C. Baley, Fibres naturelles de renfort pour matériaux composites, 2004.

A. Heredia, Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1620, issue.1-3, pp.1-7, 2003.
DOI : 10.1016/S0304-4165(02)00510-X

L. Kunst, A. L. Samuels, and H. Sixta, Review: Biosynthesis and secretion of plant cuticular wax Handbook of Pulp, Progress in Lipid Research, vol.4211, pp.51-80, 2003.

H. V. Scheller and P. Ulvskov, Hemicelluloses, Annual Review of Plant Biology, vol.61, issue.1, pp.263-289, 2010.
DOI : 10.1146/annurev-arplant-042809-112315

T. Sakai, T. Sakamoto, J. Hallaert, and E. J. Vandamme, ???Pectin, Pectinase, and Protopectinase: Production,??? Properties, and Applications, Advances in Applied Microbiology, vol.39, pp.213-279, 1993.
DOI : 10.1016/S0065-2164(08)70597-5

J. Obro, J. Harholt, H. V. Scheller, and C. Orfila, Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures, Phytochemistry, issue.10, pp.65-1429, 2004.

P. J. Daas, K. Meyer-hansen, H. A. Schols, G. A. De-ruiter, and A. G. Voragen, Investigation of the non-esterified galacturonic acid distribution in pectin with endopolygalacturonase, Carbohydrate Research, vol.318, issue.1-4, pp.1-4, 1999.
DOI : 10.1016/S0008-6215(99)00093-2

I. Fraeye, T. Duvetter, E. Doungla, A. Van-loey, and M. Hendreickx, Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions, Trends in Food Science & Technology, pp.219-228, 2010.

D. Sedan, C. Pagnoux, T. Chotard, A. Smith, D. Lejolly et al., Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres, Journal of Materials Science, vol.89, issue.2, pp.9336-9342, 2007.
DOI : 10.1007/s10853-007-1903-4

URL : https://hal.archives-ouvertes.fr/hal-00203555

I. Alkorta, C. Garbisu, M. J. Liama, and J. L. Serra, Industrial applications of pectic enzymes: a review, Process Biochemistry, vol.33, issue.1, pp.21-28, 1998.
DOI : 10.1016/S0032-9592(97)00046-0

A. W. Zykwinska, M. J. Ralet, C. D. Garnier, and J. J. Thibault, Evidence for In Vitro Binding of Pectin Side Chains to Cellulose, PLANT PHYSIOLOGY, vol.139, issue.1, pp.397-407, 2005.
DOI : 10.1104/pp.105.065912

B. Cathala, B. Chabbert, C. Joly, P. Dole, and B. Monties, Synthesis, characterisation and water sorption properties of pectin-dehydrogenation polymer (lignin model compound) complex, Phytochemistry, vol.56, issue.2, pp.195-202, 2001.
DOI : 10.1016/S0031-9422(00)00373-3

J. Touzel, B. Chabbert, B. Monties, P. Debeire, and B. Cathala, Cellulose and Cellulose/Pectin Composite, Journal of Agricultural and Food Chemistry, vol.51, issue.4, pp.981-986, 2003.
DOI : 10.1021/jf020200p

D. Lairez, B. Cathala, B. Monties, F. Bedos-belval, H. Duran et al., Aggregation during Coniferyl Alcohol Polymerization in Pectin Solution:?? A Biomimetic Approach of the First Steps of Lignification, Biomacromolecules, vol.6, issue.2, pp.763-774, 2005.
DOI : 10.1021/bm049390y

A. Habrant, C. Gaillard, M. Ralet, D. Lairez, and B. Cathala, Relation between Chemical Structure and Supramolecular Organization of Synthetic Lignin???Pectin Particles, Biomacromolecules, vol.10, issue.11, pp.3151-3156, 2009.
DOI : 10.1021/bm900950r

B. R. Thakur, R. K. Singh, and A. K. Handa, Chemistry and uses of pectin ??? A review, Critical Reviews in Food Science and Nutrition, vol.64, issue.2, pp.47-73, 1997.
DOI : 10.1080/10408399709527767

D. Dupeyre and C. Garcia-jaldon, Morphological characterization of steam exploded hemp fibres and their utilisation in polypropylene-based composites, Bioresource Technology, vol.58, pp.203-215, 1996.

