.2226687

O. V. Mikhnenko, Exciton diffusion length in narrow bandgap polymers, Energy & Environmental Science, vol.22, issue.204, pp.6960-6965, 2012.
DOI : 10.1039/c2ee03466b

R. 1. Gowrishankar and V. , Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells, Journal of Applied Physics, vol.103, issue.6, pp.64511-64519, 2008.
DOI : 10.1063/1.2896583

A. D. Pasquier, Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires, Applied Physics Letters, vol.91, issue.18, pp.91-183501, 2007.
DOI : 10.1063/1.2801554

H. Park, Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells, Nano Letters, vol.13, issue.1, pp.233-239, 2012.
DOI : 10.1021/nl303920b

P. W. Blom, Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells, Advanced Materials, vol.16, issue.12, pp.1551-1566, 2007.
DOI : 10.1002/adma.200601093

S. R. Scully and M. D. Mcgehee, Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors, Journal of Applied Physics, vol.100, issue.3, pp.34907-34912, 2006.
DOI : 10.1063/1.2226687

P. E. Shaw, A. Ruseckas, and I. D. Samuel, Exciton Diffusion Measurements in Poly(3-hexylthiophene), Advanced Materials, vol.19, issue.77, pp.20-3516, 2008.
DOI : 10.1002/adma.200800982

B. A. Gregg, Excitonic Solar Cells, The Journal of Physical Chemistry B, vol.107, issue.20, pp.4688-4698, 2003.
DOI : 10.1021/jp022507x

L. He, Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells, Applied Physics Letters, vol.99, issue.2, pp.21104-21107, 2011.
DOI : 10.1063/1.3610461

B. Sun, Hybrid Photovoltaics Based on Semiconductor Nanocrystals and Amorphous Silicon, Nano Letters, vol.9, issue.3, pp.1235-1241, 2009.
DOI : 10.1021/nl9001469

S. Jeong, Hybrid Silicon Nanocone???Polymer Solar Cells, Nano Letters, vol.12, issue.6, pp.2971-2976, 2012.
DOI : 10.1021/nl300713x

C. ?. Liu, Z. C. Holman, and U. R. Kortshagen, Hybrid Solar Cells from P3HT and Silicon Nanocrystals, Nano Letters, vol.9, issue.1, pp.449-452, 2008.
DOI : 10.1021/nl8034338

E. Garnett and P. Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Letters, vol.10, issue.3, pp.1082-1087, 2010.
DOI : 10.1021/nl100161z

Y. Linwei, Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO 2 substrates, Nanotechnology, issue.48, pp.19-485605, 2008.

Y. Linwei, Radial junction amorphous silicon solar cells on PECVD? grown silicon nanowires, Nanotechnology, vol.23, 2012.

L. Yu, Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells, Nano Letters, vol.12, issue.8, pp.12-4153, 2012.
DOI : 10.1021/nl3017187

URL : https://hal.archives-ouvertes.fr/hal-00757353

C. Y. Kuo and C. Gau, Arrangement of band structure for organic-inorganic photovoltaics embedded with silicon nanowire arrays grown on indium tin oxide glass, Applied Physics Letters, vol.95, issue.5, pp.95-053302, 2009.
DOI : 10.1063/1.3189088

J. Huang and . ?s, Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass, Solar Energy Materials and Solar Cells, vol.93, issue.5, pp.93-621, 2009.
DOI : 10.1016/j.solmat.2008.12.016

Y. Kim, Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells, Organic Electronics, vol.10, issue.1, pp.205-209, 2009.
DOI : 10.1016/j.orgel.2008.10.003

V. Schmidt, J. V. Wittemann, and U. , Go? sele, Growth, Thermodynamics, and Electrical Properties of, Silicon Nanowires ?. Chemical Reviews, vol.110, issue.1, pp.361-388, 2010.

G. Yuan, Understanding the Origin of the Low Performance of Chemically Grown Silicon Nanowires for Solar Energy Conversion

K. Vandewal, On the origin of the open-circuit voltage of polymer???fullerene solar cells, Nature Materials, vol.131, issue.11, pp.904-909, 2009.
DOI : 10.1038/nmat2548

L. Hu and G. Chen, Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications, Nano Letters, vol.7, issue.11, pp.3249-3252, 2007.
DOI : 10.1021/nl071018b

O. Gunawan and S. Guha, Characteristics of vapor???liquid???solid grown silicon nanowire solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.8, pp.93-1388, 2009.
DOI : 10.1016/j.solmat.2009.02.024

