]. S. Bibliographie1, P. R. Chou, P. J. Krauss, and . Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Applied Physics Letters, issue.1

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.6
DOI : 10.1116/1.589752

J. Czochralski, Measuring the velocity of crystallization of metals, Zeitschrift für Physikalische Chemie

J. Haisma, M. Verheijen, K. Van-den-heuvel, J. Van-den, and . Berg, M o l d -a s s i s t e dn a n o l i thography: A process for reliable pattern replication, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures

L. J. Guo, Recent progress in nanoimprint technology and its applications, Journal of Physics D: Applied Physics, vol.37, issue.11
DOI : 10.1088/0022-3727/37/11/R01

V. N. Truskett and M. P. Watts, Trends in imprint lithographyf o rb i o l o g i c a la p p l i c a t i o n s . Trends in biotechnology, pp.3-4

T. Ohtake, K. I. Nakamatsu, S. Matsui, H. Tabata, and T. Kawai, D N An a n o p a t t e r n i n gw i t h self-organization by using nanoimprint, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato et al., An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid, IEEE Photonics Technology Letters, vol.11, issue.6, pp.1-1
DOI : 10.1109/68.766787

E. Krioukov, J. Greve, and C. Otto, An eight-channel add-dropfilterusingv erticallycoupled microring resonators over a cross grid, Sensors Actuators

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka et al., An eightchannel add-drop filter using vertically coupled microring resonators over a cross grid, Applied Physics Letters, issue.2

T. Nielsen, R. H. Pedersen, O. Hansen, T. Haatainen, A. Tolkki et al., Flexible stamp for nanoimprint lithography, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005.
DOI : 10.1109/MEMSYS.2005.1453978

H. Lee and G. Jung, Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution, Microelectronic Engineering, vol.77, issue.1, 1942.
DOI : 10.1016/j.mee.2004.08.008

C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai et al., Influence of pattern density in nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.1
DOI : 10.1116/1.1532735

URL : https://hal.archives-ouvertes.fr/hal-00385725

S. Merino, A. Retolaza, H. Schift, and V. Trabadelo, Stamp deformation and its influence on residual layer homogeneity in thermal nanoimprint lithography, Microelectronic Engineering, vol.85, issue.5-6
DOI : 10.1016/j.mee.2008.01.045

N. Kehagias, V. Reboud, C. M. Sotomayor-torres, V. Sirotkin, A. Svintsov et al., Residual layer thickness in nanoimprint: Experiments and coarse-grain simulation, Microelectronic Engineering, vol.85, issue.5-6, pp.8-12
DOI : 10.1016/j.mee.2007.12.041

R. H. Pedersen, L. H. Thamdrup, A. V. Larsen, and A. Kristensen, Quantitative strategies to handle stamp bending in NIL, Proceedings of 34th International Conference on Micro and Nano Engineering: MNE 2008

H. K. Taylor, K. Smistrup, and D. S. Boning, Modeling and simulation of stamp deflections in nanoimprint lithography: Exploiting backside grooves to enhance residual layer thickness uniformity, Microelectronic Engineering, vol.88, issue.8
DOI : 10.1016/j.mee.2010.12.090

H. Schultz, M. Wissen, N. Bogdanski, H. C. Scheer, K. Mattes et al., Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography, Microelectronic Engineering, issue.2

V. Sirotkin, A. Svintsov, S. Zaitsev, and H. Schift, Viscousfl o ws i m u l a t i o ni nn a n o i m p r i n t using coarse-grain method, Microelectronic Engineering

T. Leveder, S. Landis, L. Davoust, and N. Chaix, Flow property measurements for nanoimprint simulation, Microelectronic Engineering, vol.84, issue.5-8
DOI : 10.1016/j.mee.2007.01.065

URL : https://hal.archives-ouvertes.fr/hal-00680945

J. L. Masson and P. F. Green, Viscosity of entangled polystyrene thin film melts: Film thickness dependence, Physical Review E, vol.65, issue.3, p.0
DOI : 10.1103/PhysRevE.65.031806

