
�>���G �A�/�, �T���b�i�2�H�@�y�y�N�8�3�y�j�j

�?�i�i�T�b�,�f�f�T���b�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�T���b�i�2�H�@�y�y�N�8�3�y�j�j

�a�m�#�K�B�i�i�2�/ �Q�M �R�R �J���` �k�y�R�9

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�Q�m�`�+�2�@�i�Q�@�a�Q�m�`�+�2 ���m�i�Q�K���i�B�+ �S�`�Q�;�`���K �h�`���M�b�7�Q�`�K���i�B�Q�M�b
�7�Q�` �:�S�l�@�H�B�F�2 �>���`�/�r���`�2 ���+�+�2�H�2�`���i�Q�`�b

�J�2�?�/�B ���K�B�M�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J�2�?�/�B ���K�B�M�B�X �a�Q�m�`�+�2�@�i�Q�@�a�Q�m�`�+�2 ���m�i�Q�K���i�B�+ �S�`�Q�;�`���K �h�`���M�b�7�Q�`�K���i�B�Q�M�b �7�Q�` �:�S�l�@�H�B�F�2 �>���`�/�r���`�2 ���+�@
�+�2�H�2�`���i�Q�`�b�X �P�i�?�2�` �(�+�b�X�P�>�)�X �1�+�Q�H�2 �L���i�B�Q�M���H�2 �a�m�T�û�`�B�2�m�`�2 �/�2�b �J�B�M�2�b �/�2 �S���`�B�b�- �k�y�R�k�X �1�M�;�H�B�b�?�X ���L�L�h �,
�k�y�R�k�1�L�J�S�y�R�y�8���X ���T���b�i�2�H�@�y�y�N�8�3�y�j�j��

!

"

#

$

!

!"#$!$%$&'(#&#)!(")(#&($&$()*"+,+-!(#

ƒcole doctorale n O432 :
Sciences des MŽtiers de lÕIngŽnieur

Doctorat ParisTech

T H é S E

pour obtenir le grade de docteur dŽlivrŽ par

lÕƒcole nationale supŽrieure des mines de Paris

SpŽcialitŽ Ç Informatique temps-rŽel, robotique et automatique È

prŽsentŽe et soutenue publiquement par

Mehdi Amini
le 13 dŽcembre 2012

Transformations de programme automatiques et source-ˆ-source
pour accŽlŽrateurs matŽriels de type GPU

! ! !

Source-to-Source Automatic Program Transformations for
GPU-like Hardware Accelerators

Directeur de th•se : Fran•ois Irigoin
Co-encadrement de la th•se : Fabien Coelho
Co-encadrement de la th•se : Ronan Keryell

Jury
M. CŽdric Bastoul , Ma”tre de ConfŽrence, Alchemy/LRI/INRIA, UniversitŽ Paris-Sud Examinateur
M. Philippe Clauss , Professeur, ICPS/LSIIT, UniversitŽ de Strasbourg Examinateur
M. Fabien Coelho , Ma”tre-Assistant, CRI, MINES ParisTech Co-encadrant de la th•se
M. Albert Cohen , Directeur de Recherche, PARKAS, INRIA Rocquencourt Rapporteur
M. Alain Darte , Directeur de Recherche, LIP, CNRS Rapporteur
M. Fran•ois Irigoin , Directeur de Recherche, CRI, MINES ParisTech Directeur de th•se
M. Ronan Keryell , Directeur ScientiÞque, SILKAN Co-encadrant de la th•se
M. Sanjay Rajopadhye , Professeur, CS/ECE Departments, Colorado State University Rapporteur

MINES ParisTech
Centre de Recherche en Informatique

35 rue Saint-HonorŽ, 77305 Fontainebleau, France

To my beloved father.

Remerciements

Avant toute chose, relever ce dŽÞ personnel nÕaurait pas ŽtŽpossible sans le soutien

indŽfectible de ma tendre Žpouse, ces trois derni•res annŽes nÕont pas ŽtŽ les plus reposantes

et jÕadmire sa patience et sa tolŽrance vis ˆ vis de son mari travaillant ˆ 500km de notre

domicile et sÕabsentant rŽguli•rement pour toutes sortes de confŽrences ou formations.

Mes pensŽes vont Žvidement ˆ mon Þls Tim, mon moteur principal aujourdÕhui, mais

aussi celui qui mÕŽpuise ˆ longueur de journŽes (du moins le peu de celles que jÕai passŽ

avec lui ˆ la maison ces derni•res annŽes). A croire quÕil puise son Žnergie qui semble inÞnie

dans la notre.

JÕai la chance dÕavoir des parents formidables ˆ qui jÕai posŽ beaucoup de di!cultŽs

quÕils ont su surmonter pour me pousser ˆ faire des Žtudes. Peut-•tre que Tim qui me le

rend bien me fait mesurer lÕampleur de la t‰che. Je les en remercie milles fois.

Une aventure commence souvent avec une rencontre, et pour satisfaire ma nature nos-

talgique, je vais la raconter. CÕŽtait le 4 juin 2009, lorsquemon Žtoile mÕa conduit ˆ

assister ˆ la JournŽe jeunes chercheurs sur les Multiprocesseurs et Multicoeurs ˆ Paris.