A. Dufresne, D. Dupeyre, and M. Paillet, Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites, Journal of Applied Polymer Science, vol.87, issue.8, pp.1302-1315, 2003.
DOI : 10.1002/app.11546

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, vol.34, issue.55, pp.3358-3393, 2005.
DOI : 10.1002/anie.200460587

E. J. Vandamme, S. De-baets, A. Vanbaelen, K. Joris, and P. De-wulf, Improved production of bacterial cellulose and its application potential, Polymer Degradation and Stability, vol.59, issue.1-3, pp.93-99, 1998.
DOI : 10.1016/S0141-3910(97)00185-7

R. Jonas and L. F. Farah, Production and application of microbial cellulose, Polymer Degradation and Stability, vol.59, issue.1-3, pp.101-106, 1998.
DOI : 10.1016/S0141-3910(97)00197-3

D. P. Delmer, Cellulose Biosynthesis: Exciting time for a difficult field of study. Annual review of plant physiology and plant molecular biology, pp.245-276, 1999.

S. K. Cousins and R. M. Brown-jr, Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization, Polymer, vol.36, issue.20, pp.36-3885, 1995.
DOI : 10.1016/0032-3861(95)99782-P

D. J. Cosgrove, Growth of the plant cell wall, Nature Reviews Molecular Cell Biology, vol.96, issue.11, pp.850-861, 2005.
DOI : 10.1007/s004250000303

K. Nakamura and H. Hatakeyama, Vaporization of bound water associated with cellulose fibres, Thermochimica Acta, pp.352-353, 2000.

J. I. Morán, V. A. Alvarez, V. P. Cyras, and A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, vol.52, issue.T44, pp.149-159, 2008.
DOI : 10.1007/s10570-007-9145-9

A. Boldizar, C. Klason, J. Kubat, P. Naslund, and P. Saha, Prehydrolyzed Cellulose as Reinforcing Filler for Thermoplastics, International Journal of Polymeric Materials, vol.32, issue.4, pp.229-262, 1987.
DOI : 10.1002/pen.760261207

V. Favier, H. Chanzy, and J. Y. Cavaille, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

A. Khalil, H. P. Bhat, A. H. Ireana-yusra, and A. F. , Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers, vol.87, issue.2, pp.963-979, 2012.
DOI : 10.1016/j.carbpol.2011.08.078

D. L. Vanderhart and R. H. Atalla, Studies of microstructure in native celluloses using solid-state carbon-13 NMR, Macromolecules, vol.17, issue.8, pp.1465-1472, 1984.
DOI : 10.1021/ma00138a009

U. Sternberg, F. Koch, W. Prieß, and R. Witter, Crystal structure refinements of cellulose polymorphs using solid state 13 C chemical shifts, Cellulose, vol.10, issue.3, pp.189-199, 2003.
DOI : 10.1023/A:1025185416154

R. Vanholme, B. Demedts, K. Morreel, J. Ralph, and W. Boerjan, Lignin Biosynthesis and Structure, PLANT PHYSIOLOGY, vol.153, issue.3, pp.895-905, 2010.
DOI : 10.1104/pp.110.155119

S. Baumberger, C. Lapierre, B. Monties, and G. Della-valle, Use of kraft lignin as filler for starch films, Polymer Degradation and Stability, vol.59, issue.1-3, pp.273-277, 1998.
DOI : 10.1016/S0141-3910(97)00193-6

D. Feldman, D. Banu, and A. El-aghoury, Plasticization effect of lignin in some highly filled vinyl formulations, Journal of Vinyl and Additive Technology, vol.89, issue.1, pp.14-21, 2007.
DOI : 10.1002/vnl.20098

J. C. Li, Y. He, and Y. Inoue, Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin, Polymer International, vol.60, issue.6, pp.949-955, 2003.
DOI : 10.1002/pi.1137

C. Pouteau, P. Dole, B. Cathala, L. Averous, and N. Boquillon, Antioxidant properties of lignin in polypropylene, Polymer Degradation and Stability, vol.81, issue.1, pp.9-18, 2003.
DOI : 10.1016/S0141-3910(03)00057-0

S. Lepifre, M. Froment, F. Cazaux, S. Honot, D. Lourdin et al., Lignin Incorporation Combined with Electron-Beam Irradiation Improves the Surface Water Resistance of Starch Films, Biomacromolecules, vol.5, issue.5, pp.1678-1686, 2004.
DOI : 10.1021/bm040005e

P. J. Suhas, M. M. Carrott, C. I. Guerrero, and L. A. Delgado, Reactivity and porosity development during pyrolysis in CO 2 or steam of kraft and hydrolytic lignins, Journal of Analytical and Applied Pyrolysis, vol.82, pp.264-271, 2008.

