M. Marquis, D. Lewandowski, V. Dugas, F. Aumont, S. Senechal et al., CD8+ T Cells but Not Polymorphonuclear Leukocytes Are Required To Limit Chronic Oral Carriage of Candida albicans in Transgenic Mice Expressing Human Immunodeficiency Virus Type 1, Infection and Immunity, vol.74, issue.4, pp.2382-2391, 2006.
DOI : 10.1128/IAI.74.4.2382-2391.2006

R. Martinez-lopez, L. Monteoliva, R. Diez-orejas, C. Nombela, G. et al., The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans, Microbiology, vol.150, issue.10, pp.3341-3354, 2004.
DOI : 10.1099/mic.0.27320-0

R. Martinez-lopez, H. Park, C. L. Myers, C. Gil, and S. G. Filler, Candida albicans Ecm33p Is Important for Normal Cell Wall Architecture and Interactions with Host Cells, Eukaryotic Cell, vol.5, issue.1, pp.140-147, 2006.
DOI : 10.1128/EC.5.1.140-147.2006

A. I. Martinez, L. Castillo, A. Garcera, M. V. Elorza, E. Valentin et al., Role of Pir1 in the construction of the Candida albicans cell wall, Microbiology, vol.150, issue.10, pp.3151-3161, 2004.
DOI : 10.1099/mic.0.27220-0

J. P. Martinez, J. L. Lopez-ribot, and W. L. Chaffin, Heterogeneous surface distribution of the fibrinogen-binding protein on Candida albicans, Infect Immun, vol.62, pp.709-712, 1994.

K. J. Mccreath, C. A. Specht, and P. W. Robbins, Molecular cloning and characterization of chitinase genes from Candida albicans., Proceedings of the National Academy of Sciences, vol.92, issue.7, pp.2544-2548, 1995.
DOI : 10.1073/pnas.92.7.2544

C. Mille, G. Janbon, F. Delplace, S. Ibata-ombetta, C. Gaillardin et al., Inactivation of CaMIT1 Inhibits Candida albicans Phospholipomannan ??-Mannosylation, Reduces Virulence, and Alters Cell Wall Protein ??-Mannosylation, Journal of Biological Chemistry, vol.279, issue.46, pp.47952-47960, 2004.
DOI : 10.1074/jbc.M405534200

T. Mio, M. Adachi-shimizu, Y. Tachibana, H. Tabuchi, S. B. Inoue et al., Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis., Journal of Bacteriology, vol.179, issue.13, pp.4096-4105, 1997.
DOI : 10.1128/jb.179.13.4096-4105.1997

A. Miyazato, K. Nakamura, N. Yamamoto, H. M. Mora-montes, M. Tanaka et al., Toll-Like Receptor 9-Dependent Activation of Myeloid Dendritic Cells by Deoxynucleic Acids from Candida albicans, Infection and Immunity, vol.77, issue.7, pp.3056-3064, 2009.
DOI : 10.1128/IAI.00840-08

J. F. Staab, S. D. Bradway, P. L. Fidel, and P. Sundstrom, Adhesive and Mammalian Transglutaminase Substrate Properties of Candida albicans Hwp1, Science, vol.283, issue.5407, pp.1535-1538, 1999.
DOI : 10.1126/science.283.5407.1535

P. Staib and J. Morschhauser, Chlamydospore formation in Candida albicans and Candida dubliniensis? an enigmatic developmental programme, Mycoses, vol.21, issue.7, pp.1-12, 2007.
DOI : 10.1111/j.1365-2958.2004.04414.x

S. H. Stalnaker, R. Stuart, W. , and L. , Mammalian O-mannosylation: unsolved questions of structure/function, Current Opinion in Structural Biology, vol.21, issue.5, pp.603-609, 2011.
DOI : 10.1016/j.sbi.2011.09.001

D. A. Stevens, M. Ichinomiya, Y. Koshi, and H. Horiuchi, Escape of Candida from Caspofungin Inhibition at Concentrations above the MIC (Paradoxical Effect) Accomplished by Increased Cell Wall Chitin; Evidence for ??-1,6-Glucan Synthesis Inhibition by Caspofungin, Antimicrobial Agents and Chemotherapy, vol.50, issue.9, pp.3160-3161, 2006.
DOI : 10.1128/AAC.00563-06