S. Dongaonkar, Universality of non-Ohmic shunt leakage in thin-film solar cells, Journal of Applied Physics, vol.108, issue.12, pp.124509-124519, 2010.
DOI : 10.1063/1.3518509

T. Nagata, Effect of UV???ozone treatment on electrical properties of PEDOT:PSS film, Organic Electronics, vol.12, issue.2, pp.279-284, 2011.
DOI : 10.1016/j.orgel.2010.11.009

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Advanced Functional Materials, vol.13, issue.1, pp.85-88, 2003.
DOI : 10.1002/adfm.200390011

J. A. Hauch, Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime, Solar Energy Materials and Solar Cells, vol.92, issue.7, pp.92-727, 2008.
DOI : 10.1016/j.solmat.2008.01.004

C. Waldauf, Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact, Applied Physics Letters, vol.89, issue.23, pp.89-233517, 2006.
DOI : 10.1063/1.2402890

D. Bettignies and R. , Accelerated lifetime measurements of P3HT:PCBM solar cells, Synthetic Metals, vol.156, issue.7-8, pp.7-8, 2006.
DOI : 10.1016/j.synthmet.2005.06.016

M. Reyes?reyes, K. Kim, and D. L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends, Applied Physics Letters, vol.87, issue.8, pp.83506-083506, 2005.
DOI : 10.1063/1.2006986

K. Ki?beom, Y. T. ?h, H. Yoon?soo, B. Kwang?heum, Y. Myung?hee et al., Relation between Surface Roughness of Indium Tin Oxide and Leakage Current of Organic Light?Emitting Diode, Japanese Journal of Applied Physics, issue.42, pp.438-440, 2004.

M. Hallermann, Charge Transfer Excitons in Polymer/Fullerene Blends: The Role of Morphology and Polymer Chain Conformation, Advanced Functional Materials, vol.9, issue.22, pp.19-3662, 2009.
DOI : 10.1002/adfm.200901398

C. Deibel, T. Strobel, and V. Dyakonov, Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells, Advanced Materials, vol.43, issue.37, pp.22-4097, 2010.
DOI : 10.1002/adma.201000376

U. Zhokhavets, Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells, Chemical Physics Letters, vol.418, issue.4-6, pp.418-347, 2006.
DOI : 10.1016/j.cplett.2005.11.020

W. J. Grzegorczyk, Temperature-Independent Charge Carrier Photogeneration in P3HT???PCBM Blends with Different Morphology, The Journal of Physical Chemistry C, vol.114, issue.11, pp.114-5182, 2010.
DOI : 10.1021/jp9119364

W. Ma, Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells, Macromolecular Rapid Communications, vol.403, issue.17, pp.28-1776, 2007.
DOI : 10.1002/marc.200700280

R. Dietmueller, Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals, Applied Physics Letters, vol.94, issue.11, pp.94-113301, 2009.
DOI : 10.1063/1.3086299

M. Lenes, Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells, Advanced Functional Materials, vol.1, issue.404, pp.1106-1111, 2009.
DOI : 10.1002/adfm.200801514

L. He, Si Nanowires Organic Semiconductor Hybrid Heterojunction Solar Cells Toward 10% Efficiency, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1704-1708, 2012.
DOI : 10.1021/am201838y

B. Ozdemir, Silicon nanowire - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) heterojunction solar cells, Applied Physics Letters, vol.99, issue.11, pp.99-113510, 2011.
DOI : 10.1063/1.3636385

S. Shiu and . ?c, Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells, Chemistry of Materials, vol.22, issue.10, pp.22-3108, 2010.
DOI : 10.1021/cm100086x

S. Park, Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.93-1020, 2009.
DOI : 10.1016/j.solmat.2008.11.033

W. Yoon and . ?j, Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles, Solar Energy Materials and Solar Cells, vol.94, issue.2, pp.128-132, 2010.
DOI : 10.1016/j.solmat.2009.08.006

L. J. Koster, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells, Applied Physics Letters, vol.87, issue.20, pp.203502-203505, 2005.
DOI : 10.1063/1.2130396

L. J. Koster, Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells, Applied Physics Letters, vol.86, issue.12, pp.86-123509, 2005.
DOI : 10.1063/1.1889240

O. Gunawan and S. Guha, Characteristics of vapor???liquid???solid grown silicon nanowire solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.8, pp.93-1388, 2009.
DOI : 10.1016/j.solmat.2009.02.024

S. Hofmann, Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, Journal of Applied Physics, vol.94, issue.9, pp.94-6005, 2003.
DOI : 10.1063/1.1614432

V. A. Nebol-'sin and A. A. Shchetinin, Role of Surface Energy in the Vapor? Liquid?Solid Growth of Silicon, Inorganic Materials, vol.39, issue.9, pp.899-903, 2003.
DOI : 10.1023/A:1025588601262

L. Yu, Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells, Nano Letters, vol.12, issue.8, pp.12-4153, 2012.
DOI : 10.1021/nl3017187

URL : https://hal.archives-ouvertes.fr/hal-00757353

Y. Linwei, Radial junction amorphous silicon solar cells on PECVD? grown silicon nanowires, Nanotechnology, vol.23, 2012.