J. D. Gargulak and S. E. Lebo, Commercial Use of Lignin-Based Materials, 2000.
DOI : 10.1021/bk-2000-0742.ch015

S. Stewart and D. , Lignin as a base material for materials applications: Chemistry, application and economics, Industrial Crops and Products, vol.27, issue.2, pp.202-207, 2008.
DOI : 10.1016/j.indcrop.2007.07.008

Q. Liu, Understanding starches and their role in foods. Food carbohydrates: Chemistry, physical properties and applications, pp.309-357, 2005.

N. Singh, J. Singh, L. Kaur, N. S. Sodhi, and B. S. Gill, Morphological, thermal and rheological properties of starches from different botanical sources, Food Chemistry, vol.81, issue.2, pp.219-231, 2003.
DOI : 10.1016/S0308-8146(02)00416-8

A. Buléon, P. Colonna, V. Planchot, and S. Ball, Starch granules: structure and biosynthesis, International Journal of Biological Macromolecules, vol.23, issue.2, pp.85-112, 1998.
DOI : 10.1016/S0141-8130(98)00040-3

S. Hizukuri, Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules, Carbohydrate Research, vol.141, issue.2, pp.295-306, 1985.
DOI : 10.1016/S0008-6215(00)90461-0

P. J. Jenkins and A. M. Donald, The influence of amylose on starch granule structure, International Journal of Biological Macromolecules, vol.17, issue.6, pp.315-321, 1995.
DOI : 10.1016/0141-8130(96)81838-1

P. M. Forssell, J. M. Mikkilä, G. K. Moates, and R. Parker, Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch, Carbohydrate Polymers, vol.34, issue.4, pp.275-282, 1997.
DOI : 10.1016/S0144-8617(97)00133-1

J. J. Van-soest and J. F. Vliegenthart, Crystallinity in starch plastics: consequences for material properties, Trends in Biotechnology, vol.15, issue.6, pp.208-213, 1997.
DOI : 10.1016/S0167-7799(97)01021-4

C. Bastioli, Properties and applications of Mater-Bi starch-based materials, Polymer Degradation and Stability, vol.59, issue.1-3, pp.263-272, 1998.
DOI : 10.1016/S0141-3910(97)00156-0

J. J. Van-soest, D. De-wit, H. Tournois, and J. F. Vliegenthart, Retrogradation of Potato Starch as Studied by Fourier Transform Infrared Spectroscopy, Starch - St??rke, vol.7, issue.12, pp.46-453, 1994.
DOI : 10.1002/star.19940461202

J. J. Van-soest, S. H. Hulleman, D. De-wit, and J. F. Vliegenthart, Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity, Carbohydrate Polymers, vol.29, issue.3, pp.225-232, 1996.
DOI : 10.1016/0144-8617(96)00011-2

D. Lourdin, L. Coignard, H. Bizot, and P. Colonna, Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials, Polymer, vol.38, issue.21, pp.38-5401, 1997.
DOI : 10.1016/S0032-3861(97)00082-7

P. Myllärinen, A. Buléon, R. Lahtinen, and P. Forssell, The crystallinity of amylose and amylopectin films, Carbohydrate Polymers, vol.48, issue.1, pp.41-48, 2002.
DOI : 10.1016/S0144-8617(01)00208-9

D. Lourdin, H. Bizot, and P. Colonna, ?Antiplasticization? in starch-glycerol films?, Journal of Applied Polymer Science, vol.63, issue.8, pp.1047-1053, 1997.
DOI : 10.1002/(SICI)1097-4628(19970222)63:8<1047::AID-APP11>3.0.CO;2-3

S. Gaudin, D. Lourdin, P. M. Forssell, and P. Colonna, Antiplasticisation and oxygen permeability of starch???sorbitol films, Carbohydrate Polymers, vol.43, issue.1, pp.33-37, 2000.
DOI : 10.1016/S0144-8617(99)00206-4

«. Etude and ». Filières, Accessible en ligne www, 2009.

C. Meirhaeghe, H. Bewa, W. G. Glasser, R. A. Northey, and T. P. Schultz, Evaluation de la disponibilité et de l'accessibilité de fibres végétales à usages matériaux en France. FRD-ADEME, www.ademe.fr consulté en avril 2013 Lignin: Historical, Biological and Materials Perspectives. ACS symposium series Chemistry of pulping: lignin reactions Chemical modification, properties, and usage of lignin, Chapter, vol.204, 2000.