H. Bodiguel, . Ch, and . Fretigny, Viscoelastic Properties of Ultrathin Polystyrene Films, Macromolecules, vol.40, issue.20
DOI : 10.1021/ma070460d

URL : https://hal.archives-ouvertes.fr/hal-00176756

H. D. Rowland, W. P. King, J. B. Pethica, and G. L. Cross, Molecular Confinement Accelerates Deformation of Entangled Polymers During Squeeze Flow, Science, vol.322, issue.5902, pp.720-723, 2008.
DOI : 10.1126/science.1157945

J. L. Keddie, R. A. Jones, and R. A. Corry, Size-Dependent depression of the glass transition temperature in polymer films. Faraday Discussion

J. A. Forrest and K. Dalnoki-veress, The glass transition in thin polymer films, Advances in Colloid and Interface Science, vol.94, issue.1-3, pp.4-5
DOI : 10.1016/S0001-8686(01)00060-4

M. Alcoutlabi and G. B. Mckenna, Effects of confinement on material behaviour at the nanometre size scale, Journal of Physics: Condensed Matter, vol.17, issue.15
DOI : 10.1088/0953-8984/17/15/R01

J. S. King, W. Boyer, G. D. Wignall, and R. Ullman, Radii of gyration and screening lengths of polystyrene in toluene as a function of concentration, Macromolecules, vol.18, issue.4, 1984.
DOI : 10.1021/ma00146a023

E. C. Bingham, An Investigation of the Laws of Plastic Flow,v o l u m e1 3 . G o v e r n m e n t Printing Office, 1917.

N. W. Kim, K. W. Kim, and H. Sin, Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model, Microelectronic Engineering, vol.85, issue.9, pp.1858-1865, 2008.
DOI : 10.1016/j.mee.2008.05.030

H. Scheer, N. Bogdanski, M. Wissen, T. Konishi, and Y. Hirai, Polymer time constants during low temperature nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, issue.6
DOI : 10.1116/1.2121727

W. P. Cox and E. H. Merz, Correlation of dynamic and steady flow viscosities, Journal of Polymer Science, vol.28, issue.118
DOI : 10.1002/pol.1958.1202811812

W. Kulicke and R. S. Poter, Relation between steady shear flow and dynamic rheology, Rheologica Acta, vol.19, issue.4
DOI : 10.1007/BF01517513

S. Onogi, I. Hamana, and H. Hirai, Viscoelastic Properties of Concentrated Solutions of Polyvinyl Alcohol, Journal of Applied Physics, vol.29, issue.10
DOI : 10.1063/1.1722977

J. Wang and J. R. Knox, Steady-state and dynamic rheology of poly(1-olefin) melts, Journal of Polymer Science: Polymer Physics Edition, vol.16, issue.10
DOI : 10.1002/pol.1978.180161001

K. Sakamoto, W. J. Macknight, and R. S. Porter, Dynamic and steady-shear melt rheology of and ethylene-methacrylic acid copolymer and its salts, Journal of Polymer Science Part A-2: Polymer Physics, vol.8, issue.2, 0287.
DOI : 10.1002/pol.1970.160080206

T. Matsumoto, C. Hitomi, and S. Onogi, Rheological properties of disperse systems of spherical particles in polystyrene solution at long-time scales, Journal of Rheology, vol.1, issue.9, pp.5-9, 1975.