J. Cho, Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass, Progress in Photovoltaics: Research and Applications, pp.77-81, 2012.
DOI : 10.1002/pip.1245

URL : https://hal.archives-ouvertes.fr/hal-00778960

M. D. Kelzenberg, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat Mater, issue.93, pp.239-244, 2010.

K. Golap, Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes, Journal of Physics D: Applied Physics, issue.11, pp.42-115104, 2009.

C. Y. Kuo and C. Gau, Arrangement of band structure for organic-inorganic photovoltaics embedded with silicon nanowire arrays grown on indium tin oxide glass, Applied Physics Letters, vol.95, issue.5, pp.95-053302, 2009.
DOI : 10.1063/1.3189088

E. C. Garnett and P. Yang, Silicon Nanowire Radial p???n Junction Solar Cells, Journal of the American Chemical Society, vol.130, issue.29, pp.130-9224, 2008.
DOI : 10.1021/ja8032907

P. M. Monk and C. M. Man, Reductive ion insertion into thin?film indium tin oxide (ITO) in aqueous acidic solutions: the effect of leaching of indium from the ITO, Journal of Materials Science: Materials in Electronics, vol.10, issue.2, pp.101-107, 1999.
DOI : 10.1023/A:1008955929904

V. C. Holmberg, K. A. Collier, and B. A. , Real-Time Observation of Impurity Diffusion in Silicon Nanowires, Nano Letters, vol.11, issue.9, pp.3803-3808, 2011.
DOI : 10.1021/nl201879u

L. Yu, Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires, Applied Physics Letters, vol.98, issue.12, pp.98-123113, 2011.
DOI : 10.1063/1.3569817

URL : https://hal.archives-ouvertes.fr/in2p3-00596147

L. Hu and G. Chen, Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications, Nano Letters, vol.7, issue.11, pp.3249-3252, 2007.
DOI : 10.1021/nl071018b

J. Huang and . ?s, Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass, Solar Energy Materials and Solar Cells, vol.93, issue.5, pp.93-621, 2009.
DOI : 10.1016/j.solmat.2008.12.016

S. Dongaonkar, Universality of non-Ohmic shunt leakage in thin-film solar cells, Journal of Applied Physics, vol.108, issue.12, pp.124509-124519, 2010.
DOI : 10.1063/1.3518509

S. Yoo, B. Domercq, and B. Kippelen, Intensity?dependent equivalent circuit parameters of organic solar cells based on pentacene and C[sub 60], Journal of Applied Physics, issue.10, pp.97-103706, 2005.

L. J. Koster, Device model for the operation of polymer/fullerene bulk heterojunction solar cells, Physical Review B, vol.72, issue.8, pp.72-085205, 2005.
DOI : 10.1103/PhysRevB.72.085205

M. M. Mandoc, Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells, Advanced Functional Materials, vol.32, issue.13, pp.17-2167, 2007.
DOI : 10.1002/adfm.200601110

M. Kuik, Determination of the trap-assisted recombination strength in polymer light emitting diodes, Applied Physics Letters, vol.98, issue.9, pp.98-093301, 2011.
DOI : 10.1063/1.3559911

L. J. Koster, Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells, Applied Physics Letters, vol.86, issue.12, pp.86-123509, 2005.
DOI : 10.1063/1.1889240

M. M. Mandoc, Effect of traps on the performance of bulk heterojunction organic solar cells, Applied Physics Letters, vol.91, issue.26, pp.91-263505, 2007.
DOI : 10.1063/1.2821368

M. T. Mcdowell, Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes, Nano Letters, vol.11, issue.9, pp.4018-4025, 2011.
DOI : 10.1021/nl202630n

E. C. Garnett, Silicon nanowire hybrid photovoltaics, 2010 35th IEEE Photovoltaic Specialists Conference, 2010.
DOI : 10.1109/PVSC.2010.5614661

V. Gowrishankar, Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells, Journal of Applied Physics, vol.103, issue.6, pp.64511-64519, 2008.
DOI : 10.1063/1.2896583