J. H. Lora and W. G. Glasser, Recent industrial applications of lignin: A sustainable alternative to non renewable materials, Journal of Polymers and the Environment, vol.10, issue.1/2, pp.39-48, 2002.
DOI : 10.1023/A:1021070006895

D. Stewart, Lignin as a base material for materials applications: Chemistry, application and economics, Industrial Crops and Products, vol.27, issue.2, pp.202-207, 2008.
DOI : 10.1016/j.indcrop.2007.07.008

Y. Parka, W. O. Doherty, and P. J. Halley, Developing lignin-based resin coatings and composites, Industrial Crops and Products, vol.27, issue.2, pp.163-167, 2008.
DOI : 10.1016/j.indcrop.2007.07.021

N. Cyr, R. G. Ritchie, N. S. Çetin, and N. Özmen, Estimating the adhesive quality of lignins for internal bond strength Use of organosolv lignin in phenol?formaldehyde resins for particleboard production: I. Organosolv lignin modified resins, Lignin: Properties and Materials), pp.477-480, 1989.

N. S. Etün and N. Zmen, Studies on lignin-based adhesives for particleboard panels, Turkish Journal of Agriculture and Forestry, vol.27, pp.83-189, 2003.

J. M. Kazayawoko, B. Riedl, J. Poliquin, A. O. Barry, and L. M. Matuana, A lignin?phenol?formaldehyde binder for particleboard, pp.257-262, 1992.

M. Olivares, J. A. Guzmán, A. Natho, and A. Saavedra, Kraft lignin utilization in adhesives, Wood Science and Technology, vol.16, issue.3, pp.157-165, 1988.
DOI : 10.1007/BF00355851

A. K. Roy, D. Sardar, and S. K. Sen, Jute stick lignin-based adhesives for particle boards, Biological Wastes, vol.27, issue.1, pp.63-66, 1989.
DOI : 10.1016/0269-7483(89)90030-X

N. Mansouri and A. Pizzi, Lignin-based polycondensation resins for wood adhesives, Journal of Applied Polymer Science, vol.100, issue.3, pp.1690-1699, 2007.
DOI : 10.1002/app.25098

URL : https://hal.archives-ouvertes.fr/hal-01194987

W. G. Glasser, V. P. Saraf, and W. H. Newman, Hydroxy Propylated Lignin-Isocyanate Combinations as Bonding Agents for Wood and Cellulosic Fibers, The Journal of Adhesion, vol.7, issue.3, pp.233-255, 1982.
DOI : 10.1021/bk-1981-0172

A. Mathiasson and D. G. Kubát, Lignin as binder in particle boards using high frequency heating, Properties and modulus calculations, Holz als Roh-und Werkstoff, pp.9-18, 1994.

A. Tejado, G. Kortaberria, C. Peña, and J. Labidi, Lignins for phenol replacement in novolac-type phenolic formulations, part I: Lignophenolic resins synthesis and characterization, Journal of Applied Polymer Science, vol.98, issue.4, pp.2313-2319, 2007.
DOI : 10.1002/app.26941

A. Pizzi, R. Kueny, F. Lecoanet, B. Massetau, D. Carpentier et al., High resin content natural matrix???natural fibre biocomposites, Industrial Crops and Products, vol.30, issue.2, pp.235-240, 2009.
DOI : 10.1016/j.indcrop.2009.03.013

A. Pizzi, Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues, Journal of Adhesion Science and Technology, vol.19, issue.1, pp.829-846, 2006.
DOI : 10.1163/156856104839310

M. N. Anglès, F. Ferrando, X. Farriol, and J. Salvadó, Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition, Biomass and Bioenergy, vol.21, issue.3, pp.211-224, 2001.
DOI : 10.1016/S0961-9534(01)00031-9

J. Van-dam, M. J. Van-den-oever, W. Teunissen, E. K. Keijsers, and A. G. Peralta, Process for production of high density/high performance binderless boards from whole coconut husk. Part 1: Lignin as intrinsic thermosetting binder resin, Industrial Crops and Products, vol.20, issue.19, pp.207-216, 2004.

J. Van-dam, M. J. Van-den-oever, W. Teunissen, E. K. Keijsers, and A. G. Peralta, Process for production of high density/high performance binderless boards from whole coconut husk, Industrial Crops and Products, vol.24, issue.2, pp.96-104, 2006.
DOI : 10.1016/j.indcrop.2005.03.003

C. Felby, J. Hassingboe, and M. Lund, Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin, Enzyme and Microbial Technology, vol.31, issue.6, pp.736-741, 2002.
DOI : 10.1016/S0141-0229(02)00111-4

J. M. Paiva and E. Frollini, Sugarcane bagasse reinforced phenolic and lignophenolic composites, Journal of Applied Polymer Science, vol.11, issue.4, pp.880-888, 2002.
DOI : 10.1002/app.10085

