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Manufacturing Constraints and Multi-Phase
Shape and Topology Optimization via a Level-Set Method

Abstract

The main contribution of this thesis is the implementation of manufacturing constraints in shape
and topology optimization. Fabrication limitations related to the casting p rocess are formulated as
mathematical constraints and introduced in the optimization algorithm. In addition, based on the same
theoretical and modelization tools, we propose a novel formulation for multi-phase optimization problems,
which can be extended to the optimization of structures with functionally-graded properties. A key
ingredient for the mathematical formulation of most problems throughout our work is the notion of the
signed distance function to a domain.

This work is divided into three parts. The �rst part is bibliographi cal and contains the necessary
background material for the understanding of the thesis' main core. It includes the �rst two chapters.
Chapter 1 provides a synopsis of shape and topology optimization methodsand emphasizes the combi-
nation of shape sensitivity analysis and the level-set method for tracking a shape's boundary. In Chapter
2 we give a short description of the casting process, from which all ourmanufacturing constraints derive.
We explain how industrial designers account for these limitations and propose a strategy to incorporate
them in shape and topology optimization algorithms.

The second part is about the mathematical formulation of manufacturing constraints. It starts with
Chapter 3, where the control of thickness is discussed. Based on the signed distance function, we formulate
three constraints to ensure a maximum and minimm feature size, as well as a minimal distance between
structural members. Then, in Chapter 4, we propose ways to handle molding direction constraints and
combine them with thickness constraints. Finally, a thermal constraint coming from the solidi�cation of
cast parts is treated in Chapter 5 using several thermal models.

Multi-phase optimization is discussed in the third part. The general problem of shape and topology
optimization using multiple phases is presented in detail in Chapter 6. A "smoothed-interface" approach,
based again on the signed distance function, is proposed to avoid numerical di�culties related to classical
"sharp-interface" problems and a shape derivative is calculated. An extension of this novel formulation
to general types of material properties' gradation is shown in the Appendix A.

Keywords

Shape and topology optimization, level-set method, manufacturing constraints, casting constraints,
thickness control, signed distance function, molding constraint, thermal constraints, multi-phase opti-
mization.
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Contraintes de Fabrication et Optimisation Multiphasiques de
Forme et de Topologie avec la M�ethode des Lignes de Niveaux

R�esum�e

La principale contribution de cette th�ese est la mise en oeuvre des contraintes de fabrication dans
l'optimisation g�eom�etrique et topologique de formes. Les limitations de fabrication relatives au proc�ed�e
de fonderie sont formul�ees comme des contraintes math�ematiques etsont introduites dans l'algorithme
d'optimisation. En outre, en utilisant les mêmes outils th�eoriqu es et de mod�elisation, nous proposons
une nouvelle formulation pour des probl�emes d'optimisation �a plusieurs phases, qui peut être �etendue
�a l'optimisation des structures avec des propri�et�es fonctionn ellement gradu�ees. Un ingr�edient cl�e pour
la formulation math�ematique de la plupart des probl�emes tout au long d e notre travail est la notion de
fonction de distance sign�ee d'un domaine.

Ce travail est divis�e en trois parties. La premi�ere partie est bibliographique et contient le mat�eriel
de base n�ecessaire �a la compr�ehension du noyau principal de la th�ese. Il comprend les deux premiers
chapitres. Le Chapitre 1 pr�esente une synth�ese des m�ethodespour l'optimisation de formes et de la
topologie et souligne la combinaison de l'analyse de sensibilit�e de la forme et la m�ethode des lignes
de niveaux pour la description de la fronti�ere de la forme. Dans le Chapitre 2 nous donnons une br�eve
description du proc�ed�e de moulage, �a partir de laquelle toutes noscontraintes de fabrication sont d�eduites.
Nous expliquons comment les designers industriels tiennent compte de ces limitations et proposons une
strat�egie visant �a les incorporer dans les algorithmes de l'optimisation de formes.

La deuxi�eme partie est consacr�ee la formulation math�ematique des contraintes de fabrication. Il
commence par le Chapitre 3, o�u le contrôle de l'�epaisseur est discut�e. Bas�e sur la fonction distance
sign�ee, on formule trois contraintes a�n d'assurer une taille d'�epaisseur maximale et minimale, ainsi
qu'une distance minimale entre les membres de la structure. Puis, au Chapitre 4 nous proposons des
fa�cons de g�erer les contraintes de la direction de d�emoulage et de les combiner ensuite avec des contraintes
d'�epaisseur. Finalement, une contrainte thermique provenant de la solidi�cation des pi�eces coul�ees est
trait�ee dans le Chapitre 5 utilisant plusieurs mod�eles thermi ques.

L'optimisation multiphasique est discut�ee dans la troisi�eme part ie. Le probl�eme g�en�eral de l'optimisation
de formes utilisant plusieurs phases est pr�esent�ee en d�etaildans le Chapitre 6. Une approche des interfaces
"liss�ees", encore une fois bas�ee sur la fonction de distance sign�ee, est propos�ee pour �eviter les di�cult�es
num�eriques li�ees au probl�emes classiques d'une interface "nette" et une d�eriv�ee de forme est calcul�ee.
Une extension de cette nouvelle formulation �a l'optimisation de mat�eriaux aux propri�et�es gradu�ees est
montr�ee dans l'Annexe A.

Mots-cl�es

Optimisation g�eom�etrique et topologique de formes, m�ethode des lignes de niveaux, contraintes de
fabrication, contraintes de coul�ee, contrôle de l'�epaisseur, fonction de distance sign�ee, contrainte de de-
moulage, contraintes thermiques, optimisation �a plusieurs phases.
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Introduction

This Thesis has been launched in the framework of the RODIN (Robust structural Optimization for
Design in INdustry) project. RODIN has been motivated by the observation of many engineers and
industrial designers that, although shape and topology optimization techniques can be a valuable tool for
accelerating the design cycle and improving the �nal structure, existing shape and topology optimization
software present several limitations and do not provide them with satisfying enough solutions.

The majority of commercial topology optimization softwares use density-based methods. A density
�eld � (x) 2 [0; 1] is de�ned in the design domain and the original topology optimization problem is traded
for a problem of optimal distribution of the material density. Despite the conceptual and mathematical
convenience of such an approach, some new problems may appear. A �rst inconvenience is that, although
the notion of a varying density makes sense for a composite structure,it has no meaning for a classical
continuous medium, for which the value of the density is either 0 or 1(we shall refer to such structures
as 0� 1 shapes). The majority of density-based methods use some penalization scheme for the material
properties, which favors the formation of 0� 1 shapes, at least for rigidity maximization in linearized
elasticity. For example, the well-known SIMP (Solid Isotropic Material with Penalization) method, uses
the schemeA ijkl (� ) = � pA ijkl , where A ijkl is the elasticity tensor of the full material ( � = 1) and p is
a penalization power (usually p = 3). This scheme makes material with intermediate density values too
expensive, since its volume depends linearly in� . However, in more complex mechanical frameworks, the
impact of such penalization schemes is not always evident and it is possible that the optimal solution
contains large areas with intermediate values of the density �eld (seeFigure 1). Then, the engineers need
to interfere and extract a 0� 1 shape using their mechanical intuition. This "interpretation" st ep can be
non-trivial and results in non-optimal structures, especially in case of a complex mechanical framework,
where intuition is limited.

Another limitation is related to the restricted range of applications t hat the existing softwares can
treat e�ciently. A �rst cause is that the use of a density �eld change s the formulation of the mechanical
problem at play. The mechanical properties depend on the values of thedensity �eld in a more or
less heuristic way. Although this dependence seems to work well for simple problems, e.g. compliance
minimization in linearized elasticity, modi�cations need to be done for more complex problems, such as
dynamics or stess-based citeria. Moreover, the density description makes impossible to treat e�ciently
problems where the precise position of the boundary plays an importantrole, e.g. thermal problems with
heat exchange along an optimizable boundary.

In addition to the above mentioned con�nements, it seems that existing softwares have not managed to

Figure 1: Optimized density distribution of a minivan's structur al part, obtained with the commercial
software OptiStruct of Altair Engineering (�gure extracted from http ://www.vm.co.nz/examples.html).

15
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(a) (b) (c)

Figure 2: Optimization of an engine bracket; (a): design domain; (b) topology optimization result; (c)
�nal design.

incorporate or combine e�ciently manufacturing constraints in topology op timization. Although several
ideas have appeared in the literature concerning the handling of somespeci�c manufacturing constraints
of geometric nature in a density framework, the results provided bycommercial softwares are most of the
times not manufacturable. In Figure 2, we see the basic steps for the design of an engine bracket, based on
topology optimization. In the optimized result, we can observe the existence of some thin features in the
lower part and some thick parts in the upper part. The �nal result req uires then a postprocessing step,
which can change signi�cantly the shape and also cause a complete loss of its optimal characteristics.

We believe that there are two main reasons for this limitation. First, some of the proposed methods
are very sensitive to the optimization parameters and thus are not suitable for a black box optimization
software. Second, most of the methods are based on the notion of �lters which relate the densities of
di�erent points using some scheme. Thus, when several constraints need to be combined, it is not clear
how di�erent �lters interact and if a general �lter that accounts for al l constraints can be formulated.

Several industrial (Renault, EADS-IW, ESI-Group, SNECMA, etc...) and academic (Ecole Polytech-
nique, University Pierre et Marie Curie (Paris 6), University Den is Diderot (Paris 7), INRIA Bordeaux)
partners participate in the RODIN project for the creation of a novel shape and topology optimization
software, the goals of which are

� to eliminate the "interpretation" step, which is inherent in den sity-based methods, i.e. provide
optimization results that are directly exploitable or need minimal manipulations,

� to expand the range of applications and improve the e�ciency of shape and topology optimization
in existing domains (stress-based criteria, etc...),

� to treat e�ciently manufacturing constraints.

Based on the �rst two speci�cations, the combination of shape sensitivity analysis and a level-set
description of the shape has been chosen as optimization method. Without entering into many details,
the level-set method is a way of implicitly describing the boundary of a shape 
, enclosed in a large
computational domain D , via an auxiliary function  , such that (see Figure 3)

8
<

:

 (x) = 0 $ x 2 @
 \ D;
 (x) < 0 $ x 2 
 ;
 (x) > 0 $ x 2

�
D n 


�
:

The level-set description of the shape is well-known to be very e�cient for topology optimization due to
the ease at which topological changes occur, while keeping at the same time a "clear" 0 � 1 description
of the shape. It is possible to mesh the level-set function on a �xedgrid once during the optimization, or
to adjust the mesh on the zero level-set at each iteration of the algorithm, after the work of C. Dapogny
during his Phd thesis, also in the framework of the RODIN project (see Figure 4). In the �rst case,
minimal changes are required in the formulation of the mechanical problem. The "void" part D n 

is represented by a weak "ersatz" material, whose material propertiescan be adjusted such that it has
negligible mechanical contribution. In the second case, the mechanical problem is treated as such.
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(a) (b)

Figure 3: (a): Optimized shape 
 (in black), enclosed in a square working domain D ; (b): level-set
representation of the shape.

(a) (b)

Figure 4: (a): Optimized structure using a �xed mesh for the level-set function; (b): optimized structure
using an adapted mesh (�gure extracted from [44]).

The main topic of this work is the implementation of manufacturing constraints in shape and topology
optimization, using a level-set description of the shape. The reasonwhy we highlight the "level-set
description" is that the majority of the formulations herein are based on the assumption that a geometric
description of the shape exists and that all geometric information for theshape are derived from the
level-set description. However, some of them may also be used withslight modi�cations in the framework
of other shape and topology optimization methods.

On top of manufacturing constraints, we also worked on multi-phase optimization. For this topic,
our motivation came from discussions with researchers from the SIMAP laboratory at Joseph Fourier
University in Grenoble who are interested in the impact of di�used interfaces on the optimal shapes.
The formulations of multi-phase problems that previously existed inthe literature were making a smooth
approximation of sharp-interface problems but were plagued with an erroneous formula for the shape
gradient, used in numerical algorithms. We worked in collaboration with C. Dapogny and G. Delgado
and presented a thorough analysis of multi-phase problems in shape and topology optimization. An
application of our work was a collaboration with the SIMAP laboratory about the e�e cts of interface
properties on the optimal shape.

The thesis is divided into three parts, which contain six chapters and one appendix. We present now a
brief outline of each part separately. Technical details and bibliographical references on the corresponding
topics are included in each chapter separately and are omitted in this introduction.

Part I: Background material

The �rst part contains Chapter 1 and 2 and provides the necessary background material for the analysis
in the sequel. In Chapter 1, we recall the basic ingredients of shape and topology optimization and we
insist more on the shape sensitivity analysis and the level-set method. In Chapter 2, we give a short
description of the casting process, categorize the manufacturing constraints of interest and explain the
strategy to follow in order to include them in shape and topology optimization.
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Chapter 1: Introduction to shape and topology optimization

The �rst chapter starts with the basic elements about shape and topology optimization. The theoretical
problem of non-existence, without additional constraints, of an optimal domain 
 that minimizes a
shape-dependent cost functionalJ (
) is explained and techniques to circumvent it are discussed. The
di�erences between the main categories of shape optimization, i.e. parametric, geometric and topology
optimization, are explained. Then, we focus more on topology optimization,which adresses the problem
of shape optimization in all generality. Among well-known methods for topology optimization, such as
the homogenization method, the topological sensitivity method and the Soft Kill Option, we focus more
on the SIMP method, since it is the method of choice for the majorityof commercial softwares and there
exists a great amount of literature on the topics of our interest, comparedto other topology optimization
methods.

In the sequel, we present the basic ingredients of our method of choice for shape and topology opti-
mization, which combines a shape sensitivity analysis to obtain a descent direction and a level-set method
for the shape desription in order for topological changes to occur naturallyduring shape advection. We
use Hadamard's method for shape variation, in which an initial domain 
 is perturbed by a smooth
enough vector �eld � to get a new domain 
 � = ( Id + � )
. This description allows to obtain a notion
of shape derivativeJ 0(
)( � ) and to extract a notion of shape gradient for the iterative minimization of
a functional J . The di�erences and the connection between Eulerian and Lagrangian shapederivatives
of shape-dependent functions are explained and formulas for the shape derivative of volume and surface
integrals are recalled. The background material on the shape sensitivity method closes with an example
about how to �nd the shape derivative expression of a general type functional

J (
 ; u(
)) =
Z



j (x; u(
 ; x))dx +

Z

@

l (s; u(
 ; s))ds;

where u is the solution to a linearized elasticity system, using the method of C�ea.
The second basic element of our topology optimization method, i.e. the level-set method for the

description of the shape, is then described. All shapes are assumed to be included in a big computational
domain D and are represented implicitly via the zero level-set of a scalar function  , de�ned as:

8
<

:

 (x) = 0 $ x 2 @
 \ D;
 (x) < 0 $ x 2 
 ;
 (x) > 0 $ x 2

�
D n 


�
:

The advection of the shape 
 under a velocity �eld � is then described via the advection of the level-set
function through the transport equation:

@ 
@t

(t; x ) + � (t; x (t)) � r  (t; x ) = 0 ; 8t; 8x(t) 2 @
( t);

which, for the case� (t; x ) = V (t; x )
r  (t; x )
jr  (t; x )j

, which is of interest for shape optimization, writes again

as:
@ 
@t

(t; x ) + V (t; x )jr  (t; x )j = 0 ; 8t; 8x 2 D:

Finally, the coupling of shape sensitivity with a level-set description is explained. The shape gradient
is interpreted as an advection velocity for the level-set functionand an iterative algorithm is built for
the numerical minimization of the cost function. Two basic steps for this coupling are explained, the
"ersatz material" approach for representing the void part D n 
 and the extension and regularization of
the velocity �eld in order to accelerate the convergence speed.

Chapter 2: Casting constraints: physical description and classi-
�cation

In the second chapter, we provide a physical description of castingconstraints, which are the manufac-
turing constraints of our interest, explain how industrial designers usually account for them and propose
a general framework under which they can be introduced in shape and topology optimization.

The molding system, i.e. the number, the position and the direction of removal of the molds, plays a
crucial role on the �nal design of a cast part. Furthermore, among the variety of possible casting defects,
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the design engineer needs to take into consideration the shrinkage porosity and the pouring metal defects,
which are closely linked to the shape of the structure. We propose totest castability through ensuring
the following three properties of the cast part:

� moldability, i.e. the ability to construct and remove the molds after solidi�cation of the cast part,

� feedability, i.e. the ability to construct a feeding system in order to drive the shrinkage porosity
due to solidi�cation into the risers, at an acceptable cost,

� �llability, i.e. the ability to �ll the molds with liquid metal, a voiding premature solidi�cation and
the use of high additional pressure.

Some of the above properties are of purely geometric nature, while others derive from the physics of
casting. In this last case, the complete casting system is needed forthe analysis, which we believe is not
practical for topology optimization, since the shape changes during the optimization. For this reason,
equivalent geometric criteria are usually set by the designers in place of the mechanical ones, or the actual
mechanical problems are simpli�ed by omitting the complete castingsystem and setting approximative
boundary conditions.

The three above requirements impose several speci�cations that the design needs to comply with.
More speci�cally, moldability induces constraints on the:

� molding direction

� minimum members' distance

� maximum curvature.

Feedability can be treated either geometrically, by imposing a:

� maximum thickness feature,

or mechanically, by setting a:

� maximum solidi�cation time,

working with a simpli�ed casting model.
Finally, �llability is very di�cult to be treated mechanically and thus, we follow a geometric approach
by imposing a:

� minimum thickness feature.

Part II: Manufacturing constraints

The second part is devoted to manufacturing constraints and covers Chapter 3, 4 and 5. Thickness control
is discussed in Chapter 3. Chapter 4 is more linked to cast parts and wepropose therein methods to treat
constraints on the molding direction. Chapter 5 refers in general to thermal problems, but we concentrate
more on a thermal constraint derived from the cooling process duringcasting. We have coded almost all
developments of this part (with a slight exception in Chapter 5), in the commercial software SYSTUS of
ESI-Group.

Chapter 3: Thickness control in structural optimization

In the third chapter we deal with thickness control. A priori, the l evel-set description provides no
geometric information about the thickness of the structure. In addition to this, it is not clear how a
notion of thickness can be de�ned for continuous structures.

We tackle both problems using the signed distance function to the domain 
, de�ned as

d
 (x) =

8
<

:

� d(x; @
) if x 2 
 ;
0 if x 2 @
 ;
d(x; @
) if x 2 c
 ;
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whered(�; @
) is the usual Euclidean distance. We highlight the di�erence bet weend
 and  , the level-set
function used for the advection of the shape.