M. Otobe and M. K. , Selective Etching of Hydrogenated Amorphous Silicon by Hydrogen Plasma, Japanese Journal of Applied Physics, vol.33, issue.Part 1, No. 7B, pp.4442-4445, 1994.
DOI : 10.1143/JJAP.33.4442

C. ?. Liu, Z. C. Holman, and U. R. Kortshagen, Optimization of Si NC/P3HT Hybrid Solar Cells, Advanced Functional Materials, vol.80, issue.13, pp.20-2157, 2010.
DOI : 10.1002/adfm.200902471

A. D. Pasquier, Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires, Applied Physics Letters, vol.91, issue.18, pp.91-183501, 2007.
DOI : 10.1063/1.2801554

X. Jiang, Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices, Applied Physics Letters, vol.83, issue.9, pp.1875-1877, 2003.
DOI : 10.1063/1.1605805

G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells, Advanced Materials, vol.105, issue.244, pp.1323-1338, 2009.
DOI : 10.1002/adma.200801283

D. E. Carlson and C. R. Wronski, Amorphous silicon solar cells, in Amorphous Semiconductors, pp.287-329, 1985.

L. J. Koster, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells, Applied Physics Letters, vol.88, issue.5, p.52104, 2006.
DOI : 10.1063/1.2170424

M. M. Mandoc, Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells, Journal of Applied Physics, vol.101, issue.10, p.104512, 2007.
DOI : 10.1063/1.2734101

V. D. Mihailetchi, Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells, Advanced Functional Materials, vol.51, issue.5, pp.699-708, 2006.
DOI : 10.1002/adfm.200500420

S. Avasthi, Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells, Advanced Materials, vol.137, issue.48, pp.23-5762, 2011.
DOI : 10.1002/adma.201102712

L. He, High efficiency planar Si/organic heterojunction hybrid solar cells, Applied Physics Letters, vol.100, issue.7, pp.73503-73506, 2012.
DOI : 10.1063/1.3684872

L. He, Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells, Applied Physics Letters, vol.99, issue.2, pp.21104-21107, 2011.
DOI : 10.1063/1.3610461

L. He, Si Nanowires Organic Semiconductor Hybrid Heterojunction Solar Cells Toward 10% Efficiency, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1704-1708, 2012.
DOI : 10.1021/am201838y

G. Yuan, Understanding the Origin of the Low Performance of Chemically Grown Silicon Nanowires for Solar Energy Conversion

R. 1. Forrest and S. R. , Organic???on???inorganic semiconductor contact barrier devices, Applied Physics Letters, vol.41, issue.1, pp.90-93, 1982.
DOI : 10.1063/1.93300

R. R. Mccaffrey and P. N. Prasad, Organic-thin-film-coated solar cells: Energy transfer between surface pyrene molecules and the silicon semiconductor substrate, Solar Cells, vol.11, issue.4, pp.401-409, 1984.
DOI : 10.1016/0379-6787(84)90103-0

S. Avasthi, Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells, Advanced Materials, vol.137, issue.48, pp.23-5762, 2011.
DOI : 10.1002/adma.201102712

V. Gowrishankar, Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells, Journal of Applied Physics, vol.103, issue.6, pp.64511-64519, 2008.
DOI : 10.1063/1.2896583

V. Gowrishankar, Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface, Applied Physics Letters, vol.89, issue.25, pp.89-252102, 2006.
DOI : 10.1063/1.2408641

R. Dietmueller, Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals, Applied Physics Letters, vol.94, issue.11, pp.94-113301, 2009.
DOI : 10.1063/1.3086299

L. Noice, G. G. , and R. Solanki, Progress on a photovoltaic cell design consisting of silicon nanowires and poly(3?hexylthiopenen). PSU McNair Scholars Online Journal, p.28, 2006.

R. R. Kumar, K. N. Rao, and A. R. Phani, Bismuth catalyzed growth of silicon nanowires by electron beam evaporation, Materials Letters, vol.82, pp.163-166, 2012.
DOI : 10.1016/j.matlet.2012.05.090

V. C. Holmberg, K. A. Collier, and B. A. , Real-Time Observation of Impurity Diffusion in Silicon Nanowires, Nano Letters, vol.11, issue.9, pp.3803-3808, 2011.
DOI : 10.1021/nl201879u

L. Yu, Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells, Nano Letters, vol.12, issue.8, pp.12-4153, 2012.
DOI : 10.1021/nl3017187

URL : https://hal.archives-ouvertes.fr/hal-00757353

K. Ki?beom, Y. T. ?h, H. Yoon?soo, B. Kwang?heum, Y. Myung?hee et al., Relation between Surface Roughness of Indium Tin Oxide and Leakage Current of Organic Light?Emitting Diode, Japanese Journal of Applied Physics, p.42, 2004.

