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Abstract

Since the beginning of the 2000s, the raw performance of pessors stopped its expo-
nential increase. The modern graphic processing units (GPUsave been designed as array
of hundreds or thousands of compute units. The GPUsO computgaity quickly leads
them to be diverted from their original target to be used as aelerators for general pur-
pose computation. However programming a GPU e!ciently to pefiorm other computations
than 3D rendering remains challenging.

The current jungle in the hardware ecosystem is mirrored by thsoftware world, with
more and more programming models, new languages; éient APIs, etc. But no one-pts-
all solution has emerged.

This thesis proposes a compiler-based solution to partialgnswer the three BO prop-
erties: Performance, Portability, and Programmability. Thegoal is to transform auto-
matically a sequential program into an equivalent program ecelerated with a GPU. A
prototype, Par4All, is implemented and validated with humeous experiences. The pro-
grammability and portability are enforced by debnition, ad the performance may not be
as good as what can be obtained by an expert programmer, butlstias been measured
excellent for a wide range of kernels and applications.

A survey of the GPU architectures and the trends in the languags and framework
design is presented. The data movement between the host andthccelerator is managed
without involving the developer. An algorithm is proposed taptimize the communication
by sending data to the GPU as early as possible and keeping theon the GPU as long
as they are not required by the host. Loop transformations thniques for kernel code
generation are involved, and even well-known ones have to béapated to match specibc
GPU constraints. They are combined in a coherent and Rexible wand dynamically
scheduled within the compilation process of an interprocecal compiler. Some preliminary
work is presented about the extension of the approach towardultiple GPUs.






RZsumZ

Depuis le dZbut des annZes 2000, la performance brute desrsiwles processeurs a
cessZ son augmentation exponentielle. Les circuits gragés (GPUs) modernes ont ZtZ
coneus comme des circuits composZs dOune vZritable gréleldsieurs centaines voir mil-
liers dOunitZs de calcul. Leur capacitZ de calcul les a arsénsfre rapidement dZtournZs
de leur fonction premiere dOalchage pour stre exploitZs come accZlZrateurs de calculs
gZnZralistes. Toutefois programmer un GPU elcacement en dets du rendu de scenes 3D
reste un dZp.

La jungle qui regne dans I0Zcosysteme du matZriel se reResms le monde du logiciel,
avec de plus en plus de modeles de programmation, langages API, sans laisser Zmerger
de solution universelle.

Cette these propose une solution de compilation pour rZporelpartiellement aux trois
@ O propriZtZs : Performance, PortabilitZ, et Programmabiit Le but est de transformer
automatiquement un programme sZquentiel en un programmeufiglent accZIZrZ ~ 10aide
dOun GPU. Un prototype, Par4All, est implZmentZ et validZ pde nombreuses expZriences.
La programmabilitZ et la portabilitZ sont assurZes par dZition, et si la performance nOest
pas toujours au niveau de ce quOobtiendrait un dZveloppexpert, elle reste excellente sur
une large gamme de noyaux et dOapplications.

Une Ztude des architectures des GPUs et les tendances dansdaception des lan-
gages et cadres de programmation est prZsentZe. Le placdrdes donnZes entre IOh™te et
IOaccZIZrateur est rZalisZ sans impliquer le dZveloppéaralgorithme dOoptimisation des
communications est proposZ pour envoyer les donnZes sur RUGHes que possible et les y
conserver aussi longtemps quQelle ne sont pas requiseshiMte. Des techniques de trans-
formations de boucles pour la gZnZration de code noyau sotitisZes, et meme certaines
connues et ZprouvZes doivent stre adaptZes aux contrainfessZes par les GPUs. Elles sont
assemblZes de maniere cohZrente, et ordonnancZes danstld@on compilateur interprocZ-
dural. Des travaux prZliminaires sont prZsentZs au sujet tfeextension de IOapproche pour
cibler de multiples GPUs.
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2 Chapter 1. Introduction

1.1 The Prophecy

Once upon a time, software programmers were merrily writingheir code with the
simple von Neumann architecture in mind (see in Figurg.1). Performance was important
of course, but they were also protected by a godsend that lehém launch a project
requiring computing power that was not yet available. Indes, the time-to-market period
was for sure the scene of huge improvement in hardware perfance. The prophecy that
every programmer was relying on is known as MooreOs law. It is ownly quoted as
(see Prinivasan 2012 Manegold 2002 Yang & Chang 2003

the CPU clock speed will double every eighteen months.

This short and simple sentence has been immersed in the mind génerations of pro-
grammers for decades. Everything was going along Pne until adof ill omen came and
stated

it cannot continue forever. The nature of exponentials is thtayou push
them out and eventually disaster happens.

He was not the brst one to challenge the prophecy, but this tienit was Gordon Moore
himself [Dubash 200}, the author of the prophecy. It was terrible for the programmers,
and most of them locked themselves into denial. Little by lite, the idea that the clock
speed does not continue to grow as before made its way. As naatbf fact, the original
prophecy could probably ranked close second on the Top 1G fisr misquoted statements,
right behind OLuke, | am your father.O Actually Moore origilia stated [Moore 1965 that

the complexity for minimum component costs has increased at rate of
roughly a factor of two per year. . . . Certainly over the short ¢rm this rate
can be expected to continue, if not to increase. Over the loegterm, the rate
of increase is a bit more uncertain, although there is no reas to believe it
will not remain nearly constant for at least ten years. That meas by 1975, the
number of components per integrated circuit for minimum caswill be 65,000.
| believe that such a large circuit can be built on a single wef.

The forty years of easy life ended, as shown in Figufie2, and programmers were about to
face a new challenge. In fact, hardware designers, facing tirequency wall, jumped right
into the parallel world.* The processor frequency was limited and they bypassed thisug

1. Parallelism has been already present in single-core pressors since 1989 in the i86&ery Long
Instruction Word (VLIW) processor, and later with the Matrix Math eXtension (MMX) instruction set
in Pentium. Since then, programmers were olered the possiblities to express Pne grained parallelism in
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Figure 1.1: von Neumann architecture

by aggregating multiple processors per chip, thus increasi the peak performance of their
chips. The multicore era had started.

Programmers discovered a new universe: the execution timdgleeir programs were no
longer reduced when a new processor was released. In this nesdvthey had to rethink
their algorithms to make use of multiple processors. As if ivere not complicated enough,
some hardware designers, who probably embraced the dark smfethe force, started to
introduce some more exotic pieces of hardware. These hardevgilatforms were highly
parallel but very tricky to target. The white knight programmer taking up the challenge
had not only to rethink algorithms, but also to manage some ocoplex memory hierarchies
for which hardware designers left the management on behalftbe programmer.

Welcome to the heterogeneous computing univetse

1.2 Motivation

OYour free lunch will soon be over.O Herb Sutter started hi®2@rticle [Sutter 2009
with this declaration to software developers. The limits of #quency scaling now forbid
automatic performance increase for sequential programs. @&Huture is heterogeneous,
from the embedded world of smartphones to the largest superaputers. Sutter wrote a
sequel to this article Butter 2017 in which he states quite accurately: ONow welcome to
the hardware jungle.O Figuré.3illustrates this evolution.

the instruction set, with the AMD K6-2 with 3DNo w! vector instructions [Bush & Newman 1999 and
Streaming SIMD Extension (SSE) since Intel Pentium 11 [ Intel 2008].
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Figure 1.2: More than three decades of prosperity, the miscaieal MooreOs lawspurce[Sut-
ter 2009, updated 2009, reprinted here with the kind permission of #hauthor).

In the embedded system world, current high-end smartphonese based on a multi-
core processor, and they include vector processing unitsdaalso aGraphics Processing
Unit (GPU) . For instance the A5 processor, used in the Apple iPhone 4S, asdual-
core ARM Cortex-A9 MPCore Central Processing Unit (CPU)together with a dual-core
GPU [AnandTech 201]. The same processor is used in the Apple iPad 2. The lates
Tegra 3 processor from Nvidia is a quad-core ARM Cortex-A9 MPCorand a twelve-
core GPU [Nvidia 2012. In both case, each core includes a 128-bit wide NEON vectol
unit [Wikipedia 20124. The next Tegra generation will supportGeneral-Purpose Process-
ing on Graphics Processing Units (GPGPUromputing usingOpen Computing Language
(OpenCL).

In the supercomputing world, parallelism has been preserirfdecades now. Vector ma-
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Figure 1.3: The free lunch is over. Now welcome to the hardwajengle (source[Sut-
ter 2011], reprinted here with the kind permission of the author).

chines have been replaced by clusters of multicore multigtessor systems in the Top500
list [ TOP500 Supercomputing Sites 20]2The new trend is now adding hardware accelera-
tors to these systems, mostly usin@GPUs, adding a new layer of complexity. The June 2011
Top500 list includes threeGPU-based systems in the top bve, but there are also P@U-
based systems in the Green500 listgng & Cameron 200famong the ten brst entries [he
Green500 2011 The Nvidia Tesla K20 basedTitan supercomputer trusts currently the
last November 2012 listJOP500 Supercomputing Sites 20]2and it is interesting to note
that Intel with its Xeon Phi coprocessor enters at the 7th rank

One cannot bnd a single-cor®ersonal Computer (PC)nowadays. Dual-core is the
standard at the entry level, quad-core in the mid-end, and iturrently goes up to six-core
in the high end. Required by the gaming industryGPUs shipped with PCs are more and
more powerful and are used in a growing set of applications hoed their primary usage:
3D rendering and graphic display.

The concern that arises now, as these heterogeneous platforare widely available,
can be summarized as the threP properties [Adve 1993 Benkneret al. 2011, Adve 2017
shown in Figurel.4

¥ Performance: the program makes use of the peak capability dfet hardware.
¥ Portability: the code written by the programmer runs on a lar@ range of platforms.

¥ Programmability: the programmer write his algorithms quicky.

A fourth P can now be added: Power. Not only because our cell phones haweall
batteries, but also because in 2007 each of the ten biggespstcomputers consumed as
much energy as a city of forty thousand peoplé-fng & Cameron 200}, People are looking
for software that is power awareHisu & Feng 200}, using trade-o0"s between performance
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Figure 1.4: The threeP properties.

and power consumption.

Solutions to address these properties have been sought foloag time, since clusters
of computers entered the market. The programming complexitis increased when very
specialized hardware accelerators are added in these maelsi Many types of resources
must be connected, and it becomes too much of a burden for thewloper.

Performance has improved with compilers, allowing new langges to be competitive
with the king C language, which is still the reference when close control dfet hardware
is necessary.

On the portability side, it is hardly possible to maintain a huge C code making use of
a wide range of heterogeneous devices. A usual practice isrthe restrict to a common
subset of hardware features, limiting the practical perfenance one can expect with respect
to the theoretical peak performance depending on the appditon.

Finally, the programmability has been largely addressed bfpplication Programming
Interface (API) providers and language designers. For instance, UPCHC Consor-
tium 2005], Co-Array Fortran [ISO 201(Q, or Titanium [Yelick et al. 1999 exploit the
Partitioned Global Address Space (PGASModel. The global memory address space is
logically partitioned and physically distributed among pocessors(oarfaet al. 2005. The
locality of references is then exploited by the runtime syst with strategies like the owner



1.3. Outline 7

computes rule. The purpose of these languages is to let the grammer ignore the remote
memory accesses, which leads to simpler code. This simple Raidel has then evolved
to Asynchronous Partitioned Global Address Space (APGASWith the X10 [Ebcio#lu
et al. 2004 or the Chapel Chamberlain et al. 2007 languages. Concurrency has been
made explicit and the programmers express asynchronous stsactions on multiple levels.
While the programmers have to change their usual approach &xpress their algorithms,
these languages provide high-level abstractions of arabiture in a layered manner. How-
ever, these languages are new and not widely adopted by depels. Criticisms about
performance has been expressed: the code has to be optimiaely with a good knowl-
edge of the target architecturefhanget al. 20114.

The recent OpenCL standard [Khronos OpenCL Working Group 2008 Khronos
OpenCL Working Group 201] has been developed to program accelerators. It provides an
abstraction of the hardware, based on aAPI to manage the device, and a language derived
from a subset of C to writekernels i.e., functions to be executed on an accelerator. This
standard provides some portability across vendors and pn@gnmability at the C level.
However, performance portability is di cult to achieve Komatsu et al. 201(. Another ap-
proach is directive-based languages, following the well-¢swvn OpenMP standard DpenMP
Architecture Review Board 1997 OpenMP Architecture Review Board 201]Lfor shared
memory systems. For example, some sets of directives likgbrid Multicore Parallel Pro-
gramming (HMPP) [Wikipedia 20124, PGI Accelerator [Wolfe 201(Q, or more recently
OpenACC [OpenACC Consortium 201} provide an easier way to program accelerators,
while preserving code portability.

1.3 Outline

The goal of this dissertation is to explore the potential of aopilers to provide a solution
to the three Ps: Performance, Portability, and Programmability. The soltion considered
is the automatic code transformation of plain C or Fortran sguential code to accelerator-
enabled equivalent code. The main target machines are accaters like GPUs. massively
parallel, with embedded memories in the GB range. A source-8murce approach takes
advantage of theCompute Unibped Device Architecture (CUDA)and the standardOpenCL
APIs. Programmability and portability are enforced by the fully automatic approach.
Numerous measurements are provided to show that performanis not sacribced.

The approach is pragmatic and the ideas and schemes presented implemented in a
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new automatic source-to-source compiler, Par4AIS[LKAN 2010 (perso], and validated
using benchmarks. The main goal is to provide a full end-to-drncompilation chain, from
the sequential code to theGPU-enabled binary, good enough as a prototype for an indus-
trial solution. Therefore, instead of being deeply focusedha limited part of the problem,
this work contributes to di"erent aspects of the problem and tiempts to explore and solve
all the issues raised when building such a full compilation am.

This compiler approach is useful for legacy applications antew developments as well.
A compiler lowers the entry cost but also the exit cost when a meplatform has to be
targeted. Debugging and maintenance are easier since theleags written with a sequential
semantics that is suitable for most programmers. When the owmiled code is not executing
fast enough, some specibc costly parts of the code, tia spots can be manually optimized
for a particular architecture: a source-to-source compilemakes manual optimizations
possible on the code after processing by the heterogeneoompiler.

The choice of the C and Fortran languages is driven by their baal use in the high-
performance community. C is also a common choice for otherais that generate code
from a high-level representation or a scripting languagen lorder to illustrate the interest
of this approach, examples of Scilalpilab Consortium 200Bcode are included. They are
automatically converted to sequential C with a Scilab compér, and then transformed to
exploit accelerators using the di"erent methods presented ithis dissertation.

| present the history of GPUs and the emergence oPGPU in Chapter 2. The hard-
ware evolution is mirrored by the associated programming lgoages that all failed to
match the three Ps criteria. | introduce he architectures ofGPUs and their evolutions
to show the constraints that should be met by a compiler to adhve performance: dis-
tributed memory, memory access patterns oEPUs, bne grained parallelism, and support
for atomic operations.

In Chapter 3, | explore solutions to the automatic distribution of the dda onto the
CPU and accelerator memories. The convex array region abstragpresentation is prst
presented. A simple process to generate communications &aon array regions is then
explained. | propose a new interprocedural optimizing schee, and | validate it using
experiments. The algorithm relies on a new static analysi¥ernel Data Mapping and
minimizes the communications by preserving data on th&PU memory and avoiding re-
dundant communications.

| identify a collection of program and loop transformationgo isolate and optimizeGPU
codes in Chapter. | propose a Rexible mapping of parallel loop nests on the dient layers
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of GPUs. | designed and implemented a transformation to substituténduction variables
and enable further parallelization. | present two di"erent bop parallelization algorithms
and the consequences on code generation and performance. odilred them to handle
reduction schemes and introducedCoarse Grained with Reductions(CGR). | designed
and implemented a new transformation to benebt from hardwaratomic operations when
parallelizing loop nests with reductions. | designed and inlgmented a new loop fusion
scheme, and | proposed heuristics to drive loop fusion to bhé GPUsO constraints. |
present Three di"erent scalarization schemes. | modibed theisting transformation to
provide better performance onGPUs. | also present the impact of loop unrolling and
array linearization. | validated all these transformatiors with measurements.

| present the whole compilation process in Chaptéds, from the sequential source code to
the bnal binary and the runtime associated at execution. TheeRibility of a programmable
pass manager is used to produce the compilation chain. Inpggocedural analyses are used,
and they require processing the source code of all functioinsthe call graph. It is an issue
for external libraries. | debPned a dynamic solution to feeche compiler on demand during
the process.

| explore perspectives about extensions for multipl&PUs in Chapter 6. | study two
di"erent schemes to extract parallelism. | implemented a sipie task parallelism extraction,
and modibed the existing symbolic tiling transformation. Tle StarPU runtime library is
used to exploit task parallelism and schedule tasks on myite GPUs.

| present all experimental results in Chapter7 to validate the solutions debned in the
previous chapters. | extracted twenty test cases from Polgmch and Rodinia test suites.
| also used a real numericah-body simulation to show that speedups can be obtained
automatically on application larger than the kernel benchmarks. Several targetGPU
boards from Nvidia andAdvanced Micro Devices (AMD)are used to show how the impact
of program transformations on performance depends on artggtures.

Due to the variety of subjects tackled in this work, the presgation of the related works
is included in each chapter.

Finally, to pay a tribute to the environment in which this work takes place, a summary
in French is provided for each chapter at the end of the thesis
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The reign of the classicalCentral Processing Unit (CPU)is no longer hegemonic and
the computing world is now heterogeneous. Th@raphics Processing Units (GPUshave
been candidate asCPUs co-processors for more than a decade now. Other architectsire
were also developed like the Intel Larabeé&é¢ileret al. 2009, which never really reached
the market asGPU and was released recently as a co-processor under the namenXehi*
by the end of 2012, and the IBM and Sony CelHofstee 200F which was used in the Sony
PlayStation 3. However, although many researchers have td¢o map € cient algorithms
on its complex architecture, it was discontinued. This failte resulted from its di cult
programming and memory models, especially facing the emenge of alternatives in the
industry: the GPU manufacturers entered the general computing market.

Dedicated graphic hardware units o"er, generally via their dvers, access to a standard
Application Programming Interface (API) such as OpenGL {hronos OpenGL Working
Group 1994 Khronos OpenGL Working Group 201P and DirectX [Microsoft 1995 Mi-
crosoft 2013. TheseAPIs are specibc to graphic processing, the main application damn
for this kind of hardware. Graphic processing makes use of myavector operations, and
GPUs can multiply a vector by a scalar in one operation. This capaliy has been hijacked
from graphic processing toward general-purpose computaitis.

This chapter brst presents in Sectior.1 the history of the general-purpose comput-
ing using GPUs, then Section2.2 gives insights about the evolution of the programming
model and the di"erent initiatives taken to pave the way toGeneral-Purpose Processing
on Graphics Processing Units (GPGPU)The OpenCL standard is introduced with more
details in Section2.3. The contemporary GPU architectures are presented in Sectiof.4.
Finally I list the many programming challenges these archéictures o"er to programmers
and compiler designers.

2.1 History

The use of graphic hardware for general-purpose computingshlaeen a research domain
for more than twenty years. Harris et al. proposed-arris et al. 2007 a history starting with
a machine like the Ikonas fngland 197§, the Pixel Machine Potmesil & Ho"ert 1989,
and Pixel-Planes 5 [Rhoadeset al. 1997. In 2000, Trendall and Stewart Jrendall &
Stewart 200( gave an overview of the past experiments with graphics hardwe. Lengyel

1. It was also previously known under the codenaméviany Integrated Core (MIC), Knights Ferry, or
Knight Corner.
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et al. [Lengyel et al. 199( performed real-time robot motion planning using rastering
capabilities of graphics hardware. BohnEohn 199§ interprets a rectangle of pixels as a
four-dimensional vector function, to do computation on a Kbonen feature map. Ho" et
al. [Ho" et al. 1999 describe how to compute Voronoi diagrams usingbu'ers. Kedem et
al. [Kedem & Ishihara 1999 use the PixelFlow SIMD graphics computerdyleset al. 1997
to decrypt Unix passwords. Finally some raytracing was pesfmed on GPU in [Carr
et al. 20097 and [Purcell et al. 2003. A survey of GPGPU computation can be found
in [Owenset al. 2007.

Until 2007, the GPUs exposed a graphic pipeline through the OpenGRPI. All the
ZIZganceof this research rested in the mapping of general mathematiccomputations
on this pipeline [lrendall & Stewart 2000. A key limitation was that, at that time,
GPU hardware o"ered only single-precision 3oating point unitsalthough double precision
Boating point is often required for engineering and most sitibc simulations.

GPUs have spread during the last decades, with an excellent coséformance ratio
that led to a trend in experimental research to use these spalized pieces of hardware. This
trend was mirrored brst with the evolution of the programmingnterface. Both OpenGL
and DirectX introduced shaders (see Sectiop.2.2 in 2001, and thus added programma-
bility and Rexibility to the graphic pipeline. However, ushg one of the graphicAPIs was
still mandatory and therefore General-Purpose Processing on Graphics Processing Units
(GPGPU) was even more challenging than it is currently.

In 2003 Buck et al. Buck et al. 2004 implemented a subset of the Brook streaming
language to programGPUs. This new language, called BrookGPU, does not expose at all
the graphic pipeline. The code is compiled toward DirectX an@penGL. BrookGPU is
used for instance in the Folding@home projed®finde lab Stanford University 2012 More
insight about Brook and BrookGPU is given in Sectior2.2.3

lan Buck, who designed Brook and BrookGPU, has joined Nvidia tiesign theCompute
Unibed Device Architecture (CUDA)language, which shares similarities with BrookGPU.
However, while BrookGPU is genericCUDA API is specibc to Nvidia and its then new
scalar GPU architecture introduced with CUDA is presented in Sectior2.4.5 CUDA is
an API and a language to progranGPUs more easily. The graphic pipeline does not exist
anymore as such and the architecture is unibped and exposednaglti- Single Instruction
stream, Multiple Data streams (SIMD)like processors.CUDA is introduced with more
details in Section2.2.4

From 2004 to 2012, the evolution oG6PUsO Roating point performance increased much
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Figure 2.1: Performance evolution for single-precision &ting point computation, for both
Nvidia GPUs and Intel CPUs between 2003 and 2012, computed frorandorsO datasheets.

faster than the CPUsO performance, as shown in FiguPel. The programmability o"ered
by CUDA, combined with the GPU performance advantage, has made thePGPU more
and more popular for scientibc computing during the past bwgears.

The increased interest inGPGPU attracted more attention and led to the standard-
ization of a dedicatedAPI and language to program accelerators: the Open Computing
Language known a$OpenCL (see Sectior2.3).

Others programming models are emerging, such as directivased languages. These let
the programmers write portable, maintainable, and hopefuile! cient code. Pragma-like
directives are added to a sequential code to tell the compilehich pieces of code should be
executed on accelerator. This method is less intrusive but marovide limited performance
currently. Several sets of directives are presented in Siect 2.2.10

2.2 Languages, Frameworks, and Programming Models

The programming language history includes many languagesaieworks, and pro-
gramming models that have been designed to program accetera. Some were designed
for the initial purpose of the accelerator, i.e., graphic eoputing, and were later diverted to-
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ward general-purpose computation. Others were designed eety from scratch to address
GPGPU needs.

This section surveys the major contributions, approachesnd paradigms involved dur-
ing the last decade to program hardware accelerators in geakpurpose computations.

2.2.1 Open Graphics Library (OpenGL)

Open Graphics Library (OpenGL)is a specibcation for a multiplatformAPI that was
developed in 1992 by Silicon Graphics Inc. It is used to pragmn software that make use
of 3D or 2D graphic processing and provides an abstraction thfe di"erent graphic units,
hiding the complexities of interfacing with di"erent 3D accetrators. OpenGL manipulates
objects such as points, lines and polygons, and converts thento pixels via a graphics
pipeline, parametrized with theOpenGL state machine.

OpenGL is a proceduralAPI containing low-level primitives that must be used by the
programmer to render a sceneOpenGL was designed upon a state machine that mimics
the graphic hardwares available at that time. The programmemust have a good knowledge
of the graphics pipeline.

OpenGL commands mostly issue objects (points, lines and polygon®) the graph-
ics pipeline, or conbgure the pipeline stages that procedsese objects. Basically, each
stage of the pipeline performs a bxed function and is conbghte only within tight limits.
But since OpenGL 2.0 [Khronos OpenGL Working Group 200} and the introduction of
shaders and theDpenGL Shading Language (GLSL)anguage, several stages are now fully
programmable.

In august 2012, the version 4.3 is announced with a new featuréhe possibility of
executing compute shadersuch as thesaxpy example shown in Figure2.2 without using
the full OpenGL state machine. The shader program is executed by every singfeeads
in parallel. Then conducting the same operation over a vectowhich usually exhibits a
loop, involves here an implicit iteration space. Figur@.2 illustrates this execution model
with one thread per iteration. An classicCPU version ofsaxpy is shown in Figure2.4a

2.2.2 Shaders

Shaders are small programs used in graphics processing temgpe at a specibc stage of
the pipeline. They are used to describe light absorption and"dsion, the textures to apply,
reections and refractions, shadowing, moving primitive®r some other post-processing
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#version 430
/I Thread are grouped by "workgroups" of 256
layout(local_size_x=256) in;

/I Operate on two buffers and using a global variable
buffer xBuffer { float x|[]; };

buffer yBuffer { float yI[l; }

uniform float alpha;

/I The "main()" is executed by every single thread
void main() {

/I "i" gets the unique thread id

int i = int (gl_GloballnvocationlD.x);

/I derive size from buffer bound

if (i < x.length())

yli] = alpha*x[i] + y[il;

}

Figure 2.2: Example of asaxpy OpenGL 4.4 compute shader (adapted fronK[lgard 2017).

e"ects. The rendering process makes the shaders perfect caadies for parallel execution

on vector graphic processors, relieving th€EPU and producing the result faster. Three
types of shaders exist:

¥ Vertex shaders are executed on each vertex given to ti@&PU. The purpose is to
transform each 3D position in the virtual space into the 2D cordinates on the tar-
get display, and a depth value for the Z-bu"er. The vertex shade can manipulate
properties like position, color, and texture coordinateshut cannot spawn new ver-
tices. The vertex shader output is transferred to the next gghic pipeline stage, a
geometry shader if any, or directly to the rasterizer.

¥ Geometry shaders are able to add or remove vertices of a lat#iand their output is
sent to the rasterizer for the rendering of the Pnal graphicigture.

¥ Pixel shaders, also known as fragment shaders, compute theocadf each pixel in-
dividually. The input comes from the rasterizer, which blls te polygons sent in the
pipeline. Pixel shaders are typically used for lighting andssociated e"ects like bump
mapping and color tone adjustment. Pixel shaders are often lesd many times per
pixel on the display, one for each object, even if it is hiddenThe Z-bu"er is later
used to sort objects and display only visible parts.
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#version 120
#extension GL_EXT_geometry_shader4 : enable

void main() {
for (int i = 0; i < gl_Verticesln; ++i) {
gl_FrontColor = gl _FrontColorin]i];
gl_Position = gl_PositionInJi];
EmitVertex();

}
}

Figure 2.3: Example of a trivialpass-throughGLSL geometry shader, which emits a vertex
directly for each input vertex (sourcewikipedia [Wikipedia 20121).

Shaders are Rexible and!ecient. Complicated surfaces can be rendered from a sim-
ple geometry. For instance a shader can be used to generateiladt Roor from a plane
description.

Initially languages close to assembly, shaders became megpular in 2001 with the
dePnition of higher level languages and their adoption astersions inOpenGL and Di-
rectX. Shaders made it easier to us€&PUs for a wider kind of algorithms. They are close
to C and implicitly run in a parallel way on the GPU, but if they add Rexibility and pro-
grammability to the graphic pipeline for general-purposeamputation, they do not provide
the programmer with a way to abstract the graphicAPIs. Figure 2.3 contains an example
of a simplepass-throughGLSL geometry shader.

2.2.3 Brook and BrookGPU

Brook is a direct successor of the Stanford Merrimac projedDflly et al. 2003. The
goal of this project was to take advantage of a new compute melccalled streaming This
model o"ers two main advantages over classical languages:

¥ Data parallelism: Brook lets the programmer specify how togply the same operation
to di"erent pieces of array elements.

¥ Arithmetic intensity: the programmer is encouraged to exate operations on data
that minimize communications and maximize local computatin.

The Merrimac project aimed at o"ering better performance than wtributed mem-
ory [Project 2003, but using the same technology. A language is designed tdkéaparallel
processing concepts into a familiar and!ecient language, using the streaming model.
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kernel void
saxpy (float a,

float4 x<>,

float4 y<>,

out floatd result<>) {
result = a*x + vy;

}
void main (void) {
void main (void) { float a;
float a; float4 X[100],Y[100],Result[100];
float4 X[100], floatd x<100>,y<100>,result<100>;
Y[100], ... initialize a, X, Y ...
Result[100]; streamRead(x, X);
/lcopy data from mem to stream
/l ... initialize a, b, and c. streamRead(y, Y);
/[lexecute kernel on all elements
for (i=0; 1<100; i++) { saxpy(a, x, y, result);
Result[i] = a*X[i]+Y]i]; /Icopy data from stream to mem
} streamWrite(result, Result);
} }
(a) Classical C code. (b) Using Brook streaming kernel.

Figure 2.4: Example of a simplesaxpy using BrookGPU (taken from Buck et al. 2004).

Brook is designed as a simple extension of ANSI C.

