On some multi-phase problems in continuum mechanics

Fluid mixtures—Fatigue—Strained semiconductors

Stefano Bosia

Politecnico di Milano - Prof. M. Grasselli
École Polytechnique - Prof. A. Constantinescu

10th December 2013
Aims

Modelling multi-phase systems and studying their asymptotic behaviour through the theory of dynamical systems

- binary fluids
- strained semiconductors
- fatigue in polycrystalline metals
Aims

Modelling multi-phase systems and studying their asymptotic behaviour through the theory of dynamical systems

- binary fluids
- strained semiconductors
- fatigue in polycrystalline metals
Contents

1. Asymptotic behaviour of fluid mixtures
2. Strain in semiconductors
Contents

1. Asymptotic behaviour of fluid mixtures

2. Strain in semiconductors
Main problem

Modelling questions:
- How can quenching of metals be characterised?
- What can diffuse interface models tell on polymer mixtures?
- How can the insurgent patterns be described?
- Do nonlocal interactions play a significant role?

Mathematical issues:
- Navier-Stokes equations \(\rightarrow\) well-posedness problems in 3D
- physically significant singular potential
- separation property
- regularity theory
Modelling phase separation

Free energy:
\[
\Phi = \frac{\epsilon}{2} \int |\nabla \psi|^2 + \frac{1}{\epsilon} \int f(\psi)
\]

surface tension \quad double well

A gradient flow approach gives
\[
\alpha \partial_t \psi = \Delta(-\epsilon \Delta \psi + \frac{1}{\epsilon} f(\psi))
\]

\(\alpha\): relaxation parameter
\(\sqrt{\epsilon}\): interaction length
Modelling phase separation

Free energy:
\[\Phi = \frac{\epsilon}{2} \int |\nabla \psi|^2 + \frac{1}{\epsilon} \int f(\psi) \]

A gradient flow approach gives
\[\alpha \partial_t \psi = \Delta \left(-\epsilon \Delta \psi + \frac{1}{\epsilon} f(\psi) \right) \]

\(\alpha \): relaxation parameter
\(\sqrt{\epsilon} \): interaction length

\(f(\psi) \)

homogeneous phase
Modelling phase separation

Free energy:
\[\Phi = \frac{\epsilon}{2} \int |\nabla \psi|^2 + \frac{1}{\epsilon} \int f(\psi) \]

surface tension \[\text{double well} \]

A gradient flow approach gives
\[\alpha \partial_t \psi = \Delta (-\epsilon \Delta \psi + \frac{1}{\epsilon} f(\psi)) \]

\(\alpha \) : relaxation parameter
\(\sqrt{\epsilon} \) : interaction length

cooling
Modelling phase separation

Free energy:

$$\Phi = \frac{\epsilon}{2} \int |\nabla \psi|^2 + \frac{1}{\epsilon} \int f(\psi)$$

surface tension → double well

A gradient flow approach gives

$$\alpha \partial_t \psi = \Delta (-\epsilon \Delta \psi + \frac{1}{\epsilon} f(\psi))$$

α: relaxation parameter
$\sqrt{\epsilon}$: interaction length

fluctuations \rightarrow phase separation
Modelling phase separation

Free energy:
\[\Phi = \frac{\epsilon}{2} \int |\nabla \psi|^2 + \frac{1}{\epsilon} \int f(\psi) \]

- surface tension
- double well

A gradient flow approach gives
\[\alpha \partial_t \psi = \Delta(-\epsilon \Delta \psi + \frac{1}{\epsilon} f(\psi)) \]

- \(\alpha \): relaxation parameter
- \(\sqrt{\epsilon} \): interaction length

\(\Phi \): NOT a phase transition!
The Cahn-Hilliard equation I

\[\begin{cases} \partial_t \psi + (\mathbf{v}(t) \cdot \nabla)\psi = \Delta (f'(\psi) - \Delta \psi) \\ \partial_{\nu}\psi = \partial_{\nu}\mu = 0 \end{cases} \]

No mass flux; phase interfaces “orthogonal” to boundary

Mass conservation

\[\int_{\Omega} \psi(t) = C \]
The Cahn-Hilliard equation I

\[
\begin{cases}
\partial_t \psi + (\mathbf{v}(t) \cdot \nabla) \psi = \Delta (f'(\psi) - \Delta \psi) \\
\partial_n \psi = \partial_n \mu = 0
\end{cases}
\]

No mass flux; phase interfaces “orthogonal” to boundary.

Mass conservation

\[
\int_{\Omega} \psi(t) = C
\]
The Cahn-Hilliard equation I

\[
\begin{aligned}
\left\{ \begin{array}{l}
\partial_t \psi + (\mathbf{v}(t) \cdot \nabla) \psi = \Delta (f'(\psi) - \Delta \psi) \\
\partial_n \psi = \partial_n \mu = 0
\end{array} \right.
\end{aligned}
\]

No mass flux; phase interfaces \textit{“orthogonal”} to boundary

Mass conservation

\[
\int_{\Omega} \psi(t) = C
\]
The Cahn-Hilliard equation I

\[
\begin{aligned}
\begin{cases}
\frac{\partial \psi}{\partial t} + (v(t) \cdot \nabla)\psi &= \Delta (f'(\psi) - \Delta \psi) \\
\partial_{\nu} \psi &= \partial_{\nu} \mu = 0
\end{cases}
\end{aligned}
\]

No mass flux; phase interfaces “orthogonal” to boundary

Mass conservation

\[
\int_{\Omega} \psi(t) = C
\]
The Cahn-Hilliard equation II

Thermodynamically significant singular potential:

\[f(\psi) = (1 + \psi) \log(1 + \psi) + (1 - \psi) \log(1 - \psi) \]

\[+ (1 - \psi)(1 + \psi) + C \]