Quelle chance dÕ•tre encore lˆ ˆ la Þn de la journŽe lorsquÕuncurieux personnage (non, je

ne me risquerai pas ˆ une description̂ la Zola) sÕest levŽ pour annoncer quÕil cherchait

des candidats passionnŽs ˆ un projet un peu fou (ou des candidats un peu fous pour un

projet passionnant, je ne sais plus tr•s bien...). Il nÕen fallait pas plus pour piquer ma

curiositŽ et, apr•s une description plus dŽtaillŽe, jÕŽtais fascinŽ par la folie apparente du

projet et jÕoubliais •tre le fou potentiel. Je repartais vers mon TGV, une carte de visite

dans la poche. Peu apr•s minuit le soir m•me, sit™t rentrŽ chez moi, jÕenvoyais mon CV ˆ

Ronan Keryell. Le doigt dans lÕengrenage...

Trois jours plus tard, jÕŽtais invitŽ parFran•ois Irigoin ˆ lui rendre visite ˆ

Fontainebleau. CÕest Þnalement le 1er juillet que je me suis rendu dans les locaux du

Centre de Recherche en Informatique (CRI) pour y rencontrer celui qui allait me proposer

de diriger cette th•se. Neuf jours plus tard, Ronan me proposait de rŽaliser ces travaux

dans une petite entreprise. ƒtait-ce le gožt du risque ? Ou peut-•tre le nom tellement cool

de HPC Project ? Le challenge de la th•se nÕŽtait pas assez di!cile ˆ releveren lui m•me

quÕil fallait y associer une entreprise ? A moins que Ronan nÕait simplement su employer

les arguments qui font mouche pour un esprit pur:Nous sommes pr•ts ˆ te prendre en

th•se CIFRE entre HPC Project et CRI, histoire de combiner lefun de la th•se avec une

rŽmunŽration raisonnable et de voir la vie ˆ 2 endroits di!Žrents.

Le 6 dŽcembre jÕŽtais encore ingŽnieur ˆ lÕUniversitŽ de Strasbourg, le 7 dŽcembre 2009

lÕaventure commen•ait vraiment. Le jour m•me je mÕenvolaispour uneŽcole thŽmatique sur

le calcul hautes performances sur accŽlŽrateurs matŽrielset je rencontrais deux personnes

dont jÕignorais lÕimportance de nos futurs interactions:BŽatrice Creusillet et StŽphanie

Even. Je ne pouvais r•ver meilleur dŽpart.

A ces rencontres sÕen sont succŽdŽes de nombreuses autres, et il mÕest impossible de

toutes les mentionner ici. Certaines ont ŽtŽ plus marquantes, ou ont eu plus dÕimpact

dans le cadre de mes travaux, que ce soit vis-ˆ-vis de lÕorientation de mes recherches ou

simplement de mes conditions de "travail".

Bien sžr Ronan et Fran•ois, pour mÕavoir supportŽ, ont la plus grande part de mŽrites,

ils ont ŽtŽ en quelque sorte le Yin et le Yang, le Chaud et le Froid, lÕAlpha et lÕOmega,

enÞn bref les ŽlŽments essentiels au maintient dÕun Žquilibre pendant ces trois annŽes. JÕai

le privil•ge de continuer ˆ travailler avec Ronan aujourdÕhui. Fabien Coelho, qui a rejoint

lÕaventure en cours de route (et il nÕavait pas lÕexcuse de lÕignorance, il avait dŽjˆ eu ˆ me

supporter sur pipsdev@), a su apporter une couleur di" Žrente et complŽter e! cacement

la direction de mes travaux. JÕai beaucoup progressŽ ˆ leur contact, techniquement et

humainement. Leurs relectures attentives et leur nombreuxcommentaires ont contribuŽ

signiÞcativement ˆ lÕamŽlioration de ce manuscrit, et jÕatteste que tout ce qui peut em-

p•cher ce dernier de rŽpondre ˆ lÕexigence du lecteur reste de mon seul fait, que ce soit

de ma paresse ou de mon incompŽtence (je me plais ˆ croire au premier et ˆ douter du

second).

Au rang de mes coll•gues, jÕai eu la chance de c™toyer des genstr•s brillant. Il est tr•s

facile dÕ•tre modeste quand on Žvolue dans un pareil environnement.

Je reste admiratif devant la qualitŽ du travail de BŽatrice qui continue ˆ mÕimpressionner

chaque semaine par son e! cacitŽ. Je dŽconseille la lecture de son manuscrit de th•se ˆtout

doctorant: la qualitŽ (et la taille) de lÕouvrage pose une base ˆ dŽcourager de commencer sa

propre rŽdaction. Si elle nÕŽtait pas si gentille, dŽvouŽe,et tellement agrŽable, je pourrais

peut-•tre songer ˆ lui trouver un dŽfaut. Au m•me titre que Ronan, je suis chanceux

de pouvoir continuer ˆ la compter parmi mes coll•gues pour lasuite de nos travaux sur

Par4All.

Je suis heureux dÕavoir pu travailler avec Sergepapillon Guelton pour la teneur nos

discussions techniques, pour safra”cheur, et pour son enthousiasme communicatif. Nos

di" Žrences ont ŽtŽ sources dÕenrichissement, que jÕesp•re mutuel.

