L. E. Landau and E. M. Lifschitz, Physique théorique Tome 2 : théorie des champs, Edition MIR, 1989.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons, 2007.
DOI : 10.1017/CBO9780511618833

R. Snieder, Coda wave interferometry, in "2004 McGraw-Hill Yearbook of Science & Technology, 2004.

A. Ishimaru, Wave Propagation and Scattering in Random Media, 1978.
DOI : 10.1109/9780470547045

P. J. Westervelt, Parametric Acoustic Array, The Journal of the Acoustical Society of America, vol.35, issue.4, pp.535-537, 1963.
DOI : 10.1121/1.1918525

J. Marchal, Cervenka : Modeling of the parametric transmission with the spatial fourier formalism. optimization of a parametric antenna, Acta Acustica united with Acustica, vol.90, pp.49-61, 2004.

C. Barrière and D. Royer, Diffraction effects in the parametric interaction of acoustic waves: application to measurements of the nonlinearity parameter B/A in liquids, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.48, issue.6, pp.1706-1715, 2001.
DOI : 10.1109/58.971724

H. O. Berktay, Possible exploitation of non-linear acoustics in underwater transmitting applications, Journal of Sound and Vibration, vol.2, issue.4, pp.435-461, 1965.
DOI : 10.1016/0022-460X(65)90122-7

M. Rénier, C. Barrière, and D. Royer, Optical measurements of the self-demodulated displacement and its interpretation in terms of radiation pressure, The Journal of the Acoustical Society of America, vol.121, issue.6, pp.3341-3348, 2007.
DOI : 10.1121/1.2730624

V. Tournat and V. E. Gusev, Nonlinear effects for coda-type elastic waves in stressed granular media, Physical Review E, vol.80, issue.1, p.11306, 2009.
DOI : 10.1103/PhysRevE.80.011306

URL : https://hal.archives-ouvertes.fr/hal-00283263

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics , part i, Acta Acustica united with Acustica, vol.82, pp.579-606, 1996.

O. V. Rudenko and S. I. , Soluyan : Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau, 1977.

O. B. Matar, Mesure de vibration par vibromètre acoustique, importance des effets non linéaires, Thèse de doctorat, 1997.

P. Cervenka and P. , Fourier formalism for describing nonlinear self???demodulation of a primary narrow ultrasonic beam, The Journal of the Acoustical Society of America, vol.88, issue.1, pp.473-481, 1990.
DOI : 10.1121/1.399926

G. Taraldsen, A generalized Westervelt equation for nonlinear medical ultrasound, The Journal of the Acoustical Society of America, vol.109, issue.4, pp.1329-1333, 2001.
DOI : 10.1121/1.1344157

F. Dagrau, M. Rénier, R. Marchiano, and F. Coulouvrat, Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation, The Journal of the Acoustical Society of America, vol.130, issue.1, pp.20-32, 2011.
DOI : 10.1121/1.3583549

URL : https://hal.archives-ouvertes.fr/hal-01460178

R. O. Cleveland, J. P. Chambers, H. E. Bass, R. Raspet, D. T. Blackstock et al., Comparison of computer codes for the propagation of sonic boom waveforms through isothermal atmospheres, The Journal of the Acoustical Society of America, vol.100, issue.5, pp.3017-3027, 1996.
DOI : 10.1121/1.417113

L. Ganjehi, R. Marchiano, F. Coulouvrat, and J. Thomas, Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium, The Journal of the Acoustical Society of America, vol.124, issue.1, pp.57-71, 2008.
DOI : 10.1121/1.2832621

URL : https://hal.archives-ouvertes.fr/hal-00355277

Y. Jing and R. O. Cleveland, Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media, The Journal of the Acoustical Society of America, vol.122, issue.3, pp.1352-1364, 2007.
DOI : 10.1121/1.2767420

G. F. Pinton, J. Dahl, S. Rosenzweig, and G. E. , A heterogeneous nonlinear attenuating full- wave model of ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.56, issue.3, pp.474-488, 2009.
DOI : 10.1109/TUFFC.2009.1066

E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the nonlinear acoustics of confined beams, Soviet physics Acoustics, vol.15, pp.35-40, 1969.