Until 2003, the only way to benebt from graphics hardware rearces was the general
APIs OpenGL and DirectX, and the shader programming. BrookGPUHuck et al. 2004
implements a subset from the Brook specibcatio®(ick 2003 to target GPUs. It allows
compiling the same code in di"erent target language)penGL and DirectX of course,
but also Nvidia Cg shaders and later the generaligtdvanced Micro Devices (AMD) Close
To Metal (CTM) API . BrookGPU was used for instance in thd-olding@homeproject.
Figure 2.4 illustrates a simple SAXPY operation using BrookGPU.

2.2.4 Nvidia Compute Unibed Device Architecture ( CUDA )

Nvidia hired lan Buck, the main author of Brook and BrookGPU,to design CUDA.
Thus there are similarities betweerCUDA and BrookGPU. However, BrookGPU is generic
and has di"erent back ends whil&cCUDA exhibits features specibc to Nvidi&sPUs. CUDA
o"ers features and low-level tuning unavailable in a portabland generic language such as
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BrookGPU. CUDA removes also many limitations found in Brook, such as the memy
model, which is quite rigid in Brook. Indeed it requires the psggrammers to map their
algorithm around a fairly limited memory access patternguck 2009.

CUDA technology was published by Nvidia in February 2007. It is ae$ of components
shipped by Nvidia to program theirGPUs:. a driver, a runtime, libraries (BLAS, FFT, ...),
a language based on a extension to a C++ subset, and &Pl that exhibits an abstraction
model for the architecture.

The code that runs on theGPU is written in a C-like form and allows direct random
accesses to th&sPU memory. The CUDA API is high level and abstracts the hardware.
However, to obtain a good percentage of the peak performantke code must be tuned
with a good knowledge of the underlying architecture. CUDA allows the programmers
to bypass the compiler and to write directly code irParallel Thread eXecution (PTX), a
pseudo-assembsSIMD language that exhibits an inPnite number of registers. ThETX
is Just In Time (JIT) compiled by the CUDA driver for a given GPU using its own
Instruction Set Architecture (ISA). This allows Nvidia to evolve their architecture while
being backward compatible, thanks to theJIT compilation capability of the driver.

CUDA has many advantages over classt6PGPU schemes using the OpenGRPI for
instance:

¥ Use of the C language (with extensions) instead of the clasdigraphic API: a kernel
is close to a function call.

¥ Possibility for sparse memory writes: the code can access g address in memory.
¥ Threads can share up to 48 kB of local memory, that is nearly aast as registers.
¥ Memory transfers between host an&PU are faster using page-locked memory.

¥ The instruction set is more extensive, for instance integemnd bitwise operations and
double precision computation are supported.

However,CUDA exhibits also some limits when compared to classzPU programming:

¥ Texture rendering is supported in a limited way.
¥ Only the most recent architectures support function calls.
¥ The IEEE 754 Roating point standard is not fully implemented.

¥ Threads execute by groups of thirty-two in aSIMD fashion, such a group is denoted
warp by Nvidia. Branches do not impact performance signibcantlgs long as all
thirty-two threadsin a group take the same path.



20 Chapter 2. General-Purpose Processing on GPU : History and C ontext

¥ GPUs compatible with CUDA are exclusively produced by Nvidia.

Nvidia has shipped dedicated boards fae6PGPU: the Tesla series. Thes&PUs boards
do not always have any display port and therefore can be usedly for intensive compute
processing. Usually Tesla boards provide dedicated feadisrsuch agrror-correcting code
(ECC) memory, larger memory sizes, and higher double precisiongeperformances.

2.2.5 AMD Accelerated Parallel Processing, FireStream

FireStream is the AMD GPGPU solution. The name refers to both the hardware and
the software shipped byAMD . The hardware was released in 2006 under the narA&D
Stream Processor. AMD claims that it was the industryOs brst commercially availéd
hardware stream processing solutiom\flvanced Micro Devices 2006 AMD introduced at
the same time their ownGPGPU API: Close To Metal (CTM). This API is very close to
the hardware as it gives developers direct access to the natinstruction set and memory,
but the trade-o0" that arises when choosing a very low levedPl and language is the usual
one: it raises the e"ort required from the programmer AMD soon after proposed a new
solution called Stream ComputingSoftware Development Kit (SDK). It is a complete SDK
and a compiler for Brook+, a high-level language based on Brk (see Section2.2.3.
At the same time they renamedCTM as Compute Abstraction Layer (CAL) 2, which is
the target API for Brook+. CAL provides the API to control the device (open, close,
managing context, transfer data from or to the device, . . .)It comes with the language
CAL Intermediate Language (IL), an intermediate assembly-like language fé&xMD GPUs.
IL is then compiled for the targetISA using the CAL API .

The latest version of AMD Os technology is now calledccelerated Parallel Processing
(APP) and is based uporOpen Computing Language (OpenCL)The support for Brook+
and CTM has been discontinued, andCAL API is now deprecated in favor oOpenCL
The IL language is still the target language for th®©penCL compiler.

The FireStream GPU series, just as the Nvidia Tesla series, does not always pow
any graphic output, and is intended to be a purésGPGPU solution.

2.2.6 Open Computing Language (OpenCL)

OpenCL is a software stack designed to write programs portable overwide range
of platforms like CPUs, GPUs, Field Programmable Gate Array (FPGA) or other em-

2. AMD CAL is unrelated to the eponymous language from Berkeley
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bedded hardwares. It includes a language, based on the C99nstard, to write code for
heterogeneous hardwares. It debPnes @&l to manage the dedicated hardware from the
host. OpenCL was proposed by Apple to the Khronos Group in 2008 to unify theavious
frameworks in one standard, which was debned later in the sampear [Khronos OpenCL
Working Group 2009. | study OpenCL in detail in Section 2.3

2.2.7 Microsoft DirectCompute

Microsoft proposes its own dedicatedsPGPU solution with DirectCompute [Mi-
crosoft 201(. It was released in fall 2009 as part of DirectX 11. The DirectQopute
API leverage theHigh Level Shader Language (HLSLjsame as Nvidia Cg) and provides
a solution that bypasses the classical graphic pipeline iavor of a direct access lik€UDA
or OpenCL Programmers familiar with HLSL/Cg are then able to transfer bu"ers directly
to or from the GPU, and set shader-like kernels for processing these bu“ers.géie 2.5
shows an example of such a shader. The input matricdsA and d_B are multiplied into
d_G using a straightforward block matrix multiplication algorithm. The three matrices are
size" size. The mnfunction is executed bysize" size number of threads. The scheduler is
instructed to group the threads by workgroups ofl6" 16 number of threads. This virtual
organization is mapped on the hardware by ensuring that allhteads in a virtual work-
group share some resources, at least till the point where thean be synchronized. The
groupshared declaration oflocal_a and local_b is linked to this thread organization, these
arrays are shared by all the threads in a virtual workgroup. Thllocal_a andlocal_b array
holds the current block of the input matrices during the comptation. They are loaded by
the threads among a group, and a synchronization enforce tithey are fully loaded before
each thread perform the multiplication on the blocks usinghtese shared arrays. The shared
arrays can be seen as a cache memory that is explicitly mandd®y the programmer.

2.2.8 C++ Accelerated Massive Parallelism (AMP)

Microsoft C++ Accelerated Massive Parallelism (AMP)is an open specibcation\ji-
crosoft Corporation 2012 for enabling data parallelism directly in C++. It was Prst
released in January 2012. It is composed of a C++ language emrtgon, a compiler, a
runtime, and a programming model.

The C++ AMP programming model supports multidimensional arrays, indéng, mem-
ory transfer, and tiling. Some language extensions contrtie ways data are moved from



22  Chapter 2. General-Purpose Processing on GPU : History and C ontext

cbuffer CB : register (b0)
{

int size;

h

StructuredBuffer< float > d_A : register (t0);
StructuredBuffer< float > d_B : register (tl);
RWStructuredBuffer< float > d_C : register (u0);

groupshared float local_a[16][16];
groupshared float local_b[16][16];

[numthreads(16, 16, 1)]
void mm(uint3 DTid : SV_DispatchThreadlD, uint3 GTid : SV_Group ThreadID)

{
int  row GTid.y;

int col = GTid.x;
float sum = 0.0f;
for (int i = 0; i < size; i += 16) {
local_a[row][col] = d_A[DTid.y * size + i + col];
local_b[row][col] = d_B[(i + row) * size + DTid.x];
AllMemoryBarrierWithGroupSync();

for (int k = 0; k < 16; k++) {

sum += local_a[row][k] * local_b[k][col];

}
AllMemoryBarrierWithGroupSync();

}
d_C[DTid.y * size + DTid.x] = sum;

}

Figure 2.5: Example of a Cg/HLSL shader for DirectCompute (sooe Mi-
crosoft [Deitz 2017).

the CPU to the GPU and back.

Unlike Direct Compute presented in Sectior?.2.7, there is no separation between the
code running on the accelerator and the host code. O$oadingcamputation involves writ-
ing a kernel using a lambda function and a dedicated constrign to express the iteration
set like parallel_for_each . Figure 2.6 contains an example of C++ code before and after
its conversion to C++ AMP . This example is a simple sum of two arrays. Theoncurrency
namespace allows the use 8iMP specibc constructions and functions, such agay_view
for example. The code exhibits a call taliscard_data() on the array_view object sum.
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This call is intended to hint the runtime so that an initial copy to the accelerator memory
is avoided sincesumdoes not contain any data.

C++ AMP does not seem to provide a new paradigm, but leverages C++ pownend
Rexibility to provide a more relaxed programming model thairect Compute or OpenCL
It seems to compete more against a directive-based languageh asOpenACC, presented
in Section2.2.10

2.2.9 | C and the MPPA Accelerator

While far from being a new paradigm, process network languagmay benebt from
more consideration in the future. For instance Kalray leveges the! C language {5ou-
bier et al. 2017 for its (yet unreleased)Multi-Purpose Processor Array (MPPA) acceler-
ator [Kalray 2017. It integrates a network of 256Very Long Instruction Word (VLIW)
processors, organized in sixteen clusters of sixteen presars, interconnected using a high-
bandwidth network-on-chip, but embeds only a few tens of MB of emory. This accelerator
leverages low consumption (estimated at around 5 W) when comued to power-hungry
GPUs. For example, the Nvidia Tesla C2070 eats up to 238 W.

I C is based on the Kahn process network theori{fhn 1974. It has been designed to
enforce properties like being deadlock-free and providesemory-bounded execution. For-
mal analysis is leveraged to achieve this goal. TheC programming model involves agents
as the most basic units. An agent is a stateless independehiréad with its own memory
space. Agents communicate vi&irst In, First Out (FIFO) queues. Then an application
is designed by a set of communicating agents forming a grapm a ! C application, the
graph is static during all the life of the application, no aget creation or destruction can
occur neither any change to the graph topology.

2.2.10 Directive-Based Language and Frameworks

Addressing the programmersO!dculties to write € cient, portable, and maintainable
code, as well as the ability to convert progressively existy sequential version toward
GPGPU, several initiatives were launched, based on directivessierted in C or Fortran
sequential code.

On the basis of the popularOpen Multi Processing (OpenMP)standard, Lee et al.
propose OpenMP forGPGPU [Lee et al. 2009. They justify the advantages ofOpenMP
as a programming paradigm folGPGPU as follows:
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#include <amp.h>
#include <iostream >
using namespace concurrency;

#include <iostream>

const int size = b5; const int size = b5;
void StandardMethod() { void CppAmpMethod() {
int aCPPJ[]={1,2,3,4,5}; int aCPP[]={1, 2, 3, 4, 5};

int bCPP[]={6,7,8,9,10}; int
int  sumCPP[size]; int

bCPP[]={6, 7, 8, 9, 10};
sumCPP[size];

/I Create CH AMP objects.

array_view< const int ,1> a(size,aCPP);
array_view< const int ,1> b(size,bCPP);
array_view< int , 1> sum(size, sumCPP);
sum.discard_data();

parallel_for_each(
/I Define the compute domain, which
/Il is the set of threads that are
/I created.
sum.extent,
/| Define the code to run on each
/I thread on the accelerator.

for (int idx=0;idx<5;idx++) [=](index<1> idx) restrict(amp)

{ {

sumCPP[idx]=
aCPP[idx]+bCPP[idx];

}
for (int idx=0;idx<5;idx++)
{
std::cout<<sumCPP[idx]
<<"\n";
}

(a) Pure C++.

sum[idx] = afidx] + b[idx];
}
)

/I Print the results. The expected

/I output is "7, 9, 11, 13, 15",

for (int i = 0; i < size; i++) {
std::cout << sumli] << "\n";

}

}
(b) Using C++ AMP.

Figure 2.6: Rewriting a C++ computation using C++ AMP. The example shows the use
of a lambda function and aparallel_for_each construct to express the parallelism (source
Microsoft [Microsoft Corporation 2012f).
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¥ OpenMP is € cient at expressing loop-level parallelism in applicatican
which is an ideal target for utilizing the highly parallel GPU computing
units to accelerate data parallel computations.

¥ The concept of a master thread and a pool of worker threads @penMPOs
fork-join model represents well the relationship betweeiné master thread
running in a host CPU and a pool of threads in aGPU device.

¥ Incremental parallelization of applications, which is one foOpenMPOs
features, can add the same benebt 8PGPU programming.

Following the same idea, the OMPCUDA project Dhshimaet al. 201(] extended the
OMNI OpenMP Compiler to target CUDA.

As OpenMP is designed for shared memory systems, it can be! diult to convert
automatically an OpenMP code optimized forCPU into a heterogeneous architecture. Thus
other projects bypassed this issue and introduced new ditees. Han and Abdelrahman
propose with hiCUDA [Han & Abdelrahman 2009 a set of directives to manage data
allocation and transfers, and kernel mapping o 6PU. The main drawback is that even
if it is simpler to write, hiCUDA still requires the programmer to have good knowledge
of the target architecture and the way the algorithm maps ord the GPU. It is unclear
how the code written this way is portable across architectuse Figure 2.7 shows a sample
matrix multiplication using hiCUDA. The directives are tied to a particular architecture:
the workgroup size is statically debPned, so is the strip-nimg width.

Bodin and Bihan proposeHybrid Multicore Parallel Programming (HMPP) [Bodin &
Bihan 2009, another set of directives to perform heterogeneous contpg. HMPP was
then promoted as a standardQpen Hybrid Multicore Parallel Programming (OpenHMPP)
in a consortium joining CAPS Entreprise and PathScale HMPP requires that the code
follows some restrictions. The code to be run on an accelerataust be wrapped in a
separate function called acodelet Here are the codelet propertiesonsortium 2011]:

¥ It is a pure function.

# It does not contain static or volatile variable declaratios or refer to
any global variables unless these have been declared 3PP directive
Oresident.O

# It does not contain any function calls with an invisible body that
cannot be inlined). This includes the use of libraries and sigsn functions
such as malloc, printf. . . .
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Figure 2.7: A sample matrix multiplication code with hiCUDA directives (source lflan &
Abdelrahman 2009).

# Every function call must refer to a static pure function (no function
pointers).

¥ It does not return any value (void function in C or a subroutire in For-
tran).

¥ The number of arguments should be set (i.e., it can not be a vadic
function as in stdarg.h in C).

¥ It is not recursive.

¥ Its parameters are assumed to be non-aliased.
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/" declaration of the codelet"/

#pragma hmpp simplel codelet, args[outv].io=inout, targe t=CUDA
static  void matvec(int sn, int sm, float inv[sm],
float inm[sn][sm], float *outv){
int i, j;
for (i = 0 ;i < sm; i++) {
float temp = outv]i];
for (j = 0 ;j < sn; j++) {
temp += inv[j] * inmJ[i][ j];
}
outv[i] = temp;

}

int  main(int argc, char **argv) {
int n;

/" codelet use"/
#pragma hmpp simplel callsite, args[outv].size={n}
matvec(n, m, myinc, inm, myoutv);

Figure 2.8: Simple example for HMPP directive-based code wrtj (source
wikipedia [Wikipedia 20124).

¥ It does not contain call site directives (i.e., RPC to anothercodelet) or
other HMPP directives.

HMPP requires less e"ort from the programmer, and theIMPP compiler can manage
automatically to map a given codelet on theGPU, as well as handling the data movement.
The compiler can automatically detect the parallelism in a lop nest and take any decision
involved in the process of generating the accelerator coddoweverHMPP o"ers advanced
directive that allows the programmer to tune the compilationprocess to get better perfor-
mance. But with the same drawbacks as in hiCUDA: the code is theikély to come tied
to a specibc target. Figure2.8 contains a sample code written usingdMPP without any
specibc directive.

PGl introduced the PGI Accelerator [Volfe 201(, which uses the same idea a$MPP.
The proposed directives are writteri la OpenMP. The code is not outlined in a codelet
by the programmer.

The initial PGI Accelerator provided a limited set of directives. The PGI compiler was
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module globdata
real , dimension (:), allocatable
end module
module globsub
contains
subroutine sub( y )
use globdata
real , dimension(:) vy
!$acc reflected (y)
!$acc region
do i = 1, ubound(y,1)
y(i) = y(i) + x(i)
enddo
I$acc end region
end subroutine
end module
subroutine roo( z )
use globsub
real 1 z()
!$acc data region copy(z)
call sub( z )
!$acc end data region
end subroutine

, device I X

Figure 2.9: Example of a PGI Accelerator code using data movenieptimization (source
PGI Insider [Wolfe 20117).

supposed to automatically do the conversion work. It was lat updated with more possi-

bilities available to the programmer to help the compiler tananage the data movements.
HMPP includes also similar directives. Figur.9 shows a simple code written using these
directives.

In November 2011 at the SuperComputing Conference, Nvidia, G£aPGl, and CAPS
announced that they agreed on a standard for directive®penACC. The OpenMP Archi-
tecture Review Board CEO Michael Wong declared at this occasidhat he looked forward
to work within the OpenMP organization to mergeOpenACC with other ideas to create
a common specibcation that extend®penMP to support accelerators. TheOpenACC
standard [NVIDIA, Cray, PGI, CAPS 2011] seems to be based upon the PGI Accelerator
solution: the directives show close similarities.

JCUDA [Yan et al. 2009 is a programming interface for Java that allows invoking
CUDA kernels. JCUDA debnes an extension of Java that needs to be pmacessed to
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double[][] | _a= new double[NUM1][NUM2]J;
double [1[1[] 1_aout = new double [NUM1][NUM2][NUM3];
double[][] I_aex= new double[NUM1][NUM2];

initArray(I_A); initArray(l_aex); /I initialize value in array

int [] ThreadsPerBlock = {16, 16, 1};

int [] BlocksPerGrid = new int [3]; BlocksPerGrid[3] = 1;
BlocksPerGrid[0] = (NUM1+ThreadsPerBlock[0]-1)/Thread sPerBlock[O];
BlocksPerGrid[1l] = (NUM2+ThreadsPerBlock[1]-1)/Thread sPerBlock][1];

/" invoke device on this block/thread grid"/

cudafoo.fool<<<<BlocksPerGrid, ThreadsPerBlock>>>>(l _a,
|_aout,
I_aex);

printArray(l_a); printArray(l_aout); printArray(l_aex );

static lib cudafoo("cfoo","/opt/cudafoo/lib") {
acc void fool(IN double[][] a,

OouTint [][] aout,

INOUT float [][] aex);
acc void foo2(IN short [][] a,

INOUT double [J[][] aex,

IN int total);

}

Figure 2.10: A simple JCUDA example. Note thdN, OUT and INOUTattributes in the
kernel declaration that drive automatic memory transfersgource jfan et al. 2009).

generate the pure Java code and thdava Native Interface (JNI) glue to link against
CUDA kernels. The programmers make use of annotation (IN, OUT, INOD in front

of kernel arguments and the data transfers are managed autatitally by JCUDA based
only on the annotation, it implies that a mistake from the prgrammer in an annotation
leads to a wrong code. A simple example of Java code invoking erkel with JCUDA

is showed in Figure2.10 However, useless transfers cannot be avoided in this madel
the programmer has no control to preserve data on the accedtwr between two kernel
calls, while the directive approach o"er the possibility to tle programmer to manage data
movement across the whole program.
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2.2.11 Automatic Parallelization for GPGPU

Not much work has been done about the automatic paralleliziamn of a sequential
program toward GPUs. Leung et al. [.eung et al. 2009 propose an extension to a Java
JIT compiler that executes a parallel loop nest on th&PU. The major part of their
contributions seems to be the handling of Java exception santics and Java aliasing at
runtime.

Nugteren et al. Nugterenet al. 2011 present a technique to automatically map code
on a GPU based onskeletonization This technique is based on a predebned set of skele-
tons for image processing algorithms. A Skeletonizationest recognizes the algorithmOs
functionalities in the sequential code using techniqueské pattern matching, and replaces
them with another implementations for the GPU selected from the available predebned
implementations.

Reservoir Labs claims that its R-Stream parallelizing C copiler 0"ers automatic par-
allelization from C code toCUDA since 2010 Reservoir Labs 201R However, R-Stream
is proprietary software not freely available and without acdemic or evaluation licensing,
the few academic publications about this work are vague andiere is no way to reproduce
their claims and results.

CUDA-Chill [Rudy et al. 2017 provides automatic program transformation forGPU
using the Chill framework for composing high-level loop tresformations. However, the
recipes have to be adapted to each input program, limiting #ghapplicability and portability
obtained.

Baskaran et al. Baskaranet al. 201( introduce a polyhedral approach to the automatic
parallelization, using Pluto Bondhugulaet al. 2008§, of @ ne loop nest from C toCUDA.
More recently, the on-going PPCG YJerdoolaegeet al. 2013 project follows the same path
and produces optimized kernels foGPU using the polyhedral model.

2.3 Focus on OpenCL

Open Computing Language(OpenCL) is an open royalty-free standard
for general-purpose parallel programming acro$3PUs, GPUs and other pro-
cessors, giving software developers a portable andl @ent access to the
power of these heterogeneous processing platformi$ijonos OpenCL Work-
ing Group 2011
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2.3.1 Introduction

Promoted brst by Apple in early 20080penCL was quickly supported by many other
vendors such as IBM, Nvidia AMD, and Intel. It provides a software stack that addresses
the challenges of programming heterogeneous parallel pessing platforms. The brst re-
vision of the standard exhibits a logical model close to theWidia CUDA programming
model. OpenCL does not limit itself to the dual CPU vs GPU issue, but also takes into
account mobile devices up to high-performance computerss avell as desktop computer
systems. It can target di"erent kind of accelerators, like miticore CPUs and GPUs, but
also more specibc devices likeigital Signal Processing (DSP)processors and the Cell
processor.

OpenCL API abstracts the hardware at a rather low level. The purpose is tprovide
high performance by being close-to-metal, and keeping itngple enough for compilers so
that the implementation can be easy for a wider range of vendarOpenCL targets expert
programmers who want to write portable and k cient code. Thus it can be seen as the
lower level upon which portable libraries, middleware, or $wvare can be built. It also
represents a brst choice as a backend target for code-getirgatools from higher level
languages or constructions.

The OpenCL model is split between a host and computing devices in a mastnd-
slaves fashion. The host manages the devices and acts as a ebgrapher driving the
process using theDpenCL API. On the device side, the code that is to be executed is
contained in kernels These kernels are written in a language that is based on a subse
of ISO C99 with extensions for parallelism. TheOpenCL API lets the host indi"erently
schedule data parallel kernels or task-based kernels or antmnation of both.

2.3.2 OpenCL Architecture

The OpenCL standard is organized into four parts: the platform model @ Sec-
tion 2.3.2.7), the memory model (see Sectior?2.3.2.3, the execution model (see Sec-
tion 2.3.2.9, and the programming model (see SectioR.3.2.9.

The whole OpenCL abstract model is shown in Figure®.11and 2.12 The host entry
point is the platform. It represents the vendor implementabn. The host program sees as
many platforms as there are vendor runtimes in the machine. fer selecting one or several
platforms, the host program can query a list of devices avalble for this platform. A device
is debned in theOpenCL standard asa collection of compute units. [...] OpenCL devices
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typically correspond to a GPU, a multi-core CPU, and other jmcessors such as DSPs and
the Cell/B.E. processor To manage the devices, the host program has to create one or
more contexts. A context is dePned as thenvironment within which the kernels execute
and the domain in which synchronization and memory managemeés debPned. The context
includes a set of devices, the memory accessible to thoseodsythe corresponding memory
properties and one or more command-queues used to schedubxation of a kernel(s) or
operations on memory objects

2.3.2.1 Platform Model

OpenCL is strongly based on the concept of one host directly connedtto a set of
dedicated computing devices. This is thelatform in OpenCL terminology. The host
plays the role of an orchestrator and manages the devices. Beecan include many compute
units, each made up of many processing elements.

For instance, currentOpenCL implementations map a multicoreCPU as a single device
with as many compute units as the number of cores. The number afgressing elements per
compute units (per core) depends on the vectorizing capaitigs of the OpenCL runtime.
The Intel OpenCL runtime for instance, reports sixteen processing elemergs that the
code can self-align on multiples of sixteen and allows fastierads in vector registers. A
GPU is shown as a single device, with the number of compute units cesponding to the
available hardware.

2.3.2.2 Execution Model

The user program drives the host part of th@©penCL model. It acts as an orchestrator
for the kernel part of the program. The host part is responsibl for managing contexts
of execution for the kernels, initializing the devices, ctrlling the data movements, and
scheduling the execution of the kernels on the devices. Tohaeve this, it creates at least
one context.

Contexts are created and managed using &Pl debned by the standard. A device can
be associated with many contexts, and a single context can nege multiple devices. For
a given context, each device has its own command queue. A conmaaueue is the only
way for the host to request any data transfer by device, or to lach a kernel.

On the kernel side, the execution model is very close to tii#JDA programming model:
a huge number of virtual threads are mapped onto real hardwathreads using what Nvidia
calls in CUDA the Single Instruction stream, Multiple Thread streams (SIMT)paradigm.
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Figure 2.11: Simplibed view of the OpenCL abstraction modelA host is connected to
multiple devices (GPUs, FPGAs, DPSs, . . .). OpenCL platforms areendorsO implemen-
tations that target some types of devices. A context is creat for a given platform and
a set of devices. Memory objects and events are created comeise. Devices are then
controlled in a given context using command queues. There cé® multiple command
gqueues per device, and a device can be associated with quetms inultiple contexts and
platforms.
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Figure 2.12: UML representation of the OpenCL abstraction maa (see Figure2.11) taken
from the Standard [Khronos OpenCL Working Group 201].

In the OpenCL terminology, the kernel is executed by a number okork-items Each of

these work-items has a unique identiPer in a global index seamed NDRange inOpenCL

terminology. This set can have one, two, or three dimensiorand its bounds depend on the
OpenCL runtime implementation and the device capability. The unige identiber is then

a three-dimensional tuple. It is up to the programmer to exftiit enough data parallelism

using a large index set and mapping di"erent work-items to di"eent sets of data.

Work-items are grouped in work-groups. Work-items inside aork-group execute on
the same compute unit, using multiple processing elemente tichieve parallelism. Syn-
chronization can be performed in a work-group but not acrosdi"erent work-groups. A
work-group shares also a dedicated memory space (see Sec?@2.3. Work-groups are
assigned a unique id in the global NDRange the same way as wiadms do.

Figure 2.13shows how a simple two-dimensional parallel loop nest can bepped onto
an OpenCL index set.
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__kernel void
my_kernel(/" args list "/ ...) {

for (int i=0; i<100; i++) { int i = get_global_id(1);
for (int j=0; j<45; j++) { int j = get_global_id(0);
/I Some parallel /I Some parallel
/I computation here /I computation here
... 11
Y 11
(a) Parallel loops (b) Equivalent OpenCL kernel.

(c) Mapping the iteration set to a NDRange.

Figure 2.13: A mapping example of a two-dimensional loop riegeration set into an
OpenCL index range. The mapping is the simplest possible; on®nk-item executes one
iteration of the original loop nest. The work-group size useds an illustration on pg-
ure c is a two-dimensional square with an edge of bve. Values fgst_global_id() and
get_local_id() OpenCL primitives are exhibited for a particular work-group

2.3.2.3 Memory Model

OpenCL exhibits a hierarchical memory model with four distinct spaes:

¥ The Global Memory is local to a given device, but shared acros&ork-items for the
device. It is accessible for reading or/and writing, dependg on how it is allocated.
It can be cached or not depending on the underlying hardware.

¥ The Constant Memory is a part of global memory accessible readtp from the
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kernel. It has to be initialized from the host. It is usually alvised to make use of
the constant memory for performance reasons. On some desideis more likely to
be cached and optimized for read access.

¥ The Local Memory is a small dedicated memory for sharing tempamy data between
work-items in a work-group, to avoid redundant accesses to tliggobal memory. De-
pending on the underlying hardware, it can be implemented wita very fast on-chip
memory or emulated with a portion of the global memory. For infsnce on Nvidia
Fermi architecture, it is nearly as fast as register accesse

¥ The Private Memory is a portion of the memory that is private to a verk-item and
therefore not visible from any other work-item or from the hset. It typically maps
to registers on modernGPUs, but can also be mapped to global memory by the
compiler.

This hierarchy is represented in Figure2.14 There is no guarantee that all these
memory areas are really separated on the hardware. The righag of the bgure illustrates
this situation. For example, classical multicoreCPUs do not exhibit any separated memory
space or software managed cache, embedded into each coreotr fihen a kernel optimized
for the more complex memory architecture on the left may leatd spurious costly memory
duplication when using local or private memory on the simplearchitecture.