This potential is often regularised by taking

\[f(\psi) = |\psi|^{2l} - \psi^2 \]

\[l \in \mathbb{N}, l \geq 2 \]
The Cahn-Hilliard equation II

Thermodynamically significant singular potential:

\[f(\psi) = (1 + \psi) \log(1 + \psi) + (1 - \psi) \log(1 - \psi) \]

\[+ (1 - \psi)(1 + \psi) + C \]

This potential is often regularised by taking

\[f(\psi) = |\psi|^{2l} - \psi^2 \]

\[l \in \mathbb{N}, l \geq 2 \]
The Cahn-Hilliard equation II

Thermodynamically significant singular potential:

\[f(\psi) = (1 + \psi) \log(1 + \psi) + (1 - \psi) \log(1 - \psi) \]

convex part

\[+ (1 - \psi)(1 + \psi) + C \]

Lip. part

This potential is often regularised by taking

\[f(\psi) = |\psi|^{2l} - \psi^2 \]

\[l \in \mathbb{N}, l \geq 2 \]
The Cahn-Hilliard equation II

Thermodynamically significant singular potential:

\[
f(\psi) = (1 + \psi) \log(1 + \psi) + (1 - \psi) \log(1 - \psi) + (1 - \psi)(1 + \psi) + C
\]

This potential is often regularised by taking

\[
f(\psi) = |\psi|^{2l} - \psi^2
\]

\(l \in \mathbb{N}, l \geq 2 \)
On nonlocal interactions

Nonlocal interacts between particles of the mixture

Kac potentials: \(\gamma^n K(\gamma |x - y|), \quad \gamma > 0 \)

A hydrodynamic limit leads to the total energy

\[
E_P(\psi) \propto \int\int_{\Omega \times \Omega} K(|x - y|)|\psi(x) - \psi(y)|^2 + O.T.
\]

Regular kernel \(K \in W^{1,1} \)
- second-order integro-differential equation
- studied by Frigeri, Grasselli et al.

Singular kernel \(K(y) \propto |y|^{-n-\alpha} \)
- formal structure of CH equation preserved
- incomplete regularity theory
On nonlocal interactions

Nonlocal interacts between particles of the mixture

\[Kac \text{ potentials: } \gamma^n K(\gamma |x - y|), \quad \gamma > 0 \]

A hydrodynamic limit leads to the total energy

\[E_P(\psi) \propto \int \int_{\Omega \times \Omega} K(|x - y|) |\psi(x) - \psi(y)|^2 + O.T. \]

Regular kernel \(K \in W^{1,1} \)
- second-order integro-differential equation
- studied by Frigeri, Grasselli et al.

Singular kernel \(K(y) \propto |y|^{-n-\alpha} \)
- formal structure of CH equation preserved
- incomplete regularity theory
The Cahn-Hilliard-Navier-Stokes system

\[\Omega \in \mathbb{R}^n, \; n = 2, 3 \]

\[
\begin{cases}
\partial_t u + (u \cdot \nabla)u = -\nabla p + \nabla \cdot (\tau(\nabla u)) - \nabla \cdot (\nabla \psi \otimes \nabla \psi) + g(t) \\
\nabla \cdot u = 0 \\
\partial_t \psi + (u \cdot \nabla)\psi = \Delta \mu \\
\mu = \frac{1}{\epsilon} f'(\psi) - \epsilon \Delta \psi
\end{cases}
\]

Main assumptions

- stress-deformation rate relation
- chemical potential
- diffusion operator

\[f'(\psi) = \begin{cases}
\psi^3 - C_\theta \psi \\
- C_\theta \psi + \log \frac{1+\psi}{1-\psi}
\end{cases} \]
The Cahn-Hilliard-Navier-Stokes system

\[\Omega \in \mathbb{R}^n, \ n = 2, 3 \]

\[\begin{cases}
\partial_t u + (u \cdot \nabla) u = -\nabla p + \nabla \cdot (\tau(\nabla u)) - \nabla \cdot (\nabla \psi \otimes \nabla \psi) + g(t) \\
\nabla \cdot u = 0 \\
\partial_t \psi + (u \cdot \nabla) \psi = \Delta \mu \\
\mu = \frac{1}{\epsilon} f'(\psi) - \epsilon \Delta \psi
\end{cases} \]

Main assumptions

- stress-deformation rate relation
- chemical potential

\[f'(\psi) = \begin{cases}
\psi^3 - C_\theta \psi \\
- C_\theta \psi + \log \frac{1+\psi}{1-\psi}
\end{cases} \]

- diffusion operator
The Cahn-Hilliard-Navier-Stokes system

$$\Omega \in \mathbb{R}^n, \ n = 2, 3$$

$$\begin{cases}
\partial_t u + (u \cdot \nabla)u = -\nabla p + \nabla \cdot (\tau(\nabla u)) - \nabla \cdot (\nabla \psi \otimes \nabla \psi) + g(t) \\
\nabla \cdot u = 0 \\
\partial_t \psi + (u \cdot \nabla)\psi = \Delta \mu \\
\mu = \frac{1}{\epsilon} f'(\psi) - \epsilon \Delta \psi
\end{cases}$$

Main assumptions

- stress-deformation rate relation
- chemical potential

$$f'(\psi) = \begin{cases}
\psi^3 - C_\theta \psi \\
-C_\theta \psi + \log \frac{1+\psi}{1-\psi}
\end{cases}$$

