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Abstract

Since the beginning of the 2000s, the raw performance of processors stopped its expo-
nential increase. The modern graphic processing units (GPUs) have been designed as array
of hundreds or thousands of compute units. The GPUs’ compute capacity quickly leads
them to be diverted from their original target to be used as accelerators for general pur-
pose computation. However programming a GPU efficiently to perform other computations
than 3D rendering remains challenging.

The current jungle in the hardware ecosystem is mirrored by the software world, with
more and more programming models, new languages, different APIs, etc. But no one-fits-
all solution has emerged.

This thesis proposes a compiler-based solution to partially answer the three “P” prop-
erties: Performance, Portability, and Programmability. The goal is to transform auto-
matically a sequential program into an equivalent program accelerated with a GPU. A
prototype, Par4All, is implemented and validated with numerous experiences. The pro-
grammability and portability are enforced by definition, and the performance may not be
as good as what can be obtained by an expert programmer, but still has been measured
excellent for a wide range of kernels and applications.

A survey of the GPU architectures and the trends in the languages and framework
design is presented. The data movement between the host and the accelerator is managed
without involving the developer. An algorithm is proposed to optimize the communication
by sending data to the GPU as early as possible and keeping them on the GPU as long
as they are not required by the host. Loop transformations techniques for kernel code
generation are involved, and even well-known ones have to be adapted to match specific
GPU constraints. They are combined in a coherent and flexible way and dynamically
scheduled within the compilation process of an interprocedural compiler. Some preliminary

work is presented about the extension of the approach toward multiple GPUs.






Résumé

Depuis le début des années 2000, la performance brute des coeurs des processeurs a
cessé son augmentation exponentielle. Les circuits graphiques (GPUs) modernes ont été
congus comme des circuits composés d’une véritable grille de plusieurs centaines voir mil-
liers d’unités de calcul. Leur capacité de calcul les a amenés a étre rapidement détournés
de leur fonction premiére d’affichage pour étre exploités comme accélérateurs de calculs
généralistes. Toutefois programmer un GPU efficacement en dehors du rendu de scénes 3D
reste un défi.

La jungle qui régne dans I’écosystéme du matériel se refléte dans le monde du logiciel,
avec de plus en plus de modéles de programmation, langages, ou API, sans laisser émerger
de solution universelle.

Cette thése propose une solution de compilation pour répondre partiellement aux trois
“P” propriétés : Performance, Portabilité, et Programmabilité. Le but est de transformer
automatiquement un programme séquentiel en un programme équivalent accéléré a 'aide
d’un GPU. Un prototype, Par4All, est implémenté et validé par de nombreuses expériences.
La programmabilité et la portabilité sont assurées par définition, et si la performance n’est
pas toujours au niveau de ce qu’obtiendrait un développeur expert, elle reste excellente sur
une large gamme de noyaux et d’applications.

Une étude des architectures des GPUs et les tendances dans la conception des lan-
gages et cadres de programmation est présentée. Le placement des données entre I'hote et
I’accélérateur est réalisé sans impliquer le développeur. Un algorithme d’optimisation des
communications est proposé pour envoyer les données sur le GPU dés que possible et les y
conserver aussi longtemps qu’elle ne sont pas requises sur ’hdte. Des techniques de trans-
formations de boucles pour la génération de code noyau sont utilisées, et méme certaines
connues et éprouvées doivent étre adaptées aux contraintes posées par les GPUs. Elles sont
assemblées de maniére cohérente, et ordonnancées dans le flot d’'un compilateur interprocé-
dural. Des travaux préliminaires sont présentés au sujet de ’extension de I’approche pour
cibler de multiples GPUs.
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2 Chapter 1. Introduction

1.1 The Prophecy

Once upon a time, software programmers were merrily writing their code with the
simple von Neumann architecture in mind (see in Figure 1.1). Performance was important
of course, but they were also protected by a godsend that let them launch a project
requiring computing power that was not yet available. Indeed, the time-to-market period
was for sure the scene of huge improvement in hardware performance. The prophecy that
every programmer was relying on is known as Moore’s law. It is commonly quoted as
(see [Srinivasan 2012, Manegold 2002, Yang & Chang 2003])

the CPU clock speed will double every eighteen months.

This short and simple sentence has been immersed in the mind of generations of pro-
grammers for decades. Everything was going along fine until a bird of ill omen came and
stated

it cannot continue forever. The nature of exponentials is that you push

them out and eventually disaster happens.

He was not the first one to challenge the prophecy, but this time it was Gordon Moore
himself [Dubash 2005|, the author of the prophecy. It was terrible for the programmers,
and most of them locked themselves into denial. Little by little, the idea that the clock
speed does not continue to grow as before made its way. As matter of fact, the original
prophecy could probably ranked close second on the Top 10 list for misquoted statements,
right behind “Luke, I am your father.” Actually Moore originally stated [Moore 1965| that

the complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. . . . Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the rate
of increase is a bit more uncertain, although there is no reason to believe it
will not remain nearly constant for at least ten years. That means by 1975, the
number of components per integrated circuit for minimum cost will be 65,000.

I believe that such a large circuit can be built on a single wafer.

The forty years of easy life ended, as shown in Figure 1.2, and programmers were about to
face a new challenge. In fact, hardware designers, facing the frequency wall, jumped right

into the parallel world. ! The processor frequency was limited and they bypassed this issue

1. Parallelism has been already present in single-core processors since 1989 in the i860 Very Long
Instruction Word (VLIW) processor, and later with the Matrix Math eXtension (MMX) instruction set
in Pentium. Since then, programmers were offered the possibilities to express fine grained parallelism in
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Figure 1.1: von Neumann architecture

by aggregating multiple processors per chip, thus increasing the peak performance of their
chips. The multicore era had started.

Programmers discovered a new universe: the execution times of their programs were no
longer reduced when a new processor was released. In this new world they had to rethink
their algorithms to make use of multiple processors. As if it were not complicated enough,
some hardware designers, who probably embraced the dark side of the force, started to
introduce some more exotic pieces of hardware. These hardware platforms were highly
parallel but very tricky to target. The white knight programmer taking up the challenge
had not only to rethink algorithms, but also to manage some complex memory hierarchies
for which hardware designers left the management on behalf of the programmer.

Welcome to the heterogeneous computing universe!

1.2 Motivation

“Your free lunch will soon be over.” Herb Sutter started his 2005 article [Sutter 2005]
with this declaration to software developers. The limits of frequency scaling now forbid
automatic performance increase for sequential programs. The future is heterogeneous,
from the embedded world of smartphones to the largest supercomputers. Sutter wrote a
sequel to this article [Sutter 2011] in which he states quite accurately: “Now welcome to

the hardware jungle.” Figure 1.3 illustrates this evolution.

the instruction set, with the AMD K6-2 with 3DNow! vector instructions [Bush & Newman 1999] and
Streaming SIMD Extension (SSE) since Intel Pentium III [Intel 2008].



4 Chapter 1. Introduction

10,000,000 ' T
Dual-Core Itanium 2 ] /
1,000,000 ! ! -
- [ |
Intel/CPU Trends 4
(sources: Intel, Wikipedia, K. Olukotun} "
100,000 -
| Pentium 4
]
10,000
[ Pentium 0>
| N | 7
1,000 UL
A
[ ] A A A
100
"
| B} ) &
/ | ) AR
10 ' i
/ ve A 'y S
. & A | @

]
. ‘
/ A At [
1 mTransistors (000)

’ |
‘./. ® @ Clock Speed (MHz)
o e ® A Power (W)

® Perf/Clock (ILP)
|

0 \

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1.2: More than three decades of prosperity, the misquoted Moore’s law (source [Sut-
ter 2005], updated 2009, reprinted here with the kind permission of the author).

In the embedded system world, current high-end smartphones are based on a multi-
core processor, and they include vector processing units and also a Graphics Processing
Unit (GPU). For instance the A5 processor, used in the Apple iPhone 4S, is a dual-
core ARM Cortex-A9 MPCore Central Processing Unit (CPU) together with a dual-core
GPU [AnandTech 2011]. The same processor is used in the Apple iPad 2. The latest
Tegra 3 processor from Nvidia is a quad-core ARM Cortex-A9 MPCore and a twelve-
core GPU |Nvidia 2012b]. In both case, each core includes a 128-bit wide NEON vector
unit [Wikipedia 2012a]. The next Tegra generation will support General-Purpose Process-
ing on Graphics Processing Units (GPGPU) computing using Open Computing Language
(OpenCL).

In the supercomputing world, parallelism has been present for decades now. Vector ma-
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Figure 1.3: The free lunch is over. Now welcome to the hardware jungle (source [Sut-
ter 2011], reprinted here with the kind permission of the author).

chines have been replaced by clusters of multicore multiprocessor systems in the Top500
list [TOP500 Supercomputing Sites 2012]. The new trend is now adding hardware accelera-
tors to these systems, mostly using GPUs, adding a new layer of complexity. The June 2011
Top500 list includes three GPU-based systems in the top five, but there are also five GPU-
based systems in the Green500 list [Feng & Cameron 2007] among the ten first entries [The
Green500 2011]. The Nvidia Tesla K20 based Titan supercomputer trusts currently the
last November 2012 list [TOP500 Supercomputing Sites 2012|, and it is interesting to note
that Intel with its Xeon Phi coprocessor enters at the 7th rank.

One cannot find a single-core Personal Computer (PC) nowadays. Dual-core is the
standard at the entry level, quad-core in the mid-end, and it currently goes up to six-core
in the high end. Required by the gaming industry, GPUs shipped with PCs are more and
more powerful and are used in a growing set of applications beyond their primary usage:
3D rendering and graphic display.

The concern that arises now, as these heterogeneous platforms are widely available,
can be summarized as the three P properties [Adve 1993, Benkner et al. 2011, Adve 2011]

shown in Figure 1.4:

e Performance: the program makes use of the peak capability of the hardware.
e Portability: the code written by the programmer runs on a large range of platforms.

e Programmability: the programmer write his algorithms quickly.

A fourth P can now be added: Power. Not only because our cell phones have small
batteries, but also because in 2007 each of the ten biggest supercomputers consumed as
much energy as a city of forty thousand people [Feng & Cameron 2007|. People are looking

for software that is power aware |[Hsu & Feng 2005], using trade-offs between performance
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and power consumption.

Solutions to address these properties have been sought for a long time, since clusters
of computers entered the market. The programming complexity is increased when very
specialized hardware accelerators are added in these machines. Many types of resources

must be connected, and it becomes too much of a burden for the developer.

Performance has improved with compilers, allowing new languages to be competitive
with the king C language, which is still the reference when close control of the hardware

is necessary.

On the portability side, it is hardly possible to maintain a huge C code making use of
a wide range of heterogeneous devices. A usual practice is then to restrict to a common
subset of hardware features, limiting the practical performance one can expect with respect

to the theoretical peak performance depending on the application.

Finally, the programmability has been largely addressed by Application Programming
Interface (API) providers and language designers. For instance, UPC [UPC Consor-
tium 2005|, Co-Array Fortran [ISO 2010|, or Titanium [Yelick et al. 1998] exploit the
Partitioned Global Address Space (PGAS) model. The global memory address space is
logically partitioned and physically distributed among processors [Coarfa et al. 2005]. The

locality of references is then exploited by the runtime system with strategies like the owner
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computes rule. The purpose of these languages is to let the programmer ignore the remote
memory accesses, which leads to simpler code. This simple flat model has then evolved
to Asynchronous Partitioned Global Address Space (APGAS) with the X10 [Ebcioglu
et al. 2004] or the Chapel |[Chamberlain et al. 2007| languages. Concurrency has been
made explicit and the programmers express asynchronous constructions on multiple levels.
While the programmers have to change their usual approach to express their algorithms,
these languages provide high-level abstractions of architecture in a layered manner. How-
ever, these languages are new and not widely adopted by developers. Criticisms about
performance has been expressed: the code has to be optimized only with a good knowl-
edge of the target architecture [Zhang et al. 2011a].

The recent OpenCL standard [Khronos OpenCL Working Group 2008, Khronos
OpenCL Working Group 2011| has been developed to program accelerators. It provides an
abstraction of the hardware, based on an API to manage the device, and a language derived
from a subset of C to write kernels, i.e., functions to be executed on an accelerator. This
standard provides some portability across vendors and programmability at the C level.
However, performance portability is difficult to achieve [Komatsu et al. 2010]. Another ap-
proach is directive-based languages, following the well-known OpenMP standard [OpenMP
Architecture Review Board 1997, OpenMP Architecture Review Board 2011| for shared
memory systems. For example, some sets of directives like Hybrid Multicore Parallel Pro-
gramming (HMPP) [Wikipedia 2012¢|, PGI Accelerator [Wolfe 2010], or more recently
OpenACC |OpenACC Consortium 2012| provide an easier way to program accelerators,

while preserving code portability.

1.3 Outline

The goal of this dissertation is to explore the potential of compilers to provide a solution
to the three Ps: Performance, Portability, and Programmability. The solution considered
is the automatic code transformation of plain C or Fortran sequential code to accelerator-
enabled equivalent code. The main target machines are accelerators like GPUs: massively
parallel, with embedded memories in the GB range. A source-to-source approach takes
advantage of the Compute Unified Device Architecture (CUDA) and the standard OpenCL
APIs. Programmability and portability are enforced by the fully automatic approach.
Numerous measurements are provided to show that performance is not sacrificed.

The approach is pragmatic and the ideas and schemes presented are implemented in a
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new automatic source-to-source compiler, Par4All [SILKAN 2010 (perso)|, and validated
using benchmarks. The main goal is to provide a full end-to-end compilation chain, from
the sequential code to the GPU-enabled binary, good enough as a prototype for an indus-
trial solution. Therefore, instead of being deeply focused on a limited part of the problem,
this work contributes to different aspects of the problem and attempts to explore and solve

all the issues raised when building such a full compilation chain.

This compiler approach is useful for legacy applications and new developments as well.
A compiler lowers the entry cost but also the exit cost when a new platform has to be
targeted. Debugging and maintenance are easier since the code is written with a sequential
semantics that is suitable for most programmers. When the compiled code is not executing
fast enough, some specific costly parts of the code, the hot spots, can be manually optimized
for a particular architecture: a source-to-source compiler makes manual optimizations

possible on the code after processing by the heterogeneous compiler.

The choice of the C and Fortran languages is driven by their broad use in the high-
performance community. C is also a common choice for other tools that generate code
from a high-level representation or a scripting language. In order to illustrate the interest
of this approach, examples of Scilab [Scilab Consortium 2003] code are included. They are
automatically converted to sequential C with a Scilab compiler, and then transformed to

exploit accelerators using the different methods presented in this dissertation.

I present the history of GPUs and the emergence of GPGPU in Chapter 2. The hard-
ware evolution is mirrored by the associated programming languages that all failed to
match the three Ps criteria. I introduce he architectures of GPUs and their evolutions
to show the constraints that should be met by a compiler to achieve performance: dis-
tributed memory, memory access patterns on GPUs, fine grained parallelism, and support

for atomic operations.

In Chapter 3, I explore solutions to the automatic distribution of the data onto the
CPU and accelerator memories. The convex array region abstract representation is first
presented. A simple process to generate communications based on array regions is then
explained. I propose a new interprocedural optimizing scheme, and I validate it using
experiments. The algorithm relies on a new static analysis, Kernel Data Mapping, and
minimizes the communications by preserving data on the GPU memory and avoiding re-

dundant communications.

I identify a collection of program and loop transformations to isolate and optimize GPU

codes in Chapter 4. I propose a flexible mapping of parallel loop nests on the different layers
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of GPUs. I designed and implemented a transformation to substitute induction variables
and enable further parallelization. I present two different loop parallelization algorithms
and the consequences on code generation and performance. I modified them to handle
reduction schemes and introduced Coarse Grained with Reductions (CGR). I designed
and implemented a new transformation to benefit from hardware atomic operations when
parallelizing loop nests with reductions. I designed and implemented a new loop fusion
scheme, and I proposed heuristics to drive loop fusion to fit the GPUs’ constraints. 1
present Three different scalarization schemes. I modified the existing transformation to
provide better performance on GPUs. I also present the impact of loop unrolling and
array linearization. I validated all these transformations with measurements.

I present the whole compilation process in Chapter 5, from the sequential source code to
the final binary and the runtime associated at execution. The flexibility of a programmable
pass manager is used to produce the compilation chain. Interprocedural analyses are used,
and they require processing the source code of all functions in the call graph. It is an issue
for external libraries. I defined a dynamic solution to feed the compiler on demand during
the process.

I explore perspectives about extensions for multiple GPUs in Chapter 6. 1 study two
different schemes to extract parallelism. Iimplemented a simple task parallelism extraction,
and modified the existing symbolic tiling transformation. The StarPU runtime library is
used to exploit task parallelism and schedule tasks on multiple GPUs.

I present all experimental results in Chapter 7 to validate the solutions defined in the
previous chapters. I extracted twenty test cases from Polybench and Rodinia test suites.
I also used a real numerical n-body simulation to show that speedups can be obtained
automatically on application larger than the kernel benchmarks. Several target GPU
boards from Nvidia and Advanced Micro Devices (AMD) are used to show how the impact
of program transformations on performance depends on architectures.

Due to the variety of subjects tackled in this work, the presentation of the related works
is included in each chapter.

Finally, to pay a tribute to the environment in which this work takes place, a summary

in French is provided for each chapter at the end of the thesis.
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The reign of the classical Central Processing Unit (CPU) is no longer hegemonic and
the computing world is now heterogeneous. The Graphics Processing Units (GPUs) have
been candidate as CPUs co-processors for more than a decade now. Other architectures
were also developed like the Intel Larabee [Seiler et al. 2008], which never really reached
the market as GPU and was released recently as a co-processor under the name Xeon Phi*
by the end of 2012, and the IBM and Sony Cell [Hofstee 2005], which was used in the Sony
PlayStation 3. However, although many researchers have tried to map efficient algorithms
on its complex architecture, it was discontinued. This failure resulted from its difficult
programming and memory models, especially facing the emergence of alternatives in the
industry: the GPU manufacturers entered the general computing market.

Dedicated graphic hardware units offer, generally via their drivers, access to a standard
Application Programming Interface (API) such as OpenGL [Khronos OpenGL Working
Group 1994, Khronos OpenGL Working Group 2012| and DirectX [Microsoft 1995, Mi-
crosoft 2012|. These APIs are specific to graphic processing, the main application domain
for this kind of hardware. Graphic processing makes use of many vector operations, and
GPUs can multiply a vector by a scalar in one operation. This capability has been hijacked
from graphic processing toward general-purpose computations.

This chapter first presents in Section 2.1 the history of the general-purpose comput-
ing using GPUs, then Section 2.2 gives insights about the evolution of the programming
model and the different initiatives taken to pave the way to General-Purpose Processing
on Graphics Processing Units (GPGPU). The OpenCL standard is introduced with more
details in Section 2.3. The contemporary GPU architectures are presented in Section 2.4.
Finally I list the many programming challenges these architectures offer to programmers

and compiler designers.

2.1 History

The use of graphic hardware for general-purpose computing has been a research domain
for more than twenty years. Harris et al. proposed |[Harris et al. 2002| a history starting with
a machine like the Ikonas [England 1978]|, the Pixel Machine [Potmesil & Hoffert 1989],
and Pixel-Planes 5 [Rhoades et al. 1992]. In 2000, Trendall and Stewart [Trendall &

Stewart 2000] gave an overview of the past experiments with graphics hardware. Lengyel

1. It was also previously known under the codename Many Integrated Core (MIC), Knights Ferry, or
Knight Corner.
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et al. [Lengyel et al. 1990] performed real-time robot motion planning using rasterizing
capabilities of graphics hardware. Bohn [Bohn 1998] interprets a rectangle of pixels as a
four-dimensional vector function, to do computation on a Kohonen feature map. Hoff et
al. [Hoff et al. 1999] describe how to compute Voronoi diagrams using z-buffers. Kedem et
al. [Kedem & Ishihara 1999 use the PixelFlow SIMD graphics computer [Eyles et al. 1997]
to decrypt Unix passwords. Finally some raytracing was performed on GPU in [Carr
et al. 2002] and [Purcell et al. 2002]. A survey of GPGPU computation can be found
in [Owens et al. 2007].

Until 2007, the GPUs exposed a graphic pipeline through the OpenGL API. All the
élégance of this research rested in the mapping of general mathematical computations
on this pipeline [Trendall & Stewart 2000]. A key limitation was that, at that time,
GPU hardware offered only single-precision floating point units, although double precision

floating point is often required for engineering and most scientific simulations.

GPUs have spread during the last decades, with an excellent cost/performance ratio
that led to a trend in experimental research to use these specialized pieces of hardware. This
trend was mirrored first with the evolution of the programming interface. Both OpenGL
and DirectX introduced shaders (see Section 2.2.2) in 2001, and thus added programma-
bility and flexibility to the graphic pipeline. However, using one of the graphic APIs was
still mandatory and therefore General-Purpose Processing on Graphics Processing Units

(GPGPU) was even more challenging than it is currently.

In 2003 Buck et al. [Buck et al. 2004] implemented a subset of the Brook streaming
language to program GPUs. This new language, called BrookGPU, does not expose at all
the graphic pipeline. The code is compiled toward DirectX and OpenGL. BrookGPU is
used for instance in the Folding@home project [Pande lab Stanford University 2012|. More
insight about Brook and BrookGPU is given in Section 2.2.3.

Ian Buck, who designed Brook and BrookGPU, has joined Nvidia to design the Compute
Unified Device Architecture (CUDA) language, which shares similarities with BrookGPU.
However, while BrookGPU is generic, CUDA API is specific to Nvidia and its then new
scalar GPU architecture introduced with CUDA is presented in Section 2.4.5. CUDA is
an API and a language to program GPUs more easily. The graphic pipeline does not exist
anymore as such and the architecture is unified and exposed as multi-Single Instruction
stream, Multiple Data streams (SIMD)-like processors. CUDA is introduced with more
details in Section 2.2.4.

From 2004 to 2012, the evolution of GPUs’ floating point performance increased much
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Figure 2.1: Performance evolution for single-precision floating point computation, for both
Nvidia GPUs and Intel CPUs between 2003 and 2012, computed from vendors’ datasheets.

faster than the CPUs’ performance, as shown in Figure 2.1. The programmability offered
by CUDA, combined with the GPU performance advantage, has made the GPGPU more
and more popular for scientific computing during the past five years.

The increased interest in GPGPU attracted more attention and led to the standard-
ization of a dedicated API and language to program accelerators: the Open Computing
Language known as OpenCL (see Section 2.3).

Others programming models are emerging, such as directive-based languages. These let
the programmers write portable, maintainable, and hopefully efficient code. Pragma-like
directives are added to a sequential code to tell the compiler which pieces of code should be
executed on accelerator. This method is less intrusive but may provide limited performance

currently. Several sets of directives are presented in Section 2.2.10.

2.2 Languages, Frameworks, and Programming Models

The programming language history includes many languages, frameworks, and pro-
gramming models that have been designed to program accelerators. Some were designed

for the initial purpose of the accelerator, i.e., graphic computing, and were later diverted to-



2.2. Languages, Frameworks, and Programming Models 15

ward general-purpose computation. Others were designed entirely from scratch to address
GPGPU needs.
This section surveys the major contributions, approaches, and paradigms involved dur-

ing the last decade to program hardware accelerators in general-purpose computations.

2.2.1 Open Graphics Library (OpenGL)

Open Graphics Library (OpenGL) is a specification for a multiplatform API that was
developed in 1992 by Silicon Graphics Inc. It is used to program software that make use
of 3D or 2D graphic processing and provides an abstraction of the different graphic units,
hiding the complexities of interfacing with different 3D accelerators. OpenGL manipulates
objects such as points, lines and polygons, and converts them into pixels via a graphics
pipeline, parametrized with the OpenGL state machine.

OpenGL is a procedural API containing low-level primitives that must be used by the
programmer to render a scene. OpenGL was designed upon a state machine that mimics
the graphic hardwares available at that time. The programmer must have a good knowledge
of the graphics pipeline.

OpenGL commands mostly issue objects (points, lines and polygons) to the graph-
ics pipeline, or configure the pipeline stages that process these objects. Basically, each
stage of the pipeline performs a fixed function and is configurable only within tight limits.
But since OpenGL 2.0 [Khronos OpenGL Working Group 2004] and the introduction of
shaders and the OpenGL Shading Language (GLSL) language, several stages are now fully
programmable.

In august 2012, the version 4.3 is announced with a new feature: the possibility of
executing compute shaders such as the saxpy example shown in Figure 2.2 without using
the full OpenGL state machine. The shader program is executed by every single threads
in parallel. Then conducting the same operation over a vector, which usually exhibits a
loop, involves here an implicit iteration space. Figure 2.2 illustrates this execution model

with one thread per iteration. An classic CPU version of saxpy is shown in Figure 2.4a.

2.2.2 Shaders

Shaders are small programs used in graphics processing to operate at a specific stage of
the pipeline. They are used to describe light absorption and diffusion, the textures to apply,

reflections and refractions, shadowing, moving primitives, or some other post-processing
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#version 430
// Thread are grouped by "workgroups”" of 256
layout (local_size_x=256) in;

// Operate on two buffers and using a global wvariable
buffer xBuffer { float x[]; };

buffer yBuffer { float y[l; };

uniform float alpha;

// The "main()" is executed by every single thread
void main() {

// "i" gets the wunique thread id

int 1 = int(gl_GlobalInvocationID.x);

// derive size from buffer bound
if (i < x.length())
y[i] = alphax*x[i] + y[il;
}

Figure 2.2: Example of a saxpy OpenGL 4.4 compute shader (adapted from [Kilgard 2012]).

effects. The rendering process makes the shaders perfect candidates for parallel execution
on vector graphic processors, relieving the CPU and producing the result faster. Three

types of shaders exist:

e Vertex shaders are executed on each vertex given to the GPU. The purpose is to
transform each 3D position in the virtual space into the 2D coordinates on the tar-
get display, and a depth value for the Z-buffer. The vertex shaders can manipulate
properties like position, color, and texture coordinates, but cannot spawn new ver-
tices. The vertex shader output is transferred to the next graphic pipeline stage, a

geometry shader if any, or directly to the rasterizer.

e Geometry shaders are able to add or remove vertices of a lattice and their output is

sent to the rasterizer for the rendering of the final graphic picture.

e Pixel shaders, also known as fragment shaders, compute the color of each pixel in-
dividually. The input comes from the rasterizer, which fills the polygons sent in the
pipeline. Pixel shaders are typically used for lighting and associated effects like bump
mapping and color tone adjustment. Pixel shaders are often called many times per
pixel on the display, one for each object, even if it is hidden. The Z-buffer is later

used to sort objects and display only visible parts.
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#version 120
#extension GL_EXT_geometry_shader4 : enable

void main () {
for(int i = 0; i < gl_VerticesImn; ++i) {
gl_FrontColor = gl_FrontColorIn[il];
gl_Position = gl_PositionIn([i];
EmitVertex () ;
}
}

Figure 2.3: Example of a trivial pass-through GLSL geometry shader, which emits a vertex
directly for each input vertex (source wikipedia [Wikipedia 2012b]).