At a more global level, theOpenCL runtime manipulates bu"ers, i.e., linear areas of
memory that the host registers with the runtime before any usas a kernel argument.
The host can then write to or read from these memory areas usinge OpenCL API, or
even directly map the memory area into the host memory spacé he physical location
of the bu"er is undebned by the standard and is implementatiospecibc. FromOpenCL
version 1.2 on, the programmer can explicitly request a bu"dp be moved to a particular
device. In any case, before a kernel is launched on a partautievice, theOpenCL runtime
ensures that the bu"ers used by the kernel are physically atated and copied to the device.
Therefore it has to keep track of the locations of the bu“ers anéhvalidate other copies
when a bu"er is written by a kernel. The programmer can optimize tis management by
giving hints at bu"er creation times using Bags like read-oglor write-only. However, these
are holding for the whole lifetime of the bu"er and thus are not &lpful when a bu“er is read
or written only by some kernels. Theconst qualiPer in the kernel declaration arguments
can be used as a hint to the runtime to avoid invalidating othecopies of a bu"er after a
kernel execution.
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Figure 2.14: Visual example of the OpenCL memory model. Two gpsible mappings are
illustrated: data caches are optional, and private, localand constant memories are not
necessarily dedicated. On the right the simplest mappingeff instance a CPU, merges all
memory spaces onto the same piece of hardware.

2.3.2.4 Programming Model

The OpenCL programming model is a mix of the data parallel and task parkal
paradigms. The data parallel one is the preferred way to progm OpenCL devices like
GPUs.

As explained in Section2.3.2.2 the data parallel model involves a number of work-
items that spread over an index set, computing di"erent datan a SIMD/ SIMT fashion.
The model is relaxed and does not require that each work-itemrgrluces one element, and
therefore a single work-item can produce as much output asgured, or on the other hand
only some work-items can produce output. This latter situatin occurs when work-items in
a work-group work together to produce a single reduced resullhen only one work-item
in the work-group is in charge of recording it in the global nmaory. OpenCL provides full
Rexibility on this aspect.

The task parallel model is exposed by considering each kermecution as a task.
The parallelism between tasks can then be exploited in two ditent ways. First, the
programmers can issue di"erent tasks to di"erent command ques and thus rely on the
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OpenCL runtime to schedule them in parallel. But command queues caalso be debned
as out-of-order, and then again th@OpenCL runtime is free to schedule at the same time
as many tasks as submitted to such a queue.

The programmer can issue barriers in the queue to ensure syratization points, but
he can also make use @penCL events to enforce dependencies between tasks in a com-
mon context, either kernel launches or memory transfers. Véh a task is submitted to a
command queue, a handler on this request is recorded as@penCL event. A collection
of events can then be used when a new task is submitted in the saontext, possibly in
a di"erent queue. All events in this collection have to compte before the new task starts.

2.3.3 OpenCL Language

The OpenCL language is a subset of thinternational Organization for Standardization
(ISO) C99 standard. It is used only to create kernels in th®penCL model.
When compared to plain C, the main di"erences are the following:

¥ vector types are natively present, for sizes 2, 3, 4, 8, and, Ed for the native types
char, uchar, short , ushort , int , uint , long, ulong, float , and double;

¥ the alignment in memory is always guaranteed to be a multiplef the type size. For
instance anintl6 vector is aligned to a 16%izeof (int ) boundary;

¥ shu$e can be written directly in a Rexible way, for instance @ouble4 a can be initial-
ized from double4 b and double4 c: a = (b.w, c.zyx) , equivalent to the sequence:
a.x=b.w; a.y=c.z; a.z=c.y; a.w=c.X;

¥ keywords are debned for the di"erent memory spaces:global , __local , _ constant
and __ private . Any pointer must make use of one of them so that the memory spa
to dereference is always known by the compiler;

¥ a special image object can be declared asread only or __ write_only in kernel
argument lists:

__kernel void foo (__read_only image2d_t imageA,
__write_only image2d_t imageB);

¥ the qualibper__kernel is used in front of a kernel declaration. Such a function alwa
returns void. It identibes functions that can be used in an NRange object issued
in a command queue;
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¥ variable length arrays and structures with Rexible (or unsied) arrays are not sup-
ported,;

¥ variadic macros and functions are not supported;

¥ The library functions debned in the C99 standard headerassert.h , ctype.h ,
complex.h, errno.h , fenv.h, float.h , inttypes.h , limits.h , locale.h ,
setjmp.h , signal.h , stdarg.h , stdio.h , stdlib.h , string.h , tgmath.h, time.h ,
wchar.h and wctype.h are not available and cannot be included,;

¥ recursion is not supported;

¥ built-in functions are provided to manage work-items, pedrm asynchronous or
atomic memory operations.

2.3.3.1 Conclusion

OpenCL is a standard, which by itself is already a good thing for progmmers con-
cerned with portability. However, there are some caveats witDpenCL The performance
portability is not enforced and programmers have to write kerels for a given target. An-
other issue is programmability:OpenCL API is verbose and is rather designed as a target
for libraries, frameworks, or code generators. In this cagg®@penCL provides all the control
that can be wished. Therefore it is suitable as a target for a sme-to-source compiler such
as the one proposed in this work.

2.4 Target Architectures

This thesis focuses on hardware accelerators likgPUs. The common characteristics
of such accelerators are as follows:

¥ large embedded memory: over 1 GB,;

¥ high level of parallelism: from a few tens of processing elents, to many thousands,

possibly highly threaded;

¥ compliance with the OpenCL programming model introduced in Sectior2.3.

The most widespread matching hardware platforms are manufased by AMD and
Nvidia, and are indeed ubiquitous in modern desktops. This ston introduces someGPU
architectures starting from a high-level view to a deeper agparison between the two
current leading architectures. It also explains how two kids of parallelism are exploited:
Instruction Level Parallelism (ILP) and Thread Level Parallelism(TLP).
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2.4.1 From Specialized Hardware to a Massively Parallel Device

Dedicated graphic circuits were introduced in the 1980s todoad 2D primitives pro-
cessing from the mainCPU. At that time the purpose was to draw simple objects like a
line, a rectangle, or to write some text in the video memory (&mebu"er) displayed on the
screen.

GPUs then evolved in the 1990s with the introduction of more 3D grapc processing.
Starting with the OpenGL API (see Section2.2.1) and later with Direct3D, a common
set of features began to be used by game developers, leadingriore and more vendors
implementing these features in hardware in the mid-1990s. t Ahat time, GPUs were
not programmable at all and provided hardware for a limited et of operations, but there
was already some parallel processing involved under the hoddlowever, it is only during
the 2000s thatGPUs became programmable, with the introduction of shaders (see&
tion 2.2.2. GPU designers then continued to fuse pipeline stages into undygrogrammable
units emulating the plain old OpenGL graphic pipeline.

This architecture survey starts with the AMD architecture. Then the Nvidia G80 that
came along withCUDA, and the evolution of the architecture to the current genetéon,
are introduced. Finally the impact of architectural choice on high-level code writing is
presented. This section focuses exclusively on main breatdhghs that are relevant for
GPGPU. Thus it simply ignores changes that introduce only improveemts very specibc
to graphic workloads.

2.4.2 Building a GPU

A GPU is a huge and complicated piece of hardware. It was traditiafly built upon
units very specialized for bxed graphic processing funatm With the introduction of
shaders, it became more and more programmable. &°GPU are the main focus of this
work, only the computation power of shader parts and the memyprhierarchy capabilities
and specibcities are surveyed.

At the lowest level we Pnd theProcessing Element (PE) capable of basic operations
like addition or multiplication, or at best a Fused Multiply-Add (FMA). Usually they are
limited to single-precision 3oating point and integer opeations. There can also ben-
steroid PEs able to compute transcendental functions such as trigonotnie, exponential,
or square roots. Such a unit is called &pecial Function Unit (SFU).

Multiple PEs are then grouped together in &Compute Unit (CU). A CU includes all
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Figure 2.15: High-level simpliped GPGPU-oriented view of geric GPU architecture.

the shared logic forPEs, such as instruction fetch and decode, registers, cachesheduler,
and so on.

A GPU chip can then be built by assembling manyCUs with an interconnecting net-
work, adding a global hardware scheduler to distribute the wramong theCUs and some
memory controllers. Sometime€£Us are grouped before being added to the network, and
this group shares some resources like cache, on-ship menmtwork interconnect or also
usually graphic centric units. Figure2.15illustrates this view of a GPU architecture.

Such a view is not so far from what can be seen in a multicoePU, but the Devil is in
the details. And the choices that are made at each level on tmeimber of elements and the
way they are grouped together have a signibPcant impact on thesulting programmability.
In general, unlike aCPU, most of the die space in &PU is used for computing logics.
This is why it has a lot of PEs with complex grouping, little to no cache, an important
memory bandwidth, but also a long latency.

Most of the time, designers keefCUs as simple as possible and do not include any
out-of-order execution capabilities, thus the main sourcef parallelism is Thread Level
Parallelism (TLP). However, Instruction Level Parallelism (ILP) can be exploited by the
compiler using aVLIW instruction set, or by the hardware scheduler to keep the pgine
full and to mask memory latency if there is not enougiiLP. Figure 2.16 illustrates the
di"erence betweenlLP and TLP.
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Figure 2.16: Instruction Level Parallelism (ILP) versus Thrad Level Parallelism (TPL),
two di"erent ways of extracting parallelism in GPUs.

2.4.3 Hardware Atomic Operations

Hardware atomic operations are important for many parallehlgorithms and widen the
set of applications benebting from a hardware acceleratdfor instance, atomic operations
on the GPU have been used to implement barrier synchronizations withia kernel [Xiao
& chun Feng 2010, to build high-level programming frameworks such as MapRede [i
& Ma 2011], a memory allocator for MapReduceHong et al. 201(, an histogram Pubert
et al. 2009 (persa).

Nvidia does not disclose any detail about the hardware impigentation of atomic opera-
tions. It is only known that these units are located in each ofte memory controllers Col-
lange 2010p on GT200 and directly in the L2 cache since Fermi-alfhill 2009, Patter-
son 2009 Collange 2010

AMD hardware implementation is slower, so much so that some progals using software
emulation were presented as fasteE[ieir et al. 2011).

OpenCL supports as of version 1.2 the following integer atomic opéi@ens in 32-bit
mode:

¥ add: adds an integer to a value at a memory location;

¥ sub: subtracts an integer to a value at a memory location;
¥ xchg: swaps an integer with the value at a memory location;
¥ inc: increments a value at a memory location;

¥ dec: decrements a value at a memory location;

¥ cmpxchg compares an integer to the value at a memory location andhg if they are
equal;
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Figure 2.17: AMD R600 Compute Unit (CU) is built on top of 5-way VUW instructions
set. Four Processing Elements (PE) and a Special Function Unit F®) are grouped
together in a Processing Unit (PU) to process instructions. Thee PUs are organized in a
16-wide SIMD array.

¥ min: compares an integer to a value at a memory location and steréghe smallest
value;

¥ max compares an integer to a value at a memory location and steréhe largest
value;

¥ and: compares an integer to a value at a memory location and steré¢he result of a
bitwise and operation;

¥ or: compares an integer to a value at a memory location and staeréhe result of a
bitwise or operation;

¥ xor, compares an integer to a value at a memory location and star¢he result of a
bitwise xor operation.

All these functions operate either in global or local memonand return the old value.
The standard specibes 64-bit versions for all these operaitp but the implementation is
optional and programmers have to check the availability usg OpenCL extensions Both
32-bit and 64-bit versions are supported by Nvidig&sPUs since Fermi.

2.4.4 AMD, from R300 to Graphics Core Next

Historically, AMD has used a vector instruction set, and then in 2002 introdudea
2-way VLIW ISA at the beginning of computing shaders with the R300. This ard@cture
was proven to be & cient for handling graphics workload until DirectX 10 and itsnovelties
in shading were introduced.
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At that time, shading was quite new and pixel and vertex shadsrwere separate entities.
Vertex shader designers decided thatLIW was the ideal architecture for a vertex shader.
It allows processing at the same time on8IMD operation on a four-component vector
(e.g.,w, X, Y, z) and one other operation on a separate scalar component (elighting).

This organization relies on the compiler to pack th&LIW bundles from thelnstruction
Level Parallelism(ILP) that can be found in a shader program. By contrastThread Level
Parallelism (TLP) is handled by replicating these processing units. The statischeduling
done by the compiler simplibes the hardware and allows usingore of the die space for
compute units instead of a complex hardware scheduler.

DirectX 10 introduces the new geometry shaders (see Secti@gr2.2 and unibes the
programming language for vertex and pixel shaders. These dges pushedsPU designers
to unify the architecture. The same units are in charge of allikd of shaders. ForAMD
GPUs, this change happened with the R600 chip. To achieve such a dga, the hardware
had to evolve and include more control logic to schedule thé'drent threads that compete
for the computing resources. The introduction of hardware kedulers is an important
point for GPGPU. It has been critical to enable further hardware evolutionon later
architectures.

The novelties introduced by the new DirectX 10 version of thélLSL language drove
the designers atAMD to choose a more Rexible architecture. While previously begd on a
2-way vector/scalarVLIW , the R600 introduced a 5-way pure scalarLIW instruction set.
This way, as before, bve individual elements can be processedach cycle. But the vector
has been split. So instead of the same operation on four padkelements, it is possible
now to execute bve di"erent operations.

ILP is still managed by the compiler that has to pack/LIW bundles. It is even more
critical now that bve di"erent operations can be packed togbaer. AMD introduced another
SIMD level that is exploited implicitly by TLP. The new VLIW units are grouped in a
SIMD array of sixteen units. TheSIMD benebpts only fromTLP . At each cycle, one shader
5-wayVLIW instruction is scheduled for sixteen di"erent threads. Frona graphic workload
point of view, it means that a SIMD processing unit handles pixels or vertices by blocks
of sixteen, as shown in Figur@.17.

To increase the computing power of the architecture withouticreasing the complexity,
the control units are limited as much as possible in favor ofrpcessing units. A common
technique is to use a logicabIMD width wider than the hardware. AMD chose to rely on
a virtual sixty-four wide SIMD so that if each cycle a block of sixteen threads is processed,
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the instruction scheduler can feed the processing units withVLIW instruction every four
cycles on average. This allows the scheduler to run at a loweeuency than the compute
units.

SIMD in such GPUs is managed di"erently than CPU extensions likeStreaming SIMD
Extension (SSE)or Advanced Vector eXtensions (AVX) GPU registers are not vectors
but dynamically reconbgurable arrays of scalar values. THeIMD execution is implicit
and managed by hardware. Another e"ect is that the mapping fim the registers to the
lightweight threads that run on the GPU is trivially reconbgurable, o"ering Rexibility on
the resource sharing.

While no divergenceé occurs between the sixty-four threads, all units execute éhin-
struction. If a branch occurs, then threads diverge anBEs are predicated. Since there is
only one program counter for &8IMD unit, the di"erent branches are executed sequentially.
This behavior 0"ers Rexibility to the programmer, who is able tccode in a scalar fashion
even if he has to keep in mind the architecture characteriss to avoid divergence as much
as possible to maximize performance.

The two next generations R700 and Evergreen (R800) did not irdiduce major new
breakthroughs. R700 scales up the R600: it increases freqey supportsGraphic Double
Data Rate (GDDR) Dynamic Random Access Memory (DRAM)in version bve, and im-
proves the internal bus. Evergreen again extends R700 with neoPEs and CUs. Fused
Multiply-Add (FMA) and new DirectX 11 instructions are supported, and also impves
PEs precision to belEEE 754-2008 compliant.

The Radeon HD 6900 series, codename Cayman (R900), was relgkase2010. This
new generation switched to a narrower 4-wayLIW . This reduces the complexity of the
units and it is more @ cient on the average according t&MD internal tests. Indeed the
VLIW average occupation was established to be 3.4 on common wogkls. While shaders
that were able to Pll theVLIW with four-scalar operation and a transcendental operation
at the same time su"er from a performance drop, these are not sosmmon. All other
shaders benebt from the increased number 8fMD units and the higher TLP .

The main limitation of VLIW comes from the inhereniLP that the compiler is stati-
cally able to bnd in the source program. Moreover, memory asses are distinct instruc-
tions and have to be separated fromirithmetic and Logical Unit (ALU) instructions in

3. There is divergence when the code includes conditional brashing and not all threads take the same
execution path.

4. When a branch occurs and threads diverge, both paths are ecuted sequentially and the PEs
corresponding to the threads that took the other path are disabled ; they are predicated
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Figure 2.18: Table summarizing the ALU occupation and the VIW packing ratio for some
computing kernels, taken from fhanget al. 2011 (Ic 2011 IEEE).
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Figure 2.19: The 2012 AMD architecture Graphics Core Next. No tger VLIW, the four
separate SIMD pipelines are independent. A new integer scalanit is introduced. The
scheduler feeds each SIMD every four cycles (one per cycle)wat 64-wide virtual SIMD
instruction.

what AMD calls aclause If simple graphic workloads are well suited to this constiat,
it can be a di cult limitation for complex shaders and more specially foGPGPU. Fig-
ure 2.18 shows some statistics about thé\LU occupation and theVLIW packing ratio®
for some computing kernels.

5. The packing ratio indicates on the average how many instrutons are packed in the VLIW by the
compiler with respect to the VLIW width.
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The last generation, codenam@&raphics Core Next(GCN) (R1000), introduces a major
breakthrough. Driven by the success c6PGPU, AMD chose to quit their VLIW ISA in
favor of a scalar architecture. Basically they have split thir 4-wayVLIW into four separate
SIMD pipelines. It means thatILP will no longer be exhibited by the compiler and that
these units exploitsTLP instead. As long as the workload exhibits enough threads, i
easier to reach the architectural peak performance.

Another novelty from Graphics Core Next (GCN)is that that these four SIMDs are
packed along with anALU scalar unit. Among other uses, this unit can perform pure
scalar computation and avoid wasting resources underusiagSIMD for branch or mask
prediction computations, a function call, or a jump. An oveview of aGCNOs compute unit
is given in Figure2.19

These changes put more pressure on the hardware scheduler. NE@announcements
about GCN mention that it is able to schedule ten groups of sixty-fourtireads perSIMD,
that is 2560 threads per compute unit. Such a high number of teads helps to hide memory
latency. The presence of four di"erent pipelines to feed inases also the requirements on
the scheduler. While previously on&/LIW instruction was processed in four cycles by the
SIMD pipeline, the scheduler has now to feed a separate instruani every cycle. Indeed
it considers each cycle thread for one of the fo8IMD and issues up to bve instructions
among these: one for the vector unit, one for the scal®LU, one for a vector memory
access, one for the branching unit, the local data store, féihe global data share, or an
internal one.®

GCN also includes for the brst a time a fully hierarchical hardwa-managed cache,
while the previous architecture only had an L2 cache and a safire-managed.ocal Data
Store (LDS) located within eachCU.

As of early 2012 GCN is not released and we have thus no way to experiment with this
new architecture.

Figure 2.20 summarizes the evolution oPE grouping acrossAMD architectures.

AMD has later released this information abouGCN in a white paper [AMD 2012].

6. Internal instructions are NOPs, barriers, etc.
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I

Figure 2.20: Evolution of Processing Element (PE) grouping acse AMD architectures.

2.4.5 Nvidia Computing Unibed Device Architecture, from G80
to Kepler

In the fall of 2006, Nvidia released the G80. It was the brst BictX 10 compliant GPU.
It is the result of a four-year e"ort, starting nearly from sciatch with a full redesign. While
in previous Nvidia architecture the compute units were sp@lized, the G80 is a complete
unibcation of many stages. As for theAMD R600, one of the most visible and e"ective
change from aGPGPU viewpoint is that the compute units are now indi"erently able b
process any kind of shader (see Secti@®R.2).

Another important novelty is that the compute units o"er a scdar interface, similar to
the oneAMD announced withAMD GCN, but six years earlier.

The G80 has many groups (typically sixteen) of eight scalar pcessors. Each group
is considered by Nvidia as a multiprocessor. There is one skedrinstruction issue unit
for a group, responsible of feeding the eight processors. 3Heeding unit runs at half
the frequency of the scalar processors and needs two cycledded an instruction. The
GPU el ciency is maximized when thirty-two threads execute the samiastruction in
a SIMD fashion (see Figure2.21). Again TLP is exploited andILP is not directly ex-
hibited by the architecture, but can be exploited to hide merory latency as shown by
Volkov [Volkov 201(. The scheduler can benebt from independent instructions issue
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Figure 2.21: The GeForce 8800 architecture (G80) introducenhibped shaders where shader
programmable processors can be used to replace multiple ggta of the classic graphic
pipeline. There are still specialized units for some graplsi®perations. (Source: Nvidia)

multiple instructions for the same thread in the pipeline.

GT200 was released in 2008 as an evolution of the G80. The maisibie change from
a GPGPU point of view is the introduction of a double precision Roatig point unit in
CUs along with the PEs, providing 1/8th the single-precision RBoating point comptation
power. Another novelty is the support of atomic operationsni global memory.

In 2010, Nvidia released a major revision of the GT200: Fermit comes with a large
number of improvements in aGPGPU perspective:

¥ Indirect control Row is now supported and opens the gate to C+-&and virtual func-
tions.

¥ Fine grained exception handling has been added to support C++try-and-catch
clause.

¥ Unibed address space allows a simpler memory model where thedinare automat-
ically resolves the location of an address (thread privatshared, global, system).

¥ Hardware-managed hierarchical caches are introduced fdret brst time. While the
previous generation had read-only caches for texture, Fermomes with a L1 cache
located in eachCUs, and a global L2 cache.
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Figure 2.22: GT200 compute unit (CU) on the left, FermiOs on théght. Processing
Elements (PE) upgrade from eight to sixteen per pipeline, but th logical SIMD width is
unchanged, threads are scheduled by groups of thirty-twodsrce Nvidia).

¥ The PCI Express (PCle) interface is now able to executdirect Memory Access
(DMA) in both direction at the same time.

¥ The global scheduler is now able to process multiple kernelsthe same time. ACU
still only has in-Right threads from one kernel at a time.

¥ FMA is supported in thePEs, and the IEEE-754 rounding modes are all supported.

¥ Atomic operations execute directly in the L2 cache without hang to write back the
result in global memory.

¥ ECC is supported in the global memory, the L1 and L2 caches, anddtregister ble.

Figure 2.22illustrates the evolution of CU between GT200 and Fermi side by side. The
number of PEsis increased from eight to thirty-two, split in two separatepipelines and two
schedulers. An instruction is processed each cycle for sigh threads. Two instructions
can be issued every two cycles, ending up with a logical thifyvo wide SIMD view as in
G80 and GT200.

The Special Function Units (SFUs)have their own pipeline shared between the two
schedulers. Since there are only fouBFUs the throughput is four times longer than
for ALU operations. ILP allows a scheduler to feed thé\LU pipeline while someSFU
computations are running. Therefore there can be forty-eigithreads processed peCU at
the same time.
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March 2012 has seen the release of a new major architecture byidin, codename
Kepler. The most important point that Nvidia emphasizes with Keger is the performance-
per-watt ratio, that they achieve mostly by reducing the frguency of thePEsby a half to be
the same as the instruction scheduling unit. The four big newrehitectural improvements
are the following:

¥ Dynamic Parallelism adds the capability for theGPU to generate new work for itself.
It make available the CUDA host API directly in the device code. A kernel can then
initiate memory transfers, or launch other kernels. This pnddes a disruptive change
in the CUDA programming model as known for years.

¥ Hyper-Q is the mechanism that allows up to thirty-two host thieads to initiate com-
mand to the GPU in parallel, allowing more concurrent kernel parallelism tde
exploited.

¥ Grid Management Unit is the basis piece of hardware that enadd Dynamic Paral-
lelism. It replaces the previous scheduler providing RBexiity in the dispatch, queu-
ing, and dependency of up to 2000 di"erent kernel launches wag for execution.

¥ GPU Direct allows transfer of data between di"erentGPUs or between aGPU and
any other PCle piece of hardware directly over thePCle bus without involving the
host.

Kepler is currently available only for gaming and graphical sage with the GTX 680.
It does not currently include all the novelty of the architeture that will be available with
the Tesla K20 by the end of 2012 along witlCUDA 5. Other than these four key features,
the most visible change at that time is the organization of ta PEsin the CUs. While they
were previously grouped by eight on the G80 and thirty-two oforty-eight on Fermi, Kepler
is shipped with 192PEs per CU while keeping the classical logical 32-widSIMD view.
The number of schedulers is doubled to four, but operating noat the same frequency as
the PE, it provides the same ratio as the forty-eighPE Fermi CU. Also the ratio between
double precision and single precision goes down to one thirdileht was one half on Fermi.

The Gefore GTX 680 is currently shipped with eightCUs, but Nvidia announced bfteen
CUs, i.e., 2880PE in the Tesla K20, resulting in over one TFlop of double precisio
throughput and over four TFlops using single precision.

On the memory side, theGDDR5 has been improved and should provide performance
closer to the theoretical peak. The announced bandwidth for ehTesla K20 is raised to
320 GB/s, which is nearly twice FermiOs capability. The L2 caclealso doubled both in
bandwidth and size, as the memory bandwidth.
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It is interesting to note that the balance of resources petU when compared to Fermi
shows that the capacity of eachCU scheduling has been doubled in term of number of
workgroups but multiplied by only 1.3 in terms of number of theads’. It seems to be in
favor of smaller workgroups when compared to Fermi. The L1 caelkeeps the same size
while the number of PE increases, leading to more potential concurrency and contn.

Other less important improvements reside in the more! ecient atomic operations, the
ECC overhead reduced by 66% on average, tl@&PU Boost technology that increases or
decrease the frequency dynamically to keep the power congatian in a given limit, and a
new shuffle instruction to exchange data between threads of a same warp.

2.4.6 Impact on Code Generation

In this dissertation, no particular architecture is targeed and we want to be able to
generate code that runs e ciently on all the architectures introduced previously. Thenain
guestion is this: to what extent is performance portable fronone architecture to another?

Since scalar andvLIW targets are exposed, it is di cult to expect a unique universal
solution. Extracting more ILP may require exposing lesJLP and thus might lead to
starving on a scalar architecture.

Chapter 7 presents various experiments, and the comparison of the f@mance ob-
tained on di"erent architectures after various transformaibns conbrms that improving the
performance for a given architecture reduces it on anotherdchitecture.

Another concern is about predicting statically that one vesion of a kernel will run faster
than another. Even given a particular architecture it is a corplex issue. For instance, for
a very simple kernel, the number of work-items that we allo¢a in a work-group has an
important impact on the resulting performance. Figure.23shows the inBuence of runtime
parameters on performance of Nvidia Fermi and AMD Evergreen. Ehleft graphic shows
di"erent launch conbgurations for a set of kernels. While Evgreen is not very sensitive to
it, Fermi shows up to a speedup of two by adjusting the workgrqusize. The comparison
of BinomialOption and Matmul_no_smem indicates that there is no universal work-group
size. Zhang et al. fhang et al. 20111 demonstrate that the loss in performance when
increasing the work-group size from 128 to 256 for Binomiafion is correlated to a
larger number of global memory accesses. In this case impgmay parallelism degrades
the overall performance. On the right a matrix multiplication kernel, without any local

7. The maximum number of resident workgroups per multiprocesor is eight on Fermi and sixteen on
Kepler, the maximum number of resident threads per multiprocessor is 1536 on Fermi and 2048 on Kepler.



2.4. Target Architectures 53

Figure 2.23: InfBuence of runtime parameters on performander di"erent kernels and
di"erent architectures, Nvidia Fermi and AMD Evergreen. On theleft the launch conbgu-
ration for di"erent kernels shows that there is no universal wi-group size. On the right
a matrix multiply kernel without local data store optimization is used with one to four
elements processed in each thread. The upper part shows the aapon performance for
both architectures while the lower part shows the occupancy ohe AMD GPU and the

VLIW packing ratio. Taken from [Zhanget al. 20114 (c 2011 IEEE).

data store optimization, is tested with one to four elements mpduced in each thread.
The upper part shows the impact on performance for both architéures while the lower

part shows the occupanc§ of the GPU and, for AMD, the VLIW packing ratio. The

EvergreenVLIW architecture proves to be very sensitive as more elementsgamcess means
more opportunities for the compiler to extractILP. The performance (upper graphic)
and the packing ratio (lower graphic) are correlated and cdarm this analysis. Fermi

and its scalar architecture are less impacted by this changad exhibit nearly constant

performance. But the lower graphic shows that the occupancyaps signibcantly, leading
to fewer opportunities forTLP, and thus potentially fewer opportunities to mask memory
latency with computations in some kernels.

The impact of the launch conbguration is explored with more dail in Section 5.8.

8. Occupancy is ratio of the number of eligible threads over he maximum number of resident threads.
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Figure 2.24: Performance of two di"erent versions of matrix oitiply kernel, a horizontal
scheme and a vertical scheme, without local memory usage fagigen architecture (Fermi),
depending on the input size and the activation or not of the Ltache. Taken from Jhang
et al. 20114 (Ic 2011 IEEE).

Finally, the input size, which generally debPnes the maximumumber of work-items
that are exploited, is known only at runtime, which limits the possibilities of one universal
version for a particular kernel. Figure2.24 shows the performance evolution depending on
matrix size for two di"erent versions of matrix multiplication on Fermi with and without
L1 cache enabled. The local memory is not used in any of theseotwersions. The fact that
L1 can be activated or not on a per kernel basis is another pangter that might inuence
the choice of a particular kernel version to get the best penfmance. Section5.8 covers
in detail the implication of the launch conbguration over pdgormance, and in Section/.4
provides experimental results.