- diffusion operator
The Cahn-Hilliard-Navier-Stokes system

\[\Omega \in \mathbb{R}^n, \ n = 2, 3 \]

\[
\begin{align*}
\partial_t u + (u \cdot \nabla) u &= -\nabla p + \nabla \cdot (\tau(\nabla u)) - \nabla \cdot (\nabla \psi \otimes \nabla \psi) + g(t) \\
\nabla \cdot u &= 0 \\
\partial_t \psi + (u \cdot \nabla) \psi &= \Delta \mu \\
\mu &= \frac{1}{\epsilon} f'(\psi) - \epsilon \Delta \psi
\end{align*}
\]

Main assumptions

- stress-deformation rate relation
- chemical potential

\[
f'(\psi) = \begin{cases}
\psi^3 - C_\theta \psi \\
-C_\theta \psi + \log \frac{1+\psi}{1-\psi}
\end{cases}
\]

- diffusion operator
Some background

The model H has been widely studied

- 2D, \(\exists! \) (Starovoitov '97, Boyer '01) long-time behaviour (Wu et al. '09, Gal and Grasselli '10)
- Singular potential: \(\exists! \), global attractor, convergence to stationary states (Abels '09)
- nonlocal (smooth kernel) with regular and singular potential: \(\exists! \), large-time behaviour (Frigeri, Grasselli et al. '12)

The nonlocal CH model was rigourously derived by Giacomin and Lebowitz (1996)
Infinite dimensional dynamical systems—attractors

Main tools:
- global attractor
- trajectory attractor
- exponential attractor
- pullback attractor

Basic issues:
- compactness
- finite-dimensionality
- invariance
- rate of attraction

This point of view is complementary to the study of convergence to stationary states
Infinite dimensional dynamical systems—attractors

Main tools:
- global attractor
- trajectory attractor
- exponential attractor
- pullback attractor

Basic issues:
- compactness
- finite-dimensionality
- invariance
- rate of attraction

This point of view is complementary to the study of convergence to stationary states
Infinite dimensional dynamical systems—attractors

Main tools:
- global attractor
- trajectory attractor
- exponential attractor
- pullback attractor

Basic issues:
- compactness
- finite-dimensionality
- invariance
- rate of attraction

This point of view is complementary to the study of convergence to stationary states
Semigroups

Definition

A family \(\{S(t)\}_{t \geq 0} \), \(S(t) : X \to X \) is a \textit{semigroup} on \(X \) if

- \(S(0) = I \)
- \(S(t)S(s) = S(t + s) \) for any \(s, t \geq 0 \)

Definition

A set \(B \subset X \) is \textit{absorbing} for \(\{S(t)\}_{t \geq 0} \) if for any bdd set \(B \subset X \) there exists a time \(t_B \geq 0 \) s.t. \(S(t)B \subset B \) for all \(t \geq t_B \)
Semigroups

Definition

A family \(\{S(t)\}_{t \geq 0} \), \(S(t) : X \rightarrow X \) is a **semigroup** on \(X \) if

1. \(S(0) = I \)
2. \(S(t)S(s) = S(t + s) \) for any \(s, t \geq 0 \)

Definition

A set \(B \subset X \) is **absorbing** for \(\{S(t)\}_{t \geq 0} \) if for any bdd set \(B \subset X \) there exists a time \(t_B \geq 0 \) s.t. \(S(t)B \subset B \) for all \(t \geq t_B \)
Global attractors

Definition
A set $\mathcal{A} \subset X$ is the global attractor for $\{S(t)\}_{t \geq 0}$ if it is
- compact
- invariant
- minimal
- attracting

Theorem
If $\{S(t)\}_{t \geq 0}$ possesses a compact absorbing set then it has a global attractor

If it exists, the global attractor is unique
Global attractors

Definition
A set $\mathcal{A} \subset X$ is the global attractor for $\{S(t)\}_{t \geq 0}$ if it is
- compact
- invariant
- minimal
- attracting

Theorem
If $\{S(t)\}_{t \geq 0}$ possesses a compact absorbing set then it has a global attractor

If it exists, the global attractor is unique
Global attractors

Definition
A set $\mathcal{A} \subset X$ is the global attractor for $\{S(t)\}_{t \geq 0}$ if it is
- compact
- invariant
- minimal
- attracting

Theorem
If $\{S(t)\}_{t \geq 0}$ possesses a compact absorbing set then it has a global attractor.

If it exists, the global attractor is unique.
Exponential attractors

Definition

A compact and finite-dimensional set, which attracts all bdd sets of initial data exponentially fast, is called *exponential attractor*

Exponential attractors may not be unique

Definition

Let $X_1 \subseteq X$, then $\{S(t)\}_{t \geq 0}$ has the *smoothing property* if there exist $t \geq 0$, C and a bdd absorbing set $B \subset X$ s.t.

$$\forall x, y \in B, \quad \|S(t)x - S(t)y\|_{X_1} \leq C\|x - y\|_X$$

Theorem

If $\{S(t)\}_{t \geq 0}$ has a bdd absorbing set on which the smoothing property holds at time t_0, then the discrete semigroup $\{S(kt_0)\}_{k \in \mathbb{N}}$ has a *discrete-time exponential attractor*
Exponential attractors

Definition
A compact and finite-dimensional set, which attracts all bdd sets of initial data exponentially fast, is called **exponential attractor**

Exponential attractors may not be unique

Definition
Let $X_1 \subset X$, then $\{S(t)\}_{t \geq 0}$ has the **smoothing property** if there exist $t \geq 0$, C and a bdd absorbing set $B \subset X$ s.t.

$$\forall x, y \in B, \quad \|S(t)x - S(t)y\|_{X_1} \leq C\|x - y\|_X$$

Theorem
*If $\{S(t)\}_{t \geq 0}$ has a bdd absorbing set on which the smoothing property holds at time t_0, then the discrete semigroup $\{S(kt_0)\}_{k \in \mathbb{N}}$ has a **discrete-time** exponential attractor*
Our results