D. A. Stevens, T. C. White, D. S. Perlin, and C. P. Selitrennikoff, Studies of the paradoxical effect of caspofungin at high drug concentrations, Diagnostic Microbiology and Infectious Disease, vol.51, issue.3, pp.173-178, 2005.
DOI : 10.1016/j.diagmicrobio.2004.10.006

V. R. Stoldt, A. Sonneborn, C. E. Leuker, E. , and J. F. , Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi, The EMBO Journal, vol.16, issue.8, 1982.
DOI : 10.1093/emboj/16.8.1982

P. Sudbery, N. Gow, and J. Berman, The distinct morphogenic states of Candida albicans, Trends in Microbiology, vol.12, issue.7, pp.317-324, 2004.
DOI : 10.1016/j.tim.2004.05.008

P. E. Sudbery, The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization, Molecular Microbiology, vol.32, issue.1, pp.19-31, 2001.
DOI : 10.1046/j.1365-2958.2001.02459.x

P. E. Sudbery, Growth of Candida albicans hyphae, Nature Reviews Microbiology, vol.5, issue.10, pp.737-748, 2011.
DOI : 10.1038/nrmicro2636

J. N. Sun, N. V. Solis, Q. T. Phan, J. S. Bajwa, H. Kashleva et al., Host Cell Invasion and Virulence Mediated by Candida albicans Ssa1, PLoS Pathogens, vol.2, issue.Pt 6, p.1001181, 2010.
DOI : 10.1371/journal.ppat.1001181.s002

P. Sundstrom, E. Balish, A. , and C. M. , Transglutaminase Substrate, Hyphal Wall Protein 1, in Lethal Oroesophageal Candidiasis in Immunodeficient Mice, The Journal of Infectious Diseases, vol.185, issue.4, pp.521-530, 2002.
DOI : 10.1086/338836

C. L. Taschdjian, J. J. Burchall, and P. J. Kozinn, Rapid Identification of Candida Albicans by Filamentation on Serum and Serum Substitutes, Archives of Pediatrics & Adolescent Medicine, vol.99, issue.2, pp.212-215, 1960.
DOI : 10.1001/archpedi.1960.02070030214011

S. Theiss, G. Ishdorj, A. Brenot, M. Kretschmar, C. Y. Lan et al., Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence, International Journal of Medical Microbiology, vol.296, issue.6, pp.405-420, 2006.
DOI : 10.1016/j.ijmm.2006.03.003

S. Younes, W. Bahnan, H. I. Dimassi, and R. A. Khalaf, The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance, Microbiological Research, vol.166, issue.5, pp.430-436, 2011.
DOI : 10.1016/j.micres.2010.08.004

L. Y. Young, C. M. Hull, and J. Heitman, Disruption of Ergosterol Biosynthesis Confers Resistance to Amphotericin B in Candida lusitaniae, Antimicrobial Agents and Chemotherapy, vol.47, issue.9, pp.2717-2724, 2003.
DOI : 10.1128/AAC.47.9.2717-2724.2003

L. Zhang, T. Hagen, and K. G. , The cellular microenvironment and cell adhesion: a role for O-glycosylation, Biochemical Society Transactions, vol.125, issue.1, pp.378-382, 2011.
DOI : 10.1074/jbc.273.29.18235

X. Zhao, K. J. Daniels, S. H. Oh, C. B. Green, K. M. Yeater et al., Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces, Microbiology, vol.152, issue.8, pp.2287-2299, 2006.
DOI : 10.1099/mic.0.28959-0

X. Zhao, S. H. Oh, G. Cheng, C. B. Green, J. A. Nuessen et al., ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p, Microbiology, vol.150, issue.7, pp.2415-2428, 2004.
DOI : 10.1099/mic.0.26943-0

X. Zhao, S. H. Oh, and L. L. Hoyer, to human vascular endothelial and buccal epithelial cells, Medical Mycology, vol.45, issue.5, pp.429-434, 2007.
DOI : 10.1080/13693780701377162

X. Zhao, S. H. Oh, K. M. Yeater, and L. L. Hoyer, Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family, Microbiology, vol.151, issue.5, pp.1619-1630, 2005.
DOI : 10.1099/mic.0.27763-0

X. Zheng, W. , and Y. , Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis, The EMBO Journal, vol.49, issue.8, pp.1845-1856, 2004.
DOI : 10.1038/sj.emboj.7600195