2.4.7 Summary

GPUs exhibit massively parallel architecture. They rely mostly o Thread Level Paral-
lelism (TLP) to expose parallelism as thousands of threads, but, depend on the under-
lying architecture, Instruction Level Parallelism (ILP) may also be a must to get decent
performance.

For a deeper insight in the architectural mysteries, such datency for each operation,
deep understanding of caches and so on, the reader is refénethe work of Taylor and Li
on benchmarking the AMD architecture aylor & Li 2010], the work of Wong et al. [ong
et al. 201Q and Collange Collange 2010pfor the GT200, and Lindholm et al. [indholm
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Figure 2.25: Google trends for the word GPU during last decade

et al. 2009 and CollangeOs PhD thesi§{llange 2010hfor Fermi.

2.5 Conclusion

A decade ago, thé&eneral-Purpose Processing on Graphics Processing UfiEPGPU)
computing was in its early days. Since then, it has been an ense beld of research and
it still very active as shown in Figure2.25 As shown in this chapter, many languages,
frameworks, and other solutions have been introduced to Ipgbrogrammers write programs
that exploit accelerators. All these approaches provide xiad trade-o"s of the three Ps:
Performance, Portability, Programmability. The performan@ portability is a challenge in
the context of GPGPU. The programmability has been addressed by several spedati
programming languages.

The landscape in 2012 is very di"erent from what it looked like me than ten years
ago, when researchers were trying to leverage the pure grapbriented OpenGL pipeline
to abstract mathematical operators Jrendall & Stewart 200( or to use it as a target for
compiling streaming language.

The programmability was very challenging. However, when a pgoam was successfully
mapped to the OpenGLAPI, performance and portability were obtained. The introductbn
of shaders in 2002 brought RBexibility and exposed more feads, resulting in improved
programmability.

More recent approaches tried dedicated languages such as@®to trade performance
for programmability. The underlying streaming programmingmodel is a convenient inter-
face for programmers, but is not Rexible enough to be mainstam.

The evolution of DirectX drove GPU manufacturers toward more programmability. But
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the tipping point is the introduction of CUDA, then followed by alternative programming
languages and frameworks.

The CUDA and OpenCL programming models leverage the experience with shaders
to provide an equivalent level of programmability but withou all the rigid mechanisms
implied by the graphic API. However, programmers have to know well the architecture to
write e! cient kernels: the portability is traded for performance.

Directive-based languages such as hiCUDA, JCUDAIMPP, PGI Accelerator, orOpe-
NACC (see Sectior2.2.10 are less invasive and provide good portability at the expee of
performance. The directives can be specialized for a giverrdat to increase the perfor-
mance, but at the price of portability.

My PhD work started just after the brst release ofOpenCL 1.0 for GPU by Nvidia in
spring 2009 Ramey 2003 The goal of my work was to provide an end-to-end solution
that relieves programmers of adapting their codes to hardwe accelerators.

The programmability is as good as possible, since programmaerrite their codes using
standard sequential programming languages, ignoring thmelheterogeneous targets. The
compiler extracts the parallelism and the code to be executeon the accelerator. The
performance may not match what an expert would get with e"ort. Harever, the trade-o0"
on performance is acceptable if it is limited, such as for exgple ten, twenty, or thirty
percent depending on the application domain.

Very few people tried to provide full automatic parallelizéion and transformation (see
Section2.2.11page30) from sequential code toGPU. Most are limited in applicability or
focus only on part of the problem. My work tries to process a whslapplication, generate
kernels, optimize them all, and generate the required commigation, without any user
input.

Guelton proposes in his PhD thesisi{uelton 20113 a general high-level scheme for an
heterogeneous compiler targetingsPUs. The compiler transforms the code, separating
the host code and the kernel code, with the requiredlue Each part is then compiled by
dedicated binary compilers for the target. This is shown in Figre 2.26

My work instantiates this high-level compilation scheme. Aroverview of my compiler
structure and organization is presented in Figur@.27. It addresses all compilation issues
raised by heterogeneous computing witliCPUs and GPUs. While not exploring deeply
each concern, this dissertation provides solutions to mangsues related to automatic
parallelization for GPUs, ranging from parallelism detection to code generation, gaing
through loop nests optimizations and management of data mpmg and consistency.
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Figure 2.26: Source-to-source compilation scheme f8PU (source [suelton 20113).
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Figure 2.27: Overview of the global compilation scheme.
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Figure 2.27Illustrates the compilation chain. The source code is prst atyzed to Pnd
parallelism, and transformed before extracting the code tioe executed on thesPU in new
functions: thekernels Some optimization phases can be applied such as loop fusiarray
scalarization, array linearization, symbolic tiling, or wrolling. This part of the process is
presented in Chapter4. After kernel generation, analyses and transformations tgenerate
communications are required. Array regions are used in Chagt3 to achieve accurate
communication generation. An interprocedural static angkis is proposed to optimize the
communication by leaving data as much as possible on thePU. Another path is the
generation of tasks that are scheduled at runtime on multipl GPUs using StarPU. The
task extraction and code generation for StarPU are presented Chapter 6, along with
another mapping on multiple GPUs based on symboalic tiling. The whole process is driven
by the new Par4All driver, from the input source code to the brainary. It is based on
a Rexible pass manager. The challenge of automating the wholegess is presented in
Chapter 5. The experimental results are presented and discussed in Chap?7.
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GPU-like accelerators process data located in their own memomydeed, an accelerator
board embeds a few gigabytes of memory with high bandwidth todd their many CUs as
discussed in Sectio@.4. The di! culty is that this embedded memory is not visible from the
host CPU and reciprocally host memory is not visible from theGPU.* The programmers
then have to explicitly transfer input data from the host menory to the acceleratorOs before
launching a kernel and then execute some opposite transfémsm the accelerator memory
to the hostOs after kernel execution for the data produced the kernel.

These explicit communications use slow I/O buses. For exangplPCle 2.0 bus o"ers a
peak 8 GB/s, to be compared with a few hundreds of GB/s availablusing the on-board
GDDR memory. This is generally assumed to biae most important bottleneck for hybrid
systems Chenet al. 2014.

Work has been done to address this issue either using simplibinput from pro-
grammers [an et al. 2009 CAPS Entreprise 2010 Wolfe 2011 NVIDIA, Cray, PGI,
CAPS 20173, or automatically [Amini et al. 2011c (perso) Ventroux et al. 2012 Guel-
ton 2011g Alias et al. 2011, Wolfe 201(Q using compilers. A lazy scheme has also been
proposed by Enmyren and KessleEjimyren & Kessler 201Din the SkePU C++ template
library, a skeleton programming framework for multicoreCPUs and multi-GPU systems.

This chapter studies the issues associated with the generatiof communication in
the context of automatically or semi-automatically o$oadng work to an accelerator and
presents several contributions to address this issue: ayraegions are exploited to opti-
mize the amount of data to transfer per kernel and a static itrprocedural communication
optimization scheme is designed and implemented RarallZliseur InterprocZdural de Pro-
grammes ScientiPques (PIPS)

PIPS is a twenty-year-old compiler framework figoin et al. 1991, Amini et al. 2011a
(perso) that o"ers semantic analysis and transformation passes. itrally targeting Fortan
77 as an input, it has been then extended to handle C code. Itnas at exploring di"erent
program optimizations using interprocedural analyses. Uike heroes from other projects
that target binary level parallelization [Pradelle et al. 2012 Kotha et al. 201q, PIPS
operates at source level trying to regenerate a code as clasepossible to the input.

First, the targeted program class is introduced with a case @wily: a cosmological sim-
ulation. Then the convex array region abstraction, which is te basis of most of the
transformations this work relies on, is introduced in Seatn 3.2 The most basic mapping

1. Some recent solutions like Nvidia Zero-Copy allow mapping dectly the host memory in the GPU
virtual space and thus avoid the explicit copy. However, they do not provide good performance in the
general case.
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Figure 3.1: Stars-PM is aN -body cosmological simulation. Here a satellite triggers laar
and spiral arms in a galactic disc.

is then described in Sectior8.3 to give insight on the principle involved. Array region
analyses are used to rebPne the process of Sect®B in Section 3.4. The limits of this
approach are given in Sectior8.5. An interprocedural optimization is then proposed in
Section3.6to el ciently map the data on the accelerator and limit the number ftransfers.

The parallel promotion presented in Sectior8.7 may help as a complement to loop
fusion to reduce synchronization and sometimes memory trsfers.

Finally, the related work about optimizing the communicaton for GPGPU is presented
in Section 3.8,

3.1 Case Study

Small benchmarks like those used in the Polybench suiteduchet 201] for example, are
limited to a few kernels in sequence, sometimes surrounded@time step loop. Therefore,
if they are well suited for studying the pure performance oftie GPUs, they cannot be
considered representative of a whole application when it coméo evaluating a global
problem like mapping of data between the host and the accedgor.

To address this issue, my study is based on a program more reg@ptative of numerical
simulations. Itis a real numerical simulation called Star$M, a particle mesh cosmological
N -body code whose output is shown in Figur8.1. The sequential version was written in



64 Chapter 3. Data Mapping, Communications and Consistency

int  main(int argc, char *argvl[]) {

/l Read initial conditions from a file
init_data(argv[1l]);

/I Time loop
for (t = 0; t < T; t += DT) {
/I Do computations for each iteration

}

/I Output results to a file
write_data(argv[2]);
}

Figure 3.2: Simplibed global scheme commonly used in nuneati simulations.

C at Observatoire Astronomique de Strasbourgnd was later rewritten and optimized by
hand using CUDA to target GPUs [Aubert et al. 2009 (persa).

This simulation models the gravitational interactions betveen particles in space. It
discretizes the three-dimensional space with a discrete djon which particles are mapped.
Initial conditions are read from a ble. A sequential loop itates over successive time steps,
where the core of the simulation is computed. Results are blyaéxtracted from the pnal
grid state and stored in an output ble. This general organizamn is shown in the simpliped
code in Figure3.2 It is a common scheme in numerical simulations, while the a®rof
each iteration can vary widely from one domain to the other. Theub-steps performed for
processing a single time step in Stars-PM are illustrated Rige 3.3.

3.2 Array Region Analysis

Several transformations in the compilation Row used to tagg hardware accelerators are
based on array regions. This section provides a basic intraction to this representation.
Three examples are used throughout this section to illustratthis approach: the code in
Figure 3.4 requires interprocedural array accesses analysis, the edd Figure 3.5 contains
a while loop, for which the memory access pattern requires an approxated analysis, and
the code in Figure3.6 features a nontrivial switch-case.

Convex array regions were prst introduced by Trioletlfiolet 1984, Triolet et al. 1984
with the initial purpose of summarizing the memory accesseegormed on array element
sets by function calls. The concept was later generalized arfidrmally debned for any
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void iteration(coord pos[NP][NP][NP],
coord vel[NP][NP][NP],
float dens[NP][NP][NP],
int  data[NP][NP][NP],
int  histo[NP][NP][NP]) {

/I Step 1 : Cut the 3D space in a regular mesh
discretisation(pos, data);

/I Step 2 : Compute density on the grid
histogram(data, histo);

/I Step 3 : Compute potential on the mesh
/Il in the Fourier space
potential(histo, dens);

/I Step 4 : For each dimension, compute the
/I force and then update the speed
forcex(dens, force);

updatevel(vel, force, data, X_DIM, dt);
forcey(dens, force);

updatevel(vel, force, data, Y_DIM, dt);
forcez(dens, force);

updatevel(vel, force, data, Z_DIM, dt);

/I Step 5 : Move particles
updatepos(pos, vel);

}

Figure 3.3: Outline of one time step in the Stars-PM cosmolagil simulation code.

program statements by Creusillet Creusillet & Irigoin 1996k Creusillet 199 and imple-
mented in the PIPS compiler framework.

Informally, the read (resp.write ) regions for a statements are the set of all scalar
variables and array elements that are read (resp. written) ding the execution ofs. This set
generally depends on the values of some program variablegtsd entry point of statement
s: theread regions are said to be a function of the memory statepreceding the statement
execution, and they are collectively denoteR (s, !) (resp. W(s,!) for the write regions).

For instance theread regions associated to théor statement in function kernel in
Figure 3.4 are these:

R(s,1)= {viA{it. {i}.{src ") "= @)+ 1 )} {n") "= ()P
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/I R(src)= {src['1]|i$!'1$ i+ k%wl}
/I W(dst) = {dst]! 1]|!1= i}
/I R(M={nf! ]]0$!1$ k%1}

int  kernel( int i, int n,int k,int src[n], int dst[n-k], int m[Kk]) {
int  v=0;
for (int jJ = 0; j < Kk; ++j)
v +=src[ i+ j]*m[]]
dst[i]=v;
}
void fir(  int n, int k, int src[n], int dst[n-K], int mlk]) {
for ( int i = 0; 1 < n -kt 1; ++i )

/I R(src)={src['1]]i$!1$i+k%1,0%i$ n%k}
I R(M={n!1]]|0$% 1% k%1}

/I W(dst) = {dst[!1]|!1 =i}

kernel(i, n, k, src, dst, m);

Figure 3.4: Array regions on a code with a function call.

/I R(randv) = {randv[! 1]|N %3$ 4&!1;3&!1$ N}
Il W(a) = {al'1]|N %3$ 4&!1;12&!;$ 5& N +9}
void foo( int N, int a[N], int randv[N]) {
int  x=N/4,y=0;
while (x<=N/3) {
a[x+y] = x+y;
it (randv[x-y]) x = x+2; else X++,y++;
}
}

Figure 3.5: Array regions on a code with ahile loop.

where" , is used to describe the constraints on theth dimension of an array, and where
! (i) denotes the value of the program variablée in the memory state! . From this point,
i is used instead of (i ) when there is no ambiguity.

The regions given above correspond to a very simple statemghbwever, they can be
computed for every level of compound statements. For instae, theread regions of the
for loop on line 6 in the code in Figure3.4 are these:

R(s,1)={v . {i} {src(")i$"1$i+k%L} {n("1)|0$ "1$ k%1}}

However, computing exact sets is not always possible, eitheecause the compiler lacks
information about the values of variables or the program cadrol Bow, or because the regions
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/I R(Gn)={in['4]]i$'!':1$i+2}
/I W(out) = {out[! ]|!1 =i}
void foo( int n, int i, char ¢, int out[n], int in[n]) {
switch (c){
case OaOl:
case OeO:
out[i]=in[i];
break;
default :
out[i]=in[3*(i/3)+2];

Figure 3.6: Array regions on a code with awitch case.

cannot be exactly represented by a convex polyhedron. In the cases, over-approximated
convex sets (denoted® and W) are computed. In the following example, the approximation
is due to the fact that the exact set contains holes, and cantbe represented by a convex
polyhedron:

W (for(int i=0; i<n; i++) if (i !'= 3) afi]l=0; ",!)={n},{a["o]|0% "o<n}}

whereas in the next example, the approximation is due to the¢athat the condition and its
negation are nonlinear expressions that cannot be represah exactly in PIPS framework:

R(lif (a[i]>3) b[i]=1; else cfil=1 ",1)=
{{ir.{al"oll"o=1},{b["o]["0=1},{c["0]["0 =1}

Under-approximations (denotedR and W) are required when computing region di"erences
(see Lreusillet & Irigoin 19964 for more details on approximations when using the convex
polyhedron lattice).

read andwrite regions summarize the e"ects of statements and functions oip array
elements, but they do not take into account the Row of array eiment values. For that
purpose,in and out regions have been introduced in(Jreusillet & Irigoin 19964 to take
array kills into account, that is to say, redebnitions of indrzidual array elements:

¥ in regions contain the array elements whose values areported by the considered
statement, which means the elements that are read before bgipossibly redebned
by another instruction of the statement.
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¥ out regions contain the array elements debned by the considersdtement, which
are used afterwards in the program continuation. They are thive or exportedarray
elements.

As forread andwrite regions,in and out regions may be over- or under-approximated.

There is a strong analogy between the array regions of a statent and the memory
used in this statement, at least from an external point of vie, which means excluding
its privately declared variables. Intuitively, the memoryfootprint of a statement can be
obtained by counting the points in its associated array regns. In the same way, the
read (or in) and write (or out ) regions can be used to compute the memory transfers
required to execute this statement in a new memory space kduffom the original space.
This analogy is analyzed and leveraged in the following seat&m

3.3 Basic Transformation Process

The most basic process for mapping data to the accelerator @ists in sending to the
accelerator all arrays that are referenced in a kernel pricgxecuting it. The same set
of arrays has to be transferred back from the accelerator meny at the end of kernel
execution. This basic process is the most basic that can be ddsy automatic tools. It is
represented in Figure3.7.

The main issue arises when it is needed to count the number of ayrelements to
transfer. Depending on the target language or framework, ¢hinformation can be hard
to bPgure out. Leung et al. [eung et al. 2009 and JCUDA [Yan et al. 2009 target Java
and benebt from runtime information about array sizes. Othre such as Verdoolaege and
Grosser Jerdoolaegeet al. 2013 handle C code but are limited to arrays with size known
at compile time. The algorithms used by proprietary softwardike R-Stream, HMPP, or
PGI Accelerator are unknown, but they are most likely based orhe same kind of scheme.

The proposed tool that comes along with this thesis, Par4AllISILKAN 2010 (perso)
Amini et al. 2012b (perso) (see detailed presentation in Sectiob.1), relies on the same
scheme in its most basic version, relaxing this constrainythandling C99 Variable Length
Array (VLA) . The e"ective size is then known only at runtime but the informaton is
available symbolically at compile time.

Some polyhedral automatic tools do not consider this probieat all. While converting
and automatically optimizing loop nests written in C code inb CUDA or OpenCL kernels,
they rely on the programmer to generate the host code. This ihé case at least for
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Figure 3.7: Basic process for mapping data to the accelerat(source [ran et al. 2009,
Ic 2011 Springer-Verlag)g.

Baskaran et al. Baskaranet al. 201(.

The most common optimization at this level is local to each keel. It consists in
sending to the accelerator only the data that are used and toeg back only the data
that are debned. This can be done automatically as in PPCCG/§rdoolaegeet al. 2013
or directive hints given by the programmer as in JCUDA, HMPP, PGI Acelerator, or
hiCUDA [Han & Abdelrahman 2009.

This basic process is illustrated below using as an exampleetkprst step of Stars-PM
main iteration, the function discretization() . Figure 3.8 shows the sequential code of
this function in its initial version.

The loop nest is detected as parallel and selected to be proradtas a kernel. The
mapping on the accelerator is performed according to the tatique presented forward in
Section4.2 The loop body is outlined to a new function that will be executé by the
accelerator, and the loop nest is replaced by a call to a kefdaunch function. Memory
transfers are generated according to the basic techniqudroduced in this section. The
resulting code is shown in Figures.9.

Looking at the original loop nest, it is clear that thepos array is used in the kernel,
whereas thedata array is written. Therefore two transfers have to be generateds can
be seen in Figure3.9. The brst one ensures thapos are moved to the accelerator before
kernel execution while the second one gets the data back intbet host memory after the
kernel execution.
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void discretization(coord pos[NP][NP][NP],
int  data[NP][NP][NP]){

int i, j, k;
float x, vy, z;
for (i = 0; i < NP; i++)
for (j = 0; j < NP; j++)
for (k = 0; k < NP; k++) {
x = pos[i][jI[k].x;
y = pos[i][jI[k].y;

z = posl[i][jl[k].z;

data[i][jI[k] = ( int )(x/DX)*NP*NP
+ (int )(y/DX)*NP
+ (int )(z/DX);

Figure 3.8: Sequential source code for functiafiscretization , the Prst step of each Stars-
PM simulation main iteration.

3.4 Region RebPnement Scheme

This section introduces rebnement of the basic scheme basedasray declarations
from the previous section using the convex array regions ire&ion 3.2 It also illustrates
informally the process ofstatement isolation described formally in GueltonOs PhD the-
sis [Guelton 2011f. It turns a statement s into a new statementlsol(s) that shares no
memory area with the remainder of the code, and is surrounded lthe required memory
transfers between the two memory spaces. In other words,sifis evaluated in a memory
state function, !, Isol(s) does not reference any element of Domdln). The generated
memory transfers to and from the new memory space ensure thensistency and validity
of the values used in the extended memory space during the extion of Isol(s) and once
again, back to the original execution path.

To illustrate how the convex array regions are leveraged, thehile loop in Figure 3.5
is used as an example. The exact and over-approximated arraggions for this statement
are as follows:

R={{x},{y} R(randv) = {randv[";]|N %3$ 4& "1;3& "1 $ N}
W = {x} {y} W(a) = {a"1]|N %3% 4&"1;12& "1 $ 5& N +9}
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void discretization(coord pos[NP][NP][NP], int  data[NP][NP][NP]) {
/I Declare pointers to buffers on accelerator

coord (*posO)[NP][NP][NP] = NULL;

int  (*dataO)[NP][NP][NP] = NULL;

/I Allocate buffers on the GPU
P4A _accel_malloc(( void **) &dataO, sizeof (int )*NP*NP*NP);
P4A _accel _malloc(( void **) &pos0, sizeof (coord)*NP*NP*NP);

/I Copy the input data to the GPU
P4A_copy_to_accel(sizeof (coord)*NP*NP*NP, pos, *pos0);

/Il Launch the kernel
P4A_call_accel_kernel_2d(discretization_kernel ,NP,N P,*pos0,*data0);

/I Copy the result back from the GPU
P4A _copy_from_accel(sizeof (int )*NP*NP*NP, data, *data0);

/I Free GPU buffers

P4A accel free(data0);

P4A accel free(posO0);
}

/I The kernel corresponding to loop%nest body

P4A_accel_kernel discretization_kernel( coord *pos, int *data ) {
int k; float x, vy, z;
int i P4A vp_1; /I P4A vp_ " are mapped from CUDA Blockldx
int j P4A _vp_0; /I and Threadldx." to loop indices

/I Iteration clamping to avoid GPU iteration overrun
if (i<=NP&&j<=NP)
for (k = 0; k < NP; k += 1) {
X (*(pos+k+NP*NP*i+NP*j)).x;
y = (*(pos+k+NP*NP*i+NP*j)).y;
z = (*(pos+k+NP*NP*i+NP*j)).z;
*(data+k+NP*NP*i+NP*j) = (int )(x/DX)*NP*NP
+ (int )(y/DX)*NP
+ (int )(z/DX);

Figure 3.9: Code for functiondiscretization  after automatic GPU code generation.

71



72 Chapter 3. Data Mapping, Communications and Consistency

void foo( int N, int a[N], int randv[N]) {

int  x=0,y=0;

int  A[N/6], RANDVI[(N-9)/12], X, Y,

memcpy (A, a+(N-3)/4, N/6* sizeof (int)); 11(1)
memcpy(RANDV, randv+(N-3)/4, (N-9)/12* sizeof (int )); 11(2)

memcpy (&X, &x, sizeof (x)); memcpy(&Y, &y, sizeof (y)); [1/(3)
while (X<=N/3) {

A[X+Y-(N-3)/4] = X+Y;

it (RANDV[X-Y-(N-3)/4]) X = X+2; else X++,Y++;

}
memcpy(a+(N-3)/4, A, N/6* sizeof (int )); 11(4)
memcpy(&x, &X,sizeof (x)); memcpy(&y, &Y, sizeof (y)); [//(5)

}

Figure 3.10: Isolation of the irregulafvhile loop from Figure3.5using array region analysis.

The basic idea is to turn each region into a newly allocated vatle, large enough to
hold the region, then to generate data transfers from the @inal variables to the new
ones, and bnally to perform the required copy from the new vables to the original ones.
This results in the code shown in Figure8.10 where isolated variables have been put in
uppercase. Statement$3) and (5) correspond to the exact regions on scalar variables.
Statements(2) and (4) correspond to the over-approximated regions on array vaties.
Statement (1) is used to ensure data consistency, as explained later.

Notice how memcpygystem calls are used here to simulate data transfers, and,par-
ticular, how the sizes of the transfers are constrained withespect to the array regions.

The benebts of using new variables to simulate the extended mery space and of
relying on a regular function to simulate theDMA are twofold:

1. The generated code can be executed on a general-purpose meae It makes it
possible to verify and validate the result without the need ofin accelerator or a
simulator.

2. The generated code is independent of the hardware target: spaizing its implemen-
tation for a given accelerator requires only a specibc imphentation of the memory
transfer instructions (herememcpy

3.4.1 Converting Convex Array Regions into Data Transfers

From this point on, the availability of data transfer operabrs that can transfer rectan-
gular subparts ofn-dimensional arrays to or from the accelerator is assumedorHnstance,
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size_t memcpy2d(void * dest, void* src,

size_t diml, size_t offsetl, size t countl,

size_t dim2, size_t offset2, size_t count2);
copies fromsrc to dest the rectangular zone betweefoffsetl ,offset2 ) and (offsetl +
countl, offset2 + count2). dimlanddim?2 are the sizes of the memory areas pointed to by
src and dest on the host memory, and are used to compute the addresses of themory
elements to transfer.

We show how convex array regions are used to generate callghese operators. Let
src be an-dimensional variable, and{src["1]...["n] | #("1,...,"n)} be a convex region of
this variable.

As native DMA instructions are very seldom capable of transferring anyihg other
than a rectangular memory area, the rectangular hull, denetl '4(, is brst computed so
that the region is expressed in the form

{src[*a]...["n][$2$ "1 <%, ..., 80 $ "0 <%}

This transformation can lead to a loss of accuracy and the rexi approximation can thus
shift from exactto may. This shift is performed when the original region is not equalot
its rectangular envelope.

The call to the transfer function can then be generated withoffset k = $, and
countk = % %$y for eachk in [1...n].

For a statements, the memory transfers from! are generated using its read regions
(R(s,!)): any array element read bys must have an up-to-date value in the extended
memory space with respect td . Symmetrically, the memory transfers back td must
include all updated values, represented by the written regis (W (s,!")), where! ' is the
memory state onces is executed from! .2

However, if the written region is over-approximated, part othe values it contains may
not have been updated by the execution déol(s). Therefore, to guarantee the consistency
of the values transferredback to !, they must brst be correctly initialized during the
transfer from ! . These observations lead to the following equations for the meex array

2. Most of the time, variables used in the region descriptiorare not modibed by the isolated statement
and we can safely us&V(s,"). Otherwise, e.g.afi++]=1 , methods detailed in [Creusillet & Irigoin 1996b]
must be applied to express the region in the right memory stag.
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regions transferred from and td , respectively denoted_oad(s,!) and Store(s,!):

Store(s,!) ="W(s,!)(
Load(s,!)="R(s,!)) (Store(s,!) % W(s,!))(

Load(s,!) and Store(s,!) are rectangular regions by debnition and can be convertedan
memory transfers, as detailed previously. The new variablegith ad-hoc dimensions are
declared and a substitution taking into account the shiftss performed ons to generate
Isol(s).

3.4.2 Managing Variable Substitutions

For each variablev to be transferred according toLoad(s,!), a new variableV is de-
clared, which must contain enough space to hold the loaded feg. For instance ifv holds
short integers and

Load(s,!) = {V["l["2]|$1$ "1 <%, $2$ "2 < %}

then V will be declared asshort int V% %$1][% %$-]. The translation of an intraproce-
dural reference tov into a reference toVis straightforward as*i,j, Mi][j]= V[i+ $4][j + $-].

The combination of this variable substitution with convex aray regions is what makes
the isolate statement a powerful tool: all the complexity isidden by the region abstraction.
For instance, once the regions of the switch case in FiguBet are computed as

R(c) = {c} R (i) = {i}
W (out) = {out[" ]| "1 = i} R(in)= {in["1]|i$ "1 $ i+2}

the data transfer generation and variable substitutions kd to the isolated code given in
Figure 3.11 The complexity of the isolated statement does not matter aoohg as it has
been modeled by the convex array region analysis.

For interprocedural translation, a new version of the call® function is created using
the following scheme: for each transferred variable passeslan actual parameter, and for
each of its dimensions, an extra parameter is added to the tahd to the new function,
holding the value of the corresponding o"set. These extra pargeters are then used to
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void foo( int n, int i, char ¢, int out[n], int in[n]) {
char C; int OUTI[1], IN[3], I;
memcpy (&l,&i, sizeof (int ));
memcpy(&C,&csizeof (char));
memcpy(IN, in+i, sizeof (int )*3);
switch (C) {
case 0OaO:
case OeO:
OUTII-11=INTI-I];
break;
default :
OUTII]=IN[3*(1/3)+2-1];
}
memcpy(out+i, OUT, sizeof (int ));

Figure 3.11: Code with aswitch case from Figure3.6 after isolation.

void fir(  int n, int k, int src[n], int dst[n-K], int - mlk]) {
int N=n - k+ 1;
for ( int i = 0; 1 < N; ++i ) {

int  DST[1],SRC[K],MI[K];
memcpy(SRC, src+i, k*sizeof (int ));
memcpy (M, m+0, k#izeof (int));
KERNEL(i, n, k, SRC, DST, M, i/"SRC"/, i /"DST"/, O0/"M"/);
memcpy(dst, DST+0, 1*izeof (int ));
}
}

Figure 3.12: Interprocedural isolation of the outermost lgp of a Finite Impulse Response.

perform the translation in the called function.