Le choix de mÕengager avec Silkan (HPC-Project ˆ cette Žpoque) comportait des risques,

mais ce fut payant. En dehors de lÕexpŽrience intŽressante qui a consister ˆ trouver

lÕŽquilibre entre la recherche et les problŽmatiquesterre-ˆ-terre dÕune jeune entreprise,

jÕai c™toyŽ (et continue ˆ travailler avec) des gens brillants. Parmi eux Pierre Villalon,

Fran•ois-Xavier Pasquier, Thierry Porcher, Janice OnanianMcMahon, Onil Nazra Per-

sada Goubier, ou Yannick Langlois ; mais Žgalement notre PDG-CEO Pierre Fiorini que

je remercie pour la conÞance quÕil mÕaccorde.

Le CRI est un laboratoire accueillant, situŽ dans un cadre magniÞque pour ne rien

g‰cher. JÕai apprŽciŽ dÕy rencontrer et dÕŽchanger sur la compilation avec Pierre Jouvelot,

Karim Barkati, Antoniu Pop, Amira Mensi, Rachid Habel, ou encore Claude Tadonki ;

et dÕŽchanger sur divers autres sujets avec Georges-AndrŽ Silber, Claire Medrala, Laurent

Daverio, ou Jacqueline Altimira.

JÕai dŽcouvert la communautŽ fran•aise de compilation, gr‰ce aux immanquable

journŽes compilation que je soup•onne de devoir beaucoup ˆ lÕimplication de Laure

Gonnord parmi dÕautres. JÕy ai fait beaucoup de rencontre, et passŽ dÕexcellent moment.

JÕesp•re que mon Žloignement gŽographique actuel me laissera des opportunitŽs dÕassister

et de partager nos travaux lors de quelques journŽes futures.

Je me dois de dire que je ne me serai pas lancŽ dans ce projet sans avoir vŽcu ˆ

c™tŽ lÕŽquipe Informatique et Calcul Parall•le ScientiÞque(ICPS) de Strasbourg et son

ambiance de travail inŽgalable. Les meilleurs enseignantsde mon cursus universitaire

en font (ou faisait) partis, parmi eux : Alain Ketterlin, Vincent Loechner, Eric Violard,

Catherine Mongenet, Arnaud Giersch, ou encore Benoit Meister.JÕai vraiment apprŽciŽ

lÕinformatique en suivant leur enseignement. JÕai une pensŽe particuli•re pour Philippe

Clauss avec qui jÕai dŽcouvert la programmation parall•le, et qui,ce 4 juin 2009 dans le

TGV qui nous ramenait de Paris, mÕa encouragŽ ˆ postuler sur cesujet de th•se.

Pour mÕavoir montrŽ une autre facette de la recherche, et mÕavoir encadrŽ (supportŽ ?)

pendant mon stage de Master ˆ lÕObservatoire Astronomique deStrasbourg, je remercie

chaleureusement Dominique Aubert.

Je suis tr•s honorŽ de ne compter dans mon jury que des gens quejÕadmire pour la

qualitŽ de leur travaux, et que jÕapprŽcie en dehors pour tous nos contacts passŽs et, je

lÕesp•re, futurs. je suis reconnaissant ˆ mes rapporteurs dÕavoir acceptŽ cette charge, je

mesure la quantitŽ de travail qui leur a ŽtŽ demandŽ, et jÕapprŽcie particuli•rement le

sŽrieux de leur lecture et de leurs commentaires.

Il me reste un petit mot pour Beno”t Pin qui ˆ partager notre bureau ˆ Fontainebleau,

et un autre petit mot pour relever que jÕai apprŽciŽ le grand nombre de formations de

qualitŽ proposŽes et surtout la gestion e!cace de RŽgine Molins de lÕƒcole des Mines et

dÕAlexandrine Jamin de ParisTech.

EnÞn, mes travaux des trois derni•res annŽes nÕauraient ŽtŽ possible sans le soutien Þ-

nancier de (ordre alphabŽtique des projets): lÕAssociation Nationale de la Recherche et de la

Technologie (ANRT) et le dispositif CIFRE, lÕAgence Nationalepour la Recherche (ANR)

et le projet MediaGPU, le P™le de CompŽtitivitŽ SYSTEM@TIC et le projet OpenGPU,

et bien entendu Silkan.

Abstract

Since the beginning of the 2000s, the raw performance of processors stopped its expo-

nential increase. The modern graphic processing units (GPUs)have been designed as array

of hundreds or thousands of compute units. The GPUsÕ compute capacity quickly leads

them to be diverted from their original target to be used as accelerators for general pur-

pose computation. However programming a GPU e!ciently to perform other computations

than 3D rendering remains challenging.

The current jungle in the hardware ecosystem is mirrored by the software world, with

more and more programming models, new languages, di" erent APIs, etc. But no one-Þts-

all solution has emerged.

This thesis proposes a compiler-based solution to partiallyanswer the three ÒPÓ prop-

erties: Performance, Portability, and Programmability. Thegoal is to transform auto-

matically a sequential program into an equivalent program accelerated with a GPU. A

prototype, Par4All, is implemented and validated with numerous experiences. The pro-

grammability and portability are enforced by deÞnition, and the performance may not be

as good as what can be obtained by an expert programmer, but still has been measured

excellent for a wide range of kernels and applications.

A survey of the GPU architectures and the trends in the languages and framework

design is presented. The data movement between the host and the accelerator is managed

without involving the developer. An algorithm is proposed tooptimize the communication

by sending data to the GPU as early as possible and keeping them on the GPU as long

as they are not required by the host. Loop transformations techniques for kernel code

generation are involved, and even well-known ones have to be adapted to match speciÞc

GPU constraints. They are combined in a coherent and ßexible way and dynamically

scheduled within the compilation process of an interprocedural compiler. Some preliminary

work is presented about the extension of the approach towardmultiple GPUs.