First, we formulate three pointwise constraints for the maximum and minimum thickness feature
and for the minimum distance between the shape's members. We havebased the maximum thickness
constraint on the idea that no point should be the center of a ball of radius dmax =2, fully covered with
material. For the minimum thickness and the minimum members' distance constraints, we have adopted
a di�erent concept, based on the idea of o�set sets. For the minimum thickness, starting from a point
on the boundary of the domain, we move in the opposite direction of the normal vector and check if we
get out of the shape up to a distancedmin . We do the same for the members' distance, in the opposite
direction. Their mathematical formulation, using the signed distance function, read:

Maximum Thickness : d
 (x) � � dmax =2 8x 2 
 ;
Minimum Thickness : d
 (x � dof f n (x)) � 0 8x 2 @
 ; 8dof f 2 [0; dmin ] ;
Minimum Members' Distance : d
 (x + dof f n (x)) � 0 8x 2 @
 ; 8dof f 2 [0; dmin ] :

Then, in order to avoid the complexity of treating a large number of constraints, we propose to
formulate global averaged constraints using simple quadratic penalty functionals:

Maximum Thickness : PMaxT (
) =
Z




h
(d
 (x) + dmax =2)�

i 2
dx = 0 ;

Minimum Thickness : PMinT (
) =
Z

@


Z dmin

0

h
(d
 (s � �n (s))) +

i 2
d�ds = 0 ;

Minimum Members' Distance : PMMD (
) =
Z

@


Z dmin

0

h
(d
 (s + �n (s))) �

i 2
d�ds = 0 ;

where: (f )+ = max (f; 0) and (f ) � = min (f; 0).
The shape derivatives of the above functionals are computed, using information about the shape di�er-
entiation of the signed distance function and a co-area formula.

We propose an alternative formulation for the maximum thickness functional, as well as some mod-
i�cations on the computation of its shape derivative, in order to avoid distortions at the crossing of
features and close to the boundary of the working domain, which are inherent in the formulation of the
constraint. We test the above formulations with several 2d and 3d examples on volume minimization
under a compliance constraint, using a simple augmented Lagrangian algorithm (see Figure 5).

Finally, we discuss on some well-known formulations of thickness control in the framework of the
SIMP method, explain the di�erences with our formulations and propose constraints following a similar
concept in the framework of classical shape optimization, wherever possible.

(a)

(b) (c)

Figure 5: (a): boundary conditions for a 2d MBB beam; (b): optimized shape without thickness con-
straints; (c) optimized shape with maximum and minimum thickness constraints.
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Chapter 4: Molding direction constraints in structural optimiza-
tion

The fourth chapter refers to the molding direction constraint, which is particular of cast parts. The
molding system is supposed to be �xed and the optimized shape must not contradict with the removal
of the molds.

We present �rst the idea of Xia et al. on this topic, which consists of starting with a feasible shape
and allow each part to move only parallel to its corresponding parting direction. This strategy ensures
that the shape will remain always feasible and is very e�cient when it is not combined with thickness
constraints. We explain that the limitation of the shape to increase in size orthogonally to its parting
direction excludes the possibility of combining this strategy with a constraint on the minimum thickness
feature.

Therefore, we formulate some generalized molding direction constraints, using information from the
unit normal vector or the signed distance function. A �rst formulation r eads:

di � n(x) � 0; 8x 2 � i ;

where di is the parting direction of the boundary part � i � @
. The shape derivation of the normal
vector is quite complicated, as we show later in this chapter and thus, we propose also the following
formulation using the signed distance function:

d
 (x + �d i ) � 0 8x 2 � i ; 8� 2 [0; diam(D)] ;

where we denotediam(D) = sup x;y f dist (x; y); x; y 2 Dg the diameter of the �xed domain D. In case the
area of possible contact between two molds is not a priori de�ned, the constraint is slightly modi�ed and
reads

d
 (x + � sign(n � d)d) � 0 8x 2 @
 ; 8� 2 [0; diam(D)] ;

where d is the parting direction of the molds. The above pointwise constraints are formulated again as
global averaged constraints and their shape derivative is computed.

Finally, we propose ways to impose a uniform cross-section constraint. One of them consists simply
in starting with a shape with a uniform cross-section and consider vector �elds that are constant along
its normal direction. Another idea is to start again with a shape that respects the constraint and impose
the constraint numerically via an anisotropic regularization.

(a) (b)

Figure 6: Optimized shape (a): without molding direction constraint; (b): with molding direction con-
straint ( d = (1 ; 0; 0)).
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(a) (b)

Figure 7: Optimized shape (a): without uniform cross-section; (b): with uniform cross-section.

Chapter 5: Thermal constraints in structural optimization

The �fth chapter is devoted to the only manufacturing constraint of me chanical nature in this work, i.e.
the constraint on the maximum solidi�cation time. For a cast part that star ts solidifying ideally from a
uniform initial temperature, we need to ensure that it solidi�es at most at time t f , i.e. the temperature
T must be everywhere under the corresponding solidus temperatureof the metal Ts. The mathematical
formulation of the constraint reads:

T(x; t f ) � Ts; 8x 2 
 :

The thermal model that describes the solidi�cation process is a non-linear transient heat equation with
phase change. We believe that the application of the constraint since the beginning of the optimization
algorithm using this model is too costly in memory and time. Moreover, the calculation of the shape
derivative is not straightforward, since there is a discontinuity of the temperature �eld on the interface
between the cast part and the mold. For the above reasons, we have proposed to use much simpler models
as a �rst step. However, we expect that even these models will givesatisfying results, since in all of them
the large volumes of material tend to reduce.

We propose to test the following thermal models of increasing di�culty and computational cost:

� Poisson equation with Dirichlet boundary conditions.

� Linear transient heat equation with Dirichlet boundary conditions.

� Approximation of the previous model via the �rst term of its Fourier s eries (eigenvalue approxima-
tion).

� Linear transient heat equation with piecewise constant conductivity.

� Linear transient heat equation with heat ux across the moving boundary.

� Non-linear transient heat equation with heat ux across the moving boundary and phase-change.

For all of them, we present the formulation of the problem and we compute the shape derivative of a global
averaged constraint. We present 2d numerical results using the �rst three models. The temperature limit
needs to be adjusted for each case in order for the results to be comparable in a certain sense. For this
reason, we consider an one-dimensional model of the casting system for acast part of sizedmax and we
set the temperature limit equal to the maximum value of the temperature after time t f .

Part III: Multi-phase optimization

Finally, Part III is about multi-phase optimization and includes Chapt er 6 and the Appendix. In Chap-
ter 6, we discuss the general problem of multi-phase optimization. "Sharp-interface" and "smoothed-
interface" models are presented in detail and the di�erence withthe previous literature on the topic is
explained. The Appendix contains an article that we submitted in the journal SMO (Structural and
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Multi-disciplinary Optimization) about the interface-e�ects on t he optimized shape, which is a result of
our collaboration with the SIMAP laboratory of Joseph Fourier University in G renoble. All numerical
results for multi-phase optimization with a "di�use" interface hav e been done using a 2d code written in
Scilab, while for the case of a "sharp-interface" a 2d code in FreeFem++ was used.

Chapter 6: Multi-phase structural optimization

The �nal chapter of this work is about multi-phase optimization. It start s with the problem of optimal
distrubution of two materials with Hooke's tensor A0 and A1, occupying two subdomains 
0 and 
 1 of
the working domain D .

First, we study the classical "sharp-interface" model, in which the global Hooke's tensor is assumed
to be discontinuous on the interface between the materials and is given as

A = � 
 0 A0 + (1 � � 
 0 )A1;

� 
 0 being the characteristic function of the domain 
 0. We compute the shape derivative for the compli-
ance of the structure and explain the di�culties in the numerical ap proximation of its terms when a �xed
mesh is used. We propose instead to di�erentiate the discretizedproblem, which provides a consistent
approximation.

Then, we consider a "smoothed-interface" model, where the material properties are interpolated
between the two phases in an area of width 2" around their intermediate interface, de�ned as the zero
level-set of a level-set function . A smooth interpolation function h" (d
 0 ) is used, which depends
on the signed distance function to the domain 
0. In this chapter, h" (d
 0 ) is chosen to be a smooth
approximation of the Heaviside function and we prove that this problem converges to the "sharp-interface"
problem when the interpolation width tends to zero.

Our main contribution in this "smothed-interface" formulation is the correct computation of the shape
derivative. For the case of the compliance:

J (
 0) =
Z

D
Ae(u) : e(u)dx

it reads

J 0(
 0)( � ) = �
Z

�
� (x) � n(x)

�
f 0(x) + f 1(x)

�
dx;

where � is the optimizable boundary, n is the outer unit normal to 
 0 and f 0; f 1 are scalar functions
de�ned by

f 0(x) =
Z

ray� (x ) \ 
 0
h0

" (d
 0 (z)) ( A1 � A0)e(u)(z) : e(p)(z)
N � 1Y

i =1

(1 + d
 0 (z)� i (x))dz;

f 1(x) =
Z

ray� (x ) \ 
 1
h0

" (d
 0 (z)) ( A1 � A0)e(u)(z) : e(p)(z)
N � 1Y

i =1

(1 + d
 0 (z)� i (x))dz;

where z denotes a point in the ray emerging from x 2 �, i.e. the line connecting x 2 � with its
corresponding point on the skeleton of the shape.

We emphasize the di�erences with previous publications on the topic and propose simpli�ed formulas.
We show how the method is extended for more than two phases and test this formulation in compliance
minimization, multi-functional optimization for the design of rigid and thermally isolating structures and
materials design using inverse homogenization.
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(a) (b)

(c)

Figure 8: Optimized shape of (a): L-shaped structure for compliance minimization; (b): unit-cell of
periodic medium with target thermoelastic coe�cients; (c): mu lti-functional structure for structural
rigidity and thermal isolation.

Appendix A: Material interface e�ects on the topology optimiza-
tion of multi-phase structures

The Appendix is the exact reproduction of a submitted article, which is a result of our collaboration with
a team from the SIMAP laboratory of Joseph Fourier University in Grenoble.

This work can be regarded as an extension of the applications of the "smoothed-interface" formulation
in Chapter 6, in the sense that it accounts for general types of the interpolation function h" (d
 0 ). Moti-
vated by physical observations, we study the e�ect in the optimal shape of non-monotonic interpolation
of the material properties around the interface of the two phases. Previous formulas in the literature
cannot be used even for the approximative study of such cases, since it is the integration along the "rays"
that allow to take into consideration the speci�c gradation pro�le.

We view this study as a �rst step towards the shape and topology optimization of functionally-graded
structures of general type.

Part of our work on multi-phase optimization, presented mainly in Chapter 6 and partly in Chapter
3, has been accepted for publication under the title:

G. Allaire, C. Dapogny, G. Delgado, and G. Michailidis. Mutli-phase structural optimization via a
level-set method. (to appear in ESAIM: Control, Optimisation and Calculus of Variations), 2013.

We have also submitted for publication our work on material interface e�ects, in collaboration with
the SIMAP laboratory, which is presented as such in the Appendix, with the title:

N. Vermaak, G. Michailidis, G. Parry, R. Estevez, Y. Brechet, and G. Allaire. Material interface e�ects
on the topology optimization of multi-phase thermoelastic structures using a level set method.
(submitted in SMO: Structural and Multi-disciplinary Optimiz ation), 2013.

Based on the material of chapters 3 and 4, we prepare to submit the following two preprints:

G. Allaire, F. Jouve, and G. Michailidis. Thickness constraints in structural optimization via a level-set
method. (In preparation), 2013.
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G. Allaire, F. Jouve, and G. Michailidis. Molding direction constraints in structural optimization via a
level-set method. (In preparation), 2013.

Finally, two conference proceedings, based on this work, can be foundon the web:

G. Allaire, F. Jouve, and G. Michailidis. Casting constraints in structural optimization via a level-set
method. 10th World Congress on Structural and Multidisciplinary Optimization, Or lando, Florida,
USA, 2013.

G. Allaire, F. Jouve, and G. Michailidis. Structural and multi-functional optimization using multipl e
phases and a level-set method. SEECCM III, 3 rd South-East European Conference on Computational
Mechanics, Kos Island, Greece, 2013.
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Introduction to shape and topology
optimization
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1.1 Structural optimization

The word "structure", from a mechanical point of view, is de�ned by J.E . Gordon [60] as "any assemblage
of materials which is intended to sustain loads". Hence, the function ofa structure is to transfer a load
from the place where it is applied to another one, with safety. Its "optimization" is concerned with
improving as much as possible some characteristics related to its mechanical behaviour.

The design cycle of a structure has changed signi�cantly in the last decades. At a �rst step, an initial
concept is proposed and evaluated with respect to criteria of di�erent nature (mechanical, aesthetical,
economical, etc...). Then, either the design is accepted, or changedto be improved. In the past, this
improvement task was mostly based on the experience and knowledge of engineers. Moreover, in compli-
cated problems where mechanical intuition is very limited (dynamics, non-linear problems, etc...), it is
still common practice to use guidelines of design, which are extracted after a long period of trial and error
e�orts. This design loop could end after a signi�cant number of iterati ons, resulting in a high design cost
and, in all probability, in a structure that could be further improv ed.

The extreme progress in the computational �eld during the last decades, endowed engineers with the
capability of introducing mathematical optimization methods and algorit hms, that existed long before,
into the design process. It made possible to use automatic optimization methods for criteria that could
be mathematically formulated. This is exactly the kind of optimization of interest in this work. By
"Structural Optimization" here, we should understand the applicati on of methods of mathematical design
optimization on mechanical structures. Furthermore, among the several �elds of structural mechanics,
we will deal here only with solid mechanics. This is the reason why the words "structure" and "shape"
will be interchanged in this text.

Various types of structural optimization problems have appeared in theliterature. Optimization of
the material properties [25], [26], [117], [125], minimization of the stress concentration [11], [52], [53],
[78], optimal choice among a set of cross-sections of members composing a structure [80], [110], etc... A
�rst categorization of the above mentioned problems can be done according to what the optimization
parameters represent. In this work we focus on problems of Shape Optimization, i.e. problems where the
optimization variables de�ne the shape of the structure.

29
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1.2 Shape optimization

Shape Optimization examples have appeared very long time ago (see [44] for a short historical review).
The extreme progress in computing capabilities during the last decades made possible to apply such
techniques in real-life problems of structural mechanics. Sincethen, there has been an increasing number
of publications on the topic [3], [4], [28], [71], [113], [96], [102], [132].
A general mathematical formulation of a Shape Optimization problem reads

inf

 2U ad

J (
) ; (1.1)

where 
 is the domain occupied by the structure, J is the objective function to be minimized and Uad is
a set of admissible shapes to which 
 shall belong.

1.2.1 Ill-posedness of shape optimization problems and remedies

Non existence of optimal solutions

It is well-known that problem (1.1) lacks an optimal solution for a great variety of problems when the
topology of the shape is not further constrained [4], [39], [71], [130]. Let us explain this artifact using an
example from [4].

Suppose that we are given a membrane occupying the domainD = (0 ; 1)2 and with a unitary uniform
loading applied at its left and right boundary (see Figure 1.1). The membrane is �lled with two isotropic
elastic materials, with elastic coe�cients � >> � . The coe�cient � is set to a very small value (� << 1)
such that it represents void. Assuming that the strong phase� occupies the domain 
 � D and using
its characteristic function � 
 , such that

� 
 (x) =
�

1 if x 2 
 ;
0 if x =2 
 ;

(1.2)

the elastic coe�cient � � for the whole domain D is written

� � = �� + � (1 � � )

and the displacementu� solves the state equation

�
� div( � � r u� ) = 0 in D;

� � r u� � n = e1 � n on @D:
(1.3)

Problem (1.1) can be written again as
inf

� 2U ad

J (� ): (1.4)

We look for the shape of the membrane that maximizes its rigidity, using a speci�c volume V� of the

Figure 1.1: Membrane having the same volume, but di�erent number of holes. The shape on the right is
more rigid than that on the left (�gure extracted from [4]).

rigid material. Mathematically the optimization problem reads

inf
� 2U ad

J (� ) =
Z

@D
(e1 � n)u� ds; (1.5)
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where the admissible setUad is de�ned as

Uad =
�

� 2 L 1 (D ; f 0; 1g) such that
1

jD j

Z

D
�dx = V�

�
:

Proposition 1.2.1. There is no minimum point or optimal solution for problem (1.5) i n the set Uad .

The proof of Proposition 1.2.1 is omitted here and we adress the interested reader to [4] for a detailed
presentation. An intuitive explanation of the above result is that the rigidity of the structure could
be always further improved by creating smaller and smaller inclusions of weak phase aligned with the
direction of the force. Since the admissible setUad imposes no constraint on the size or smoothness of
the holes, this process could be continued without any limit.

In fact, the sequence of such shapes does not converge to a classical shape, described by a characteristic
function, but instead to a composite material, a mixture of materials 1 and 2 with densities � = V�

jD j
and 1 � � . This case, i.e. the optimality of composite materials, is common in topology optimization
problems. Moreover, this result is of enormous numerical importance, since it explains and justi�es the
mesh-dependency of the optimized shapes, i.e. the appearance of moreand more holes in the optimized
shape as the mesh is re�ned.

Techniques to avoid non-existence

A quite natural idea in order to avoid this problem of non-existence is to enlarge the set of admissible
shapes by including "homogenized" structures inUad [3], [142], [100]. In this way the characteristic
function � is replaced by a density �eld � which varies continuously in the interval [0; 1]. The elastic
properties of each phase are replaced by the homogenized properties of the composite material created by
their mixture. Once the properties of the homogenized elasticity tensorA � have been optimized, problem
(1.4) is replaced by therelaxed or homogenized problem

inf
� 2U �

ad

J (� ); (1.6)

where

U�
ad =

�
� 2 L 1 (D ; [0; 1]) such that

Z

D
�dx = V�

�
:

This problem admits a solution that can be proved to correspond to the limit of a sequence of shapes of
problem (1.4).

Another category of methods is based on the concept of further constraining the set of admissible
shapesUad in order to avoid extreme oscillations of its boundary or to impose limitations on its topology.
In [21], Ambrosio et el. proposed to modify problem (1.1) and consider instead the optimization problem

inf

 2U ad

J (
) + `P P(
) ; (1.7)

where`P > 0 is a �xed scalar parameter andP(
) is the perimeter of the domain 
. In [99], [130], Murat
et al. proved the existence of local optima for problem (1.1), for a large variety of objective functions,
assuming that the admissible shapes are uniformly Lipschitz (see also [39]). Several other approaches
have been proposed and we adress the interested reader to [4] and [71] fora more detailed presentation.

1.2.2 Main categories of shape optimization

A further subdivision of Shape Optimization problems can be done depending on the choice of geometric
representation. Traditionally, three main categories are recognized: parametric, geometric (or shape) and
topology optimization.

Parametric optimization

In parametric optimization the shape is described a priori using a limited number of parameters. Such
control variables can be for example the thickness distribution of thestructure [24], [4], [42], the size
of structural members [122] or the size of bars in a truss [28], [42]. Many approaches have also been
presented, in which the boundary of the structure is parametrizedusing polynomials, such as B�ezier
curves, splines or NURBS (see [42] and the references therein). This type of optimization is widely used
in industrial applications, but o�ers a limited possibility of shape variations.
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Geometric (or Shape) optimization

In geometric (or shape) optimization the optimization parameter is the boundary of the structure itself. It
is not a priori limited by decomposing it into a set of curves (splines, NURBS, etc...), but it is considered
as such. It can be numerically represented using, for example, a �nite element mesh [18], [4], [91].The
domain here has much more freedom to vary, but not to change topology.