The output of the whole process applied to the outermost loop dfie Finite Impulse
Response (FIR)is illustrated in Figure 3.12 where a newKERNEfunction with two extra
parameters is now called instead of the originddernel function. These parameters hold
the o"sets between the original array variablesrc and mand the isolated oneSRGind M

The body of the newKERNEfunction is given in Figure3.13 The extra o0"set parame-
ters are used to perform the translation on the array paramets. The same scheme applies
for multidimensional arrays, with one o"set per dimension.
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void KERNELQt i, int n, int k, int SRCI[k], int DST[1], int M[K],
int SRC_offset, int DST_offset, int M_offset) {

int v=0;

for ( int j = 0; ] < k; ++j )

v += SRCJ[i+j-SRC_offset]*M[j-M_offset];
DST[i-SRC_offset]=v;
}

Figure 3.13: Isolated version of th&KERNEfunction of the Finite Impulse Response (see
Figure 3.4).

3.5 Limits

Data exchanges between host and accelerator are performaeddA transfers between
Random Access Memory (RAM)memaories across théCl Expressbus, which currently
o"ers a theoretical bandwidth of 8 GB/s. This is really small corpared to the GPU inner
memory bandwidth, which exceeds often 150 GB/s. This low bandwtid can annihilate all
gains obtained when o$%oading computations in kernels, unleshey are really compute-
intensive.

With the available hardware (see Sectiof7.1), up to 5.6 GB/s was measured from the
host to the GPU, and 6.2GB/s back. This throughput is obtained for blocks of a few
tens of MB, but decreases dramatically for smaller blocks. Meover, this bandwidth is
reduced by more than half when the transferred memory areaseanot pinned; i.e. subject
to paging by the virtual memory manager of the operating syem. Figure 3.14 llustrates
this behavior.

Using as reference a cube with 128 cells per edge and as manyiglas as cells, for
a function like discretization , one copy to theGPU for particle positions is a block of
25 MB. After execution, one copy back from thesPU for the particle-to-cell association
is an 8 MB block.

The communication time for these two copies is about 5 ms. ReteGPUs o"er ECC
hardware memory error checking that more than doubles timeeeded for the same copies
to 12 ms. Moreover, each bu"er allocation and deallocation rage 10 ms. In comparison,
kernel execution fordiscretization  and this problem size requires only 0.37 ms on the
GPU, but 37 ms on theCPU.

Note that memory transfers and bu"er allocations representie largest part of the total
execution time for the discretization step, and thereforene highest potential for obtaining
accelerations. This is why the next section exposes a statidgrprocedural optimization
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Figure 3.14: Bandwidth for memory transfers over the PCI-Expres2.0 bus as a function
of block size. Results are shown for transfers from the host e GPU (H-TO-D) and in
the opposite direction (D-TO-H), each for pinned or standardllocated memory.

to map data transfers more k ciently.

3.6 Communication Optimization Algorithm

Much work has been done regarding communication optimizaticfor distributed com-
puters. Examples include message fusion in the context®ihgle Program Distributed Data
(SPDD) [Gerndt & Zima 199(, data Bow analysis based on array regions to eliminate re-
dundant communications and to overlap the remaining commueations with computations
operations [songet al. 1993, and distribution in the context of High Performance Fortran
(HPF) compilation [Coelho 1996 Coelho & Ancourt 1994.

Similar methods are applied in this section to $oad computation in the context of a
hostbaccelerator relationship and to integrate in a paralizing compiler a transformation
that limit the amount of CPUBGPU communications at compile time.

This section introduces a new data 3ow analysis designed tawdr the static generation
of memory transfers between host and accelerator. The mairheme is brst presented and
the intraprocedural algorithm is detailed. Then the interppcedural extension of the algo-
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rithm is presented. The metric used to evaluate the scheme igrioduced and experiments
are performed using a 12-core Xeon multiprocessor machinghwa Nvidia Tesla GPU

C2050. The proposed solution is evaluated on well-known benchrks [Pouchet 2011 Che

et al. 2009 before showing how it scales with the real numerical cosmoiogl simulation

Stars-PM.

It is assumed for this section that the memory of theGPU is large enough to handle
the arrays to process. While this assumption can represenh ainacceptable constraint
for some workloads, like those encountered when dealing withtepf-core computing, the
many gigabytes of memory embedded in mode@PUs are large enough for a wide range
of simulations.

3.6.1 A New Analysis: Kernel Data Mapping

At each time step, the functioniteration (see in Figure3.3) uses data debned by
the previous step. The parallelized code performs many trdiess to the GPU followed
immediately by the opposite transfer.

Our simulation (see in Figure3.2) presents the common pattern of data dependencies
between loop iterations, where the current iteration uses tka debned during previous
ones. Such data should remain on th&PU, with copies back to the host only as needed
for checkpoints and bnal results.

A new analysis is introduced for the compiler middle-end to gerate ¢ cient hostb
GPU data copying. The host and the accelerator have separated mem spaces; my
analysis annotates internally the source program with infonation about the locations of
up-to-date copies: in host memory and/oiGPU memory. This allows a further additional
transformation to statically determine interesting placse to insert asynchronous transfers
with a simple strategy: Launch transfers from host t@PU as early as possible and launch
those fromGPU back to host as late as possible, while still guaranteeing daintegrity.

Additionally, launching transfers inside loops is avoidehenever possible. A heuristic
is used to place transfers as high as possible in the call ghagnd in the Abstract Syn-
tax Tree (AST). PIPS uses a hierarchical control Bow graphir[goin et al. 1991, Amini
et al. 2011a (persd)to preserve as much as possible of th&ST. However, to simplify
the presentation of the analyses, equations are written in dassical way assuming that a
traditional Control Flow Graph (CFG) is available.

The sets used in the data Bow analysis are brst introduced. Théme equations used
for intraprocedural construction are presented, before tending them to interprocedural
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construction. Finally the generation of transfers and theightweight runtime involved to
support the copy process are illustrated.

3.6.2 DebPnitions
The analysis computes the following sets for each statement:

¥ U is the set of arrays known to baised next ¢) by the accelerator;

¥ D is the set of arrays known to be last<) debned by the accelerator, and not used
on the host in the meantime;

¥ Ty~ a is the set of arrays to transfer to the accelerator memory spa immediately
after the statement;

¥ Ta- y is the set of arrays to transfer from the accelerator to the & immediately
before the statement.

These sets are initially empty for every statement. Note thaeven if array regions are
used in the following equations to compute these sets, the grdarity is the array. Data-
Row equations presented in the next sections describe therguutation of these sets on the
control-Bow graph of the global program. LetS denotes a statement of the program. It
can be complex but in order to simplify in the following it is casidered that statements are
assignments or function calls. A call to a kernel on th&PU is handled through di"erent
equations. Such a statement is denote8,. The control-Bow graph is represented with
pred(S) for the set of statements that can precede immediatel$ at execution. Symmet-
rically, succ@) stands for the set of statements that can be executed immethdy after
S.

As explained in Section3.2, PIPS computes array regions. These analyses produce
Pne grained resources; these local bne grained pieces afrimdtion are used to build a
coarse grained analysis in which arrays are represented afoatly. Therefore the equations
presented in the following do not require a deep understandjnof array regions. The
interested reader is referred to BZatrice CreusilletOs Phlesiis Creusillet & Irigoin 19964
for more information.

In the equations below, the arrays totally or partially written by a statementS are
denotedW (S). Similarly, the arrays read byS are denotedR (S).

When S is a function call, the set represents the summary of the fution, i.e., the set
of e"ects that can be seen on function parameters and on globalriables.
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Moreover, OUT (Sy) represents the set of arrays modiped by a kernel for whi€HPS
established that they are alive, i.e., their value is poterdlly used by a later statement in
the program. By contrast, IN (Sk) stands for the set of arrays consumed by the kernel,
i.e., those for which a value is read without being previouslyrpduced in the kernel.

3.6.3 Intraprocedural Phase

The analysis begins with the seD in a forward pass through the control Bow graph.
An array is debned on theGPU for a statementS i" it is also the case for all its immediate
predecessors in the control Bow graph and if the array is nosed or debPned by the host,
i.e., is not in the setR(S) or W(S) computed by PIPS:

! $

"

#
D(S) = D(S)% % R(S) % W(S) (3.1)
S'#pred(S)

The initialization is performed by the brst kernel callS, with the arrays debned by the
kernel k and used later,OUT (S¢). The following equation is involved at each kernel call
site:

! $

& #
D(S) = OUT(S) D(S)% (3.2)
S'#pred(Sk)

A backward pass is then performed in order to computd. For a statementS, an array
has its next use on the accelerator i" it is also the case forladtatements immediately
following in the control Bow graph, and if it is not debPned bys.

! $
&
ues) = ° U(S")% % W(S) (3.3)

S'#succ(S)

As above withD, U is initially empty and is prst initialized at kernel call sites with the
arrays necessary to run the kernelN (Sy), and the arrays debned by the kernelV (Sy).
These debned arrays have to be transferred to t&PU if it cannot be proved that they
are written entirely by the kernel. Otherwise, if not all the vdues have been updated in
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the GPU memory, the transfer may overwrite still-valid data on theCPU when copying
back the array from the GPU after kernel execution:

! $

& & &
US) = IN (S)  W(S) u(s')% (3.4)
S'#succ(Sk)

An array must be transferred from the accelerator to the hosafter a statementS i"
its last depPnition is in a kernel and if it is not the case for ateast one of the immediately
following statements:

#
Tar u(S) = D(S)% D(S)) (3.5)
S'#succ(S)

This set is used to generate a copy operation at the latest pdsg location.

An array must be transferred from the host to the acceleratoif it has a next use
on the accelerator. In order to perform the communication athe earliest, its launch is
placed immediately after the statement that debnes it, i.ethe statement whosaw (S) set
contains it. The following equation applies for anys which is not a kernel call.

! $
&
u(sHh% (3.6)

#
Thr a(S) = W(S)
S'#succ(S)

3.6.4 Interprocedural Extension

Kernel calls are potentially localized deep in the call graphConsequently, a reuse be-
tween kernels requires interprocedural analysis. The funch iteration  (see in Figure3.3)
illustrates this situation: each step corresponds to one onore kernel executions.

My approach is to perform a backward analysis on the call graphFor each function
f, summary setsD(f ) and U(f ) are computed. They summarize information about the
formal parameters of the function and the global variablesThese sets can be viewed as
contracts. They specify a data mapping that the call site mustonform to. All arrays
present inU(f ) must be transferred to theGPU before the call, and all arrays debned in
D(f) must be transferred back from theGPU before any use on the host.
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These sets are required in the computation @ and U when a call site is encountered.
Indeed, at a call sitec for a function f, each argument of the call that corresponds to a
formal parameter present inU must be transferred to theGPU before the call, because we
know that the prst use in the called function occurs in a kerte Similarly, an argument
that is present inD has been debned in a kernel during the call and not already trsferred
back when the call ends. This transfer can be scheduled latemjtthefore any use on the
host.

Equations 3.1 and 3.3 are modibed for a call site by adding a translation operator,
transy ¢, between arguments and formal parameters:

| & ( # y
D(c) = transy ((D(f)) D(S) % R(c) % W(c) (3.7)
S'#pred(c)
| _ & ( & )y
U(c) = transy (U(f)) ues) % W(o) (3.8)
S'#succ(c)

The whole process implied by these equations is shown in Figudda

In the code in Figure3.16 comparing the result of the interprocedural optimized coal
with the very local approach of Figure3.9 shows that all communications and memory
management instructions (allocation/deallocation) havebeen eliminated from the main
loop.

3.6.5 Runtime Library

Our compiler Par4All includes a lightweight runtime library that lets the generated code
be independent from the target (currentlyOpenCL and CUDA). Par4All also supports
common functions such as memory allocation at kernel calltess and memory transfer
sites. The runtime relies on a hash table that maps host addisess toGPU addresses. This
hash table allows Rexibility in the handling of the memory atications. Using it, the user
call sites and function signatures can be preserved, avaidi more advanced and heavy
transformations, i.e., duplicating the function argumers for the arrays in the whole call
graph and at all call sites to carry theCPU and GPU addresses.

The memory management in the runtime does not free thePU bu"ers immediately
after they have been used, but preserves them as long as theseenough memory on the
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Figure 3.15: lllustration of set construction using the intaprocedural analysis on the
function iteration . The di"erent calls to step functions use and produce data on the GPU
via kernel calls. Sometimes in the main loop, array is read to display or to checkpoint.

The interprocedural translation exploits at call site the ssmmary computed on function

iteration . A Px point is sought on the loop.

GPU. When a kernel execution requires more memory than is availa, the runtime frees
some bu"ers. The policy used for selecting a bu"er to free can blee same as for cache and
virtual memory management, for instancd.east Recently Used (LRU)or Least Frequently
Used (LFU).

This behavior requires updating hardware caches Bymmetric MultiProcessing (SMP)
with protocols such asMESI. The scheme involved keeps a copy of the data up to date in
the CPU and the accelerator memory at the same time. When the host oné accelerator
writes data, the copy in the other one is invalidated and a trasfer may be scheduled if
necessary.

The calls to the runtime that retrieves addresses in the aceshtor memory space for
arrays pos and data can be noticed in Figure3.16 If the arrays are not already allocated
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void discretization(coord pos[NP][NP][NP],
int  data[NP][NP][NP]) {
/lgenerated variable
coord *posO = P4A_runtime_resolve(pos,NP*NP*NP*sizeof (coord));
int *data0 = P4A_runtime_resolve(pos,NP*NP*NP*sizeof (int ));
/I Call kernel
P4A call _accel_kernel_2d(discretization_kernel,
NP, NP, pos0O, dataO);
}
int  main(int argc, char *argv[]) {
/I Read data from input files
init_data(argv[l], ....);
P4A_runtime_copy_to_accel(pos, ...* sizeof (...));
/I Main temporal loop
for (t = 0; t < T; t+=DT)
iteration(...);
/I Output results to a file
P4A runtime_copy_from_accel(pos, ...* sizeof (...));
write_data(argv[2],....);

Figure 3.16: Simplibed code for functiondiscretization ~ and main after interprocedural
communication optimization.

in the accelerator, a lazy allocation is done the brst time. Téhcode is lighter than the
previous version shown in Figure3.9, and easier to generate from the compiler point of
view.

3.7 Sequential Promotion

Two parallel loop nests can be separated by some sequentialeoWhen this sequential
code uses or produces the data involved in the parallel contptions, transfers may occur
between the host memory and the accelerator memory.

A solution to this issue is to promote the sequential code gsarallel, with only one
thread that executes it. Using one thread on th&PU is totally ine! cient. However, the
slowdown can be dramatically lower than the cost of communidan if the code is small
enough. This issue is similar to the decision about the proHigity whether or not to
0% oad a kernel to the accelerator that is discussed more gerlgran Section 5.6 page156

The gramschmidt example mentioned in the previous section is shown in FiguBel7.
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for (k = 0; k < n; k++) {
/I The following is sequential
nrm = O;
for (i = 0; i < m; i++)

nrm += AJi][k] * A[i]l[K];

R[k][k] = sqgrt(nrm);

/I The following
for (i =
Q[illk A
for (j = +1;j <
. 0:
0;
RIKI[T += QIil[k]
for (i
ALl

kernel_O(R, n);
copy_from_accel(R);
for (k = 0; k <= n-1; k += 1) {
/I Sequential
nrm = 0;
for (i = 0; i <= m-1; i += 1)
nrm += A[i][kK]*A[il[K];
R[k][k] = sqrt(nrm);

/I Parallel region
copy_to_accel(R);

kernel_1(A, Q, R, k, m);
kernel_2(A, Q, R, k, m, n);
kernel_3(A, Q, R, k, m, n);
copy_from_accel(A); }
copy_from_accel(R); /1

i < m;

0; i < m;

AlIGT - QIillk] * RIKILL

is parallel
0; i < m; i++)
[i1k] 7 RIKIK]:

n; j++) {
i++)

* ALGE

i++)

copy_to_accel(A);
kernel _0O(R, n);
for (k =

0; k <= n-1; k += 1) {
/I Sequential code promoted
/I on the GPU

sequential_kernel(A,R,m, k);

/I No more

/I transfers

/Il here

kernel_1(A, Q, R, k, m);
kernel 2(A, Q, R, k, m, n);
kernel _3(A, Q, R, k, m, n);
is outside of the

transfers loop

} copy_from_accel(A);

(a) Usual Host code.

(b) Host code after sequential promotion.

Figure 3.17: gramschmidt example taken from Polybench suite. The brst part of the loop
body is sequential while the following are parallel loop nest3he sequential promotion on
the GPU avoids costly memory transfers.
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The codes generated with and without sequential promotion ilkirate how this trade-o"
can reduce the communication. The diculty is to evaluate the trade-o0". This depends
on both the GPU PESO speed and theCle bandwidth.

Section 7.8.4 page 201, contains measurements showing up to eight times speedup
over the optimized scheme for thgramschmidt example, but also up to thirty-seven times
speedup for thedurbin example from the Polybench suite.

In case of inaccurate evaluation, the performance can be dratically degraded. This
transformation requires a careful evaluation of the execian time of both versions. One
possibility to overcome this issue is to perform an o"-line @Pling with just one iteration
of the sequential loop on theGPU and then decide at runtime if the overhead is worth the
transfers that must be performed. Such an approach is expéaf in Section5.7, page 158
however | did not study how it can be mixed with the communicatin optimization scheme
introduced in this chapter.

3.7.1 Experimental Results

Section7.8, pagel97, presents detailed experimental results for the optimizgnscheme
introduced in this chapter.

The brst question is: what should we measure? While speedup aeery e"ective
metric commercially speaking, in the context of this optingation it is biased because it
is largely impacted by input parameters (see Sectior.8.1, page 197). The very same
benchmark exhibits speedups ranging from 1.4 to fourteenguby changing the input
parameters.

A more objective measurement for evaluating the proposed pq@ach is the number of
communications removed and the comparison with a scheme watt by an expert pro-
grammer. Focusing on the speedup would also emphasize thegtlalizer capabilities.

Using benchmarks from Polybench 2.0 suite and Rodinia, algrwith the Stars-PM
numerical simulation introduced in Section3.1, Section 7.8.2 page 199 illustrates the
performance of the optimizing scheme using this metric, anshows that the optimized
code performs almost as well as a hand-written code.

One noticeable exception igramschmidt. Communications cannot be moved out of any
loop due to data dependencies introduced by some sequentiatie. The parallel promotion
scheme shown in SectioB.7 helps by accepting a more slowly generated code and allowing
data to stay on the accelerator. This is still valuable while th slowdown is signibcantly
smaller than the communication overhead. The diculty for the compiler is to evaluate the
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slowdown and to attempt parallelization only if optimized communications lead to a net
performance increase. The result of this scheme, shown in $&tt7.8.4 page201, exhibits
promising results with a speedup of up to thirty-seven, depéing on the test case.

Finally Section 7.8.3 page199 explores the performance impact of deferring the deci-
sion at runtime using the StarPU library; speedup of up to bveimes is obtained with the
proposed static approach. Although StarPU is a library that las capabilities ranging far
beyond the issue of optimizing communications, my static keme is relevant.

3.8 Related Work

Among the compilers that | evaluated, none implement such aautomatic static in-
terprocedural optimization. While Lee et al. address thisssue [ee et al. 2009 ©4.2.3],
their work is limited to liveness of data and thus quite simar to the unoptimized scheme
proposed in Sectior8.3. Leung addresses the case of a sequential loop surroundirigemel
launch and moves the communications out of the loop.¢ung 200§.

The optimizing scheme proposed in this chapter is independeof the parallelizing
scheme involved, and is applicable to systems that transfar OpenMP in CUDA or
OpenCL like OMPCUDA [Ohshimaet al. 201Q or OpenMP to GPU [Lee et al. 2009.
It is also relevant for a directive-based compiler, such asCWDA and hiCUDA [Han &
Abdelrahman 2009. It would also complete the work done on OpenMPCLEe & Eigen-
mann 2010 by not only removing useless communications but moving theup in the call
graph. Finally it would free the programmer of the task of admg directives to manage
data movements inHMPP [Bodin & Bihan 2009 and PGI Accelerator [\olfe 201().

My approach can be compared to the algorithm proposed by Aliast al. [Alias
et al. 2017, Alias et al. 2012h Alias et al. 20123. This work studies, at a very bne grained
level, the loading and unloading of data from memory for a &ld code running on a FPGA.
My scheme optimizes at a coarse grained level and keeps theadan the accelerator as
late as possible.

In a recent paper Jablin et al. 2011, Jablin et al. introduce CGCM, a system targeting
exactly the same issue. CGCM, just like my scheme, is focused oartsferring full alloca-
tion units. While my granularity is the array, CGCM is coarser ad considers a structure of
arrays as a single allocation unit. While my decision procgss fully static, CGCM makes
decisions dynamically. It relies on a complete runtime to halle general pointers to the
middle of any heap-allocated structure, which we do not suppoat this time.
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| obtain similar overall speedup results, and | used the samiaput sizes. However,
CGCM is not publicly available and the author does not provide sl with a version. There-
fore it has not been possible to reproduce their results aneémpare my solution in the
same experimental conditions.

Jablin et al. measured a less-than-eight geometric mean spep vs. mines of more
than fourteen. However, a direct comparison of my measurenmels hazardous. | used
GNU C Compiler (GCC) while Jablin et al. usedClang which produces a sequential
reference code slower tha@CC. | measured a slowdown of up to 20% on this benchmark
set. Moreover, | made my measurements on a Xeon Westmere whiteey use an older
Core2Quad Kentsbeld. They generate thelGBPU version using aPTX generator forLow
Level Virtual Machine (LLVM) while | used NVCC, the Nvidia compiler toolchain.

Finally, a key point is the scope on which the optimization is pplied. Jablin et al.
perform the optimization across the whole program and measd wall clock time, while |
exclude the initialization functions from the scope of my aupiler and exclude them from
my measurements. Indeed, if | do not do so, the initializatits of small benchmarks like
the one in the Polybench suite would be parallelized and o$ad&d on the GPU, then no
copy to the GPU would be required. Therefore | limit myself from optimizatio possibilities
because | consider that this way is closer to what can be seerréal-world programs where
initializations cannot usually be parallelized.

The overhead introduced by the runtime system in CGCM is thus impssible to evaluate
by a direct comparison of the speedups obtained by my implemtation.

3.8.1 Redundant Load-Store Elimination

Note that PIPS also includes another approach to the communication optimétion
issue that has been described formally in GueltonOs thesisi§lion 2011). This section
informally describes how this approach uses step-by-stepopagation of the memory trans-
fers across theCFG of the host program. PIPS represents the program using &lierarchical
Control Flow Graph (HCFG): for example the statements that are part of a loop body
are stored at lower level that the loop header. The represenian is close to anAST.
The main idea is the same as the one expressed earlier in Sec®%, i.e., to moveload
operations upward in theHCFG so that they are executed as soon as possible, whstere
operations are symmetrically moved so that they are executas late as possible. Redun-
dant load-store elimination is performed in the meantime. &t instance,loads and stores
inside a loop may be moved outwards, which is similar to invamnt code motion. But this
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propagation is also performed interprocedurally, as datadansfers are also moved outward
function boundaries whenever possible.

3.8.1.1 Interprocedural Propagation

When aload is performed at the entry point of a function, it may be intersting to
move it at the call sites. However, this is valid only if the mmory state before the call site
is the same as the memory state at the function entry point, tt is, if there is no write
e"ect during the e"ective parameter evaluation. In that casethe load statement can be
moved before the call sites, after backward translation fro formal parameters to e"ective
parameters.

Similarly, if the same store statement is found at each exit point of a function, it may
be possible to move it past its call sites. Validity criteriainclude that the store statement
depends only on formal parameters and that these parametease not written by the
function. If this the case, thestore statement can be removed from the function call and
added after each call site after backward translation of théormal parameters.

3.8.1.2 Combining Load and Store Elimination

In the meanwhile, the intraprocedural and interprocedural ppagation of DMA may
trigger other optimization opportunities. Loads andstores may for instance interact across
loop iterations, when the loop body is surrounded by a load aral store; or when a kernel
is called in a function to produce data immediately consumeuly a kernel hosted in another
function, and the DMA have been moved in the calling function.

The optimization then consists in removing load and store operations when
they are in direct sequence. This relies on the following progg consider-
ing that the statement denoted by @emcpy(a,b,10*sizeof (in)) O is aDMA and
its reciprocal is denoted by femcpy(b,a,10*sizeof (in)) O, then in the sequence
memcpy(a,b,10*sizeof (in));memcpy(b,a,10* sizeof (in)) , the second call can be removed
since it would not change the values already stored &

Figure 3.18 page9Q, illustrates the result of the algorithm on an example takerfrom
the PIPS validation suite. It demonstrates the interprocedural etnination of data com-
munications represented by thenemloadand memstorefunctions. These function calls are
brst moved outside of the loop, then outside of thbar function; Pnally, redundantloads
are eliminated.
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void bar(int i, int j[2], int  k[2]) {
while (i-->=0) {
memload(k, j, sizeof (int )*2);
k[O]++;
memstore(j, k, sizeof (int )*2);
}
}
void foo( int j[2], int k[2]) {
bar (0, j, k);
bar(1, j, k);
}
+
void bar(int i, int j[2], int  k[2]) {
memload(k, j, sizeof (int )*2); /I moved outside of the loop

while (i-->=0) k[0]++;
memstore(j, k, sizeof (int));

}
+
void bar(int i, int j[2], int  k[2]) {
while (i-->=0) k[0]++;
}
void foo( int j[2], int k[2]) {
memload(k, j, sizeof (int )*2); [// load moved before call
bar(0, j, k);
memstore(j, k, sizeof (int )*2); // redundant load eliminated
bar(1, j, k);
memstore(j, k, sizeof (int )*2); // store moved after call
}

Figure 3.18: lllustration of the redundant load-store elirmation algorithm.

3.9 Optimizing a Tiled Loop Nest

Alias et al. have published an interesting study about Pne gined optimization of com-
munications in the context of FPGA [Alias et al. 2011, Alias et al. 20121 Alias et al. 20123.
The fact that they target FPGAs changes some considerations on the memory sie®GAs
usually embed a very small memory compared to the many gigabg available in aGPU
board. The proposal from Alias et al. focuses on optimizingdds fromDouble Data Rate
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for ( int i = 0; i < N; ++i ) {
memcpy(M,m,kSsizeof (int ));
memcpy(&SRCJi],&src[i],k* sizeof (int ));
kernel(i, n, k, SRC, DST, M);
memcpy(&dst[i],&DSTJi],1* sizeof (int ));
}

(a) With naive communication scheme.

for (int i = 0; i < N; ++i ) {

if (i==0) {
memcpy(SRC,src,k*sizeof (int ));
memcpy(M,m,ksizeof (int ));

} else {
memcpy(&SRCJ[i+k-1],&src[i+k-1],1* sizeof (int ));
}
kernel(i, n, k, SRC, DST, m);
if (i<N-1) {
memcpy (&dst[i],&DST[i],1* sizeof (int ));
} else {
memcpy (&dst[i],&DST[i],1* sizeof (int ));
}
}

(b) After the inter-iterations redundant elimination.

Figure 3.19: Code with communication for FIR function presertd in Figure 3.4.

(DDR) in the context of a tiled loop nest, where the tiling is done siicthat tiles execute
sequentially on the accelerator while the computation ins@each tile can be parallelized.
While their work is based on theQuasi-Al ne Selection Tree (QUAST)abstraction,

this section recalls how their algorithm can be used with theeks expensive convex array
region abstraction.

The classical scheme proposed to isolate kernels would exhiioll communications
as shown in Figure3.19a An inter-iteration analysis allows avoiding redundant comu-
nications and produces the code shown in Figurg19h The inter-iteration analysis is
performed on a do loop, but with the array regions. The code patb isolate is not bound
by static control constraints.

The theorem proposed for exact sets inAfias et al. 2011, Alias et al. 2012l Alias
et al. 20123 is the following:®

3. Regions are supposed exact here; the equation can be adegtto under- and over-approximations.
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Theorem 3.1

&
Load(T) = R(T) %+R(t <T) W(t<T) (3.9)
Store(T) = W(T) % W({t>T) (3.10)

where T represents a tile,t < T represents the tiles scheduled for execution before the
tle T, andt > T represents the tiles scheduled for execution aftdr. The denotation
W (t> T ) corresponds to o1 W(1).

In Theorem 3.1, a di"erence exists for each loop between the brst iteratiothe last one,
and the rest of the iteration set. Indeed, the Prst iteratiorcannot benebt from reuse from
previously transferred data and has to transfer all neededath. In other words,R(t< T )
and W(t < T ) are empty for the Prst iteration whileW (t > T ) is empty for the last
iteration.

For instance, in the code presented in Figur8.193 three cases are considered:= 0,
0<i<N %landi=N %1.

Using the array region abstraction available irPIPS, a rebnement with respect to the
naive case can be carried out to compute each case, startinghathe full region, adding
the necessary constraints and performing a di"erence.

For example, the region computed byPIPS to represent the set of elements read for
array src, is, for each tile (here corresponding to a single iteratioin)

R(@)={srd"1]|i$"1$i+k%1 0$i<N}

For each iterationi of the loop except the brst one (here> 0), the region ofsrc that is
read minus the elements read in all previous iterationid <i has to be processed; that is,
T LR(@'<i).