W. Hoareau, F. B. Oliveira, S. Grelier, B. Siegmund, E. Frollini et al., Fiberboards Based on Sugarcane Bagasse Lignin and Fibers, Macromolecular Materials and Engineering, vol.43, issue.7, pp.829-839, 2006.
DOI : 10.1002/mame.200600004

J. A. Velásquez, F. Ferrando, and J. Salvadó, Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis, Industrial Crops and Products, vol.18, issue.1, pp.17-23, 2003.
DOI : 10.1016/S0926-6690(03)00016-5

T. I. Baskin, ANISOTROPIC EXPANSION OF THE PLANT CELL WALL, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.203-225, 2005.
DOI : 10.1146/annurev.cellbio.20.082503.103053

K. Abe, S. Iwamoto, and H. Yano, Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood, Biomacromolecules, vol.8, issue.10, pp.3276-3278, 2007.
DOI : 10.1021/bm700624p

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, Journal Applied Polymer Science, Applied Polymer Symposium, vol.37, pp.797-813, 1983.

K. Abe and H. Yano, The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics, Biomacromolecules, vol.9, issue.3, pp.1022-1026, 2008.

K. Uetani and H. Yano, Nanofibrillation of Wood Pulp Using a High-Speed Blender, Biomacromolecules, vol.12, issue.2, pp.348-353, 2011.
DOI : 10.1021/bm101103p

A. Alemdar and M. Sain, Isolation and characterization of nanofibers from agricultural residues ??? Wheat straw and soy hulls, Bioresource Technology, vol.99, issue.6, pp.1664-1671, 2008.
DOI : 10.1016/j.biortech.2007.04.029

H. Zhao, X. Feng, H. Gao, O. Ikkala, and T. Lindström, Ultrasonic technique for extracting nanofibers from nature materials Applied Physics Letters, 90, 073112 Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, P.T Biomacromolecules, vol.8, pp.1934-1941, 2007.

D. Bassett, S. Block, and G. Piermarini, A high???pressure phase of polyethylene and chain???extended growth, Journal of Applied Physics, vol.45, issue.10, p.45, 1974.
DOI : 10.1063/1.1663028

C. Nakafuku, High pressure crystallization of ultra-high molecular weight polyethylene, Polymer Journal, vol.19, pp.805-813, 1987.

D. Tabor, The hardness of metals, 1951.

V. A. Zhorin, M. R. Kiselev, A. N. Zelenetskii, and T. A. Rudakova, Calorimetric investigation of some polysaccharides subjected to high-pressure plastic deformation, Polymer Science Series A, vol.52, issue.4, pp.398-406, 2010.
DOI : 10.1134/S0965545X10040085

A. Kokorevics and J. Gravitis, Cellulose depolymerisation to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment, 1997.

S. C. Oliveira, A. B. Figueiredo, D. V. Evtuguin, and J. A. Saraiva, High pressure treatment as a tool for engineering of enzymatic reactions in cellulosic fibres, Bioresource Technology, vol.107, 2012.
DOI : 10.1016/j.biortech.2011.12.093

S. Z. Rogovina, V. A. Zhorin, and N. S. Enikolopian, Modification of cellulose in conditions of plastic flow under pressure, Journal of Applied Polymer Science, vol.57, issue.4, pp.439-447, 1995.
DOI : 10.1002/app.1995.070570406

S. Z. Rogovina and G. A. Vikhoreva, Polysaccharide-based polymer blends: Methods of their production, Glycoconjugate Journal, vol.42, issue.7-8, pp.611-618, 2006.
DOI : 10.1007/s10719-006-8768-7

J. Schroeter and F. Felix, Melting cellulose, Cellulose, vol.41, issue.12, pp.159-165, 2005.
DOI : 10.1007/s10570-004-0344-3

J. Schroeter and F. Felix, US Patent, pp.612-614, 2011.

C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase, Composites Part A: Applied Science and Manufacturing, vol.33, issue.7, pp.939-948, 2002.
DOI : 10.1016/S1359-835X(02)00040-4

C. Baley, Y. Perrot, F. Busnel, H. Guezenoc, and P. Davies, Transverse tensile behaviour of unidirectional plies reinforced with flax fibres, Materials Letters, vol.60, issue.24, pp.2984-2987, 2006.
DOI : 10.1016/j.matlet.2006.02.028

URL : https://hal.archives-ouvertes.fr/hal-00495136

C. Jr, F. R. Thomason, and J. L. , Thermoelastic anisotropy of a natural fiber, Composites Science and Technology, vol.62, pp.669-678, 2002.

R. Adusumalli, H. Weber, T. Röder, H. Sixta, and T. Schöberl, Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation, Polymer, vol.49, pp.792-799, 2008.