4 different settings

- non-newtonian fluids (shear thickening, Ladyzhenskaya type)
 3D, singular potential
 \rightarrow existence, trajectory attractor

- chemically reacting fluids, 2D regular potential
 \rightarrow well-posedness, robust family of exponential attractors

- original system, potential with arbitrary polynomial growth
 \rightarrow pullback exponential attractor

- nonlocal diffusion
 \rightarrow existence, regularity
Non-newtonian fluids

Shear-thickening fluid

$$\tau(\nabla u) : \nabla u \geq C_N |\nabla u|^2 + C_L |\nabla u|^p$$

This gives the energy identity also in the 3D case
Uniqueness is open (singular potential) in contrast to the
uncoupled equations

Assumptions
- singular potential
- order-parameter-dependent viscosity
- non autonomous forcing term

Results
- existence
- global long-time behaviour (trajectory attractor in weak and strong topologies)
Non-newtonian fluids

Shear-thickening fluid

\[\tau(\nabla u) : \nabla u \geq C_N |\nabla u|^2 + C_L |\nabla u|^p \]

This gives the energy identity also in the 3D case.

Uniqueness is open (singular potential) in contrast to the uncoupled equations.

Assumptions

- singular potential
- order-parameter-dependent viscosity
- non autonomous forcing term

Results

- existence
- global long-time behaviour (trajectory attractor in weak and strong topologies)
Polymer models - Chemically reacting fluids

We consider chemical reaction between the two phases (e.g. transition between two polymer configurations) \(\rightarrow \) changes to pattern formation

\[
\partial_t \psi + (u \cdot \nabla) \psi + \delta(\psi - c_0) = \Delta \mu
\]

Results (2D, regular potential)
- existence and uniqueness
- global long-time behaviour (robust exponential attractor)

Open problems and ongoing work
- convergence to stationary states?
- pullback (exponential) attractor
Polymer models - Chemically reacting fluids

We consider chemical reaction between the two phases (e.g. transition between two polymer configurations) → changes to pattern formation

\[
\partial_t \psi + (u \cdot \nabla)\psi + \delta(\psi - c_0) = \Delta \mu
\]

Results (2D, regular potential)
- existence and uniqueness
- global long-time behaviour (robust exponential attractor)

Open problems and ongoing work
- convergence to stationary states?
- pullback (exponential) attractor
Exponential pullback attractors

Bosia, Gatti - submitted

The pullback attracting property can be written as

$$\lim_{t \to -\infty} d(U(s, t)z, A(s)) = 0$$

The attractor is the set of possible current configurations for a system that has been evolving for a (infinitely) long time.

Assumptions (2D)

- regular potential (arbitrary fast polynomial growth)
- non-autonomous forcing term

Results

- existence
- regularity estimates depending on the growth of the potential only through constants
- existence of an exponential pullback attractor
Exponential pullback attractors

Bosia, Gatti - submitted

The pullback attracting property can be written as

$$\lim_{t \to -\infty} d(U(s, t)z, A(s)) = 0$$

The attractor is the set of possible current configurations for a system that has been evolving for a (infinitely) long time.

Assumptions (2D)

- regular potential (arbitrary fast polynomial growth)
- non-autonomous forcing term

Results

- existence
- regularity estimates depending on the growth of the potential only through constants
- existence of an exponential pullback attractor
Nonlocal interactions

Abels, Bosia, Grasselli - submitted

The chemical potential is given by

\[(\mu, \varphi) = \mathcal{E}(\psi, \varphi) + (f'(\psi), \varphi) \quad \forall \varphi \in H^{\alpha/2}\]

\(\mathcal{E}\) is the “regional fractional laplacian”

\[\mathcal{E}(u, v) = \iint_{\Omega \times \Omega} K(x - y)(u(x) - u(y))(v(x) - v(y))\]

Results (CH , 3D, singular potential)

- well-posedness (variational)
- regularity results (continuity)
- characterisation of boundary conditions for regular solutions
- global attractor

Open problems

- regularity up to the boundary
- notion of solution
- convergence to stationary states
Nonlocal interactions

Abels, Bosia, Grasselli - submitted

The chemical potential is given by

\[(\mu, \varphi) = \mathcal{E}(\psi, \varphi) + (f'(\psi), \varphi) \quad \forall \varphi \in H^{\alpha/2}\]

\(\mathcal{E}\) is the “regional fractional laplacian”

\[
\mathcal{E}(u, v) = \int\int_{\Omega \times \Omega} K(x - y)(u(x) - u(y))(v(x) - v(y))
\]

Results (CH, 3D, singular potential)

- well-posedness (variational)
- regularity results (continuity)
- characterisation of boundary conditions for regular solutions
- global attractor

Open problems

- regularity up to the boundary
- notion of solution
- convergence to stationary states
Theorem

Let $\psi_0 \in H^{\alpha/2}$, $\Phi(\psi_0) < \infty$ then there exists a unique weak solution s.t.

$$
\psi \in C(H^{\alpha/2}_0) \quad \partial_t \psi \in L^2(H_0^{-1}) \quad \mu \in L^2(H^1)
$$

Moreover there hold

$$
\Phi(\psi(t)) + \int_0^t |\nabla \mu| = \Phi(\psi_0) \quad \forall t > 0
$$

if $n \leq 3$ \quad $\psi \in L^\infty(C^\beta)$ \quad for some $\beta > 0$

and the associated semigroup has a (connected) global attractor

WARNING! The expected $L^2(H^\alpha)$ regularity is unknown
Nonlocal interactions II
Existence and uniqueness

Theorem

Let \(\psi_0 \in H^{\alpha/2} \), \(\Phi(\psi_0) < \infty \) then there exists a unique weak solution s.t.