R(i' <i) is built from R(i) by renamingi asi' and adding the constraint0 $ i' <i to
the polyhedron:

R(G'<i)= {srd".]|i'$ "1 i'+ k%1 0$i'<i, 1$i<N}
i' is then eliminated to obtain JR(i'<i):

&
R('<i)= {srq"s][0$ "1 $ i+ k%2 1$ i<N}
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The result of the subtractionR (i > 0) % .« R(i' <i) is then the following region?
Load(i> 0) = {srd"4]|"1=i+ k%1, 1$i<N}

This region is then exploited for generating thdoads for all iterations but the prst one.
The resulting code after optimization is presented in Figur8.19h While the naive version
loadsi & k & 2 elements, the optimized version exhibits loads only far+ 2 & k elements.

3.10 Conclusion

With the increasing use of hardware accelerators, automator semi-automatic trans-
formations assisted by directives take on an ever-greatenportance.

The communication impact is critical when targeting hardwareaccelerators for mas-
sively parallel code like numerical simulations. Optimizig data movements is thus a key
to high performance.

An optimizing scheme that addresses this issue has been dasd and implemented in
PIPS and Par4All.

The proposed approach has been validated against twenty béncarks of the Poly-
bench 2.0 suite, three from Rodinia, and on one real numericd@mulation code. They are
presented in Sections8.1 and 7.2 It was found that the proposed scheme performs very
close to a hand-written mapping in terms of number of communrétions.

As for future work, the cache management in the runtime can hienproved further than
a classic cache management algorithm because, unlike a veade cache, the runtime that
comes along the proposed optimizing scheme is software mge@ and can be dynamically
controlled by the compiler inserting hints in the code. Inded data Bow analyses provide
knowledge on the potential future course of execution of theggram. This can be used in
metrics to choose the next bu“er to free from the cache. Bu"ersnlikely to be used again
should be discarded brst, while those that are certain to bee again should be freed last.

The execution times measured with multicore processors shohat attention should
be paid to work sharing between hosts and accelerators rathdan keeping the host idle
during the completion of a kernel. Multicore and multiGPU conbgurations are another
path to explore, with new requirements to determine accuratarray region based transfers
and computation localization.

4. As the write regions are empty forsrc, this corresponds to the loads.



94 Chapter 3. Data Mapping, Communications and Consistency

Most of the work described in this chapter was published il\nini et al. 2011b (perso,)
Amini et al. 2011c (perso)Guelton et al. 2012 (perso) Amini et al. 2012a (persd)

The next chapter presents the di"erent steps performed on thesquential input code
to achieve parallelization andGPU code generation.



Chapter 4
Transformations for GPGPU

Contents
4.1 Introduction . .. L. L e 96
4.2 Loop Nest Mappingon GPU . . ... ... ... .. ........ 98
4.3 Parallelism Detection . . . . .. ... 101
43.1 Allenand Kennedy. . . . . ... ... .. e 102
4.3.2 Coarse Grained Parallelization . . . ... ... ... ......... 103
4.3.3 Impact on Code Generation. . . . . . .. ... .. ... ....... 104
4.4 Reduction Parallelization . .. . ... ... ... .. .. ... 105
441 Detection . . . . ... 105
4.4.2 Reduction Parallelization for GPU . . . ... ... ... ....... 109
4.4.3 Parallel Prebx Operatonson GPUs . . . . .. ... ......... 111
4.5 Induction Variable Substituton . . ... ... .. .o oL 111
4.6 Loop Fusion . . ... .. ... ... 112
46.1 Legality . . . . . . 113
46.2 DilerentGoals . . ... .. .. ... e 115
4.6.3 Loop Fusionfor GPGPU. . . . . . .. ... .. .. ... 116
46.4 LoopFusioninPIPS. . .. . ... ... .. ... 118
4.6.5 Loop Fusion Using Array Regions . . . . . . . ... ... ...... 124
4.6.6 Further Special Considerations . . . . . . . ... ... ... ..... 126
4.7 Scalarization . . ... 127
4.7.1 Scalarization inside Kernel . . . . .. ... .. ... .0 L. 128
4.7.2 Scalarization after Loop Fusion. . . . . . ... ... ... ... ... 128
4.7.3 Perfect Nestingof Loops. . . . . .. .. ... ... . ... ... 130
4.7.4 Conclusion . . . .. .. e 131
4.8 Loop Unrolling . ... ... .. . ... 132
4.9 Array Linearization . . ... L 133

4.10 Toward a Compilation Scheme . . . . ... ... ... ... ..... 134




96 Chapter 4. Transformations for GPGPU

The contributions of this chapter leverage some of the prewisly existing transforma-
tions in PIPS, extending some of them to handle C code, improving othersrfgpecibc
requirements ofGPU code generation, and Pnally introducing new ones.

4.1 Introduction

The path leading from a sequential code to!ecient parallel code forGPU includes
many analyses and transformations. Moreover, some speciiesi of the input programs
have to be taken into account. For instance, hand-written prgrams do not exhibit the
same patterns as automatically generated code from high## tools or languages. The
code in Figure4.1 shows how a three-line-long Scilab script ends up with tempaseaarrays
and bve loop nests.

The whole compilation scheme involved going from the sequealticode down to the
GPU code is presented in Figur@.27 page58 and identibes the contributions presented in
this chapter.

Section 4.2 explains my scheme to map a parallel loop nest to @PU, and how it
leverages an implicit blocking and loop interchange at ruithe for the NDRange and work-
group decomposition (see Sectio?.3.2.2 page32).

| studied the combination of two di"erent parallelizing algaithms, with analysis of the
impact on code generation of both of them in Sectiod.3.

| improved the existing reduction detection analysis to hasle C code more accurately,
and leveraged this analysis to enable parallelization ofdps with reduction by improving
the existing parallelization algorithms. | implemented a rapping scheme for some loops
with reductions onto the GPU using atomic operations supported byppenCL and CUDA
(see Sectiod.4, page 105. Actually, | proposed a new generic scheme for parallelig
loops with reduction, and implemented it inPIPS. It provides improvements for other
targets like multicore usingOpenMP code generation.

| designed and implemented a new induction variable substition transformation based
on linear precondition analysis (see Sectioh5). This transformation can enable the par-
allelization of loops that contain induction variables.

| implemented two loop fusion transformation phases: one bad on the dependence
graph and the other on array regions (see in Sectich6). | designed heuristics to drive
the fusion in order to target GPUs. This is particularly critical when processing code
generated from high-level tools and languages, such as &8ujlwhich include many loops.
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a = ones(1000,1000);
b = a+a+a
c = b*2.+3.

(a) Scilab source.

double a[1000][1000];

for (i=0; i<1000; i++)

for (j=0; j<1000; j++)
a[illjil = ( double) (1.0);

double t0[1000][1000];

for (i=0; 1<1000; i++)
for (j=0; j<1000; j++)
to[ilfil = alillil+alillil;

double b[1000][1000];

for (i=0; i<1000; i++)

for (j=0; j<1000; j++)
b[il[jl = tO[i][jl+ali]ljl;

disp_s0d2("b",1000,1000,b);

double t1[1000][1000];

for (i=0; 1<1000; i++)
for (j=0; j<1000; j++)
tL[il[j] = b[illiI*2.;

double ¢[1000][1000];
for (i=0; i<1000; i++)
for (j=0; j<1000; j++)
c[illil = t1[il[j]1+3.;
disp_s0d2("c",1000,1000,c);
(b) Generated C code.

Figure 4.1: Example of a short Scilab program with the generateC ble.

This transformation enables removing some temporary arraygenerated by such tools.

| studied di"erent array scalarization schemes in the conté>of GPGPU in Section4.7,

page 127, and | modibed thePIPS implementation to match requirements forGPU code
generation, especially to enforce the perfect nesting oblas.

Section4.8 and 4.9 explore the impact of unrolling and array linearization.
Finally, Section 4.10 summarizes the contributions of this chapter and how they ar

connected together in the next chapter to form a complete cggitation chain.
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for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
computation statements
(a) Input code.

for (T=..)) /I Sequential, on the CPU

parfor (P=pl(T) to pu(T)) /I NDRange decomposition

for (t=...) /I Sequential , on the GPU
parfor (p=...) /I Thread parallelism inside work%group

computation statements
(b) After loop transformation for GPU mapping.

Figure 4.2: Example from Baghdadi et al. Gaghdadi et al. 201(Q that illustrates how to
tile a loop nest to map the GPU execution.

4.2 Loop Nest Mapping on GPU

Scheduling a parallel loop nest on &PU using CUDA or OpenCLrequires an elaborate
mapping from the iteration set of the loop nest to the abstrawn of the threaded GPU
execution exhibited by NDRange (see Sectiah3.2.2page32).

Previous works Baghdadi et al. 2010 Lee et al. 2009 Baskaran et al. 2010 made
the compiler aware of the whole execution model hierarchy arided to express it using
nested loops. The transformations performed are principglimultilevel tilings with some
restructuring including loop interchanges or index set siplings. Figure 4.2 illustrates an
example of how a loop nest is tiled to map the two-levébPU execution model.

The approach implemented in our Par4All compiler4Amini et al. 2012b (perso)is quite
di"erent and does not expose any explicit multilevel tiling peration. Instead the source
code generated byPIPS keeps a sequential semantics and is specialized at postqassing.
Let us assume that loops are brst normalized, i.e., that thestart at zero and have an in-
crement of one. This is to express the iteration set using th@penCL concept of NDRange
introduced in Section2.3.2.2 Figure 4.3 gives the four steps included in this transforma-
tion. First, the body of the initial parallel loop nest in Figure 4.3 is outlined to a new
function, the kernel executed by each thread on th@é PU. The loop indices are rebuilt in the
kernel using two macrosP4A_vpx for each virtual processor dimension. The sequential ex-
ecution is performed with an expansion cfdefine P4A_vp_1 ti and #define P4A_vp_0 tj.
The parallel loop nest is then annotated with the iteration seis shown in Figure4.3c In
fact, the rectangular hull of the iteration set is represemd, as it is not possible to be more
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precise using eithelOpenCL or CUDA. !

Finally, a post-processing phase matches the annotation éeontracts the loop nest to
a pseudo-call to aCall_kernel_ xd() macro with the NDRange dimensiorx ranging from
one to three. The result of the contraction is shown in Figurd.3d This macro abstracts
the parallel execution of the kernel on ah& m & n grid of threads. The work-group size is
not expressed in this abstraction and can then be chosen attime according to di"erent
parameters.

The proposed abstraction is used to expand the macro at compitime according to
the e"ective target. CUDA, OpenCL, and OpenMP back ends have been implemented.
The latter is particularly useful for debugging purposes, sce the parallel execution of
the kernel is emulated usingCPU threads with dedicated bu"ers in the host memory to
simulate the separate memory spaces.

As the iteration set is approximated by a rectangular hull, here may be more threads
than necessary to execute the kernel. This situation can oasuin two cases, (1) because
of the over-approximation of some triangular iteration set for example, and (2) because
the CUDA API requires the iteration set as a multiple of the work-group ze. While the
former can be detected at compile time, the latter is known owlat runtime when the
work-group size can be known. The iteration set is then systemizally clamped using a
guard, as shown in Figuret.4.

A key point when targeting GPU is memory coalescing. To benebt from the memory
bandwidth without su"ering from the latency, consecutive theads in a block should access
a contiguous memory area. This constraint is naturally respgeed when writing a code for
the CPU. Programmers are taught to write loop nests in such a way that tovconsecutive
iterations access contiguous array elements to exploit gfa locality in the caches. CUDA
and OpenCL schedule consecutive threads along the brst dimension oktkvork-group,
then along the second dimension, and bnally along the lastenTherefore the loop nest
must be mapped with the innermost loop along the Prst work-gup dimension. In the
proposed representation, the mapping of threads to the woidgroup dimension is performed
in the kernel with the index recovery shown in Figuret.3b. The macrosP4A_vpXx mask
the dimension of the work-group along which the index implidy iterates.

The tiling is implicit since each loop iteration set is poteriglly split according to the
work-group size chosen. Again, the macrd®4A _vpx are involved to perform implicitly
this transformation.

1. CUDA 5 and Kepler GPU, which should both be released by the end of 2012, bring a potéal
solution introducing what Nvidia calls Dynamic Parallelism.
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void kernel( int ti, int tj,...) {
int i = P4A_vp_1,;
int j = P4A_vp_O;
/I computation statements

/Il parallel }

for (i=0; i<=n; i++)

/Il parallel /I parallel

for (j=0; j<=m; j++) { for (ti=0; ti<=n; ti++)

/I computation statements // parallel
.. for (tj=0; tj<=m; tj++)
} kernel(ti,tj,...);

(a) Input code. (b) Body outlined in a new function.

/I Loop nest P4A begin ,2D(n, n)
/Il parallel
for (ti=0; ti<=n; ti++)
/Il parallel
for (tj=0; tj<=m; tj++) {
/I Loop nest P4A end
kernel(ti,tj,...);

} Call_kernel_2d(n, m, kernel,...);
(c) Annotated loop nest iteration set. (d) The loop nest replaced by an abstract macro call.

Figure 4.3: lllustration of the successive steps performed map a loop nest on the GPU.

void kernel( int ti, int tj,...) {
int i = P4A_vp_1;
int j = P4A_vp_O;
if (ikn&&j<m) { /I Guard
/I computation statements

}

Figure 4.4: The iteration set is over-approximated with a re@ngular hull; a guard is added
to clamp it.
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\ Algorithms \ Dependence abstractiod Loop transformations

Dependence level
Multiple Statements Distribution

AllenbKennedy pllen & Kennedy 1987 Nonperfect

Direction vectors
One statement Unimodular

WolfbLam [Nolf & Lam 19914 Perfect

Polyhedra
Multiple Statements Shifted Linear

DartebVivien Parte & Vivien 19964 Perfect

A! ne (exact)
Multiple Statements A! ne

Feautrier [Feautrier 1997 Nonperfect

A! ne (exact)
Multiple Statements Al ne

LimbLam [im & Lam 1997] Nonperfect

Table 4.1: A comparison of some loop parallel algorithms (im0 data published in Boulet
et al. 1999, nonexhaustive).

The expressiveness of these macros is limited, but still alle application of trans-
formations that would otherwise require some work in the conilpr. For instance, loop
interchange, strip mining, or tiling can be achieve by usingdi"erent macros.

This representation allows postponing some decisions abobettransformations, there-
fore providing a code that is more target independent while msiplifying the compiler in-
ternal representation.

4.3 Parallelism Detection

Parallelism detection is the foundation of our process. It eists in proving that a loop
can be scheduled for a parallel execution. Such techniques aell known in the compiler
community, at least since the hyperplane method by Lamporini 1974 [amport 1974.

Among all parallelizing algorithms, the most famous is ceginly the one from Allen and
Kennedy [Allen & Kennedy 1982 Allen & Kennedy 1987. Darte et Vivien, and Boulet
et al. survey existing parallelization algorithms [Darte & Vivien 1997, Boulet et al. 1999
and classify them according to the underlying dependencesfaction involved. Table 4.1
reproduces the summary that they established.

PIPS relies on two parallelization algorithms, the Prst one is A¢n and KennedyOs and
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for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
a[il[j]=i+];
b[i][j]=bli][j-1]+a[i][j]*c[i-1][j];
} clillil=2*b[i]ljl+alil[j];
}

(a) Input code.

#pragma omp parallel for
for (i=0; i<N; i++) {
#pragma omp parallel for
for (j=0; j<N; j++) {
afi][j]=i+];
}
}
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
} b[il[j]=blil[j-1]+a[i][j]*c[i-1][j];

#pragma omp parallel for
for (j=0; j<N; j++) {
clillil=2*b[i][jl+ali]ljl;
}
}

(b) After parallelization.

Figure 4.5: Example of Allen and Kennedy algorithm as implemésd in PIPS: loops are
distributed and parallelism is expressed using OpenMP prags.

the other one is based on CreusilletOs array region analysis=[isillet & Irigoin 19960 |
detail further now.

4.3.1 Allen and Kennedy

The Allen and Kennedy algorithm is based on the dependence ghapith levels. This
algorithm has been proven optimal by Darte and Vivien[arte & Vivien 19960 for such
dependence abstraction. This algorithm was designed for w@cmachines, and thus in its
basic version distributes the loops as much as possible andximizes parallelism.

The implementation in PIPS uses a dependence graph built using a dependence
test [Irigoin et al. 1991 based on a variation of the FourierDMotzkin pairwise elimina
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tion technique [Triolet et al. 1984. Allen and KennedyOs algorithm is implemented by
structuring the dependence graph into strongly connectedcomponents, each of which is
recursively analyzed with an incremented dependence level.

An example illustrating the result of the processing of th&@IPS implementation of the
Allen and Kennedy algorithm is presented in Figuret.5. The loop distribution involved
exhibits the maximum parallelism but adds implicit synchramization barriers. Moreover, it
can break cache temporal reuse and prevent array scalariwat. In the code in Figure4.5a
the same reference to array appears in the three statements, thus the corresponding agr
element may stay in the cache. Moreover, # is not used later in the computation, the
reference can be scalarized. The resulting code after tramshation (shown in Figure4.5h)
shows thata cannot any longer be scalarized since it is referenced in radhan one loop
now. Moreover, it is less likely to remain in the caches and thetio of the number of
arithmetic operations to the number of memory accesses deases. The drawback of loop
distribution can be circumvented using a loop fusion algdhim presented in Sectior4.6.

Another issue is that this algorithm in this basic form (the me implemented in PIPS)
has restrictions on the control Bow; for instance, no test isllawed in the loop body.
The algorithm introduced in the next section addressed thesssues by providing a coarse
grained parallelization algorithm based on convex summagd array regions Creusillet &
Irigoin 19964.

4.3.2 Coarse Grained Parallelization

The second parallelization algorithm is a coarse grained she that relies on array
region analyses@reusillet & Irigoin 19960. No specibc loop transformation is involved.
The details about this parallelization method have been puished in [rigoin et al. 2011
(perso]]. The process is summarized below.

BersteinOs condition®frnstein 196§ are used between two iterations and extends the
original depPnition to array regions. A loop is scheduled asapllel if no iteration reads or
write an array element written by another iteration. It is expressed for any variablev:

{"I,L - Pe " - (Rew(t) . Way (1) /" - Weyu (M) / (H()8 1IN} =!

with ! the store, Pg the preconditions over the loop bodyRg, (! ) the read array region
for the whole loop body for variablev, and pnally Ws, (! ') the written array region for
the whole loop body for variablev.
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It can be rewritten more precisely:
{"1. 0= Pg " - (Rew(!). Way(1))/ " - Way (1)) T (! )} =!

where Tg g stands for the transformer expressing the transition of atelst one iteration
on the store, i.e., the transitive closure for one iteratiolgg = Tg considering that B
includes going to the next iteration.

This algorithm is used extensively inPIPS because it is complementary with Allen and
Kennedy. When parallelization is sought instead of vectorion, the Allen and Kennedy
distribution adds undesired implicit synchronization bariers. Moreover, no dependence
graph is involved, computation of which can be costly. The aryaregions can be costly
as well, but while the dependence graph complexity depends thre number of statements
involved, the complexity depends on the size of the lineargdbra system resulting from
the array accesses. There are no restrictions on the loop bodych as on the control
Bow or function calls as introduced in SectioB.2 page64; it avoids loop distribution and
thus improves the locality and size of the loops. The main lirtion is that the current
implementation does not integrate an array privatization pase Creusillet 199 and a
reduction detection. This latter point is addressed separaly in PIPS as presented in the
following section.

4.3.3 Impact on Code Generation

As shown above, there are two existing di"erent parallelizatin algorithms implemented
in PIPS. Figure 4.6 illustrates the impact of using one algorithm over the other While
Allen and Kennedy distribute the original loop nest in three derent perfectly nested loop
nests expressing two-dimensional parallelism, the coargemined parallelization keeps the
original nesting and detects one dimension as parallel. Maneer, the parallel dimension is
inside a sequential one, which means that it leads takernel launches.

Section 7.3 provides experiments about the parallelizing algorithmsral shows that
overall the Allen and Kennedy scheme leads to a moré eient code on all tested architec-
tures with respect to coarse grained parallelization. Whiléhe acceleration is very limited
on old architectures such as the G80, dramatic improvemerd bbservable on more recent
GPUs with an execution time up to eight times faster on Fermi and foutimes on Kepler
using the example bgurd.6.
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/" Calculate the m" m correlation matrix. "/
for (i=1;i<m;i++) {
for (j=ijj<=m;j++) {
symmatl[i][j] = 0.0;
for (k=1;k<=n;k++)
symmat[i][j] += data[k][i] * data[k][j];
symmat[j][i] = symmat[i][j];
}
}

(a) Input code.

for (i=1;i<m;i++) //Parallel
for (j=i;j<=m;j++) [//Parallel

symmat[i][j] = 0.0; for (i=l;i<m;i++) {
for (i=1;i<m;i++) //Parallel for (j=i;j<=m;j++) { [//Parallel
for (j=i;j<=m;j++) [l/Parallel symmat[i][j] = 0.0;
for (k=1;k<=n;k++) for (k=1;k<=n;k++)
symmat[i][j] += symmat[i][j] +=
data[k][i]*data[K][]j]; data[k][i]*data[K][j];
for (i=1;i<m;i++) [//Parallel symmat[j][i] = symmat[i][j];
for (j=i;j<=m;j++) [//Parallel }
symmat[j][i] = symmat[i][j]; }
(b) After parallelization using Allen and Kennedy. (c) After parallelization using Coarse Grained
method.

Figure 4.6: The impact of the two parallelization schemes onexample of code performing
a correlation. Allen and Kennedy algorithm results to three derent parallel loop nests
expressing the maximum parallelism, while the coarse grashalgorithm detects only one
parallel loop leading to less synchronization but also legxposed parallelism.

4.4 Reduction Parallelization

PIPS provides an algorithm for reduction detection based on thenibed framework
introduced by Jouvelot and DehboneiJouvelot & Dehbonei 198p The implementation
is rather straightforward yet powerful. Once detected, theeductions can be parallelized
depending on the target capabilities.

4.4.1 Detection

The algorithm is interprocedural and requires that a summarys produced for all the
callees in a function. This implies that the algorithm has to b applied brst on the leaf of
the call graph before handling callers. Intraprocedurallythe following algorithm detects
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reductions in statements like

/I call sum[s[a]],sum[b],
s[a] = s[a]+b++;

where you can see the comment added BIPS that indicates that two reductions have
been detected, one os[a] and the other onh. Statements are brst processed individually
and reductions are extracted according to these properties

1. If the statement is a call, then get the translated interproedural summary for this
call site.

2. The statement is not a call, then perform a recursion on the irar expression to bnd
an operation that would correspond to either an assignmenan update, or an unary
operator. The recognized operators are the followings=, -=, *=, /=, |=, &5 "=, ++
(pre and post), and-- (pre and post).

3. For other than unary operators, assert that the left-hand sie is a reference, either a
scalar or an array.

4. Both the left-hand side and the right-hand side expression@f any) must be side
e"ect free. i.e., if any call occurs it has to be a call to a pureufction.

5. In the case of an assignment, the right-hand side has to use @ngpatible operator,
i.e., one of the following:+, -, *, /, min, max && || , & |, and "

6. In the case of an assignment, the right-hand side also has twiude a reference to the
same reference as the one on the left-hand side. Perform thesarch with a recursion
through the right-hand side expression accepting only corafible operators.

7. Assert that there is no e"ect that may confict with the reduced ariable other than
the ones touching reference in the left-hand side of the casered reduction and
the reference found in the right-hand side. This prevents therong catching of the
following two examples

/I call sum[b],sum[b],
b = b+b;

/I call sum[s[a]],sum[b],
s[a] = s[a] + (b=b+1,b);

8. Finally, conduct a sanity pass to avoid the declaration of te reductions on the same
variable. If compatible, they are merged.
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The last step prevents situations such as the two following fation calls with side
e"ects:

C summary sum[X],prod[Y],

REAL FUNCTION FSUMPROD(X, Y, 2)
C call sum][X],

X = X+Z
C call prod[Y],

Y = Y*Z

FSUMPROD = Z

END

C summary sum[X],prod[Y],
SUBROUTINE SUMPROD(X, Y, 2)
C call sum[X],
X = X+Z
C call prod[Y],
Y = Y*Z
END

PROGRAM REDUCTION

C call prod[P],sum[S],prod[P],sum[S],

CALL SUMPROD(S, P, FSUMPROD(S, P, 3.))
C call prod[S],sum[P],prod[P],sum[S],

CALL SUMPROD(P, S, FSUMPROD(S, P, 3.))

The brst function call shows that the reduction is duplicateddr S and P, because they
are present for bothSUMPRGId FSUMPROBINce they are compatible (only sum or only
product on a given array) they can be merged and kept, this isohthe case for the second
call where the two reductions are mutually exclusive (sum angroduct) and are eliminated
of the detected reductions by the algorithm.

The reduction information is summarized at each level of thelPSCHCFG. For instance,
it is summarized at loop level so that this information can beised for parallelization. The
summarization ensures that there is no other write of the readwed reference that would
be incompatible with the reduction. Figure4.7 shows an example of an interprocedural
analysis of the reduction in a Fortran program.
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C summary sum[X],prod[Y],

REAL FUNCTION FSUMPROD(X, Y, 2)
C call sum[X],

X = X+Z
C call prod[Y],

Y = Y*Z

FSUMPROD = Z

END

C summary sum[X],prod[Y],
SUBROUTINE SUMPROD(X, Y, 2Z)
C call sum[X],
X = X+Z
C call prod[Y],
Y = Y*Z
END

PROGRAM INTERACT
S = 0.
P = 1.
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.1)
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.+I)
C loop prod[P],sum[S],
DO I =1, N
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.+1)
C call prod[P],sum[S],
CALL SUMPROD(S, P, FSUMPROD(S, P, 3.))
ENDDO
DO I =1, N
CALL SUMPROD(P, S, FSUMPROD(S, P, 3.))
ENDDO
DO I =1, N
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.+1)
C call prod[S],sum[P],
CALL SUMPROD(P, S, 1.-1)
ENDDO
END

Figure 4.7: Example of reduction detection and interprocedal propagation in PIPS.
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4.4.2 Reduction Parallelization for GPU

The parallelization of loops with reductions can be handled idi"erent ways. PIPS used
to provide only a simple parallelization for OpenMP. This impémentation was a simple
transformation that was adding an OpenMP pragma with a reducel&use to loops whose
statements were all scalar-only reductions.

| have designed and implemented a new method, called CoarseafBed Reductions
(CGR) that bts within the existing parallelization algorithms. The implementation is
made in the coarse grained parallelization algorithm prested in Section4.3.2

The coarse grained parallelization uses array region anak/$o bnd conf3icts between
two iterations of a loop. Such conBicts prevent parallel seduling of the loop. The
algorithm has been adapted to handle reductions by ignoringpnf3icts related to references
involved in the reduction. If ignoring a conBict eliminatesall cycles, the loop is marked
aspotentially parallel. Potentially because another transformation rdpcing the reduction
with a parallel compliant equivalent operation is necessary execute the loop in parallel.

The fact that the parallelization phase does not directly moifly the schedule but pro-
vides only the information that a potential parallelization may occur provides a decoupling
of the reduction detection and the transformation. While tlis indicates the maximum po-
tential parallelism that may be found in a code, not all reduttons can be parallelized
depending on the capabilities of the target. The OpenMP outpubenebts directly from
this approach. It is generated by a new transformation that grallelizes a wider range
of loops, since it is no longer limited to loops with a body thatontains only reduction
statements as was the legacy transformation available RIPS.

Targeting GPU, one way of parallelizing loops with reductions is to make us# hard-
ware atomic operations introduced in SectioR.4.3 Page42 Since di"erent GPUs do not
share the same capabilities, and sind@UDA and OpenCL do not exhibit the exact same
set of functions, a rough description of the target capabiles is provided to the compiler. A
new implemented transformation exploits this descriptionio select compatible previously
detected reductions. If the target supports the correspoimy atomic operation, then the
substitution is made and the loop is declared as parallel irrder to be transformed as a
kernel in a further phase. Figure4.8 contains an example of a sequential histogram code
and the resulting code after reduction detection and replament with an atomic operation.
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static void _histogram( int data[NP][NP][NP],
int  histo[NP][NP][NP]) {
int i,j,k;
for (i = 0; i < NP; i++) {
for (j = 05 j < NP; j++) {
for (k = 0; k < NP; k++) {
int x = floor((( float )datali][jl[K]) / ( float )(NP * NP));
int 'y = floor((( float )(data[i][jl[k] - x * NP * NP))
[ ( float )(NP));
int z = data[i][j][k] - x * NP * NP -y * NP;
++histo[x][y][z];
}
}
}
}

(a) Input code.

static  void _histogram( int data[NP][NP][NP],
int histo[NP][NP][NP]) {
int i,j,k;
for (i = 0; i < NP; i++) { /I Scheduled as parallel
for (j = 0; j < NP; j++) { /I Scheduled as parallel
for (k = 0; k < NP; k++) { /] Scheduled as parallel
int  x floor((( float )data[li][jl[K]) / ( float )(NP * NP));
int vy floor((( float )(data[i][jl[k] - x * NP * NP))
[ ( float )(NP));
int z = data[i][j][K] - x * NP * NP - y * NP;
atomicAddInt(&histo[x][y][z],1);
}

}
}
}

(b) After replacement with atomic operation.

Figure 4.8: An example of reduction parallelization of an Btogram using hardware atomic
operations.
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4.4.3 Parallel Prebx Operations on GPUs

To parallelize some reductions, parallel prebx operationart be used. In 1980, Lad-
ner and Fischer introduced parallel prebx reductiond fidner & Fischer 1980 this has
been a widely studied beld since then. In 2004, Buck and Purcflluck & Purcell 2004
explained how map, reduce, scan, and sort can be implementad a GPU using graphic
primitives. Sengupta et al. presented later the implementmn of parallel prepPx scan using
CUDA [Senguptaet al. 2007.