W. Zhu and S. G. Filler, with epithelial cells, Cellular Microbiology, vol.45, issue.3, pp.273-282, 2010.
DOI : 10.1111/j.1462-5822.2009.01412.x

P. F. Zipfel, C. Skerka, D. Kupka, and S. Luo, Immune escape of the human facultative pathogenic yeast Candida albicans: The many faces of the Candida Pra1 protein, International Journal of Medical Microbiology, vol.301, issue.5, pp.423-430, 2011.
DOI : 10.1016/j.ijmm.2011.04.010

A. Boisrame, A. Cornu, G. Da-costa, and &. M. Richard, Unexpected Role for a Serine/Threonine-Rich Domain in the Candida albicans Iff Protein Family, Eukaryotic Cell, vol.10, issue.10, pp.1317-1330, 2011.
DOI : 10.1128/EC.05044-11

J. Bonhomme, M. Chauvel, S. Goyard, P. Roux, T. Rossignol et al., Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans, Molecular Microbiology, vol.153, issue.4, pp.995-1013, 2011.
DOI : 10.1111/j.1365-2958.2011.07626.x

C. B. Brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, vol.11, issue.2, pp.115-132, 1998.
DOI : 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2

B. R. Braun, W. S. Head, M. X. Wang, and &. D. Johnson, Identification and characterization of TUP1-regulated genes in Candida albicans, Genetics, vol.156, pp.31-44, 2000.

B. R. Braun and . Johnson, Control of Filament Formation in Candida albicans by the Transcriptional Repressor TUP1, Science, vol.277, issue.5322, pp.105-109, 1997.
DOI : 10.1126/science.277.5322.105

G. Schmitzberger, P. Sherlock, K. A. Shah, M. S. Silverstein, D. Skrzypek et al., Evolution of pathogenicity and sexual reproduction in eight Candida genomes, Nature, vol.459, pp.657-662, 2009.

F. Dalle, T. Jouault, P. A. Trinel, J. Esnault, J. M. Mallet et al., ??-1,2- and ??-1,2-Linked Oligomannosides Mediate Adherence of Candida albicans Blastospores to Human Enterocytes In Vitro, Infection and Immunity, vol.71, issue.12, pp.7061-7068, 2003.
DOI : 10.1128/IAI.71.12.7061-7068.2003

B. Eisenhaber, G. Schneider, M. Wildpaner, and &. F. Eisenhaber, A Sensitive Predictor for Potential GPI Lipid Modification Sites in Fungal Protein Sequences and its Application to Genome-wide Studies for Aspergillus nidulans, Candida albicans Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe, Journal of Molecular Biology, vol.337, issue.2, pp.243-253, 2004.
DOI : 10.1016/j.jmb.2004.01.025

I. V. Ene and . Bennett, Hwp1 and Related Adhesins Contribute to both Mating and Biofilm Formation in Candida albicans, Eukaryotic Cell, vol.8, issue.12, pp.1909-1913, 2009.
DOI : 10.1128/EC.00245-09

D. A. Enoch, H. A. Ludlam, and &. N. Brown, Invasive fungal infections: a review of epidemiology and management options, Journal of Medical Microbiology, vol.55, issue.7, pp.809-818, 2006.
DOI : 10.1099/jmm.0.46548-0

A. M. Fernandez-escamilla, F. Rousseau, J. Schymkowitz, and &. L. Serrano, Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nature Biotechnology, vol.74, issue.10, pp.1302-1306, 2004.
DOI : 10.1016/0005-2795(75)90109-9

W. A. Fonzi and . Irwin, Isogenic strain construction and gene mapping in Candida albicans, Genetics, vol.134, pp.717-728, 1993.

S. Garcia-sanchez, S. Aubert, I. Iraqui, G. Janbon, J. M. Ghigo et al., Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns, Eukaryotic Cell, vol.3, issue.2, pp.536-545, 2004.
DOI : 10.1128/EC.3.2.536-545.2004

M. C. Garcia, J. T. Lee, C. B. Ramsook, D. Alsteens, Y. F. Dufrene et al., A Role for Amyloid in Cell Aggregation and Biofilm Formation, PLoS ONE, vol.27, issue.3, p.17632, 2011.
DOI : 10.1371/journal.pone.0017632.s005