J. D. Ferry, Viscoelastic Properties of Polymers,3 ` e m e ´ e d i t i o n . W i l e

H. Teyssèdre, P. Gilormini, S. Landis, and G. Régnier, Legitimate domain of a Newtonian behavior for thermal nanoimprint lithography, Microelectronic Engineering, vol.110, pp.215-218, 2013.
DOI : 10.1016/j.mee.2013.03.169

J. Bischoff, E. Catsiff, and A. V. Tobolsky, Elastoviscous properties of amorphous polymers in the transition region. I. Rubber Chemistry and Technology

H. Vogel, The law of the relation between the viscosity ofl i q u i d sa n dt h et e m p e r a t u r e, Physikalische Zeitschrift, issue.21, pp.6-10

G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, Journal of the American Ceramic Society, vol.8, issue.1, pp.3-3

V. G. Tammann and W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten, Zeitschrift für Anorganische und Allgemeine Chemie, pp.5-6, 1926.

A. K. Doolittle, Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free???Space, Journal of Applied Physics, vol.22, issue.12
DOI : 10.1063/1.1699894

M. L. Williams, R. F. Landel, and J. D. Ferry, The temperatured e p e n d e n c eo fr e l a x a t i o n mechanisms in amorphous polymers and other glass-forming liquids, Journal of the American Chemical Society, 1977.

P. Carreau, Rheological Equations from Molecular Network Theories, Transactions of the Society of Rheology, vol.16, issue.1
DOI : 10.1122/1.549276

A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces,4 ` e m e ´ e d i t i o n . N e w Y o r k, 1990.

G. T. Dee and B. B. Sauer, The surface tension of polymer liquids Advances in Physics, pp.161-205, 1998.

H. K. Taylor, Y. C. Lam, and D. S. Boning, A computationally simple method for simulating the micro-embossing of thermoplastic layers, Journal of Micromechanics and Microengineering, vol.19, issue.7
DOI : 10.1088/0960-1317/19/7/075007

K. L. Johnson, Contact Mechanics.C a m b r i d g eU n i v e r s i t yP r e s s

J. Boussinesq, Application des potentielsàpotentielsà l'´ etude de l'´ equilibre et dum o u v e m e n td e s solidesélastiquessolidesélastiques.G a u t h i e r -V i l l a r s

P. F. Papkovich, Solution générale deséquationsdeséquations différentielles fondamentales d'´ elasticité exprimée par trois fonctions harmoniques. Comptes rendus hebdomadaires des séances de l'Académie des sciences

T. C. O-'sullivan and R. B. King, Sliding contact stress fieldd u et oas p h e r i c a li n d e n t e ro n al a y e r e de l a s t i ch a l f -s p a c e, Journal of Tribology

H. Taylor and D. Boning, Towards nanoimprint lithography-aware layout design checking, Design for Manufacturability through Design-Process Integration IV
DOI : 10.1117/12.846499

H. Taylor, Modeling and Controlling Topographical Nonuniformity in Thermoplastic Micro-and Nano-Embossing.T h ` e s e ,U n i v e r s i t yo fC a m b r i d g

]. J. Stefan, Versuchë uber die scheinbare Adhäsion

G. G. Stokes, Steps towards a kinetic theory of matterP r e s sS y n d i c a t eo ft h eU n i v e r s i t yo fC a m b r i dge, Report of the British Association, pp.6-7, 1884.

L. Rayleigh, On an improved apparatus for Christiansens's experiment, Philosophical Magazine

O. Reynolds, On the theory of Lubrication and its Application to M. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil, Proceedings of the Royal Society of London

I. Hsin and W. Young, Analysis of the Isothermal Compression in Nanoimprint Lithography Assuming a Power-Law Fluid, International Polymer Processing, vol.23, issue.1
DOI : 10.3139/217.1008

V. Sirotkin, A. Svintsov, H. Schift, and S. Zaitsev, Coarse-grain method for modeling of stamp and substrate deformation in nanoimprint, Microelectronic Engineering, vol.84, issue.5-8, pp.8-14, 2007.
DOI : 10.1016/j.mee.2007.01.007

S. E. Orchard, On surface levelling in viscous liquids and gels, Applied Science Research, vol.11, pp.451-464, 1962.

E. Rognin, S. Landis, and L. Davoust, Viscosity measurements of thin polymer films from reflow of spatially modulated nanoimprinted patterns, Physical Review E, vol.84, issue.4, 2011.
DOI : 10.1103/PhysRevE.84.041805

J. Kang, K. Kim, and K. W. Kim, Molecular dynamics study of pattern transfert in nanoimprint lithography, Tribology Letters, vol.5, issue.2 22

Y. S. Woo, D. Lee, and W. I. Lee, Molecular dynamics studies on deformation of polymer resist during thermal nano imprint lithographic process. Tribology Letters, 2009.