RŽsumŽ

Depuis le dŽbut des annŽes 2000, la performance brute des cÏurs des processeurs a

cessŽ son augmentation exponentielle. Les circuits graphiques (GPUs) modernes ont ŽtŽ

con•us comme des circuits composŽs dÕune vŽritable grille de plusieurs centaines voir mil-

liers dÕunitŽs de calcul. Leur capacitŽ de calcul les a amenŽs ˆ •tre rapidement dŽtournŽs

de leur fonction premi•re dÕa!chage pour •tre exploitŽs comme accŽlŽrateurs de calculs

gŽnŽralistes. Toutefois programmer un GPU e!cacement en dehors du rendu de sc•nes 3D

reste un dŽÞ.

La jungle qui r•gne dans lÕŽcosyst•me du matŽriel se reß•te dans le monde du logiciel,

avec de plus en plus de mod•les de programmation, langages, ou API, sans laisser Žmerger

de solution universelle.

Cette th•se propose une solution de compilation pour rŽpondre partiellement aux trois

ÒPÓ propriŽtŽs : Performance, PortabilitŽ, et ProgrammabilitŽ. Le but est de transformer

automatiquement un programme sŽquentiel en un programme Žquivalent accŽlŽrŽ ˆ lÕaide

dÕun GPU. Un prototype, Par4All, est implŽmentŽ et validŽ parde nombreuses expŽriences.

La programmabilitŽ et la portabilitŽ sont assurŽes par dŽÞnition, et si la performance nÕest

pas toujours au niveau de ce quÕobtiendrait un dŽveloppeur expert, elle reste excellente sur

une large gamme de noyaux et dÕapplications.

Une Žtude des architectures des GPUs et les tendances dans laconception des lan-

gages et cadres de programmation est prŽsentŽe. Le placement des donnŽes entre lÕh™te et

lÕaccŽlŽrateur est rŽalisŽ sans impliquer le dŽveloppeur.Un algorithme dÕoptimisation des

communications est proposŽ pour envoyer les donnŽes sur le GPU d•s que possible et les y

conserver aussi longtemps quÕelle ne sont pas requises sur lÕh™te. Des techniques de trans-

formations de boucles pour la gŽnŽration de code noyau sont utilisŽes, et m•me certaines

connues et ŽprouvŽes doivent •tre adaptŽes aux contraintesposŽes par les GPUs. Elles sont

assemblŽes de mani•re cohŽrente, et ordonnancŽes dans le ßot dÕun compilateur interprocŽ-

dural. Des travaux prŽliminaires sont prŽsentŽs au sujet delÕextension de lÕapproche pour

cibler de multiples GPUs.