R. Maurin, Y. Perrot, A. Bourmaud, P. Davies, and C. Baley, Seawater ageing of low styrene emission resins for marine composites: Mechanical behaviour and nano-indentation studies, Composites Part A: Applied Science and Manufacturing, vol.40, issue.8, pp.1024-1032, 2009.
DOI : 10.1016/j.compositesa.2008.01.013

URL : https://hal.archives-ouvertes.fr/hal-00494420

A. Basra, Cotton fibers: developmental biology, quality improvement and textile processing, 1999.

R. L. Long and M. P. Bange, Consequences of immature fiber on the processing performance of Upland cotton, Field Crops Research, vol.121, issue.3, pp.401-407, 2011.
DOI : 10.1016/j.fcr.2011.01.008

X. Hu and A. Nguyen, Strength and crystalline structure of developing Acala cotton, Textile Research Journal, vol.67, issue.7, pp.529-536, 1997.

J. Liu, H. Yang, and Y. Hsieh, Distribution of Single Fiber Tensile Properties of Four Cotton Genotypes, Textile Research Journal, vol.75, issue.2, pp.117-122, 2005.
DOI : 10.1177/004051750507500205

N. Graupner, H. Endres, and J. Müssig, Influence of Fiber Fineness, Fiber Maturity, and Nep Content on the Properties of Natural Fiber Reinforced Cotton-Epoxy Composites, Journal of Natural Fibers, vol.28, issue.4, pp.289-315, 2008.
DOI : 10.1002/1097-4628(20000822)77:8<1832::AID-APP21>3.0.CO;2-U

A. K. Bledzki and J. Gassan, Composites reinforced with cellulose based fibres, Progress in polymer science, pp.221-274, 1999.
DOI : 10.1016/S0079-6700(98)00018-5

A. Khalil, H. P. Bhat, A. H. Ireana-yusra, and A. F. , Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers, vol.87, issue.2, pp.963-979, 2012.
DOI : 10.1016/j.carbpol.2011.08.078

P. S. Mukherjee and K. G. Satyanarayana, Structure and properties of some vegetable fibres, Journal of Materials Science, vol.15, issue.12, pp.51-56, 1986.
DOI : 10.1007/BF01144698

. Lotader, (8) Concentration massique 60%, pp.202-91

O. Kamigaito, Y. Fukushima, H. Doi, and D. W. Van-krevelen, Composite material composed of clay mineral and organic high polymer and method for producing the same In properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, US Patent, vol.4472, issue.5382, 1984.

D. Karst and Y. Yang, Using the solubility parameter to explain disperse dye sorption on polylactide, Journal of Applied Polymer Science, vol.2, issue.2, pp.416-422, 2005.
DOI : 10.1002/app.21456

C. Pouteau, S. Baumberger, B. Cathala, and P. Dole, Lignin???polymer blends: evaluation of compatibility by image analysis, Comptes Rendus Biologies, vol.327, issue.9-10, pp.935-943, 2004.
DOI : 10.1016/j.crvi.2004.08.008

J. Lindberg, Studies on thermodynamics of lignins and related polymers. II. Thermodynamics of solubility, Suomen Kemistilehti, B, vol.40, pp.225-228, 1967.

I. M. Thakore, S. Desai, B. D. Sarwade, and S. Devi, Evaluation of compatibility of poly(vinyl chloride)/starch acetate blends using simple techniques, Journal of Applied Polymer Science, vol.21, issue.11, pp.1851-1861, 1999.
DOI : 10.1002/(SICI)1097-4628(19990314)71:11<1851::AID-APP16>3.0.CO;2-W

X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang et al., Polymer-supported nanocomposites for environmental application: A review, Chemical Engineering Journal, vol.170, issue.2-3, pp.381-394, 2011.
DOI : 10.1016/j.cej.2011.02.071

T. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. A review, Surface and Coatings Technology, vol.206, issue.4, pp.742-752, 2011.
DOI : 10.1016/j.surfcoat.2011.07.010

URL : https://hal.archives-ouvertes.fr/hal-00849636

X. Z. Tang, P. Kumar, S. Alavi, and K. P. Sandeep, Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials, Critical Reviews in Food Science and Nutrition, vol.39, issue.1, pp.426-442, 2012.
DOI : 10.1016/S0032-3861(01)00118-5

F. Chivrac, Z. Kadlecova, E. Pollet, and L. Avérous, Aromatic Copolyester-based Nano-biocomposites: Elaboration, Structural Characterization and Properties, Journal of Polymers and the Environment, vol.15, issue.4, pp.393-401, 2006.
DOI : 10.1007/s10924-006-0033-4

R. A. Vaia and E. P. Giannelis, Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates, Macromolecules, vol.30, issue.25, pp.7990-7999, 1997.
DOI : 10.1021/ma9514333

H. M. Park, X. C. Li, C. Z. Jin, C. Y. Park, W. J. Cho et al., Preparation and properties of biodegradable thermoplastic starch/clay hybrids Thermoplastic starch-clay nanocomposites and their characteristics, Carbohydrate Polymers, vol.61, pp.455-463, 2002.