Shaders are flexible and efficient. Complicated surfaces can be rendered from a sim-
ple geometry. For instance a shader can be used to generate a tiled floor from a plane
description.

Initially languages close to assembly, shaders became more popular in 2001 with the
definition of higher level languages and their adoption as extensions in OpenGL and Di-
rectX. Shaders made it easier to use GPUs for a wider kind of algorithms. They are close
to C and implicitly run in a parallel way on the GPU, but if they add flexibility and pro-
grammability to the graphic pipeline for general-purpose computation, they do not provide
the programmer with a way to abstract the graphic APIs. Figure 2.3 contains an example

of a simple pass-through GLSL geometry shader.

2.2.3 Brook and BrookGPU

Brook is a direct successor of the Stanford Merrimac project [Dally et al. 2003|. The
goal of this project was to take advantage of a new compute model called streaming. This

model offers two main advantages over classical languages:

e Data parallelism: Brook lets the programmer specify how to apply the same operation

to different pieces of array elements.

e Arithmetic intensity: the programmer is encouraged to execute operations on data

that minimize communications and maximize local computation.

The Merrimac project aimed at offering better performance than distributed mem-
ory [Project 2003], but using the same technology. A language is designed to take parallel

processing concepts into a familiar and efficient language, using the streaming model.
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kernel void
saxpy (float a,
floatd x<>,

floatd y<>,
out float4d result<>) {
result = a*xx + y;
}
void main (void) {
void main (void) { float a;
float a; float4 X[100],Y[100],Result[100];
float4 X[100], floatd x<100>,y<100>,result<100>;
Y[100], ... initialize a, X, Y
Result [100]; streamRead (x, X);
//copy data from mem to stream
// ... dnitialize a, b, and c. streamRead (y, Y);
//execute kernel on all elements
for (i=0; 1i<100; i++) { saxpy(a, x, y, result);
Result[i] = axX[i]l+Y[i]; //copy data from stream to mem
} streamWrite (result, Result);
} }
(a) Classical C code. (b) Using Brook streaming kernel.

Figure 2.4: Example of a simple saxpy using BrookGPU (taken from |Buck et al. 2004]).

Brook is designed as a simple extension of ANSI C.

Until 2003, the only way to benefit from graphics hardware resources was the general
APIs OpenGL and DirectX, and the shader programming. BrookGPU [Buck et al. 2004]
implements a subset from the Brook specification [Buck 2003] to target GPUs. It allows
compiling the same code in different target languages, OpenGL and DirectX of course,
but also Nvidia Cg shaders and later the generalist Advanced Micro Devices (AMD) Close
To Metal (CTM) APIL. BrookGPU was used for instance in the Folding@home project.
Figure 2.4 illustrates a simple SAXPY operation using BrookGPU.

2.2.4 Nvidia Compute Unified Device Architecture (CUDA)

Nvidia hired Tan Buck, the main author of Brook and BrookGPU, to design CUDA.
Thus there are similarities between CUDA and BrookGPU. However, BrookGPU is generic
and has different back ends while CUDA exhibits features specific to Nvidia GPUs. CUDA

offers features and low-level tuning unavailable in a portable and generic language such as
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BrookGPU. CUDA removes also many limitations found in Brook, such as the memory
model, which is quite rigid in Brook. Indeed it requires the programmers to map their
algorithm around a fairly limited memory access pattern [Buck 2009].

CUDA technology was published by Nvidia in February 2007. It is a set of components
shipped by Nvidia to program their GPUs: a driver, a runtime, libraries (BLAS, FFT, ...),
a language based on a extension to a C++ subset, and an API that exhibits an abstraction
model for the architecture.

The code that runs on the GPU is written in a C-like form and allows direct random
accesses to the GPU memory. The CUDA API is high level and abstracts the hardware.
However, to obtain a good percentage of the peak performance, the code must be tuned
with a good knowledge of the underlying architecture. CUDA allows the programmers
to bypass the compiler and to write directly code in Parallel Thread eXecution (PTX), a
pseudo-assembly SIMD language that exhibits an infinite number of registers. The PTX
is Just In Time (JIT) compiled by the CUDA driver for a given GPU using its own
Instruction Set Architecture (ISA). This allows Nvidia to evolve their architecture while
being backward compatible, thanks to the JIT compilation capability of the driver.

CUDA has many advantages over classic GPGPU schemes using the OpenGL API for

instance:

e Use of the C language (with extensions) instead of the classical graphic API: a kernel

is close to a function call.
e Possibility for sparse memory writes: the code can access a single address in memory.
e Threads can share up to 48kB of local memory, that is nearly as fast as registers.
e Memory transfers between host and GPU are faster using page-locked memory.

e The instruction set is more extensive, for instance integer and bitwise operations and

double precision computation are supported.

However, CUDA exhibits also some limits when compared to classic CPU programming:

e Texture rendering is supported in a limited way:.
e Only the most recent architectures support function calls.
e The IEEE 754 floating point standard is not fully implemented.

e Threads execute by groups of thirty-two in a SIMD fashion, such a group is denoted
warp by Nvidia. Branches do not impact performance significantly as long as all

thirty-two threads in a group take the same path.
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e GPUs compatible with CUDA are exclusively produced by Nvidia.

Nvidia has shipped dedicated boards for GPGPU: the Tesla series. These GPUs boards
do not always have any display port and therefore can be used only for intensive compute
processing. Usually Tesla boards provide dedicated features such as Error-correcting code

(ECC) memory, larger memory sizes, and higher double precision peak performances.

2.2.5 AMD Accelerated Parallel Processing, FireStream

FireStream is the AMD GPGPU solution. The name refers to both the hardware and
the software shipped by AMD. The hardware was released in 2006 under the name AMD
Stream Processor. AMD claims that it was the industry’s first commercially available
hardware stream processing solution [Advanced Micro Devices 2006]. AMD introduced at
the same time their own GPGPU API: Close To Metal (CTM). This API is very close to
the hardware as it gives developers direct access to the native instruction set and memory,
but the trade-off that arises when choosing a very low level API and language is the usual
one: it raises the effort required from the programmer. AMD soon after proposed a new
solution called Stream Computing Software Development Kit (SDK). It is a complete SDK
and a compiler for Brook+, a high-level language based on Brook (see Section 2.2.3).
At the same time they renamed CTM as Compute Abstraction Layer (CAL)?, which is
the target API for Brook+. CAL provides the API to control the device (open, close,
managing context, transfer data from or to the device, . . .). It comes with the language
CAL Intermediate Language (IL), an intermediate assembly-like language for AMD GPUs.
IL is then compiled for the target ISA using the CAL APL.

The latest version of AMD’s technology is now called Accelerated Parallel Processing
(APP) and is based upon Open Computing Language (OpenCL). The support for Brook+
and CTM has been discontinued, and CAL API is now deprecated in favor of OpenCL.
The IL language is still the target language for the OpenCL compiler.

The FireStream GPU series, just as the Nvidia Tesla series, does not always provide

any graphic output, and is intended to be a pure GPGPU solution.

2.2.6 Open Computing Language (OpenCL)

OpenCL is a software stack designed to write programs portable over a wide range
of platforms like CPUs, GPUs, Field Programmable Gate Array (FPGA) or other em-

2. AMD CAL is unrelated to the eponymous language from Berkeley
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bedded hardwares. It includes a language, based on the C99 standard, to write code for
heterogeneous hardwares. It defines an API to manage the dedicated hardware from the
host. OpenCL was proposed by Apple to the Khronos Group in 2008 to unify the various
frameworks in one standard, which was defined later in the same year [Khronos OpenCL
Working Group 2008]. I study OpenCL in detail in Section 2.3

2.2.7 Microsoft DirectCompute

Microsoft proposes its own dedicated GPGPU solution with DirectCompute [Mi-
crosoft 2010]. It was released in fall 2009 as part of DirectX 11. The DirectCompute
API leverage the High Level Shader Language (HLSL) (same as Nvidia Cg) and provides
a solution that bypasses the classical graphic pipeline in favor of a direct access like CUDA
or OpenCL. Programmers familiar with HLSL/Cg are then able to transfer buffers directly
to or from the GPU, and set shader-like kernels for processing these buffers. Figure 2.5
shows an example of such a shader. The input matrices d_A and d_B are multiplied into
d_C, using a straightforward block matrix multiplication algorithm. The three matrices are
size x size. The mm function is executed by size * size number of threads. The scheduler is
instructed to group the threads by workgroups of 16 % 16 number of threads. This virtual
organization is mapped on the hardware by ensuring that all threads in a virtual work-
group share some resources, at least till the point where they can be synchronized. The
groupshared declaration of local_a and local_b is linked to this thread organization, these
arrays are shared by all the threads in a virtual workgroup. The local_a and local_b array
holds the current block of the input matrices during the computation. They are loaded by
the threads among a group, and a synchronization enforce that they are fully loaded before
each thread perform the multiplication on the blocks using these shared arrays. The shared

arrays can be seen as a cache memory that is explicitly managed by the programmer.

2.2.8 C++ Accelerated Massive Parallelism (AMP)

Microsoft C++ Accelerated Massive Parallelism (AMP) is an open specification [Mi-
crosoft Corporation 2012a] for enabling data parallelism directly in C++. It was first
released in January 2012. It is composed of a C++ language extension, a compiler, a
runtime, and a programming model.

The C+-+ AMP programming model supports multidimensional arrays, indexing, mem-

ory transfer, and tiling. Some language extensions control the ways data are moved from
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cbuffer CB : register (b0)
{
int size;
s
StructuredBuffer<float> d_A : register(t0);
StructuredBuffer<float> d_B : register(tl);

RWStructuredBuffer<float> d_C : register (ul);

groupshared float local_al[16]1[16];
groupshared float local_b[16]1[16];

[numthreads (16, 16, 1)]

void mm(uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID)

{
int row = GTid.y;
int col = GTid.x;
float sum = 0.0f;
for (int 1 = 0; i < size; i += 16) {

local_alrow][col] = d_A[DTid.y * size + i + col];
local_b[row][col] = d_B[(i + row) * size + DTid.x];
AllMemoryBarrierWithGroupSync ();
for (int k = 0; k < 16; k++) {

sum += local_al[row][k] * local_b[k][col];

}
AllMemoryBarrierWithGroupSync () ;

}
d_C[DTid.y * size + DTid.x] = sum;
}

Figure 2.5: Example of a Cg/HLSL shader for DirectCompute (source Mi-
crosoft [Deitz 2012]).

the CPU to the GPU and back.

Unlike Direct Compute presented in Section 2.2.7, there is no separation between the
code running on the accelerator and the host code. Offloading a computation involves writ-
ing a kernel using a lambda function and a dedicated construction to express the iteration
set like parallel_for_each. Figure 2.6 contains an example of C++ code before and after
its conversion to C-++ AMP. This example is a simple sum of two arrays. The concurrency
namespace allows the use of AMP specific constructions and functions, such as array_view

for example. The code exhibits a call to discard_data() on the array_view object sum.
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This call is intended to hint the runtime so that an initial copy to the accelerator memory
is avoided since sum does not contain any data.

C++ AMP does not seem to provide a new paradigm, but leverages C++ power and
flexibility to provide a more relaxed programming model than Direct Compute or OpenCL.
It seems to compete more against a directive-based language such as OpenACC, presented
in Section 2.2.10.

2.2.9 YC and the MPPA Accelerator

While far from being a new paradigm, process network language may benefit from
more consideration in the future. For instance Kalray leverages the ¥.C language [Gou-
bier et al. 2011] for its (yet unreleased) Multi-Purpose Processor Array (MPPA) acceler-
ator [Kalray 2012|. It integrates a network of 256 Very Long Instruction Word (VLIW)
processors, organized in sixteen clusters of sixteen processors, interconnected using a high-
bandwidth network-on-chip, but embeds only a few tens of MB of memory. This accelerator
leverages low consumption (estimated at around 5 W) when compared to power-hungry
GPUs. For example, the Nvidia Tesla C2070 eats up to 238 W.

Y.C is based on the Kahn process network theory [Kahn 1974]. It has been designed to
enforce properties like being deadlock-free and provides memory-bounded execution. For-
mal analysis is leveraged to achieve this goal. The ¥C programming model involves agents
as the most basic units. An agent is a stateless independent thread with its own memory
space. Agents communicate via First In, First Out (FIFO) queues. Then an application
is designed by a set of communicating agents forming a graph. In a 3XC application, the
graph is static during all the life of the application, no agent creation or destruction can

occur neither any change to the graph topology.

2.2.10 Directive-Based Language and Frameworks

Addressing the programmers’ difficulties to write efficient, portable, and maintainable
code, as well as the ability to convert progressively existing sequential version toward
GPGPU, several initiatives were launched, based on directives inserted in C or Fortran
sequential code.

On the basis of the popular Open Multi Processing (OpenMP) standard, Lee et al.
propose OpenMP for GPGPU [Lee et al. 2009]. They justify the advantages of OpenMP
as a programming paradigm for GPGPU as follows:
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#include <iostream>

const int size = 5;

void StandardMethod () {
int aCPP[]={1,2,3,4,5%};
int bCPP[]1={6,7,8,9,10%};
int sumCPP[sizel;

for(int idx=0;idx<5;idx++)
{
sumCPP [idx]=
aCPP[idx]+bCPP [idx];

for(int idx=0;idx<5;idx++)
{
std::cout<<sumCPP [idx]
<<|l\n|| ;

(a) Pure C++.

#include <amp.h>
#include <iostream>
using namespace concurrency;

const int size = b5;

void CppAmpMethod () {
int aCPP[]={1, 2, 3, 4, 5};
int bCPP[]1={6, 7, 8, 9, 10};
int sumCPP[size];

// Create C++ AMP objects.
array_view<const int,1> a(size,aCPP);
array_view<const int,1> b(size,bCPP);
array_view<int, 1> sum(size, sumCPP);
sum.discard_data();

parallel_for_each(

// Define the compute domain, which
// is the set of threads that are
// created.

sum.extent ,

// Define the code to run on each
// thread on the accelerator.

[=] (index<1> idx) restrict (amp)
{

sum[idx] = al[idx] + b[idx];

)

// Print the results. The expected

// output is "7, 9, 11, 18, 15".

for (int i = 0; i < size; i++) {
std::cout << sum[i] << "\n";

}

}

(b) Using C++ AMP.

Figure 2.6: Rewriting a C++ computation using C++ AMP. The example shows the use
of a lambda function and a parallel_for_each construct to express the parallelism (source
Microsoft [Microsoft Corporation 2012b]).
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e OpenMP is efficient at expressing loop-level parallelism in applications,
which is an ideal target for utilizing the highly parallel GPU computing
units to accelerate data parallel computations.

e The concept of a master thread and a pool of worker threads in OpenMP’s
fork-join model represents well the relationship between the master thread

running in a host CPU and a pool of threads in a GPU device.

e Incremental parallelization of applications, which is one of OpenMP’s

features, can add the same benefit to GPGPU programming.

Following the same idea, the OMPCUDA project [Ohshima et al. 2010] extended the
OMNI OpenMP Compiler to target CUDA.

As OpenMP is designed for shared memory systems, it can be difficult to convert
automatically an OpenMP code optimized for CPU into a heterogeneous architecture. Thus
other projects bypassed this issue and introduced new directives. Han and Abdelrahman
propose with hiCUDA [Han & Abdelrahman 2009] a set of directives to manage data
allocation and transfers, and kernel mapping on GPU. The main drawback is that even
if it is simpler to write, hiCUDA still requires the programmer to have good knowledge
of the target architecture and the way the algorithm maps onto the GPU. It is unclear
how the code written this way is portable across architectures. Figure 2.7 shows a sample
matrix multiplication using hiCUDA. The directives are tied to a particular architecture:
the workgroup size is statically defined, so is the strip-mining width.

Bodin and Bihan propose Hybrid Multicore Parallel Programming (HMPP) [Bodin &
Bihan 2009]|, another set of directives to perform heterogeneous computing. HMPP was
then promoted as a standard, Open Hybrid Multicore Parallel Programming (OpenHMPP),
in a consortium joining CAPS Entreprise and PathScale. HMPP requires that the code
follows some restrictions. The code to be run on an accelerator must be wrapped in a

separate function called a codelet. Here are the codelet properties [Consortium 2011]:

e [t is a pure function.

o It does not contain static or volatile variable declarations or refer to
any global variables unless these have been declared by a HMPP directive
“resident.”

o It does not contain any function calls with an invisible body (that
cannot be inlined). This includes the use of libraries and system functions

such as malloc, printf. . . .
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float A[64][128];
float B[128][32];
float c[64][32];

// Randomly 1init A and B.
randomInitAarr((float*)A, 64*%128);
randomInitArr((float*)B, 128%32);

#pragma hicuda global alloc A[*][*] copyin Data allocation
#pragma hicuda global alloc B[*][*] copyin and initialization
#pragma hicuda global alloc C[*][*] (host to GPU)

#pragma hicuda kernel matrixmul tblock(4,2) thread(16,16)
// C=A%*B Kernel
#pragma hicuda loop_partition over_tblock over_thread
for (i =0; 1 < 64; ++1) {
#pragma hicuda loop_partition over_tblock over_thread
for (3 =0; j < 32; ++3) { _ Strip-minin
float sum = 0; P . .
for (kk = 0; kk < 128; kk += 32) { v
#pragma hicuda shared alloc A[i][kk:kk+31] copyin Preloading data
#pragma hicuda shared alloc B[kk:kk+31][j] g,op/y'in to the shared
#pragma hicuda barrier ) :/'/' memory
for (k = 0; k < 32; ++k) {
sum += A[i][kk+k] * B[kk+k][j];
#pragma hicuda barrier
#pragma hicuda shared remove A B
}
C[i1[3] = sum;
1
#pragma hicuda kernel_end
#pragma hicuda global copyout c[*][*] Data write-back
(GPU to host)
#pragma hicuda global free A B C and deallocation

printMatrix((float*)c, 64, 32);

Figure 2.7: A sample matrix multiplication code with hiCUDA directives (source [Han &
Abdelrahman 2009).

o Every function call must refer to a static pure function (no function

pointers).

e It does not return any value (void function in C or a subroutine in For-

tran).

e The number of arguments should be set (i.e., it can not be a variadic

function as in stdarg.h in C).
e [t is not recursive.

e Its parameters are assumed to be non-aliased.
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/x declaration of the codelet %/
#pragma hmpp simplel codelet, args[outv].io=inout, target=CUDA
static void matvec(int sn, int sm, float inv[sm],
float inm[sn][sm], float *outv){
int i, j;
for (1 = 0 ; 1 < sm ; i++) {
float temp outv[il];
for (j = 0 ; j < sn ; j++) {
temp += inv[j] * inm[i]l[ jI1;

}
outv[i] = temp;

3

int main(int argc, char x**xargv) {
int n;

/% codelet use x/
#pragma hmpp simplel callsite, args[outv].size={n}
matvec(n, m, myinc, inm, myoutv);

Figure 2.8: Simple example for HMPP directive-based code writing (source
wikipedia [Wikipedia 2012c|).

e It does not contain call site directives (i.e., RPC to another codelet) or
other HMPP directives.

HMPP requires less effort from the programmer, and the HMPP compiler can manage
automatically to map a given codelet on the GPU, as well as handling the data movement.
The compiler can automatically detect the parallelism in a loop nest and take any decision
involved in the process of generating the accelerator code. However HMPP offers advanced
directive that allows the programmer to tune the compilation process to get better perfor-
mance. But with the same drawbacks as in hiCUDA: the code is then likely to come tied
to a specific target. Figure 2.8 contains a sample code written using HMPP without any
specific directive.

PGI introduced the PGI Accelerator [Wolfe 2010], which uses the same idea as HMPP.
The proposed directives are written @ la OpenMP. The code is not outlined in a codelet
by the programmer.

The initial PGI Accelerator provided a limited set of directives. The PGI compiler was
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module globdata
real, dimension(:), allocatable, device :: x
end module
module globsub
contains
subroutine sub( y )
use globdata
real, dimension(:) :: y
!$acc reflected (y)
!'$acc region
do i = 1, ubound(y,1)
y(i) = y(i) + x(i)
enddo
!'$acc end region
end subroutine
end module
subroutine roo( z )
use globsub
real :: z(:)
!$acc data region copy(z)
call sub( z )
!'$acc end data region
end subroutine

Figure 2.9: Example of a PGI Accelerator code using data movement optimization (source
PGI Insider [Wolfe 2011]).

supposed to automatically do the conversion work. It was later updated with more possi-
bilities available to the programmer to help the compiler to manage the data movements.
HMPP includes also similar directives. Figure 2.9 shows a simple code written using these

directives.

In November 2011 at the SuperComputing Conference, Nvidia, Cray, PGI, and CAPS
announced that they agreed on a standard for directives: OpenACC. The OpenMP Archi-
tecture Review Board CEO Michael Wong declared at this occasion that he looked forward
to work within the OpenMP organization to merge OpenACC with other ideas to create
a common specification that extends OpenMP to support accelerators. The OpenACC
standard [NVIDIA, Cray, PGI, CAPS 2011] seems to be based upon the PGI Accelerator

solution: the directives show close similarities.

JCUDA [Yan et al. 2009] is a programming interface for Java that allows invoking
CUDA kernels. JCUDA defines an extension of Java that needs to be preprocessed to



2.2. Languages, Frameworks, and Programming Models

29

double[][] I_a= new double[NUM1][NUM2];
double [J[]J[] I_aout = new double[NUM1][NUM2][NUM3];
double[][] I_aex= new double[NUM1][NUM2];

initArray (I_A); initArray(I_aex); // initialize wvalue in array

int [] ThreadsPerBlock = {16, 16, 1};

int [] BlocksPerGrid = new int [3]; BlocksPerGridI[3] = 1;
BlocksPerGrid [0] = (NUM1+ThreadsPerBlock[0]-1)/ThreadsPerBlock [0];
BlocksPerGrid[1] = (NUM2+ThreadsPerBlock[1]-1)/ThreadsPerBlock[1];

/+ invoke device on this block/thread grid */

cudafoo.fool1<<<<BlocksPerGrid, ThreadsPerBlock>>>>(I_a,
I_aout,
I_aex);

printArray(I_a); printArray(I_aout); printArray(I_aex);

static 1lib cudafoo("cfoo","/opt/cudafoo/lib") {
acc void fool (IN doublel[][] a,

0UT int[]1[] aout,

INOUT float[]1[] aex);
acc void foo2(IN short[][] a,

INOUT double[][][] aex,

IN int total);

Figure 2.10: A simple JCUDA example. Note the IN, 0UT, and INOUT attributes in the

kernel declaration that drive automatic memory transfers (source [Yan et al. 2009]).

generate the pure Java code and the Java Native Interface (JNI) glue to link against
CUDA kernels. The programmers make use of annotation (IN, OUT, INOUT) in front

of kernel arguments and the data transfers are managed automatically by JCUDA based

only on the annotation, it implies that a mistake from the programmer in an annotation

leads to a wrong code. A simple example of Java code invoking a kernel with JCUDA

is showed in Figure 2.10. However, useless transfers cannot be avoided in this model:

the programmer has no control to preserve data on the accelerator between two kernel

calls, while the directive approach offer the possibility to the programmer to manage data

movement across the whole program.
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2.2.11 Automatic Parallelization for GPGPU

Not much work has been done about the automatic parallelization of a sequential
program toward GPUs. Leung et al. [Leung et al. 2009] propose an extension to a Java
JIT compiler that executes a parallel loop nest on the GPU. The major part of their
contributions seems to be the handling of Java exception semantics and Java aliasing at
runtime.

Nugteren et al. [Nugteren et al. 2011] present a technique to automatically map code
on a GPU based on skeletonization. This technique is based on a predefined set of skele-
tons for image processing algorithms. A Skeletonization step recognizes the algorithm’s
functionalities in the sequential code using techniques like pattern matching, and replaces
them with another implementations for the GPU selected from the available predefined
implementations.

Reservoir Labs claims that its R-Stream parallelizing C compiler offers automatic par-
allelization from C code to CUDA since 2010 |Reservoir Labs 2012]. However, R-Stream
is proprietary software not freely available and without academic or evaluation licensing,
the few academic publications about this work are vague and there is no way to reproduce
their claims and results.

CUDA-Chill [Rudy et al. 2011 provides automatic program transformation for GPU
using the Chill framework for composing high-level loop transformations. However, the
recipes have to be adapted to each input program, limiting the applicability and portability
obtained.

Baskaran et al. [Baskaran et al. 2010] introduce a polyhedral approach to the automatic
parallelization, using Pluto [Bondhugula et al. 2008¢|, of affine loop nest from C to CUDA.
More recently, the on-going PPCG [Verdoolaege et al. 2013] project follows the same path
and produces optimized kernels for GPU using the polyhedral model.

2.3 Focus on OpenCL

Open Computing Language (OpenCL) is an open royalty-free standard
for general-purpose parallel programming across CPUs, GPUs and other pro-
cessors, giving software developers a portable and efficient access to the
power of these heterogeneous processing platforms |[Khronos OpenCL Work-
ing Group 2011].
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2.3.1 Introduction

Promoted first by Apple in early 2008, OpenCL was quickly supported by many other
vendors such as IBM, Nvidia, AMD, and Intel. It provides a software stack that addresses
the challenges of programming heterogeneous parallel processing platforms. The first re-
vision of the standard exhibits a logical model close to the Nvidia CUDA programming
model. OpenCL does not limit itself to the dual CPU vs GPU issue, but also takes into
account mobile devices up to high-performance computers, as well as desktop computer
systems. It can target different kind of accelerators, like multicore CPUs and GPUs, but
also more specific devices like Digital Signal Processing (DSP) processors and the Cell
processor.

OpenCL API abstracts the hardware at a rather low level. The purpose is to provide
high performance by being close-to-metal, and keeping it simple enough for compilers so
that the implementation can be easy for a wider range of vendors. OpenCL targets expert
programmers who want to write portable and efficient code. Thus it can be seen as the
lower level upon which portable libraries, middleware, or software can be built. It also
represents a first choice as a backend target for code-generating tools from higher level
languages or constructions.