Table of Contents

Remerciements . iii

Abstract . vii

RŽsumŽ . ix

1 Introduction 1

1.1 The Prophecy . 2

1.2 Motivation . 3

1.3 Outline . 7

2 General-Purpose Processing on GPU : History and Context 11

2.1 History . 12

2.2 Languages, Frameworks, and Programming Models. 14

2.2.1 Open Graphics Library (OpenGL). 15

2.2.2 Shaders . 15

2.2.3 Brook and BrookGPU . 17

2.2.4 Nvidia Compute UniÞed Device Architecture (CUDA) 18

2.2.5 AMD Accelerated Parallel Processing,FireStream 20

2.2.6 Open Computing Language (OpenCL). 20

2.2.7 Microsoft DirectCompute . 21

2.2.8 C++ Accelerated Massive Parallelism (AMP) 21

2.2.9 ! C and the MPPA Accelerator . 23

2.2.10 Directive-Based Language and Frameworks. 23

2.2.11 Automatic Parallelization for GPGPU 30

2.3 Focus on OpenCL. 30

2.3.1 Introduction . 31

2.3.2 OpenCL Architecture. 31

2.3.2.1 Platform Model. 32

2.3.2.2 Execution Model . 32

2.3.2.3 Memory Model . 35

2.3.2.4 Programming Model. 37

2.3.3 OpenCL Language. 38

2.3.3.1 Conclusion . 39

xii Table of Contents

2.4 Target Architectures . 39

2.4.1 From Specialized Hardware to a Massively Parallel Device 40

2.4.2 Building a GPU . 40

2.4.3 Hardware Atomic Operations . 42

2.4.4 AMD, from R300 to Graphics Core Next. 43

2.4.5 Nvidia Computing UniÞed Device Architecture, from G80to Kepler 48

2.4.6 Impact on Code Generation. 52

2.4.7 Summary . 54

2.5 Conclusion. 55

3 Data Mapping, Communications and Consistency 61

3.1 Case Study . 63

3.2 Array Region Analysis . 64

3.3 Basic Transformation Process. 68

3.4 Region ReÞnement Scheme. 70

3.4.1 Converting Convex Array Regions into Data Transfers 73

3.4.2 Managing Variable Substitutions 74

3.5 Limits . 76

3.6 Communication Optimization Algorithm 77

3.6.1 A New Analysis: Kernel Data Mapping. 78

3.6.2 DeÞnitions. 79

3.6.3 Intraprocedural Phase . 80

3.6.4 Interprocedural Extension . 81

3.6.5 Runtime Library . 82

3.7 Sequential Promotion. 84

3.7.1 Experimental Results. 86

3.8 Related Work . 87

3.8.1 Redundant Load-Store Elimination 88

3.8.1.1 Interprocedural Propagation. 89

3.8.1.2 Combining Load and Store Elimination. 89

3.9 Optimizing a Tiled Loop Nest . 90

3.10 Conclusion. 93

4 Transformations for GPGPU 95

4.1 Introduction . 96

Table of Contents xiii

4.2 Loop Nest Mapping on GPU. 98

4.3 Parallelism Detection. 101

4.3.1 Allen and Kennedy . 102

4.3.2 Coarse Grained Parallelization. 103

4.3.3 Impact on Code Generation. 104

4.4 Reduction Parallelization. 105

4.4.1 Detection . 105

4.4.2 Reduction Parallelization for GPU 109

4.4.3 Parallel PreÞx Operations on GPUs. 111

4.5 Induction Variable Substitution . 111

4.6 Loop Fusion . 112

4.6.1 Legality . 113

4.6.2 Di" erent Goals . 115

4.6.3 Loop Fusion for GPGPU. 116

4.6.4 Loop Fusion in PIPS . 118

4.6.5 Loop Fusion Using Array Regions. 124

4.6.6 Further Special Considerations. 126

4.7 Scalarization. 127

4.7.1 Scalarization inside Kernel. 128

4.7.2 Scalarization after Loop Fusion . 128

4.7.3 Perfect Nesting of Loops. 130

4.7.4 Conclusion. 131

4.8 Loop Unrolling . 132

4.9 Array Linearization . 133

4.10 Toward a Compilation Scheme. 134

5 Heterogeneous Compiler Design and Automation 137

5.1 Par4All Project . 138

5.2 Source-to-Source Transformation System. 140

5.3 Programmable Pass Managers. 141

5.3.1 PyPS. 142

5.3.1.1 BeneÞting from Python:on the shoulders of giants. . . . 142

5.3.1.2 Program Abstractions . 143

5.3.1.3 Control Structures . 143

5.3.1.4 Builder . 146

xiv Table of Contents

5.3.1.5 Heterogeneous Compiler Developements. 146

5.3.2 Related Work . 149

5.3.3 Conclusion. 150

5.4 Library Handling . 151

5.4.1 Stubs Broker . 152

5.4.2 Handling Multiple Implementations of an API: Dealing with Exter-

nal Libraries . 153

5.5 Tool Combinations . 155

5.6 ProÞtability Criteria . 156

5.6.1 Static Approach. 157

5.6.2 Runtime Approach . 157

5.6.3 Conclusion. 158

5.7 Version Selection at Runtime . 158

5.8 Launch ConÞguration Heuristic . 159

5.8.1 Tuning the Work-Group Size. 159

5.8.2 Tuning the Block Dimensions . 162

5.9 Conclusion. 163

6 Management of Multi-GPUs 165

6.1 Introduction . 166

6.2 Task Parallelism. 166

6.2.1 The StarPU Runtime. 166

6.2.2 Task Extraction in PIPS . 167

6.2.3 Code Generation for StarPU. 168

6.3 Data Parallelism Using Loop Nest Tiling 170

6.3.1 Performance. 171

6.4 Related Work . 173

6.5 Conclusion. 175

7 Experiments 177

7.1 Hardware Platforms Used . 178

7.2 Benchmarks, Kernels, and Applications Used for Experiments 179

7.3 Parallelization Algorithm . 180

7.4 Launch ConÞguration. 180

7.5 Scalarization. 181

Table of Contents xv

7.5.1 Scalarization inside Kernel. 191

7.5.2 Full Array Contraction . 191

7.5.3 Perfect Nesting of Loops. 191

7.6 Loop Unrolling . 195

7.7 Array Linearization . 195

7.8 Communication Optimization . 197

7.8.1 Metric . 197

7.8.2 Results. 199

7.8.3 Comparison with Respect to a Fully Dynamic Approach 199

7.8.4 Sequential Promotion. 201

7.9 Overall Results . 202

7.10 Multiple GPUs . 205

7.10.1 Task Parallelism . 205

7.10.2 Data Parallelism . 206

7.11 Conclusions . 208

8 Conclusion 211

Personal Bibliography 217

Bibliography 219

Acronyms 253

RŽsumŽ en fran•ais 257

1 Introduct ion . 258

2 Calcul gŽnŽraliste sur processeurs graphiques : histoire et contexte 265