H. Teyssèdre, P. Gilormini, and G. Régnier, Limitations of Simple Flow Models for the Simulation of Nanoimprint, International Polymer Processing, vol.28, issue.1
DOI : 10.3139/217.2673

J. Gibbs, The Collected Works,v o l u m e1 .Thermodynamics.Y a l eU n i v e r s i t yP r e s s, pp.9-13

T. Young, An Essay on the Cohesion of fluids, Philosophical Transactions of the Royal Society of London

D. Deganello, T. N. Croft, A. J. Williams, A. S. Lubansky, D. T. G-e-t-h-i-n et al., Numerical simulation of dynamic contact angle using a force based formulation, Journal of Non-Newtonian Fluid Mechanics, vol.166, issue.16
DOI : 10.1016/j.jnnfm.2011.04.008

Y. D. Shikhmurzaev, Capillary Flows with Forming Interfaces, 2008.
DOI : 10.1201/9781584887492

C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, Journal of Colloid and Interface Science, vol.35, issue.1
DOI : 10.1016/0021-9797(71)90188-3

L. M. Hocking, A moving fluid interface. Part 2. The removal of the force singularity by a slip flow, Journal of Fluid Mechanics, vol.262, issue.02, p.1
DOI : 10.1016/0021-9797(71)90188-3

M. E. Gurtin, J. Weissmüller, and F. Larché, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, vol.57, issue.5
DOI : 10.1098/rstl.1805.0005

S. L. Sobolev, On a theorem of functional analysis, Matematicheskii Sbornik, vol.4, pp.3-9, 1938.
DOI : 10.1090/trans2/034/02

G. C. Buscaglia and R. F. Ausas, Variational formulations for surface tension, capillarity and wetting, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45-46, 2011.
DOI : 10.1016/j.cma.2011.06.002

K. J. Ruschak, A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators, International Journal for Numerical Methods in Engineering, vol.67, issue.5
DOI : 10.1002/nme.1620150502

L. Traversoni, Natural neighbour finite elements, International Conference on Hydraulic Engineering Software, Hydrosoft Proceedings

J. Braun and M. Sambridge, A numerical method for solving partial differential equations on highly irregular evolving grids, Nature, vol.376, issue.6542
DOI : 10.1038/376655a0

N. Sukumar, B. Moran, and T. Belytschko, The natural elementm e t h o di ns o l i dm e c h a n i c s, International Journal for Numerical Methods in Engineering

E. Cueto, M. Doblaré, and L. Gracia, Imposing essential boundary conditions in the natural element method by means of density-scaled ?-s h a p e s, International Journal for Numerical Methods in Engineering, vol.4, issue.92, pp.5-6

D. González, E. Cueto, F. Chinesta, and M. Doblaré, A natural element updated Lagrangian strategy for free-surface fluid dynamics, Journal of Computational Physics, vol.223, issue.1, 2007.
DOI : 10.1016/j.jcp.2006.09.002

J. Yvonnet, D. Ryckelynck, . Ph, F. Lorong, and . Chinesta, A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method(C-NEM), International Journal for Numerical Methods in Engineering, vol.60, issue.8, pp.1451-1474, 2004.
DOI : 10.1002/nme.1016

URL : https://hal.archives-ouvertes.fr/hal-01508695

R. Ata, A. Soula¨?manisoula¨?mani, and F. Chinesta, The natural volume method (NVM): Presentation and application to shallow water inviscid flows, International Journal for Numerical Methods in Fluids, vol.8, issue.2, pp.1-9
DOI : 10.1002/fld.1800

URL : https://hal.archives-ouvertes.fr/hal-01004834

M. Darbani, A. Ouahsine, P. Villon, H. Naceur, and H. Smaoui, M e s h l e s sm e t h o df o rs h a l l o w water equations with free surface flow, Applied Mathematics and Computation, vol.2, pp.1-7, 2011.