A. J. Carvalho, . De, A. A. Curvelo, and J. A. Agnelli, A first insight on composites of thermoplastic starch and kaolin, Carbohydrate Polymers, vol.45, issue.2, pp.189-194, 2001.
DOI : 10.1016/S0144-8617(00)00315-5

D. Wu, P. R. Chang, and X. Ma, Preparation and properties of layered double hydroxide???carboxymethylcellulose sodium/glycerol plasticized starch nanocomposites, Carbohydrate Polymers, vol.86, issue.2, pp.877-882, 2011.
DOI : 10.1016/j.carbpol.2011.05.030

H. Wihelm, M. Sierakowski, G. P. Souza, and F. Wypych, The influence of layered compounds on the properties of starch/layered compound composites, Polymer International, vol.45, issue.6, pp.1035-1044, 2003.
DOI : 10.1002/pi.1198

K. Bagdi, P. Muller, and B. Pukanszky, Thermoplastic starch/layered silicate composites: structure, intercalation, properties. Composites Interfaces, pp.1-17, 2006.

B. S. Chiou, E. Yee, D. Wood, J. Shey, G. Glenn et al., Effects of Processing Conditions on Nanoclay Dispersion in Starch-Clay Nanocomposites, Cereal Chemistry, vol.83, issue.3, pp.300-305, 2006.
DOI : 10.1094/CC-83-0300

H. M. Park, W. K. Lee, C. Y. Park, W. J. Cho, and C. S. Ha, Environmentally friendly polymer hybrids. Part I. Mechanical, thermal and barrier properties of thermoplastic starch/clay nanocomposites, Journal of Materials Science, vol.38, issue.5, pp.909-915, 2003.
DOI : 10.1023/A:1022308705231

H. Wihelm, M. Sierakowski, G. P. Souza, and F. Wypych, Starch films reinforced with mineral clay, Carbohydrate Polymers, vol.52, issue.2, pp.101-110, 2003.
DOI : 10.1016/S0144-8617(02)00239-4

E. Pollet, M. Schmutz, and L. Avérous, New approach to elaborate exfoliated starch-based nanobiocomposites, Biomacromolecules, vol.9, pp.896-900, 2008.

F. Leroux, Organo-Modified Anionic Clays into Polymer Compared to Smectite-Type Nanofiller: Potential Applications of the Nanocomposites, Journal of Nanoscience and Nanotechnology, vol.6, issue.2, pp.303-315, 2006.
DOI : 10.1166/jnn.2006.904

L. A. Utracki, M. Sepehr, and E. Boccaleri, Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs) Polymer for Advanced Technologies, pp.1-37, 2007.

J. Peters, K. Fischer, and S. Fischer, Characterization of emissions from thermally modified wood and their reduction by chemical treatment, BioResources, vol.3, issue.2, pp.491-502, 2008.

M. Huang, J. Yu, and X. Ma, Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites, Polymer, vol.45, issue.20, pp.45-7017, 2004.
DOI : 10.1016/j.polymer.2004.07.068

P. Myllarinen, A. Buléon, R. Lahtinen, and P. Forssell, The crystallinity of amylose and amylopectin films, Carbohydrate Polymers, vol.48, issue.1, pp.41-48, 2002.
DOI : 10.1016/S0144-8617(01)00208-9

D. A. Goring, R. Vuong, C. Gancet, and H. Chanzy, The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy, Journal of Applied Polymer Science, vol.24, issue.4, pp.931-936, 1979.
DOI : 10.1002/app.1979.070240406

S. Baumberger, C. Lapierre, B. Monties, D. Lourdin, and P. Colonna, Preparation and properties of thermally moulded and cast lignosulfonates-starch blends, Industrial Crops and Products, vol.6, issue.3-4, pp.253-258, 1997.
DOI : 10.1016/S0926-6690(97)00015-0