In 2010, Ravi et al. introduced a runtime system and framewkrto generate code from
a high-level description of the reductionsHavi et al. 2010. The runtime scheduling is
Rexible enough to share the workload betwegBPUs and multicore CPUs. This system
can be seen as a potential back end for an automatic paralidr like ours.

The recognition and the parallelization of reductions that d not match the classic
patterns like the ones detected irPIPS have been widely studied, and is still an active
pPeld Redon & Feautrier 1993 Fisher & Ghuloum 1994 Matsuzaki et al. 200§ Zou &
Rajopadhye 201P

There has been work to provide lecient implementation for parallel prebx operations
on GPUs [Senguptaet al. 2007 Harris et al. 2007 Capannini 201]. An automatic scheme
that detects such operations could be associated with a codengrator that targets such
libraries.

4.5 Induction Variable Substitution

Induction variable substitution is a classical transformton to enable parallelization.
It is the opposite of strength reduction. Induction variabés are usually detected in loops
using pattern matching on the initialization and on the updaes in the loop body. This
section shows how thé’IPS precondition analysis [rigoin et al. 2017 is used to debne a
new algorithm to detect and replace induction variables. ®éen a loopL, the algorithm
processes every stateme® in its body, and performs the following steps:

1. Fetch the preconditionP associated toS.

2. Evaluate individually each linear relation inP equations and inequations:
(&) Pnd in the relation a variablek modibed in the loop body,
(b) verify that all other variables are either loop indices or lop invariant,

(c) construct the linear expression to replack.
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k = -1; k = -1;

for (i=0;i<SIZE;i++) { for (i=0;i<SIZE;i++) {

k=1 k =i

for (j=0;j<SIZE;j++) {
sum = BJ[j-k][k] + A[KI;
Alk++] = sum;
}
}
k = SIZE;
for (i=0;i<SIZE;i++) {
it (k--)
A[k] +=
B[j-KkI[k];
if (--k)
Alk] +=
B[j-KkI[k];

(a) Original code.

for (j=0;j<SIZE;j++) {
sum = B[j-(i+))][i+]]+A[i+]];
Alk = i+j+1, k-1] = sum;
}
}
k = SIZE;
for (i=0;i<SIZE;i++) {
if (k = -2*i+SIZE-1, k-1)
A[-2*i+SIZE-1] +=
B[j-((-2)*i+SIZE-1)][-2*i+SIZE -1];
if (k = -2*i+SIZE-2)
A[-2*i+SIZE-2] +=
B[j-((-2)*i+SIZE -2)][-2*i+SIZE -2];

(b) After induction substitution.

Figure 4.9: Example of induction variable substitution to eable loop nest parallelization.

3. Replace in the statement alk induction variables found with a linear expression.

This transformation is challenging in a source-to-source ot@xt when targeting C code.

Figure 4.9agives an example of such challenge. The C language allows sitkzts in ref-

erences, for instanc@k++] = ... . The solution that | designed and implemented handles
these references with respect to the C standard. For instanggk++] = ... is replaced by
Alk = i+j+1, k-1] = ... (see in Figure4.9h), thanks to the comma operator that evalu-
ates its brst operand and discards the result, and then evalies the second operand and
returns this value. The transformed source code is as closepssible to the initial code
and the number of statements is left unchanged.

4.6 Loop Fusion

Loop fusion is a transformation that consists in collapsingvo or more loops together
into one loop. It has been widely studied for a long timeAllen & Cocke 1972 Burstall
& Darlington 1977, Kuck et al. 1981, Allen 1983 Goldberg & Paige 1984 Wolfe 199Q
Bondhugula et al. 201(Q. Finding an optimal solution to the global fusion problem g all
but trivial [ Darte 200( and there are many ways to address the problem, as well as diéat
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for (i=0; i<n; i++)
for (j=0; j<m; j++)
A[I][]] = ( _double) 1.0; for (j=0: j<m: j+4) {
RN ATIL] = ( double) 1.0;
BLIl] = ( double) 1.0; BLII[] = (double) 1.0;

for (i=0; i<n; i++)

for (i=0; i<n; i++) C[illj] ATi[j1+BI[illj1;
for (j=0; j<m; j++) } |
Clil[il1 = ALLI+BILIIl; (b) After fusion.

(a) The code before fusion.

Figure 4.10: Example of loop fusion.

debnitions of the problem itself.

This transformation helps to reduce the overhead of the brahimg and incrementation
by eliminating loop headers and increase the size of the body exhibits several benebts
such as

¥ more opportunities for data reuse, mostly temporal localt
¥ more instructions can be scheduled, better pipeline usage P,

¥ further array contraction [Gao et al. 1993 Sarkar & Gao 199] (see also Figuret.21
and Section4.7).

However, loop fusion has some disadvantages. For instantee pressure on the in-
struction cache and on the registers usage within the loop ireases.

4.6.1 Legality

Loop fusion is not always legal as it may modify the semantiasf the program. An
invalid loop fusion can lead to a reverse order of dependemtroputations. Data dependence
analysis is used to determine when the fusion is legal or not.

The validity of loop fusion has been widely studied/llen & Cocke 1972 Warren 1984
Aho et al. 1984, but can be expressed in di"erent ways. Allen and Cocke proposimple
conditions for the validity of loop fusion in PAllen & Cocke 197%:

1. the control conditions are unique among the loops,
2. the loop headers control the same number of iterations,

3. the loops are not linked by a data dependence.
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However, it restricts the number of loops that can fused andrpvents any array con-
traction since no data dependence is allowed. Warreivirren 1984 proposes a slightly
relaxed but still simple set of conditions:

1. the candidate loop nests are consecutive in the source code,

2. induction variables of both loops iterate toward the same uger bound after loop
normalization,

3. the fused bodies preserve all the dependences from the posid to the second loop.

To summarize, the brst condition in both proposals aims at aiding control depen-
dences, i.e., it ensures that both loops always share the saexecution path. The second
condition intends to enforce that loops are compatible withat any sophisticated transfor-
mations such as loop shifting or index set splitting for exaple, i.e., they have the same
number of iterations. Finally, the last conditions guarante the semantic equivalence of
the two fused loops with the initial code. The brst proposal is ore restrictive because it
prevents any data dependence between the two loops, while thecond proposal is more
general.

The last condition is key in establishing the validity of a lop fusion. It has been shown
in [Warren 1984 that dependence with a distance vector allows stating whethéne fusion
is possible or not. If the distance is positive or null then té fusion is valid. Another
debnition without distance was given infennedy & McKinley 1994. The fusion is valid
if no dependence arc from the brst loop body to the second isvénted after fusion. Such
dependence arcs are called fusion-preventing in the nextsen.

Irigoin et al. conjectured another solution [figoin et al. 2011 (perso) based on array
region analysis Creusillet & Irigoin 1996H. The proposal allows identifying these depen-
dences without any dependence graph (see Sectibg.5.

When fusing parallel loops, a legal fusion may end up with a ssential loop. This
happens when the dependence distance is positive, or, with tlaternative debnition,
when the dependence after fusion becomes carried by the lo@uch dependences might
also be considered as fusion-preventing depending on thalgoof the algorithm, as shown
in Figure 4.11

Some advanced transformations can remove fusion-prevergtidependences. For exam-
ple, Xue et al. eliminate anti-dependences using array cdpg [Xue 2009. Shifting and
peeling® techniques described inNlanjikian & Abdelrahman 1997 allow the fusion and

2. These transformations enable loop fusion for loops with dierent iteration set.
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for (i=1;i<N;i++) /I Parallel for (i=1;i<N;i++) { /I Sequential
ali]=0; ali]=0;

for (i=1;i<N;i++) /I Parallel bli]=ali-1];
bli]=ali-1]; }

(a) Original code: two parallel fusable loops. (b) After fusion, the loop is sequential.

Figure 4.11: Example of two parallel loops that can be legalfsed, but the resulting loop
nest would be sequential.

parallelization of multiple loops in the presence of loopacried dependences. Loop shifting
and peeling were also addressed by Darte et dhdrte et al. 1996 Darte & Huard 200(Q.
Figure 4.10illustrates a simple loop fusion.

4.6.2 Dilerent Goals

While the earlier algorithms intended to maximize the numbeof fusions or minimize
the total number of loops Pllen & Cocke 1972 Kuck et al. 1981, Warren 1984 to reduce
the control overhead, later contributions extended the gds of loop fusion.

When any bad memory access pattern resulted in swapping a mem page, Kuck
et al. studied the applicability of loop fusion for improvirg performance in environment
with virtual memory management Kuck et al. 1981. It was also used to maximize the
usage of vector registers{fuck et al. 1981, Allen 1983 or to enable more e"ective scalar
optimizations such as common subexpression elimination/glfe 199(. Later, fusion was
used to increase locality fianjikian & Abdelrahman 1997 Bondhugula et al. 201(, to
generate better access patterns for hardware prefetcheBshdhugulaet al. 2014, or even
to reduce power consumptionZhu et al. 2004 Wang et al. 2014.

Other algorithms using loop fusion were designed to maxingzask parallelism with
minimum barrier synchronization [Allen et al. 1987 Callahan 1987.

Kennedy and McKinley introduced an algorithm that focuses on aximizing the paral-
lelism, the ordered typed fusionKennedy & McKinley 1994, by avoiding fusing sequential
and parallel loops. The type carries the information about ta schedule of the loop: parallel
or sequential. This solution is minimal in term of humber of paallel loops.

They extended this algorithm to handle an arbitrary number oftypes [Kennedy &
Mckinley 1993 in order to handle noncompatible loop headers. They obtaidea solution
they claim to be minimal in the number of parallel loops and th total number of loops.

They then introduced the general weighted fusion algorithm$<ennedy & Mckin-
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ley 1993 to maximize reuse. The weight represents any metric that wédiindicate that it
is preferable to fuse a couple of loops instead of another one

Gao et al. also proposed a weighted loop fusion to maximizeray contraction [Gao
et al. 1993 based on the maximum-RBow/minimum-cut algorithm Dantzig et al. 1954
but they did not address loops with di"erent headers. Their algithm relies on a Loop
Dependence Graph (LDG)see Sectiont.6.4) where edges can be of three types: nonfusible,
fusible and contractable, and fusible but noncontractable

The weighted fusion problem was shown in 1994 to be NP-hard brst [Kennedy &
McKinley 1994, then Darte proved it for a broader class of unweighted fusn [Darte 200Q,
including the typed fusion for two types or more.

Kennedy and McKinley proposed two polynomial-time heuristicf<ennedy & McKin-
ley 1994 as a solution for the weighted loop fusiondao et al. 1993. Finally Kennedy
proposed a fast greedy weighted loop fusion heuristi¢gnnedy 200].

Megiddo et al. present a linear-sized integer programmingrfoulation for weighted
loop fusion Megiddo & Sarkar 199]. They claim that despite the NP-hardness of the
problem, an optimal solution can be found within time constriats corresponding to a
product-quality optimizing compiler.

Bondhugula et al. used the polyhedral model to provide brst aximal fusion Bond-
hugula et al. 2008¢ Bondhugula et al. 20083, and later a metric-based Bondhugula
et al. 201Q algorithm that optimizes at the same time for hardware predtch, locality,
and parallelism.

Pouchet et al. [Pouchetet al. 20104 build a convex set that models the set of all legal
possibilities on which an iterative empirical search is perfmed.

Loop fusion can also be used to extend the iteration set of aolp, using some index
set splitting as shown in Figure4.12 This technique is explored by Wang et al. \[/ang
et al. 201Q.

The loop-fusion transformation has been widely studied in dérent contexts. The next
section present aGPGPU perspective and the associated specibc constraint.

4.6.3 Loop Fusion for GPGPU

In the context of GPGPU, loop fusion is directly related to the number of kernels
obtained and their size, as presented in Sectigh2 Four major benebts are expected from
loop fusion:

1. data reuse,
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2. array contraction (see Sectio.7),
3. increasing the size of the kernel,

4. reducing the overhead associated to the kernel launch.

Items one and two are common benebts when dealing with loop fusi Since recent
GPU architectures include multilevel hardware caches (see $en 2.4), they may benebt
from such reuse. However, caches are small when compared ® tlumber of threads, and
are intended mostly to provide spatial locality. We expectdop fusion to allow to keep
data in registers, avoiding external memory accesses. Hiyaa fused-kernel exhibits more
opportunities for data reuse in local memory, as shown in Sém. 2.3,

The third benebt exposes potentially mordLP to the hardware scheduler and the
compiler. This is helpful for small kernels, but also increas the register pressure and the
code size dramatically for larger kernels. Sectidh4.2demonstrates howLP is exploited
in modern GPUs.

Finally, the last benebpt is directly linked to the reductionof the number of kernels, and
thus the number of kernel calls. Launching a kernel requirdbe driver to send the binary
code for the kernel, the parameters, and the launch conbgtiom (number of threads, work-
group size) to theGPU over the PCle bus. Then the hardware scheduler begins scheduling
and blling the multiprocessors with many thousands of thread(see Sectior2.4). Finally,
at the end of the computation, the scheduler has to wait for hithe threads to Pnish,
leaving potentially some multiprocessors stalled. These emtions are not negligible for
small kernels. Stock et al. measured the overhead of stagim kernel of theGPU as 20 us
for an Nvidia GTS 8800 512 and ag0pus for an Nvidia GTX 280 [Stock & Koch 2014.
They manually performed loop fusions to reduce the number o&knel launches, and thus
the overhead.

Overall, these fusions can improve signibcantly the perfoance. Membarth et al.
obtained a 2.3 speedup by manually applying loop fusion on aultiresolution Pltering
application [Membarth et al. 2009. Wang et al. published measurements with a speedup of
bve after loop fusion\[Vang et al. 201(. Fousek et al. evaluated the fusion dEUDA kernels
in the context of predebned parallel map operations. The algtihhm they proposed performs
an oriented search over the set of valid fusions. They preditite resulting execution times,
based on 0"-line benchmarking of predebPned functions. On agile example that chains six
operations (matrixDbmatrix multiply, matrixbvector multiply, vector normalization, matrixp
matrix multiply, matrixbmatrix add, matrixbscalar multip ly) they obtained a 2.49 speedup.
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for (i=0;i<N;i++) { for (i=0;i<N+M;i++) {
F(i,N,A,B,C); if (i<N)
} F(i,N,A,B,C);
for (i=0;i<M;i++) { else
G(i,M,X,Y,2); G(i-N,M,X,Y,Z);
} }
(a) Input code. (b) Loop fusion to schedule more

threads on the GPU.

Figure 4.12: Example of a loop fusion scheme to extend the iion set of a loop nest.

Wang et al. [Wang et al. 201(Q study three di"erent types of loop fusion, extending the
iteration set to concatenate the two original loop iteratio set (see Figuret.12. Their goal
is reduction of power consumption and they do not improve pfErmance with respect to
the classical loop fusion scheme implemented PS. Modern GPUs are able to schedule
more than one kernel at a time on di"erent multiprocessors. Thefore the performance
improvement of this approach, even on small iteration setsirather theoretical and only
the launch overhead of the fused kernel may be avoided.

Loop fusion is also used in theGPU implementation of MapReduce Catanzaro
et al. 2009. Map kernels are fused to reduce synchronizations, commaaiions, and en-
abling data exchange in on-chip memories.

Finally the Thrust library manual [ Bell & Hoberock 201] recommends programmers
to fuse explicitly several computation functions into a sigle kernel, as shown Figurd.13
This is presented as a good practice and is a key point in ordey get good performance.

4.6.4 Loop Fusion in PIPS

In 2010, PIPS did not include any algorithm for loop fusion. | implementeda heuristic-
based algorithm that performs unweighted typed loop fusiont can take into account two
types: parallel and sequential loops.

Most algorithms from the previous sections are based on th®op Dependence Graph
(LDG) [Gao et al. 1993 Megiddo & Sarkar 1997. It represents a sequence of loop nests
and can be seen as a specialization of the Program Dependencap8 (PDG) [Ferrante
et al. 1987. Each loop nest is represented as a node of th®G. Edges correspond to
dependences between statements that belong to the two loopst bodies. An edge repre-
sents a dependence and the information whether the corresplang dependence prevents
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void saxpy_slow(float A,
thrust::device_vector< float >& X,
thrust::device_vector< float >& Y) {
thrust::device_vector< float > temp(X.size());
/I temp <% A
thrust::fill(temp.begin(), temp.end(), A);
/I temp <% A " X
thrust::transform(X.begin(), X.end(),
temp.begin(), temp.begin(),
thrust:: multiplies < float >());
'Y< %A " X+Y
thrust::transform(temp.begin(), temp.end(),
Y.begin(), Y.begin(),
thrust::plus< float >());

(a) Using native Thrust operator, performing 4N reads and 3N writes.

struct saxpy_functor {
const float a,;
saxpy_functor( float _a) : a(_a) {}
__host____device__ float operator()( const float & X,
const float & y) const {
return a * x +vy;
}
3
'Y< %A" X+Y
void saxpy_fast( float A,
thrust::device_vector< float >& X,
thrust::device_vector< float >& Y) {
thrust::transform(X.begin(), X.end(),
Y.begin(), Y.begin(),
saxpy_functor(A));

(b) Using a user-debned kernel, performing 2N reads and N wigts.

Figure 4.13: Example of manual kernel fusion using Thrust lilary and a SAXPY example.
The Prst version is expressed using native Thrust operatorsdrequires temporary arrays,
the second version fuses the three steps in one user-debPnehdd (source Iffoberock &
Bell 2017).
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for (i=0; i<N; i++){ [/S1 O
a[i]=b[i]; 11S2 @
a[i]+=2*c[i]; /1S3 tY)

}

for (i=1; i<M; i++){ //S4 O"Q
eli]=cli]; 11S5 ty)
e[i]+=2*b[i]; 11S6 ;

) i

int k; 11S7 (b

k = d[1]; 1158 “-‘ ;

int I; 1189 Q g

| = e[l]; //S10 C‘j

for (i=1; i<M; i++){ //S11
dli]=2*elil; 11512 : O’é
d[i]+=b[i]; 11S13

) O ‘d)

for (i=0; i<N; i++){ //S14 *(‘5
clil+=alil; /11S15
cli]+=k+; 11S16

}

(a) Input code. (b) Dependence (c) Reduced Depen-

Graph (DG). dence Graph (RDG).

Figure 4.14: On the left, a sequence of statements, in the ndig the associated Dependence
Graph (DG), and on the right the corresponding Reduced Depdence Graph (RDG)
obtained after clustering the vertices that belong to the sae loop.

In solid red the Bow dependences, in dashed blue the anti-éewplence, and in dotted green
the special dependences that model the declaration. The DGew showed here is simplibed
for the sake of clarity, for instance output dependences aritle loop carried dependences
are omitted.

the fusion of its two vertices. This information is a key pointfor many algorithms from
the previous section.

The direction or distance vector dependence graphs, introded in Section4.6.1, are
used to build the LDG with the fusion-compliant status attached to all the edges. &t
since thePIPS dependence graph exhibits an abstraction based on the dedence level,
it does not provide the distance vector in the graph. It wouldrequire re-implementing
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the PIPS dependence testlifigoin et al. 1997 and the dependence graph representation to
provide this information.

Without this information, the alternative method for identifying the fusion-preventing
nature of an edge (see SectioA.6.]) requires brst e"ectively fusing the loop nests and
recomputing a dependence graph on the new body to establishaidependence is fusion-
preventing or not by a comparison with the original graph. Hoewver, it would require a
lot of spurious computations to do that preventively for allpossible combinations of two
loop nests.

Instead | designed a heuristic that provides features sirail to the typed fusion intro-
duced by Kennedy and McKinley Kennedy & McKinley 1994, but operating on anLDG
that does not include any information on the fusion-preveimg nature of the edges. The
vertices are selected by the algorithm and the fusion is tide It is only at that time that
the validity is checked. The algorithm has to proceed using ai&l-and-error strategy.

This algorithm traverses thePIPS Hierarchical Control Flow Graph (HCFG) and con-
siders statements that share the same control in the same wag [Ferrante et al. 1987.
In PIPS terminology these statements are in the samsequenceof statements, such as
a compound block{ ... } in the C language, with nogoto from or to the statements
directly in the sequence.

In a sequence, we have to take into account not only loops busa any kind of constructs
such as tests, assignments, function calls, etc. The nodesoaf graph are not necessarily
loop nests. Therefore | use the generic terfiReduced Dependence Graph (RDGpstead
of LDG, with an example shown on Figuret.14

PIPS HCFG represents all these constructs as statements, and they as®red in a
linked list to represent the sequence. ThBDG is then built by

1. creating a vertex for each statement in the sequence,
2. mapping all the inner statements to the vertex statement, ah

3. adding an edge for each edge in the dependence graph to Ri2G using the previ-
ously computed mappings.

It considers only the dependence arcs related to the statents within the sequence,
and then the dependence graph is acyclic, so is tRDG obtained.

Figure 4.143 Page 113 contains a sequence of statements including some loops. The
resulting (simplibped) Dependence Graph (DGand the RDG computed by PIPS are pre-
sented in Figures4.14band 4.14c At all times, there is a one-to-one mapping from the
vertices in the RDG and the statements in the sequence.
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O O
O O
O 1O O

(b) The RDG after pruning.

Figure 4.15: The algorithm begins with a pruning phase. For ehdirect edge between
two vertices it ensures that there is no other path between tine.

The originality of the algorithm is to prune the RDG so that any direct arc between
two statements guarantees that no other statement needs to lseheduled between the two
statements. Therefore this pruning allows traversing the gph in any topological order
and trying to fuse two adjacent statements without having pitsto check if a fusion would
introduce a cycle.

Since PIPS is a source-to-source compiler, the readability of the trafiormed source
is an important point. Each transformation must be designeda keep the code structure
as close as possible to the original input code. For exampligeclarations are represented
in the Internal Representation (IR) like any other statements. TheDG includes edges
from these declarations to every use of the variable. Theregoa transformation algorithm
relying on the DG naturally keeps the declarations consistent with the uses w@hriables.
My fusion algorithm allows declarations everywhere in the codeithout preventing fusion.

My algorithm traverses the graph in three independent ways. [Ea traversal has a
dedicated goal:

1. The brst traversal favors array contraction, and thus followshe edges in theRDG
that correspond to Bow dependences. These represent the appuities to fuse to
get reduced liveness, from the debnition to the use of a value

2. The second traversal improves temporal locality. It fuses wices of theRDG that are
linked by edge corresponding to a read-read dependence. lhe tcontext of GPGPU,
the purposes are multiple. First, accesses to the same memtocation are likely to
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stay in a register. Then the accesses among a block of threade aore likely to
benebt from the cache levels. Finally at a coarser grain lévsome transfers between
the CPU and the GPU may be avoided.

3. The last traversal is a greedy one that intends to minimize th&otal number of loops
and therefore fuse all vertices in the graph that are not cometed. The motivation is
to minimize the number of kernel launches and to exhibit mor@structions in kernels,
leading to morelLP. The drawback is a potentially increased register pressurencd
therefore spilling may occur in large kernels.

Note that the second traversal relies on edges that do not exiin the classicDG in
PIPS. Moreover, it is not desirable to use them the same way as théher edges since they
do not carry the same constraints: they do not imply any ordebetween the connected
vertices. One may think about these edges as being undiredtarcs. However, since
the RDG is a Directed Acyclic Graph (DAG), it cannot include any undirected edge. A
separated undirected graph structure over th&DG vertices is computed to keep track of
data reuse.

The brst traversal starts with each vertex that does not have anpredecessor in the
graph. It then tries to fuse the vertex with each of its succeess, and recurses on each,
following edges in theRDG as paths. The algorithm presented in Figurel.16 illustrates
this process.

The second traversal is based on edges representing data eeughe algorithm is similar
to the one used for the brst traversal and illustrated in Figre 4.16 Edges are pruned like
arcs. The pruning involves the information about the arcs. Irfact, an edge between two
vertices is kept only if there are no paths between the two vedegs in the directed graph.
This guarantees that fusing two vertices linked by an undirded edge is always valid from
the graph point of view, i.e., it does not create any cycle in #:RDG.

Finally the last traversal is a greedy one; every possible ipaf vertices that are not
linked by any path in the RDG are tried for fusion.

Figure 4.17 presents the algorithm involved in pruning the graph when meging two
vertices. The resulting process of this algorithm on the codghown in Figure 4.14 is
presented in Figure4.18 Note how the declaration and initialization ofk are moved to
ensure consistency.

The order these three traversals are performed matters. Senfor example in a sequence
of three loops, it can arise that the brst one can be fused withé second or the third but
not both. Therefore the heuristic to chose which fusion to pesfm instead of the other has
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/I v is modibed as side-e"ect
function fuse_rdg (V,E)
for v- V do
if v has no predecessdhen
fuse_along_path (V)
end if
end for
end function

/I Fuse all directly connected vertices starting fromv
/I v is modibed as side-e"ect
function fuse_along_path (v)
toFusel succ)
alreadyTried 1 !
while toFuse@ ! do
V' 1 Pop (toFuse)
if vis aloop andV' is a loopthen
if try to_fuse  (v,V') then
/I Fusion succeeded, register successors vfto be tried
toFusel toFuse  succ{)\ alreadyTried’
/I Fuse in the graph
fuse_vertices  (v,V)
else
/I Record the failure about fusion with V'
alreadyTried 1 alreadyTried {v'}
end if
end if
/I Recurse on V'
fuse_along_path (V')
end while
end function

Figure 4.16: Heuristic algorithmFUSE_RDt® traverse the RDG and apply fusion. The
graph is modibed as side e"ect.

to consider the criteria that is likely to provide the best peformance.

4.6.5 Loop Fusion Using Array Regions

Section4.6.1presents the classic way of determining the legality of a s based on the
dependence graph. Irigoin conjectured another solutioftifjoin et al. 2011 (perso) exploit-
ing the array region analysis Creusillet & Irigoin 1996H. | designed and implemented in
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function fuse_vertices (v, V')
Il Fuse V'intov _
pred(v) = pred(v)  pred(v')\{ v}’
succ) = succ(v)  succl')
for s- succ{') do
Il For each_successor of/',_replacev' with v as a predecessor
pred(s) = pred(s)\{ v} {v}
end for
for p- pred(v') do
if p& v then
Il For each predecessor of/, replacev' with v as a successor
succp) = succp) \{Vv} {v}
end if
end for
/I Prune the graph, traversing all paths in both direction from v
prune (v)
end function

Figure 4.17: Merging two vertices in the graph while enforcingruning as introduced in
Figure 4.15

int  k; 11S7
k = d[1]; 11S8
for (i=1; i<M; i++){ /IS4
e[i] = cl[il; /1S5
e[i] += 2*bJ[i]; 11S6
d[i] = 2*e]i]; 11812
d[i] += bJi]; /1S13
}
int I /1S9
| = e[0]; /1S10
for (i=0; i<N; i++){ [/S1
ali] = bJi]; 11S2
ali] += 2*cJi]; /1S3
c[i] += alil; /1S15
c[i] += k+lI; /1S16

}

Figure 4.18: The resulting code after applying the loop-fush algorithm on the code
presented in Figure4.14a



126 Chapter 4. Transformations for GPGPU

PIPS the corresponding algorithm,FusionWithRegions that is based on a summarization
mechanism using array regions (see SectiGR).

PIPS computes array region accesses for each structure of HEFG, including loops
and their body. This information, summarized at body-levelenables establishing if the
loops can be fused with an extended dependence testdlet et al. 1984. Array regions are
convex polyhedra. The linear system is used directly in thelPS dependence testl{igoin
et al. 1997 to establish the dependence between the array regions asated to the loop
bodies.

In the case of conBict, the dependence test states whether thependence is loop-carried
or not, and whether it is a backward or a forward dependence. Arvard loop-independent
dependence is totally harmless and therefore can be safgpared for the fusion.

A backward loop-carried dependence breaks the semanticstloé program and always
has to be considered as fusion-preventing/prren 1984 Kennedy & McKinley 1994.

Finally a forward loop-carried dependence does not breaketsemantics of the program
but serializes the execution of the loop. If the loop-fusioalgorithm has to maximize the
parallelism, then such a dependence has to be consideredwsdn-preventing, if at least
one of the original loops is parallel.

The main interest of the FusionWithRegions algorithm is the simplicity of its imple-
mentation in PIPS. It relies on a well-tried polyhedral framework used for aay regions.
This solution allows avoiding recomputing a full dependenceaph each time a fusion is
attempted by the algorithm FUSE_RDG

4.6.6 Further Special Considerations

As mentioned in Sectiord.2, the mapping of a loop nest orfGPU involves only perfectly
nested parallel loops. The fusion algorithm can be parametgd to enforce this property.
When a fusion succeeds, if the original loops both containadsingle parallel loop as body
then a fusion is tried on these inner loops. In case of failyrthe fusion of the outer loops
is reverted.

The algorithm presented at the previous section has to be apgdl in sequences. The
order sequences are picked for processing duriRlCFG traversal matters. Figure 4.19
presents an example where the sequence corresponding to tbeyoof the Prst loop has to
be processed brst. If the inner loops are not fused brst, theére outer loops are not fused
to avoid breaking the perfect nesting.