K. V. Goossens and . Willaert, The N-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an adhesin without mannose-binding activity, FEMS Yeast Research, vol.12, issue.1, pp.78-87, 2012.
DOI : 10.1111/j.1567-1364.2011.00766.x

B. L. Granger, Insight into the Antiadhesive Effect of Yeast Wall Protein 1 of Candida albicans, Eukaryotic Cell, vol.11, issue.6, pp.795-805, 2012.
DOI : 10.1128/EC.00026-12

B. Guo, C. A. Styles, Q. Feng, and &. G. Fink, A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating, Proceedings of the National Academy of Sciences, vol.97, issue.22, pp.12158-12163, 2000.
DOI : 10.1073/pnas.220420397

P. Hayek, L. Dib, P. Yazbeck, B. Beyrouthy, and &. R. Khalaf, Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth, Microbiological Research, vol.165, issue.3, pp.250-258, 2010.
DOI : 10.1016/j.micres.2009.03.006

K. C. Hazen and . Hazen, Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans, Infect Immun, vol.60, pp.1499-1508, 1992.

L. L. Hoyer, The ALS gene family of Candida albicans, Trends in Microbiology, vol.9, issue.4, pp.176-180, 2001.
DOI : 10.1016/S0966-842X(01)01984-9

I. D. Jacobsen, K. Grosse, and &. B. Hube, Embryonated Chicken Eggs as Alternative Infection Model for Pathogenic Fungi, Methods Mol Biol, vol.845, pp.487-496, 2012.
DOI : 10.1007/978-1-61779-539-8_34

N. Thorstenson, P. T. Agabian, R. W. Magee, &. S. Davis, and . Scherer, The diploid genome sequence of Candida albicans, Proc Natl Acad Sci, vol.101, pp.7329-7334, 2004.

O. Kobayashi, N. Hayashi, R. Kuroki, and &. H. Sone, Region of FLO1 proteins responsible for sugar recognition, J Bacteriol, vol.180, pp.6503-6510, 1998.

F. S. Li and . Palecek, Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions, Microbiology, vol.154, issue.4, pp.1193-1203, 2008.
DOI : 10.1099/mic.0.2007/013789-0

M. S. Lionakis, J. K. Lim, C. C. Lee, and &. M. Murphy, Organ-Specific Innate Immune Responses in a Mouse Model of Invasive Candidiasis, Journal of Innate Immunity, vol.3, issue.2, pp.180-199, 2011.
DOI : 10.1159/000321157

Y. S. Liu and . Filler, Candida albicans Als3, a Multifunctional Adhesin and Invasin, Eukaryotic Cell, vol.10, issue.2, pp.168-173, 2011.
DOI : 10.1128/EC.00279-10

W. S. Lo and . Dranginis, FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin., Journal of Bacteriology, vol.178, issue.24, pp.7144-7151, 1996.
DOI : 10.1128/jb.178.24.7144-7151.1996

W. S. Lo and . Dranginis, The Cell Surface Flocculin Flo11 Is Required for Pseudohyphae Formation and Invasion by Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.9, issue.1, pp.161-171, 1998.
DOI : 10.1091/mbc.9.1.161

F. Marechal, C. Tekaia, C. Enfert, F. C. Gaillardin, &. A. Odds et al., NRG1 represses yeasthypha morphogenesis and hypha-specific gene expression in Candida albicans, EMBO J, vol.20, pp.4742-4752, 2001.

A. H. Nobbs, M. M. Vickerman, and &. H. Jenkinson, Heterologous Expression of Candida albicans Cell Wall-Associated Adhesins in Saccharomyces cerevisiae Reveals Differential Specificities in Adherence and Biofilm Formation and in Binding Oral Streptococcus gordonii, Eukaryotic Cell, vol.9, issue.10, pp.1622-1634, 2010.
DOI : 10.1128/EC.00103-10

C. J. Nobile and . Mitchell, Genetics and genomics of Candida albicans biofilm formation, Cellular Microbiology, vol.46, issue.9, pp.1382-1391, 2006.
DOI : 10.1128/EC.4.10.1654-1661.2005

C. J. Nobile, J. E. Nett, D. R. Andes, and &. A. Mitchell, Function of Candida albicans Adhesin Hwp1 in Biofilm Formation, Eukaryotic Cell, vol.5, issue.10, pp.1604-1610, 2006.
DOI : 10.1128/EC.00194-06

