. D. Bibliography-[-ab99-]-c, K. C. Aliprantis, and . Border, Infinite Dimensional Analysis. A Hitchiker's Guide, 1999.

D. Angeli and P. Bliman, Convergence Speed of Unsteady Distributed Consensus: Decay Estimate Along the Settling Spanning-Trees, SIAM Journal on Control and Optimization, vol.48, issue.1, pp.1-32, 2009.
DOI : 10.1137/060673527

URL : https://hal.archives-ouvertes.fr/hal-00793004

M. Soledad-aronna, J. F. Bonnans, and P. Martinon, A Shooting Algorithm for Optimal Control Problems with Singular Arcs, Journal of Optimization Theory and Applications, vol.16, issue.4, 2011.
DOI : 10.1007/s10957-012-0254-8

G. [. Andruchow, D. Corach, and . Stojanoff, Geometrical significance of Löwner-Heinz inequality, Proc. Amer, pp.1031-1037, 2000.

S. [. Akian, A. Gaubert, and . Lakhoua, The Max-Plus Finite Element Method for Solving Deterministic Optimal Control Problems: Basic Properties and Convergence Analysis, SIAM Journal on Control and Optimization, vol.47, issue.2
DOI : 10.1137/060655286

URL : https://hal.archives-ouvertes.fr/inria-00071395

]. M. Ali11 and . Aliyu, Nonlinear H ? -control, Hamiltonian systems and Hamilton-Jacobi equations, 2011.

M. Akian, J. Quadrat, and M. Viot, Duality between probability and optimization, In Idempotency (Bristol Publ. Newton Inst, vol.11, pp.331-353, 1994.
DOI : 10.1017/CBO9780511662508.020

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. A. Rami, X. Chen, and X. Y. Zhou, Discrete-time indefinite LQ control with state and control dependent noises, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), pp.1249-1250, 2001.
DOI : 10.1109/CDC.2001.981058

R. Bellman, On the Theory of Dynamic Programming, Proceedings of the National Academy of Sciences, vol.38, issue.8, pp.716-719, 1952.
DOI : 10.1073/pnas.38.8.716

R. Bellman and N. J. , Dynamic programming, 1957.

D. P. Bertsekas, Approximate policy iteration: a survey and some new methods, Journal of Control Theory and Applications, vol.27, issue.3, pp.310-335, 2011.
DOI : 10.1007/s11768-011-1005-3

J. T. Betts, Practical methods for optimal control using nonlinear programming, volume 3 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), 2001.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE Transactions on Information Theory, vol.52, issue.6, pp.2508-2530, 2006.
DOI : 10.1109/TIT.2006.874516

[. Bhatia, On the exponential metric increasing property, Linear Algebra and its Applications, vol.375, pp.211-220, 2003.
DOI : 10.1016/S0024-3795(03)00647-5

G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc, vol.85, pp.219-227, 1957.

. [. Bonnans, P. Frédéric, V. Martinon, and . Grélard, Bocop -A collection of examples, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726992

[. Böröczky and J. , Approximation of General Smooth Convex Bodies, Advances in Mathematics, vol.153, issue.2, pp.325-341, 2000.
DOI : 10.1006/aima.1999.1904

P. Bougerol, Kalman Filtering with Random Coefficients and Contractions, SIAM Journal on Control and Optimization, vol.31, issue.4, pp.942-959, 1993.
DOI : 10.1137/0331041

]. L. Brè67 and . Brègman, A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming, Z. Vy?isl. Mat. i Mat

H. Brezis, On a characterization of flow-invariant sets, Communications on Pure and Applied Mathematics, vol.23, issue.2, pp.261-263, 1970.
DOI : 10.1002/cpa.3160230211

S. Beigi and P. W. Shor, On the complexity of computing zero-error and holevo capacity of quantum channels. arxiv:0709, 2008.

P. Dimitri, J. N. Bertsekas, and . Tsitsiklis, Parallel and distributed computation: numerical methods, 1989.

A. Ben-tal, L. E. Ghaoui, and A. Nemirovski, Robust optimization, Princeton Series in Applied Mathematics, 2009.
DOI : 10.1515/9781400831050

]. P. Bus73 and . Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal, vol.52, pp.330-338, 1973.