Topology optimization

Topology optimization is a remedy to Shape Optimization's limitation concerning the preservation of the
initial topology. Here the problem is posed a priori with minimum restr ictions, as a problem of �nding
the best possible shape that solves problem (1.1). Unless it exists some reason to use a parametrization
of the shape or to keep a speci�c topology, this category of shape optimizationis the most interesting
and allows to explore a larger set of shapes, increasing the possibility to obtain better optimal solutions.
Several methods of topology optimization exist in literature, which di�er in the way topological changes
occur.

The �rst e�orts to create optimal topologies in structural optimization u sed the homogenization
method (see section 1.2.1) [3], [17], [27]. A typical solution of an homogenizedproblem results in an
optimal shape like the one on the left of Figure(1.2). As expected, the notion of a "shape" is lost, i.e.
there is no clear boundary of the domain. This is a signi�cant drawback ofthe homogenization method
for topology optimization in case one wants to design and fabricate a classical shape. Of course, one can
always try to interprete the �nal density distribution, assumin g that low densities correspond to holes
and densities close to 1 correspond to the real structure and design ashape that serves as an initialization
for a problem of Geometric Optimization. However, this is not always a trivial task.

Another idea, in order to get back into a classical shape, consists in penalizing intermediate densities
by using a �ctitious interpolation scheme for the material properties, which has the tendency to produce
0 � 1 shapes (see Figure(1.2)). The most well-known between these methods, the SIMP (Solid Isotropic
Material with Penalization) method [28], [164], uses the schemeA ijkl (� ) = � pA ijkl , where A ijkl is the
elasticity tensor of the full material ( � = 1) and p is the penalization power, used to create classical shapes
(usually p = 3 is used). Other schemes, like the RAMP [134] or combinations of penalization techniques
with Heaviside projection functions [63] have also appeared. All these methods can be seen at last as a
trial to combine Geometric and Topology Optimization in order to change the topology and get a clear
enough geometric representation of the shape at the same time.

Figure 1.2: Left: density distribution of a composite optimal shape; right: penalized optimal shape (�gure
extracted from [3]).

Evolutionary algorithms have also been among the �rst methods to be applied for topology opti-
mization. One of the most well-known method in this category is the Soft Kill Option (SKO) [91], [23].
Heuristic criteria, inspired by natural processes, like the addition of material in areas where a stress
criterion is violated and the removal of bulk in areas that are under-stressed are applied. Such methods
are very easy to be implemented, since they avoid the use of mathematical information about changing
the shape. However, they carry all drawbacks of heuristic methods,like slow convergence, tendency to
fall in local minima, very far from global ones and, of course, no guarantee thatthe heuristic criterion in
use can minimize the objective function at play.

Instead of using heuristic criteria for removing material, one can use some notion of topological
sensitivity [102], [131], [58], which tests the sensibility of the objective function with respect to the
creation of in�nitisemal holes in the design domain.
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Another way to achieve this mixing of Geometric and Topology Optimization is to use tools of Geo-
metric Optimization for the calculation of an advection velocity to change the shape and combine it with
a method of geometric representation of the shape that allows topological changes to occur in a natural
way. Such a method is the combination of shape sensitivity analysis with the level-set method [14], [155],
[9], which is presented in detail in section 1.3. Similar ideas have appeared in [43] using an explicit mesh
represetation of the domain instead of a level-set method and in [162], [141], [167] using the phase-�eld
method.

1.3 Shape and topology optimization via a level-set method

Since the �rst publications on "Shape and Topology Optimization via a Level-Set Method" [13], [14], [107],
[121], [155], there has been a burst of publications on the topic. The method has proved it e�ectiveness and
robustness in structural optimization for a great variety of problems. Its great advantages compared to
the homogenization method and its variant, like the SIMP method, is the "clear" and smooth description
of the shape's boundary and its independence of the mechanical framework at play. In this Section we
describe the basic elements of the method, namely the shape sensitivity analysis and the level-set method,
as well as their coupling in order to create a shape and topology optimizationmethod.

1.3.1 Shape sensitivity analysis

Introduction

In Shape Optimization we are interested in changing iteratively theshape of the structure so as to reduce
as much as possible the value of the objective function. The size of a typical shape optimization problem
is usually prohibitive for discrete or zero-order methods [128], thuswe shall prefer to use gradient-based
continuous optimization algorithms. In order to calculate a notion of gradient, some kind of "calculus of
variations" shall be applied. The �rst step towards this direction i s the mathematical representation of the
shape. We have seen in section 1.2 that a �rst choice is to use the characteristic function of the domain.
However, this choice does not allow us to perform variations since thespace of characteristic functions
is not a linear space (a linear combination of characteristic functions is not necessarily a characteristic
function). Thus, we have to resort to other techniques.

De�nitions and results

For the calculation of a notion of "shape derivative" we shall use the analysis of Murat and Simon [130],
which is based on Hadamard's variation method. Similar approaches have alsobeen presented in [132]
and [71].
Starting from a smooth reference domain 
0, we will suppose that all admissible shapes 
 are obtained
by applying a smooth vector �eld � such that


 = f x + � (x) such that x 2 
 0g:

In other words, every admissible shape 
 will now be represented by a vector �eld � : RN ! RN

(N = 2 or 3) and we will write 
 = ( Id + � )(
 0)(see Figure(1.3)). The space of admissible shapes
obtained by such a deformation of the domain 
0 will be denoted C(
 0), i.e.

C(
 0) =
�


 s.t. 9 � 2 W 1;1 (RN ; RN ); 
 = ( Id + � )(
 0)
	

:

Since� belongs to some functional space (e.g.W 1;1 (RN ; RN ) or C1;1 (RN ; RN )), we are able henceforth
to de�ne a notion of derivation with respect to � .

Remark 1.3.1. The above way of shape representation implies that for� small enough, all admissible
shapes will have the same topology with the reference domain
 0, since a change of topology is not possible
via continuous transformations of the domain
 0.

We are now ready to de�ne a notion of di�erentiability with respect t o the domain.

De�nition 1.3.2. The functional J : 
 ! R is said to beshape di�erentiable at 
 0 if the application

� ! J (( Id + � ) (
 0))
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Figure 1.3: Variations of a shape using Hadamard's method.

is Fr�echet di�erentiable at 0 in the Banach space W 1;1 (RN ; RN ). Then, the following asymptotic expan-
sion holds in the vicinity of 0:

J
�
(Id + � )(
)

�
= J (
) + J 0(
)( � ) + o(� ) with lim

� ! 0

jo(� )j
k� k

= 0 ; (1.8)

where J 0(
) is a continuous linear form on W 1;1 (RN ; RN ).

Remark 1.3.3. A weaker notion of di�erentiability, that is also convenient for our p urposes, is that of
the directional derivative of a functional J : 
 ! R at 
 in the direction � 2 W 1;1 (Rd; Rd) which is
de�ned as the limit in R (if it exists)

J 0(
)( � ) = lim
� ! 0

J (( Id + �� )(
)) � J (
)
�

:

Remark 1.3.4. Although we have de�ned the shape derivative using the spaceW 1;1 (Rd; Rd), some of our
problems will require higher regularity. This fact poses no theoretical problem and for reasons of simplicity,
we shall use the term "shape derivative" independently of the type of derivation or the functional space
considered.

A classical result is derived fromHadamard's structure theorem and states that the shape deriva-
tive depends only on the normal component of� on the boundary @
 (the tangential component can be
omitted).

Proposition 1.3.5. Let 
 0 be a smooth bounded open set ofRN and J a di�erentiable function at 
 0.
If � 1; � 2 2 W 1;1 (RN ; RN ) are such that � 2 � � 1 2 C1(RN ; RN ) and � 1 � n = � 2 � n on @
 0, then the
derivative J 0(
 0) veri�es

J 0(
 0)( � 1) = J 0(
 0)( � 2):

Proof. See [4].

We will give now some classical examples of shape derivatives of integrals, whose integrand does not
depend on the domain 
.

Proposition 1.3.6. Let 
 0 be a smooth bounded open set ofRN . If f 2 W 1;1(RN ) and J : C(
 0) ! R
is de�ned by

J (
) =
Z



f (x) dx;

then J is di�erentiable at 
 0 and

J 0(
 0)( � ) =
Z


 0

div ( � (x)f (x)) dx =
Z

@
 0

� (s) � n(s)f (s)ds;

for all � 2 W 1;1 (RN ; RN ).
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Proof. The principal idea to prove the shape di�erentiability of an integr al is to use some theorem of
change of variables in order to pass to a calculation on the reference domain
 0. In our case we get

J (
) = J (( Id + � ) (
 0)) =
Z

( Id+ � )(
 0 )
f (x)dx =

Z


 0

f � ( Id + � ) jdet (I + r � )j dx;

where I = r Id is the identity matrix. Substituting to the above expression the identities

det (I + r � ) = 1 + div � + o(� ) with lim
� ! 0

ko(� )kL 1 (RN )

k� kW 1; 1 (RN ;RN )
= 0

and

f � ( Id + � ) (x) = f (x) + r f (x) � � (x) + o(� ) with lim
� ! 0

ko(� )kL 1 (RN )

k� kW 1; 1 (RN ;RN )
= 0 ;

yields the desired result.

Proposition 1.3.7. Let 
 0 be a smooth bounded open set ofRN . If f 2 W 2;1(RN ) and J : C(
 0) ! R
is de�ned by

J (
) =
Z

@

f (s) ds;

then J is di�erentiable at 
 0 and 8� 2 C1(RN ; RN ) we have

J 0(
 0)( � ) =
Z

@
 0

(r f � � + f (div � � r �n � n)) ds =
Z

@
 0

� � n
�

@f
@n

+ Hf
�

ds;

where H = div n is the mean curvature of@
 0.

Proof. Using a change of variables theorem as previously, we get

J (
) = J (( Id + � ) (
 0)) =
Z

@( Id+ � )(
 0 )
f (s)ds

=
Z

@
 0

f � ( Id + � ) jdet (I + r � )j

�
�
�
�

�
(I + r � ) � 1

� T
n

�
�
�
�
RN

ds:

Substituting the identities

�
(I + r � ) � 1

� T
n = n � (r � )T n + o(� ) with lim

� ! 0

ko(� )kL 1 (@
 0 RN )

k� kC 1 (RN ;RN )
= 0

and





�
(I + r � ) � 1

� T
n






RN

= 1 � (r � )T n � n + o(� ) with lim
� ! 0

ko(� )kL 1 (@
 0 RN )

k� kC 1 (RN ;RN )
= 0

we get that

J 0(
 0)( � ) =
Z

@
 0

(r f � � + f (div � � r �n � n)) ds:

After an integration by parts at the boundary @
 (see Lemma 6.25 in [4]), we result in

J 0(
 0)( � ) =
Z

@
 0

� � n
�

@f
@n

+ Hf
�

ds:
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Shape derivative of a function that depends on the domain

In the previous section we have de�ned the notion of "shape derivative" of functionals and have presented
some classical results of shape derivatives of integrals, when the integrands are independent of the domain

. In this section we will discuss the shape derivation of functions that depend on 
 and will extend the
results about shape derivation of integrals to the general case of shape dependent integrands.

Supposeu(
 ; x) is a function de�ned 8x 2 
 and which depends also on 
. Such a case appears,
for example, whenu(
 ; x) is the solution of a PDE de�ned in 
. Like in mechanics, we shall de�n e two
types of shape derivatives, anEulerian and a Lagrangian one.

The Eulerian derivative has a local sense and shows the rate of change ofu at a �xed point x. Thus, for
a point x that belongs both to the reference domain 
0 and to the transported domain 
 = ( Id+ � )(
 0),
we can write the asympotic expansion with respect to� at the point x

u (( Id + � ) (
 0) ; x) = u (
 0; x) + U(�; x ) + o(� ); with lim
� ! 0

jo(� )j
k� k

= 0 ; (1.9)

where U(�; x ) is the Eulerian shape derivative of the function u(
 ; x).
Although the above expansion has a sense for pointsx 2 
 0, it is not obvious that the same occurs

for a point x 2 @
 0, since it is not sure that such a point will belong to the boundary or to the interior
of the new domain@
 = @( Id + � )(
 0).

This problem does not appear when theLagrangian derivative is used, which is a measure of the
rate of change ofu at a point x that moves with the domain. Since � (x) has been de�ned so that
( Id + � ) is a bijection, the point x 2 
 0 corresponds to the pointx � = x + � (x) 2 
. Since the functions
u(
 � ; x � ) = u(( Id + � )(
 0)) � ( Id + � ) = u(( Id + � )(
 0); x + � (x)) and u(
 0; x) are both de�ned on the
same domain 
 0, we can write down the asymptotic expansion

u(( Id + � )(
 0); x + � (x)) = u(
 0; x) + Y (�; x ) + o(� ); with lim
� ! 0

jo(� )j
k� k

= 0 ; (1.10)

where Y(�; x ) is the Lagrangian shape derivative of the functionu(
 ; x).
Then, once the Lagrangian derivative has been calculated, the Eulerian derivative is found by a simple

chain rule as
Y(�; x ) = U(�; x ) + � (x) � r u(
 0; x):

We can extend now the results of Propositions 1.3.6 and 1.3.7 to the generalcase of integrands that are
shape dependent.

Proposition 1.3.8. Let 
 0 be a smooth bounded open set ofRN and u(
) be a function from C(
 0) to
L 1(RN ). We de�ne its transported function from C1(RN ; RN ) to L 1(RN )

u(
 � ; x � ) = u(( Id + � )(
 0)) � ( Id + � );

which we suppose to be derivable at 0 with Lagrangian derivativeY . Then, the functional J1 : C(
 0) ! R
de�ned as

J1 =
Z



u(
) dx

is di�erentiable at 
 0 and 8� 2 C1(RN ; RN ) we have

J 0
1(
 0)( � ) =

Z


 0

(u(
 0)div � + Y (� )) dx =
Z


 0

(div( u(
 0)� ) + U(� )) dx:

Moreover, if u(
 � ; x � ) is derivable at 0 as a function fromC1(RN ; RN ) to L 1(@
 0), then the functional
J2 : C(
 0) ! R de�ned as

J2 =
Z

@

u(
) ds

is di�erentiable at 
 0 and 8� 2 C1(RN ; RN ) we take

J 0
2(
 0)( � ) =

Z

@
 0

(u(
 0)(div � � r �n � n) + Y(� )) ds =
Z


 0

�
� � n(

@u(
 0)
@n

+ Hu(
 0)) + U(� )
�

ds:
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In all of the results of this section about shape derivatives we have supposed that the function u(
 ; x)
at play is shape di�erentiable. Proving rigorously this assumption is not always an easy task, although
much work has been done in this direction for well-known PDEs. The general picture of such a proof is
the following:

� The PDE is written once for the transported function u(
 � ; x � ) and for the original function u(
 ; x).

� Substracting the two equations, a new PDE appears with the Lagrangian derivative Y(�; x ) as
unknown function.

� Proof of the existence and uniqueness of the solution of this PDE and that the error estimate for
the remainder is o(� ).

Instead of this rigorous proof, another much simpler method is usuallyused, introduced by C�ea [35].
This method is formal, in the sense that we assume enough smoothness ofthe shape for all neccessary
operations and also we assume the shape di�erentiability of all the functions at play. In this work, we
use C�ea's method for shape derivation.

Shape derivation using C�ea's method

The method of C�ea is a very useful tool for �nding the expression ofthe shape derivative of a functional
J (
 ; u(
)) that depends on the shape 
, but also on the solution u(
) of a PDE, since it avoids the
direct calculation of the shape derivative ofu(
). It amounts to regard the PDE as a constraint of the
optimization problem that the variable u needs to satisfy. Let us explain the method in detail using an
example.
Suppose that we want to calculate the shape gradient for a functional of thetype

J (
 ; u(
)) =
Z



j (x; u(
 ; x))dx +

Z

@

l (s; u(
 ; s))ds; (1.11)

where u 2 H 1(
) N is the displacement of the structure, the unique solution of the linearized elasticity
system 8

>><

>>:

� div (A e(u)) = f in 
 ;
u = 0 on � D ;�

A e(u)
�
n = g on � N ;�

A e(u)
�
n = 0 on � :

(1.12)

The shape's boundary is decomposed into three parts such that@
 = � D [ � N [ �. The structure is
�xed on � D and is subjected to volume forcesf 2 L 2(
) N and to surface loadsg 2 H 1(
) N on � N . The
strain tensor is denotede(u) and is equal to the symmetrized gradient ofu.

Proposition 1.3.9. The shape derivative of (1.11) reads

J 0(
 ; u(
))( � ) = +
Z

@

� � n (j (u) + Ae(u) � e(p) � f � p) ds +

Z

@

� � n

�
@l(u)
@n

+ Hl (u)
�

ds

�
Z

� N

� � n
�

@(g � p)
@n

+ H (g � p)
�

�
Z

� D

� � n
�

@(u � Ae(p)n + p � Ae(u)n)
@n

+ H (u � Ae(p)n + p � Ae(u)n)
�

ds;

where u is the unique solution of (1.12) andp is the unique solution of the adjoint state
8
<

:

� div (A e(p)) = � j 0(u) in 
 ;
p = 0 on � D ;�

A e(p)
�
n = � l0(u) on � N [ � :

(1.13)

Proof. Instead of deriving directly the functional J (
 ; u(
)) and trying to calculate the Eulerian or
Lagrangian derivative of u(
), we formulate the Lagrangian function

L (
 ; v; q; � ) = +
Z



j (v)dx +

Z

@

l (v)ds +

Z



(� div (Ae(v)) � f ) � qdx

+
Z

� N

(Ae(v)n � g) � qds+
Z

�
Ae(v)n � qds+

Z

� D

v � �ds;
(1.14)
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where v; q; � 2 H 1(RN )N do not depend on the domain 
. As we will see in the sequel, the shape
derivative of the objective functional J at 
 will be derived by �xing the domain 
 and taking the
optimality conditions for the Lagrangian function L .

Setting the partial derivative of L with respect to q in the direction of a test function � 2 H 1(RN ; RN )
at the optimal point (
 ; u; p; � � ) equal to zero, we get

@L
@q

(
 ; u; p; � � )( � ) = +
Z



(� div (Ae(u)) � f ) � �dx +

Z

� N

(Ae(u)n � g) � �ds

+
Z

�
Ae(u)n � �ds = 0 :

Taking � with compact support in 
 gives

� div (Ae(u)) = f in 
 : (1.15)

Varying the trace of � on � N and on � gives

Ae(u)n = g on � N (1.16)

and
Ae(u)n = 0 on � : (1.17)

In the same way, setting the partial derivative of L with respect to � in the direction � equal to zero

@L
@q

(
 ; u; p; � � )( � ) = +
Z

� D

u � �ds = 0

results in
u = 0 on � D : (1.18)

Equations (1.15),(1.16),(1.17) and (1.18) show that the functionu is in fact the unique solution of the
state equation (1.12).
We write again the function L , after an integration by parts, in the form

L(
 ; v; q; � ) = +
Z



j (v)dx +

Z

@

l (v)ds +

Z



(Ae(v) � e(q) � f � q) dx

�
Z

� N

g � qds�
Z

� D

Ae(v)n � qds+
Z

� D

v � �ds:

The partial derivative of L with respect to v, at the optimal point, in the direction � 2 H 1(RN ; RN )
gives

@L
@v

(
 ; u; p; � � )( � ) = +
Z



j 0(u) � �dx +

Z

@

l0(u) � �ds +

Z



Ae(p) � e(� )dx

�
Z

� D

Ae(� )n � pds+
Z

� D

� � � � ds:

Setting this derivative equal to zero and taking � with compact support in 
 yields

� div (Ae(p)) = � j 0(u) in 
 : (1.19)

Varying the trace of � on � N , � yields

Ae(p)n = � l0(u) on � N [ � : (1.20)

Varying the trace of � on � D with Ae(� )n = 0 yields

� � = � Ae(p)n � l0(u) on � D : (1.21)

Varying the normal stress Ae(� )n on � D with � = 0 on � D yields

p = 0 on � D : (1.22)

Therefore, p is the unique solution in 
 of the adjoint equation (1.13).
Finally, the shape derivative of the functional J at 
 will be equal to the shape derivative of the Lagrangian
function L at the optimal point (
 ; u; p; � � ), i.e.

