Les abondances naturelles des isotopes stables de l'azote chez le rat : facteurs de variabilité et application pour l'étude des flux azotés et de l'impact métabolique de conditions nutritionnelles et physiopathologiques par modélisation compartimentale.

Abstract : Natural abundances of stable nitrogen isotopes vary among tissues within an individual and among individuals within a population, and these differences are linked to the structural and functioning characteristics of the nitrogen metabolism and also to its modulations in response to variations in nutritional and physiological conditions. In this thesis, we developed an approach combining both experimentation and modeling, in order to better characterize and understand the modulations in the δ15N values of various nitrogen metabolic pools, and to show the capacity of the δ15N to provide information regarding the values and modulations of the body nitrogen fluxes, that are still poorly determined. We first measured the δ15N in various tissues (intestine, liver, plasma, muscle, kidney, skin ...) and in various nitrogen fractions (amino acids, proteins, urea, NH4) in rats, under different nutritional (i.e. in rats fed with P of distinct quality, that were milk and soy P) or pathophysiological (i.e. in rats that had or not become obese and insulin resistant after being fed a high-fat diet for 10 weeks). From these experimental data, we showed (i) that the tissue nitrogen discrimination (i.e., the difference between tissue and diet δ15N) is higher when the P is of lesser quality, and (ii) that, during the onset of a metabolic syndrome, in the presence of both insulin resistance and obesity, the δ15N differed in some nitrogen pools and thus constitute isotopic signatures of the metabolic impact of such conditions. In this thesis, we also measured the δ15N kinetics in the amino acid and protein fractions of several tissues after a shift in the diet δ15N. The analysis of these kinetics, using a compartimental modeling approach, enabled us to estimate tissue fractional turnover rates and to investigate the structure and the functioning of the protein synthesis and breakdown exchanges in some tissues and their level of compartmentation. Lastly, we developed a multi-compartmental model that describes the various body nitrogen transfers between and within tissues and accounts for the observed δ15N variability. This model of the nitrogen metabolism provides a new and systemic insight of the interactions and modulations of the various nitrogen fluxes, as opposed to the fragmented information available from the literature data. This model enabled us to reconstruct the mechanisms that caused the observed δ15N differences between nitrogen pools, to better understand how they vary, depending on which metabolic modulation and with which amplitude, and finally to hypothesize which nitrogen fluxes alterations are the more likely to be responsible for the δ15N variations that we observed in our experimentations. In conclusion, our experimental and modelling results show that it is feasible to gain information from the δ15N values regarding the metabolic nitrogen fluxes and their modulations, and highlight the interest of this new approach to get an integrated insight into the complex nitrogen metabolic system and a better understanding of the way the various between and within tissues nitrogen fluxes are regulated and altered.
Document type :
Theses
Complete list of metadatas

https://pastel.archives-ouvertes.fr/pastel-00927219
Contributor : Abes Star <>
Submitted on : Sunday, January 12, 2014 - 1:04:17 AM
Last modification on : Wednesday, November 29, 2017 - 4:08:11 PM
Long-term archiving on : Saturday, April 8, 2017 - 2:17:13 PM

File

Manuscrit_These_NPoupin.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : pastel-00927219, version 1

Collections

Citation

Nathalie Poupin. Les abondances naturelles des isotopes stables de l'azote chez le rat : facteurs de variabilité et application pour l'étude des flux azotés et de l'impact métabolique de conditions nutritionnelles et physiopathologiques par modélisation compartimentale.. Alimentation et Nutrition. AgroParisTech, 2013. Français. ⟨NNT : 2013AGPT0003⟩. ⟨pastel-00927219⟩

Share

Metrics

Record views

976

Files downloads

1786