L. [. Boyd and . Vandenberghe, Convex optimization, 2004.

P. Dimitri, H. Bertsekas, and . Yu, Q-learning and enhanced policy iteration in discounted dynamic programming, Math. Oper. Res, vol.37, issue.1, pp.66-94, 2012.

H. [. Bokanowski and . Zidani, Anti-Dissipative Schemes for Advection and Application to Hamilton???Jacobi???Bellmann Equations, Journal of Scientific Computing, vol.21, issue.5, pp.1-33, 2007.
DOI : 10.1007/s10915-005-9017-0

URL : https://hal.archives-ouvertes.fr/hal-00878221

S. Cacace, E. Cristiani, M. Falcone, and A. Picarelli, A Patchy Dynamic Programming Scheme for a Class of Hamilton--Jacobi--Bellman Equations, SIAM Journal on Scientific Computing, vol.34, issue.5, pp.2625-2649, 2012.
DOI : 10.1137/110841576

URL : https://hal.archives-ouvertes.fr/inria-00628108

[. Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming, Applied Mathematics & Optimization, vol.8, issue.1, pp.367-377, 1983.
DOI : 10.1007/BF01448394

M. [. Carlini, R. Falcone, and . Ferretti, An efficient algorithm for Hamilton???Jacobi equations in high dimension, Computing and Visualization in Science, vol.97, issue.1, pp.15-29, 2004.
DOI : 10.1007/s00791-004-0124-5

M. [. Camilli, P. Falcone, A. Lanucara, and . Seghini, A domain decomposition method for Bellman equations, Domain decomposition methods in scientific and engineering computing, pp.477-483, 1993.
DOI : 10.1090/conm/180/02008

S. [. Cohen, J. Gaubert, and . Quadrat, Duality and separation theorems in idempotent semimodules, Linear Algebra and its Applications, vol.379, pp.395-422, 2004.
DOI : 10.1016/j.laa.2003.08.010

URL : https://hal.archives-ouvertes.fr/inria-00071917

G. Michael, P. Crandall, and . Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc, vol.277, issue.1, pp.1-42, 1983.

P. [. Crandall and . Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, vol.43, issue.167, pp.1-19, 1984.
DOI : 10.1090/S0025-5718-1984-0744921-8

H. Frank and . Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc, vol.205, pp.247-262, 1975.

F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00863298

A. Cassandra, M. L. Littman, and N. L. Zhang, Incremental pruning: A simple, fast, exact method for partially observable markov decision processes Stochastic linear quadratic regulators with indefinite control weight costs, Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pp.54-611685, 1997.

J. B. Conway, A course in functional analysis, volume 96 of Graduate Texts in Mathematics, 1990.

Z. [. Drezner and . Drezner, Replacing continuous demand with discrete demand in a competitive location model, Naval Research Logistics, vol.44, issue.1, pp.81-95, 1997.
DOI : 10.1002/(SICI)1520-6750(199702)44:1<81::AID-NAV5>3.0.CO;2-I

W. [. Dower and . Mceneaney, A max-plus based fundamental solution for a class of infinite dimensional Riccati equations, IEEE Conference on Decision and Control and European Control Conference, pp.615-620, 2011.
DOI : 10.1109/CDC.2011.6161017

]. R. Dob56 and . Dobrushin, Central limit theorem for non-stationary Markov chains. I. Teor, Veroyatnost . i Primenen, vol.1, pp.72-89, 1956.

S. [. Erbe and . Mysore, Comparison theorems and non-oscillation for differential equations in a B???-algebra, Nonlinear Analysis: Theory, Methods & Applications, vol.6, issue.1, pp.21-33, 1982.
DOI : 10.1016/0362-546X(82)90099-2

P. Simon, R. D. Eveson, and . Nussbaum, An elementary proof of the Birkhoff-Hopf theorem, Math. Proc. Cambridge Philos. Soc, vol.117, issue.1, pp.31-55, 1995.