The OpenCL model is split between a host and computing devices in a master-and-
slaves fashion. The host manages the devices and acts as a choreographer driving the
process using the OpenCL API. On the device side, the code that is to be executed is
contained in kernels. These kernels are written in a language that is based on a subset
of ISO C99 with extensions for parallelism. The OpenCL API lets the host indifferently

schedule data parallel kernels or task-based kernels or a combination of both.

2.3.2 OpenCL Architecture

The OpenCL standard is organized into four parts: the platform model (see Sec-
tion 2.3.2.1), the memory model (see Section 2.3.2.3), the execution model (see Sec-
tion 2.3.2.2), and the programming model (see Section 2.3.2.4).

The whole OpenCL abstract model is shown in Figures 2.11 and 2.12. The host entry
point is the platform. It represents the vendor implementation. The host program sees as
many platforms as there are vendor runtimes in the machine. After selecting one or several
platforms, the host program can query a list of devices available for this platform. A device

is defined in the OpenCL standard as a collection of compute units. [...] OpenCL devices
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typically correspond to a GPU, a multi-core CPU, and other processors such as DSPs and
the Cell/B.E. processor. To manage the devices, the host program has to create one or
more contexts. A context is defined as the environment within which the kernels execute
and the domain in which synchronization and memory management is defined. The context
includes a set of devices, the memory accessible to those devices, the corresponding memory
properties and one or more command-queues used to schedule execution of a kernel(s) or

operations on memory objects.

2.3.2.1 Platform Model

OpenCL is strongly based on the concept of one host directly connected to a set of
dedicated computing devices. This is the platform in OpenCL terminology. The host
plays the role of an orchestrator and manages the devices. These can include many compute
units, each made up of many processing elements.

For instance, current OpenCL implementations map a multicore CPU as a single device
with as many compute units as the number of cores. The number of processing elements per
compute units (per core) depends on the vectorizing capabilities of the OpenCL runtime.
The Intel OpenCL runtime for instance, reports sixteen processing elements so that the
code can self-align on multiples of sixteen and allows faster loads in vector registers. A
GPU is shown as a single device, with the number of compute units corresponding to the

available hardware.

2.3.2.2 Execution Model

The user program drives the host part of the OpenCL model. It acts as an orchestrator
for the kernel part of the program. The host part is responsible for managing contexts
of execution for the kernels, initializing the devices, controlling the data movements, and
scheduling the execution of the kernels on the devices. To achieve this, it creates at least
one context.

Contexts are created and managed using an API defined by the standard. A device can
be associated with many contexts, and a single context can manage multiple devices. For
a given context, each device has its own command queue. A command queue is the only
way for the host to request any data transfer by device, or to launch a kernel.

On the kernel side, the execution model is very close to the CUDA programming model:
a huge number of virtual threads are mapped onto real hardware threads using what Nvidia

calls in CUDA the Single Instruction stream, Multiple Thread streams (SIMT) paradigm.
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Figure 2.11: Simplified view of the OpenCL abstraction model. A host is connected to
multiple devices (GPUs, FPGAs, DPSs, . . .). OpenCL platforms are vendors’ implemen-
tations that target some types of devices. A context is created for a given platform and
a set of devices. Memory objects and events are created context-wise. Devices are then
controlled in a given context using command queues. There can be multiple command
queues per device, and a device can be associated with queues from multiple contexts and
platforms.
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Figure 2.12: UML representation of the OpenCL abstraction model (see Figure 2.11) taken
from the Standard [Khronos OpenCL Working Group 2011].

In the OpenCL terminology, the kernel is executed by a number of work-items. Fach of
these work-items has a unique identifier in a global index set named NDRange in OpenCL
terminology. This set can have one, two, or three dimensions, and its bounds depend on the
OpenCL runtime implementation and the device capability. The unique identifier is then
a three-dimensional tuple. It is up to the programmer to exhibit enough data parallelism

using a large index set and mapping different work-items to different sets of data.

Work-items are grouped in work-groups. Work-items inside a work-group execute on
the same compute unit, using multiple processing elements to achieve parallelism. Syn-
chronization can be performed in a work-group but not across different work-groups. A
work-group shares also a dedicated memory space (see Section 2.3.2.3). Work-groups are

assigned a unique id in the global NDRange the same way as work-items do.

Figure 2.13 shows how a simple two-dimensional parallel loop nest can be mapped onto

an OpenCL index set.
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__kernel void
my_kernel (/x args list *x/ ...) {

for (int i=0; i<100; i++) { int i = get_global_id(1);
for(int j=0; j<45; j++) { int j = get_global_id (0);
// Some parallel // Some parallel
// computation here // computation here
Y/ //
(a) Parallel loops (b) Equivalent OpenCL kernel.

A

T EEEENE)

ces (9 8)(9 8)(9 s)(g 8)(9 3)

e )
j )
(95 35)(96 35)(97 35)(98 35)(99 35)

oo get_global id(0) , get_global id(1)
get_local_id(0) , get_local_id(1)

>

|

(c) Mapping the iteration set to a NDRange.

Figure 2.13: A mapping example of a two-dimensional loop nest iteration set into an
OpenCL index range. The mapping is the simplest possible; one work-item executes one
iteration of the original loop nest. The work-group size used as an illustration on fig-
ure c¢ is a two-dimensional square with an edge of five. Values for get_global_id() and
get_local_id() OpenCL primitives are exhibited for a particular work-group.

2.3.2.3 Memory Model

OpenCL exhibits a hierarchical memory model with four distinct spaces:

e The Global Memory is local to a given device, but shared across all work-items for the
device. It is accessible for reading or/and writing, depending on how it is allocated.

It can be cached or not depending on the underlying hardware.

e The Constant Memory is a part of global memory accessible read-only from the
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kernel. It has to be initialized from the host. It is usually advised to make use of
the constant memory for performance reasons. On some devices it is more likely to

be cached and optimized for read access.

e The Local Memory is a small dedicated memory for sharing temporary data between
work-items in a work-group, to avoid redundant accesses to the global memory. De-
pending on the underlying hardware, it can be implemented with a very fast on-chip
memory or emulated with a portion of the global memory. For instance on Nvidia

Fermi architecture, it is nearly as fast as register accesses.

e The Private Memory is a portion of the memory that is private to a work-item and
therefore not visible from any other work-item or from the host. It typically maps
to registers on modern GPUs; but can also be mapped to global memory by the

compiler.

This hierarchy is represented in Figure 2.14. There is no guarantee that all these
memory areas are really separated on the hardware. The right part of the figure illustrates
this situation. For example, classical multicore CPUs do not exhibit any separated memory
space or software managed cache, embedded into each core or not. Then a kernel optimized
for the more complex memory architecture on the left may lead to spurious costly memory

duplication when using local or private memory on the simpler architecture.

At a more global level, the OpenCL runtime manipulates buffers, i.e., linear areas of
memory that the host registers with the runtime before any use as a kernel argument.
The host can then write to or read from these memory areas using the OpenCL API, or
even directly map the memory area into the host memory space. The physical location
of the buffer is undefined by the standard and is implementation specific. From OpenCL
version 1.2 on, the programmer can explicitly request a buffer to be moved to a particular
device. In any case, before a kernel is launched on a particular device, the OpenCL runtime
ensures that the buffers used by the kernel are physically allocated and copied to the device.
Therefore it has to keep track of the locations of the buffers and invalidate other copies
when a buffer is written by a kernel. The programmer can optimize this management by
giving hints at buffer creation times using flags like read-only or write-only. However, these
are holding for the whole lifetime of the buffer and thus are not helpful when a buffer is read
or written only by some kernels. The const qualifier in the kernel declaration arguments
can be used as a hint to the runtime to avoid invalidating other copies of a buffer after a

kernel execution.
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Figure 2.14: Visual example of the OpenCL memory model. Two possible mappings are
illustrated: data caches are optional, and private, local, and constant memories are not
necessarily dedicated. On the right the simplest mapping, for instance a CPU, merges all
memory spaces onto the same piece of hardware.

2.3.2.4 Programming Model

The OpenCL programming model is a mix of the data parallel and task parallel
paradigms. The data parallel one is the preferred way to program OpenCL devices like
GPUs.

As explained in Section 2.3.2.2, the data parallel model involves a number of work-
items that spread over an index set, computing different data in a SIMD/SIMT fashion.
The model is relaxed and does not require that each work-item produces one element, and
therefore a single work-item can produce as much output as required, or on the other hand
only some work-items can produce output. This latter situation occurs when work-items in
a work-group work together to produce a single reduced result. Then only one work-item
in the work-group is in charge of recording it in the global memory. OpenCL provides full
flexibility on this aspect.

The task parallel model is exposed by considering each kernel execution as a task.
The parallelism between tasks can then be exploited in two different ways. First, the

programmers can issue different tasks to different command queues and thus rely on the
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OpenCL runtime to schedule them in parallel. But command queues can also be defined
as out-of-order, and then again the OpenCL runtime is free to schedule at the same time
as many tasks as submitted to such a queue.

The programmer can issue barriers in the queue to ensure synchronization points, but
he can also make use of OpenCL events to enforce dependencies between tasks in a com-
mon context, either kernel launches or memory transfers. When a task is submitted to a
command queue, a handler on this request is recorded as an OpenCL event. A collection
of events can then be used when a new task is submitted in the same context, possibly in

a different queue. All events in this collection have to complete before the new task starts.

2.3.3 OpenCL Language

The OpenCL language is a subset of the International Organization for Standardization
(ISO) C99 standard. It is used only to create kernels in the OpenCL model.

When compared to plain C, the main differences are the following:

e vector types are natively present, for sizes 2, 3, 4, 8, and 16, and for the native types

char, uchar, short, ushort, int, uint, long, ulong, float, and double;

e the alignment in memory is always guaranteed to be a multiple of the type size. For

instance an int16 vector is aligned to a 16*sizeof (int) boundary;

e shuffle can be written directly in a flexible way, for instance a double4 a can be initial-
ized from double4 b and doubled c: a = (b.w, c.zyx), equivalent to the sequence:

a.x=b.w; a.y=c.z; a.z=c.y; a.w=c.X;

e keywords are defined for the different memory spaces: __global, __local, __constant

) —— ) ——

and __private. Any pointer must make use of one of them so that the memory space

to dereference is always known by the compiler;

e a special image object can be declared as __read_only or __write_only in kernel

argument lists:

__kernel void foo (__read_only image2d_t imageA,

__write_only image2d_t imageB);

e the qualifier __kernel is used in front of a kernel declaration. Such a function always
returns void. It identifies functions that can be used in an NDRange object issued

in a command queue;
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e variable length arrays and structures with flexible (or unsized) arrays are not sup-

ported;

e variadic macros and functions are not supported;

e The library functions defined in the C99 standard headers assert.h, ctype.
complex.h, errno.h, fenv.h, float.h, inttypes.h, limits.h, locale.
setjmp.h, signal.h, stdarg.h, stdio.h, stdlib.h, string.h, tgmath.h, time.

wchar.h and wctype.h are not available and cannot be included;

e recursion is not supported;

e built-in functions are provided to manage work-items, perform asynchronous

atomic memory operations.

2.3.3.1 Conclusion

or

OpenCL is a standard, which by itself is already a good thing for programmers con-

cerned with portability. However, there are some caveats with OpenCL. The performance

portability is not enforced and programmers have to write kernels for a given target. An-

other issue is programmability: OpenCL API is verbose and is rather designed as a target

for libraries, frameworks, or code generators. In this case, OpenCL provides all the control

that can be wished. Therefore it is suitable as a target for a source-to-source compiler such

as the one proposed in this work.

2.4 Target Architectures

This thesis focuses on hardware accelerators like GPUs. The common characteristics

of such accelerators are as follows:

e large embedded memory: over 1 GB;

e high level of parallelism: from a few tens of processing elements, to many thousands,

possibly highly threaded;

e compliance with the OpenCL programming model introduced in Section 2.3.

The most widespread matching hardware platforms are manufactured by AMD and

Nvidia, and are indeed ubiquitous in modern desktops. This section introduces some GPU

architectures starting from a high-level view to a deeper comparison between the two

current leading architectures. It also explains how two kinds of parallelism are exploited:

Instruction Level Parallelism (ILP) and Thread Level Parallelism (TLP).
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2.4.1 From Specialized Hardware to a Massively Parallel Device

Dedicated graphic circuits were introduced in the 1980s to offload 2D primitives pro-
cessing from the main CPU. At that time the purpose was to draw simple objects like a
line, a rectangle, or to write some text in the video memory (framebuffer) displayed on the
screen.

GPUs then evolved in the 1990s with the introduction of more 3D graphic processing.
Starting with the OpenGL API (see Section 2.2.1) and later with Direct3D, a common
set of features began to be used by game developers, leading to more and more vendors
implementing these features in hardware in the mid-1990s. At that time, GPUs were
not programmable at all and provided hardware for a limited set of operations, but there
was already some parallel processing involved under the hood. However, it is only during
the 2000s that GPUs became programmable, with the introduction of shaders (see Sec-
tion 2.2.2). GPU designers then continued to fuse pipeline stages into unified programmable
units emulating the plain old OpenGL graphic pipeline.

This architecture survey starts with the AMD architecture. Then the Nvidia G80 that
came along with CUDA, and the evolution of the architecture to the current generation,
are introduced. Finally the impact of architectural choices on high-level code writing is
presented. This section focuses exclusively on main breakthroughs that are relevant for
GPGPU. Thus it simply ignores changes that introduce only improvements very specific

to graphic workloads.

2.4.2 Building a GPU

A GPU is a huge and complicated piece of hardware. It was traditionally built upon
units very specialized for fixed graphic processing functions. With the introduction of
shaders, it became more and more programmable. As GPGPU are the main focus of this
work, only the computation power of shader parts and the memory hierarchy capabilities
and specificities are surveyed.

At the lowest level we find the Processing Element (PE), capable of basic operations
like addition or multiplication, or at best a Fused Multiply-Add (FMA). Usually they are
limited to single-precision floating point and integer operations. There can also be on-
steroid PEs able to compute transcendental functions such as trigonometric, exponential,
or square roots. Such a unit is called a Special Function Unit (SFU).

Multiple PEs are then grouped together in a Compute Unit (CU). A CU includes all
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Figure 2.15: High-level simplified GPGPU-oriented view of generic GPU architecture.

the shared logic for PEs, such as instruction fetch and decode, registers, caches, scheduler,

and so on.

A GPU chip can then be built by assembling many CUs with an interconnecting net-
work, adding a global hardware scheduler to distribute the work among the CUs and some
memory controllers. Sometimes CUs are grouped before being added to the network, and
this group shares some resources like cache, on-ship memory network interconnect or also

usually graphic centric units. Figure 2.15 illustrates this view of a GPU architecture.

Such a view is not so far from what can be seen in a multicore CPU, but the Devil is in
the details. And the choices that are made at each level on the number of elements and the
way they are grouped together have a significant impact on the resulting programmability.
In general, unlike a CPU, most of the die space in a GPU is used for computing logics.
This is why it has a lot of PEs with complex grouping, little to no cache, an important

memory bandwidth, but also a long latency.

Most of the time, designers keep CUs as simple as possible and do not include any
out-of-order execution capabilities, thus the main source of parallelism is Thread Level
Parallelism (TLP). However, Instruction Level Parallelism (ILP) can be exploited by the
compiler using a VLIW instruction set, or by the hardware scheduler to keep the pipeline
full and to mask memory latency if there is not enough TLP. Figure 2.16 illustrates the
difference between ILP and TLP.
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Figure 2.16: Instruction Level Parallelism (ILP) versus Thread Level Parallelism (TPL),
two different ways of extracting parallelism in GPUs.

2.4.3 Hardware Atomic Operations

Hardware atomic operations are important for many parallel algorithms and widen the
set of applications benefiting from a hardware accelerator. For instance, atomic operations
on the GPU have been used to implement barrier synchronizations within a kernel [Xiao
& chun Feng 2010, to build high-level programming frameworks such as MapReduce [Ji
& Ma 2011], a memory allocator for MapReduce [Hong et al. 2010], an histogram [Aubert
et al. 2009 (perso)].

Nvidia does not disclose any detail about the hardware implementation of atomic opera-
tions. It is only known that these units are located in each of the memory controllers [Col-
lange 2010b] on GT200 and directly in the L2 cache since Fermi [Halfhill 2009, Patter-
son 2009, Collange 2010a].

AMD hardware implementation is slower, so much so that some proposals using software
emulation were presented as faster |Elteir et al. 2011].

OpenCL supports as of version 1.2 the following integer atomic operations in 32-bit

mode:

e add: adds an integer to a value at a memory location;

e sub: subtracts an integer to a value at a memory location;

e xchg: swaps an integer with the value at a memory location;
e inc: increments a value at a memory location;

e dec: decrements a value at a memory location;

e cmpxchg: compares an integer to the value at a memory location and xchg if they are

equal;
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16-wide SIMD array.

e min: compares an integer to a value at a memory location and stores the smallest

value;

e max: compares an integer to a value at a memory location and stores the largest

value;

e and: compares an integer to a value at a memory location and stores the result of a

bitwise and operation;

e or: compares an integer to a value at a memory location and stores the result of a

bitwise or operation;

e xor, compares an integer to a value at a memory location and stores the result of a

bitwise xor operation.

All these functions operate either in global or local memory, and return the old value.
The standard specifies 64-bit versions for all these operations, but the implementation is
optional and programmers have to check the availability using OpenCL eztensions. Both

32-bit and 64-bit versions are supported by Nvidia GPUs since Fermi.

2.4.4 AMD, from R300 to Graphics Core Next

Historically, AMD has used a vector instruction set, and then in 2002 introduced a
2-way VLIW ISA at the beginning of computing shaders with the R300. This architecture
was proven to be efficient for handling graphics workload until DirectX 10 and its novelties

in shading were introduced.
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At that time, shading was quite new and pixel and vertex shaders were separate entities.
Vertex shader designers decided that VLIW was the ideal architecture for a vertex shader.
It allows processing at the same time one SIMD operation on a four-component vector

(e.g., w,x,y, z) and one other operation on a separate scalar component (e.g., lighting).

This organization relies on the compiler to pack the VLIW bundles from the Instruction
Level Parallelism (ILP) that can be found in a shader program. By contrast, Thread Level
Parallelism (TLP) is handled by replicating these processing units. The static scheduling
done by the compiler simplifies the hardware and allows using more of the die space for

compute units instead of a complex hardware scheduler.

DirectX 10 introduces the new geometry shaders (see Section 2.2.2) and unifies the
programming language for vertex and pixel shaders. These changes pushed GPU designers
to unify the architecture. The same units are in charge of all kind of shaders. For AMD
GPUs, this change happened with the R600 chip. To achieve such a change, the hardware
had to evolve and include more control logic to schedule the different threads that compete
for the computing resources. The introduction of hardware schedulers is an important
point for GPGPU. It has been critical to enable further hardware evolutions on later

architectures.

The novelties introduced by the new DirectX 10 version of the HLSL language drove
the designers at AMD to choose a more flexible architecture. While previously based on a
2-way vector/scalar VLIW, the R600 introduced a 5-way pure scalar VLIW instruction set.
This way, as before, five individual elements can be processed in each cycle. But the vector
has been split. So instead of the same operation on four packed elements, it is possible

now to execute five different operations.

ILP is still managed by the compiler that has to pack VLIW bundles. It is even more
critical now that five different operations can be packed together. AMD introduced another
SIMD level that is exploited implicitly by TLP. The new VLIW units are grouped in a
SIMD array of sixteen units. The SIMD benefits only from TLP. At each cycle, one shader
5-way VLIW instruction is scheduled for sixteen different threads. From a graphic workload
point of view, it means that a SIMD processing unit handles pixels or vertices by blocks

of sixteen, as shown in Figure 2.17.

To increase the computing power of the architecture without increasing the complexity,
the control units are limited as much as possible in favor of processing units. A common
technique is to use a logical SIMD width wider than the hardware. AMD chose to rely on

a virtual sixty-four wide SIMD so that if each cycle a block of sixteen threads is processed,
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the instruction scheduler can feed the processing units with a VLIW instruction every four
cycles on average. This allows the scheduler to run at a lower frequency than the compute
units.

SIMD in such GPUs is managed differently than CPU extensions like Streaming SIMD
Extension (SSE) or Advanced Vector eXtensions (AVX). GPU registers are not vectors
but dynamically reconfigurable arrays of scalar values. The SIMD execution is implicit
and managed by hardware. Another effect is that the mapping from the registers to the
lightweight threads that run on the GPU is trivially reconfigurable, offering flexibility on
the resource sharing.

3 occurs between the sixty-four threads, all units execute the in-

While no divergence
struction. If a branch occurs, then threads diverge and PEs are predicated ?. Since there is
only one program counter for a SIMD unit, the different branches are executed sequentially.
This behavior offers flexibility to the programmer, who is able to code in a scalar fashion
even if he has to keep in mind the architecture characteristics to avoid divergence as much
as possible to maximize performance.

The two next generations R700 and Evergreen (R800) did not introduce major new
breakthroughs. R700 scales up the R600: it increases frequency, supports Graphic Double
Data Rate (GDDR) Dynamic Random Access Memory (DRAM) in version five, and im-
proves the internal bus. Evergreen again extends R700 with more PEs and CUs. Fused
Multiply-Add (FMA) and new DirectX 11 instructions are supported, and also improves
PEs precision to be IEEE 754-2008 compliant.

The Radeon HD 6900 series, codename Cayman (R900), was released in 2010. This
new generation switched to a narrower 4-way VLIW. This reduces the complexity of the
units and it is more efficient on the average according to AMD internal tests. Indeed the
VLIW average occupation was established to be 3.4 on common workloads. While shaders
that were able to fill the VLIW with four-scalar operation and a transcendental operation
at the same time suffer from a performance drop, these are not so common. All other
shaders benefit from the increased number of SIMD units and the higher TLP.

The main limitation of VLIW comes from the inherent ILP that the compiler is stati-
cally able to find in the source program. Moreover, memory accesses are distinct instruc-

tions and have to be separated from Arithmetic and Logical Unit (ALU) instructions in

3. There is divergence when the code includes conditional branching and not all threads take the same
execution path.

4. When a branch occurs and threads diverge, both paths are executed sequentially and the PEs
corresponding to the threads that took the other path are disabled ; they are predicated.
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Workload ALUBusy (%) Packing ratio (%)
BinomialOption 62.51 31.1
Blackscholes 58.58 9575
Eigenvalue 54.44
Fastwalsh 56.94 30.83
FloydWarshall 323
Histogram 21.03 33.5
Matmul 2 smem 54.4 81.04
Matmul no_smem 15.4 73.5
MonteCarloDP 49.29 71.9
Radixsort [N D | 30.9

Figure 2.18: Table summarizing the ALU occupation and the VLIW packing ratio for some
computing kernels, taken from [Zhang et al. 2011b] (©2011 IEEE).
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Figure 2.19: The 2012 AMD architecture Graphics Core Next. No longer VLIW, the four
separate SIMD pipelines are independent. A new integer scalar unit is introduced. The
scheduler feeds each SIMD every four cycles (one per cycle) with a 64-wide virtual SIMD
instruction.

what AMD calls a clause. If simple graphic workloads are well suited to this constraint,
it can be a difficult limitation for complex shaders and more specially for GPGPU. Fig-
ure 2.18 shows some statistics about the ALU occupation and the VLIW packing ratio®

for some computing kernels.

5. The packing ratio indicates on the average how many instructions are packed in the VLIW by the
compiler with respect to the VLIW width.
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The last generation, codename Graphics Core Next (GCN) (R1000), introduces a major
breakthrough. Driven by the success of GPGPU, AMD chose to quit their VLIW ISA in
favor of a scalar architecture. Basically they have split their 4-way VLIW into four separate
SIMD pipelines. It means that ILP will no longer be exhibited by the compiler and that
these units exploits TLP instead. As long as the workload exhibits enough threads, it is

easier to reach the architectural peak performance.

Another novelty from Graphics Core Next (GCN) is that that these four SIMDs are
packed along with an ALU scalar unit. Among other uses, this unit can perform pure
scalar computation and avoid wasting resources underusing a SIMD for branch or mask
prediction computations, a function call, or a jump. An overview of a GCN’s compute unit

is given in Figure 2.19.

These changes put more pressure on the hardware scheduler. Early announcements
about GCN mention that it is able to schedule ten groups of sixty-four threads per SIMD,
that is 2560 threads per compute unit. Such a high number of threads helps to hide memory
latency. The presence of four different pipelines to feed increases also the requirements on
the scheduler. While previously one VLIW instruction was processed in four cycles by the
SIMD pipeline, the scheduler has now to feed a separate instruction every cycle. Indeed
it considers each cycle thread for one of the four SIMD and issues up to five instructions
among these: one for the vector unit, one for the scalar ALU, one for a vector memory
access, one for the branching unit, the local data store, for the global data share, or an

internal one. %

GCN also includes for the first a time a fully hierarchical hardware-managed cache,
while the previous architecture only had an L2 cache and a software-managed Local Data
Store (LDS) located within each CU.

As of early 2012, GCN is not released and we have thus no way to experiment with this

new architecture.
Figure 2.20 summarizes the evolution of PE grouping across AMD architectures.

AMD has later released this information about GCN in a white paper [AMD 2012].

6. Internal instructions are NOPs, barriers, etc.
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Figure 2.20: Evolution of Processing Element (PE) grouping across AMD architectures.

2.4.5 Nvidia Computing Unified Device Architecture, from G80
to Kepler

In the fall of 2006, Nvidia released the G80. It was the first DirectX 10 compliant GPU.
It is the result of a four-year effort, starting nearly from scratch with a full redesign. While
in previous Nvidia architecture the compute units were specialized, the G80 is a complete
unification of many stages. As for the AMD R600, one of the most visible and effective
change from a GPGPU viewpoint is that the compute units are now indifferently able to

process any kind of shader (see Section 2.2.2).

Another important novelty is that the compute units offer a scalar interface, similar to
the one AMD announced with AMD GCN, but six years earlier.