@L
@


(
 ; u; p; � � )( � ) = J 0(
)( � ): (1.23)
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To prove this, take �rst any q 2 H 1(RN ) and see that

L (
 ; u(
) ; q) = J (
) ;

where u is the solution of the state equation. Then, taking the shape derivative of both members and
using the rule of composite derivatives yields

J 0(
)( � ) =
@L
@


(
 ; u(
) ; q; � )( � ) +
�

@L
@v

(
 ; u(
) ; q; � ); u0(
)( � )
�

:

If q = p(
), the solution of the adjoint state, and � = � � , the last term disappears and relation (1.23) is
revealed.

The shape derivative of L is much easier to calculate, since it has been constructed such thatthe
functions v; q and � are independent of 
. Thus, only the results of propositions 1.3.6 and 1.3.7 need to
be applied. A simple calculation yields

@L
@


(
 ; u; p; � � )( � ) = +
Z

@

� � n (j (u) + Ae(u) � e(p) � f � p) ds +

Z

@

� � n

�
@l(u)
@n

+ Hl (u)
�

ds

�
Z

� N

� � n
�

@(g � p)
@n

+ H (g � p)
�

�
Z

� D

� � n
�

@(u � Ae(p)n + p � Ae(u)n)
@n

+ H (u � Ae(p)n + p � Ae(u)n)
�

ds:

For example, in the case of compliance minimizationj (u) = f � u in 
 and l(u) = g � u on � N , we
easily see thatp = � u, i.e. the problem is self-adjoint. If we further assume that� = 0 on � D [ � N , then
the shape derivative ofJ reads

J 0(
)( � ) =
Z

�
� � n(2f � u � Ae(u) : e(u))ds:

Steepest descent

Once we have found the shape derivative of the functionalJ (
) in the general form

J 0(
)( � ) =
Z

@

� (s) � n(s) j (s)ds;

a descent direction, corresponding to a notion of gradient descent, is revealed under the choice

� (s) = � tj (s)n(s); (1.24)

for a small positive step t > 0. Although formula 1.24 makes sense only on the boundary@
, it can be
extended to the entire domain 
 (see section 1.3.4).

Substituting � (s) in the shape derivative expression and back to the asymptotic expansion formula
(1.8), we can formally write for J (
 t ) = J (( Id + t� )(
))

J (
 t ) = J (
) � t
Z

@

j (s)2ds + o(t2) � J (
) ;

which guarantees a descent direction.

1.3.2 Level-set method

General description

The level-set method, developed by S. Osher and J. Sethian [106], isa technique for tracking interfaces
which are implicitly de�ned via the zero level-set of an auxiliary function. Since its appearance, it has
been applied in a great variety of �elds (uid mechanics, image processing, computer graphics, meshing,
etc...). Beyond the simplicity of the geometric description of an interface, its great bene�t lies in the ease
under which topological changes occur. Let us give an example to explain this point.
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Suppose we are given two circles that evolve in time and �nally merge at some part. If we choose
to describe this movement by parametrizing their boundaries, then we need to construct two initial
parametrizations, update them at each time step, identify the exact time at which the topological change
occurs, construct a new parametrization for the newly created domain and so on. Of course, it is easy to
understand that such a process is both theoretically and numerically very di�cult.

Instead of this, we can choose to use an one-dimension higher function,a so-called level-set function,
and reveal the boundaries of the shapes as its zero level-set. At the upper part of Figure 1.4, we see a
three-dimensional function, and several level-sets depicted inblack colour. Its zero level-set corresponds
to the lines separating the blue from the red region and represents two circles. At the lower part of the
�gure, we see that the function has changed and its zero level-set has evolved so that it now represents
a domain with di�erent topology, i.e. the circles have merged. This topological change has occured in a
very natural way, by performing simple operations on the level-set function.

Figure 1.4: Level-set representation of two circles that �nally merge.

More speci�cally, we choose all admissible shapes 
 to be subsets of abounded working domain
D � RN (see Figure 1.5). Then, the boundary of 
 is de�ned by means of a level set function  such
that 8

<

:

 (x) = 0 $ x 2 @
 \ D;
 (x) < 0 $ x 2 
 ;
 (x) > 0 $ x 2

�
D n 


�
:

For a domain 
( t) that evolves in the time interval t = [0 ; T] under a velocity �eld � (t; x ), we de�ne a

Figure 1.5: Level-set representation of a structure (in grey).

time-dependend level-set function (t; x (t)), such that the boundary of the domain, @
( t), is given by
the set of points x(t) satisfying

 (t; x (t)) = 0 ; 8t 2 [0; T] :



1.3. SHAPE AND TOPOLOGY OPTIMIZATION VIA A LEVEL-SET METHOD 41

A simple derivation in time yields

@ 
@t

(t; x ) + _x(t) � r  (t; x ) = 0 ; 8t; 8x 2 @
( t); (1.25)

which is a PDE that describes the advection of the boundary under a velocity �eld _x(t). Each point
x(t) 2 @
( t) sati�es a Lagrangian type ODE

_x(t) = � (t; x (t)) : (1.26)

Substituting (1.26) in (1.25), we get

@ 
@t

(t; x ) + � (t; x (t)) � r  (t; x ) = 0 ; 8t; 8x(t) 2 @
( t); (1.27)

which can be extended in the whole computational domainD , since the same reasoning is valid for any
value c of the level-set (t; x (t)) = c. If only the normal component of the velocity �eld is of interest, lik e
in shape optimization, the advection velocity can be written as� (t; x ) = V (t; x )n(t; x ), V (t; x ) being a
scalar �eld. The unit normal vector can be de�ned and extended at the same time in the whole domain
D by means of the level-set function (which is assumed to be smooth enough) as

n(x) =
r  (x)
jr  (x)j

a.e. in D: (1.28)

Then, equation (1.27) takes the form of the Hamilton-Jacobi equation

@ 
@t

(t; x ) + V (t; x )jr  (t; x )j = 0 ; 8t; 8x 2 D: (1.29)

The method used to solve equation (1.29) depends on the discretizationof the level-set function. The
most common choice is to mesh the domainD once and for all using a structured grid and utilize �nite
di�erence schemes to approximate the di�erential operators. This is the method we have followed in this
work. A robust, explicit, second-order scheme developed by S. Osher and J. Sethian [106] and presented
in detail in section 5.1 of [120] has been used to solve (1.29) under a CFL condition for the time step.

Another choice is to use an unstructured mesh and possibly also adjustit so that the zero level-set
is explicitly discretized [45]. This method is much more complexfrom a point of view of numerical
implementation, however it presents at the same time many bene�tscompared to the classical one,
especially in problems where the knowledge of the exact position of the boundary plays an important role.
For such a method, other schemes have been developed, based mainlyon the method of characteristics
(see [135]). We adress the interested reader to [45, 46] and to the references therein for more information
about the level-set method using unstructured meshes.

Signed-distance function

Until now we have refered in general to a level-set function, without giving any speci�c information about
it. In fact, there is an in�nity of level-set functions that can be us ed for the description of the shape.
A priori, the only criterion that it should ful�ll is to have su�cie nt regularity at a region around the
boundary. The reason is that several geometric features that are neccessary to be calculated during the
advection or the optimization algorithm, such as unit normal vector to the exterior of the boundary (1.28)
or the mean curvature (H ), which is de�ned as

H (x) = div n = r �
�

r  (x)
jr  (x)j

�
;

are computed directly via the level-set function using di�erential operators. These operators are approx-
imated using e.g. �nite di�erence schemes on a �xed mesh. The accuracy of the approximations depends
on the smoothness of the function at the stencil of the schemes.

It is well-known [105, 120] that, during evolution, the level-set function can become too steep or at,
even if it starts from a smooth initialization. A way to guarantee its smoothness is to reinitialize it
periodically as the signed distance function to the domain 
. The signed distance function to 
 is
the function RN 3 x 7! d
 (x) de�ned by :

d
 (x) =

8
<

:

� d(x; @
) if x 2 
 ;
0 if x 2 @
 ;
d(x; @
) if x 2 c
 ;
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where d(�; @
) is the usual Euclidean distance.
Several methods have been proposed for the numerical construction ofthe signed distance function

(Fast-Marching method, Fast-Sweeping method, Hamilton-Jacobi equations, etc...). We adress the inter-
ested reader to [105], [120] for a detailed presentation on structured grids and to [46] and to the references
therein for unstructured meshes. In this work, we mainly computeit by solving a PDE, as proposed in
[105]. Sinced
 satis�es the Eikonal equation

jr d
 j = 1 a.e. in 
 ; (1.30)

starting from an initial level-set function  0(x), d
 can be obtained as the stationary solution of the
following PDE ( @ 

@t
+ sgn( 0)( jr  j � 1) = 0 8t > 0; x 2 RN ;

 (t = 0 ; x) =  0(x) 8x 2 RN ;
(1.31)

using the same numerical scheme as for the advection equation (1.29).

1.3.3 Coupling shape sensitivity with a level-set description

In Section 1.3.1 we have calculated a shape derivative and extracted a vector �eld that indicates how to
change the shape in a way that reduces some cost functional and in Section1.3.2 we have presented the
basic elements of the level-set method for the description of an interface that evolves in time under a
velocity �eld

� (x) = V (x)n(x): (1.32)

What remains is to combine these two notions by taking an advection �eld proportional to the shape
gradient and construct a method that is able to optimize at the same timethe shape and the topology of
the structure. It amounts simply to interprete the shape gradient calculated via shape sensitivity analysis
as an advection velocity for a level-set function that describes theshape.

Ersatz material

Using the so-called "ersatz material" approach, we extend the state equations to the whole domain D .
To do this, we �ll the holes D n
 by a weak phase that mimicks the void, but at the same time avoids the
singularity of the rigidity matrix. More precisely, we de�ne an elast icity tensor A � (x) which is a mixture
of A in 
 and of the weak material mimicking holes in D n 


A � (x) = � (x)A with � =
�

1 in 
 ;
" << 1 in D n 
 ;

(1.33)

where " � 10� 3. Decomposing the boundary@Dof the working domain in three parts

@D= @DD [ @DN [ @D0;

such that � D � @DD and � N � @DN , the displacementu is �nally computed as the solution of
8
>><

>>:

� div (A � e(u)) = f in D;
u = 0 on @DD ;�

A � e(u)
�
n = g on @DN ;�

A � e(u)
�
n = 0 on @D0:

(1.34)

Optimization algorithm

The information given from the shape gradient is local, i.e. it refers to a neighbourhood around the current
shape 
. Therefore, an iterative algorithm needs to be constructed soas to minimize progressively the
cost functional. Using a simple steepest descent algorithm, which guarantees the decrease of the objective
function at each time step, the optimization algorithm has the following structure:

� Start with an initial guess shape 
 0, described by a level-set function 0.

� Iterate until convergence, for k � 0:

1. Solve the state and adjoint equations for the domain 
k to obtain uk and pk .
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2. Compute the shape gradient for the current domain 
k , which has the form

J 0(
 k )( � k ) =
Z

@
 k

(� k � n)j k ds:

3. Choose� k = � j k n as an advection velocity and solve the Hamilton-Jacobi equation

@ k
@t

(t; x ) + j k (x)jr  k (t; x )j = 0 ; 8t 2 [0; Tk ] ; 8x 2 D;

in order to get a new level-set function k+1 , representing the domain 
 k+1 . The total advec-
tion time Tk is chosen so thatJ (
 k+1 ) < J (
 k ).

Several convergence criteria can be adopted, which usually test thedecrease in the objective function
and the total advection time, i.e. the algorithm terminates when jJ (
 k+1 ) � J (
 k )j < " k and Tk < T lim ,
where " k and Tlim are user de�ned scalar parameters. Since their choice is not a priori obvious, it is
common practise to set a computational cost criterion in terms of total number of iterations.

1.3.4 Extension and regularization of the velocity �eld

Although equation (1.29) for the advection of the level-set function is solved in the whole domain D ,
shape sensitivity analysis provides us with a shape gradient de�ned only on the boundary of the domain
@
. Since the boundary is not explicitly discretized in our case, we can assume that the normal velocity
V is de�ned for the nodes of the elements that are crossed by the zero level-set. Then, one possibility is
to consider V = 0 ; 8x 2 D n @
. Such a choice would slow down the algorithm. The reason is that for
each �nite element calculation, which is the most costly part of the algorithm, we want to perform several
transport steps for the advection equation (1.29). If the velocity is extended by 0 at a small distance
away from the boundary, the shape will stop there and the total movement will be too small, probably
resulting in a great number of iterations until convergence.

A remedy to this inconvenience is to extend the velocity �eld in all the domain. At the same time,
it would be numerically bene�cial to smooth a bit the shape gradient, but in a way that guarantees the
descent nature of the new advection velocity. One way to combine these two requirements is the following:
Initially, the shape derivative has the form

J 0(
)( � ) =
Z

@

� (s) � n(s)j (s)ds; (1.35)

or, for an advection velocity of the type � (s) = w(s)n(s),

J 0(
)( wn) =
Z

@

w(s)j (s)ds: (1.36)

Instead of choosingw(s) = � j (s), we can solve the variational formulation for Q 2 H 1(D )
Z

D

�
� 2r Q � r W + QW

�
dx = J 0(
)( W n) for any W 2 H 1(D ); (1.37)

where � > 0 is a positive scalar (of the order of the mesh size) to control the regularization width and
take w = � Q. Doing so, we see that

J 0(
)( wn) = �
Z

D

�
� 2jr Qj2 + Q2�

dx;

which guarantees again a descent direction forJ .

Discussion on topological changes

The carefull reader shall have identi�ed a conict in the aforementioned about the coupling of the shape
sensitivity analysis and the level-set method. Hadamard's method for shape variations supposes that the
topology of the shape remains the same, while the level-set method lets such changes occur in a natural
way.

In fact, this theoretical conict does not pose a problem in our method. We can always choose to move
at a step so small that the topology does not change, but we are not interested to do so! If a feature of
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the structure tends to disappear, there is no need to hinder it,else we shall not use the level-set method
for the description of the shape. When a topological change occurs, the shape derivative is not valid
any more and it is possible that our algorithm cannot further decrease the objective function. One can
choose to use at this point the notion of topological derivative (see section 1.2.2). However, this kind of
derivation is more complicated and more limited compared to the shape derivative and we have prefered
not to use it in this work.

We shall try to avoid this problem by allowing some small increase of the objective function for some
number of iterations, in which we expect topological changes to occur. In addition, when a topological
change occurs, e.g. when a bar breaks, it is possible that the objective function will increase, since the
features do not disappear at ones but it takes some iterations for the algorithm to adjust the shape to
the new topology. However, we can hope that after this small increase, thealgorithm will arrive at a
better optimum and thus it is a good strategy to allow for it. In this sense, an iteration will be accepted
if J (
 n +1 ) < (1 + � tol )J (
 n ), where � tol > 0 is set to a small value (� 0:05) for some iterations and to 0
afterwards.

Examples

Let us �nish this introductory part with two benchmark examples on c ompliance minimization in lin-
earized elasticity, coded in the �nite element software SYSTUS of ESI-Group.
We search to minimize a weighted sum of the work of the external forcesand the volume of the structure,
i.e.

J (
) =
Z

� N

g � uds + `V

Z



dx;

where u is the solution of (1.34) and `V > 0 is a �xed Lagrange multiplier for the weight.
The shape derivative ofJ (
) reads

J 0(
)( � ) =
Z

@

� (s) � n(s) ( `V � Ae(u)e(u)) ds:

The �rst example is a two-dimensional 2� 1 cantilever, clamped on its left side and with a unitary vertical
force applied on the middle of its right side (see Figure 1.6). The results for `V = 100 are shown in Figure
1.7 and 1.8. The second example is a three-dimensional 2� 1� 1 cantilever, clamped on its left side and

Figure 1.6: Boundary conditions for a two-dimensional cantilever.

with a unitary force applied on the middle of its right side (see Figure(1.9)). The results for `V = 200
are shown in Figure 1.10 and 1.11.
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(a) (b)

(c) (d)

(e)

Figure 1.7: (a): Initialization; (b)-(d): iterations 3, 6, 15; (e): optimiz ed shape; (f): convergence diagram.

Figure 1.8: Convergence diagram for the results of Figure 1.7.
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Figure 1.9: Boundary conditions for a three-dimensional cantilever.

(a) (b)

(c) (d)

(e)

Figure 1.10: (a): Initialization; (b)-(d): iterations 5, 10, 30; (e): optimiz ed shape.
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Figure 1.11: Convergence diagram for the results of Figure 1.10.
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2.1 Introduction

Every design that is intended to be realized is subjected to manufacturing constraints. They can refer to
limitations of completely di�erent nature, such as the total product ion cost, the available precision of the
tooling machinery, or constraints that are related to some speci�c fabrication method. The restrictions
that they impose on the shape can be signi�cant, sometimes playing themajor role in the concept of the
design.

Shape and topology optimization methods are well-known to produce complex optimized shapes.
The great advances that have occured during the last decades in techniques of additive manufacturing
such as 3D printing, laser stereo-lithography, electron beam melting, etc... [65], [73], [87], [111], have
made possible to realize such designs. Although these methods pose, in general, very few limitations
on the structural design, they are not yet suitable for parts of mass production, mainly due to the high
production cost and time. For structures produced with traditional manufacturing methods, engineers
usually try at a second step to interprete optimization results and change the shape in a way that turns it
into manufacturable. However, the necessary modi�cations are, in full generality, not done in an optimal
way, resulting in a shape that is not in fact optimal. In addition, the c hanges can be so dramatic that
the structure loses completely its optimal characteristics and turns the result of shape and topology
optimization practically useless.

Another choice instead of manually and heuristically interfering in the shape, is to incorporate man-
ufacturing constraints in the optimization algorithm. Although the compl exity of the problem and algo-
rithm can increase signi�cantly, as well as the probability to fall in an early local minimum, an optimized
shape that respects at least the main manufacturing constraints will be much more helpfull for the indus-
trial designers. Moreover, as we will see later in this work, introducing manufacturing constraints in the
optimization algorithm can totally change the loading path in the structure . Therefore, this choice is not
just about automatizing in some way the heuristic steps followed by engineers to ensure manufacturability.