]. M. Fal87 and . Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim. Corrigenda in Appl. Math. Optim, vol.15, issue.23, pp.1-13213, 1987.

]. D. Far96 and . Farenick, Irreducible positive linear maps on operator algebras, Proc. Amer, pp.3381-3390, 1996.

]. E. Fer00 and . Feron, Nonconvex quadratic programming, semidefinite relaxations and randomization algorithms in information and decision systems In System theory: modeling, analysis and control, Kluwer Internat. Ser. Engrg . Comput. Sci, vol.518, pp.255-274, 1999.

R. [. Falcone and . Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numerische Mathematik, vol.67, issue.3, pp.315-344, 1994.
DOI : 10.1007/s002110050031

P. Fhh-+-01-]-marián-fabian, P. H. Habala, V. Pelant, and . Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics, vol.8, 2001.

[. Falcone, P. Lanucara, and A. Seghini, A splitting algorithm for Hamilton-Jacobi-Bellman equations, Applied Numerical Mathematics, vol.15, issue.2, pp.207-218, 1992.
DOI : 10.1016/0168-9274(94)00017-4

W. [. Fleming and . Mceneaney, A Max-Plus-Based Algorithm for a Hamilton--Jacobi--Bellman Equation of Nonlinear Filtering, SIAM Journal on Control and Optimization, vol.38, issue.3, pp.683-710, 2000.
DOI : 10.1137/S0363012998332433

G. B. Folland, Real analysis, Modern techniques and their applications, 1999.

H. Wendell and R. W. Fleming, Deterministic and stochastic optimal control, Applications of Mathematics, issue.1, 1975.

J. [. Gaubert and . Gunawardena, The Perron-Frobenius theorem for homogeneous, monotone functions, Transactions of the American Mathematical Society, vol.356, issue.12, pp.4931-4950, 2004.
DOI : 10.1090/S0002-9947-04-03470-1

S. Gaubert, W. M. Mceneaney, and Z. Qu, Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms, IEEE Conference on Decision and Control and European Control Conference, pp.1054-1061, 2011.
DOI : 10.1109/CDC.2011.6161386

URL : https://hal.archives-ouvertes.fr/hal-00935266

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming, 94305, 1986.

S. Gaubert and Z. Qu, The contraction rate in thompson metric of order-preserving flows on a cone with application to generalized Riccati equations, 2012.

S. Gaubert and Z. Qu, Dobrushin ergodicity coefficient for markov operators on cones, and beyond. arxiv:1302, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00935284

S. Gaubert and Z. Qu, Markov operators on cones and noncommutative consensus, Proceedings of the European Control Conference ECC 2013, pp.2693-2700
URL : https://hal.archives-ouvertes.fr/hal-00935312

]. P. Gru93a and . Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies, I. Forum Math, vol.5, issue.5, pp.281-297, 1993.

M. Peter and . Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies, II. Forum Math, vol.5, issue.6, pp.521-538, 1993.

]. P. Gru07 and . Gruber, Convex and discrete geometry, 2007.

M. W. Hirsch, Convergent activation dynamics in continuous time networks, Neural Networks, vol.2, issue.5, pp.331-349, 1989.
DOI : 10.1016/0893-6080(89)90018-X

]. E. Hla49 and . Hlawka, Ausfüllung und überdeckung konvexer Körper durch konvexe Körper, Monatsh. Math, vol.53, pp.81-131, 1949.

]. E. Hop63 and . Hopf, An inequality for positive linear integral operators, Journal of Mathematics and Mechanics, vol.12, issue.5, pp.683-692, 1963.

[. Hu and C. Shu, A Discontinuous Galerkin Finite Element Method for Hamilton--Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, issue.2, pp.666-690, 1999.
DOI : 10.1137/S1064827598337282

H. [. Hirsch and . Smith, Monotone dynamical systems In Handbook of differential equations: ordinary differential equations, pp.239-357, 2005.

V. [. Kolokoltsov and . Maslov, Idempotent analysis and its applications, volume 401 of Mathematics and its Applications Translation of Idempotent analysis and its application in optimal control (Russian), " Nauka " Moscow, 1994.