The G80 has many groups (typically sixteen) of eight scalar processors. Each group
is considered by Nvidia as a multiprocessor. There is one shared instruction issue unit
for a group, responsible of feeding the eight processors. This feeding unit runs at half
the frequency of the scalar processors and needs two cycles to feed an instruction. The
GPU efficiency is maximized when thirty-two threads execute the same instruction in
a SIMD fashion (see Figure 2.21). Again TLP is exploited and ILP is not directly ex-
hibited by the architecture, but can be exploited to hide memory latency as shown by

Volkov [Volkov 2010]. The scheduler can benefit from independent instructions to issue
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Figure 2.21: The GeForce 8800 architecture (G80) introduced unified shaders where shader
programmable processors can be used to replace multiple stages of the classic graphic
pipeline. There are still specialized units for some graphics operations. (Source: Nvidia)

multiple instructions for the same thread in the pipeline.

GT200 was released in 2008 as an evolution of the G80. The main visible change from
a GPGPU point of view is the introduction of a double precision floating point unit in
CUs along with the PEs, providing 1/8th the single-precision floating point computation
power. Another novelty is the support of atomic operations in global memory.

In 2010, Nvidia released a major revision of the GT200: Fermi. It comes with a large

number of improvements in a GPGPU perspective:

e Indirect control flow is now supported and opens the gate to C++ and virtual func-

tions.

e Fine grained exception handling has been added to support C+-+ try-and-catch

clause.

e Unified address space allows a simpler memory model where the hardware automat-

ically resolves the location of an address (thread private, shared, global, system).

e Hardware-managed hierarchical caches are introduced for the first time. While the
previous generation had read-only caches for texture, Fermi comes with a L1 cache
located in each CUs, and a global L2 cache.
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Figure 2.22: GT200 compute unit (CU) on the left, Fermi’s on the right. Processing
Elements (PE) upgrade from eight to sixteen per pipeline, but the logical SIMD width is
unchanged, threads are scheduled by groups of thirty-two (source Nvidia).

e The PCI Express (PCle) interface is now able to execute Direct Memory Access
(DMA) in both direction at the same time.

e The global scheduler is now able to process multiple kernels at the same time. A CU

still only has in-flight threads from one kernel at a time.
e FMA is supported in the PEs; and the IEEE-754 rounding modes are all supported.

e Atomic operations execute directly in the L2 cache without having to write back the

result in global memory.

e ECC is supported in the global memory, the L1 and L2 caches, and the register file.

Figure 2.22 illustrates the evolution of CU between GT200 and Fermi side by side. The
number of PEs is increased from eight to thirty-two, split in two separate pipelines and two
schedulers. An instruction is processed each cycle for sixteen threads. Two instructions
can be issued every two cycles, ending up with a logical thirty-two wide SIMD view as in
G80 and GT200.

The Special Function Units (SFUs) have their own pipeline shared between the two
schedulers. Since there are only four SFUs, the throughput is four times longer than
for ALU operations. ILP allows a scheduler to feed the ALU pipeline while some SFU
computations are running. Therefore there can be forty-eight threads processed per CU at

the same time.
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March 2012 has seen the release of a new major architecture by Nvidia, codename
Kepler. The most important point that Nvidia emphasizes with Kepler is the performance-
per-watt ratio, that they achieve mostly by reducing the frequency of the PEs by a half to be
the same as the instruction scheduling unit. The four big new architectural improvements

are the following:

e Dynamic Parallelism adds the capability for the GPU to generate new work for itself.
It make available the CUDA host API directly in the device code. A kernel can then
initiate memory transfers, or launch other kernels. This provides a disruptive change

in the CUDA programming model as known for years.

e Hyper-Q is the mechanism that allows up to thirty-two host threads to initiate com-
mand to the GPU in parallel, allowing more concurrent kernel parallelism to be

exploited.

e Grid Management Unit is the basis piece of hardware that enables Dynamic Paral-
lelism. It replaces the previous scheduler providing flexibility in the dispatch, queu-

ing, and dependency of up to 2000 different kernel launches waiting for execution.

e GPU Direct allows transfer of data between different GPUs or between a GPU and
any other PCle piece of hardware directly over the PCle bus without involving the
host.

Kepler is currently available only for gaming and graphical usage with the GTX 680.
It does not currently include all the novelty of the architecture that will be available with
the Tesla K20 by the end of 2012 along with CUDA 5. Other than these four key features,
the most visible change at that time is the organization of the PEs in the CUs. While they
were previously grouped by eight on the G80 and thirty-two or forty-eight on Fermi, Kepler
is shipped with 192 PEs per CU while keeping the classical logical 32-wide SIMD view.
The number of schedulers is doubled to four, but operating now at the same frequency as
the PE, it provides the same ratio as the forty-eight PE Fermi CU. Also the ratio between
double precision and single precision goes down to one third while it was one half on Fermi.

The Gefore GTX 680 is currently shipped with eight CUs, but Nvidia announced fifteen
CUs, i.e., 2880 PE in the Tesla K20, resulting in over one TFlop of double precision
throughput and over four TFlops using single precision.

On the memory side, the GDDR5 has been improved and should provide performance
closer to the theoretical peak. The announced bandwidth for the Tesla K20 is raised to
320 GB/s, which is nearly twice Fermi’s capability. The L2 cache is also doubled both in

bandwidth and size, as the memory bandwidth.
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It is interesting to note that the balance of resources per CU when compared to Fermi
shows that the capacity of each CU scheduling has been doubled in term of number of
workgroups but multiplied by only 1.3 in terms of number of threads”. It seems to be in
favor of smaller workgroups when compared to Fermi. The L1 cache keeps the same size
while the number of PE increases, leading to more potential concurrency and contention.

Other less important improvements reside in the more efficient atomic operations, the
ECC overhead reduced by 66% on average, the GPU Boost technology that increases or
decrease the frequency dynamically to keep the power consumption in a given limit, and a

new shuffle instruction to exchange data between threads of a same warp.

2.4.6 Impact on Code Generation

In this dissertation, no particular architecture is targeted and we want to be able to
generate code that runs efficiently on all the architectures introduced previously. The main
question is this: to what extent is performance portable from one architecture to another?

Since scalar and VLIW targets are exposed, it is difficult to expect a unique universal
solution. Extracting more ILP may require exposing less TLP and thus might lead to
starving on a scalar architecture.

Chapter 7 presents various experiments, and the comparison of the performance ob-
tained on different architectures after various transformations confirms that improving the
performance for a given architecture reduces it on another architecture.

Another concern is about predicting statically that one version of a kernel will run faster
than another. Even given a particular architecture it is a complex issue. For instance, for
a very simple kernel, the number of work-items that we allocate in a work-group has an
important impact on the resulting performance. Figure 2.23 shows the influence of runtime
parameters on performance of Nvidia Fermi and AMD Evergreen. The left graphic shows
different launch configurations for a set of kernels. While Evergreen is not very sensitive to
it, Fermi shows up to a speedup of two by adjusting the workgroup size. The comparison
of BinomialOption and Matmul no smem indicates that there is no universal work-group
size. Zhang et al. [Zhang et al. 2011b| demonstrate that the loss in performance when
increasing the work-group size from 128 to 256 for BinomialOption is correlated to a
larger number of global memory accesses. In this case improving parallelism degrades

the overall performance. On the right a matrix multiplication kernel, without any local

7. The maximum number of resident workgroups per multiprocessor is eight on Fermi and sixteen on
Kepler, the maximum number of resident threads per multiprocessor is 1536 on Fermi and 2048 on Kepler.
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Figure 2.23: Influence of runtime parameters on performance for different kernels and
different architectures, Nvidia Fermi and AMD Evergreen. On the left the launch configu-
ration for different kernels shows that there is no universal work-group size. On the right
a matrix multiply kernel without local data store optimization is used with one to four
elements processed in each thread. The upper part shows the impact on performance for
both architectures while the lower part shows the occupancy of the AMD GPU and the
VLIW packing ratio. Taken from [Zhang et al. 2011b] (©2011 IEEE).

data store optimization, is tested with one to four elements produced in each thread.
The upper part shows the impact on performance for both architectures while the lower
part shows the occupancy® of the GPU and, for AMD, the VLIW packing ratio. The
Evergreen VLIW architecture proves to be very sensitive as more elements to process means
more opportunities for the compiler to extract ILP. The performance (upper graphic)
and the packing ratio (lower graphic) are correlated and confirm this analysis. Fermi
and its scalar architecture are less impacted by this change and exhibit nearly constant
performance. But the lower graphic shows that the occupancy drops significantly, leading
to fewer opportunities for TLP, and thus potentially fewer opportunities to mask memory
latency with computations in some kernels.

The impact of the launch configuration is explored with more detail in Section 5.8.

8. Occupancy is ratio of the number of eligible threads over the maximum number of resident threads.



54  Chapter 2. General-Purpose Processing on GPU : History and Context

100 ~ 80 -~
30 - A - g —W_Ll /_—.—-_.
N —— w/o L1 60 -
7 = wn i,
a 60 - \h o S
2 A~ =2 40 1 TA= <,
o 40 7 gl
F———lle{l—————e———
20 - 20 || = ar e=w_Ll
—— /0|1
0 1 ] | ] 1 0 T 1 ] L | 1
256 512 1024 2048 4096 256 512 1024 2048 4096
matrix size matrix size
(a) Horizontal (b) Vertical

Figure 2.24: Performance of two different versions of matrix multiply kernel, a horizontal
scheme and a vertical scheme, without local memory usage for a given architecture (Fermi),
depending on the input size and the activation or not of the L1 cache. Taken from [Zhang
et al. 2011b] (©2011 IEEE).

Finally, the input size, which generally defines the maximum number of work-items
that are exploited, is known only at runtime, which limits the possibilities of one universal
version for a particular kernel. Figure 2.24 shows the performance evolution depending on
matrix size for two different versions of matrix multiplication on Fermi with and without
L1 cache enabled. The local memory is not used in any of these two versions. The fact that
L1 can be activated or not on a per kernel basis is another parameter that might influence
the choice of a particular kernel version to get the best performance. Section 5.8 covers
in detail the implication of the launch configuration over performance, and in Section 7.4

provides experimental results.

2.4.7 Summary

GPUs exhibit massively parallel architecture. They rely mostly on Thread Level Paral-
lelism (TLP) to expose parallelism as thousands of threads, but, depending on the under-
lying architecture, Instruction Level Parallelism (ILP) may also be a must to get decent
performance.

For a deeper insight in the architectural mysteries, such as latency for each operation,
deep understanding of caches and so on, the reader is referred to the work of Taylor and Li
on benchmarking the AMD architecture [Taylor & Li 2010], the work of Wong et al. [Wong
et al. 2010] and Collange [Collange 2010b| for the GT200, and Lindholm et al. [Lindholm
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Figure 2.25: Google trends for the word GPU during last decade.

et al. 2008] and Collange’s PhD thesis [Collange 2010a| for Fermi.

2.5 Conclusion

A decade ago, the General-Purpose Processing on Graphics Processing Units (GPGPU)
computing was in its early days. Since then, it has been an intense field of research and
it still very active as shown in Figure 2.25. As shown in this chapter, many languages,
frameworks, and other solutions have been introduced to help programmers write programs
that exploit accelerators. All these approaches provide varied trade-offs of the three Ps:
Performance, Portability, Programmability. The performance portability is a challenge in
the context of GPGPU. The programmability has been addressed by several specialized
programming languages.

The landscape in 2012 is very different from what it looked like more than ten years
ago, when researchers were trying to leverage the pure graphic-oriented OpenGL pipeline
to abstract mathematical operators |Trendall & Stewart 2000| or to use it as a target for
compiling streaming language.

The programmability was very challenging. However, when a program was successfully
mapped to the OpenGL API, performance and portability were obtained. The introduction
of shaders in 2002 brought flexibility and exposed more features, resulting in improved
programmability.

More recent approaches tried dedicated languages such as Brooks to trade performance
for programmability. The underlying streaming programming model is a convenient inter-
face for programmers, but is not flexible enough to be mainstream.

The evolution of DirectX drove GPU manufacturers toward more programmability. But
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the tipping point is the introduction of CUDA, then followed by alternative programming

languages and frameworks.

The CUDA and OpenCL programming models leverage the experience with shaders
to provide an equivalent level of programmability but without all the rigid mechanisms
implied by the graphic API. However, programmers have to know well the architecture to

write efficient kernels: the portability is traded for performance.

Directive-based languages such as hiCUDA, JCUDA, HMPP, PGI Accelerator, or Ope-
nACC (see Section 2.2.10) are less invasive and provide good portability at the expense of
performance. The directives can be specialized for a given target to increase the perfor-

mance, but at the price of portability.

My PhD work started just after the first release of OpenCL 1.0 for GPU by Nvidia in
spring 2009 [Ramey 2009|. The goal of my work was to provide an end-to-end solution

that relieves programmers of adapting their codes to hardware accelerators.

The programmability is as good as possible, since programmers write their codes using
standard sequential programming languages, ignoring their heterogeneous targets. The
compiler extracts the parallelism and the code to be executed on the accelerator. The
performance may not match what an expert would get with effort. However, the trade-off
on performance is acceptable if it is limited, such as for example ten, twenty, or thirty
percent depending on the application domain.

Very few people tried to provide full automatic parallelization and transformation (see
Section 2.2.11 page 30) from sequential code to GPU. Most are limited in applicability or
focus only on part of the problem. My work tries to process a whole application, generate
kernels, optimize them all, and generate the required communication, without any user
input.

Guelton proposes in his PhD thesis [Guelton 2011a] a general high-level scheme for an
heterogeneous compiler targeting GPUs. The compiler transforms the code, separating
the host code and the kernel code, with the required glue. Each part is then compiled by
dedicated binary compilers for the target. This is shown in Figure 2.26.

My work instantiates this high-level compilation scheme. An overview of my compiler
structure and organization is presented in Figure 2.27. It addresses all compilation issues
raised by heterogeneous computing with CPUs and GPUs. While not exploring deeply
each concern, this dissertation provides solutions to many issues related to automatic
parallelization for GPUs, ranging from parallelism detection to code generation, passing

through loop nests optimizations and management of data mapping and consistency.



Host Binary

ClIDA
Kernel Code

CUDA
Compiler

Host Binary

|

Figure 2.26: Source-to-source compilation scheme for GPU (source |Guelton 2011al).

2.5. Conclusion 57
Sequential
Code
Initial
Translator
Sequential Parallel C Code |
Compatibility C Code =
header . | kernel
' _ kernel call
/ ( CUDA
¢ . Translator
Preprocessor
d U Code
CUDA | Compatibility
Host Code compatibility he ader
: laver /
QUDA ) \ i
Compiler C
' . PreProcessor |



58 Chapter 2. General-Purpose Processing on GPU : History and Context
Programmers Compilation from
Writing Directly|s., oot High-Level Tools and
C Code *a Source Code ) e* Languages like Scilab
(.c,.f,.f95)
Y
Parsers
(Fortran) (Fortran 95)
— y e .

5 Chapter 4 (induction Variable  Chapter5  _,
g Substitution : .
2 y ' '
S ' '
5 Reductions ' :
o Detection ' '
- ] L]
2 " '
=) Parallelization . .
S (Allen & Kennedy) (" Coarse Grain ) ' .
—rt [Allen & Kennedy][ Coarse Grain ] ' :
— with reductionsJ{\with reductions .
9 E Drive the !
s I ] Process '
S 8 ( Loop Fusion ) o G :
2y y : '
jul .
S e (Array Sca_larization) . o |
E 8 : EnmEEEE NP q) :
= . — '] Request > |,
% E @rrayiLlnearlzatl_on) 'l Missing = |

< = : + [ Functions
a 'é (" Symbolic Tiling )sss== : e .
=/ y : . AT <_E .
( Unrolling ).....- : Feed with - :

Stubs

(' Outlining / Kernel Code Generation ) " E '
w w [} .
Y . ) a |
C Unrolling ) ' !
SN NN NN NN EEEEEEEEEEEEEEN . ]
Chapter 6 Y y Chapter 3 ! .
( Task Generation ) (Static Data Mapping ) ' .
L] .
StarPU J Communication J " .
Code Generation Code Generation : .
L] L] N N
PRI IC I A ddididind anfbatiadiadiadiatatdatiatiaiaidiatiaiin Anfiathahulaiiataii '
! ( Post-Processing / Glue ) '
’ . Host Code y y GPU Code '
{ [ PeréAT Runtime o SFeHTE Tor o A
' ne= mEmmmmER H EEEEEEEEEEEEEEEEEEEEEEEEEEN .
* | (OpenCL && CUDA) Target Compiler Replace Stubs with ;
L} L

.......................... ¥-----.....Realimplementation \____J
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Figure 2.27 illustrates the compilation chain. The source code is first analyzed to find
parallelism, and transformed before extracting the code to be executed on the GPU in new
functions: the kernels. Some optimization phases can be applied such as loop fusion, array
scalarization, array linearization, symbolic tiling, or unrolling. This part of the process is
presented in Chapter 4. After kernel generation, analyses and transformations to generate
communications are required. Array regions are used in Chapter 3 to achieve accurate
communication generation. An interprocedural static analysis is proposed to optimize the
communication by leaving data as much as possible on the GPU. Another path is the
generation of tasks that are scheduled at runtime on multiple GPUs using StarPU. The
task extraction and code generation for StarPU are presented in Chapter 6, along with
another mapping on multiple GPUs based on symbolic tiling. The whole process is driven
by the new Par4All driver, from the input source code to the final binary. It is based on
a flexible pass manager. The challenge of automating the whole process is presented in

Chapter 5. The experimental results are presented and discussed in Chapter 7.
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GPU-like accelerators process data located in their own memory. Indeed, an accelerator
board embeds a few gigabytes of memory with high bandwidth to feed their many CUs as
discussed in Section 2.4. The difficulty is that this embedded memory is not visible from the
host CPU and reciprocally host memory is not visible from the GPU.! The programmers
then have to explicitly transfer input data from the host memory to the accelerator’s before
launching a kernel and then execute some opposite transfers from the accelerator memory
to the host’s after kernel execution for the data produced by the kernel.

These explicit communications use slow 1/0O buses. For example, PCle 2.0 bus offers a
peak 8 GB/s, to be compared with a few hundreds of GB/s available using the on-board
GDDR memory. This is generally assumed to be the most important bottleneck for hybrid
systems [Chen et al. 2010].

Work has been done to address this issue either using simplified input from pro-
grammers |[Yan et al. 2009, CAPS Entreprise 2010, Wolfe 2011, NVIDIA, Cray, PGI,
CAPS 2011], or automatically [Amini et al. 2011c (perso), Ventroux et al. 2012, Guel-
ton 2011a, Alias et al. 2011, Wolfe 2010] using compilers. A lazy scheme has also been
proposed by Enmyren and Kessler [Enmyren & Kessler 2010] in the SkePU C++ template
library, a skeleton programming framework for multicore CPUs and multi-GPU systems.

This chapter studies the issues associated with the generation of communication in
the context of automatically or semi-automatically offloading work to an accelerator and
presents several contributions to address this issue: array regions are exploited to opti-
mize the amount of data to transfer per kernel and a static interprocedural communication
optimization scheme is designed and implemented in Paralléliseur Interprocédural de Pro-
grammes Scientifiques (PIPS).

PIPS is a twenty-year-old compiler framework [Irigoin et al. 1991, Amini et al. 2011a
(perso)] that offers semantic analysis and transformation passes. Initially targeting Fortan
77 as an input, it has been then extended to handle C code. It aims at exploring different
program optimizations using interprocedural analyses. Unlike heroes from other projects
that target binary level parallelization [Pradelle et al. 2012, Kotha et al. 2010|, PIPS
operates at source level trying to regenerate a code as close as possible to the input.

First, the targeted program class is introduced with a case study: a cosmological sim-
ulation. Then the convex array region abstraction, which is the basis of most of the

transformations this work relies on, is introduced in Section 3.2. The most basic mapping

1. Some recent solutions like Nvidia Zero-Copy allow mapping directly the host memory in the GPU
virtual space and thus avoid the explicit copy. However, they do not provide good performance in the
general case.
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Figure 3.1: Stars-PM is a N-body cosmological simulation. Here a satellite triggers a bar
and spiral arms in a galactic disc.

is then described in Section 3.3 to give insight on the principle involved. Array region
analyses are used to refine the process of Section 3.3 in Section 3.4. The limits of this
approach are given in Section 3.5. An interprocedural optimization is then proposed in
Section 3.6 to efficiently map the data on the accelerator and limit the number of transfers.
The parallel promotion presented in Section 3.7 may help as a complement to loop
fusion to reduce synchronization and sometimes memory transfers.
Finally, the related work about optimizing the communication for GPGPU is presented

in Section 3.8.

3.1 Case Study

Small benchmarks like those used in the Polybench suite [Pouchet 2011] for example, are
limited to a few kernels in sequence, sometimes surrounded by a time step loop. Therefore,
if they are well suited for studying the pure performance of the GPUs, they cannot be
considered representative of a whole application when it comes to evaluating a global
problem like mapping of data between the host and the accelerator.

To address this issue, my study is based on a program more representative of numerical
simulations. It is a real numerical simulation called Stars-PM, a particle mesh cosmological

N-body code whose output is shown in Figure 3.1. The sequential version was written in
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int main(int argc, char *argv[]) {

// Read initial conditions from a file
init_data(argv[1]);

// Time loop
for(t = 0; t < T; t += DT) {
// Do computations for each iteration

}

// Output results to a file
write_data(argv[2]);
}

Figure 3.2: Simplified global scheme commonly used in numerical simulations.

C at Observatoire Astronomique de Strasbourg and was later rewritten and optimized by
hand using CUDA to target GPUs [Aubert et al. 2009 (perso)].

This simulation models the gravitational interactions between particles in space. It
discretizes the three-dimensional space with a discrete grid on which particles are mapped.
Initial conditions are read from a file. A sequential loop iterates over successive time steps,
where the core of the simulation is computed. Results are finally extracted from the final
grid state and stored in an output file. This general organization is shown in the simplified
code in Figure 3.2. It is a common scheme in numerical simulations, while the core of
each iteration can vary widely from one domain to the other. The sub-steps performed for

processing a single time step in Stars-PM are illustrated Figure 3.3.

3.2 Array Region Analysis

Several transformations in the compilation flow used to target hardware accelerators are
based on array regions. This section provides a basic introduction to this representation.
Three examples are used throughout this section to illustrate this approach: the code in
Figure 3.4 requires interprocedural array accesses analysis, the code in Figure 3.5 contains
a while loop, for which the memory access pattern requires an approximated analysis, and
the code in Figure 3.6 features a nontrivial switch-case.

Convex array regions were first introduced by Triolet [Triolet 1984, Triolet et al. 1986]
with the initial purpose of summarizing the memory accesses performed on array element

sets by function calls. The concept was later generalized and formally defined for any
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void iteration(coord pos[NP][NP][NP],
coord vel [NP][NP][NP],
float dens[NP][NP][NP],
int datal[NP][NP][NP],
int histo [NP][NPI[NP]) {

// Step 1 : Cut the 8D space in a regular mesh
discretisation(pos, data);

// Step 2 : Compute density on the grid
histogram(data, histo);

// Step 3 : Compute potential on the mesh
// in the Fourier space
potential (histo, dens);

// Step 4 : For each dimension, compute the
// force and then update the speed
forcex(dens, force);

updatevel(vel, force, data, X_DIM, dt);
forcey(dens, force);

updatevel (vel, force, data, Y_DIM, dt);
forcez (dens, force);

updatevel (vel, force, data, Z_DIM, dt);

// Step 5 : Move particles
updatepos (pos, vel);
}

Figure 3.3: Outline of one time step in the Stars-PM cosmological simulation code.

program statements by Creusillet [Creusillet & Irigoin 1996b, Creusillet 1996] and imple-
mented in the PIPS compiler framework.

Informally, the READ (resp. WRITE) regions for a statement s are the set of all scalar
variables and array elements that are read (resp. written) during the execution of s. This set
generally depends on the values of some program variables at the entry point of statement
s: the READ regions are said to be a function of the memory state o preceding the statement
execution, and they are collectively denoted R (s, o) (resp. W(s, o) for the WRITE regions).

For instance the READ regions associated to the for statement in function kernel in

Figure 3.4 are these:

Ris,0) = {{v} {1}, {3}, {sre(¢1) | 61 = o(1) + 0 (1)} {m(¢1) | ¢1 = 0 (3)}}



66 Chapter 3. Data Mapping, Communications and Consistency

// R(src) ={src[p1]|i< ¢ <i+k—1}

// Wiast) = {ast[\] | 61 = i}

// Rim) = {mln] |0 < 61 < b — 1}

int kermnel (int i,int n,int k,int src[n],int dst[n-k],int m[k]) {
int v=0;

for( int j = 0; j < k; ++j )
v += src[ i + j 1 *xm[ j 1;
dst[il=v;
}
void fir( int n, int k, int src[n], int dst[n-k], int m[k]) {
for( int i = 0; i < n - k+ 1; ++1i )
// R(src)={src[o1]|i<¢1 <i+k—-1,0<i<n-—k}
// Riw) = {nlé1] |0 < 61 < k—1}
// Widst) = {dstlon] | 61 — i}
kernel(i, n, k, src, dst, m);
}

Figure 3.4: Array regions on a code with a function call.

// R(randv) = {randv|¢;] | N —3 <4 x ¢1;3 x ¢p1 < N}
// W(a) ={ag] [N =3 <4 x ¢1512x ¢ <5 x N + 9}
void foo(int N, int al[N], int randv[N]) {
int x=N/4,y=0;
while (x<=N/3) {
alx+yl = x+y;
if (randv[x-y]) x = x+2; else x++,y++;
}
}

Figure 3.5: Array regions on a code with a while loop.

where ¢, is used to describe the constraints on the xth dimension of an array, and where
o(i) denotes the value of the program variable i in the memory state o. From this point,
i is used instead of (i) when there is no ambiguity.

The regions given above correspond to a very simple statement; however, they can be
computed for every level of compound statements. For instance, the READ regions of the

for loop on line 6 in the code in Figure 3.4 are these:
R(s,0) = {{v}{i}, {src(d1) [i < <i+k =1} {n(d) [0 < <k —1}}

However, computing exact sets is not always possible, either because the compiler lacks

information about the values of variables or the program control flow, or because the regions
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// R(in) = {in[¢][i < ¢ <i+2}
// W(out) = {out|¢i] | o1 =i}
void foo(int n, int i, char c, int out[n], int in[n]) {
switch (c){
case ’a’:
case ’e’:
out[i]=in[i];
break;
default:
out [i]=in [3*(i/3)+2];

Figure 3.6: Array regions on a code with a switch case.

cannot be exactly represented by a convex polyhedron. In these cases, over-approximated
convex sets (denoted R and W) are computed. In the following example, the approximation
is due to the fact that the exact set contains holes, and cannot be represented by a convex

polyhedron:
W([for(int i=0; i<n; i++) if (i !'= 3) alil=0;],0) = {{n},{al¢o] |0 < ¢y < n}}

whereas in the next example, the approximation is due to the fact that the condition and its

negation are nonlinear expressions that cannot be represented exactly in PIPS framework:

R([if (alil>3) b[il=1; else c[il=1],0) =

{{i} {algo] [ do = i}, {bdo] | do = i}, {c[do] | po = i}}

Under-approximations (denoted R and W) are required when computing region differences
(see |Creusillet & Irigoin 1996a] for more details on approximations when using the convex
polyhedron lattice).