In this work, we are mainly interested in treating constraints imposed on cast parts, i.e. structures
that are intended to be constructed via the casting process. However, we shall see that the major casting
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Figure 2.1: Simpli�ed representation of a casting system.

constraints are very general and also appear in a great variety of other manufacturing methods. In the
rest of this Chapter, we give a short description of the casting process and the major casting defects.
Then, we describe how castability is checked in industry and howengineers usually proceed when it is
not ensured. Finally, we explain our strategy on how shape and topology optimization should account
for castability. The mathematical treatment of these constraints will be considered later in chapters 3, 4
and 5.

2.2 Casting process

2.2.1 General description

A great number of structures in industry are constructed via casting. A simpli�ed casting system is
shown in Figure 2.1. Molds are used to create a cavity with the shape of the structure to be constructed.
A path is also created to lead the molten liquid to the cavity and a riser, a reservoir of molten liquid,
provides the structure with the additional liquid needed due to contraction during solidi�cation. After
solidi�cation, the molds are removed and the riser is cut to obtain the cast part. A complete presentation
of the casting process can be found in [33], [116] and [133].

Several types of casting exist, depending on the type of the mold (sand, metal, wax, etc...), the
application of additional pressure or the sole action of gravity during the ow of the liquid metal, etc...
In this work, we are mostly interested for parts that are massively procused and whose molds need to
remain functional for a large number of castings. Despite the fact that each type of casting can introduce
its particular type of defects in the cast part, the major casting defects seem to be common for all
categories and we shall not focus on a speci�c casting type.

2.2.2 Casting defects

We call casting defects the imperfections of the �nally constructed structure compared to the intended
design, that are due to the casting process. They can originate from anything that participates in the
casting: the metal, the mold, the shape of the cast part, the caster, etc... The main categories of casting
defects are the following:

� shrinkage defects,

� pouring metal defects,

� gas porosity,

� metallurgical defects,

� mold material defects.
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Among the above categories,shrinkage defects and pouring metal defects are closely linked to the
shape of the structure and thus they are of interest in our work.

Shrinkage defects

Shrinkage porosity can appear due to contraction of the liquid metal during the solidi�cation. As the
structure solidi�es from the exterior to the interior, it contract s due to the lower density of the liquid
compared to the solid state. Material is draught from neighboring points and thus no material remains for
the last points to solidify (hot spots) [144]. The porosity that appears at these regions is called shrinkage
porosity and it is the main category of defaults due to solidi�cation of cast parts. Shrinkage porosity
should be avoided, since it can have a great negative impact on the mechanical behavior of the cast part.

Pouring metal defects

This category includes defects that appear when some part of the mold is not �lled properly. Possible
reasons can be the lack of su�cient uidity of the liquid or the existe nce of too thin features in the
mold, where the metal solidi�es before the mold has been �lled and the�lling process is thus interrupted,
resulting in a complete failure of the casting.

2.3 Testing castability

Castability of a structure is usually veri�ed by checking three properties of the cast part:

� moldability ,

� feedability and

� �llability .

In this section, we give a short description of the above properties and explain the speci�cations that
they impose on the design.

2.3.1 Moldability

Moldability refers to the ability to construct a mold with certain ge ometric requirements and to remove
it after the cooling process has ended. It mainly imposes the following three speci�cations on the design
of the structure:

� Molding direction .

� Minimum members' distance .

� Maximum curvature .

The above requirements are presented in more detail in the sequel.

Molding direction

As we have mentioned earlier, we focus on casting methods where themolds are used for a large number
of pieces and thus need to be removed and reutilized. For mass production parts, the assembly and
removal of the molds is done automatically using suitable machinery.
The molding direction speci�cation simply states that the shape of the cast part must not contradict with
the design of the molding system. Let us give an example of the above mentioned. Suppose that for an
optimization problem like the one described in Section 1.3.4 we result in the optimized shape 
, shown
in Figure 2.2. In Figure 2.3 we see that depending on the molding systemconsidered, this shape can be
moldable or not. In the right image of Figure 2.3, some parts of the shape oppose tothe removal of the
molds in their correspondingparting direction , i.e. the direction along which the mold is removed.
The construction of the molding system is usually based on the intuition of the caster. Changes on
the number and on the position of the molds can turn a non-moldable shape into a moldable one. The
design of the whole molding system is very di�cult (if possible) to be formulated mathematically and be
subjected to continuous optimization. To our knowledge, the only workin this direction in the framework
of shape and topology optimization has been presented in [160], where the simultaneous optimization of
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Figure 2.2: Optimized shape of a cast part (
).

Figure 2.3: Left: moldable shape; right: non-moldable shape.

the cast part and the parting direction is considered. In our work, the molding system is considered to
be set a priori.
The only thing that we may allow to vary is the so-called parting surface , the surface on which di�erent
molds come in contact [159]. The parting surface between two molds can be prede�ned or it can be
constructed after the optimization using suitable methods [1, 56]. Inmost of the industrial applications,
planar parting surfaces are prefered because of reasons of cost and simplicity [159].

Minimum members' distance

This constraint imposes a minimum size between the features of thecast part, which is equivalent with
setting a minimum size on the features of the mold. One reason for thisspeci�cation comes from the
tooling machinery which limits the shapes of realizable molds. Also,thin members of the molds could
result in low precision of the �nal cast part, due to the deformation of t hese exible parts under a high
temperature �eld. Finally, this is an implicit way of accounting for the fatigue desirement of the molds,
which need to remain functional for a large number of castings, in order to reduce the overall �nancial
cost.

Maximum curvature

This speci�cation is purely geometric and expresses the inabilityof constructing too curvy molds.
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2.3.2 Feedability

In order to avoid shrinkage porosity formed during the solidi�cation pr ocess, the caster needs to design a
feeding system that drives "hot spots" outside of the structure. The risers (also called feeders) are reser-
voirs of metal and provide the cast part with the neccessary amount of liquid metal so that solidi�cation
ends inside the riser. They are usually placed in the most massive parts of the shape. The classical ap-
proach is to design them through calculations of volume and surface area of various areas of the casting
(modulus method). Volume represents the capacity to store heat andthe surface area represents the
capacity to transfer the heat to the surrounding by convection. A high modulus (M=modulus) value
means high capacity to store heat (volume) compared to the heat loss by convection (surface area). For
this reason, the modulus of the riser should be higher compared to thecasting. In [33] it is suggested
that M f = 1 :2M c, where M f is the modulus of the feeder andM c is the modulus of the cast part.

This process is described in Figure 2.4, where the solidi�cation andthe solid fraction in a bar with
di�erent feeding systems is depicted. In the upper row, no feeders are placed. Solidi�cation starts from
the exterior to the interior and, at the end, shrinkage porosity is observed at the region to solidify last.
Placing feeders in appropriate positions of the shape changes the direction of solidi�cation and drives
shrinkage porosity towards the risers. The size of the feeders is then increased until the shrinkage defect
is completely moved to the feeders. Increasing the total volume of feeders leads to a corresponding
augmentation of the casting cost. Feedability is concerned with the design of a feeding system, able to
drive the shrinkage porosity due to solidi�cation to the risers, at an acceptable cost.

However, where the casting is thin and plate-like the above strategymay not work. This is because
the feeder does not only have to stay live while the casting is solidifying, but it must supply enough
liquid metal to satisfy the shrinkage contraction within the casting. In the conventional method of gating
design, the casting is split into number of hot zone areas depending onthe hot spots identi�ed from 2D
sectional drawings of the casting. To these areas individual risers having higher modulus are attached.
Other solutions include the use of feeder insulation or the use of exothermic materials. Insulating feeders
extend the solidi�cation time, promote directional solidi�cation and r educe the total mass of feeders. In
exothermic materials, an exothermic reaction is initiated when molten metal meets the feader, heating
the metal and extending solidi�cation time still further. Such a c hoice is very much dependent on the
experience and skill of the casting engineer. It can be that some regions are inaccessible for providing
adequate risers because of process limitations (e.g. regions of high curvature). Then, the caster can
decide to apply other tricks, like introducing copper chills to speed up solidi�cation in these areas.

In contrast to the molding system, the feeding system is rarely set a priori, since it heavily depends
on the shape of the cast part. Therefore, a natural question that arises is: "What should one change
if the shape is not feedable with respect to a speci�c feeding system? Change the shape or the feeding
system?". In fact, there is no global answer to this question. The decision is case dependent. It is possible
that by conceiving another feeding system, or by applying slight changes to the existing one, the shape
turns into feedable. It is also possible that one is interested to keep a standard and cheap feeding system
and is willing to adjust the shape to it [51].

A common practice to decide if a shape shall be considered acceptable ornot is to use an indication
factor for the maximum riser to be used. This is done by simulating the solidi�cation process of the cast
part without including the feeding system and �nding the �nal soli di�cation time t f . This higher the
value of t f , the greater the volume of the riser to be used. Therefore, the solidi�cation time t f provides
a good indication of the riser's volume and shall be constrained.

Another way is to use a geometric reasoning, instead of a mechanical one. The higher the distance of
a point to the boundary of the shape, the longer it takes to solidify. As a result, using their experience,
casters are able to approximate the maximum allowed thickness of a feedable cast part. A structure that
respects this thickness constraint is considered feedable in a �rst step and a feeding system is tried to be
designed.

Concluding, feedability imposes one of the following two speci�cations:

� a maximum solidi�cation time , or

� a maximum thickness feature .

Remark 2.3.1. In [144], [145] Tavakoli et al. have presented some approaches for theoptimal design of
risers for a �xed cast part, using the SIMP method for shape and topology optimization. One may wonder
if the idea of optimal design of the casting system could be applied in our case. For example, a criterion
of feedability could be the feasibility of an optimized casting system. First of all, although the formulation
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Figure 2.4: Solidi�cation process and solid fraction for di�erent feeding systems (�gure extracted from
www.esi-group.com).

of the problem in [144], [145] is interesting, it is much simpli�ed compared to the real problem of casting
in modern industries. An optimized casting system for the problemposed in [144, 145] could be very far
from what a caster would consider as optimal and a cast part could be unreasonably rejected. Moreover,
this would give no indication about how the shape should change, since a change in the shape could result
in a totally di�erent optimized feeding system. For these reasons, we have chosen criteria that are related
to the shape and totally independent of any feeding system.

2.3.3 Fillability

Fillability ensures that the ow of liquid metal is e�ciently per formed and the mold is properly �lled.
Many problems can arise during the �lling process of the mold. One of the most important is the
appearance of precocious solidi�cation, i.e. the interruption of the liquid ow due to the fast solidi�cation
of a thin part. This case appears in Figure 2.5, where the casting of a cast part under di�erent feeding
systems is depicted. For the second system, the ow is interrupted. Other problems can appear due to
turbulence during the ow, the entrapement of air due to the bad design of the gating system (see Figure
2.6), etc...

Once again, solutions to the above mentioned can be given by changing the casting system, the cast
part, or even using other techniques like augmentation of the uidity of the metal, or additional pressure
("high pressure die casting"). The most important problems during the �lling process are created due to
narrow features of the shape. Trying to tackle the problem from a mechanical point of view is not easy
at all, since the equations that govern the �lling process are too complicated and a mechanical criterion
of �llability is not at all clear. Instead, as in the case of feedability, i t seems more reasonable to use
an indicator factor of geometric nature in order to characterize (at least in a �rst step) the shape as
acceptable or not with respect to the �lling process.

Therefore, we consider that �llability imposes a speci�cation of

� a minimum thickness feature .

2.4 Conclusions

In this Section, we resume our logic about how Shape and Topology Optimization should account for
castability of a shape. We believe that the optimization of the general casting system (molding and
feeding system) is not a purely continuous problem but involves discrete variables and in case it is
formulated as such, it is usually very far from real applications. For this reason, the molding system is
considered to be set a priori and the criteria for feedability and �llability are related just to the shape, i.e.
no feeding system is considered. Especially for the feedabilitycriterion, two di�erent, although closely
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Figure 2.5: Testing a riser operation at di�erent system constructions. An arrow indicates interruption
in the possibility of feeding by a riser (�gure extracted from [74]).

Figure 2.6: Problem in the gating system (�gure extracted from [123]).



56 CHAPTER 2. CASTING CONSTRAINTS: PHYSICAL DESCRIPTION AND CLASSIFICATION

related, approaches are tested. A mechanical one and a geometric one. The �rst derives more from the
real mechanical problem of casting, while the second tries to interprete the problem in terms of geometry
speci�cations. For the �llability criterion only a geometric approach i s tested, since there the mechanical
problem is too di�cult and the de�nition of a criterion is not clear.

More speci�cally, the maximum and minimum thickness feature speci�cations and the minimum
members' distance are regarded in general as thickness constraints andare discussed in Chapter 3.
Constraints on the molding direction are presented in Chapter 4. Finally, in Chapter 5 we present our
approach for the maximum solidi�cation time speci�cation. The maximum c urvature constraint has
not been adressed in this work and is suggested for future work, although we shall see that imposing
constraints on the minimum thickness and members' distance, implicitly sets limitations on the value of
the curvature.
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Chapter 3

Thickness control in structural
optimization
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The purpose of this chapter is to propose a novel method for handling geometric constraints related
to a notion of local thickness, in the context of structural optimizati on via a level-set method. The local
thickness is calculated using the signed distance function to theshape. We implement this method in
two and three space dimensions for a model of linear elasticity. We consider various formulations of the
constrained optimization problem and compute a shape derivative to advect the shape from one iteration
of the process to the next one. We discuss di�erent ways to handlethe constraints. In good agreements
with well-known observations linked to gradient based shape optimization, the resulting optimized shape
is strongly dependent on the initial guess and on the way the constraints are enforced.

3.1 Introduction

Numerical experience shows that shape and topology optimization very frequently results in shapes
containing thin or thick members, or features that are too closely spaced. For di�erent application-
dependent reasons, such situations may be undesireable. For example, in Chapter 2 we have explained
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that for structures made by casting, thick members should be avoidedbecause of cooling constraints,
while thin members are di�cult to �ll with liquid metal. Thin me mbers or too closeby members may
also violate the precision limitations in the tooling machinery.

Beyond manufacturing reasons, imposing a mimimum member size can play a signi�cant role in
robust design or mesh independency of the optimal result. It can also be seen as an implicit way to avoid
buckling, without treating explicitly the mechanical constraint. In the same way, limiting the maximum
allowed thickness of the structure can be seen as an implicit way toincrease the structural redundancy,
since the loading path can change and the energy can be redistributed inmore members, increasing its
robustness, especially in case of loads under uncertainties [61]. There are many other mechanical reasons
for introducing thickness constraints (e.g. limitations by physics in optimal uid �lter design [61]), not
to mention those motivations outside of mechanics, such as aesthetics.

In the framework of the homogenization or SIMP method [28] for topology optimization, there is a
relatively small body of literature devoted to this issue although many works discussed the notions of
�ltering or mesh independence [30]. Petersson and Sigmund [112] used aslope constraint for the elements'
densities in order to impose a minimum length scale. In [115], Poulsenintroduced the so-called "MOLE
method", in which he examined the monotonicity of the density function along di�erent diagonals of a
circle centered at each grid point. Despite its limitations, mentioned in the paper, the MOLE method can
also be applied in the void part, to avoid small holes in the structure. In [63], Guest et al. proposed to
control the minimum length scale by combining projection functionswith nodal design variables, de�ning
the density of each node as a weighted sum of the densities of nodes lying at a distance up to the minimum
length scale. In [61], Guest formulated a constraint of maximum length scale using the volume of balls
of diameter equal to this length, centered at each element. The ideaof projection functions was also
used by Sigmund in [127], where a formulation for robust design was proposedto treat manufacturing
constraints.

There are even fewer papers studying thickness control in the framework of the level-set method [106]
for shape and topology optimization [13, 14, 107, 121, 157]. In [40], Cheng et al. favored theformation
of speci�c geometric features in the structure and in [38, 89] they addedan energy functional in the
objective function, which priviliges a family of shapes with strip-like features. The results obtained in
these papers show signi�cant di�erences compared to the ones obtained without adding any geometric
constraint. The addition of an energy functional seems to give satisfying results for the alleviation of
hinges in compliant mechanisms [89]. One of the di�culties in these works is to de�ne the thickness (or
other geometric quantities) of a structure in a precise and e�cient way, especially since its geometry or
shape is implicitly de�ned by the zero level-set of an auxiliary function.

In this work we propose a novel method for handling three major manufacturing constraints of ge-
ometric nature using the level-set method for structural optimization. Each one of them relies on a
de�nition of the structure's thickness based on the signed distance function to the shape's boundary.
First, we control the maximum local thickness of the shape. To de�neand compute a notion of maxi-
mum local thickness, we use the signed distance function to the shape. We make extensive use of the
notion of the "skeleton" of the shape [77, 97]. Then, we control the minimum thickness as well as the
distance between the members of the shape, using again the signed distance function and o�set sets of
the boundary [2, 76]. For the numerical optimization, we implement a simple augmented Lagrangian
method to handle the constraints. We show several numerical results in two and three space dimensions
and discuss di�erent ways to impose the constraints.

3.2 Formulation of thickness constraints

The notion of thickness in structural mechanics can be understood in di�erent ways. For example, in
a truss composed of beams with circular cross-section, it can be claimed that the thickness of a beam
is equal to the diameter of the cross-section. Same intuitive de�nitions can be given for a variety of
structures in which the speci�c type of members used, give a satisfying enough description of the shape's
thickness. However, for general continuous structures, things become more complicated and one usually
uses a de�nition that corresponds to the speci�c problem caused by the thickness violation. The reader
should also note that when we desire to treat simultaneously more than one constraint, e.g. minimum
and maximum thickness, then we can work with two di�erent de�niti ons for the thickness at the same
time.
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(a) (b)

Figure 3.1: (a): bars violating the thickness constraint (3.2), (b): barsrespecting the thickness constraint
(3.2).

3.2.1 Maximum thickness

A maximum thickness constraint of sizedmax could be interpreted such that there is no point in the shape,
which is a center of a disk of diameterdmax fully covered by material. The above de�nition motivates
the use of the signed distance function to the shape. Recalling that the signed distance function to the
domain 
 is the function RN 3 x 7! d
 (x) de�ned by :
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:
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where d(�; @
) is the usual Euclidean distance, the formulation of the constraint r eads

d
 (x) � � dmax =2 8x 2 
 : (3.2)

A possible drawback of the above de�nition is the appearance of distortions at the regions of crossing
between bars. In Figure 3.1(a), we see two bars of uniform thicknessdmax crossing. Although intuitively
one would say that a maximum thickness constraint of valuedmax is respected, we can see that there is a
region around the center of the joint, where constraint (3.2) is violated. One possible solution, satisfying
constraint (3.2) is given in Figure 3.1(b). However, such distortions of the shape close to the position of
joints are not usually preferable for engineers, both for mechanical and manufacturing reasons. In section
3.7, we propose some modi�cations to avoid such distortions.

3.2.2 Minimum thickness

We now want to enforce a minimum thickness constraint of valuedmin > 0. The formulation of this
constraint is not so straightforward as the previous one, since it is not evident how the values of the
signed distance function are related to a notion of minimum thickness. However, another de�nition based
on o�set sets [2, 76] gives an intuitive view of a minimum thickness constraint. Denoting with dof f a
positive number, the set@
 dof f = f x � dof f n (x) : x 2 @
 g is the o�set set of @
 in the direction � n (x)
at a distance dof f (see Figure 3.2).