\[
\psi \in C(H^{\alpha/2}_{(0)}) \quad \partial_t \psi \in L^2(H^{-1}_0) \quad \mu \in L^2(H^1)
\]

Moreover there hold

\[
\Phi(\psi(t)) + \int_0^t |\nabla \mu| = \Phi(\psi_0) \quad \forall t > 0
\]

if \(n \leq 3 \) \(\psi \in L^\infty(C^\beta) \) for some \(\beta > 0 \)

and the associated semigroup has a (connected) global attractor

WARNING! The expected \(L^2(H^\alpha) \) regularity is unknown
A sketch of proof

Let $\mathcal{E}(\psi, \varphi) = (\mathcal{L}\psi, \varphi)$, $\forall \psi, \varphi \in H^{\alpha/2}$

- well posedness of the problem (compactness and monotonicity arguments)

$(\mu, \varphi) = \theta(\nabla \psi, \nabla \varphi) + \mathcal{E}(\psi, \varphi) + (f'(\psi), \varphi)$

- limit $\theta \to 0$

- attractor: a compact absorbing set is given by

$\mu - f'(\psi) \in L^2 \subset H^{-\alpha/2}$ uniformly w.r.t. t

and $\mathcal{L}^{-1}: H^{-\alpha/2} \to H^{\alpha/2}$ continuous + energy identity
A sketch of proof

Let $\mathcal{E}(\psi, \varphi) = (\mathcal{L}\psi, \varphi)$, $\forall \psi, \varphi \in H^{\alpha/2}$

- well posedness of the problem (compactness and monotonicity arguments)

\[(\mu, \varphi) = \theta(\nabla \psi, \nabla \varphi) + \mathcal{E}(\psi, \varphi) + (f'(\psi), \varphi)\]

- limit $\theta \to 0$

- attractor: a compact absorbing set is given by

\[
\mu - f'(\psi) \in L^2 \subset \subset H^{-\alpha/2} \quad \text{uniformly w.r.t. } t
\]

and $\mathcal{L}^{-1}: H^{-\alpha/2} \to H^{\alpha/2}$ continuous + energy identity
A sketch of proof

Let \(\mathcal{E}(\psi, \varphi) = (\mathcal{L}\psi, \varphi) \), \(\forall \psi, \varphi \in H^{\alpha/2} \)

- well posedness of the problem (compactness and monotonicity arguments)

\[
(\mu, \varphi) = \theta(\nabla \psi, \nabla \varphi) + \mathcal{E}(\psi, \varphi) + (f'(\psi), \varphi)
\]

- limit \(\theta \to 0 \)

- attractor: a compact absorbing set is given by

\[
\mu - f'(\psi) \in L^2 \subset \subset H^{-\alpha/2} \quad \text{uniformly w.r.t.} \ t
\]

and \(\mathcal{L}^{-1} : H^{-\alpha/2} \to H^{\alpha/2} \) continuous + energy identity
A sketch of proof

Let $E(\psi, \varphi) = (L\psi, \varphi), \forall \psi, \varphi \in H^{\alpha/2}$

- well posedness of the problem (compactness and monotonicity arguments)

$$ (\mu, \varphi) = \theta(\nabla \psi, \nabla \varphi) + E(\psi, \varphi) + (f'(\psi), \varphi) $$

- limit $\theta \to 0$

- attractor: a compact absorbing set is given by

$$ \mu - f'(\psi) \in L^2 \subset \subset H^{-\alpha/2} \text{ uniformly w.r.t. } t $$

and $L^{-1}: H^{-\alpha/2} \to H^{\alpha/2}$ continuous + energy identity
What about the BC for ψ?

Theorem

If $\psi \in C^{1,\beta}$, $\beta > 0$, $x_0 \in \partial \Omega$ and

$$\exists n(x_0) = \lim_{\delta \to 0} \delta^{-1-n+\alpha} \iint (x - y)(\varphi_\delta(x) - \varphi_\delta(y))K(x - y)$$

with

$$\varphi_\delta(x) = \left(1 - \delta^{-1}|x - x_0|\right) \chi_{|x-x_0|<\delta}$$

Then $\nabla \psi \cdot n(x_0) = 0$

Proof: Local analysis
What about the BC for ψ?

Theorem

If $\psi \in C^{1,\beta}$, $\beta > 0$, $x_0 \in \partial \Omega$ and

$$
\exists \mathbf{n}(x_0) = \lim_{\delta \to 0} \delta^{-1-n+\alpha} \iint (x - y)(\varphi_\delta(x) - \varphi_\delta(y))K(x - y)
$$

with

$$
\varphi_\delta(x) = \left(1 - \delta^{-1}|x - x_0|\right) \chi_{|x-x_0|<\delta}
$$

Then $\nabla \psi \cdot \mathbf{n}(x_0) = 0$

Proof: Local analysis
Contents

1. Asymptotic behaviour of fluid mixtures

2. Strain in semiconductors
Main problem

How strain affects electronic properties of semiconductors? How this is reflected in the efficiency of solar cells? Can we tackle the problem from a macroscopic point of view?

- The problem is particularly important for thin films electronics
- We consider crystalline Si for simplicity. More precise models should consider polycrystalline or amorphous Si
Modelling electronic properties

What happens when two differently doped SCs are brought together?

- Charges **diffuse** through the contact
- An electric field is build up across the junction
Modelling electronic properties

What happens when two differently doped SCs are brought together?
- Charges **diffuse** through the contact
- An electric field is build up across the junction
Modelling electronic properties

What happens when two differently doped SCs are brought together?

- Charges **diffuse** through the contact
- An electric field is build up across the junction

![Diagram showing charges and electric field](image)
Modelling electronic properties

What happens when two differently doped SCs are brought together?