[. Kohlberg and J. W. Pratt, The Contraction Mapping Approach to the Perron-Frobenius Theory: Why Hilbert's Metric?, Mathematics of Operations Research, vol.7, issue.2, pp.198-210, 1982.
DOI : 10.1287/moor.7.2.198

D. Kraft, On Converting Optimal Control Problems into Nonlinear Programming Problems, Computational mathematical programming, pp.261-280, 1984.
DOI : 10.1007/978-3-642-82450-0_9

L. Asma, Méthode des éléments finis max-plus pour la résolution numérique de problèmes de commande optimale déterministe, 2007.

]. A. Lew96 and . Lewis, Convex analysis on the Hermitian matrices, SIAM J. Optim, vol.6, issue.1, pp.164-177, 1996.

[. Lazaric, M. Ghavamzadeh, and R. Munos, Analysis of a classification-based policy iteration algorithm, ICML, pp.607-614, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00482065

]. Lio89 and . Lions, Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai's equation, Stochastic partial differential equations and applications, pp.147-170, 1988.

J. Lawson and Y. Lim, A Birkhoff Contraction Formula with Applications to Riccati Equations, SIAM Journal on Control and Optimization, vol.46, issue.3, pp.930-951, 2007.
DOI : 10.1137/050637637

[. Lee and Y. Lim, Invariant metrics, contractions and nonlinear matrix equations, Nonlinearity, vol.21, issue.4, pp.857-878, 2008.
DOI : 10.1088/0951-7715/21/4/011

V. [. Litvinov, G. B. Maslov, and . Shpiz, Idempotent functional analysis: an algebraic approach, Mathematical Notes, vol.69, issue.5/6, pp.696-729, 2001.
DOI : 10.1023/A:1010266012029

A. David, Y. Levin, E. L. Peres, and . Wilmer, Markov chains and mixing times, 2009.

V. Lomonosov and P. Rosenthal, The simplest proof of Burnside's theorem on matrix algebras, Linear Algebra and its Applications, vol.383, pp.45-47, 2004.
DOI : 10.1016/j.laa.2003.08.012

[. Lions and P. E. Souganidis, Differential Games, Optimal Control and Directional Derivatives of Viscosity Solutions of Bellman???s and Isaacs??? Equations, SIAM Journal on Control and Optimization, vol.23, issue.4, pp.566-583, 1985.
DOI : 10.1137/0323036

M. Ludwig, Asymptotic approximation of smooth convex bodies by general polytopes, Mathematika, vol.127, issue.01, pp.103-125, 1999.
DOI : 10.1016/0022-247X(75)90125-0

[. Lin and J. S. Vitter, e-approximations with minimum packing constraint violation, Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, STOC '92, pp.771-782, 1992.

[. Liverani and M. P. Wojtkowski, Generalization of the Hilbert metric to the space of positive definite matrices, Pacific Journal of Mathematics, vol.166, issue.2, pp.339-355, 1994.
DOI : 10.2140/pjm.1994.166.339

A. C. Rex, F. M. Medeiros, and . Assis, Quantum zero-error capacity, Int. J. Quanum Inform, vol.03, p.135, 2005.

]. R. Mar73 and J. Martin, Differential equations on closed subsets of a Banach space, Trans

]. H. Mau76 and . Maurer, Numerical solution of singular control problems using multiple shooting techniques, J. of Optimization Theory and Applications, vol.18, pp.235-257, 1976.

M. William and . Mceneaney, A uniqueness result for the Isaacs equation corresponding to nonlinear H ? control, Math. Control Signals Systems, vol.11, issue.4, pp.303-334, 1998.

]. W. Mce06 and . Mceneaney, Max-plus methods for nonlinear control and estimation. Systems & Control: Foundations & Applications, Birkhäuser Boston Inc, 2006.

]. W. Mce07 and . Mceneaney, A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs, SIAM J. Control Optim, vol.46, issue.4, pp.1239-1276, 2007.

]. W. Mce09 and . Mceneaney, Convergence rate for a curse-of-dimensionality-free method for Hamilton-Jacobi-Bellman PDEs represented as maxima of quadratic forms, SIAM J. Control Optim, vol.48, issue.4, pp.2651-2685, 2009.