D. Defauchy, G. Régnier, I. Amran, P. Peyre, A. Ammar et al., C h i n e s t a .T o w a r d san u m e rical simulation of direct manufacturing of thermoplastic parts by powder laser sintering, Computational Plasticity XI. Fundamentals and Applications, pp.688-699, 2011.

E. Cueto, N. Sukumar, B. Calvo, M. A. Martínez, J. Cegoñino et al., Overview and recent advances in natural neighbour galerkin methods, Archives of Computational Methods in Engineering, vol.25, issue.2
DOI : 10.1007/BF02736253

R. Sibson, A vector identity for the Dirichlet tesselation, Mathematical Proceedings of the Cambridge Philosophical Society

J. Chen, C. Wu, S. Yoon, and Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods, International Journal for Numerical Methods in Engineering, vol.53, issue.2, pp.435-466, 2001.
DOI : 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A

A. L. Illoul-s-e and E. N. , Mise en oeuvre de la méthode desélémentsdeséléments naturels contrainte en 3d : ApplicationàApplicationà la simulation du cisaillage adiabatique

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow.s e c o n d ed., Gordon and Breach, 1969.

I. Babuska, The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.12, issue.3
DOI : 10.1007/BF01436561

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Recherche Opérationnelle, vol.8

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, p.1
DOI : 10.1002/nme.2579

H. Teyssèdre and P. Gilormini, Extension of the natural element method to surface tension and wettability for the simulation of polymer fows at the micro and nano scales, Journal of Non-Newtonian Fluid Mechanics, issue.02, pp.9-10

S. E. Orchard, The flow of paint coatings: a hydrodynamic analysis, Progress in Organic Coatings
DOI : 10.1016/0033-0655(94)87003-9

J. Jäckle, The spectrum of surface waves on viscoelastic liquids of arbitrary depth, Journal of Physics: Condensed Matter, vol.10, issue.32, p.7
DOI : 10.1088/0953-8984/10/32/004

H. Kim, A. Rühm, L. B. Lurio, J. K. Basu, J. Lal et al., S i n h a S u r f a c e dynamics of polymer films, Physical Review Letter

T. Leveder, S. Landis, N. Chaix, and L. Davoust, Thin polymer films viscosity measurements from nanopatterning method, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.28, issue.6, pp.1-2, 2010.
DOI : 10.1116/1.3504591

J. Teisseire, A. Revaux, M. Foresti, and E. Barthel, Confinement and flow dynamics in thin polymer films for nanoimprint lithography, Applied Physics Letters, vol.98, issue.1
DOI : 10.1063/1.3535614

URL : https://hal.archives-ouvertes.fr/hal-00553474

D. Degani and C. Gutfinger, A numerical solution of the leveling problem, Computers & Fluids, vol.4, issue.3-4
DOI : 10.1016/0045-7930(76)90004-9

H. S. Kheshgi and L. E. Scriven, The evolution of disturbances in horizontal films, Chemical Engineering Science, vol.43, issue.4
DOI : 10.1016/0009-2509(88)80074-5

R. Keunings and D. W. Bousfield, Analysis of surface tension driven leveling in viscoelastic films, Journal of Non-Newtonian Fluid Mechanics, vol.22, issue.2
DOI : 10.1016/0377-0257(87)80037-X

M. L. Henle and A. J. Levine, Capillary wave dynamics on supported viscoelastic films: Single and double layers, Physical Review E, vol.75, issue.2
DOI : 10.1103/PhysRevE.75.021604