- Charges diffuse through the contact
- An electric field is built up across the junction and drifts the carriers.

\[J_n = -q\mu_n n \nabla \psi + qD_n \nabla n \]
\[J_p = -q\mu_p p \nabla \psi - qD_p \nabla p \]

- \(n \): density of electrons
- \(p \): density of holes
- \(E \): energy of bands
- \(\psi \): electric potential
Strain dependencies

Adding Gauss law and conservation of charges, at equilibrium

\[
\begin{align*}
\epsilon_s \Delta \psi &= q ((n - N_D) - (p - N_A)) \\
0 &= D_n \Delta n - \mu_n \nabla n \cdot \nabla \psi - \mu_n n \Delta \psi + G_n - R_n \\
0 &= D_p \Delta p + \mu_p \nabla p \cdot \nabla \psi + \mu_p p \Delta \psi + G_p - R_p
\end{align*}
\]

Strain effects

- energy band levels
 \(\rightarrow\) changes in the equilibrium distributions of the charges
- mobilities and diffusivities
 \(\rightarrow\) changes in the conductivity of the material
Strain dependencies

Adding Gauss law and conservation of charges, at equilibrium

\[
\begin{align*}
\epsilon_s \Delta \psi &= q ((n - N_D) - (p - N_A)) \\
0 &= D_n \Delta n - \mu_n \nabla n \cdot \nabla \psi - \mu_n n \Delta \psi + G_n - R_n \\
0 &= D_p \Delta p + \mu_p \nabla p \cdot \nabla \psi + \mu_p p \Delta \psi + G_p - R_p
\end{align*}
\]

Strain effects

- energy band levels
 \(\rightarrow\) changes in the equilibrium distributions of the charges

- mobilities and diffusivities
 \(\rightarrow\) changes in the conductivity of the material
Strain dependencies

- shift in band levels \rightarrow energy gap
- change in shape (multi-valley model + Luttinger Hamiltonian)
Strain dependencies

- shift in band levels \rightarrow energy gap
- change in shape (multi-valley model $+$ Luttinger Hamiltonian)

\[
\begin{align*}
\text{Conduction} & \quad [0, 0, 1] \quad \rightarrow \quad [0, 1, 0] \\
& \quad [1, 0, 0]
\end{align*}
\]

\[
\begin{align*}
\text{Valence} & \quad [0, 0, 1] \quad \rightarrow \quad [0, 1, 0] \\
& \quad [1, 0, 0]
\end{align*}
\]
Strain dependencies

- shift in band levels \rightarrow energy gap
- change in shape (multi-valley model + Luttinger Hamiltonian)
 \rightarrow changes mobilities and effective density of states
The characteristic curve for strained p-n junctions

A p-n junction is the juxtaposition of a n- and a p-doped region. The I-V curve can be obtained by physical arguments or rigorous asymptotic expansions.

- exponential profile in the depletion zone
- injected minority carriers n^0_p, p^0_n
- holes and electron currents

$$J \propto \left(n^0_p \sqrt{\frac{D_n}{\tau_n}} + p^0_n \sqrt{\frac{D_p}{\tau_p}} \right) \left(e^{\phi_e/U_T} \right)$$

awaiting for experimental confirmation
Experimental campaign

personal communication, D.Lange LMS–PICM

Experimental setting

n-doped Si

Evidence \(\rightarrow\) Linear(?) behaviour, but combined effect of

- mobility
- change in carrier concentrations
Experimental campaign

personal communication, D. Lange LMS–PICM

Experimental setting

Evidence \rightarrow Linear(?) behaviour, but combined effect of

- mobility
- change in carrier concentrations
Energetic formulation and coupling

Bosia, Constantinescu, Jabbour, Triantafyllidis - in preparation

Is a variational formulation of the DD system possible? Nontrivial (the existence proofs require fixed point arguments)

Results

- energetic formulation for DD
- the two transport mechanisms recovered introducing a special internal energy
- coupled model for linear elasticity
- formal and rigourous asymptotic expansions (ongoing work)

Backward coupling can be neglected at first approximation (Maxwell stresses)
Energetic formulation and coupling

Bosia, Constantinescu, Jabbour, Triantafyllidis - in preparation

Is a variational formulation of the DD system possible?
Nontrivial (the existence proofs require fixed point arguments)

Results

- energetic formulation for DD
- the two transport mechanisms recovered introducing a special internal energy
- coupled model for linear elasticity
- formal and rigorous asymptotic expansions (ongoing work)

Backward coupling can be neglected at first approximation (Maxwell stresses)
Energetic formulation and coupling

Bosia, Constantinescu, Jabbour, Triantafyllidis - in preparation

Is a variational formulation of the DD system possible?
Nontrivial (the existence proofs require fixed point arguments)

Results

- energetic formulation for DD
- the two transport mechanisms recovered introducing a special internal energy
- coupled model for linear elasticity
- formal and rigorous asymptotic expansions (ongoing work)

Backward coupling can be neglected at first approximation (Maxwell stresses)
A variational formulation of the DD equations

Internal variables and internal energy

\[n \quad p \quad \phi \quad \Psi(n, p, \psi) \]

We assume the following dissipation inequality

\[\frac{d}{dt} \int_{\Omega} \Psi(n, p, \psi) \leq \int_{\Omega} \mathbf{J} \cdot \mathbf{e} - \int_{\partial \Omega} \varphi_n \mathbf{j}_n \cdot \mathbf{n} - \int_{\partial \Omega} \varphi_p \mathbf{j}_p \cdot \mathbf{n} \]