A formulation of the constraint which guarantees that any o�set set in the d irection � n (x) up to a
distance dmin stays in the shape 
 is the following:

d
 (x � dof f n (x)) � 0 8x 2 @
 ; 8dof f 2 [0; dmin ] : (3.3)
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Figure 3.2: O�set set of the lower part of the boundary (shape in grey).

Figure 3.3: Inability to detect very thin members with a single o�set set (shape in grey).

Remark 3.2.1. In order for the constraint (3.3) to be well-de�ned, it is neccessary that it exists "0 > 0
such that8dof f < " 0, @
 dof f � 
 . This is true if the boundary is C1;1 (or more) (see [49], Lemma3.3.2),
since it guarantees the existence of a tubular neighborhood of thickness " > 0 of the boundary, in which
d
 is smooth.

We say that a shape satisfying constraint (3.3) has everywhere thickness greater or equal todmin . We
emphasize that the inequality (3.3) must be valid for the whole interval [0; dmin ] of o�set parameters. A
single o�set set at the desired distancedmin cannot possibly detect the case of members that are very
thin and that are also very close to each other. This case can be obviouslyrecognized in Figure 3.3. This
�gure shows two members of the structure 
 in grey color. The o�set set just for one value dof f can fall
entirely in the structure without detecting the void between t he two parts. In this case the algorithm
does not understand the violation of the constraint.

3.2.3 Minimum members' distance

This constraint looks exactly the same as the minimum thickness one,however it is now imposed on the
complementary of the shape. We just need to invert the direction of o�setting and the constraint reads

d
 (x + dof f n (x)) � 0 8x 2 @
 ; 8dof f 2 [0; dmin ] : (3.4)

If a shape satis�es this constraint, we say that its members have everywhere a distance greater or equal
to dmin .

Remark 3.2.2. We have formulated three constraints of geometric nature, related with a notion of local
thickness of the shape. Although we have been motivated from the mechanics of casting and its limitations,
the formulations remain purely geometric and the reader could easily �nd other interpretations of these
constraints, away from cast parts. This means that these constraints can be introduced in any framework,
even for structures that are intended to be constructed in a completelydi�erent way.
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3.2.4 Penalty functionals

Constraints (3.2), (3.3) and (3.4) are pointwise, i.e. they are de�ned at each point of the domain 
 or of
its boundary @
. They are in�nite in number and thus they cannot be treated numeri cally as such.

Discretizing the level-set function in the computational domain D , we obtain directly some kind of
parametrization of the domain 
 by means of the values of the level-set function  . Furthermore, in
case that the mesh is adapted to the zero level-set (see [9],[158]), the �nite set of mesh nodes satisfying
 = 0 can be assumed to compose its boundary@
. If a �xed, structured grid is used, then a simple
idea is to assume that the boundary@
 is given by all grid nodes which belong to elements crossed by
the zero level-set. In any case, we can then assume that constraints (3.2), (3.3) and (3.4) are posed at
the corresponding discretization nodes. However, this can resultin a signi�cant number of constraints,
which is very di�cult to be tackled by optimization algorithms.

For this reason, it seems more natural to formulate global averaged constraints. A simple choice of a
smooth global constraint is to use thequadratic penalty function. This function takes the following form
for the three previous constraints:
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Z
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where we have denoted: (f )+ = max (f; 0) and (f ) � = min (f; 0).
Then, a pointwise constraint is satis�ed once its corresponding penalty functional equals to zero. For

example, for the maximum thickness functionalPMaxT :

PMaxT (
) = 0 ) (d
 (x) + dmax =2)� = 0 in 
 ) d
 (x) � � dmax =2 in 
 :

3.3 Shape di�erentiability of the signed distance function

This section has been extracted from [8], where the signed distance function was used for the formulation
of multi-phase problems. Its purpose is to recall some results on thesigned distance function and to
explore its shape di�erentiability which holds in a non-classical and subtle sense (see below for details).
For a Lipschitz bounded domain 
 � D we consider shape variations in the sense of Hadamard as in
section 1.3.1. Let us start by collecting some de�nitions (see Figure 3.4for a geometric illustration).

De�nition 3.3.1. Let 
 � RN be a Lipschitz bounded open set.

� For any x 2 RN , � @
 (x) := f y0 2 @
 such that jx � y0j = inf y2 @
 jx � yjg is the set of projections
of x on @
 . It is a closed subset of@
 . When � @
 (x) reduces to a single point, it is called the
projection p@
 (x) of x onto @
 .

� � :=
�

x 2 RN such that (d
 )2 is not di�erentiable at x
	

is the skeleton of@
 (or 
 by a small
abuse in terminology).

� For any x 2 @
 , ray@
 (x) := f y 2 RN such that d
 is di�erentiable at y and p@
 (y) = xg is the
ray emerging from x. Equivalently, ray@
 (x) = p� 1

@
 (x).

We now recall some classical results (see [49], Chapter 7, theorems 3:1, 3:3 and [20]).

Lemma 3.3.2. Let 
 � RN be a Lipschitz bounded open set.

� A point x =2 @
 has a unique projectionp@
 (x) on @
 if and only if x =2 � . In such a case, it
satis�es d (x; @
) = jx � p@
 (x)j and the gradient ofd
 at x reads

r d
 (x) =
x � p@
 (x)

d
 (x)
:

� As a consequence of Rademacher's theorem ([55], section3:1:2), � has zero Lebesgue measure in
RN . Furthermore, when 
 is C2, � has zero Lebesgue measure too [90].
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� For any x 2 RN , p 2 � @
 (x), � 2 [0; 1], denoting x � := p+ � (x � p) the points of the ray ofx lying
betweenp and x, we haved
 (x � ) = �d 
 (x) and � @
 (x � ) � � @
 (x).

� If 
 is of classCk , for k � 2, then d
 is Ck too in a tubular neighborhood of@
 . In that case, d


is di�erentiable at every point x 2 @
 , and r d
 (x) = n(x), the unit normal vector to 
 .

Unfortunately, the signed distance function is not, strictly speaking, shape di�erentiable in the sense
of De�nition 1.3.2. One reason is the lack of smoothness of the gradient ofd
 at the skeleton �. However,
its pointwise values d
 (x) are shape di�erentiable for x 2 D n �. This is the purpose of the next result
which can be found in [48] (without much details however ; see [44] for detailed and complete proofs).

Proposition 3.3.3. Assume 
 � D is an open set of classC1, and �x a point x =2 � . Then � 7!
d( Id + � )
 (x) is Gâteaux-di�erentiable at � = 0 , as an application from W 1;1 (D; RN ) into R, and its
derivative is

d0

 (� )(x) = � � (p@
 (x)) � n(p@
 (x)) :

Remark 3.3.4. Actually, a more general result than that of Proposition 3.3.3 holds. Indeed, retaining
the hypothesis that
 is of classC1, for any point x 2 RN , and denoting, for a real parametert > 0,


 t� = ( I + t� )
 ;

the application t 7! d
 t� (x) is right-di�erentiable at t = 0 + , and

� if x 2 
 , d
dt (d
 t� (x)) jt =0 + = � inf

y2 � @
 (x )
� (y) � n(y).

� if x 2 c
 , d
dt (d
 t� (x)) jt =0 + = � sup

y2 � @
 (x )
� (y) � n(y).

Of course, these formulae agree with the previous result since� @
 (x) = f p@
 (x)g if x =2 � .
Note also that a similar analysis could be performed when
 is only assumed to be Lipschitz. However,

the results are then more tedious to write, since the normal vector�eld n is not de�ned everywhere on
@
 (which is an indicator of speci�c geometric phenomena, see [44]).

Remark 3.3.5. The signed distance function can also be seen as a solution of thefollowing Hamilton-
Jacobi equation �

jr d
 (x) j = 1 in D;
d
 (x) = 0 on @
 :

The behavior of the variations ofd
 with respect to the domain can be retrieved by a formal computation.
Indeed, assuming thatd
 is shape di�erentiable, a formal computation yields that the directional shape
derivative d0


 (� ) satis�es �
r d
 (x) � r d0


 (� )(x) = 0 in D;
d0


 (� )(x) = � � (x) � n(x) on @
 :
(3.5)

Equation (3.5) provides us with some important information for the analysis in the sequel. Its �rst
part means that d0


 (� )(x) is constant along ray@
 (x), while the second part gives an explicit value of the
derivative for the points on @
.

Corollary 3.3.6. Let 
 be a bounded domain of classC1 and m(x; s) : RN
x � Rs ! R a function of class

C1. De�ne the functional J (
) as

J (
) =
Z

D
m(x; d
 (x)) dx: (3.6)

The application � 7! J (( Id + � )
) , from W 1;1 (D; RN ) into R, is Gâteaux-di�erentiable at � = 0 and its
derivative reads

J 0(
)( � ) = �
Z

D

@m
@s

(x; d
 (x)) � (p@
 (x)) � n(p@
 (x)) dx: (3.7)

The shape derivative (3.7) satis�es Hadamard's structure theorem (seesection 1.3.1) since it depends
only on the values of� � n on the boundary of @
. However (3.7) is not a surface integral on @
 as usual.
Therefore the task of the next subsection is to transform (3.7) into a surface integral by using the notion
of rays (see De�nition 3.3.1), along which d
 and p@
 take very simple forms, altogether with the coarea
formula.
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!

!

x
¥

¥ p! ! (x)

n(p! ! (x))

ray! ! (x) |d! (x)|

¥
¥¥ y

z1 ! ! ! ! (y)! ! ! (y) ! z2

Figure 3.4: For a point x lying outside the skeleton � of 
, unique projection point p@
 (x) and line
segment ray@
 (x). For a point y 2 �, at least two points z1; z2 belong to the set of projections � @
 (y).

3.3.1 An application of the coarea formula to integral functions of the si gned
distance function

The purpose of this section is to derive a Fubini-like formula for integrals of the form (3.7) and transform
them in surface integrals. To this end, we use the following coarea formula [36].

Proposition 3.3.7. Let X; Y be two smooth Riemannian manifolds of respective dimensionm � n, and
f : X ! Y a surjective map of classC1, whose di�erential r f (x) : Tx X ! Tf (x ) Y is surjective for almost
every x 2 X . Let ' an integrable function overX . Then:

Z

X
' (x)dx =

Z

Y

 Z

z2 f � 1 (y )
' (z)

1
Jac(f )(z)

dz

!

dy

where Jac(f )(z) is the the Jacobian of the functionf .

Remark 3.3.8. If m � n, and f : Rm ! Rn is a di�erentiable function at a point x 2 Rm , the Jacobian
Jac(f )(x) of f at x is de�ned as

Jac(f )(x) :=
q

det(r f (x) r f (x)T ):

The de�nition of the Jacobian is similar when f is a map between two Riemannian manifoldsX and Y ,
once the tangent planesTx X; T f (x ) Y have been identi�ed to Rm and Rn respectively (see [36], exercise
III: 11). In any case, the Jacobian is positiveJac(f )(x) > 0 if and only if r f (x) is of maximum rank,
or equivalently r f (x) is surjective from Rm to Rn .

We apply this formula in our context to X = 
, Y = @
 and f = p@
 . To apply Proposition
3.3.7 we need the di�erentiability of p@
 which will be deduced from the following classical result on the
second-order di�erentiability of the signed distance function [34].

Lemma 3.3.9. Assume
 is of classC2. For i = 1 ; :::; d � 1, denote by� i the principal curvatures of @

and ei its associated directions (see Figure 3.5). For everyx 2 D, and every y 2 � @
 (x), we have

� � i (y)d
 (x) � 1; 1 � i � d � 1: (3.8)
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Figure 3.5: Principal directions, normal vector at the projection point of x 2 RN .

De�ne � the singular set of
 , namely the set of pointsx =2 � such that, for somei , one of the inequality
(3.8) is actually an equality. Then, � = � [ � and � has zero Lebesgue measure. Ifx =2 � , then all
inequalities (3.8) are strict and d
 is twice di�erentiable at x. Its Hessian reads

Hd
 (x) =
N � 1X

i =1

� i (p@
 (x))
1 + � i (p@
 (x))d
 (x)

ei (p@
 (x)) 
 ei (p@
 (x)) :

Lemma 3.3.10. Let x 2 D n � . The projection map p@
 is di�erentiable at x and, in the orthonormal
basis f e1; :::; eN � 1; ng(p@
 (x)) of RN (see Figure 3.5), its gradient is ad � d diagonal matrix

r p@
 (x) =

0

B
B
B
B
B
@

1 � d
 (x ) � 1

1+ d
 (x ) � 1
0 ::: 0

0
. . .

. . .
...

...
. . . 1 � d
 (x ) � d � 1

1+ d
 (x ) � d � 1
0

0 ::: 0 0

1

C
C
C
C
C
A

; (3.9)

where the the principal curvatures� i are evaluated atp@
 (x).

Proof. The proof starts from the characterization of the projection map when x 2 D n � (see Lemma
3.3.2)

p@
 (x) = x � d
 (x)r d
 (x):

This last equality can then be di�erentiated once more for x 2 D n �

r p@
 (x) = Id � r d
 (x) r d
 (x)T � d
 (x)Hd
 (x): (3.10)

Sincer d
 (x) = n(p@
 (x)), a simple calculation ends the proof.

We now come to the main result of this section.

Corollary 3.3.11. Let 
 � D be aC2 bounded domain, and let' an integrable function overD . Then,
Z

D
' (x)dx =

Z

@


 Z

ray@
 (y ) \ D
' (z)

N � 1Y

i =1

(1 + d
 (z)� i (y))dz

!

dy; (3.11)

where z denotes a point in the ray emerging fromy 2 @
 and dz is the line integration along that ray.

Proof. Since� is of zero Lebesgue measure, we have
Z

D
' (x)dx =

Z

D n�
' (x)dx:

Applying Lemmas 3.3.9 and 3.3.10,p@
 is a surjective and di�erentiable map from D n � into @
, with
a positive �nite Jacobian for any x 2 D n �

Jac (p@
 ) (x) =
1

N � 1Y

i =1

�
1 + d
 (x)� i (p@
 (x))

�
:
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Proposition 3.3.7 then yields the desired result.

3.4 Shape derivative of penalty functionals

In this section we compute the shape derivative of the penalty functional de�ned in section 3.2.4.

Maximum Thickness

Consider the quadratic penalty function

PMaxT (
) =
Z




h
(d
 (x) + dmax =2)�

i 2
dx: (3.12)

Lemma 3.4.1. The shape derivative of (3.12) reads

P0
MaxT (
)( � ) =

Z

@

� � (x) � n (x)

Z

ray@
 (x ) \ 

2 (d
 (z) + dmax =2)�

N � 1Y

i =1

�
1 + d
 (z)� i (x)

�
dzdx; (3.13)

where � i (x) are the principal curvatures at the point x 2 @
 .

Proof. Applying Corollary 3.3.6 in (3.12), its shape derivative reads

P0
MaxT (
)( � ) =

Z



2d0


 (� )(x) (d
 (x) + dmax =2)� dx: (3.14)

Using the co-area formula (3.11), the shape derivative (3.14) takes the following form

P0
MaxT (
)( � ) =

Z

@


Z

ray@
 (x ) \ 

2d0


 (� )(z) (d
 (z) + dmax =2)�
N � 1Y

i =1

�
1 + d
 (z)� i (x)

�
dzdx:

Sinced0

 (� ) is constant along the ray emerging from x, it can be moved out of the second integral:

P0
MaxT (
)( � ) =

Z

@

d0


 (� )(x)
Z

ray@
 (x ) \ 

2 (d
 (z) + dmax =2)�

N � 1Y

i =1

�
1 + d
 (z)� i (x)

�
dzdx;

and since its expression on the boundary is known (see equation (3.5)),we �nally end up with

P0
MaxT (
)( � ) =

Z

@

� � (x) � n (x)

Z

ray@
 (x ) \ 

2 (d
 (z) + dmax =2)�

N � 1Y

i =1

�
1 + d
 (z)� i (x)

�
dzdx;

which completes the proof.

Other functionals based on di�erent formulations are computed in a similar way.

Minimum Thickness and Minimum Members' Distance

Consider now the quadratic penalty function

PMinT (
) =
Z

@


Z dmin

0

h
(d
 (x � �n (x))) +

i 2
d�dx:

To make the text more compact, we change the notation according to Figure 3.6.We denote xm =
x � �n (x) the o�set point, from a point x 2 @
, at a distance � in the direction opposite to the normal
vector, and xm j 
 the projection of xm onto the boundary. We can now rewrite the quadratic penalty
function in more compact notation as

PMinT (
) =
Z

@


Z dmin

0

h
(d
 (xm ))+

i 2
d�dx: (3.15)
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Figure 3.6: O�set point and projection onto the boundary.

Lemma 3.4.2. The shape derivative of (3.15) reads

P0
MinT (
)( � ) =

Z

@


Z dmin

0
� (x) � n (x)

�
H (x)

�
(d
 (xm ))+

� 2
+ 2

�
d
 (xm )+

�
r d
 (xm ) � r d
 (x)

�
d�dx

�
Z

@


Z dmin

0
�

�
xm j 


�
� n

�
xm j 


�
2

�
d
 (xm )+

�
d�dx;

(3.16)

where H (x) denotes the mean curvature at the pointx 2 @
 .

Proof. Using Proposition 1.3.8 for the shape derivative of surface integrals withshape-dependent inte-
grands, the shape derivative of (3.15) reads

P0
MinT (
)( � ) =

Z

@


Z dmin

0
� (x) � n (x))

�
H (x)

�
(d
 (xm ))+

� 2
+

@
@n

� �
(d
 (xm ))+

� 2
��

d�dx

�
Z

@


Z dmin

0

@
@


� �
(d
 (xm ))+

� 2
�

(� )d�dx =
Z

@


Z dmin

0
� (x) � n (x))

�
H (x)

�
(d
 (xm ))+

� 2
+ 2

�
(d
 (xm ))+

�
r d
 (xm ) � n(x)

�
d�dx

�
Z

@


Z dmin

0
2 (d
 (xm ))+ d0


 (xm ) ( � )d�dx:

(3.17)

From equation (3.5), we know that the shape derivative of the signed distance function at the o�set point
xm will be equal to that of its projection point on the boundary xm j 
 , for which we can use an explicit
formula

d0

 (xm )( � ) = d0


 (xm j 
 )( � ) = � � (xm j 
 ) � n(xm j 
 ): (3.18)

Using the fact that

n(x) =
r d
 (x)
jr d
 (x)j

= r d
 (x); 8x 2 @


and substituting equation (3.18) in (3.17) yields the desired result.

The same exactly analysis holds for the quadratic penalty function usedin the Minimum Members'
Distance.