3 Placement des donnŽes, communications, et cohŽrence. 280

4 Transformations pour GPGPU. 288

5 Conception de compilateurs hŽtŽrog•nes et automatisation. 299

6 Gest ion de mult iples accŽlŽrateurs . 310

7 ExpŽriences . 313

8 Conclusion. 314

List of Figures

1.1 von Neumann architecture. 3

1.2 More than three decades of prosperity, the misquoted MooreÕs law

(source[Sutter 2005], updated 2009, reprinted here with the kind permission

of the author). 4

1.3 The free lunch is over. Now welcome to the hardware jungle (source[Sut-

ter 2011], reprinted here with the kind permission of the author). 5

1.4 The threeP properties.. 6

2.1 Performance evolution for single-precision ßoating point computation, for

both Nvidia GPUs and Intel CPUs between 2003 and 2012, computed from

vendorsÕ datasheets.. 14

2.2 Example of a saxpy OpenGL 4.4 compute shader (adapted from [Kil-

gard 2012]). 16

2.3 Example of a trivial pass-throughGLSL geometry shader, which emits a

vertex directly for each input vertex (sourcewikipedia [Wikipedia 2012b]). 17

2.4 Example of a simplesaxpy using BrookGPU (taken from [Buck et al. 2004]). 18

2.5 Example of a Cg/HLSL shader for DirectCompute (source Mi-

crosoft [Deitz 2012]). 22

2.6 Rewriting a C++ computation using C++ AMP. The example shows the

use of a lambda function and aparallel_for_each construct to express the

parallelism (source Microsoft [Microsoft Corporation 2012b]). 24

2.7 A sample matrix multiplication code with hiCUDA directives (source [Han

& Abdelrahman 2009]). 26

2.8 Simple example for HMPP directive-based code writing (source

wikipedia [Wikipedia 2012c]). 27

2.9 Example of a PGI Accelerator code using data movement optimization

(sourcePGI Insider [Wolfe 2011]). 28

2.10 A simple JCUDA example. Note theIN, OUT, and INOUTattributes in

the kernel declaration that drive automatic memory transfers (source [Yan

et al. 2009]). 29

xviii List of Figures

2.11 SimpliÞed view of the OpenCL abstraction model. A host isconnected to

multiple devices (GPUs, FPGAs, DPSs, . . .). OpenCL platforms are

vendorsÕ implementations that target some types of devices. A context is

created for a given platform and a set of devices. Memory objects and events

are created context-wise. Devices are then controlled in a given context using

command queues. There can be multiple command queues per device, and

a device can be associated with queues from multiple contextsand platforms. 33

2.12 UML representation of the OpenCL abstraction model (see Figure 2.11)

taken from the Standard [Khronos OpenCL Working Group 2011]. 34

2.13 A mapping example of a two-dimensional loop nest iteration set into an

OpenCL index range. The mapping is the simplest possible; one work-item

executes one iteration of the original loop nest. The work-group size used

as an illustration on Þgurec is a two-dimensional square with an edge of

Þve. Values forget_global_id() and get_local_id() OpenCL primitives

are exhibited for a particular work-group. 35

2.14 Visual example of the OpenCL memory model. Two possible mappings are

illustrated: data caches are optional, and private, local,and constant mem-

ories are not necessarily dedicated. On the right the simplest mapping, for

instance a CPU, merges all memory spaces onto the same piece of hardware. 37

2.15 High-level simpliÞed GPGPU-oriented view of generic GPU architecture. . 41

2.16 Instruction Level Parallelism (ILP) versus Thread LevelParallelism (TPL),

two di" erent ways of extracting parallelism in GPUs. 42

2.17 AMD R600 Compute Unit (CU) is built on top of 5-way VLIW instructions

set. Four Processing Elements (PE) and a Special Function Unit (SFU) are

grouped together in a Processing Unit (PU) to process instructions. These

PUs are organized in a 16-wide SIMD array.. 43

2.18 Table summarizing the ALU occupation and the VLIW packing ratio for

some computing kernels, taken from [Zhang et al. 2011b] (c! 2011 IEEE). . 46

2.19 The 2012 AMD architecture Graphics Core Next. No longer VLIW, the

four separate SIMD pipelines are independent. A new integer scalar unit is

introduced. The scheduler feeds each SIMD every four cycles (one per cycle)

with a 64-wide virtual SIMD instruction. 46

2.20 Evolution of Processing Element (PE) grouping across AMD architectures. 48

List of Figures xix

2.21 The GeForce 8800 architecture (G80) introduced uniÞed shaders where

shader programmable processors can be used to replace multiple stages of

the classic graphic pipeline. There are still specialized units for some graph-

ics operations. (Source: Nvidia). 49

2.22 GT200 compute unit (CU) on the left, FermiÕs on the right. Processing

Elements (PE) upgrade from eight to sixteen per pipeline, but the logical

SIMD width is unchanged, threads are scheduled by groups of thirty-two

(source Nvidia). 50

2.23 Inßuence of runtime parameters on performance for di" erent kernels and

di" erent architectures, Nvidia Fermi and AMD Evergreen. On the left the

launch conÞguration for di" erent kernels shows that there is no universal

work-group size. On the right a matrix multiply kernel without local data

store optimization is used with one to four elements processed in each thread.