A direct computation gives

\[\varphi_n = \frac{\partial \psi}{\partial n} \quad \varphi_p = \frac{\partial \psi}{\partial p} \]

\[-\mathbf{j}_n \cdot (-q \mathbf{e} - \nabla \varphi_n) - \mathbf{j}_p \cdot (q \mathbf{e} - \nabla \varphi_p) \leq 0 \]
A variational formulation of the DD equations

Internal variables and internal energy

\[n \quad p \quad \phi \quad \Psi(n, p, \psi) \]

We assume the following dissipation inequality

\[\frac{d}{dt} \int_\Omega \Psi(n, p, \psi) \leq \int_\Omega \mathbf{J} \cdot \mathbf{e} - \int_{\partial \Omega} \varphi_n \mathbf{j}_n \cdot \mathbf{n} - \int_{\partial \Omega} \varphi_p \mathbf{j}_p \cdot \mathbf{n} \]

A direct computation gives

\[\varphi_n = \frac{\partial \psi}{\partial n} \quad \varphi_p = \frac{\partial \psi}{\partial p} \]

\[-\mathbf{j}_n \cdot (-q \mathbf{e} - \nabla \varphi_n) - \mathbf{j}_p \cdot (q \mathbf{e} - \nabla \varphi_p) \leq 0 \]
A variational formulation of the DD equations

Internal variables and internal energy

\[n \quad p \quad \phi \quad \Psi(n, p, \psi) \]

We assume the following dissipation inequality

\[
\frac{d}{dt} \int_{\Omega} \Psi(n, p, \psi) \leq \int_{\Omega} \mathbf{J} \cdot \mathbf{e} - \int_{\partial\Omega} \varphi_n \mathbf{j}_n \cdot \nu - \int_{\partial\Omega} \varphi_p \mathbf{j}_p \cdot \nu
\]

A direct computation gives

\[
\varphi_n = \frac{\partial \Psi}{\partial n} \quad \varphi_p = \frac{\partial \Psi}{\partial p}
\]

\[-\mathbf{j}_n \cdot (-q \mathbf{e} - \nabla \varphi_n) - \mathbf{j}_p \cdot (q \mathbf{e} - \nabla \varphi_p) \leq 0\]
Constitutive equations

Currents

\[j_n = \frac{\mu_n n}{q} (-q \mathbf{e} - \nabla \varphi_n) \quad j_p = \frac{\mu_p p}{q} (q \mathbf{e} - \nabla \varphi_p) \]

\[\mu_n \geq 0 \quad \mu_p \geq 0 \]

Internal energy

\[\Psi = n(\varphi_{n0} - k_B \theta) + k_B \theta n \ln n + p\text{-terms} \]

For the coupled case:

- additional internal variable \(u \)
- \(\mu = \mu(\nabla u) \) and equilibrium equation
Constitutive equations

Currents

\[j_n = \frac{\mu_n n}{q} (-qe - \nabla \varphi_n) \quad j_p = \frac{\mu_p p}{q} (qe - \nabla \varphi_p) \]

\[\mu_n \geq 0 \quad \mu_p \geq 0 \]

Internal energy

\[\psi = n(\varphi_{n0} - k_B \theta) + k_B \theta n \ln n + p\text{-terms} \]

For the coupled case:

- additional internal variable \(u \)
- \(\mu = \mu(\nabla u) \) and equilibrium equation
Towards asymptotics (1D)

Inspired by P. Markowich ’84
- reduced (bulk) equation

\[0 = (n - N_D) - (p - N_A) \quad u' = \text{const} \]

- no boundary layer at the (Ohmic) contacts
- computations for the inner layer in progress...
Further developments

Binary fluids
- convergence to stationary states for NSCHO model
- full regularity theory for the nonlocal CH equation
- well-posedness for the nonlocal model H (singular kernel)

Strained electronics
- experimental validation
- asymptotics at the strained p-n junction
- light absorption
- optimisation of strained devices
High cycle fatigue and dynamical systems

Contents

3 High cycle fatigue and dynamical systems
Main problem

We look for a (simple) local rule:

\[\Phi(\epsilon, \epsilon^p, \sigma, \ldots; \sigma_Y, \ldots) = N_f(x) \quad (or T_f(x)) \]

Reaching the fatigue limit in one point corresponds to crack initiation from that point.

The **time to crack initiation** will be the lowest time to failure of the structure:

\[N_f = \inf_{x \in \Omega} N_f(x) \]
A macro-meso approach

One active slip system on the most sollicitate grain
Macro- and mesoscopic resolved shear stresses

\[T = (m \otimes n : \Sigma)m \]
\[\tau = (m \otimes n : \sigma)m \]
\[\tau = T - \mu \gamma^p m \]

The active slip system is such that
\[\tau_{\text{max}} = \max_{n,m} \tau |(m,n)| \]

Dang Van criterion:
Elastic shakedown at both macro- and mesoscales for infinite lifetime

\[\tau_{\text{max}} + Ap_{\text{max}} \leq B \]
A macro-meso approach

Elastic laws
\[\sigma = l \varepsilon \quad \Sigma = L E \]
Lin-Taylor scheme
\[l = L \quad \varepsilon = E \]

One active slip system on the most sollicitate grain
Macro- and mesoscopic resolved shear stresses
\[T = (m \otimes n : \Sigma) m \]
\[\tau = (m \otimes n : \sigma) m \]
\[\tau = T - \mu \gamma^p m \]
The active slip system is such that
\[\tau_{\text{max}} = \max_{n, m} \tau |(m, n)| \]

Dang Van criterion:
Elastic shakedown at both macro- and mesoscales for infinite lifetime
\[\tau_{\text{max}} + A p_{\text{max}} \leq B \]
A macro-meso approach

One active slip system on the most sollicitate grain
Macro- and mesoscopic resolved shear stresses

\[
T = (m \otimes n : \Sigma)m \\
\tau = (m \otimes n : \sigma)m \\
\tau = T - \mu \gamma^p m
\]