Remark 3.4.3. In Figure 3.6 we see for a point x 2 @
 its o�set point in the direction � n(x) at a
distance dof f (xm ) and the projection point of xm on the boundary (xm j 
 ). We shall observe that if
xm 2 ray@
 \ 
 , i.e. if xm lies on the ray connecting the pointx with its corresponding point on the
skeleton of the shape, thenx � xm j 
 .
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3.5 Augmented Lagrangian method and descent direction

Several e�cient optimization algorithms have been applied in topology optimization, e.g. MMA [138],
MFD [169], etc... For most of them, one needs to set the optimization parameters of the problem. As we
have mentioned in section 3.2.4, several choices exist when a level-set description of the shape is used.
In this work, we have prefered to avoid the use of optimization parameters and consider instead the
whole shape as the optimization variable. We apply a simple augmented Lagrangian method to impose
the geometric constraints. According to the approach described in [101],for a problem with m equality
constraints of the form

Pi (
) = 0 ( i = 1 ; :::; m);

an augmented Lagrangian function is constructed as

L(
 ; `; � ) = J (
) �
mX

i =1

` i Pi (
) +
mX

i =1

� i

2
P2

i (
) ; (3.19)

whereJ (
) is the cost function, ` = ( ` i ) i =1 ;:::;m and � = ( � i ) i =1 ;:::;m are Lagrange multipliers and penalty
parameters used to enforce the constraints at convergence. The Lagrange multipliers are updated at each
iteration n according to the relation `n +1

i = `n
i � � i Pi (
 n ) (see [101] for more details). We also increase

the penalty parameters every 5 iterations. A similar approach is followed for the case of inequality
constraints (see [101]).

The shape derivative of the augmented Lagrangian function (3.19) reads:

L 0(
 ; `; � )( � ) = J 0(
)( � ) �
mX

i =1

` i P0
i (
)( � ) +

mX

i =1

� i Pi (
) P0
i (
)( � ):

For example, for the optimization problem

min

 2U ad

J (
) =
Z



f � u dx +

Z

� N

g � uds;

s.t. P1(
) =
Z



dx � � V jD j = 0 ; (0 < � V < 1);

P2 (
) = PMaxT (
) =
Z




h
(d
 (x) + dmax =2)�

i 2
dx = 0 ;

(3.20)

where u is the solution of (1.12), we construct the augmented Lagrangian function

L (
 ; `; � ) =
Z



f � u dx +

Z

� N

g � uds �
2X

i =1

` i Pi (
)( � ) +
2X

i =1

� i

2
P2

i (
) ; (3.21)

which can now be regarded as the new objective function to minimize.
The method of C�ea can be used for the calculation of its shape derivative, which �nally reads

L 0(
 ; `; � )( � ) =
Z

�
� (x) � n (x) ( � Ae (u) e(u)) dx �

2X

i =1

` i P0
i (
)( � ) +

2X

i =1

� i Pi (
) P0
i (
)( � );

where � is the optimizable part of the boundary,

P0
1(
)( � ) =

Z

�
� (x) � n (x) dx

and

P0
2(
)( � ) = �

Z

�
� (x) � n (x)

 Z

ray@
 (x ) \ 

2 (d
 (z) + dmax =2)�

N � 1Y

i =1

(1 � z� i (x))dz

!

dx:

Denoting

g(x) =
Z

ray@
 (x ) \ 

2 (d
 (z) + dmax =2)�

N � 1Y

i =1

(1 � z� i (x))dz;

a descent direction is revealed as

� (x) = � n (x) ( � Ae (u) : e(u) � `1 + � 1P1(
) + `2g(x) � � 2P2(
) g(x)) :
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In the cases of Minimum Thickness and Minimum Members' Distance,things are a bit more complicated.
The reason lies in the second integral of the shape derivative in (3.16):

Z

@


Z dmin

0
�

�
xm j 


�
� n

�
xm j 


�
2

�
d
 (xm )+

�
d�dx:

The vector �eld � may be evaluated at a point xm j 
 6= x (see Figure 3.6)and a descent direction is
not anymore obvious. However, the formula forJ 0(
)( � ) still remains a linear form in � . Using Riesz's
representation theorem we can identify this linear form under another scalar product, e.g. H 1, as we
explain below. In this way, we manage to obtain a descent direction, while at the same time we regularize
our velocity �eld [14, 47].

We now explain on an example how to use formula (3.16) for deducing a descent direction. To simplify
a bit things, we use the fact that only the normal component of the velocity �eld � is of interest, in good
agreement with Hadamard's structure theorem (see section 1.3.1). Thus,we can write � (x) = w(x)n(x),
where w(x) is a smooth enough scalar �eld andn(x) is the unit normal vector �eld, suitably extended to
the whole computational domain D . Then, for the optimization problem

min

 2U ad

J (
) =
Z



f � u dx +

Z

� N

g � uds;

s.t. P1(
) =
Z



dx � � V jD j = 0 ; (0 < � V < 1);

P2 (
) = PMinT (
) =
Z

@


Z dmin

0

h
(d
 (xm ))+

i 2
d�dx;

(3.22)

the shape derivative of the augmented Lagrangian function (3.21) reads

L 0(
 ; `; � )(wn) =
Z

�
w(x) ( � Ae (u) : e(u) � `1 + � 1P1(
)) dx � `2P0

2(
)( wn) + � 2P2(
) P0
2(
)( wn);

where

P0
2(
)( wn) =

Z

�

Z dmin

0
w(x)

�
H

�
(d
 (xm ))+

� 2
+ 2 ( d
 (xm ))+ r d
 (xm ) � r d
 (x)

�
d�dx

�
Z

�

Z dmin

0
w(xm j 
 )2 (d
 (xm ))+ d�dx:

Solving instead the equation
Z

D

�
� 2

reg r Q � r v + Qv
�

dx = L 0(
 ; `; � )(vn) 8v 2 H 1(D ); (3.23)

where � reg > 0 is a positive scalar (of the order of the mesh size) to control the regularization width and
choosingw = � Q, we �nd

L 0(
 ; `; � )(wn) = �
Z

D

�
� 2

reg jr Qj2 + Q2�
dx � 0;

which guarantees again a descent direction forL .

3.6 Numerical implementation

In this section, we highlight some of the di�culties one may face when trying to implement the above
methods and the solutions we have chosen for our numerical examples.

3.6.1 Construction of d


We shall highlight the fact that the level-set function  , used for the description and advection of the
shape, even if it is reinitialized to be a signed distance function, does not necessarily contain the correct
information for the thickness of the structure. The signed distancefunction d
 , that we use for the
formulation of the constraints, refers to the actual shape. In order to construct this function, we take the
initial one, set  = 0 at the points of the shape intersecting with the boundary of the working domain D
(see Figure 3.7) and reinitialize this new level-set function. In Figure 3.8 we show the di�erence between
the signed distance function constructed from the level-set function used for the advection of the shape
and the one used for the penalty functional. The values of the level-set function not being zero at 
 \ @D
in the �rst one, we get completely wrong results for the thickness atthese areas.
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(a) (b)

Figure 3.7: (a): level-set function  used for the advection of the shape; (b): signed distance function
d
 .

(a)

(b) (c)

Figure 3.8: (a): shape in black (
); (b): iso-contours of the level-set function  for the advection of the
shape; (c): iso-contours ofd
 :
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(a)

Figure 3.9: Graph of the regularization function f (d
 (x)).

3.6.2 Maximum thickness

1. A �rst di�culty in the calculation of the shape derivative for the max imum thickness functional
PMaxT (
) comes from the identi�cation of the skeleton. As we can see in equation (3.13), for every
point on the boundary of the shape we need to travel along its emerging ray up to the skeleton.
First, we consider as points of the boundary the nodes of the elementsof the mesh that are cut
by the zero level-set. Then, we start moving from each of these points in the direction opposite to
the normal and we check the monotonicity of the signed distance function. Once the monotonicity
changes, we say that we have detected its corresponding point on the skeleton.

2. In section 3.2.1, the pointwise constraint (3.2) has been replaced by the global penalty functional
(3.12), so that the pointwise constraint is satis�ed everywhere whenP(
) = 0. Although this
formulation is very convenient in order to explain all theoretical aspects regarding the shape di�er-
entiation, it is not that e�ective from a numerical point of view. It wou ld be preferable, if possible,
to maintain the constraint in an inequality form, while keeping a global formulation at the same
time. Moreover, the penalty functional (3.12) is "strict", in the sense that it is prone to create
artifacts like the one depicted in Figure 3.1 for joints at bars crossing.Thus we would like to loosen
somehow the constraint in order to get more regular shapes. The formulation that we have used
for our numerical examples is

PMaxT (d
 ) =

0

B
B
@

Z



f (d
 (x))d
 (x)2dx
Z



f (d
 (x))dx

1

C
C
A

1
2

� dmax =2; (3.24)

where

f (d
 (x)) = 0 :5
�

1 + tanh
�

jd
 (x)j � (dmax =2)
� f (dmax =2)

��
;

� f > 0 being a parameter that controls the regularization of the constraint. When � f ! 0 then
f (d
 ) ! H (jd
 j � (dmax =2)), the Heaviside function at point (dmax =2) (see Figure 3.9).

3. From Lemma 3.3.9 we see that the term
Q N � 1

i =1 (1 + d
 (z)� i (x)) in the shape derivative is always
positive. Since the calculation of the curvature is not so accurate, especially when a �xed mesh is
used, this term can be omitted without changing the descent nature ofthe shape derivative, since
the term

(d
 (�) + dmax =2)�

in the integrand is also of constant sign. Moreover, neglecting this term will have no inuence for
"straight" boundaries, where ki (x) � 0, while the shape derivative will be overestimated ifki (x) � 0
and underestimated if ki (x) � 0, helping to avoid distortions at these regions.

3.6.3 Minimum thickness and minimum members' distance

1. At this point let us emphasize that, by using the penalty functionals PMinT (
) and PMMD (
),
it is the values of the signed distance function that we penalize and notthe actual thickness of a
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Figure 3.10: Crossing of the skeleton formed in the void part.

member, the latter being de�ned as the distance from a pointx 2 @
 up to the next point on @

along the ray starting from x and in the direction of � n(x). Since the constraint is by essence non
local, this means that the derivative at a point will depend on the values ofd
 (x) along the o�set
set. As a consequence, one can observe a signi�cant di�erence in the velocity between points of
equal thickness.
Another strange e�ect is the movement of points that do not violate the constraint! For instance,
Figure 3.10 displays an o�set set crossing the skeleton formed between two bars. In this case, one
part of the shape derivative is set on the projection of the o�set set on the boundary and thus the
second bar is also a�ected due to the thickness violation of the �rst bar.
One possible choice to reduce the importance of the above observationsis to apply a continuation
method and increase progressively the o�set distance up to the valuedmin (we have not implemented
this strategy in this work).

2. Another di�culty appears when some part of the o�set set lies outside t he working domain D , i.e.
when we need to impose boundary conditions ford
 (x). Suppose that we start from a point x 2 @

and start moving in the direction � n(x) up to the o�set set (see Figure 3.11). Once we cross the
boundary of the working domain @D, we need to account for the boundary conditions ofd
 . In case
we have symmetry conditions, we just have to change the sign of some component of the normal
vector and to continue moving in the new direction, i.e. the boundary acts like a mirror. Else, if the
whole shape is included in the workind domainD , one possibility is to consider that it is surrounded
by void. If we wanted to use the actual values ofd
 (x), then we would need to have a zone of
non-optimizable weak material of thickness at leastdmin around the domain D . A simpli�cation,
in order to avoid technical di�culties, is to use instead the Eucl idean distance between the o�set
point xm and the point where the line crosses@D, denotedxD . Then, we approximate the value of
d
 (xm ) by

d
 (xm ) = d
 (xD ) + dist (xm ; xD );

wheredist (�; �) stands for the usual euclidean distance between two points, whichis also our method
of choice hereafter.

3.7 Numerical examples

All the examples of this chapter have been coded in the �nite element software SYSTUS of ESI-Group
[140]. A cartesian mesh has been used both for solving the elasticity system and as a support for the
level-set function describing the shape. For the elasticity analysis, we have used Q1 �nite elements. The
Young modulus of the elastic material E is normalized to 1 and the Poisson ratio� is set to 0:3. The
"ersatz material" is considered to have the same Poisson ratio, while its Young modulus is set to 10� 3.

3.7.1 Maximum thickness

2d arch

The �rst example is a two-dimensional arch-like structure, clamped at its lower left and right corners and
with a unitary force applied at the middle of its lower part (see Figure 3.12). Due to symmetry, only half
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Figure 3.11: O�set set crossing the boundary of the working domain@D.

(a) (b) (c)

Figure 3.12: (a): Boundary conditions; (b): initialization; (c): optimiz ed shape for the optimization
problem (3.25), for the 2d arch.

of the domain is used and it is discretized by 80� 160 elements. As a �rst step we solve the optimization
problem

min

 2U ad

Z



dx

s.t.
Z

@

g � uds � g1

max ;
(3.25)

where u is the solution of (1.34) andg1
max = 5. The initialization and the optimized shape are shown in

Figure 3.12.
We suppose now that this optimized shape violates a constraint of maximum thickness. A �rst idea

to treat this problem is to impose the constraint in a second step, i.e. after that the shape has been
optimized without imposing any thickness restriction. Then, the optimized structure of Figure 3.12 serves
as an initial guess for the optimization problem

min

 2U ad

Z



dx

s.t.
Z

@

g � uds � g1

max ;

PMaxT (
) � g2
max ;

(3.26)

whereg1
max = 5, g2

max = dmax =2 and PMaxT (
) is given by (3.24). In Figure 3.13 we can see the thickness
violation (( jd
 (x) � dmax =2j) � ) in the initial shape, the function f (d
 (x)) and the shape gradient due to
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(a) (b) (c)

Figure 3.13: 2d arch; (a): j(d
 (x) � dmax =2)� j; (b): f (d
 (x)); (c): shape gradient of PMaxT (
), for the
initial shape of problem (3.26) anddmax = 0 :2.

(a) (b)

Figure 3.14: 2d arch; (a): optimized shape; (b): j(d
 (x) � dmax =2)� j, for the problem (3.26) and
dmax = 0 :2.

the maximum thickness constraint for dmax = 0 :2. The optimized shape and the �nal thickness violation
are depicted in Figure 3.14. We shall be satis�ed with a thickness violation of the order of the mesh size,
since this is the order of accuracy for the computation of the signed distance function. One can observe
that the optimized shape contains some signi�cantly curved regions, which serve to tackle the thickness
constraint, while the size of regions that are far from violating the constraint has been augmented in order
to satisfy the compliance constraint. The volume of the optimized shape has augmented from 0.1354 to
0.1384.

The idea of imposing the maximum thickness constraint in a second step is quite natural, however it
presents several drawbacks. First of all, especially in 2d, the initially optimized shape usually has a much
simpler topology compared to its initialization. Therefore, the algorithm will try to satisfy the constraint
under much less freedom, as far as the formation of the topology is concerned, compared to the case when
the constraint is applied since the beginning of the optimization process. Besides, it is highly possible
that starting from a shape with reduced topology, a solution to the problem (3.26) does not exist, or at
least the optimization algorithm does not �nd a feasible solution. This is the case, for example, when
problem (3.26) is solved fordmax = 0 :16 and the previous strategy is followed.

Therefore, it seems natural to apply the maximum thickness constraint since the beginning and hope
that starting with a complicated enough topology, the algorithm will arrive at �nding a feasible shape.
Starting with the initialization of Figure 3.12, we show in Figure 3.15 the results for such a case. We
can see in fact that the �nal topology is more complicated. The existence ofmany holes at the time the
thickness constraint is applied, endows the algorithm with more exibility in �nding a feasible shape.

Although the optimized shape of Figure 3.15 is feasible, one could argue that distortions still appear
close to joints. We emphasize that such distortions are natural when shape optimization is applied for
reducing the thickness of continuous structures (see section 3.2). However, it could be interesting to test
if they can be avoided (up to some extent) by using some easy heuristics. In order to test two such
proposals, we have considered two bars of size 0.2, which cross each otherat their middle. Contrary to
the situation depicted in Figure 3.1, the intersection of the bars with the design domain is considered
to belong to the boundary of the shape@
. The reason for this choice, is that we expect distortions to
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(a) (b) (c)

Figure 3.15: 2d arch; (a): optimized shape; (b): j(d
 (x) � dmax =2)� j; (c): zoom close to the thickness
violation area, for the problem (3.26) and dmax = 0 :16.

(a) (b)

Figure 3.16: (a): initialization; (b): j(d
 (x) � dmax =2)� j, for dmax = 0 :10.

appear close to regions of joints and close to parts that lie near to the boundary of the design domain.
The initial thickness violation for dmax = 0 :10 is shown in Figure 3.16. The penalty functional (3.12) is
considered as objective function. The optimized shape and the initial shape gradient are shown in Figure
3.17. Another important observation is that, even when we neglect the Jacobian term in the expression
(3.13), the shape gradient at the corners is much higher than in the nearbyregions, since its ray travels
up to the center of the joint. In case we had included the Jacobian term, the shape gradient in the at
regions would have been unchanged, since the curvature there is almost zero, but its value close to the
curved corners would have been even higher.

A �rst idea would be to truncate the shape gradient deriving from the maximum thickness constraint
for regions of high curvature. If VPMaxT denotes this shape gradient, then we need to consider instead

V �
PMaxT

=
�

VPMaxT ; if jk(x)j � kmax ;
0; if jk(x)j > k max ;

(a) (b) (c)

Figure 3.17: (a): optimized shape; (b): shape gradient; (c): zoom around the joint, for dmax = 0 :10.
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(a) (b)

(c) (d)

Figure 3.18: (a): optimized shape; (b): j(d
 (x) � dmax =2)� j, for kmax = 100; (c): optimized shape; (d):
j(d
 (x) � dmax =2)� j, for kmax = 20.

where k stands for the mean curvature in 2d and the maximum principal curvature in 3d. In Figure 3.18
we show the results obtained with this method, using two di�erent values for kmax . As kmax reduces,
larger areas are constrained to move and the optimized shape is expectedto be smoother. However,
it is highly probable that the area where the constraint is not satis�ed will increase. Our numerical
experience has shown that it is very unlikely to control e�cientl y these areas and one can result with
shapes containing thick parts.

Volumetric approach

We now present another heuristic method that gives very promisingnumerical results. Starting from
the shape derivative (3.14), we would like to substituted0


 (� )(x) with an explicit expression de�ned in
the whole domain 
. However, such an expression exists only for the points on the boundary @
 (see
equation (3.5)). At a �rst step, we extend the expression of d0


 (� )(x) on @
 to the whole domain 
,
i.e. we consider the approximationd0


 (� )(x) � � � (x) � n(x) = � w(x); 8x 2 
, where an extension of the
vector �eld � and the exterior normal n to the whole domain has been assumed. Then, the approximation
of the shape derivative ofPMaxT (
) reads

P0
MaxT (
)( � ) � �

Z



2w(x) (d
 (x) + dmax =2)� dx: (3.27)

Formula (3.27) deos not verify the Hadamard structure theorem (see section 1.3.1), since the choice

w(x) = +2 ( d
 (x) + dmax =2)� ; 8x 2 
 ;

gives a zero velocity for the pointsx 2 @
. However, this approximation of the shape derivative could be
put as a right-hand side in the regularization equation (1.37), which wouldde�ne another velocity with
non-zero values on@
. The regularization parameter � reg should be adjusted accordingly, so that the
values of the new velocity �eld are not too small on@
. For our numerical examples, we have set

� reg =

 

2
max



jd
 (x)j

� x

!