Finally, when parallelizing for GPUs, since only the perfectly nested loops are scheduled
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for (i=0; i<n; i++) { /I Parallel
for (j=0; j<m; j++) { /I Parallel
} ali][j]=b[jl[il;
for (j=0; j<m; j++) { /I Parallel

clilljil=alil[j]+k*j;

}

}

for (i=0; i<n; i++) { /I Parallel
for (j=0; j<m; j++) { /I Paralle
} dlil[ji]=sart(c[il[j]);

}

Figure 4.19: Sample code showing that inner loops have to beséd brst in order to be
able to fuse the outer loops without breaking the perfect nesg.

for (i=0; i<n; i++) { /I Parallel
int  tmp[10];
tmp[0]=0;
for (j=1; j<10; j++) { /I Sequential
} tmp[j]=tmp(j-1]+ali][jl+b[i][j];
for (j=1; j<10; j++) { /I Parallel
} clillil+=tmp[j];

}

Figure 4.20: Only perfectly nested loops are labeled pallto avoid GPU unfriendly loop
fusion.

on the GPUs, parallel loops that are located in the body of an outer parkdl loop must be
declared as sequential. If they are not, the fusion of the ien parallel loop with another
inner sequential loop is prevented. This situation is illusated in Figure 4.2Q The second
inner loop should not be declared parallel, so that it can bai$ed with the previous loop.

4.7 Scalarization

Scalarization is a transformation that replaces constantreay references to arrays with
scalars. This transformation can occur in the usual backendmpiler, when it comes to
keeping in a register a value fetched from memory as long asspible. Intuitively it means
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that performing this transformation at source level might increase the pressure on registers
and lead to spilling.

This transformation can also eliminate temporary arrays, nat of the time after loop
fusion and especially in the context of automatically genated code from high-level lan-
guages and tools. The generated C code from a three-line Stif@mogram contains three
temporary arrays that can be totally replaced with scalars &ér loop fusion (see in Fig-
ure 4.21).

In the context of targeting accelerators likeGPUs, this transformation is even more
critical than on a shared memory system. Indeed, the geneeat kernel will be faster by
performing fewer memory accesses, but it is probably fromeahreduced memory transfers
over the PCle bus that most of the gains are to be expected.

Array scalarization has been widely studied in the pastdao et al. 1993 Sarkar &
Gao 199] Darte & Huard 2002, Carribault & Cohen 2004. This section explores di"erent
schemes to apply this transformation in the context of o$oaihg kernels to theGPU. The
performance impact is evaluated for di"erentGPU architectures.

4.7.1 Scalarization inside Kernel

A simple matrix multiplication naively mapped onto the GPU is shown in Figure4.22
This kernel includes a sequential loop with a constant array ference. This reference
can be kept in a scalar variable during the whole loop. These traformations could be
done by the target backend compiler. However, the measurem@resented in Figure7.11,
Page192 indicates that performing it at source level is valuable oall architectures tested,
with speedup up to 2.39.

4.7.2 Scalarization after Loop Fusion

Loop fusion generates code where debnitions and uses of terapoarrays are in the
same loop body. The arrays can be totally removed, saving bothemory bandwidth and
memory footprint. In the context of automatically generatel code from high-level languages
and tools, this situation is a common pattern. Figure4.21 shows an example of such
generated code from a three-line Scilab program. After lodpsion, the generated C code
contains three temporary arrays that can be replaced by s@ab as shown in Figuret.21h

To eliminate a temporary array, its elements must not be usedater in the program
execution. This is checked iPIPS with OUT regions (see Sectiof3.2, Page64).
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double a[1000][1000];
double t0[1000][1000];
double b[1000][1000];
double t1[1000][1000];
double ¢[1000][1000];
for (i=0; i<1000; i++) {
for (j=0; j<1000; j++) {
alilljl = (  double) (1.0);
to[il(jl = aflilljl+alilljl;
b[il[j] = tO[il[jl+ali]ljl;
tifilljl = bIlil[j]*2.;
}CUHH = t[i][jl+3.;

}
disp_s0d2("b",1000,1000,b);
disp_s0d2("c",1000,1000,c);

(a) After loop fusion.

double b[1000][1000];
double ¢[1000][1000];
for (i=0; 1<1000; i++) {
for (j=0; j<1000; j++) {
double a, t1, tO;
a = (double) (1.0);
t0 = a+a;
b[i][j] = tO+a;
tl = b[i][j]*2.;
c[illjl = t1+3.;
}

}
disp_s0d2("b",1000,1000,b);
disp_s0d2("c",1000,1000,c);

(b) After array scalarization.

Figure 4.21: Processing of example in Figukel A Scilab script compiled to C code o"ers
good opportunities for loop fusion and array scalarization

for (i = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {

C[illil = 0O;

for (k = 0; k < nk; ++k)
ClIUI+=A[IKI*BIK][I;

}
}

CLlil = 0;
for (k = 0; k < nk; ++k)
CLI1+=A[K]*BK][i];

(a) Naive Kernel body.

int scal C = 0;
for (k = 0; k < nk; ++k)
scal_C+=A[il[K]*B[K][j1;
Clil[j]=scal_C;

(b) After scalarization.

Figure 4.22: Simple matrix multiplication example to illugrate the impact of scalarization.

Section7.5.2 Page191, shows how this simple case exhibits speedup ranging from@..9
up to 5.75. In this case the backend compiler cannot do anytig and thus it is critical to
apply this transformation at source level.
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4.7.3 Perfect Nesting of Loops

In some cases, scalarization can break the perfect nestinglaops. Figure4.23illus-
trates such a situation. Constant references in the innermokop are assigned to scalars
and thus the two loops are no longer perfectly nested. Sincaly perfectly nested loops
are mapped, then here only one of the two loops can be execuiegarallel after transfor-
mation. The useful parallelism is reduced: fewer threads caxecute on theGPU.

The kernel generated without scalarization is shown in Figuré.23¢ while the kernel
generated for the outer loop is shown in Figurd.23e it contains a sequential loop in
the kernel. Finally, Figure 4.23d illustrates the mapping of the inner loop resulting in a
sequential loop on the host. These three versions di"er on thet side; as shown on the
host code in Figure4.23d no DMA operation is required forul and u2. The drawback
is that, while the other two versions include only one kerneklnch, this one requires as
many launches as iterations of the outer loop.

Evaluating which of these three versions leads to the best perfnance is highly depen-
dent on data size. Here the two loops have di"erent iterationumbers,Nand M First of all,
the transfer times of arraysul and u2 for the versions in Figure4.23eand in Figure 4.23c
increase withN The number of threads mapped on th&PU scales withNand Mfor version
in Figure 4.23¢ with Nfor version in Figure4.23e and Mfor version4.23d By increasing
the number of threads, more computation has to be done on theeelerator but also more
parallelism is exposed and thus it is potentially more likglto keep the GPU busy. The
time for computing one kernel with one thread is constant fortte versions in Figure€.23c
and 4.23dbut scales withMin version in Figure4.23e Finally, version in Figure 4.23dmay
su"er from a high number of kernel launches wheN grows.

This issue is multidimensional, and does not even take into @munt the di"erence in
performance from one version to the other linked to architéaral details like the memory
accesses patterns or the potentidLP exposed.

UnlessN is large andMis small, version4.23esu"ers from less parallelism exposed
with respect to version4.23¢c When we compare this latter with versior4.23d a smallN
and a highMmay provide a slight advantage to versio.23d because no data transfer is
performed. Although the same amount of data has to be transfed, it will be performed
using the arguments of the kernel call instead of a separddIA . Since kernels are executed
asynchronously, while the Pbrst kernel executes the argumefur the second kernel are
transfered, providing a kind of overlapping of transfers ahcomputation. However, the
overhead ofN kernel launches can be a lot higher than a sing@MA.
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for (i=0; i<N; i++) {
/I ul[i] and u2[i] are constant
/I references in the inner loop
for (j=0; j<M; j++) {
ALNT=ALIGI+ul[i]+u2fi];
}

}

(a) Nest candidate to scalarization.
void k_2d( void k_in(
data_type A[N][M],

data_type A[N][M],

for (i=0; i<N; i++) {

s_ul = ulJi]

s_u2 = u2Ji]

for (j=0; j<M; j++) {
Ali[J1=ATi][j]+s_ul+s_u2;
}

}

(b) After array scalarization.

void Kk_out(
data_type A[N][M],

data_type ul,
data_type u2,

data_type Uul[N],
data_type u2[N])

data_type ul[N],
data_type u2[N])

{ int i) {
int i = P4A_vp_1,; { int j,i = P4A_vp_0O;
int j = P4A_vp_O; int j = P4A_vp_O; if (i<N) {
if (I<N && j<M) ul s = ulli];
Alill1=Al]+ it (j<M) u2_s = u2fi];
ulfi]+u2[i]; Afil[j1=Al]+ for (j=0;j<M;j++)
} ul+u2; Ali[j1=AlL]
} +ul s+u2_s;
}
for (i=0;i<N;i++) { }
ul_s = ulfi];
copy_to_accel(ul); u2_s = u2lil; copy_to_accel(ul);
copy_to_accel(u2); k_in(A,ul_s,u2_s,i); copy_to_accel(u2);
k _2d(A,ul,u2); } k_out(A,ul,u2);

(e) Kernel when mapping the

(d) Kernel when mapping the in-
outer loop.

(c) Bi-dimensional kernel with-
ner loop.

out scalarization.

Figure 4.23: Array scalarization can break the perfect nasg of loop nests, thus limiting
potential parallelism when mapping on the GPU.

This analysis is conbPrmed by the experiments in Section5.3 Page191, and illustrated
in Figure 7.13

4.7.4 Conclusion

This section surveys a well-known transformation, scalariian, and shows how the
implementation in PIPS, leveraging array region analysis, can help reducing the mery

footprint and improving overall performance when targetingsPU.
The GPGPU puts some unusual constraints in such state-of-the-art tresformation:
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preserve the perfect nesting of loops. | modibed the exigjinmplementation to enforce
this property. Detailed experiments are presented in Seot 7.5, Page 181, and speedups
ranging from 1.12 to 2.39 are obtained.

4.8 Loop Unrolling

Loop unrolling (or unwinding) is a well-known loop transforméon [Aho & Ullman 1977
to improve the performance of loop execution time. The basicripciple is to replicate
the loop body many times to perform many iterations. The trip ount is then reduced.
Figure 4.24 shows an example of such a transformation. The original looprtains only
one statement. After unrolling by a factor of four, the new lop body corresponds to four
iterations of the original loop. A second loop is added to cqmte the remaining iterations.
Indeed, the unrolled loop can compute only multiples of fouterations and thus, depending
on the total number of iterations, the remainder must be progssed separately.

This transformation is used to reduce the execution time. Theriginal loop in Fig-
ure 4.24 contains just a few computations per iteration, thus the owkead of the loop
header and the hazard associated to the branching may be sigrant. Moreover, theln-
struction Level Parallelismavailable to the hardware scheduler is poor. The unrolled Ipo
addresses these issues and exhibits also a larger potenfial further optimization. This
is obtained by means of increased register pressuBathir et al. 200§ and a larger code
that might break the instruction cache. These shortcomingsan annihilate any of the
aforementioned benepts.

In spite of its drawbacks, unrolling is a common optimizatiortechnique implemented
in all mainstream compilers. In the context ofGPU programming, this transformation is
interesting for two reasons. The brst arises when sequentiabps are encountered inside
kernels, while the second consists in unrolling parallel Ips that are mapped on threads
as shown in Sectior.2 page98. In this latter case, it is a trade-0" since it reduces the
TLP exposed in favor of potentially mordLP.

Section 2.4 presents theGPU architectures, and more especially holLP can be ex-
ploited by current GPU architectures. For instance, somé&MD architectures are based
on a VLIW instruction set. Sohi & Vajapeyam show that loop unrolling $ a must to
get speedup forVLIW architectures [Fohi & Vajapeyam 198} Lee et al. show interest-
ing speedups obtained with loop unrolling for superscalar @ritectures [Lee et al. 1991.
Nvidia architectures and the latestAMD one include a hardware scheduler that can ben-
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for (k = 0; k < nk; k += 1) {
D_scalar += alpha*A[i][k]*B[K]I[j];
}

(a) Original code.

for (k = 0; k < 4*((nk)/4); k += 4) {
D_scalar += alpha*A[i][k]*B[k][jl;
D_scalar += alpha*AJi][k+1]*B[k+1][j];
D_scalar += alpha*AJi][k+2]*B[k+2][j];
D_scalar += alpha*AJi][k+3]*B[k+3][j];

}

/I Epilogue

for (; k < nk; k += 1) {
D_scalar += alpha*A[i][k]*B[K][j];

}

(b) After loop unrolling.

Figure 4.24: Example of loop unrolling with a factor four.

ebt from unrolling in the same way. Stone et al. found that umiling the parallel loops
mapped on threads eight times can provide a speedup of twéigne et al. 2007, Volkov
conbrmed later this results with other experiments\jolkov 2011].

Section 7.6 presents the performance gains that | obtained by simply uoling the
inner loop in the kernel from the code in Figuretl.22 An acceleration of up to 1.4 can be
observed depending on the architecture. The register pressumpact is also studied, and
it is shown that loop unrolling impacts the register consumpon in kernels.

4.9 Array Linearization

Fortran and C programs make use of multidimensional arraysHowever, this is an
issue when using@dpenCL: the standard does not allow the use of multidimensional arya.
These have to be converted to pointers or 1D arrays and the asses have to be linearized.
This transformation is also mandatory when usingCUDA and C99VLA arrays that are
not supported.

The result of this transformation is illustrated in Figure 4.25

The impact on performance forCUDA code is checked in Sectioi.7. This transfor-
mation can lead to a slowdown up to twenty percent, but can alsdan one conbguration,
leads to a small speedup of about two percent.
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void k(int ni, int nj, int nk, void k(int ni, int nj, int nk,
double Alni][nk], double *A,
double B[nk][nj], double *B,
double C[ni][nj], double *C,
int i, int j) { int i, int j) {
int  k; int  k;
CIlillj] = o©; *(C+i*nk+j) = 0;
for (k=0; k<nk; ++k) for (k=0; k<nk; ++k)
CLI1+=Alik]* “(CHixnj+j)+=*(A+i*nk+k) *
BLKILL: *B(k*nj+j);
} }
(a) Original kernel. (b) After array linearization.

Figure 4.25: Simple matrix multiplication example to illugrate array linearization interest.

There is no reason in my opinion why a standard lik®penCL forbids the use of
multidimensional arrays in the formal parameters of the fuctions, and, considering the
performance impact, we hope that a future release will removbis constraint.

4.10 Toward a Compilation Scheme

This chapter presents many individual transformations thatare applicable at di"erent
times in the whole process. The chaining of all these transfoations can be tough and
di"erent choices in the process will lead to di"erent performate results.

| proposed and implemented a simple but Bexible mapping of f@dlel loop nests on the
GPU. This mapping allows keeping the internal representation umare of the full hierarchy
implied by the OpenCL NDRange. | designed and implemented an induction variable
substitution to enable parallelization of some loops, usinan original scheme based on
linear preconditions. | improved the parallelism detectio in PIPS, especially the coupling
with the reduction detection, and studied the impact of the tvo di"erent algorithms on the
code generation and on the performance @gaPUs. | designed and implemented dedicated
parallelization of reductions using the atomic operationgvailable on GPUs. | designed
and implemented a loop fusion phase iRIPS, including several di"erent heuristics to favor
a performing mapping ontoGPUs. | improved the existing scalarization transformation
in PIPS to keep the perfect nesting of loops. | identibPed three di"em¢ schemes and
analyzed the impact of scalarization in these cases. | cordded experiments to validate
the individual impact of each of the transformations presead in this chapter. While most
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concepts are well known, it is shown that for many transformabins, the state-of-the-art
scheme has to be adapted to the specibc requirements of thessieely parallel pieces of
hardware that are GPUs.

PIPS o"ers a Rexible framework, but the compilation Bow among thesindividual
transformations has to be driven to provide an automatic entb-end solution, as shown
in Figure 2.27 on page58 The next chapter motivates and introduces the concepts of
the programmable pass manager implemented RPIPS, which Par4All leverages to provide
automated process driving all the transformation steps.
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While previous chapters are focused on individual transforations implemented in the
PIPS framework, this chapter addresses the issue of automatinget whole compilation
process, from the original source code to the bnal binary. This end, we introduce
PardAll [SILKAN 2010 (perso) Amini et al. 2012b (perso) in Section5.1 Par4All is an
Open Source initiative that we propose to incubate e"orts maglaround compilers to allow
automatic parallelization of applications to hybrid archtectures.

As hardware platforms grow in complexity, compiler infraguctures need more [exi-
bility: due to the heterogeneity of these platforms, compalr phases must be combined in
unusual and dynamic ways, and several tools may have to be danmed to handle specibc
parts of the compilation process'eciently. The need for Rexibility also appears in iterative
compilation, when di"erent phases orderings are explored.

In this context, we need to assemble pieces of software likenpiler phases without
having to dive into the tool internals. The entity in charge ofthis phase management in
a standard monolithic compiler is called gpass manager While pass managers usually
rely on a statically debned schedule, the introduction of pg-ins in GCC and the current
trends in compiler design showcased yLVM pave the way for dynamic pass schedulers.
Moreover, the heterogeneity of targets requires the combitian of di"erent tools in the
compilation chain. In this context, automating the collabeoation of such di"erent tools
requires debning a higher leveheta pass manager.

The source-to-source aspect is key in this process, as exmpdal in Section5.2 A
programmable pass manager is then introduced in Secti@n3.

Numerical simulations often make use of external librariesich asBasic Linear Algebra
Subprograms (BLAS)or Fast Fourier transform (FFT) for example. Sectiorb.4 presents
the handling of such specibc libraries for mapping these cputations on a GPU.

Section 5.5 gives insights on how di"erent tools can collaborate. The pra&bility
decision of o$oad computation is studied in Sectiorb.6. Solutions for selecting among
di"erent versions of a kernel at runtime are presented Sectio5.7. Finally, Section 5.8
explores the impact of launch conbguration on kernel perfoance.

5.1 Par4All Project

Recent compilers propose an incremental way for convertirspftware toward acceler-
ators. For instance, the PGI Accelerator \[Volfe 2010 or HMPP [Bodin & Bihan 2009
require the use of directives. The programmer must select thmeces of source that are
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to be executed on the accelerator. He provides optional ditéves that act as hints for
data allocations and transfers. The compiler then automatadly generates a transformed
code that targets a specibc platform. JCUDAYan et al. 2009 o"ers a simpler interface to
target CUDA from Java. There have been several attempts to automate traiegsmations
for OpenMP annotated source code t€UDA [Leeet al. 2009 Ohshimaet al. 201J. The
GPU programming model and the host accelerator paradigm gregtlestrict the poten-
tial of this approach, sinceOpenMP is designed for a shared memory computer. Recent
work [Han & Abdelrahman 2009 Lee & Eigenmann 201Padds extensions tdOpenMP to
account for CUDA specibcity. These make programs easier to write, but the dewpkr is
still responsible for designing and writing communicationsode, and usually the program-
mer has to specialize his source code for a particular aradtture. These previous works
are presented with more detail in Sectio2.2

Unlike these approaches, Par4AllILKAN 2010 (perso) Amini et al. 2012b (perso)
is an automatic parallelizing and optimizing compiler for Cand Fortran sequential pro-
grams funded by the SILKAN company. The purpose of this sourde-source compiler is to
integrate several compilation tools into an easy-to-use typowerful compiler that automat-
ically transforms existing programs to target various hardiare platforms. Heterogeneity is
everywhere nowadays, from the supercomputers to the mobil@sd, and the future seems
to be more and more heterogeneous. Thus automatically adapgi programs to targets
such as multicore systems, embedded systems, high- perfanbe computers andsPUs is
a critical challenge.

Par4All is currently mainly based on thePIPS [Irigoin et al. 1991, Amini et al. 2011a
(perso]] source-to-source compiler infrastructure and benebt®in its interprocedural capa-
bilities like memory e"ects, reduction detection, parallésm detection, but also polyhedral-
based analyses such as convex array regiofisdusillet & Irigoin 19964 and preconditions.

The source-to-source nature of Par4All makes it easy to integje third-party tools into
the compilation Bow. For instance PIPS is used to identify parts that are of interest in a
whole program, and then Par4All relies on the PoCC-ouchetet al. 20104 or PPCG [Ver-
doolaegeet al. 2013 polyhedral loop optimizers to perform memory accesses opizations
on these parts, in order to benebt from local memory for ingtae, as shown in Sectiob.5.

The combination of PIPSO analyses together and the insertion of other optimizers in
the middle of the compilation Row is automated by Par4All usig a programmable pass
manager (see Sectiob.3) to perform whole-program analysis, spot parallel loops and
generate mostlyOpenMP, CUDA or OpenCL code.
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To that end, we mainly face two challenges: parallelism detiden and data transfer
generation. TheOpenMP directive generation relies on coarse grained paralleltzan and
semantic-based reduction detection, as presented in Sectd.4. The CUDA and OpenCL
targets add the di culty of data transfer management. PIPS helps tackling this using
convex array regions that are translated into optimized, iterprocedural data transfers
between host and accelerator as described in Chapter

5.2 Source-to-Source Transformation System

Many previous successful compilers are source-to-sourcenpiers [Bozkuset al. 1994
Frigo et al. 199§ AyguadZ et al. 1999 Munk et al. 201( or based on source-to-source
compiler infrastructures [rigoin et al. 1991, Wilson et al. 1994 Quinlan 200Q ik Lee
et al. 2003 Derrien et al. 2019. They provide interesting transformations in the context
of heterogeneous computing, such as parallelism detectiatgorithms (see Sectiort.3),
variable privatization, and many others including those pesented in Chapter4.

In the heterogeneous world, it is common to rely on specibcrdavare compilers to
generate binary code for the part of the application intendkto be run on a particular
hardware. Such compilers usually take a C dialect as inputriguage to generate assembly
code. Thus, it is mandatory for the whole toolbox to be able to gerate C code as the
result of its processing.

In addition to the intuitive collaboration with hardware compilers, source-to-source
compilers can also collaborate with each other to achieve ihgoal, using source bles as a
common medium, at the expense of extra conversions betwede Textual Representation
(TR) and the IR. Figure 5.1 illustrates this generic behavior and, in Sectio.5, the use
of external polyhedral tools for some loop nest optimizatis is presented. Moreover, two
source-to-source compilers written in the same infrastrugte can be combined in that way.
For instance, anSIMD instruction generator has been used for both the generatiai SSE
instructions on Intel processors and enhancing the code geated by the CUDA/ OpenCL
generator presented in Chapteds.

More traditional advantages of source-to-source compileirsclude their ease of debug-
ging: the IR can be dumped as &R at anytime and executed. For the same reason, they
are very pedagogical tools and make it easier to illustratéaé behavior of a transformation.
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Figure 5.1: Source-to-source cooperation with external tiso

5.3 Programmable Pass Managers

The continuous search for performance leads to numerous diéet hardware architec-
tures, as showcased by current trends in heterogeneous camipy. To use these archi-
tectures @ ciently, new languages and paradigms are often introducebyt they typically
target only specibc architectures. For instancA&VX intrinsics target vector registers of
recentx86 processorsQpenMP directives target multicores, and most noticeably\CUDA
targets NvidiaD$PU. It is di! cult to master all these language-hardware bindings with-
out losing control of the original code. Thus compilers play key role for Oblling the gapO
between generic sequential languages and specibc parddietjuages fsanovizet al. 2004.
Because of the diversity of targeted architecture, Rexility and retargetability are critical
properties for compiler frameworks that must keep up with theongoing work of hard-
ware designers and founders. Also, applications targetingterogeneous architectures, e.g.
GPGPU with an x86 host, raise new problems such as the generation of di"eramides in
di"erent assembly languages, remote memory management, ddtansfer generations, etc.,
thus requiring new functionalities that are not available m current mainline compilers.

A recurrent point when compiling for heterogeneous platformis the need to dynam-
ically create new functions that will be mapped onto specibdgres of hardware, using a
transformation called outlining. This transformation dynamically creates new functions
and new compilation units depending on the processed code, is does not bt well into
static pass managers.

Additionally, iterative compilation [ Goldberg 1989 Kulkarni et al. 2003Nthe process
of iteratively transforming, compiling and evaluating a pogram to maximize a btness
functionNis more and more considered as an alternative to ahdard program optimiza-
tions to solve complex problems, but it requires a dynamic cenbguration of the compi-
lation process. In a compiler infrastructure, the latter ismanaged by thepass manager
Because of the much more complicated compilation schemelistpass manager must be
Rexible and provide ways of overtaking the traditional harecoded pass sequence to al-
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low compiler developers to manipulate the interactions beeen passes and the compiled
program dynamically.

This section is organized as follows: Sectidn3.1overviewsPythonic PIPS (PyPS), the
pass manager implemented in thBIPS source-to-source compiler framework. It involves an
API with a high-level abstraction of compilation entities such aanalyses, passes, functions,
loops, etc. Building upon the fact that anAPI is relevant only when used extensively, some
cases of use are mentioned in Sectidn3.1.5 with the summarized compilation scheme
of distinct compiler prototypes using this model. Finally,related works is presented in
Section5.3.2

53.1 PyPS

A formal model description is available in Guelton et al. 2011a (persg) Guelton
et al. 2011b (perso)Guelton 20113. Multiple operators are proposed to describe transfor-
mations, error handling, and di"erent pass-combination sa@mes. Guelton also improves
it and provides a signibcantly extended version in his PhD tlsés [Guelton 20113, The
assumption made in PyPS is that the resources required to exéewa given pass are trans-
parently provided by an underlying component. InPIPS, the consistency manager PIPS-
Make is present. It takes care of executing the analysis reged by a compiling pass and
keeps track of any change that invalidates the results of amalysis.

Instead of introducing yet another new domain-specibc langge to express these op-
erators, we benebt from existing tools and languages, tagiradvantage of the similarity
with existing control Bow operators. Indeed the transformabn composition is similar to
a function debnition; the failsafe operator can be implem&ad using exception handling
and the conditional composition performs a branching opetian. This leads to the idea of
using a general-purpose language coupled with an existingmggiler infrastructure, while
clearly separating the concerns.

5.3.1.1 Benebting from Python: on the shoulders of giants

Using a programming language to manage pass interactions oseall the Rexibility
needed to drive complex compilation processes, without theeed of much insight on the
actual IR. Conceptually, a scripting language is not required. Howeweit speeds up the
development process without being a burden in terms of perfoance as all the time is
spent in the transformations themselves.
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Some approaches introduced dedicated language 2011] for the pass management, but
we rather follow the well-known Bernard de ChartresO motto: rQtbe shoulders of giantsO
and thus use Python as our base language. This choice proved ® lpetter than expected
by not only providing high-level constructions in the langage but also by opening access
to a rich ecosystem that widens the set of possibilities, at thexpense of a dependency on
the Python interpreter.

5.3.1.2 Program Abstractions

In the model presented in Guelton et al. 2011b (perso) Guelton et al. 2011a (persd)
transformations process the program as a whole. However, isiormations can proceed at
lower granularity: compilation unit level,* function level® or loop level

¥ at compilation unit level, decisions based upon the targetan be made following the
rule of thumb Oone compilation unit per target.O This helpsivdr the compilation
process by applying di"erent transformations to di"erent corpilation units;

¥ most functions that consider stack-allocated variables wk at the function level:
common subexpression eliminatignforward substitution or partial evaluation are
good examples;

¥ a lot of optimizations are dedicated to loop nests, without tking care of the sur-
rounding statements. This is the case for polyhedral trangfimations.

Interprocedural transformations, like building thecallgraph require knowledge of the
whole program, or can be improved by such knowledge (e.gonstant propagation, thus
the program granularity is still relevant.

The class diagram in Figure5.2 shows the relations between all these abstractions.
TheseNand only theseNare exposed to the pass manager. Thwilder, in charge of the
compilation process, is introduced in Sectioh.3.1.4

5.3.1.3 Control Structures

The main control structures involved are introduced here. Theomplete formal de-
scription of the operators is found in Guelton et al. 2011a (persog) Guelton et al. 2011b
(perso), Guelton 20113

1. A source ble in C.
2. Also referred as Omodule level.O
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Figure 5.2: PyPS class hierarchy (sourc&[elton et al. 2011a (perso)Guelton et al. 2011b
(perso))).

# first argument is the argument name, second is the default &lue
if conditions.get(Oif_conversionO,False):
module.if_conversion()

Figure 5.3: Conditionals in PyPS.

for kernel in terapix_kernels:
kernel.microcode_normalize()

(a) Iteration over selected modules

for | in module.inner_loops(): l.unroll(4)
(b) lteration over inner loops

for pattern in ["min","max","adds"]:
module.pattern_recognition(pattern)
(c) Multiple instruction selection.

Figure 5.4: For loop is a control structure commonly involwe in PyPS

Conditionals  Conditionals are used when transformation scheduling depexdn user in-
put or on the current compilation state. Figure5.3, extracted from the SIMD Architecture
Compiler (SAC) compiler [Guelton 20113, illustrates the use of conditionals to implement
the -fno-pass-name/-fpass-name switch as in GCC.

For Loops For loops are used to perform repetitive tasks (see in Figute4):
1. applying a transformation to each function or loop of a set
2. applying a transformation iteratively with varying parameters.

Figure 5.4aillustrates a basic iteration over selected modules in theompiler for Ter-
apix [Guelton 20113. Figure 5.4b from the SAC compiler [Guelton 20114 shows how to
unroll all inner loops by a factor of four. Finally, in the SAC compiler, early pattern recog-
nition is also performed. Figure5.4c demonstrates the use of loops to apply this pass for



















































































































































































































































































































































































































































































































