M. Cao, D. Spielman, A. , M. A. , and S. , A Lower Bound on Convergence of a Distributed Network Consensus Algorithm, Proceedings of the 44th IEEE Conference on Decision and Control, pp.2356-2361, 2005.
DOI : 10.1109/CDC.2005.1582514

A. [. Mceneaney, S. Deshpande, and . Gaubert, Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs, 2008 American Control Conference, pp.4684-4690, 2008.
DOI : 10.1109/ACC.2008.4587234

C. Meyer, Matrix analysis and applied linear algebra With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual, Society for Industrial and Applied Mathematics (SIAM), 2000.

M. William, L. Mceneaney, and . Kluberg, Convergence rate for a curseof-dimensionality-free method for a class of HJB PDEs, SIAM J. Control Optim, vol.48, issue.5, pp.3052-3079, 2009.

L. Moreau, Stability of multiagent systems with time-dependent communication links, IEEE Transactions on Automatic Control, vol.50, issue.2, pp.169-182, 2005.
DOI : 10.1109/TAC.2004.841888

D. [. Nedi´cnedi´c and . Bertsekas, Least squares policy evaluation algorithms with linear function approximation, Discrete Event Dynamic Systems, vol.13, issue.1/2, pp.79-110, 2003.
DOI : 10.1023/A:1022192903948

A. Michael, I. L. Nielsen, and . Chuang, Quantum computation and quantum information, 2000.

[. Navasca and A. J. Krener, Patchy Solutions of Hamilton-Jacobi-Bellman Partial Differential Equations, In Modeling, estimation and control Lecture Notes in Control and Inform. Sci, vol.364, pp.251-270, 2007.
DOI : 10.1007/978-3-540-73570-0_20

]. R. Nus88 and . Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc, issue.391, pp.75-137, 1988.

R. D. Nussbaum, Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations, Differential Integral Equations, vol.7, issue.5-6, pp.1649-1707, 1994.

L. [. Nemhauser, M. L. Wolsey, and . Fisher, An analysis of approximations for maximizing submodular set functions???I, Mathematical Programming, vol.16, issue.1, pp.265-294, 1978.
DOI : 10.1007/BF01588971

A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and applications of Voronoi diagrams Wiley Series in Probability and Statistics, 2000.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

S. Osher and C. Shu, High-Order Essentially Nonoscillatory Schemes for Hamilton???Jacobi Equations, SIAM Journal on Numerical Analysis, vol.28, issue.4, pp.907-922, 1991.
DOI : 10.1137/0728049

A. Olshevsky and J. N. Tsitsiklis, Convergence Speed in Distributed Consensus and Averaging, SIAM Journal on Control and Optimization, vol.48, issue.1, pp.33-55, 2009.
DOI : 10.1137/060678324

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes. Translated from the Russian by K. N. Trirogoff, 1962.

Z. Qu, Contraction of Riccati flows applied to the convergence analysis of a maxplus curse of dimensionality free method. arxiv:1301, p.4777, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935300

Z. Qu, Contraction of Riccati Flows Applied to the Convergence Analysis of a Max-Plus Curse-of-Dimensionality--Free Method, Proceedings of the European Control Conference ECC 2013
DOI : 10.1137/130906702

URL : https://hal.archives-ouvertes.fr/hal-00935300

[. Rami, X. Chen, J. B. Moore, and X. Y. Zhou, Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls, IEEE Transactions on Automatic Control, vol.46, issue.3, pp.428-440, 2001.
DOI : 10.1109/9.911419

]. R. Red72 and . Redheffer, The theorems of Bony and Brezis on flow-invariant sets, Amer. Math. Monthly, vol.79, pp.740-747, 1972.

]. W. Rei72 and . Reid, Riccati differential equations, Mathematics in Science and Engineering, vol.86, 1972.