P. Blanc-benon, B. Lipkens, L. Dallois, M. F. Hamilton, and D. T. Blackstock, Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation, The Journal of the Acoustical Society of America, vol.111, issue.1, pp.487-498, 2002.
DOI : 10.1121/1.1404378

A. D. Pierce and D. J. Maglieri, Effects of Atmospheric Irregularities on Sonic???Boom Propagation, The Journal of the Acoustical Society of America, vol.51, issue.2C, pp.702-721, 1972.
DOI : 10.1121/1.1912904

Y. Lee and M. F. Hamilton, Time???domain modeling of pulsed finite???amplitude sound beams, The Journal of the Acoustical Society of America, vol.97, issue.2, pp.906-917, 1995.
DOI : 10.1121/1.412135

M. Baudoin, J. Thomas, F. Coulouvrat, and C. , Scattering of ultrasonic shock waves in suspensions of silica nanoparticles, The Journal of the Acoustical Society of America, vol.129, issue.3, pp.1209-1220, 2010.
DOI : 10.1121/1.3533723

URL : https://hal.archives-ouvertes.fr/hal-00591320

S. , D. Pino, B. Després, P. Havé, H. Jourdren et al., Piserchia : 3d finite volume simulation of acoustic waves in the earth atmosphere, Computers & Fluids, vol.38, pp.765-777, 2009.

C. D. De-groot-hedlin, Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere, The Journal of the Acoustical Society of America, vol.132, issue.2, pp.646-656, 2012.
DOI : 10.1121/1.4731468

L. E. Landau and E. M. , Lifschitz : Theory of Elasticity, 1993.

V. Tournat, V. E. Gusev, V. Y. Zaitsev, and B. Castagnède, Acoustic second-harmonic generation with shear to longitudinal mode conversion in granular media, Europhysics Letters (EPL), vol.66, issue.6, pp.798-804, 2004.
DOI : 10.1209/epl/i2003-10264-2

T. Brunet, X. Jia, and P. A. Johnson, Transitional nonlinear elastic behaviour in dense granular media, Geophysical Research Letters, vol.107, issue.B6, 2008.
DOI : 10.1029/2008GL035264

URL : https://hal.archives-ouvertes.fr/hal-00350203

S. Van-den-wildenberg, M. Van-hecke, and X. , Evolution of granular packings by nonlinear acoustic waves, EPL (Europhysics Letters), vol.101, issue.1, p.14004, 2013.
DOI : 10.1209/0295-5075/101/14004

X. Jia, Codalike Multiple Scattering of Elastic Waves in Dense Granular Media, Physical Review Letters, vol.93, issue.15, p.154303, 2004.
DOI : 10.1103/PhysRevLett.93.154303

K. Johnson, Contact Mechanics, 1985.

L. Fillinger, V. Y. Zaitsev, and V. E. Gusev, Castagnède : Nonlinear relaxational absorption/transparency for acoustic waves due to thermoelastic effect, Acta Acustica united with Acustica, vol.92, pp.24-34, 2006.

V. A. Hopkins, J. Keat, G. D. Meegan, T. Zhang, and J. D. Maynard, Observation of the Predicted Behavior of Nonlinear Pulse Propagation in Disordered Media, Physical Review Letters, vol.76, issue.7, pp.1102-1105, 1996.
DOI : 10.1103/PhysRevLett.76.1102

V. Mamou, Caractérisation ultrasonore d'échantillons hétérogènes multiplement diffuseurs, Thèse de doctorat, 2005.

A. Aubry, Approche matricielle de l'opérateur de propagation des ondes ultrasonores en milieu diffusant, Thèse de doctorat, 2008.

M. A. Fink and J. Cardoso, Diffraction Effects in Pulse-Echo Measurement, IEEE Transactions on Sonics and Ultrasonics, vol.31, issue.4, p.313, 1984.
DOI : 10.1109/T-SU.1984.31512

A. Derode, V. Mamou, and A. Tourin, Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium, Physical Review E, vol.74, issue.3, p.36606, 2006.
DOI : 10.1103/PhysRevE.74.036606

A. Derode, A. Tourin, and M. Fink, Random multiple scattering of ultrasound.???I.???Coherent and ballistic waves, Physical Review E, vol.64, issue.3, p.36605, 2001.
DOI : 10.1103/PhysRevE.64.036605