F. T. Zhang, Air Stable, Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures, Chemistry of Materials, vol.23, issue.8, pp.23-2084, 2011.
DOI : 10.1021/cm103221a

J. C. Nolasco, Extraction of poly (3-hexylthiophene) (P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell, Journal of Applied Physics, vol.107, issue.4, pp.44505-44509, 2010.
DOI : 10.1063/1.3296294

M. T. Dang, L. Hirsch, and G. Wantz, P3HT:PCBM, Best Seller in Polymer Photovoltaic Research, Advanced Materials, vol.3, issue.31, pp.23-3597, 2011.
DOI : 10.1002/adma.201100792

URL : https://hal.archives-ouvertes.fr/hal-00616962

G. Goncher and R. Solanki, Semiconductor nanowire photovoltaics, Nanoscale Photonic and Cell Technologies for Photovoltaics, p.70470, 2008.
DOI : 10.1117/12.798409

J. Davenas, Silicon nanowire/poly(3-hexylthiophene) hybrids for thin film solar cells, Journal of Non-Crystalline Solids, vol.358, issue.17, pp.358-2534, 2012.
DOI : 10.1016/j.jnoncrysol.2011.12.044

J. Davenas, Hybrid films based on silicon nanowires dispersed in a semiconducting polymer for thin film solar cells: Opportunities and new challenges, Synthetic Metals, vol.161, issue.23-24, pp.2012-161
DOI : 10.1016/j.synthmet.2011.08.017

URL : https://hal.archives-ouvertes.fr/hal-00692006

W. J. Grzegorczyk, Temperature-Independent Charge Carrier Photogeneration in P3HT???PCBM Blends with Different Morphology, The Journal of Physical Chemistry C, vol.114, issue.11, pp.114-5182, 2010.
DOI : 10.1021/jp9119364

V. R. Nikitenko, H. Heil, and H. Von-seggern, Space-charge limited current in regioregular poly-3-hexyl-thiophene, Journal of Applied Physics, vol.94, issue.4, pp.2480-2485, 2003.
DOI : 10.1063/1.1595707

U. Zhokhavets, Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells, Chemical Physics Letters, vol.418, issue.4-6, pp.418-347, 2006.
DOI : 10.1016/j.cplett.2005.11.020

H. Jin, Polymer???Electrode Interfacial Effect on Photovoltaic Performances in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Based Solar Cells, The Journal of Physical Chemistry C, vol.113, issue.38, pp.113-16807, 2009.
DOI : 10.1021/jp906277k

J. Kniepert, Photogeneration and Recombination in P3HT/PCBM Solar Cells Probed by Time-Delayed Collection Field Experiments, The Journal of Physical Chemistry Letters, vol.2, issue.7, pp.700-705, 2011.
DOI : 10.1021/jz200155b

J. Schafferhans, Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance, Organic Electronics, vol.11, issue.10, pp.11-1693, 2010.
DOI : 10.1016/j.orgel.2010.07.016

D. Bettignies and R. , Accelerated lifetime measurements of P3HT:PCBM solar cells, Synthetic Metals, vol.156, issue.7-8, pp.7-8, 2006.
DOI : 10.1016/j.synthmet.2005.06.016

J. H. Seo, High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells, Advanced Materials, vol.20, issue.33, pp.24-4523, 2012.
DOI : 10.1002/adma.201201419

L. He, High efficiency planar Si/organic heterojunction hybrid solar cells, Applied Physics Letters, vol.100, issue.7, pp.73503-73506, 2012.
DOI : 10.1063/1.3684872

T. Jeon, Effects of acid-treated silicon nanowires on hybrid solar cells performance, Solar Energy Materials and Solar Cells, vol.117, pp.632-637, 2013.
DOI : 10.1016/j.solmat.2012.09.015

URL : https://hal.archives-ouvertes.fr/hal-00829850

Y. Dan, Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires, Nano Letters, vol.11, issue.6, pp.2527-2532, 2011.
DOI : 10.1021/nl201179n

C. Goh, S. R. Scully, and M. D. Mcgehee, Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells, Journal of Applied Physics, vol.101, issue.11, pp.114503-114515, 2007.
DOI : 10.1063/1.2737977

K. Golap, Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes, Journal of Physics D: Applied Physics, issue.11, pp.42-115104, 2009.

O. Gunawan and S. Guha, Characteristics of vapor???liquid???solid grown silicon nanowire solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.8, pp.93-1388, 2009.
DOI : 10.1016/j.solmat.2009.02.024