P. Gilormini and H. Teyssèdre, On using the leveling of the free surface of a Newtonian fluid to measure viscosity and Navier slip length, Proceedings of the Royal Society A, vol.4, issue.9, p.20130457, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00872587

Y. Hirai, Y. Onishi, T. Tanabe, M. Shibata, T. Iwasaki et al., Pressure and resist thickness dependency of resist time evolutions profiles in nanoimprint lithography, Microelectronic Engineering, vol.85, issue.5-6
DOI : 10.1016/j.mee.2007.12.084

J. Montana, Nanoimpression de motifs axisymétriques sur film polymère mince pour la réalisation de lentillesàlentillesà l'´ echelle nanométrique, 2013.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens et al., Comparing glass and plastic refractive microlenses fabricated with different technologies, Journal of Optics A: Pure and Applied Optics, vol.8, issue.7, pp.4-4, 2006.
DOI : 10.1088/1464-4258/8/7/S18

R. Voelkel, J. Duparre, . Fr, P. Wippermann, A. Dannberg et al., Technology trends of microlens imprint lithography and wafer level cameras (WLC), Proceedings Conference on Micro-Optics, 2008.

H. D. Rowland, A. C. Sun, P. R. Schunk, and W. P. King, Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography, Journal of Micromechanics and Microengineering, vol.15, issue.12
DOI : 10.1088/0960-1317/15/12/025

R. L. Hoffman, A study of the advancing interface. I. Interface shape in liquid???gas systems, Journal of Colloid and Interface Science, vol.50, issue.2
DOI : 10.1016/0021-9797(75)90225-8

A. E. Love, On the small free vibrations and deformations of elastic shells, Philosophical Transactions of the Royal Society, issue.2

R. A. Bialecki, A. J. Kassab, and A. Fic, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis, International Journal for Numerical Methods in Engineering, 0774.

. Ladeuxì-eme-méthode-sera-donc-celle-présentée-dans-ce-guide, Dans unepremì ere partie sont présentées les différentes commandes permettant de réaliser lesélémentsleséléments géométriques Puis oné oné n u m ` e r e l e s r ` e g l e s d e b a s e q u i p e r m e t t e n t d ' a v o i r u n e g ´ e ométrie compatible avec le programme, la prise en compte de la tension de surface et du mouillage nécessitant d'orienter correctement les différentsdifférentséléments, untroisì eme temps la fonction de vérification du maillage est présentée

. Le-paramètre, d " est le paramètre de maille qui servira lorsd um a i l l a g ee tdétdé s i g n el a taille visée desélémentsdeséléments autour de ce point

?. L-i-n-e, ?C i r c l e ( k )={i, m, j} permet de créer un arc de cercle d'indice " k " et de centre " m " entre les noeuds " i " et " j " , ?S p l i n e ( k )={i, j, l, m} permet de créer une courbe spline d'indice " k " passant par les points d'indice " i ?L i n eL o o p ( k )={i, j, l, m} permet de créer un contour ferméferméà partir des courbes " i

. De-cette-façon, axe sont rangés dans le groupe 1, ceux de la surface libre dans dans le groupe 2, le substrat dans le groupe 3 et le matériau dans le groupe 4. Une fois que cette opération est finie, il faut actualiser la géométrieq u ie s tp r ? e t e

. De, du solide ne doit pas avoir d'angle supé r i e u r o u ´ e g a l ` a 9 0 ? , i l f a u t n ´ e c e s s a i r e ment rajouter un congé ou un chanfrein si c

. Une-fois-le-maillage-généré, il faut cliquer sur " save " pour l'enregistrer. Le fichier maillage exemple.msh est alors créé au même endroit que le fichier géométrie. On procède ensuitè a la vérification du maillage en utilisant la fonction " Read geometry " dans Matlab, Se placer dans le répertoire principal de NanoNem et exécuter cette fonction. Il faut alors lui donner le chemin du