The active slip system is such that

\[
\tau_{max} = \max_{n,m} \tau |(m, n)|
\]

Dang Van criterion:
Elastic shakedown at both macro- and mesoscales for infinite lifetime

\[
\tau_{max} + A \rho_{max} \leq B
\]
Morel’s model & dynamical systems
Isotropic and kinematic hardening in the inclusion

Von Mises relation:
$$f(\tau, b, \tau_y) = (\tau - b) \cdot (\tau - b) - \tau_y^2$$

Cumulated plastic mesostrain drives hardening
$$\dot{\Gamma} = \sqrt{\dot{\gamma}_p \cdot \dot{\gamma}_p}$$

Constitutive relations

$$\dot{b} = c \dot{\gamma}_p$$
$$\dot{\tau}_y = f(\Gamma) \dot{\Gamma}$$

Diagram:
- τ_y: von Mises stress
- τ_{lim}: limiting stress
- $\tau_y^{(0)}$: initial yield stress
- Γ: hardening parameter
- Failure point

Regions I, II, III indicate different stages of material behavior.
Morel’s model & dynamical systems
Isotropic and kinematic hardening in the inclusion

Von Mises relation:
\[f(\tau, b, \tau_y) = (\tau - b) \cdot (\tau - b) - \tau_y^2 \]

Cumulated plastic mesostrain drives hardening
\[\dot{\Gamma} \equiv \sqrt{\dot{\gamma}^p \cdot \dot{\gamma}^p} \]

Constitutive relations
\[\begin{align*}
\dot{b} &= c \dot{\gamma}^p \\
\dot{\tau}_y &= f(\Gamma) \dot{\Gamma} \\
\end{align*} \]
\[\begin{align*}
\dot{\Gamma} &= \frac{4}{\mu + c + g(\Gamma)} \left(\frac{\Delta T}{2} - G(\Gamma) \right) \\
G(\Gamma) &= \frac{\Delta T_0}{2} - \frac{|\Gamma - \Gamma_0|^\alpha}{\beta} \\
\end{align*} \]
Morel’s model & dynamical systems

Isotropic and kinematic hardening in the inclusion

Von Mises relation:

\[f(\tau, b, \tau_y) = (\tau - b) \cdot (\tau - b) - \tau_y^2 \]

Cumulated plastic mesostrain drives hardening

\[\dot{\Gamma} = \sqrt{\dot{\gamma}^p \cdot \dot{\gamma}^p} \]

Constitutive relations

\[\begin{align*}
\dot{b} &= c \dot{\gamma}^p \\
\dot{\tau}_y &= f(\Gamma) \dot{\Gamma} \\
\end{align*} \]

\[\dot{\Gamma} = \frac{4}{\mu + c + g(\Gamma)} \left(\frac{\Delta T}{2} - G(\Gamma) \right) \]

\[G(\Gamma) = \frac{\Delta T_0}{2} - \frac{|\Gamma - \Gamma_0|^\alpha}{\beta} \]

\[\dot{y} = y^2 + \epsilon \]

\[\epsilon > 0 \]

\[\dot{\gamma}^p = \gamma^p \cdot \dot{\gamma}^p \]

\[\dot{\gamma} = 4 \frac{\Delta T}{2} - G(\Gamma) \]

\[G(\Gamma) = \frac{\Delta T_0}{2} - \frac{|\Gamma - \Gamma_0|^\alpha}{\beta} \]
Morel’s model & dynamical systems
Isotropic and kinematic hardening in the inclusion

Von Mises relation:
\[f(\tau, b, \tau_y) = (\tau - b) \cdot (\tau - b) - \tau_y^2 \]

Cumulated plastic mesostrain drives hardening
\[\dot{\Gamma} = \sqrt{\dot{\gamma}'_p \cdot \dot{\gamma}'_p} \]

Constitutive relations
\[
\begin{align*}
\dot{b} &= c \dot{\gamma}'_p \\
\dot{\tau}_y &= f(\Gamma) \dot{\Gamma} \\
\dot{\Gamma} &= \frac{4}{\mu + c + g(\Gamma)} \left(\frac{\Delta T}{2} - G(\Gamma) \right) \\
G(\Gamma) &= \frac{\Delta T_0}{2} - \frac{|\Gamma - \Gamma_0|^{\alpha}}{\beta}
\end{align*}
\]
Morel’s model & dynamical systems
Isotropic and kinematic hardening in the inclusion

Von Mises relation:
\[f(\tau, b, \tau_y) = (\tau - b) \cdot (\tau - b) - \tau_y^2 \]

Cumulated plastic mesostrain drives hardening
\[\dot{\Gamma} \equiv \sqrt{\dot{\gamma}^p \cdot \dot{\gamma}^p} \]

Constitutive relations
\[\dot{b} = c \dot{\gamma}^p \]
\[\dot{\tau}_y = f(\Gamma) \dot{\Gamma} \]
\[\dot{\Gamma} = \frac{4}{\mu + c + g(\Gamma)} \left(\frac{\Delta T}{2} - G(\Gamma) \right) \]
\[G(\Gamma) = \frac{\Delta T_0}{2} - \frac{|\Gamma - \Gamma_0|^\alpha}{\beta} \]

\[\dot{y} = y^2 + \epsilon \]
\[\epsilon < 0 \]

\[\bullet \text{= failure} \]

\[\tau_y \]
\[\tau_{\text{lim}} \]
\[\tau_y^{(0)} \]

I II III
Some results

Aluminium 6082 T6

\[t_{-1} = 92 \text{ MPa} \quad s_{-1} = 132 \text{ MPa} \]

Wohler curve for the data

Observed vs. predicted fatigue endurances