L. C. Morais, A. A. Curvelo, and M. D. Zambon, Thermoplastic starch???lignosulfonate blends. 1. Factorial planning as a tool for elucidating new data from high performance size-exclusion chromatography and mechanical tests, Carbohydrate Polymers, vol.62, issue.2, pp.104-112, 2005.
DOI : 10.1016/j.carbpol.2005.03.016

J. J. Van-soest, S. H. Hulleman, and J. F. Vliegenthart, Crystallinity in starch bioplastics, Industrial Crops and Products, vol.5, issue.1, pp.11-22, 1996.
DOI : 10.1016/0926-6690(95)00048-8

Y. Chung and H. Lai, Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites, Carbohydrate Polymers, vol.80, issue.2, pp.525-532, 2010.
DOI : 10.1016/j.carbpol.2009.12.020

J. J. Van-soest, S. H. Hulleman, D. De-wit, and J. F. Vliegenthart, Changes in the mechanical properties of thermoplastic potato starch in relation with changes in Btype crystallinity, Carbohydrate Polymers, vol.39, pp.225-232, 1996.

N. F. Magalhães and C. T. Andrade, Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties, Carbohydrate Polymers, vol.75, issue.4, pp.712-718, 2009.
DOI : 10.1016/j.carbpol.2008.09.020

D. Bikiaris and C. Panayiotou, LDPE/starch blends compatibilized with PE-g-MA copolymers, Journal of Applied Polymer Science, vol.70, issue.8, pp.1503-1521, 1998.
DOI : 10.1002/(SICI)1097-4628(19981121)70:8<1503::AID-APP9>3.0.CO;2-#

S. I. Yoo, T. Y. Lee, J. Yoon, I. Lee, M. Kim et al., Interfacial adhesion reaction of polyethylene and starch blends using maleated polyethylene reactive compatibilizer, Journal of Applied Polymer Science, vol.38, issue.4, pp.767-776, 2002.
DOI : 10.1002/app.2271

F. J. Rodriguez-gonzalez, B. A. Ramsay, and B. D. Favis, High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene, Polymer, vol.44, issue.5, pp.44-1517, 2003.
DOI : 10.1016/S0032-3861(02)00907-2

D. Bikiaris and C. Panayiotou, LDPE/starch blends compatibilized with PE-g-MA copolymers, Journal of Applied Polymer Science, vol.70, issue.8, pp.1503-1521, 1998.
DOI : 10.1002/(SICI)1097-4628(19981121)70:8<1503::AID-APP9>3.0.CO;2-#

S. I. Yoo, T. Y. Lee, J. Yoon, I. Lee, M. Kim et al., Interfacial adhesion reaction of polyethylene and starch blends using maleated polyethylene reactive compatibilizer, Journal of Applied Polymer Science, vol.38, issue.4, pp.767-776, 2002.
DOI : 10.1002/app.2271

P. Dubois and R. Narayan, Biodegradable compositions by reactive processing of aliphatic polyester/polysaccharide blends, Macromolecular Symposia, vol.198, issue.1, pp.233-243, 2003.
DOI : 10.1002/masy.200350820

W. Liu, Y. Wang, and Z. Sun, Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends, Journal of Applied Polymer Science, vol.88, issue.13, pp.2904-2911, 2003.
DOI : 10.1002/app.11965

J. Raquez, Y. Nabar, R. Narayan, and P. Dubois, Preparation and characterization of maleated thermoplastic starch-based nanocomposites, Journal of Applied Polymer Science, vol.40, issue.1, pp.639-647, 2011.
DOI : 10.1002/app.30224

V. Favier, H. Chanzy, and J. Y. Cavaille, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering: R: Reports, vol.28, issue.1-2, pp.1-63, 2000.
DOI : 10.1016/S0927-796X(00)00012-7

H. P. Grace, DISPERSION PHENOMENA IN HIGH VISCOSITY IMMISCIBLE FLUID SYSTEMS AND APPLICATION OF STATIC MIXERS AS DISPERSION DEVICES IN SUCH SYSTEMS, Chemical Engineering Communications, vol.10, issue.3-6, pp.3-6, 1982.
DOI : 10.1002/aic.690150512

A. Ait-kadi and J. B. Faisant, Determination of shear rate viscosity from batch mixer data, Journal of rheology, vol.43, pp.415-433, 1999.

C. Bastioli, V. Bellotti, G. D. Cella, L. Del-giudice, S. Montino et al., Biodegradable polymeric compositions comprising starch and a thermoplastic polymer, 1997.

V. P. Cyras, L. B. Manfredi, M. Ton-that, and A. Vázquez, Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films, Carbohydrate Polymers, vol.73, issue.1, pp.55-63, 2008.
DOI : 10.1016/j.carbpol.2007.11.014