READ and WRITE regions summarize the effects of statements and functions upon array
elements, but they do not take into account the flow of array element values. For that
purpose, IN and OUT regions have been introduced in [Creusillet & Irigoin 1996b] to take

array kills into account, that is to say, redefinitions of individual array elements:

e IN regions contain the array elements whose values are imported by the considered
statement, which means the elements that are read before being possibly redefined

by another instruction of the statement.



68 Chapter 3. Data Mapping, Communications and Consistency

e OUT regions contain the array elements defined by the considered statement, which
are used afterwards in the program continuation. They are the live or exported array

elements.

As for READ and WRITE regions, IN and OUT regions may be over- or under-approximated.

There is a strong analogy between the array regions of a statement and the memory
used in this statement, at least from an external point of view, which means excluding
its privately declared variables. Intuitively, the memory footprint of a statement can be
obtained by counting the points in its associated array regions. In the same way, the
READ (or IN) and WRITE (or OUT) regions can be used to compute the memory transfers
required to execute this statement in a new memory space built from the original space.

This analogy is analyzed and leveraged in the following sections.

3.3 Basic Transformation Process

The most basic process for mapping data to the accelerator consists in sending to the
accelerator all arrays that are referenced in a kernel prior executing it. The same set
of arrays has to be transferred back from the accelerator memory at the end of kernel
execution. This basic process is the most basic that can be used by automatic tools. It is
represented in Figure 3.7.

The main issue arises when it is needed to count the number of array elements to
transfer. Depending on the target language or framework, the information can be hard
to figure out. Leung et al. [Leung et al. 2009] and JCUDA [Yan et al. 2009] target Java
and benefit from runtime information about array sizes. Others such as Verdoolaege and
Grosser [Verdoolaege et al. 2013] handle C code but are limited to arrays with size known
at compile time. The algorithms used by proprietary software like R-Stream, HMPP, or
PGI Accelerator are unknown, but they are most likely based on the same kind of scheme.

The proposed tool that comes along with this thesis, Par4All [SILKAN 2010 (perso),
Amini et al. 2012b (perso)| (see detailed presentation in Section 5.1), relies on the same
scheme in its most basic version, relaxing this constraint by handling C99 Variable Length
Array (VLA). The effective size is then known only at runtime but the information is
available symbolically at compile time.

Some polyhedral automatic tools do not consider this problem at all. While converting
and automatically optimizing loop nests written in C code into CUDA or OpenCL kernels,

they rely on the programmer to generate the host code. This is the case at least for
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Figure 3.7: Basic process for mapping data to the accelerator (source [Yan et al. 2009],
(©2011 Springer-Verlag)g.

Baskaran et al. [Baskaran et al. 2010].

The most common optimization at this level is local to each kernel. It consists in
sending to the accelerator only the data that are used and to get back only the data
that are defined. This can be done automatically as in PPCG [Verdoolaege et al. 2013|
or directive hints given by the programmer as in JCUDA, HMPP, PGI Accelerator, or
hiCUDA [Han & Abdelrahman 2009].

This basic process is illustrated below using as an example the first step of Stars-PM
main iteration, the function discretization(). Figure 3.8 shows the sequential code of

this function in its initial version.

The loop nest is detected as parallel and selected to be promoted as a kernel. The
mapping on the accelerator is performed according to the technique presented forward in
Section 4.2. The loop body is outlined to a new function that will be executed by the
accelerator, and the loop nest is replaced by a call to a kernel launch function. Memory
transfers are generated according to the basic technique introduced in this section. The

resulting code is shown in Figure 3.9.

Looking at the original loop nest, it is clear that the pos array is used in the kernel,
whereas the data array is written. Therefore two transfers have to be generated as can
be seen in Figure 3.9. The first one ensures that pos are moved to the accelerator before
kernel execution while the second one gets the data back into the host memory after the

kernel execution.
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void discretization(coord pos[NP][NP][NP],
int data[NP][NP][NP]){
int i, j, k;
float x, y, z;
for (i = 0; i < NP; i++)
for (j = 0; j < NP; j++)
for (k = 0; k < NP; k++) {
x = pos[il[j]1[k].x;
y = pos[i1[j]1[k].y;
z pos[il[jl[k].z;
datalil[j][k] = (int) (x/DX)*NP*NP
+ (int) (y/DX)*NP
+ (int) (z/DX);

Figure 3.8: Sequential source code for function discretization, the first step of each Stars-
PM simulation main iteration.

3.4 Region Refinement Scheme

This section introduces refinement of the basic scheme based on array declarations
from the previous section using the convex array regions in Section 3.2. It also illustrates
informally the process of statement isolation described formally in Guelton’s PhD the-
sis [Guelton 2011b|. It turns a statement s into a new statement Isol(s) that shares no
memory area with the remainder of the code, and is surrounded by the required memory
transfers between the two memory spaces. In other words, if s is evaluated in a memory
state function, o, Isol(s) does not reference any element of Domain(c). The generated
memory transfers to and from the new memory space ensure the consistency and validity
of the values used in the extended memory space during the execution of Isol(s) and once

again, back to the original execution path.

To illustrate how the convex array regions are leveraged, the while loop in Figure 3.5
is used as an example. The exact and over-approximated array regions for this statement

are as follows:

R ={{x},{y}} R(randv) = {randv]g,] | N =3 <4 x ¢1;3 x ¢, < N}
W= {{x} {y}} W(a) = {a[¢1] | N =3 <4 x ¢1;12 x ¢ <5 x N +9}
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void discretization(coord pos[NP][NP][NP],int data[NP][NP][NP]) {
// Declare pointers to buffers on accelerator

coord (*pos0)[NP][NP][NP] = NULL;

int (xdata0O) [NP][NP][NP] = NULL;

// Allocate buffers on the GPU
P4A_accel_malloc ((void *x*) &dataO, sizeof (int)*NP*NP*NP) ;
P4A_accel_malloc ((void **) &posO, sizeof (coord)*NP*xNP*NP);

// Copy the input data to the GPU
P4A_copy_to_accel(sizeof (coord)*NP*xNP*NP, pos, *posO);

// Launch the kernel
P4A_call_accel_kernel_2d(discretization_kernel ,NP,NP,*pos0O,*datal);

// Copy the result back from the GPU
P4A_copy_from_accel(sizeof (int)*NP*NP*NP, data, *data0l);

// Free GPU buffers
P4A_accel_free(data0);
P4A_accel_free(pos0);

// The kernel corresponding to loop—mnest body

P4A_accel_kernel discretization_kernel( coord *pos, int *data ) {
int k; float x, y, z;
int i = P4A_vp_1; // PJA wvp_x are mapped from CUDA Blockldz .x
int j = P4A_vp_0; // and Threadldz.* to loop indices

// Iteration clamping to avoid GPU iteration overrun
if (i<=NP&&j<=NP)
for(k = 0; k < NP; k += 1) {
X (*(pos+k+NP*NP*i+NP*j)) .x;
y = (*(pos+k+NP*NP*i+NP*j)).y;
z = (*(pos+k+NP*NP*i+NP*j)).z;
*(data+k+NP*NP*i+NP*j) = (int) (x/DX)*NPx*NP
+ (int) (y/DX)*NP
+ (int) (z/DX);

Figure 3.9: Code for function discretization after automatic GPU code generation.
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void foo(int N, int a[N], int randv[N]) {
int x=0,y=0;
int A[N/6], RANDV[(N-9)/12], X, Y;
memcpy (A, a+(N-3)/4, N/6*sizeof (int)); //(1)
memcpy (RANDV, randv+(N-3)/4, (N-9)/12*sizeof (int)); //(2)
memcpy (&X, &x, sizeof(x)); memcpy (&Y, &y, sizeof(y)); //(3)
while (X<=N/3) {
ALX+Y-(N-3)/4] = X+Y;
if (RANDV[X-Y-(N-3)/4]) X = X+2; else X++,Y++;
}
memcpy (a+(N-3)/4, A, N/6*sizeof (int)); //(4)
memcpy (&x, &X, sizeof (x)); memcpy(&y, &Y, sizeof(y)); //(5)
}

Figure 3.10: Isolation of the irregular while loop from Figure 3.5 using array region analysis.

The basic idea is to turn each region into a newly allocated variable, large enough to
hold the region, then to generate data transfers from the original variables to the new
ones, and finally to perform the required copy from the new variables to the original ones.
This results in the code shown in Figure 3.10, where isolated variables have been put in
uppercase. Statements (3) and (5) correspond to the exact regions on scalar variables.
Statements (2) and (4) correspond to the over-approximated regions on array variables.
Statement (1) is used to ensure data consistency, as explained later.

Notice how memcpy system calls are used here to simulate data transfers, and, in par-
ticular, how the sizes of the transfers are constrained with respect to the array regions.

The benefits of using new variables to simulate the extended memory space and of

relying on a regular function to simulate the DMA are twofold:

1. The generated code can be executed on a general-purpose processor. It makes it
possible to verify and validate the result without the need of an accelerator or a

simulator.

2. The generated code is independent of the hardware target: specializing its implemen-
tation for a given accelerator requires only a specific implementation of the memory

transfer instructions (here memcpy).

3.4.1 Converting Convex Array Regions into Data Transfers

From this point on, the availability of data transfer operators that can transfer rectan-

gular subparts of n-dimensional arrays to or from the accelerator is assumed. For instance,
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size_t memcpy2d(void* dest, void* src,

size_t diml, size_t offsetl, size_t countil,

size_t dim2, size_t offset2, size_t count2);
copies from src to dest the rectangular zone between (offsetl, offset2) and (offsetl+
countl, offset2+count2). diml and dim2 are the sizes of the memory areas pointed to by
src and dest on the host memory, and are used to compute the addresses of the memory
elements to transfer.

We show how convex array regions are used to generate calls to these operators. Let
src be a n-dimensional variable, and {src[¢i]...[on] | ¥ (01, ..., ¢n)} be a convex region of
this variable.

As native DMA instructions are very seldom capable of transferring anything other
than a rectangular memory area, the rectangular hull, denoted | -], is first computed so

that the region is expressed in the form

{STC[¢1]...[¢n]|O(1 < ¢1 <517-")an < an <ﬂn}

This transformation can lead to a loss of accuracy and the region approximation can thus
shift from ezact to may. This shift is performed when the original region is not equal to
its rectangular envelope.

The call to the transfer function can then be generated with offsetk = «4 and
countk = 3, — oy, for each k in [1...n].

For a statement s, the memory transfers from ¢ are generated using its read regions
(R(s,0)): any array element read by s must have an up-to-date value in the extended
memory space with respect to . Symmetrically, the memory transfers back to ¢ must
include all updated values, represented by the written regions (W(s, ¢’)), where ¢’ is the
memory state once s is executed from o.2

However, if the written region is over-approximated, part of the values it contains may
not have been updated by the execution of Isol(s). Therefore, to guarantee the consistency
of the values transferred back to o, they must first be correctly initialized during the

transfer from o. These observations lead to the following equations for the convex array

2. Most of the time, variables used in the region description are not modified by the isolated statement
and we can safely use W(s, o). Otherwise, e.g. a[i++]=1, methods detailed in [Creusillet & Irigoin 1996b]
must be applied to express the region in the right memory state.
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regions transferred from and to o, respectively denoted Load(s, o) and Store(s,o):

Store(s,0) =[W(s,0)]

Load(s,0) =[R(s,0) U (Store(s,a) — W(s,0))]

Load(s, o) and Store(s, o) are rectangular regions by definition and can be converted into
memory transfers, as detailed previously. The new variables with ad-hoc dimensions are
declared and a substitution taking into account the shifts is performed on s to generate
Isol(s).

3.4.2 Managing Variable Substitutions

For each variable v to be transferred according to Load(s,o), a new variable V is de-
clared, which must contain enough space to hold the loaded region. For instance if v holds

short integers and

Load(s, o) = {v[$1][pa] | a1 < ¢1 < B1, 0 < 2 < o}

then V' will be declared as short int V[ —a1][82 — a2]. The translation of an intraproce-
dural reference to v into a reference to V is straightforward as Vi, j, V[i|[j] = v[i+aq][j+az].

The combination of this variable substitution with convex array regions is what makes
the isolate statement a powerful tool: all the complexity is hidden by the region abstraction.

For instance, once the regions of the switch case in Figure 3.6 are computed as

R(c) = {c} R(i) = {i}

W(out) = foutléy] | 1 = i} R(in) = {inlé] | i < ¢y <i+2)

the data transfer generation and variable substitutions lead to the isolated code given in
Figure 3.11. The complexity of the isolated statement does not matter as long as it has
been modeled by the convex array region analysis.

For interprocedural translation, a new version of the called function is created using
the following scheme: for each transferred variable passed as an actual parameter, and for
each of its dimensions, an extra parameter is added to the call and to the new function,

holding the value of the corresponding offset. These extra parameters are then used to
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void foo(int n, int i, char ¢, int out[n], int in[n]) {
char C; int OUT[1], IN[3], I;
memcpy (&I ,&i,sizeof (int));
memcpy (&C,&c,sizeof (char));
memcpy (IN, in+i, sizeof (int)*3);
switch(C) {
case ’a’:
case ’e’:
QUT[I-I]=IN[I-I];
break;
default:
OUT[I]=IN[3*(I/3)+2-1I];
}
memcpy (out+i, OUT, sizeof (int));

Figure 3.11: Code with a switch case from Figure 3.6 after isolation.

void fir( int n, int k, int src[n], int dst[n-k], int m[k]) {
int N=n - k+ 1;
for( int i = 0; 1 < N; ++i ) {
int DST[1],SRC[k],M[k];
memcpy (SRC, src+i, k*sizeof (int));
memcpy (M, m+0, k*sizeof (int));
KERNEL(i, n, k, SRC, DST, M, i/«SRCx/, i/«DSTx/, 0 /«xMx/);
memcpy (dst, DST+0, 1*sizeof (int));

3

Figure 3.12: Interprocedural isolation of the outermost loop of a Finite Impulse Response.

perform the translation in the called function.

The output of the whole process applied to the outermost loop of the Finite Impulse

Response (FIR) is illustrated in Figure 3.12, where a new KERNEL function with two extra

parameters is now called instead of the original kernel function. These parameters hold

the

offsets between the original array variables src and m and the isolated ones SRC and M.

The body of the new KERNEL function is given in Figure 3.13. The extra offset parame-

ters are used to perform the translation on the array parameters. The same scheme applies

for

multidimensional arrays, with one offset per dimension.
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void KERNEL (int i, int n, int k, int SRC[k], int DST[1], int M[k],
int SRC_offset, int DST_offset, int M_offset) {
int v=0;
for( int j = 0; j < k; ++j )
v += SRC[i+j-SRC_offset]*M[j-M_offset];
DST[i-SRC_offset]=v;
}

Figure 3.13: Isolated version of the KERNEL function of the Finite Impulse Response (see
Figure 3.4).

3.5 Limits

Data exchanges between host and accelerator are performed as DMA transfers between
Random Access Memory (RAM) memories across the PCI Express bus, which currently
offers a theoretical bandwidth of 8 GB/s. This is really small compared to the GPU inner
memory bandwidth, which exceeds often 150 GB/s. This low bandwidth can annihilate all
gains obtained when offloading computations in kernels, unless they are really compute-
intensive.

With the available hardware (see Section 7.1), up to 5.6 GB/s was measured from the
host to the GPU, and 6.2 GB/s back. This throughput is obtained for blocks of a few
tens of MB, but decreases dramatically for smaller blocks. Moreover, this bandwidth is
reduced by more than half when the transferred memory areas are not pinned ; i.e. subject
to paging by the virtual memory manager of the operating system. Figure 3.14 illustrates
this behavior.

Using as reference a cube with 128 cells per edge and as many particles as cells, for
a function like discretization, one copy to the GPU for particle positions is a block of
25 MB. After execution, one copy back from the GPU for the particle-to-cell association
is an 8 MB block.

The communication time for these two copies is about 5 ms. Recent GPUs offer ECC
hardware memory error checking that more than doubles time needed for the same copies
to 12 ms. Moreover, each buffer allocation and deallocation require 10 ms. In comparison,
kernel execution for discretization and this problem size requires only 0.37 ms on the
GPU, but 37 ms on the CPU.

Note that memory transfers and buffer allocations represent the largest part of the total
execution time for the discretization step, and therefore the highest potential for obtaining

accelerations. This is why the next section exposes a static interprocedural optimization
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Figure 3.14: Bandwidth for memory transfers over the PCI-Express 2.0 bus as a function
of block size. Results are shown for transfers from the host to the GPU (H-TO-D) and in
the opposite direction (D-TO-H), each for pinned or standard allocated memory.

to map data transfers more efficiently.

3.6 Communication Optimization Algorithm

Much work has been done regarding communication optimization for distributed com-
puters. Examples include message fusion in the context of Single Program Distributed Data
(SPDD) |Gerndt & Zima 1990], data flow analysis based on array regions to eliminate re-
dundant communications and to overlap the remaining communications with computations
operations [Gong et al. 1993], and distribution in the context of High Performance Fortran
(HPF) compilation [Coelho 1996, Coelho & Ancourt 1996].

Similar methods are applied in this section to offload computation in the context of a
host—accelerator relationship and to integrate in a parallelizing compiler a transformation
that limit the amount of CPU-GPU communications at compile time.

This section introduces a new data flow analysis designed to drive the static generation
of memory transfers between host and accelerator. The main scheme is first presented and

the intraprocedural algorithm is detailed. Then the interprocedural extension of the algo-
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rithm is presented. The metric used to evaluate the scheme is introduced and experiments
are performed using a 12-core Xeon multiprocessor machine with a Nvidia Tesla GPU
C2050. The proposed solution is evaluated on well-known benchmarks [Pouchet 2011, Che
et al. 2009] before showing how it scales with the real numerical cosmological simulation
Stars-PM.

It is assumed for this section that the memory of the GPU is large enough to handle
the arrays to process. While this assumption can represent an unacceptable constraint
for some workloads, like those encountered when dealing with out-of-core computing, the
many gigabytes of memory embedded in modern GPUs are large enough for a wide range

of simulations.

3.6.1 A New Analysis: Kernel Data Mapping

At each time step, the function iteration (see in Figure 3.3) uses data defined by
the previous step. The parallelized code performs many transfers to the GPU followed
immediately by the opposite transfer.

Our simulation (see in Figure 3.2) presents the common pattern of data dependencies
between loop iterations, where the current iteration uses data defined during previous
ones. Such data should remain on the GPU, with copies back to the host only as needed
for checkpoints and final results.

A new analysis is introduced for the compiler middle-end to generate efficient host—
GPU data copying. The host and the accelerator have separated memory spaces; my
analysis annotates internally the source program with information about the locations of
up-to-date copies: in host memory and/or GPU memory. This allows a further additional
transformation to statically determine interesting places to insert asynchronous transfers
with a simple strategy: Launch transfers from host to GPU as early as possible and launch
those from GPU back to host as late as possible, while still guaranteeing data integrity.

Additionally, launching transfers inside loops is avoided whenever possible. A heuristic
is used to place transfers as high as possible in the call graph and in the Abstract Syn-
tax Tree (AST). PIPS uses a hierarchical control flow graph [Irigoin et al. 1991, Amini
et al. 2011a (perso)| to preserve as much as possible of the AST. However, to simplify
the presentation of the analyses, equations are written in a classical way assuming that a
traditional Control Flow Graph (CFG) is available.

The sets used in the data flow analysis are first introduced. Then the equations used

for intraprocedural construction are presented, before extending them to interprocedural
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construction. Finally the generation of transfers and the lightweight runtime involved to

support the copy process are illustrated.

3.6.2 Definitions

The analysis computes the following sets for each statement:

e U is the set of arrays known to be used next (>) by the accelerator;

e D is the set of arrays known to be last (<) defined by the accelerator, and not used

on the host in the meantime;

e Ty 4 is the set of arrays to transfer to the accelerator memory space immediately

after the statement;

e Tu_p is the set of arrays to transfer from the accelerator to the host immediately

before the statement.

These sets are initially empty for every statement. Note that even if array regions are
used in the following equations to compute these sets, the granularity is the array. Data-
flow equations presented in the next sections describe the computation of these sets on the
control-flow graph of the global program. Let S denotes a statement of the program. It
can be complex but in order to simplify in the following it is considered that statements are
assignments or function calls. A call to a kernel on the GPU is handled through different
equations. Such a statement is denoted Si. The control-flow graph is represented with
pred(S) for the set of statements that can precede immediately S at execution. Symmet-
rically, succ(S) stands for the set of statements that can be executed immediately after
S.

As explained in Section 3.2, PIPS computes array regions. These analyses produce
fine grained resources; these local fine grained pieces of information are used to build a
coarse grained analysis in which arrays are represented atomically. Therefore the equations
presented in the following do not require a deep understanding of array regions. The
interested reader is referred to Béatrice Creusillet’s PhD thesis [Creusillet & Irigoin 1996b|
for more information.

In the equations below, the arrays totally or partially written by a statement S are
denoted W(S). Similarly, the arrays read by S are denoted R(S5).

When S is a function call, the set represents the summary of the function, i.e., the set

of effects that can be seen on function parameters and on global variables.
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Moreover, OUT (Sy) represents the set of arrays modified by a kernel for which PIPS
established that they are alive, i.e., their value is potentially used by a later statement in
the program. By contrast, ZN(Sy) stands for the set of arrays consumed by the kernel,

i.e., those for which a value is read without being previously produced in the kernel.

3.6.3 Intraprocedural Phase

The analysis begins with the set D in a forward pass through the control flow graph.
An array is defined on the GPU for a statement S iff it is also the case for all its immediate
predecessors in the control flow graph and if the array is not used or defined by the host,
i.e., is not in the set R(S) or W(S) computed by PIPS:

D(S) = (1 D) | = R(S) = W(S) (3.1)

S’epred(S)

The initialization is performed by the first kernel call Sj with the arrays defined by the
kernel k and used later, OUT (Si). The following equation is involved at each kernel call

site:

D(Sy) = ouUT(Se)|J ( D) (3.2)

S’epred(Sk)

A backward pass is then performed in order to compute U. For a statement S, an array
has its next use on the accelerator iff it is also the case for all statements immediately

following in the control flow graph, and if it is not defined by S.

Uis) = U uw)| -wis) (3.3)

S’ esuce(S)

As above with D, U is initially empty and is first initialized at kernel call sites with the
arrays necessary to run the kernel, ZAN/(S), and the arrays defined by the kernel, W(S},).
These defined arrays have to be transferred to the GPU if it cannot be proved that they

are written entirely by the kernel. Otherwise, if not all the values have been updated in
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the GPU memory, the transfer may overwrite still-valid data on the CPU when copying

back the array from the GPU after kernel execution:

usy = NESIUwWEHU | U ue) (34)

S’esucc(Sk)

An array must be transferred from the accelerator to the host after a statement S iff
its last definition is in a kernel and if it is not the case for at least one of the immediately

following statements:

Tasu(S) = D) - () D) (3:5)

S’esuce(S)

This set is used to generate a copy operation at the latest possible location.

An array must be transferred from the host to the accelerator if it has a next use
on the accelerator. In order to perform the communication at the earliest, its launch is
placed immediately after the statement that defines it, i.e., the statement whose W(S) set

contains it. The following equation applies for any .S which is not a kernel call.

Tusa(S) = W[ U us) (36)

S’esuce(S)

3.6.4 Interprocedural Extension

Kernel calls are potentially localized deep in the call graph. Consequently, a reuse be-
tween kernels requires interprocedural analysis. The function iteration (see in Figure 3.3)
illustrates this situation: each step corresponds to one or more kernel executions.

My approach is to perform a backward analysis on the call graph. For each function
f, summary sets D(f) and U(f) are computed. They summarize information about the
formal parameters of the function and the global variables. These sets can be viewed as
contracts. They specify a data mapping that the call site must conform to. All arrays
present in U(f) must be transferred to the GPU before the call, and all arrays defined in
D(f) must be transferred back from the GPU before any use on the host.
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These sets are required in the computation of D and I/ when a call site is encountered.
Indeed, at a call site ¢ for a function f, each argument of the call that corresponds to a
formal parameter present in I must be transferred to the GPU before the call, because we
know that the first use in the called function occurs in a kernel. Similarly, an argument
that is present in D has been defined in a kernel during the call and not already transferred
back when the call ends. This transfer can be scheduled later, but before any use on the
host.

Equations 3.1 and 3.3 are modified for a call site by adding a translation operator,

transg_,., between arguments and formal parameters:

D(c) = [transf_m(D(f))U< N D(S’))]—R(c)—W(c) (3.7)
()

S’epred

U(e) = !transfﬁc(U(f))U< U U(S/)>]—W(c) (3.8)

S’ €succe(c)

The whole process implied by these equations is shown in Figure 3.15.

In the code in Figure 3.16, comparing the result of the interprocedural optimized code
with the very local approach of Figure 3.9 shows that all communications and memory
management instructions (allocation/deallocation) have been eliminated from the main

loop.

3.6.5 Runtime Library

Our compiler Par4All includes a lightweight runtime library that lets the generated code
be independent from the target (currently OpenCL and CUDA). Par4All also supports
common functions such as memory allocation at kernel call sites and memory transfer
sites. The runtime relies on a hash table that maps host addresses to GPU addresses. This
hash table allows flexibility in the handling of the memory allocations. Using it, the user
call sites and function signatures can be preserved, avoiding more advanced and heavy
transformations, i.e., duplicating the function arguments for the arrays in the whole call
graph and at all call sites to carry the CPU and GPU addresses.