C. J. Nobile, H. A. Schneider, J. E. Nett, D. C. Sheppard, S. G. Filler et al., Complementary Adhesin Function in C. albicans Biofilm Formation, Current Biology, vol.18, issue.14, pp.1017-1024, 2008.
DOI : 10.1016/j.cub.2008.06.034

S. H. Oh, G. Cheng, J. A. Nuessen, R. Jajko, K. M. Yeater et al., Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain, Microbiology, vol.151, issue.3, pp.673-681, 2005.
DOI : 10.1099/mic.0.27680-0

A. C. Padovan, G. M. Chaves, A. L. Colombo, and &. M. Briones, A novel allele of HWP1, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion, Medical Mycology, vol.47, pp.824-835, 2009.
DOI : 10.1080/13693780802669574

C. Pelletier, C. Bouley, C. Cayuela, S. Bouttier, P. Bourlioux et al., Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains, Appl Environ Microbiol, vol.63, pp.1725-1731, 1997.

M. A. Pfaller and . Diekema, Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem, Clinical Microbiology Reviews, vol.20, issue.1, pp.133-163, 2007.
DOI : 10.1128/CMR.00029-06

A. Clements, L. Heger, E. L. Holm, S. R. Sonnhammer, A. Eddy et al., The Pfam protein families database, Nucleic Acids Res, vol.40, pp.290-301, 2012.

R. A. Otoo, A. M. Khalaf, N. K. Dranginis, S. A. Gaur, J. M. Klotz et al., Yeast cell adhesion molecules have functional amyloid-forming sequences, Eukaryot Cell, vol.9, pp.393-404, 2010.

T. B. Reynolds and . Fink, Bakers' Yeast, a Model for Fungal Biofilm Formation, Science, vol.291, issue.5505, pp.878-881, 2001.
DOI : 10.1126/science.291.5505.878

M. L. Richard and . Plaine, Comprehensive Analysis of Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans, Eukaryotic Cell, vol.6, issue.2, pp.119-133, 2007.
DOI : 10.1128/EC.00297-06

URL : https://hal.archives-ouvertes.fr/hal-00164242

S. P. Saville, A. L. Lazzell, C. Monteagudo, and &. J. Lopez-ribot, Engineered Control of Cell Morphology In Vivo Reveals Distinct Roles for Yeast and Filamentous Forms of Candida albicans during Infection, Eukaryotic Cell, vol.2, issue.5, pp.1053-1060, 2003.
DOI : 10.1128/EC.2.5.1053-1060.2003

J. Waring, &. J. Edwards, and J. , Functional and structural diversity in the Als protein family of Candida albicans, J Biol Chem, vol.279, pp.30480-30489, 2004.

J. F. Staab, S. D. Bradway, P. L. Fidel, and &. P. Sundstrom, Adhesive and Mammalian Transglutaminase Substrate Properties of Candida albicans Hwp1, Science, vol.283, issue.5407, pp.1535-1538, 1999.
DOI : 10.1126/science.283.5407.1535

P. Uppuluri, C. G. Pierce, D. P. Thomas, S. S. Bubeck, S. P. Saville et al., The Transcriptional Regulator Nrg1p Controls Candida albicans Biofilm Formation and Dispersion, Eukaryotic Cell, vol.9, issue.10, pp.1531-1537, 2010.
DOI : 10.1128/EC.00111-10

K. J. Verstrepen and . Klis, Flocculation, adhesion and biofilm formation in yeasts, Molecular Microbiology, vol.15, issue.1, pp.5-15, 2006.
DOI : 10.1101/gr.1024903

V. Vialas, P. Perumal, D. Gutierrez, P. Ximenez-embun, C. Nombela et al., Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells, PROTEOMICS, vol.168, issue.14, pp.2331-2339, 2012.
DOI : 10.1002/pmic.201100588

S. Younes, W. Bahnan, H. I. Dimassi, and &. R. Khalaf, The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance, Microbiological Research, vol.166, issue.5, pp.430-436, 2011.
DOI : 10.1016/j.micres.2010.08.004

M. L. Zupancic, M. Frieman, D. Smith, R. A. Alvarez, R. D. Cummings et al., Glycan microarray analysis of Candida glabrata adhesin ligand specificity, Molecular Microbiology, vol.177, issue.3, pp.547-559, 2008.
DOI : 10.1093/intimm/dxh246