J. J. Markham, R. Rt, T. Beyer, and R. B. Lindsay, Absorption of Sound in Fluids, Reviews of Modern Physics, vol.23, issue.4, p.353, 1951.
DOI : 10.1103/RevModPhys.23.353

C. Barrière and D. Royer, Optical measurement of large transient mechanical displacements, Applied Physics Letters, vol.79, issue.6, pp.878-880, 2001.
DOI : 10.1063/1.1389503

D. Royer, N. Dubois, and M. Fink, Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer, Applied Physics Letters, vol.61, issue.2, pp.153-155, 1992.
DOI : 10.1063/1.108202

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 4 : Wave Propagation Through Random Media, 1989.

J. Keller, Stochastic equations and wave propagation in random media, Proc. Symp, pp.145-170, 1964.
DOI : 10.1090/psapm/016/0178638

A. N. Norris and J. Conoir, Multiple scattering by cylinders immersed in fluid: High order approximations for the effective wavenumbers, The Journal of the Acoustical Society of America, vol.129, issue.1, pp.104-113, 2011.
DOI : 10.1121/1.3504711

D. V. Vlasov, E. A. Zabolotskaya, and Y. A. Kravtsov, Acoustic phase conjugation in water containing bubbles, Soviet Physics Acoustics, vol.29, pp.69-70, 1983.

F. V. Bunkin, Y. A. Kravtsov, and G. A. Lyakhov, Acoustic analogues of nonlinear-optics phenomena, Soviet Physics Uspekhi, vol.29, issue.7, pp.607-619, 1986.
DOI : 10.1070/PU1986v029n07ABEH003458

N. P. Andreeva, K. Karshiev, and L. M. Sabirov, Phase conjugation of sound beams during quarter-wav interaction in a liquid containing gas bubbles, Soviet Physics Acoustics, vol.37, pp.425-426, 1991.

V. Leroy, A. Strybulevych, M. G. Scanlon, and J. H. , Transmission of ultrasound through a single layer of bubbles, The European Physical Journal E, vol.29, issue.1, pp.123-130, 2009.
DOI : 10.1140/epje/i2009-10457-y

URL : https://hal.archives-ouvertes.fr/hal-00421962

T. Brunet, M. Raffy, B. Mascaro, J. Leng, R. Wunenburger et al., Sharp acoustic multipolar-resonances in highly monodisperse emulsions, Applied Physics Letters, vol.101, issue.1, p.11913, 2012.
DOI : 10.1063/1.4733615

URL : https://hal.archives-ouvertes.fr/hal-00731834

A. Tourin, A. Derode, P. Roux, B. Van-tiggelen, and M. Fink, Time-Dependent Coherent Backscattering of Acoustic Waves, Physical Review Letters, vol.79, issue.19, pp.3637-3639, 1997.
DOI : 10.1103/PhysRevLett.79.3637

A. Tourin, Diffusion multiple et renversement du temps des ondes ultrasonores, Thèse de doctorat, 1999.

R. Pierrat, Propagation et émission du rayonnement en milieu diffusant. Application à l'imagerie des milieux complexes, Thèse de doctorat, 2007.

J. X. Zhu, D. J. Pine, and D. A. Weitz, Internal reflection of diffusive light in random media, Physical Review A, vol.44, issue.6, pp.3948-3959, 1991.
DOI : 10.1103/PhysRevA.44.3948

J. H. Page, H. P. Schriemer, A. E. Bailey, and D. A. Weitz, Experimental test of the diffusion approximation for multiply scattered sound, Physical Review E, vol.52, issue.3, pp.3106-3114, 1995.
DOI : 10.1103/PhysRevE.52.3106

I. M. Vellekoop and P. Lodahl, Determination of the diffusion constant using phase-sensitive measurements, Physical Review E, vol.71, issue.5, p.56604, 2005.
DOI : 10.1103/PhysRevE.71.056604

A. Aubry and A. Derode, Ultrasonic imaging of highly scattering media from local measurements of the diffusion constant: Separation of coherent and incoherent intensities, Physical Review E, vol.75, issue.2, p.26602, 2007.
DOI : 10.1103/PhysRevE.75.026602

A. Aubry, Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration, Journal of Applied Physics, vol.106, issue.4, p.44903, 2009.
DOI : 10.1063/1.3200962