The memory management in the runtime does not free the GPU buffers immediately

after they have been used, but preserves them as long as there is enough memory on the
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D={} U={a,d}
void iteration ( ...) { A
// Produce b with a Add b
stepl(a, b); {b} {a,d}
// Produce c with d Add ¢ Add a, remove b
step2(c, d); {b,c} {b,d}
// Produce a with b and ¢ Add a Add d, remove ¢
step3(a, b, ¢); {b,c,a} {b,c}
} _ v Add b and ¢
D={b,c,a} U={1
// Main temporal loop D={}
for(t=0; t<T; t+=DT) { Addbes A
iteration(n, m, a, b, ¢, d); {b,c,a} {a,d}
if (...){ Add a and d
// sometimes Remove a {a,d}
display (a); {b,c}
checkpoint (a); {b,c} {a,d}
} Union, add a and d
}; v and start again

Figure 3.15: Illustration of set construction using the intraprocedural analysis on the
function iteration. The different calls to step functions use and produce data on the GPU
via kernel calls. Sometimes in the main loop, array a is read to display or to checkpoint.
The interprocedural translation exploits at call site the summary computed on function
iteration. A fix point is sought on the loop.

GPU. When a kernel execution requires more memory than is available, the runtime frees
some buffers. The policy used for selecting a buffer to free can be the same as for cache and

virtual memory management, for instance Least Recently Used (LRU) or Least Frequently
Used (LFU).

This behavior requires updating hardware caches in Symmetric MultiProcessing (SMP)
with protocols such as MESI. The scheme involved keeps a copy of the data up to date in
the CPU and the accelerator memory at the same time. When the host or the accelerator
writes data, the copy in the other one is invalidated and a transfer may be scheduled if

necessary.

The calls to the runtime that retrieves addresses in the accelerator memory space for

arrays pos and data can be noticed in Figure 3.16. If the arrays are not already allocated
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void discretization(coord pos[NP][NP][NP],
int data[NP][NP][NP]) {
//generated wvariable
coord *posO = P4A_runtime_resolve (pos,NPxNP*NP*sizeof (coord));
int *data0 = P4A_runtime_resolve (pos,NP*NP*NP*sizeof (int));
// Call kernel
P4A_call_accel_kernel_2d(discretization_kernel,
NP, NP, posO, data0);
}
int main(int argc, char x*argv[]) {
// Read data from input files
init_data(argv([1], ....);
P4A_runtime_copy_to_accel(pos, ...*sizeof(...));
// Main temporal loop
for(t = 0; t < T; t+=DT)

iteration(...);
// Output results to a file
P4A_runtime_copy_from_accel(pos, ...*sizeof(...));
write_data(argv[2],....);

Figure 3.16: Simplified code for functions discretization and main after interprocedural
communication optimization.

in the accelerator, a lazy allocation is done the first time. The code is lighter than the
previous version shown in Figure 3.9, and easier to generate from the compiler point of

view.

3.7 Sequential Promotion

Two parallel loop nests can be separated by some sequential code. When this sequential
code uses or produces the data involved in the parallel computations, transfers may occur
between the host memory and the accelerator memory.

A solution to this issue is to promote the sequential code as parallel, with only one
thread that executes it. Using one thread on the GPU is totally inefficient. However, the
slowdown can be dramatically lower than the cost of communication if the code is small
enough. This issue is similar to the decision about the profitability whether or not to
offload a kernel to the accelerator that is discussed more generally in Section 5.6 page 156.

The gramschmidt example mentioned in the previous section is shown in Figure 3.17.
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k++) {
is sequential

for (k = 0; k < n;
// The following
nrm = 0;
for (i = 0; i < m; i++)

nrm += A[i][k]

* A[i] [k];

R[k][k] = sqrt(nrm);

// The following

is parallel

for (i = 0; i < m; i++)

QLil[k] = A[il[x] / RI[k][k];

for (j = k + 1;
R[k][j] = 0;

j < mn; j++) A

for (i = 0; i < m; i++)
R[k][j1 += QLil[k] = A[il[j]1;

for (i = 0; i < m; i++)

ALi][j]]

kernel_O(R, n);
copy_from_accel(R);

A[il[j] - Qlil[x] = R[k][j];

copy_to_accel (A);
kernel_O(R, n);

for(k = 0; k <= n-1; k += 1) { for(k = 0; k <= n-1; k += 1) {

// Sequential

nrm = 0;

for(i = 0; i <= m-1; i += 1)
nrm += A[i][k]I*A[i][k];

R[k][k] = sqrt(nrm);

// Parallel region
copy_to_accel(R);
kernel_1(A, Q, R, k, m);
kernel_2(A, Q, R, k, m, n);
kernel_3(A, Q, R, k, m, n);
copy_from_accel (A);
copy_from_accel (R);

(a) Usual Host code.

// Sequential code promoted
// on the GPU
sequential_kernel (A,R,m,k);

// No more

// transfers
// here

kernel_1(A, Q, R, k, m);
kernel_2(A, Q, R, k, m, n);
kernel_3(A, Q, R, k, m, n);

}

// transfers is outside of the loop

copy_from_accel (A);

>

(b) Host code after sequential promotion.

Figure 3.17: gramschmidt example taken from Polybench suite. The first part of the loop
body is sequential while the following are parallel loop nests. The sequential promotion on

the GPU avoids costly memory transfers.
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The codes generated with and without sequential promotion illustrate how this trade-off
can reduce the communication. The difficulty is to evaluate the trade-off. This depends
on both the GPU PEs’ speed and the PCle bandwidth.

Section 7.8.4, page 201, contains measurements showing up to eight times speedup
over the optimized scheme for the gramschmidt example, but also up to thirty-seven times
speedup for the durbin example from the Polybench suite.

In case of inaccurate evaluation, the performance can be dramatically degraded. This
transformation requires a careful evaluation of the execution time of both versions. One
possibility to overcome this issue is to perform an off-line profiling with just one iteration
of the sequential loop on the GPU and then decide at runtime if the overhead is worth the
transfers that must be performed. Such an approach is explored in Section 5.7, page 158,
however I did not study how it can be mixed with the communication optimization scheme

introduced in this chapter.

3.7.1 Experimental Results

Section 7.8, page 197, presents detailed experimental results for the optimizing scheme
introduced in this chapter.

The first question is: what should we measure? While speedup are a very effective
metric commercially speaking, in the context of this optimization it is biased because it
is largely impacted by input parameters (see Section 7.8.1, page 197). The very same
benchmark exhibits speedups ranging from 1.4 to fourteen just by changing the input
parameters.

A more objective measurement for evaluating the proposed approach is the number of
communications removed and the comparison with a scheme written by an expert pro-
grammer. Focusing on the speedup would also emphasize the parallelizer capabilities.

Using benchmarks from Polybench 2.0 suite and Rodinia, along with the Stars-PM
numerical simulation introduced in Section 3.1, Section 7.8.2, page 199 illustrates the
performance of the optimizing scheme using this metric, and shows that the optimized
code performs almost as well as a hand-written code.

One noticeable exception is gramschmidt. Communications cannot be moved out of any
loop due to data dependencies introduced by some sequential code. The parallel promotion
scheme shown in Section 3.7 helps by accepting a more slowly generated code and allowing
data to stay on the accelerator. This is still valuable while the slowdown is significantly

smaller than the communication overhead. The difficulty for the compiler is to evaluate the
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slowdown and to attempt parallelization only if optimized communications lead to a net
performance increase. The result of this scheme, shown in Section 7.8.4, page 201, exhibits
promising results with a speedup of up to thirty-seven, depending on the test case.
Finally Section 7.8.3, page 199, explores the performance impact of deferring the deci-
sion at runtime using the StarPU library; speedup of up to five times is obtained with the
proposed static approach. Although StarPU is a library that has capabilities ranging far

beyond the issue of optimizing communications, my static scheme is relevant.

3.8 Related Work

Among the compilers that I evaluated, none implement such an automatic static in-
terprocedural optimization. While Lee et al. address this issue |Lee et al. 2009, §4.2.3],
their work is limited to liveness of data and thus quite similar to the unoptimized scheme
proposed in Section 3.3. Leung addresses the case of a sequential loop surrounding a kernel
launch and moves the communications out of the loop |Leung 2008].

The optimizing scheme proposed in this chapter is independent of the parallelizing
scheme involved, and is applicable to systems that transform OpenMP in CUDA or
OpenCL like OMPCUDA [Ohshima et al. 2010] or OpenMP to GPU [Lee et al. 2009].
It is also relevant for a directive-based compiler, such as JCUDA and hiCUDA [Han &
Abdelrahman 2009]. It would also complete the work done on OpenMPC |Lee & Eigen-
mann 2010] by not only removing useless communications but moving them up in the call
graph. Finally it would free the programmer of the task of adding directives to manage
data movements in HMPP [Bodin & Bihan 2009| and PGI Accelerator [Wolfe 2010].

My approach can be compared to the algorithm proposed by Alias et al. [Alias
et al. 2011, Alias et al. 2012b, Alias et al. 2012a]. This work studies, at a very fine grained
level, the loading and unloading of data from memory for a tiled code running on a FPGA.
My scheme optimizes at a coarse grained level and keeps the data on the accelerator as
late as possible.

In a recent paper [Jablin et al. 2011|, Jablin et al. introduce CGCM, a system targeting
exactly the same issue. CGCM, just like my scheme, is focused on transferring full alloca-
tion units. While my granularity is the array, CGCM is coarser and considers a structure of
arrays as a single allocation unit. While my decision process is fully static, CGCM makes
decisions dynamically. It relies on a complete runtime to handle general pointers to the

middle of any heap-allocated structure, which we do not support at this time.
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I obtain similar overall speedup results, and I used the same input sizes. However,
CGCM is not publicly available and the author does not provide us with a version. There-
fore it has not been possible to reproduce their results and compare my solution in the
same experimental conditions.

Jablin et al. measured a less-than-eight geometric mean speedup vs. mines of more
than fourteen. However, a direct comparison of my measurement is hazardous. I used
GNU C Compiler (GCC) while Jablin et al. used Clang, which produces a sequential
reference code slower than GCC. I measured a slowdown of up to 20% on this benchmark
set. Moreover, I made my measurements on a Xeon Westmere while they use an older
Core2Quad Kentsfield. They generate their GPU version using a PTX generator for Low
Level Virtual Machine (LLVM) while I used NVCC, the Nvidia compiler toolchain.

Finally, a key point is the scope on which the optimization is applied. Jablin et al.
perform the optimization across the whole program and measured wall clock time, while I
exclude the initialization functions from the scope of my compiler and exclude them from
my measurements. Indeed, if I do not do so, the initializations of small benchmarks like
the one in the Polybench suite would be parallelized and offloaded on the GPU, then no
copy to the GPU would be required. Therefore I limit myself from optimization possibilities
because I consider that this way is closer to what can be seen in real-world programs where
initializations cannot usually be parallelized.

The overhead introduced by the runtime system in CGCM is thus impossible to evaluate

by a direct comparison of the speedups obtained by my implementation.

3.8.1 Redundant Load-Store Elimination

Note that PIPS also includes another approach to the communication optimization
issue that has been described formally in Guelton’s thesis [Guelton 2011b]. This section
informally describes how this approach uses step-by-step propagation of the memory trans-
fers across the CFG of the host program. PIPS represents the program using a Hierarchical
Control Flow Graph (HCFG): for example the statements that are part of a loop body
are stored at lower level that the loop header. The representation is close to an AST.
The main idea is the same as the one expressed earlier in Section 3.6, i.e., to move load
operations upward in the HCFG so that they are executed as soon as possible, while store
operations are symmetrically moved so that they are executed as late as possible. Redun-
dant load-store elimination is performed in the meantime. For instance, loads and stores

inside a loop may be moved outwards, which is similar to invariant code motion. But this
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propagation is also performed interprocedurally, as data transfers are also moved outward

function boundaries whenever possible.

3.8.1.1 Interprocedural Propagation

When a load is performed at the entry point of a function, it may be interesting to
move it at the call sites. However, this is valid only if the memory state before the call site
is the same as the memory state at the function entry point, that is, if there is no write
effect during the effective parameter evaluation. In that case, the load statement can be
moved before the call sites, after backward translation from formal parameters to effective
parameters.

Similarly, if the same store statement is found at each exit point of a function, it may
be possible to move it past its call sites. Validity criteria include that the store statement
depends only on formal parameters and that these parameters are not written by the
function. If this the case, the store statement can be removed from the function call and

added after each call site after backward translation of the formal parameters.

3.8.1.2 Combining Load and Store Elimination

In the meanwhile, the intraprocedural and interprocedural propagation of DMA may
trigger other optimization opportunities. Loads and stores may for instance interact across
loop iterations, when the loop body is surrounded by a load and a store; or when a kernel
is called in a function to produce data immediately consumed by a kernel hosted in another
function, and the DMA have been moved in the calling function.

The optimization then consists in removing load and store operations when
they are in direct sequence. This relies on the following property: consider-
ing that the statement denoted by “memcpy(a,b,10*sizeof(in))” is a DMA and
its reciprocal is denoted by “memcpy(b,a,10*sizeof(in))”, then in the sequence
memcpy(a,b,10*sizeof (in) ) ;memcpy (b,a, 10*xsizeof (in)), the second call can be removed
since it would not change the values already stored in a.

Figure 3.18, page 90, illustrates the result of the algorithm on an example taken from
the PIPS validation suite. It demonstrates the interprocedural elimination of data com-
munications represented by the memload and memstore functions. These function calls are
first moved outside of the loop, then outside of the bar function; finally, redundant loads

are eliminated.
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void bar (int i, int j[2], int k[2]) {
while (i-->=0) {
memload(k, j, sizeof (int)*2);
k[0]++;
memstore (j, k, sizeof (int)*2);
}
}
void foo(int j[2], int kI[2]) {
bar (0, j, k);
bar(1, j, k);
}

4

void bar(int i, int j[2], int k[2]) {
memload(k, j, sizeof (int)*2); // moved outside of the loop
while (i-->=0) k[0]++;
memstore (j, k, sizeof (int));

}

4

void bar(int i, int j[2], int k[2]) {
while (i-->=0) k[0]++;

}

void foo(int j[2], int kI[2]) {
memload(k, j, sizeof (int)*2); // load moved before call
bar (0, j, k);
memstore(j, k, sizeof (int)*2);// redundant load eliminated
bar(1l, j, k);
memstore(j, k, sizeof (int)*2);// store moved after call

Figure 3.18: Illustration of the redundant load-store elimination algorithm.

3.9 Optimizing a Tiled Loop Nest

Alias et al. have published an interesting study about fine grained optimization of com-
munications in the context of FPGA [Alias et al. 2011, Alias et al. 2012b, Alias et al. 2012a].
The fact that they target FPGAs changes some considerations on the memory size: FPGAs
usually embed a very small memory compared to the many gigabytes available in a GPU

board. The proposal from Alias et al. focuses on optimizing loads from Double Data Rate



3.9. Optimizing a Tiled Loop Nest 91

for( int i = 0; 1 < N; ++i ) {

memcpy (M,m,k*sizeof (int));

memcpy (&SRC[i] ,&src[i] ,k*sizeof (int));
kernel (i, n, k, SRC, DST, M);

memcpy (&dst [1] ,&DST[i],1*sizeof (int));
}

(a) With naive communication scheme.

for( int i = 0; i < N; ++i ) {
if (i==0) {
memcpy (SRC,src ,k*sizeof (int));
memcpy (M,m,k*xsizeof (int)) ;
} else {
memcpy (&SRC[i+k-1] ,&src[i+k-1] ,1*sizeof (int));
}
kernel (i, n, k, SRC, DST, m);
if (i<N-1) A
memcpy (&dst [i] ,&DST[i],1*xsizeof (int));
} else {
memcpy (&dst [i] ,&DST[i],1*xsizeof (int));
}
}

(b) After the inter-iterations redundant elimination.

Figure 3.19: Code with communication for FIR function presented in Figure 3.4.

(DDR) in the context of a tiled loop nest, where the tiling is done such that tiles execute
sequentially on the accelerator while the computation inside each tile can be parallelized.

While their work is based on the Quasi-Affine Selection Tree (QUAST) abstraction,
this section recalls how their algorithm can be used with the less expensive convex array
region abstraction.

The classical scheme proposed to isolate kernels would exhibit full communications
as shown in Figure 3.19a. An inter-iteration analysis allows avoiding redundant commu-
nications and produces the code shown in Figure 3.19b. The inter-iteration analysis is
performed on a do loop, but with the array regions. The code part to isolate is not bound
by static control constraints.

The theorem proposed for exact sets in [Alias et al. 2011, Alias et al. 2012b, Alias
et al. 2012a] is the following: ®

3. Regions are supposed exact here; the equation can be adapted to under- and over-approximations.
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Theorem 3.1

Load(T) = R(T) — (R(t < T)| JW(t < 7)) (3.9)
Store(T) =W(T) - W(t >T) (3.10)

where T represents a tile, t < T represents the tiles scheduled for execution before the
tile T, and t > T represents the tiles scheduled for execution after 7. The denotation
W(t > T) corresponds to (J,.. W(t).

In Theorem 3.1, a difference exists for each loop between the first iteration, the last one,
and the rest of the iteration set. Indeed, the first iteration cannot benefit from reuse from
previously transferred data and has to transfer all needed data. In other words, R(t < T)
and W(t < T) are empty for the first iteration while W(t > T') is empty for the last
iteration.

For instance, in the code presented in Figure 3.19a, three cases are considered: ¢ = 0,
0<i<N-—-landi=N—1.

Using the array region abstraction available in PIPS, a refinement with respect to the
naive case can be carried out to compute each case, starting with the full region, adding
the necessary constraints and performing a difference.

For example, the region computed by PIPS to represent the set of elements read for

array src, is, for each tile (here corresponding to a single iteration i)
R(i) = {src[¢n] |i < ¢y <i+k—1,0<i< N}

For each iteration i of the loop except the first one (here ¢ > 0), the region of src that is
read minus the elements read in all previous iterations i" < ¢ has to be processed; that is,
U, R(& < i).

R(i' < i) is built from R(7) by renaming ¢ as ¢’ and adding the constraint 0 < ¢ < i to
the polyhedron:

R <i)={sc[pn] |# < <@ +k—1,0<i <i, 1 <i< N}
i" is then eliminated to obtain | J, R(i" < 1):

URG < i) ={sre[gn] [0< ¢ i+ k-2 1<i< N}

i/
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The result of the subtraction R(i > 0) — |J, R(i' < 7) is then the following region: *
Load(i > 0) = {src[gy] |pr =i+ k—1, 1 <i< N}

This region is then exploited for generating the loads for all iterations but the first one.
The resulting code after optimization is presented in Figure 3.19b. While the naive version

loads i x k x 2 elements, the optimized version exhibits loads only for ¢ + 2 X k elements.

3.10 Conclusion

With the increasing use of hardware accelerators, automatic or semi-automatic trans-
formations assisted by directives take on an ever-greater importance.

The communication impact is critical when targeting hardware accelerators for mas-
sively parallel code like numerical simulations. Optimizing data movements is thus a key
to high performance.

An optimizing scheme that addresses this issue has been designed and implemented in
PIPS and Par4All

The proposed approach has been validated against twenty benchmarks of the Poly-
bench 2.0 suite, three from Rodinia, and on one real numerical simulation code. They are
presented in Sections 3.1 and 7.2. It was found that the proposed scheme performs very
close to a hand-written mapping in terms of number of communications.

As for future work, the cache management in the runtime can be improved further than
a classic cache management algorithm because, unlike a hardware cache, the runtime that
comes along the proposed optimizing scheme is software managed and can be dynamically
controlled by the compiler inserting hints in the code. Indeed data flow analyses provide
knowledge on the potential future course of execution of the program. This can be used in
metrics to choose the next buffer to free from the cache. Buffers unlikely to be used again
should be discarded first, while those that are certain to be used again should be freed last.

The execution times measured with multicore processors show that attention should
be paid to work sharing between hosts and accelerators rather than keeping the host idle
during the completion of a kernel. Multicore and multi-GPU configurations are another
path to explore, with new requirements to determine accurate array region based transfers

and computation localization.

4. As the write regions are empty for src, this corresponds to the loads.
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Most of the work described in this chapter was published in [Amini et al. 2011b (perso),
Amini et al. 2011c (perso), Guelton et al. 2012 (perso), Amini et al. 2012a (perso)].
The next chapter presents the different steps performed on the sequential input code

to achieve parallelization and GPU code generation.
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The contributions of this chapter leverage some of the previously existing transforma-
tions in PIPS, extending some of them to handle C code, improving others for specific

requirements of GPU code generation, and finally introducing new ones.

4.1 Introduction

The path leading from a sequential code to efficient parallel code for GPU includes
many analyses and transformations. Moreover, some specificities of the input programs
have to be taken into account. For instance, hand-written programs do not exhibit the
same patterns as automatically generated code from high-level tools or languages. The
code in Figure 4.1 shows how a three-line-long Scilab script ends up with temporary arrays
and five loop nests.

The whole compilation scheme involved going from the sequential code down to the
GPU code is presented in Figure 2.27 page 58 and identifies the contributions presented in
this chapter.

Section 4.2 explains my scheme to map a parallel loop nest to a GPU, and how it
leverages an implicit blocking and loop interchange at runtime for the NDRange and work-
group decomposition (see Section 2.3.2.2, page 32).

I studied the combination of two different parallelizing algorithms, with analysis of the
impact on code generation of both of them in Section 4.3.

I improved the existing reduction detection analysis to handle C code more accurately,
and leveraged this analysis to enable parallelization of loops with reduction by improving
the existing parallelization algorithms. I implemented a mapping scheme for some loops
with reductions onto the GPU using atomic operations supported by OpenCL and CUDA
(see Section 4.4, page 105). Actually, I proposed a new generic scheme for parallelizing
loops with reduction, and implemented it in PIPS. It provides improvements for other
targets like multicore using OpenMP code generation.

I designed and implemented a new induction variable substitution transformation based
on linear precondition analysis (see Section 4.5). This transformation can enable the par-
allelization of loops that contain induction variables.

I implemented two loop fusion transformation phases: one based on the dependence
graph and the other on array regions (see in Section 4.6). I designed heuristics to drive
the fusion in order to target GPUs. This is particularly critical when processing code

generated from high-level tools and languages, such as Scilab, which include many loops.
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ones (1000,1000) ;
atat+a
bx2.+3.

o P
I

(@]
I

(a) Scilab source.

double a[1000][1000];

for(i=0; i<1000; i++)
for(j=0; j<1000; j++)
alil[j] = (double) (1.0);

double t0[1000][1000];

for(i=0; i<1000; i++)
for(j=0; j<1000; j++)
t0[i]1[j] = alill[jl+alil[j];

double b[1000][1000];
for(i=0; 1i<1000; i++)
for(j=0; j<1000; j++)
b[i][j] = to0[il[jl+alil[j];
disp_s0d2("b" ,1000,1000,b);

double t1[1000][1000];

for(i=0; i<1000; i++)
for (j=0; j<1000; j++)
t1[i1[3] = bl[il[jl*2.;

double c[1000][1000];
for(i=0; 1<1000; i++)
for(j=0; j<1000; j++)
clil[j] = t1[i]1[j1+3.;
disp_s0d2("c",1000,1000,c);

(b) Generated C code.

Figure 4.1: Example of a short Scilab program with the generated C file.

This transformation enables removing some temporary arrays generated by such tools.

I studied different array scalarization schemes in the context of GPGPU in Section 4.7,
page 127, and I modified the PIPS implementation to match requirements for GPU code
generation, especially to enforce the perfect nesting of loops.

Section 4.8 and 4.9 explore the impact of unrolling and array linearization.

Finally, Section 4.10 summarizes the contributions of this chapter and how they are

connected together in the next chapter to form a complete compilation chain.
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for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
computation statements

(a) Input code.

for (T=...) // Sequential , on the CPU

parfor (P=pl(T) to pu(T)) // NDRange decomposition

for (t=...) // Sequential , on the GPU
parfor (p=...) // Thread parallelism inside work—group

computation statements

(b) After loop transformation for GPU mapping.

Figure 4.2: Example from Baghdadi et al. [Baghdadi et al. 2010] that illustrates how to
tile a loop nest to map the GPU execution.

4.2 Loop Nest Mapping on GPU

Scheduling a parallel loop nest on a GPU using CUDA or OpenCL requires an elaborate
mapping from the iteration set of the loop nest to the abstraction of the threaded GPU
execution exhibited by NDRange (see Section 2.3.2.2 page 32).

Previous works [Baghdadi et al. 2010, Lee et al. 2009, Baskaran et al. 2010] made
the compiler aware of the whole execution model hierarchy and tried to express it using
nested loops. The transformations performed are principally multilevel tilings with some
restructuring including loop interchanges or index set splittings. Figure 4.2 illustrates an

example of how a loop nest is tiled to map the two-level GPU execution model.

The approach implemented in our Par4All compiler [Amini et al. 2012b (perso)] is quite
different and does not expose any explicit multilevel tiling operation. Instead the source
code generated by PIPS keeps a sequential semantics and is specialized at post-processing.
Let us assume that loops are first normalized, i.e., that they start at zero and have an in-
crement of one. This is to express the iteration set using the OpenCL concept of NDRange
introduced in Section 2.3.2.2. Figure 4.3 gives the four steps included in this transforma-
tion. First, the body of the initial parallel loop nest in Figure 4.3 is outlined to a new
function, the kernel executed by each thread on the GPU. The loop indices are rebuilt in the
kernel using two macros P4A_vp_x for each virtual processor dimension. The sequential ex-
ecution is performed with an expansion of #define P4A_vp_1 ti and #define P4A_vp_0 tj.
The parallel loop nest is then annotated with the iteration set as shown in Figure 4.3c. In

fact, the rectangular hull of the iteration set is represented, as it is not possible to be more
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precise using either OpenCL or CUDA.!

Finally, a post-processing phase matches the annotation and contracts the loop nest to
a pseudo-call to a Call_kernel_zd() macro with the NDRange dimension x ranging from
one to three. The result of the contraction is shown in Figure 4.3d. This macro abstracts
the parallel execution of the kernel on an [ x m x n grid of threads. The work-group size is
not expressed in this abstraction and can then be chosen at runtime according to different
parameters.

The proposed abstraction is used to expand the macro at compile time according to
the effective target. CUDA, OpenCL, and OpenMP back ends have been implemented.
The latter is particularly useful for debugging purposes, since the parallel execution of
the kernel is emulated using CPU threads with dedicated buffers in the host memory to
simulate the separate memory spaces.

As the iteration set is approximated by a rectangular hull, there may be more threads
than necessary to execute the kernel. This situation can occurs in two cases, (1) because
of the over-approximation of some triangular iteration sets for example, and (2) because
the CUDA API requires the iteration set as a multiple of the work-group size. While the
former can be detected at compile time, the latter is known only at runtime when the
work-group size can be known. The iteration set is then systematically clamped using a
guard, as shown in Figure 4.4.