The upper part shows the impact on performance for both architectures

while the lower part shows the occupancy of the AMD GPU and the VLIW

packing ratio. Taken from [Zhang et al. 2011b] (c! 2011 IEEE). 53

2.24 Performance of two di" erent versions of matrix multiply kernel, ahorizon-

tal scheme and a vertical scheme, without local memory usage for agiven

architecture (Fermi), depending on the input size and the activation or not

of the L1 cache. Taken from [Zhang et al. 2011b] (c! 2011 IEEE). 54

2.25 Google trends for the word GPU during last decade.. 55

2.26 Source-to-source compilation scheme forGPU (source [Guelton 2011a]). . . 57

2.27 Overview of the global compilation scheme.. 58

3.1 Stars-PM is aN -body cosmological simulation. Here a satellite triggers a

bar and spiral arms in a galactic disc.. 63

3.2 SimpliÞed global scheme commonly used in numerical simulations. 64

3.3 Outline of one time step in the Stars-PM cosmological simulation code. . . 65

3.4 Array regions on a code with a function call.. 66

3.5 Array regions on a code with awhile loop. 66

3.6 Array regions on a code with aswitch case. 67

3.7 Basic process for mapping data to the accelerator (source [Yan et al. 2009],

c! 2011 Springer-Verlag)g. 69

3.8 Sequential source code for functiondiscretization , the Þrst step of each

Stars-PM simulation main iteration. 70

xx List of Figures

3.9 Code for functiondiscretization after automatic GPU code generation. . 71

3.10 Isolation of the irregularwhile loop from Figure3.5 using array region anal-

ysis. 72

3.11 Code with aswitch case from Figure3.6 after isolation. 75

3.12 Interprocedural isolation of the outermost loop of a Finite Impulse Response.75

3.13 Isolated version of theKERNELfunction of the Finite Impulse Response (see

Figure 3.4). 76

3.14 Bandwidth for memory transfers over the PCI-Express 2.0 busas a function

of block size. Results are shown for transfers from the host tothe GPU (H-

TO-D) and in the opposite direction (D-TO-H), each for pinned or standard

allocated memory.. 77

3.15 Illustration of set construction using the intraprocedural analysis on the

function iteration . The di" erent calls to step functions use and produce

data on the GPU via kernel calls. Sometimes in the main loop, array a is

read to display or to checkpoint. The interprocedural translation exploits

at call site the summary computed on functioniteration . A Þx point is

sought on the loop. 83

3.16 SimpliÞed code for functionsdiscretization and main after interprocedural

communication optimization. 84

3.17 gramschmidt example taken from Polybench suite. The Þrst part of the loop

body is sequential while the following are parallel loop nests. The sequential

promotion on the GPU avoids costly memory transfers.. 85

3.18 Illustration of the redundant load-store eliminationalgorithm. 90

3.19 Code with communication for FIR function presented in Figure 3.4. 91

4.1 Example of a short Scilab program with the generated C Þle.. 97

4.2 Example from Baghdadi et al. [Baghdadiet al. 2010] that illustrates how to

tile a loop nest to map the GPU execution.. 98

4.3 Illustration of the successive steps performed to map a loop nest on the GPU.100

4.4 The iteration set is over-approximated with a rectangularhull; a guard is

added to clamp it. 100

4.5 Example of Allen and Kennedy algorithm as implemented in PIPS: loops

are distributed and parallelism is expressed using OpenMP pragmas. . . . 102

List of Figures xxi

4.6 The impact of the two parallelization schemes on a exampleof code per-

forming a correlation. Allen and Kennedy algorithm results to three di" er-

ent parallel loop nests expressing the maximum parallelism, while the coarse

grained algorithm detects only one parallel loop leading toless synchroniza-

tion but also less exposed parallelism.. 105

4.7 Example of reduction detection and interprocedural propagation in PIPS. . 108

4.8 An example of reduction parallelization of an histogramusing hardware

atomic operations. 110

4.9 Example of induction variable substitution to enable loop nest parallelization.112

4.10 Example of loop fusion.. 113

4.11 Example of two parallel loops that can be legally fused, but the resulting

loop nest would be sequential.. 115

4.12 Example of a loop fusion scheme to extend the iteration set of a loop nest. 118

4.13 Example of manual kernel fusion using Thrust library and aSAXPY ex-

ample. The Þrst version is expressed using native Thrust operators and

requires temporary arrays, the second version fuses the three steps in one

user-deÞned kernel (source [Hoberock & Bell 2012]). 119

4.14 On the left, a sequence of statements, in the middle the associated Depen-

dence Graph (DG), and on the right the corresponding ReducedDependence

Graph (RDG) obtained after clustering the vertices that belong to the same

loop. In solid red the ßow dependences, in dashed blue the anti-dependence,

and in dotted green the special dependences that model the declaration. The

DG view showed here is simpliÞed for the sake of clarity, for instance output

dependences and the loop carried dependences are omitted.. 120

4.15 The algorithm begins with a pruning phase. For each directedge between

two vertices it ensures that there is no other path between them. 122

4.16 Heuristic algorithm FUSE_RDGto traverse the RDG and apply fusion. The

graph is modiÞed as side e" ect. 124

4.17 Merging two vertices in the graph while enforcing pruningas introduced in

Figure 4.15. 125

4.18 The resulting code after applying the loop-fusion algorithm on the code

presented in Figure4.14a. 125

4.19 Sample code showing that inner loops have to be fused Þrstin order to be

able to fuse the outer loops without breaking the perfect nesting. 127

xxii List of Figures

4.20 Only perfectly nested loops are labeled parallel to avoid GPU unfriendly

loop fusion. 127

4.21 Processing of example in Figure4.1. A Scilab script compiled to C code

o" ers good opportunities for loop fusion and array scalarization. 129

4.22 Simple matrix multiplication example to illustrate the impact of scalarization.129

4.23 Array scalarization can break the perfect nesting of loop nests, thus limiting

potential parallelism when mapping on the GPU. 131

4.24 Example of loop unrolling with a factor four.. 133

4.25 Simple matrix multiplication example to illustrate array linearization interest.134

5.1 Source-to-source cooperation with external tools.. 141

5.2 PyPS class hierarchy (source [Guelton et al. 2011a (perso), Guelton

et al. 2011b (perso)]). 144

5.3 Conditionals in PyPS. 144

5.4 For loop is a control structure commonly involved in PyPS. 144

5.5 Using exceptions to adapt the compilation process.. 145

5.6 Searching Þx point.. 145

5.7 Terapix compilation scheme.. 147

5.8 SAC compilation scheme extract. 147

5.9 OpenMP compilation scheme.. 148

5.10 The brokers infrastructure and compilation ßow in Par4All. 154

5.11 The original source code for thepotential step that involves two calls to

FFTW library. 155

5.12 FFTW library requires that a plan is initialized. Here in the original source

code, two plans are initialized for thepotential code presented in Figure5.11.155