(� x)2;

for this type of regularization, where � x is the uniform mesh size.
Let us try to explain intuitively this heuristic choice. The ter m 2 (d
 (x) + dmax =2)� is non-zero only
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(a) (b)

(c) (d)

Figure 3.19: (a): optimized shape; (b): 2 (d
 (x) + dmax =2)� before regularization; (c): values on@

after regularization; (d): zoom close to the joint, for dmax = 0 :10.

at regions violating the thickness constraint. Using the mathematically correct coarea transformation,
this term inuences signi�cantly the highly curved parts. When t he above approximation is used, the
curvature information is not used. Instead what matters is the distance of the boundary to the area of
thickness violation.
What is also important is that the direction of the velocity �eld will not change at any point, i.e. the
�nal velocity �eld will always tend to reduce the thickness everywhere and thus it is a descent direction.
In Figure 3.19 we plot the results obtained with this method. Our numerical experience shows that this
last method performs better than the rest presented in this chapter. We will call it the "volumetric"
formula to distinguish it from the rigorous "coarea" formula. The "volumetr ic" formula has been used
for most of the results below, unless otherwise speci�ed.

In �gures 3.20 and 3.21 we show the results of problem (3.26) forg1
max = 5 and for di�erent values

of g2
max = dmax =2. Although we expect in general that the volume of the optimal shape increases when

the maximum thickness threshold decreases, this is not always true since plenty of local minima may
exist. We also observe that whendmax is set to 0.12, the optimized shape contains curved members. As
we have mentioned before, this situation could possibly be avoided by starting with a more complicated
topology. In Figure 3.22 we see the optimized shapes fordmax = 0 :12, starting from initializations with
more holes. Of course, one could expect that starting from more complicated topologies, it could be
possible to obtain optimal shapes that respect the thickness constraint without actually imposing that
constraint. This can occasionally happen, but there is no guarantee in general. In Figure 3.23 we plot
the results for the examples of Figure 3.22 without imposing a thickness constraint.
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: 2d arch; (a): initialization; optimized shapes (b): without thickness restriction; (c): for
dmax = 0 :20; (d): for dmax = 0 :16; (e): for dmax = 0 :14; (f): for dmax = 0 :12, for the optimization
problem (3.26).

Discussion on topological changes

The optimized shape of Figure 3.22(b) urges to discuss a very important topic, with severe numerical
implications for our method. We can see in this shape the existence ofvery small holes, the absence of
which would result in a severe violation of the thickness constraint. The question that comes naturally in
mind, is whether a solution of problem (3.26) could be obtained by perforating the optimized shape with-
out the thickness constraint with in�nitesimally small holes. Thi s perforation would have an in�nitesimal
impact on the compliance and it would satisfy the maximum thickness constraint, in the way it has been
mathematically formulated. However, from an engineering point of view,this would not be a satisfying
solution both because the size of the holes would violate some tooling limitations and also because the
"modulo" ratio used in casting (see Chapter 2) would remain unchanged. If one wants to avoid such tiny
holes, one should impose at the same time a constraint on their size. Else, it is inevitable that such holes
can appear in the optimized shape, since they are preferable for solving the problem (3.26).

There are two mechanisms for the appearance of such holes. The �rst one,which is the most usual,
is the reduction in size of an existing hole. The second one is more tricky and consists in splitting an
existing hole into two holes. This is the case for the shape in Figure3.22(b). In Figure 3.24 we show
how these holes were progressively created. At iteration 208 the top left and right holes have already got
elongated in order to tackle the thickness constraint. Since this elongation is not su�cient, the edge needs
to progress more towards the thick part of the structure, while a bit farer the boundary of the hole is
more a�ected by the compliance and tends to close. At iteration 209 hole hasstarted splitting in two and
at iteration 210 we can clearly distinguish the appearance of the second hole. The great problem caused
by the formation of such tiny holes is the impact of their disparition on the values ofd
 and consequently
those ofPMaxT (
). An in�nitesimal change in the topology of the shape, e.g. the creation or disparition
of a small hole, can change dramatically their values. This is because thesigned distance function is
topologically not derivable. Let us give an example in order to better understand this problem.

Consider two bars that cross each other, like in Figure 3.1, with a small hole in the middle of the joint.
The bars have a uniform thickness of 0:2. Setting a constraint of maximum thickness with dmax = 0 :2, we
can see the great di�erence caused by the existence of a small hole in �gures 3.25 and 3.26. The existence
of the hole reduces signi�cantly the values ofd
 and as a result no violation of the thickness appears.
On the contrary, the elimination of the hole changes dramatically the values ofd
 and a region around
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(a)

(b)

(c)

Figure 3.21: Convergence diagrams for (a): the volume; (b): the compliance;(c): tha maximum thickness
functional, for the results of Figure 3.20.
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(a) (b) (c)

(d) (e) (f)

Figure 3.22: 2d arch; (a),(d): initialization; (b),(e): optimized shape for the optimization problem (3.26)
and dmax = 0 :12; (c),(f): j(d
 (x) � dmax =2)� j.

(a) (b) (c)

(d) (e) (f)

Figure 3.23: 2d arch; (a),(d): initialization; (b),(e): optimized shape for the optimization problem (3.25);
(c),(f): j(d
 (x) � dmax =2)� j.
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(a) (b) (c)

(d) (e) (f)

Figure 3.24: Iteration (a): 208; (b): 209; (c): 210, zoom close to the hole at iteration(d): 208; (e): 209;
(f): 210.

the center of the joint appears, where the thickness constraint is violated. Finally, we discuss how this
fact inuences the optimization algorithm. Using an augmented Lagrangian algorithm and accepting
every iteration, hoping to converge at last, seems to give satisfying results for the majority of cases. The
reason is that even if some small holes disappear, the shape will continue changing until the thickness
violation is hopefully treated. However, if dmax is set to a very low value compared to the size of the
working domain, it is possible that the formation and disparition of holes under the mechanism described
in Figure 3.24 does not terminate and thus the algorithm does not converge.
Another idea is to use an MFD (Method of Feasible Directions) algorithm (see [169]). The bene�t is
that the shape will remain always feasible. Thus, there is not reallya problem of existence of a feasible
solution for a certain topology, since we are sure that there is at least one such topology. However, using
such a method makes it di�cult to escape from the previously described situation of disparition of tiny
holes. Consider once more the case of �gures 3.25 and 3.26. Once the hole disappears, the shape is no
more feasible and thus not accepted. But, on the other hand, calculatinganother descent direction that
focuses more on the thickness constraint is unlikely to change the situation, since it is not evident from
the shape derivative which part creates this problem.
One heuristic remedy could be the following. If a shape 
 is feasible for the maximum thickness constraint
at iteration k (
 k ) and unfeasible at iteration k + 1 (
 k+1 ), then:

1. Find the region of 
 k+1 where the violation appears.

2. Test if the values ofd
 have rapidly changed at this region from iteration k to k + 1.

3. If so, check if there was some part of@
 at this region which has disappeared from iteration k to
k + 1.

4. Reject iteration k + 1, set the additional constraints w(x) = � (x) � n(x) > 0 for all nodes belonging
to this region and go back computing a descent direction with this additional requirement.

2d cantilever

The next example is a 3:2 � 2 cantilever, clamped at its left boundary and with a unitary force applied
at its lower-right corner (see Figure 3.27) and discretized using 160� 100 elements. In Figure 3.28 we
plot the initial and the optimized shapes for problem (3.25) and g1

max = 40. In Figure 3.29 we plot the
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(a) (b)

(c) (d)

Figure 3.25: Joint with a hole in the middle (a): shape in black (
); (b): thickness violation; (c): 2d plot
of d
 ; (d): 3d plot of d
 .

Table 3.1: Optimized 2d cantilever.

Volume Compliance PMaxT (
)
Without thickness restriction 3.794 39.99 -

dmax = 0 :50 3.783 39.97 0.250
dmax = 0 :40 3.931 39.84 0.200
dmax = 0 :35 4.204 39.95 0.176

optimized shapes and the violation of the thickness constraint for problem (3.26) and for di�erent values
of dmax . The same initialization as in Figure 3.28(a) has been used for all of the cases. The convergence
diagrams and the �nal results are shown in Figure 3.30 and Table 3.1.

2d MBB beam

The last two-dimensional example for this type of constraint is the benchmark MBB beam. The dimen-
sions of the enclosing boxD are 6� 1 and a unitary vertical load is applied at the middle of its top
edge (see Figure 3.31). Due to symmetry, half of the domain is consideredand is discretized by 240� 80
elements. The initial and the optimized shapes for problem (3.25) andg1

max = 40 are shown at Figure
3.32. Using the same initialization, the optimized shapes and the violationof the thickness constraint for
problem (3.26) and for di�erent values of dmax are plotted in Figure 3.33. The convergence diagrams are
shown in Figure 3.34 and the �nal results in Table 3.2.

3d cantilever

Our �rst 3d example is a 3:2� 2� 2 cantilever, clamped at its left boundary and with a unit force applied
at the middle of its lower-right side (see Figure 3.35). Due to symmetry, half of the domain is considered
and is discretized using 20� 64� 40 elements. The initial and optimized shapes for problem (3.25) and
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(a) (b)

(c) (d)

Figure 3.26: Joint without a hole in the middle (a): shape in black (
); (b ): thickness violation; (c): 2d
plot of d
 ; (d): 3d plot of d
 .

Figure 3.27: Boundary conditions for a 2d cantilever.

Table 3.2: Optimized 2d MBB beam.

Volume Compliance PMaxT (
)
Without thickness restriction 1.881 39.99 -

dmax = 0 :30 1.845 40.05 0.149
dmax = 0 :25 1.900 39.89 0.125
dmax = 0 :20 2.155 39.73 0.102
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(a) (b)

Figure 3.28: (a): Initialization; (b): optimized shape, for problem (3.25) and g1
max = 40, for the 2d

cantilever.

(a)

(b)

(c)

Figure 3.29: Optimized shapes for problem (3.26) and thickness violation (j(d
 (x) � dmax =2)� j) for (a):
dmax = 0 :50; (b): dmax = 0 :40; (c): dmax = 0 :35, , for the 2d cantilever.
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(a)

(b)

(c)

Figure 3.30: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of �gures 3.28 and 3.29.
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(a) (b)

Figure 3.31: Boundary conditions for a 2d MBB beam; (a): full-domain; (b): half-domain.

(a) (b)

Figure 3.32: (a): Initialization; (b): optimized shape, for problem (3.25) and g1
max = 40, for the 2d MBB

beam.

(a)

(b)

(c)

Figure 3.33: Optimized shapes for problem (3.26) and thickness violation (j(d
 (x) � dmax =2)� j) for (a):
dmax = 0 :30; (b): dmax = 0 :25; (c): dmax = 0 :20, for the 2d MBB beam.
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(a)

(b)

(c)

Figure 3.34: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of �gures 3.32 and 3.33.
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Figure 3.35: Boundary conditions for a 3d cantilever.

(a) (b)

(c) (d)

Figure 3.36: (a): Initialization; optimized shape's (b): front view; (c ): back view; (d) half-domain, for
problem (3.25) and g1

max = 53 , for the 3d cantilever.

g1
max = 53 are shown in Figure 3.36. Adding the maximum thickness constraint with dmax = 0 :40 and

dmax = 0 :35 to the previous problem, results in the optimized shapes of �gures3.37 and 3.38. The
convergence diagrams are shown in Figure 3.39 and the �nal results in Table3.3.

3d MBB beam

The second 3d example is a 6� 1 � 1 MBB beam, shown in Figure 3.40. Since the structure is doubly
symmetric, only one quarter of the bounding box is considered for theanalysis and is discretized by
60� 20� 40 elements. The initialization and the optimized shape for problem (3.25) and g1

max = 12 are
shown in Figure 3.41. The optimized shapes forg1

max = 12 and dmax = 0 :60 anddmax = 0 :50 are plotted
in �gures 3.42 and 3.43 correspondingly. The convergence diagrams are shownin Figure 3.44 and the
�nal results in Table 3.4.

3d box

The last example for the maximum thickness constraint is a three dimensional 2� 2� 1 box-like structure,
clamped at its four lower corners and with a unit load applied at the middle of its lower edge (see Figure
3.45). Here again, one quarter of the structure is used for the analysis and isdiscretized by 30� 30� 30
elements. The initialization and the optimized shape for problem (3.25)and g1

max = 32 are shown in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.37: (a): Initialization; (b)-(h): di�erent views of the optim ized shape for problem (3.26),g1
max =

53 and dmax = 0 :40, for the 3d cantilever.

Table 3.3: Optimized 3d cantilever.

Volume Compliance PMaxT (
)
Without thickness restriction 2.676 53.00 -

dmax = 0 :40 3.062 53.02 0.200
dmax = 0 :35 3.055 53.08 0.175
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.38: (a): Initialization; (b)-(h): di�erent views of the optim ized shape for problem (3.26),g1
max =

53 and dmax = 0 :35, for the 3d cantilever.

Table 3.4: Optimized 3d MBB beam.

Volume Compliance PMaxT (
)
Without thickness restriction 2.997 12.50 -

dmax = 0 :60 3.119 12.51 0.300
dmax = 0 :50 3.429 12.44 0.250
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(a)

(b)

(c)

Figure 3.39: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of �gures 3.36, 3.37 and 3.38.
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Figure 3.40: Boundary conditions for a 3d MBB beam.

Table 3.5: Optimized 3d box.

Volume Compliance PMaxT (
)
Without thickness restriction 0.303 31.97 -

dmax = 0 :60 0.281 32.00 0.234
dmax = 0 :40 0.326 32.00 0.200

Figure 3.46. The optimized shapes forg1
max = 32 and dmax = 0 :60 anddmax = 0 :40 are plotted in �gures

3.47 and 3.48 correspondingly. The �nal results are shown in Table 3.5. We see that the optimized shape
for dmax = 0 :60 is more rigid than the one obtained without a thickness constraint and thus it is clear
that the shape of Figure 3.46 corresponds to a local minimum.

3.7.2 Minimum Thickness

2d cantilever

Similar to what we did with the maximum thickness constraint, we wi ll test several formulations and
strategies for the minimum thickness constraint. Our model test case is chosen to be the two-dimensional
cantilever of Figure 3.27. Starting with the initialization of Figure 3.28(a) and solving problem (3.25)
for g1

max = 60, we get the optimized shape of Figure 3.49. We suppose now that we want to avoid thin
features that appear in this shape. We de�ne a minimum thickness size dmin and solve the optimization
problem

min

 2U ad

Z



dx

s.t.
Z

@

g � uds � g1

max ;

PMinT (
) =
Z

@


Z dmin

0

h
(d
 (s � �n (s))) +

i 2
d�ds = 0 :

(3.28)

Once more, we need to choose whether the thickness constraint will be applied since the beginning, or in
a second step, after an optimized shape for problem (3.25) has been obtained. Contrary to the maximum
thickness case, it seems more natural to choose the second strategy forthis constraint. The reason is that
the penalty functional PMinT (
) in (3.28) will cause, in general, a trend to increase the thickness of thin
features. Thus, the disappearance of less useful parts of the structure will be hindered and we shall expect
the existence of parts in the optimized shape with negligible mechanical importance. This is the case
in the optimized shape of Figure 3.50, where the minimum thickness constraint has been applied since
the beginning of the optimization algorithm. Evidently, the upper-r ight bar of the shape has negligible
mechanical contribution, but it cannot be removed because of the minimum thickness constraint.

Using the shape of Figure 3.49(a) as an initial guess for problem (3.28), the optimized shapes for
di�erent values of dmin are shown in Figure 3.51. As we could have expected, for relatively smallvalues
of dmin , the algorithm augments the size of thin members and, usually, reduces a bit the size of features
whose thickness exceeds this value. In such cases, the shape doesnot change signi�cantly and the �nal
topology is the same with the initialization. However, when the value ofdmin is such that several parts
of the structure are penalized, then we can expect topological changes tooccur. Initially, the size of the
bars increases and then, since the compliance constraint is no more active, it is easier for the shape to
change. Members can merge, which is usually bene�cial for the minimum thickness constraint. We can
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.41: (a): Initialization; (b)-(h): di�erent views of the optim ized shape for problem (3.25) and
g1

max = 12, for a 3d MBB beam.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.42: (a): Initialization; (b)-(h): di�erent views of the optim ized shape for problem (3.26),g1
max =

12 and dmax = 0 :60, for a 3d MBB beam.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.43: (a): Initialization; (b)-(h): di�erent views of the optim ized shape for problem (3.26),g1
max =

12 and dmax = 0 :50, for a 3d MBB beam.
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(a)

(b)

(c)

Figure 3.44: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of �gures 3.41, 3.42 and 3.43.
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Figure 3.45: Boundary conditions for a 3d box.

see this process in Figure 3.52, where several intermediate iterations are depicted before arriving to the
optimized shape of Figure 3.51(d).

Remark 3.7.1. One may wonder why the upper-right bar of the shape in Figure 3.50 does not disappear.
This happens because we have chosen not to set = 0 for the nodes of the shape that belong also to the
boundary of the working domain (see Figure 3.7). There are several reasons for this choice. First, we
have observed numerically that it can lead to the appearance of spurious holes in the structure. Then,
it is possible that the algorithm converges much slower, because the new optimizable boundary contains
areas with high velocity and thus the CFL condition for the advection of the level-set function becomes
too strict. Practically, it is possible that we observe very slight changes of the shape, which is totally due
to the stability condition for the Hamilton-Jacobi equation.
Many ideas can be proposed about how to avoid such artifacts, but the good strategy to follow remains
always case-dependent. Now, we would like to show the above describedwith an example. Suppose that
we start with the optimized shape of Figure 3.50 and we decide toset

 (x) = 0 8x 2 @
 \ @D;

i.e. we consider as optimizable all the boundary of the shape
 . Then, with a small abuse in theory since
we have neglected some terms in the shape derivative that should have been included (see Proposition
1.3.9), the algorithm "stucks" in the shape of Figure 3.53(a). However, the upper-right bar has changed
and the previous problem for the minimum thickness constraint shallno more appear. Starting from this
shape and coming back to the initial choice for (see Figure 3.7(a)), we can solve again problem (3.28).
In Figure 3.53 we can see that the shape can now change radically and converge to an optimized shape
that is intuitively acceptable. However, since we expect to start from ashape very far from an optimum,
the optimization may need a lot of iterations to converge.

Energy functionals for the minimum thickness

Although the minimum thickness constraint (3.3) and its correspondingpenalty functional PMinT (
)
are mathematically well-de�ned, the numerical calculation of the shape derivative (3.16) is not trivial.
Among other things, in order for the calculation to be su�ciently accurat e, the mesh shall not be too
coarse.
Instead of formulating a constraint, it is interesting to see if we can manage to control the thickness of the
structure in such a way that thin features are avoided by adding to the objective function some energy
functional. As we have foresaid, this approach has also been followed in [38], [40], [89]. However, instead
of favoring speci�c patterns and shapes, we shall better base the formulation of this energy functional on
the values of the signed distance function. In addition, it would be preferable that the functional has no
impact on features where the thickness exceeds the desired limit.

A �rst proposal of such a functional is the following:

E1(
) = �
Z



d
 (x)2 �

(d
 (x) + dmin =2)+ � 2
dx: (3.29)

Let us study the behaviour of functional E1(
) with an example. Consider the semi-in�nite bar of Figure
3.54, which has a uniform thickness of value 0:2. We want to solve the optimization problem

min



E1(
) ; (3.30)
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