A key point when targeting GPU is memory coalescing. To benefit from the memory
bandwidth without suffering from the latency, consecutive threads in a block should access
a contiguous memory area. This constraint is naturally respected when writing a code for
the CPU. Programmers are taught to write loop nests in such a way that two consecutive
iterations access contiguous array elements to exploit spatial locality in the caches. CUDA
and OpenCL schedule consecutive threads along the first dimension of the work-group,
then along the second dimension, and finally along the last one. Therefore the loop nest
must be mapped with the innermost loop along the first work-group dimension. In the
proposed representation, the mapping of threads to the work-group dimension is performed
in the kernel with the index recovery shown in Figure 4.3b. The macros P4A_vp_z mask
the dimension of the work-group along which the index implicitly iterates.

The tiling is implicit since each loop iteration set is potentially split according to the
work-group size chosen. Again, the macros P4A_vp_x are involved to perform implicitly

this transformation.

1. CUDA 5 and Kepler GPU, which should both be released by the end of 2012, bring a potential
solution introducing what Nvidia calls Dynamic Parallelism.
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void kermnel (int ti,int tj,...) {
int i = P4A_vp_1;
int j = P4A_vp_0;
// computation statements

// parallel }

for (i=0; i<=n; i++)

// parallel // parallel

for (j=0; j<=m; j++) { for (ti=0; ti<=n; ti++)

// computation statements // parallel
ce for (tj=0; tj<=m; tj++)
T kernel (ti,tj,...);

(a) Input code. (b) Body outlined in a new function.

// Loop mest P4A begin ,2D(n, n)
// parallel
for (ti=0; ti<=n; ti++)
// parallel
for (tj=0; tj<=m; tj++) {
// Loop mnest P4A end
kernel (ti,tj,...);
} Call_kernel_2d(n, m, kernel,...);

(¢) Annotated loop nest iteration set. (d) The loop nest replaced by an abstract macro call.

Figure 4.3: Illustration of the successive steps performed to map a loop nest on the GPU.

void kermnel(int ti,int tj,...) {
int i = P4A_vp_1;
int j = P4A_vp_0;
if (i<n&&j<m) { // Guard
// computation statements

3

Figure 4.4: The iteration set is over-approximated with a rectangular hull; a guard is added
to clamp it.
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] Algorithms ‘ Dependence abstraction ‘ Loop transformations

Dependence level
Multiple Statements Distribution

Allen—Kennedy [Allen & Kennedy 1987] Nonperfect

Direction vectors
One statement Unimodular

Wolf-Lam [Wolf & Lam 1991a) Perfect

Polyhedra
Multiple Statements Shifted Linear

Darte—Vivien [Darte & Vivien 1996a) Perfect

Affine (exact)
Multiple Statements Affine

Feautrier [Feautrior 1992] Nonperfect

Affine (exact)
Multiple Statements Affine

Lim—Lam [Lim & Lam 1997] Nonperfect

Table 4.1: A comparison of some loop parallel algorithms (from data published in [Boulet
et al. 1998], nonexhaustive).

The expressiveness of these macros is limited, but still allows application of trans-
formations that would otherwise require some work in the compiler. For instance, loop
interchange, strip mining, or tiling can be achieve by using different macros.

This representation allows postponing some decisions about the transformations, there-
fore providing a code that is more target independent while simplifying the compiler in-

ternal representation.

4.3 Parallelism Detection

Parallelism detection is the foundation of our process. It consists in proving that a loop
can be scheduled for a parallel execution. Such techniques are well known in the compiler
community, at least since the hyperplane method by Lamport in 1974 [Lamport 1974].

Among all parallelizing algorithms, the most famous is certainly the one from Allen and
Kennedy [Allen & Kennedy 1982, Allen & Kennedy 1987]. Darte et Vivien, and Boulet
et al. survey existing parallelization algorithms [Darte & Vivien 1997, Boulet et al. 1998|
and classify them according to the underlying dependence abstraction involved. Table 4.1
reproduces the summary that they established.

PIPS relies on two parallelization algorithms, the first one is Allen and Kennedy’s and
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for(i=0; i<N; i++) {
for(j=0; j<N; j++) {
alilljl=i+j;
bl[il[jI1=b[il[j-1]+alil[jl*cli-11[;];
c[il[j1=2*b[i1[j1+alil[j]1;
}
¥

(a) Input code.

#pragma omp parallel for
for(i=0; i<N; i++) {
#pragma omp parallel for
for(j=0; j<N; j++) {
alilljl=i+j;
b
b
for(i=0; i<N; i++) {
for(j=0; j<N; j++) {
b[i1[j1=b[il1[j-11+alil[jl*cli-11[j];
X
#pragma omp parallel for

for(j=0; j<N; j++) {
clil[jl=2*%b[i]1[jl+alil[j1;
}
}

(b) After parallelization.

Figure 4.5: Example of Allen and Kennedy algorithm as implemented in PIPS: loops are
distributed and parallelism is expressed using OpenMP pragmas.

the other one is based on Creusillet’s array region analysis [Creusillet & Irigoin 1996b]| I

detail further now.

4.3.1 Allen and Kennedy

The Allen and Kennedy algorithm is based on the dependence graph with levels. This
algorithm has been proven optimal by Darte and Vivien [Darte & Vivien 1996b| for such
dependence abstraction. This algorithm was designed for vector machines, and thus in its
basic version distributes the loops as much as possible and maximizes parallelism.

The implementation in PIPS uses a dependence graph built using a dependence

test |Irigoin et al. 1991] based on a variation of the Fourier—Motzkin pairwise elimina-
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tion technique |Triolet et al. 1986]. Allen and Kennedy’s algorithm is implemented by
structuring the dependence graph into strongly connected components, each of which is
recursively analyzed with an incremented dependence level.

An example illustrating the result of the processing of the PIPS implementation of the
Allen and Kennedy algorithm is presented in Figure 4.5. The loop distribution involved
exhibits the maximum parallelism but adds implicit synchronization barriers. Moreover, it
can break cache temporal reuse and prevent array scalarization. In the code in Figure 4.5a
the same reference to array a appears in the three statements, thus the corresponding array
element may stay in the cache. Moreover, if a is not used later in the computation, the
reference can be scalarized. The resulting code after transformation (shown in Figure 4.5b)
shows that a cannot any longer be scalarized since it is referenced in more than one loop
now. Moreover, it is less likely to remain in the caches and the ratio of the number of
arithmetic operations to the number of memory accesses decreases. The drawback of loop
distribution can be circumvented using a loop fusion algorithm presented in Section 4.6.

Another issue is that this algorithm in this basic form (the one implemented in PIPS)
has restrictions on the control flow; for instance, no test is allowed in the loop body.
The algorithm introduced in the next section addressed these issues by providing a coarse
grained parallelization algorithm based on convex summarized array regions [Creusillet &
Irigoin 1996b|.

4.3.2 Coarse Grained Parallelization

The second parallelization algorithm is a coarse grained scheme that relies on array
region analyses [Creusillet & Irigoin 1996b]. No specific loop transformation is involved.
The details about this parallelization method have been published in [Irigoin et al. 2011
(perso)]. The process is summarized below.

Berstein’s conditions [Bernstein 1966] are used between two iterations and extends the
original definition to array regions. A loop is scheduled as parallel if no iteration reads or

write an array element written by another iteration. It is expressed for any variable v:
{¢|30,0' € Pg ¢ € (Rpo(0) VWpa(0)) N € Wpo(o') Ao(i) # 0'(i)} = 2

with o the store, P the preconditions over the loop body, Rp,(0) the read array region
for the whole loop body for variable v, and finally W ,(¢’) the written array region for

the whole loop body for variable v.
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It can be rewritten more precisely:
{¢|Fo,0' € Pg ¢ € (Rpy(o)VWgu(0))ANp € Wp,(o") AT p(o,0")} =@

where T p stands for the transformer expressing the transition of at least one iteration
on the store, i.e., the transitive closure for one iteration Tp 3 = Tj considering that B

includes going to the next iteration.

This algorithm is used extensively in PIPS because it is complementary with Allen and
Kennedy. When parallelization is sought instead of vectorization, the Allen and Kennedy
distribution adds undesired implicit synchronization barriers. Moreover, no dependence
graph is involved, computation of which can be costly. The array regions can be costly
as well, but while the dependence graph complexity depends on the number of statements
involved, the complexity depends on the size of the linear algebra system resulting from
the array accesses. There are no restrictions on the loop body such as on the control
flow or function calls as introduced in Section 3.2 page 64; it avoids loop distribution and
thus improves the locality and size of the loops. The main limitation is that the current
implementation does not integrate an array privatization phase [Creusillet 1996] and a
reduction detection. This latter point is addressed separately in PIPS as presented in the

following section.

4.3.3 Impact on Code Generation

As shown above, there are two existing different parallelization algorithms implemented
in PIPS. Figure 4.6 illustrates the impact of using one algorithm over the other. While
Allen and Kennedy distribute the original loop nest in three different perfectly nested loop
nests expressing two-dimensional parallelism, the coarse grained parallelization keeps the
original nesting and detects one dimension as parallel. Moreover, the parallel dimension is

inside a sequential one, which means that it leads to m kernel launches.

Section 7.3 provides experiments about the parallelizing algorithms and shows that
overall the Allen and Kennedy scheme leads to a more efficient code on all tested architec-
tures with respect to coarse grained parallelization. While the acceleration is very limited
on old architectures such as the G80, dramatic improvement is observable on more recent
GPUs with an execution time up to eight times faster on Fermi and four times on Kepler

using the example figure 4.6.
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/+* Calculate the m = m correlation matricz. */
for(i=1;i<m;i++) {
for(j=i;j<=m;j++) {
symmat [1][j] = 0.0;
for(k=1;k<=n;k++)
symmat [i][j] += datalk][i] * datalk][j];
symmat [jI[i] = symmat[i][j];
}
}

(a) Input code.

for(i=1;i<m;i++) //Parallel
for(j=i;j<=m;j++)//Parallel

symmat [i][j] = 0.0; for(i=1;i<m;i++) {
for(i=1;i<m;i++) //Parallel for(j=i;j<=m;j++) {//Parallel
for(j=i;j<=m;j++)//Parallel symmat [i1[j] = 0.0;
for(k=1;k<=n;k++) for(k=1;k<=n;k++)
symmat [i] [j] += symmat [i] [j] +=
datalk] [i]lxdatalk][j]; datal[k][il*datalk][j];
for(i=1;i<m;i++) //Parallel symmat [j1[i] = symmat[i][j];
for(j=i;j<=m;j++) //Parallel }
symmat [j][i] = symmat[i][j]; }
(b) After parallelization using Allen and Kennedy. (c) After parallelization using Coarse Grained
method.

Figure 4.6: The impact of the two parallelization schemes on a example of code performing
a correlation. Allen and Kennedy algorithm results to three different parallel loop nests
expressing the maximum parallelism, while the coarse grained algorithm detects only one
parallel loop leading to less synchronization but also less exposed parallelism.

4.4 Reduction Parallelization

PIPS provides an algorithm for reduction detection based on the unified framework
introduced by Jouvelot and Dehbonei [Jouvelot & Dehbonei 1989]. The implementation
is rather straightforward yet powerful. Once detected, the reductions can be parallelized

depending on the target capabilities.

4.4.1 Detection

The algorithm is interprocedural and requires that a summary is produced for all the
callees in a function. This implies that the algorithm has to be applied first on the leaf of
the call graph before handling callers. Intraprocedurally, the following algorithm detects
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reductions in statements like

//  call sum[s[a]],sum/[b],

s[al] = s[a]l+b++;

where you can see the comment added by PIPS that indicates that two reductions have
been detected, one on s[a] and the other on b. Statements are first processed individually

and reductions are extracted according to these properties:

1. If the statement is a call, then get the translated interprocedural summary for this

call site.

2. The statement is not a call, then perform a recursion on the inner expression to find
an operation that would correspond to either an assignment, an update, or an unary
operator. The recognized operators are the following: +=, -=, *= /= |= &=, "= ++

(pre and post), and -- (pre and post).

3. For other than unary operators, assert that the left-hand side is a reference, either a

scalar or an array.

4. Both the left-hand side and the right-hand side expressions (if any) must be side

effect free. i.e., if any call occurs it has to be a call to a pure function.

5. In the case of an assignment, the right-hand side has to use a compatible operator,

i.e., one of the following: +, -, *, /, min, max, &&, |1, &, |, and ~.

6. In the case of an assignment, the right-hand side also has to include a reference to the
same reference as the one on the left-hand side. Perform this search with a recursion

through the right-hand side expression accepting only compatible operators.

7. Assert that there is no effect that may conflict with the reduced variable other than
the ones touching reference in the left-hand side of the considered reduction and
the reference found in the right-hand side. This prevents the wrong catching of the

following two examples

//  call sum/[b],sum[b],

b = b+b;

//  call sum[s[a]],sum/[b],

s[al = sl[al] + (b=b+1,b);

8. Finally, conduct a sanity pass to avoid the declaration of two reductions on the same

variable. If compatible, they are merged.
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The last step prevents situations such as the two following function calls with side

effects:

C summary sum([X],prod[Y],

REAL FUNCTION FSUMPROD(X, Y, Z)
C call sum[X],

X = X+Z
C call prodl[Y],

Y = YxZ

FSUMPROD = Z

END

C summary sum([X],prod[Y],
SUBROUTINE SUMPROD(X, Y, Z)
C call sum[X],
X = X+2
C call prodl[Y],
Y = YxZ
END

PROGRAM REDUCTION

C call prod[P],sum[S],prod[P],sum[S],

CALL SUMPROD(S, P, FSUMPROD(S, P, 3.))
C call prod[S],sum[P],prod[P],sum[S],

CALL SUMPROD(P, S, FSUMPROD(S, P, 3.))

The first function call shows that the reduction is duplicated for S and P, because they
are present for both SUMPROD and FSUMPROD. Since they are compatible (only sum or only
product on a given array) they can be merged and kept, this is not the case for the second
call where the two reductions are mutually exclusive (sum and product) and are eliminated
of the detected reductions by the algorithm.

The reduction information is summarized at each level of the PIPS’ HCFG. For instance,
it is summarized at loop level so that this information can be used for parallelization. The
summarization ensures that there is no other write of the reduced reference that would
be incompatible with the reduction. Figure 4.7 shows an example of an interprocedural

analysis of the reduction in a Fortran program.
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C summary sum[X],prod[Y],

REAL FUNCTION FSUMPROD(X, Y, Z)
C call sum[X],

X = X+Z
C call prodl[Y],

Y = YxZ

FSUMPROD = Z

END

C summary sum[X],prod[Y],
SUBROUTINE SUMPROD(X, Y, Z)
C call sum[X],
X = X+2
C call prodlY],
Y = YxZ
END

PROGRAM INTERACT
S = 0.
P = 1.
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.1)
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.+I)
C loop prod[P]l,sum[S],
DO I =1, N
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.+1)
C call prod[P],sum[S],
CALL SUMPROD(S, P, FSUMPROD(S, P, 3.))
ENDDO
DO I =1, N
CALL SUMPROD(P, S, FSUMPROD(S, P, 3.))
ENDDO
DO I =1, N
C call prod[P],sum[S],
CALL SUMPROD(S, P, 2.+1)
C call prod[S],sum[P],
CALL SUMPROD(P, S, 1.-1I)
ENDDO
END

Figure 4.7: Example of reduction detection and interprocedural propagation in PIPS.
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4.4.2 Reduction Parallelization for GPU

The parallelization of loops with reductions can be handled in different ways. PIPS used
to provide only a simple parallelization for OpenMP. This implementation was a simple
transformation that was adding an OpenMP pragma with a reduce clause to loops whose

statements were all scalar-only reductions.

I have designed and implemented a new method, called Coarse Grained Reductions
(CGR) that fits within the existing parallelization algorithms. The implementation is

made in the coarse grained parallelization algorithm presented in Section 4.3.2.

The coarse grained parallelization uses array region analysis to find conflicts between
two iterations of a loop. Such conflicts prevent parallel scheduling of the loop. The
algorithm has been adapted to handle reductions by ignoring conflicts related to references
involved in the reduction. If ignoring a conflict eliminates all cycles, the loop is marked
as potentially parallel. Potentially because another transformation replacing the reduction

with a parallel compliant equivalent operation is necessary to execute the loop in parallel.

The fact that the parallelization phase does not directly modify the schedule but pro-
vides only the information that a potential parallelization may occur provides a decoupling
of the reduction detection and the transformation. While this indicates the maximum po-
tential parallelism that may be found in a code, not all reductions can be parallelized
depending on the capabilities of the target. The OpenMP output benefits directly from
this approach. It is generated by a new transformation that parallelizes a wider range
of loops, since it is no longer limited to loops with a body that contains only reduction

statements as was the legacy transformation available in PIPS.

Targeting GPU, one way of parallelizing loops with reductions is to make use of hard-
ware atomic operations introduced in Section 2.4.3, Page 42. Since different GPUs do not
share the same capabilities, and since CUDA and OpenCL do not exhibit the exact same
set of functions, a rough description of the target capabilities is provided to the compiler. A
new implemented transformation exploits this description to select compatible previously
detected reductions. If the target supports the corresponding atomic operation, then the
substitution is made and the loop is declared as parallel in order to be transformed as a
kernel in a further phase. Figure 4.8 contains an example of a sequential histogram code

and the resulting code after reduction detection and replacement with an atomic operation.
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static void _histogram(int data[NP][NP][NP],
int histo[NP][NP][NP]) {
int 1,j,k;
for (i = 0; i < NP; i++) {
for (j = 0; j < NP; j++) {
for (k = 0; k < NP; k++) {
int x = floor (((float)datalil[jI[k]) / (float) (NP * NP));
int y = floor (((float)(datalil[j]l[k] - x * NP * NP))
/ (float) (NP));
int z = datali][jJ[k] - x * NP x NP - y % NP;
++histo [x] [yl [z];
}
}
}
}

(a) Input code.

static void _histogram(int data[NP][NP][NP],
int histo [NP][NP][NP]) {
int i,j,k;
for (i = 0; i < NP; i++) { // Scheduled as parallel
for (j = 0; j < NP; j++) { // Scheduled as parallel
for (k = 0; k < NP; k++) { // Scheduled as parallel
int x = floor (((float)datalil[jl[k]) / (float) (NP * NP));
int y = floor (((float)(datalil[j]J[k] - x * NP *x NP))
/ (float)(NP));
int z = datalil[jl[k] - x * NP * NP - y * NP;
atomicAddInt (&histo[x][y]l[z],1);
}
}
}
}

(b) After replacement with atomic operation.

Figure 4.8: An example of reduction parallelization of an histogram using hardware atomic
operations.
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4.4.3 Parallel Prefix Operations on GPUs

To parallelize some reductions, parallel prefix operations can be used. In 1980, Lad-
ner and Fischer introduced parallel prefix reductions [Ladner & Fischer 1980|: this has
been a widely studied field since then. In 2004, Buck and Purcell [Buck & Purcell 2004]
explained how map, reduce, scan, and sort can be implemented on a GPU using graphic
primitives. Sengupta et al. presented later the implementation of parallel prefix scan using
CUDA [Sengupta et al. 2007].

In 2010, Ravi et al. introduced a runtime system and framework to generate code from
a high-level description of the reductions [Ravi et al. 2010|. The runtime scheduling is
flexible enough to share the workload between GPUs and multicore CPUs. This system
can be seen as a potential back end for an automatic parallelizer like ours.

The recognition and the parallelization of reductions that do not match the classic
patterns like the ones detected in PIPS have been widely studied, and is still an active
field [Redon & Feautrier 1993, Fisher & Ghuloum 1994, Matsuzaki et al. 2006, Zou &
Rajopadhye 2012].

There has been work to provide efficient implementation for parallel prefix operations
on GPUs [Sengupta et al. 2007, Harris et al. 2007, Capannini 2011|. An automatic scheme
that detects such operations could be associated with a code generator that targets such

libraries.

4.5 Induction Variable Substitution

Induction variable substitution is a classical transformation to enable parallelization.
It is the opposite of strength reduction. Induction variables are usually detected in loops
using pattern matching on the initialization and on the updates in the loop body. This
section shows how the PIPS precondition analysis [Irigoin et al. 2011] is used to define a
new algorithm to detect and replace induction variables. Given a loop L, the algorithm

processes every statement S in its body, and performs the following steps:

1. Fetch the precondition P associated to S.

2. Evaluate individually each linear relation in P equations and inequations:
(a) find in the relation a variable k modified in the loop body,
(b) verify that all other variables are either loop indices or loop invariant,

(c) construct the linear expression to replace k.
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k = -1;
for(i=0;i<SIZE;i++) {
k = i,
for (§=0;j<SIZE;j++) {
sum = B[j-k][k] + A[k];
A[k++] = sum;

k = -1;
for(i=0;i<SIZE;i++) {
k = 1i;

for (j=0;j<SIZE;j++) {

sum = B[j-(i+j)]1[i+jI1+A[i+j]1;

Alk = i+j+1, k-1] = sum;

} }
} }
k = SIZE; k = SIZE;
for(i=0;i<SIZE;i++) { for(i=0;i<SIZE;i++) {
if (k--) if(k = -2*xi+SIZE-1, k-1)
Alk] += A[-2%i+SIZE-1] +=
B[j-k][k]; B[j—((-2)*i+SIZE-1)][—2*i+SIZE—1];

if (--k) if(k = -2%i+SIZE-2)
Alk] += A[-2%i+SIZE-2] +=
B[j-k1[k]; B[j-((-2)*i+SIZE-2)][-2*i+SIZE-2];

(a) Original code. (b) After induction substitution.

Figure 4.9: Example of induction variable substitution to enable loop nest parallelization.

3. Replace in the statement all k induction variables found with a linear expression.

This transformation is challenging in a source-to-source context when targeting C code.
Figure 4.9a gives an example of such challenge. The C language allows side effects in ref-
erences, for instance A[k++] = .... The solution that I designed and implemented handles
these references with respect to the C standard. For instance Alk++] = ...

Alk = i+j+1, k-1] = ...

is replaced by
(see in Figure 4.9b), thanks to the comma operator that evalu-
ates its first operand and discards the result, and then evaluates the second operand and
returns this value. The transformed source code is as close as possible to the initial code

and the number of statements is left unchanged.

4.6 Loop Fusion

Loop fusion is a transformation that consists in collapsing two or more loops together
into one loop. It has been widely studied for a long time [Allen & Cocke 1972, Burstall
& Darlington 1977, Kuck et al. 1981, Allen 1983, Goldberg & Paige 1984, Wolfe 1990,
Bondhugula et al. 2010|. Finding an optimal solution to the global fusion problem is all

but trivial [Darte 2000] and there are many ways to address the problem, as well as different
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for(i=0; i<n; i++)
for(j=0; j<m; j++)
Ali][j] = (double) 1.0;

for(i=0; i<n; i++)

for(i=0; i<m; i++)
for(j=0; j<m; j++) {

) ) ) A[il[j] = (double) 1.0;
for (3=0; j<m; j++) 11030 = '
B[il[jl = (double) 1.0; 2%1% EJ% - ;?01]1?1‘]31]3%;)’[]

for(i=0; i<n; i++) } tityd = 1117 I Iy 0

for(j=0; j<m; j++) .
CLil[j1 = A[il[j1+B[i1[j]; (b) After fusion.

(a) The code before fusion.

Figure 4.10: Example of loop fusion.

definitions of the problem itself.
This transformation helps to reduce the overhead of the branching and incrementation
by eliminating loop headers and increase the size of the body. It exhibits several benefits

such as
e more opportunities for data reuse, mostly temporal locality,
e more instructions can be scheduled, better pipeline usage or ILP,

e further array contraction |Gao et al. 1993, Sarkar & Gao 1991] (see also Figure 4.21
and Section 4.7).

However, loop fusion has some disadvantages. For instance, the pressure on the in-

struction cache and on the registers usage within the loop increases.

4.6.1 Legality

Loop fusion is not always legal as it may modify the semantics of the program. An
invalid loop fusion can lead to a reverse order of dependent computations. Data dependence
analysis is used to determine when the fusion is legal or not.

The validity of loop fusion has been widely studied [Allen & Cocke 1972, Warren 1984,
Aho et al. 1986], but can be expressed in different ways. Allen and Cocke propose simple
conditions for the validity of loop fusion in [Allen & Cocke 1972]:

1. the control conditions are unique among the loops,
2. the loop headers control the same number of iterations,

3. the loops are not linked by a data dependence.
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However, it restricts the number of loops that can fused and prevents any array con-
traction since no data dependence is allowed. Warren [Warren 1984| proposes a slightly

relaxed but still simple set of conditions:

1. the candidate loop nests are consecutive in the source code,

2. induction variables of both loops iterate toward the same upper bound after loop

normalization,

3. the fused bodies preserve all the dependences from the first loop to the second loop.

To summarize, the first condition in both proposals aims at avoiding control depen-
dences, i.e., it ensures that both loops always share the same execution path. The second
condition intends to enforce that loops are compatible without any sophisticated transfor-
mations such as loop shifting or index set splitting for example, i.e., they have the same
number of iterations. Finally, the last conditions guarantee the semantic equivalence of
the two fused loops with the initial code. The first proposal is more restrictive because it
prevents any data dependence between the two loops, while the second proposal is more
general.

The last condition is key in establishing the validity of a loop fusion. It has been shown
in [Warren 1984] that dependence with a distance vector allows stating whether the fusion
is possible or not. If the distance is positive or null then the fusion is valid. Another
definition without distance was given in |[Kennedy & McKinley 1994|. The fusion is valid
if no dependence arc from the first loop body to the second is inverted after fusion. Such
dependence arcs are called fusion-preventing in the next section.

Irigoin et al. conjectured another solution [Irigoin et al. 2011 (perso)| based on array
region analysis |Creusillet & Irigoin 1996b|. The proposal allows identifying these depen-
dences without any dependence graph (see Section 4.6.5).

When fusing parallel loops, a legal fusion may end up with a sequential loop. This
happens when the dependence distance is positive, or, with the alternative definition,
when the dependence after fusion becomes carried by the loop. Such dependences might
also be considered as fusion-preventing depending on the goals of the algorithm, as shown
in Figure 4.11.

Some advanced transformations can remove fusion-preventing dependences. For exam-
ple, Xue et al. eliminate anti-dependences using array copying [Xue 2005]. Shifting and

peeling? techniques described in [Manjikian & Abdelrahman 1997] allow the fusion and

2. These transformations enable loop fusion for loops with different iteration set.
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for(i=1;i<N;i++) // Parallel for(i=1;i<N;i++) { // Sequential
alil=0; al[il=0;

for(i=1;i<N;i++) // Parallel blil=ali-1]1;
blil=ali-1]; 3

(a) Original code: two parallel fusable loops. (b) After fusion, the loop is sequential.