[. Reeb, M. J. Kastoryano, and M. M. Wolf, Hilbert's projective metric in quantum information theory, Journal of Mathematical Physics, vol.52, issue.8, p.82201, 2011.
DOI : 10.1063/1.3615729

]. R. Roc70 and . Tyrrell-rockafellar, Convex analysis, Princeton Mathematical Series, issue.28, 1970.

]. C. Rog64 and . Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical Physics, issue.54, 1964.

R. [. Tyrrell-rockafellar and . Wets, Variational analysis, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1998.
DOI : 10.1007/978-3-642-02431-3

[. Rami and X. Y. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls, IEEE Transactions on Automatic Control, vol.45, issue.6, pp.1131-1143, 2000.
DOI : 10.1109/9.863597

R. Schneider, Polyhedral approximation of smooth convex bodies, Journal of Mathematical Analysis and Applications, vol.128, issue.2, pp.470-474, 1987.
DOI : 10.1016/0022-247X(87)90197-1

]. E. Sen91 and . Seneta, Applications of ergodicity coefficients to homogeneous Markov chains In 50 Years after Doeblin: Developments in the Theory of Markov Chains, Markov Processes and Sums of Random Variables, pp.2-7, 1991.

]. J. Set99 and . Sethian, Fast marching methods, SIAM Rev, vol.41, issue.2, pp.199-235, 1999.

S. Sridharan, M. Gu, M. R. James, and W. M. Mceneaney, Reduced-complexity numerical method for optimal gate synthesis, Physical Review A, vol.82, issue.4, p.42319, 2010.
DOI : 10.1103/PhysRevA.82.042319

A. Shapiro, Analysis of stochastic dual dynamic programming method, European Journal of Operational Research, vol.209, issue.1, pp.63-72, 2011.
DOI : 10.1016/j.ejor.2010.08.007

R. [. Saber and . Murray, Consensus protocols for networks of dynamic agents, Proceedings of the 2003 American Control Conference, 2003., pp.951-956, 2003.
DOI : 10.1109/ACC.2003.1239709

[. Soravia, $\mathcal{H}_\infty $ Control of Nonlinear Systems: Differential Games and Viscosity Solutions, SIAM Journal on Control and Optimization, vol.34, issue.3, pp.1071-1097, 1996.
DOI : 10.1137/S0363012994266413

M. Sanz, D. Pérez-garcía, M. M. Wolf, and J. I. Cirac, A Quantum Version of Wielandt's Inequality, IEEE Transactions on Information Theory, vol.56, issue.9, pp.4668-4673, 2010.
DOI : 10.1109/TIT.2010.2054552

[. Sridharan, Deterministic filtering and max-plus methods for robust state estimation in multi-sensor settings. arxiv:1211, 1449.

[. Sepulchre, A. Sarlette, and P. Rouchon, Consensus in noncommutative spaces, Proceedings of the 49th IEEE Conference on Decision and Control, pp.6596-6601, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00576914

H. Steven and . Strogatz, From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators, Phys. D, pp.1-20, 2000.

A. James, A. Sethian, and . Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms, SIAM J. Numer. Anal, vol.41, issue.1, pp.325-363, 2003.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Transactions on Automatic Control, vol.31, issue.9, pp.31803-812, 1986.
DOI : 10.1109/TAC.1986.1104412

]. A. Tho63 and . Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. soc, vol.14, pp.438-443, 1963.

N. John, B. Tsitsiklis, and R. Van, An analysis of temporal-difference learning with function approximation, IEEE Trans. Automat. Control, vol.42, issue.5, pp.674-690, 1997.

]. V. Vaz01 and . Vazirani, Approximation algorithms, 2001.

H. [. Vincent, M. Julien, T. Olshevsky-alex, and N. John, Convergence in multiagent coordination, consensus, and flocking, Proceedings of the joint 44th IEEE Conference on Decision and Control and European Control Conference, pp.2996-3000, 2005.

J. Yong and X. Y. Zhou, Stochastic controls, Applications of Mathematics, vol.43, 1999.
DOI : 10.1007/978-1-4612-1466-3

L. Nevin, W. Zhang, and . Zhang, Speeding up the convergence of value iteration in partially observable markov decision processes, Journal of Artificial Intelligence Research, vol.14, 2001.