Figure 4.11: Example of two parallel loops that can be legally fused, but the resulting loop
nest would be sequential.

parallelization of multiple loops in the presence of loop-carried dependences. Loop shifting
and peeling were also addressed by Darte et al. [Darte et al. 1996, Darte & Huard 2000).

Figure 4.10 illustrates a simple loop fusion.

4.6.2 Different Goals

While the earlier algorithms intended to maximize the number of fusions or minimize
the total number of loops [Allen & Cocke 1972, Kuck et al. 1981, Warren 1984] to reduce
the control overhead, later contributions extended the goals of loop fusion.

When any bad memory access pattern resulted in swapping a memory page, Kuck
et al. studied the applicability of loop fusion for improving performance in environment
with virtual memory management [Kuck et al. 1981]. It was also used to maximize the
usage of vector registers [Kuck et al. 1981, Allen 1983] or to enable more effective scalar
optimizations such as common subexpression elimination [Wolfe 1990]. Later, fusion was
used to increase locality [Manjikian & Abdelrahman 1997, Bondhugula et al. 2010], to
generate better access patterns for hardware prefetchers |[Bondhugula et al. 2010], or even
to reduce power consumption |Zhu et al. 2004, Wang et al. 2010].

Other algorithms using loop fusion were designed to maximize task parallelism with
minimum barrier synchronization [Allen et al. 1987, Callahan 1987].

Kennedy and McKinley introduced an algorithm that focuses on maximizing the paral-
lelism, the ordered typed fusion [Kennedy & McKinley 1994|, by avoiding fusing sequential
and parallel loops. The type carries the information about the schedule of the loop: parallel
or sequential. This solution is minimal in term of number of parallel loops.

They extended this algorithm to handle an arbitrary number of types [Kennedy &
Mckinley 1993] in order to handle noncompatible loop headers. They obtained a solution
they claim to be minimal in the number of parallel loops and the total number of loops.

They then introduced the general weighted fusion algorithms [Kennedy & Mckin-
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ley 1993| to maximize reuse. The weight represents any metric that would indicate that it
is preferable to fuse a couple of loops instead of another one.

Gao et al. also proposed a weighted loop fusion to maximize array contraction [Gao
et al. 1993| based on the maximum-flow/minimum-cut algorithm |Dantzig et al. 1954]
but they did not address loops with different headers. Their algorithm relies on a Loop
Dependence Graph (LDG) (see Section 4.6.4) where edges can be of three types: nonfusible,
fusible and contractable, and fusible but noncontractable.

The weighted fusion problem was shown in 1994 to be NP-hard first in [Kennedy &
McKinley 1994], then Darte proved it for a broader class of unweighted fusion [Darte 2000],
including the typed fusion for two types or more.

Kennedy and McKinley proposed two polynomial-time heuristics [Kennedy & McKin-
ley 1994] as a solution for the weighted loop fusion [Gao et al. 1993]. Finally Kennedy
proposed a fast greedy weighted loop fusion heuristic |[Kennedy 2001].

Megiddo et al. present a linear-sized integer programming formulation for weighted
loop fusion |[Megiddo & Sarkar 1997|. They claim that despite the NP-hardness of the
problem, an optimal solution can be found within time constraints corresponding to a
product-quality optimizing compiler.

Bondhugula et al. used the polyhedral model to provide first maximal fusion [Bond-
hugula et al. 2008c, Bondhugula et al. 2008a|, and later a metric-based [Bondhugula
et al. 2010| algorithm that optimizes at the same time for hardware prefetch, locality,
and parallelism.

Pouchet et al. [Pouchet et al. 2010b| build a convex set that models the set of all legal
possibilities on which an iterative empirical search is performed.

Loop fusion can also be used to extend the iteration set of a loop, using some index
set splitting as shown in Figure 4.12. This technique is explored by Wang et al. [Wang
et al. 2010].

The loop-fusion transformation has been widely studied in different contexts. The next

section present a GPGPU perspective and the associated specific constraint.

4.6.3 Loop Fusion for GPGPU

In the context of GPGPU, loop fusion is directly related to the number of kernels
obtained and their size, as presented in Section 4.2. Four major benefits are expected from

loop fusion:

1. data reuse,
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2. array contraction (see Section 4.7),
3. increasing the size of the kernel,

4. reducing the overhead associated to the kernel launch.

Items one and two are common benefits when dealing with loop fusion. Since recent
GPU architectures include multilevel hardware caches (see Section 2.4), they may benefit
from such reuse. However, caches are small when compared to the number of threads, and
are intended mostly to provide spatial locality. We expect loop fusion to allow to keep
data in registers, avoiding external memory accesses. Finally a fused-kernel exhibits more

opportunities for data reuse in local memory, as shown in Section. 2.3.

The third benefit exposes potentially more ILP to the hardware scheduler and the
compiler. This is helpful for small kernels, but also increases the register pressure and the
code size dramatically for larger kernels. Section 2.4.2 demonstrates how ILP is exploited
in modern GPUs.

Finally, the last benefit is directly linked to the reduction of the number of kernels, and
thus the number of kernel calls. Launching a kernel requires the driver to send the binary
code for the kernel, the parameters, and the launch configuration (number of threads, work-
group size) to the GPU over the PCle bus. Then the hardware scheduler begins scheduling
and filling the multiprocessors with many thousands of threads (see Section 2.4). Finally,
at the end of the computation, the scheduler has to wait for all the threads to finish,
leaving potentially some multiprocessors stalled. These operations are not negligible for
small kernels. Stock et al. measured the overhead of starting a kernel of the GPU as 20 us
for an Nvidia GTS 8800 512 and as 40 ps for an Nvidia GTX 280 [Stock & Koch 2010].
They manually performed loop fusions to reduce the number of kernel launches, and thus

the overhead.

Overall, these fusions can improve significantly the performance. Membarth et al.
obtained a 2.3 speedup by manually applying loop fusion on a multiresolution filtering
application [Membarth et al. 2009]. Wang et al. published measurements with a speedup of
five after loop fusion |Wang et al. 2010]. Fousek et al. evaluated the fusion of CUDA kernels
in the context of predefined parallel map operations. The algorithm they proposed performs
an oriented search over the set of valid fusions. They predict the resulting execution times,
based on off-line benchmarking of predefined functions. On a simple example that chains six
operations (matrix—matrix multiply, matrix—vector multiply, vector normalization, matrix—

matrix multiply, matrix-matrix add, matrix—scalar multiply) they obtained a 2.49 speedup.
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for(i=0;i<N;i++) { for(i=0;i<N+M;i++) {
F(i,N,A,B,C); if (i<N)
¥ F(i,N,A,B,C);
for(i=0;i<M;i++) { else
G(i,M,X,Y,Z); G(i-N,M,X,Y,Z);
} }
(a) Input code. (b) Loop fusion to schedule more

threads on the GPU.

Figure 4.12: Example of a loop fusion scheme to extend the iteration set of a loop nest.

Wang et al. [Wang et al. 2010] study three different types of loop fusion, extending the
iteration set to concatenate the two original loop iteration set (see Figure 4.12). Their goal
is reduction of power consumption and they do not improve performance with respect to
the classical loop fusion scheme implemented in PIPS. Modern GPUs are able to schedule
more than one kernel at a time on different multiprocessors. Therefore the performance
improvement of this approach, even on small iteration set, is rather theoretical and only
the launch overhead of the fused kernel may be avoided.

Loop fusion is also used in the GPU implementation of MapReduce [Catanzaro
et al. 2008|. Map kernels are fused to reduce synchronizations, communications, and en-
abling data exchange in on-chip memories.

Finally the Thrust library manual [Bell & Hoberock 2011] recommends programmers
to fuse explicitly several computation functions into a single kernel, as shown Figure 4.13.

This is presented as a good practice and is a key point in order to get good performance.

4.6.4 Loop Fusion in PIPS

In 2010, PIPS did not include any algorithm for loop fusion. I implemented a heuristic-
based algorithm that performs unweighted typed loop fusion. It can take into account two
types: parallel and sequential loops.

Most algorithms from the previous sections are based on the Loop Dependence Graph
(LDG) [Gao et al. 1993, Megiddo & Sarkar 1997]. It represents a sequence of loop nests
and can be seen as a specialization of the Program Dependence Graph (PDG) [Ferrante
et al. 1987]. Each loop nest is represented as a node of the LDG. Edges correspond to
dependences between statements that belong to the two loop nest bodies. An edge repre-

sents a dependence and the information whether the corresponding dependence prevents
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void saxpy_slow(float A,
thrust::device_vector<float>& X,
thrust::device_vector<float>& Y) {

thrust::device_vector<float> temp(X.size());

// temp <— A

thrust::fill (temp.begin(), temp.end(), A);

// temp <— A x X

thrust::transform(X.begin(), X.end(),
temp.begin(), temp.begin(),
thrust::multiplies<float>());

/)Y <—Ax X+ Y

thrust::transform(temp.begin(), temp.end(),
Y.begin(), Y.begin(),
thrust::plus<float>());

(a) Using native Thrust operator, performing 4N reads and 3N writes.

struct saxpy_functor {
const float a;
saxpy_functor (float _a) : a(_a) {}
_host__ __device__ float operator () (const float& x,
const float& y) const {

return a * x + y;
}
};
S/ Y <—Ax X+ Y
void saxpy_fast(float A,
thrust::device_vector<float>& X,
thrust::device_vector<float>& Y) {
thrust::transform(X.begin(), X.end(),
Y.begin(), Y.begin(),
saxpy_functor (A));

(b) Using a user-defined kernel, performing 2N reads and N writes.

Figure 4.13: Example of manual kernel fusion using Thrust library and a SAXPY example.
The first version is expressed using native Thrust operators and requires temporary arrays,
the second version fuses the three steps in one user-defined kernel (source [Hoberock &
Bell 2012]).
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for(i=0; i<N; i++){//S1

alil=bl[il; //S2
alil+=2%c[i]; //88
}
for(i=1; i<M; i++){//54
elil=c[il; / /85
elil+=2%b[i]; //S6
}
int k; / /ST
k = d[1]; / /S8
int 1; //S9
1 = e[1]1; //S810
for(i=1; i<M; i++){//S11
dlil=2%el[il; //S12
d[il+=b[il; //S13
}
for(i=0; i<N; i++){//S14
clil+=alil; //S15
clil+=k+1; //S16
}
(a) Input code (b) Dependence (¢) Reduced Depen-
. Graph (DG). dence Graph (RDG).

Figure 4.14: On the left, a sequence of statements, in the middle the associated Dependence
Graph (DG), and on the right the corresponding Reduced Dependence Graph (RDG)
obtained after clustering the vertices that belong to the same loop.

In solid red the flow dependences, in dashed blue the anti-dependence, and in dotted green
the special dependences that model the declaration. The DG view showed here is simplified
for the sake of clarity, for instance output dependences and the loop carried dependences
are omitted.

the fusion of its two vertices. This information is a key point for many algorithms from

the previous section.

The direction or distance vector dependence graphs, introduced in Section 4.6.1, are
used to build the LDG with the fusion-compliant status attached to all the edges. But
since the PIPS dependence graph exhibits an abstraction based on the dependence level,

it does not provide the distance vector in the graph. It would require re-implementing
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the PIPS dependence test [Irigoin et al. 1991| and the dependence graph representation to
provide this information.

Without this information, the alternative method for identifying the fusion-preventing
nature of an edge (see Section 4.6.1) requires first effectively fusing the loop nests and
recomputing a dependence graph on the new body to establish if a dependence is fusion-
preventing or not by a comparison with the original graph. However, it would require a
lot of spurious computations to do that preventively for all possible combinations of two
loop nests.

Instead I designed a heuristic that provides features similar to the typed fusion intro-
duced by Kennedy and McKinley [Kennedy & McKinley 1994], but operating on an LDG
that does not include any information on the fusion-preventing nature of the edges. The
vertices are selected by the algorithm and the fusion is tried. It is only at that time that
the validity is checked. The algorithm has to proceed using a trial-and-error strategy.

This algorithm traverses the PIPS Hierarchical Control Flow Graph (HCFG) and con-
siders statements that share the same control in the same way as [Ferrante et al. 1987].
In PIPS terminology these statements are in the same sequence of statements, such as
a compound block { ... } in the C language, with no goto from or to the statements
directly in the sequence.

In a sequence, we have to take into account not only loops but also any kind of constructs
such as tests, assignments, function calls, etc. The nodes of our graph are not necessarily
loop nests. Therefore I use the generic term Reduced Dependence Graph (RDG) instead
of LDG, with an example shown on Figure 4.14.

PIPS HCFG represents all these constructs as statements, and they are stored in a
linked list to represent the sequence. The RDG is then built by

1. creating a vertex for each statement in the sequence,
2. mapping all the inner statements to the vertex statement, and

3. adding an edge for each edge in the dependence graph to the RDG using the previ-

ously computed mappings.

It considers only the dependence arcs related to the statements within the sequence,
and then the dependence graph is acyclic, so is the RDG obtained.

Figure 4.14a, Page 113, contains a sequence of statements including some loops. The
resulting (simplified) Dependence Graph (DG) and the RDG computed by PIPS are pre-
sented in Figures 4.14b and 4.14c. At all times, there is a one-to-one mapping from the

vertices in the RDG and the statements in the sequence.
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(b) The RDG after pruning.

Figure 4.15: The algorithm begins with a pruning phase. For each direct edge between
two vertices it ensures that there is no other path between them.

The originality of the algorithm is to prune the RDG so that any direct arc between
two statements guarantees that no other statement needs to be scheduled between the two
statements. Therefore this pruning allows traversing the graph in any topological order
and trying to fuse two adjacent statements without having first to check if a fusion would
introduce a cycle.

Since PIPS is a source-to-source compiler, the readability of the transformed source
is an important point. Each transformation must be designed to keep the code structure
as close as possible to the original input code. For example, declarations are represented
in the Internal Representation (IR) like any other statements. The DG includes edges
from these declarations to every use of the variable. Therefore a transformation algorithm
relying on the DG naturally keeps the declarations consistent with the uses of variables.
My fusion algorithm allows declarations everywhere in the code without preventing fusion.

My algorithm traverses the graph in three independent ways. Each traversal has a

dedicated goal:

1. The first traversal favors array contraction, and thus follows the edges in the RDG
that correspond to flow dependences. These represent the opportunities to fuse to

get reduced liveness, from the definition to the use of a value.

2. The second traversal improves temporal locality. It fuses vertices of the RDG that are
linked by edge corresponding to a read-read dependence. In the context of GPGPU,

the purposes are multiple. First, accesses to the same memory location are likely to
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stay in a register. Then the accesses among a block of threads are more likely to
benefit from the cache levels. Finally at a coarser grain level, some transfers between
the CPU and the GPU may be avoided.

3. The last traversal is a greedy one that intends to minimize the total number of loops
and therefore fuse all vertices in the graph that are not connected. The motivation is
to minimize the number of kernel launches and to exhibit more instructions in kernels,
leading to more ILP. The drawback is a potentially increased register pressure, and

therefore spilling may occur in large kernels.

Note that the second traversal relies on edges that do not exist in the classic DG in
PIPS. Moreover, it is not desirable to use them the same way as the other edges since they
do not carry the same constraints: they do not imply any order between the connected
vertices. One may think about these edges as being undirected arcs. However, since
the RDG is a Directed Acyclic Graph (DAG), it cannot include any undirected edge. A
separated undirected graph structure over the RDG vertices is computed to keep track of
data reuse.

The first traversal starts with each vertex that does not have any predecessor in the
graph. It then tries to fuse the vertex with each of its successors, and recurses on each,
following edges in the RDG as paths. The algorithm presented in Figure 4.16 illustrates
this process.

The second traversal is based on edges representing data reuse. The algorithm is similar
to the one used for the first traversal and illustrated in Figure 4.16. Edges are pruned like
arcs. The pruning involves the information about the arcs. In fact, an edge between two
vertices is kept only if there are no paths between the two vertices in the directed graph.
This guarantees that fusing two vertices linked by an undirected edge is always valid from
the graph point of view, i.e., it does not create any cycle in the RDG.

Finally the last traversal is a greedy one; every possible pair of vertices that are not
linked by any path in the RDG are tried for fusion.

Figure 4.17 presents the algorithm involved in pruning the graph when merging two
vertices. The resulting process of this algorithm on the code shown in Figure 4.14 is
presented in Figure 4.18. Note how the declaration and initialization of k are moved to
ensure consistency.

The order these three traversals are performed matters. Since for example in a sequence
of three loops, it can arise that the first one can be fused with the second or the third but

not both. Therefore the heuristic to chose which fusion to perform instead of the other has



124 Chapter 4. Transformations for GPGPU

// v is modified as side-effect
function FUSE_RDG(V, E)
for v e V do
if v has no predecessor then
FUSE__ALONG _PATH(v)
end if
end for
end function

// Fuse all directly connected vertices starting from v
// v is modified as side-effect
function FUSE_ALONG_PATH(v)
toFuse + succ(v)
alreadyTried < &
while toFuse # @ do
v' «<~PoOP(toFuse)
if v is a loop and v’ is a loop then
if TRY _TO_FUSE(v,v’) then
// Fusion succeeded, register successors of v’ to be tried
toFuse < toFuse ] (succ(v') \ alreadyTried)
// Fuse in the graph
FUSE_ VERTICES(v, V')
else
// Record the failure about fusion with v’
already Tried < alreadyTried | J{v'}
end if
end if
// Recurse on v/
FUSE__ALONG _PATH(v')
end while
end function

Figure 4.16: Heuristic algorithm FUSE_RDG to traverse the RDG and apply fusion. The
graph is modified as side effect.

to consider the criteria that is likely to provide the best performance.

4.6.5 Loop Fusion Using Array Regions

Section 4.6.1 presents the classic way of determining the legality of a fusion based on the
dependence graph. Irigoin conjectured another solution [Irigoin et al. 2011 (perso)| exploit-

ing the array region analysis [Creusillet & Irigoin 1996b]. I designed and implemented in
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function FUSE VERTICES(v,v’)
// Fuse v’ into v
pred(v) = pred(v) U (pred (/) \ {v})
suce(v) = suce(v) | suce(v')
for s € succ(v') do
// For each successor of ¢/, replace v' with v as a predecessor
pred(s) = (pred(s)\ {v'}) U{v}
end for
for p € pred(v’) do
if p # v then
// For each predecessor of v/, replace v' with v as a successor
suce(p) = (suce(p) \ {'}) Ufv}
end if
end for
// Prune the graph, traversing all paths in both direction from v
PRUNE(v)
end function

Figure 4.17: Merging two vertices in the graph while enforcing pruning as introduced in
Figure 4.15.

int k; / /ST
k = d[1]; //88

for(i=1; i<M; i++){//54
elil = cl[i]; //S85
el[i]l += 2xb[i]; //S6
d[i] = 2xe[i]; //812

dli]l += bl[il; //S518
}
int 1; //S9
1 = e[0]; //S10
for(i=0; i<N; i++){//S1
alil = b[i]; //S2
ali] += 2xc[il; //S3
cli] += alil; //S515
cl[i] += k+1; //S516

}

Figure 4.18: The resulting code after applying the loop-fusion algorithm on the code
presented in Figure 4.14a.
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PIPS the corresponding algorithm, Fusion WithRegions, that is based on a summarization
mechanism using array regions (see Section 3.2).

PIPS computes array region accesses for each structure of its HCFG, including loops
and their body. This information, summarized at body-level, enables establishing if the
loops can be fused with an extended dependence test [Triolet et al. 1986]. Array regions are
convex polyhedra. The linear system is used directly in the PIPS dependence test [Irigoin
et al. 1991] to establish the dependence between the array regions associated to the loop
bodies.

In the case of conflict, the dependence test states whether the dependence is loop-carried
or not, and whether it is a backward or a forward dependence. A forward loop-independent
dependence is totally harmless and therefore can be safely ignored for the fusion.

A backward loop-carried dependence breaks the semantics of the program and always
has to be considered as fusion-preventing [Warren 1984, Kennedy & McKinley 1994].

Finally a forward loop-carried dependence does not break the semantics of the program
but serializes the execution of the loop. If the loop-fusion algorithm has to maximize the
parallelism, then such a dependence has to be considered as fusion-preventing, if at least
one of the original loops is parallel.

The main interest of the Fusion WithRegions algorithm is the simplicity of its imple-
mentation in PIPS. It relies on a well-tried polyhedral framework used for array regions.
This solution allows avoiding recomputing a full dependence graph each time a fusion is
attempted by the algorithm FUSE_RDG.

4.6.6 Further Special Considerations

As mentioned in Section 4.2, the mapping of a loop nest on GPU involves only perfectly
nested parallel loops. The fusion algorithm can be parametrized to enforce this property.
When a fusion succeeds, if the original loops both contained a single parallel loop as body
then a fusion is tried on these inner loops. In case of failure, the fusion of the outer loops
is reverted.

The algorithm presented at the previous section has to be applied in sequences. The
order sequences are picked for processing during HCFG traversal matters. Figure 4.19
presents an example where the sequence corresponding to the body of the first loop has to
be processed first. If the inner loops are not fused first, then the outer loops are not fused
to avoid breaking the perfect nesting.

Finally, when parallelizing for GPUs, since only the perfectly nested loops are scheduled
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for(i=0; i<m; i++) { // Parallel
for(j=0; j<m; j++) { // Parallel
alill[jI1=b[jl1[il;
}
for(j=0; j<m; j++) { // Parallel
clil[jl=alil[jl+k*j;
}
}
for (i=0; i<m; i++) { // Parallel
for(j=0; j<m; j++) { // Parallel
dlil[jl=sqrt(c[i1[j1);
}
}

Figure 4.19: Sample code showing that inner loops have to be fused first in order to be
able to fuse the outer loops without breaking the perfect nesting.

for (i=0; i<mn; i++) { // Parallel

int tmp[10];

tmp [0]=0;

for(j=1; j<10; j++) { // Sequential
tmp[jl=tmp[j-1]1+ali]l [j1+b[i]1[j];

}

for(j=1; j<10; j++) { // Parallel
clil[jl+=tmp[j]1;

+

3

Figure 4.20: Only perfectly nested loops are labeled parallel to avoid GPU unfriendly loop
fusion.

on the GPUs, parallel loops that are located in the body of an outer parallel loop must be
declared as sequential. If they are not, the fusion of the inner parallel loop with another
inner sequential loop is prevented. This situation is illustrated in Figure 4.20. The second

inner loop should not be declared parallel, so that it can be fused with the previous loop.

4.7 Scalarization

Scalarization is a transformation that replaces constant array references to arrays with
scalars. This transformation can occur in the usual backend compiler, when it comes to

keeping in a register a value fetched from memory as long as possible. Intuitively it means
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that performing this transformation at source level might increase the pressure on registers
and lead to spilling.

This transformation can also eliminate temporary arrays, most of the time after loop
fusion and especially in the context of automatically generated code from high-level lan-
guages and tools. The generated C code from a three-line Scilab program contains three
temporary arrays that can be totally replaced with scalars after loop fusion (see in Fig-
ure 4.21).

In the context of targeting accelerators like GPUs, this transformation is even more
critical than on a shared memory system. Indeed, the generated kernel will be faster by
performing fewer memory accesses, but it is probably from the reduced memory transfers
over the PCle bus that most of the gains are to be expected.

Array scalarization has been widely studied in the past [Gao et al. 1993, Sarkar &
Gao 1991, Darte & Huard 2002, Carribault & Cohen 2004]. This section explores different
schemes to apply this transformation in the context of offloading kernels to the GPU. The

performance impact is evaluated for different GPU architectures.

4.7.1 Scalarization inside Kernel

A simple matrix multiplication naively mapped onto the GPU is shown in Figure 4.22.
This kernel includes a sequential loop with a constant array reference. This reference
can be kept in a scalar variable during the whole loop. These transformations could be
done by the target backend compiler. However, the measurement presented in Figure 7.11,
Page 192, indicates that performing it at source level is valuable on all architectures tested,

with speedup up to 2.39.

4.7.2 Scalarization after Loop Fusion

Loop fusion generates code where definitions and uses of temporary arrays are in the
same loop body. The arrays can be totally removed, saving both memory bandwidth and
memory footprint. In the context of automatically generated code from high-level languages
and tools, this situation is a common pattern. Figure 4.21 shows an example of such
generated code from a three-line Scilab program. After loop fusion, the generated C code
contains three temporary arrays that can be replaced by scalars as shown in Figure 4.21b.

To eliminate a temporary array, its elements must not be used later in the program
execution. This is checked in PIPS with OUT regions (see Section 3.2, Page 64).



4.7. Scalarization

129

double a[1000][1000];
double t0[1000][1000];
double b[1000] [1000];
double t1[1000][1000];
double c[1000][1000];
for(i=0; i<1000; i++) {
for(j=0; j<1000; j++) {
alil[j] = (double) (1.0);

t0[i1[j] = alill[jl+alilljl;
b[il[j] = to[il[jl+alil[j];

t1[i1[j] = b[i1[jl*2.;
clil[j] = t1[i]1[j1+3.;
}
}
disp_s0d2("b",1000,1000,b);
disp_s0d2("c",1000,1000,c);

(a) After loop fusion.

double b[1000][1000];
double c[1000][1000];
for (i=0; i<1000; i++) {
for (j=0; j<1000; j++) {
double a, t1, tO;
a = (double) (1.0);
t0 = a+a;
b[il[j] = t0+a;
t1 = b[il[j1#2.;
cl[il[j] = t1+3.;
}
}
disp_s0d2("b" ,1000,1000,b);
disp_s0d2("c",1000,1000,c);

(b) After array scalarization.

Figure 4.21: Processing of example in Figure 4.1. A Scilab script compiled to C code offers
good opportunities for loop fusion and array scalarization.

for (i = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {
C[il[j]1 = O;

for (k = 0; k < nk; ++k)
Clil[j1+=A[i][k1*B[k]1[j];
}
}

int scal_C = 0;

for (k = 0; k < nk; ++k)
scal_C+=A[i][kI*B[k][j];

C[il[jl=scal_C;

(b) After scalarization.

c[il[j]1 = 0;
for (k = 0; k < nk; ++k)
Clil[j1+=A[i][k]*B[k]1[j];

(a) Naive Kernel body.

Figure 4.22: Simple matrix multiplication example to illustrate the impact of scalarization.

Section 7.5.2, Page 191, shows how this simple case exhibits speedup ranging from 1.96
up to 5.75. In this 