5.13 Computing the block size that maximizes the occupancy for a given kernel

and a given GPU.. 161

5.14 The main loop nest insyrk benchmark from the Polybench suite and the

resulting kernel. 163

6.1 Task transformation process. 3mmexample from the Polybench suite auto-

matically transformed with tasks. 168

List of Figures xxiii

6.2 Code generated automatically with pragmas to drive the StarPU runtime.

The tasks have been declared with attributes in order to drive StarPU,

specifying the suitable target platform for each implementation. Task pa-

rameters are declared with aconst qualiÞer when used as read-only, and

with an __attribute__((output)) when used as write-only.. 169

6.3 Execution timeline when using parallel tasks on one GPU (upper part) and

on two GPUs (lower part) for the 3mmcode presented in Figure6.2. 170

6.4 Tiling transformation process illustrated on a simple vector scaling multi-

plication example.. 172

7.1 Kernel execution times in ms (best over twenty runs) and speedups between

the Coarse Grained and the Allen and Kennedy parallelization algorithms

using CUDA for di" erent Nvidia GPUs. The example used here is the

correlation loop nest shown in Figure4.6 with m = 3000. 180

7.2 Impact of work-group size on GT200 and Fermi architectures, speedup nor-

malized with respect to a size of 512 work-items per work-group. The CUDA

API is used in this experiment. 182

7.3 Impact of block dimensionality on performance for di" erent block sizess

expressed inµs for G80 architecture. The reference kernel here is the main

loop nest fromsyrk (Polybench suite) shown in Figure5.14page163. . . 183

7.4 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for GT200 architecture. The reference kernel here is the main

loop nest fromsyrk (Polybench suite) shown in Figure5.14page163. . . 184

7.5 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for Fermi architecture. The reference kernel here is the main

loop nest fromsyrk (Polybench suite) shown in Figure5.14page163. . . 185

7.6 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for Kepler architecture. The reference kernel here is the main

loop nest fromsyrk (Polybench suite) shown in Figure5.14page163. . . 186

7.7 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for G80 architecture. The reference kernel is thematmul ex-

ample shown in Figure4.22page129. 187

7.8 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for GT200 architecture. The reference kernel is thematmul

example shown in Figure4.22page129. 188

xxiv List of Figures

7.9 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for Fermi architecture. The reference kernel is thematmul

example shown in Figure4.22page129. 189

7.10 Impact of block dimensionality on performance for di" erent block sizes ex-

pressed inµs for Kepler architecture. The reference kernel is thematmul

example shown in Figure4.22page129. 190

7.11 Execution times in ms (best over twenty runs) and speedups for scalar-

ization using CUDA and OpenCL for di" erent AMD and Nvidia GPUs.

The example is thematmul kernel shown in Figure4.22, page 129, with

ni = nj = nk = 2048. The execution times presented here are kernel execu-

tion times. The GTX 8800 results are given aside because they are one order

of magnitude slower. This architecture does not perform double precision

computations: doubles are rounded to ßoat before being processed. Hence,

no OpenCL results are available in double precision for this GPU. 192

7.12 Execution times inµs (best over twenty runs) and speedups for scalarization

using CUDA and OpenCL for di" erent AMD and Nvidia GPUs. The code is

the Scilab script after conversion to C and loop fusion shown in Figure 4.21b,

page129. The execution times shown are the kernel execution times. The

GTX 8800 results are given aside because they are one order of magnitude

slower. This architecture does not perform double precisioncomputations:

doubles are rounded to ßoat before being processed. Hence, no OpenCL

results are available in double precision for this GPU. 193

7.13 Execution times inµs (best over twenty runs) for the code shown in Fig-

ure 4.23c and Figure 4.23d. The value of M is 8192 and the values ofN are

on the x axis. The Nvidia board shows clearly a shift on the red curve for

N = 32 corresponding to the the warp size. 194

7.14 Execution time in µs (best over twenty runs) and speedup for di" erent

unrolling factor using CUDA and OpenCL for di" erent AMD and Nvidia

GPUs. The execution times are the kernel execution times. Single precision

ßoating point is used. The example is the code presented in Figure 4.22,

page129, used in the previous section. Loop unrolling is applied after scalar-

ization to obtain the code shown in Figure4.24, page133. The GTX 8800

results are given aside because they are one order of magnitude slower. . . 196

List of Figures xxv

7.15 Register counts for di" erent Nvidia architectures and di" erent unrolling fac-

tors. 197

7.16 Kernel execution times in ms (best over twenty runs) and speedups for the

array linearization transformation and di" erent Nvidia GPUs, and with and

without the scalarization illustrated in Figure 7.11. The example is the

matmul kernel shown in Figure4.22, page129, with ni = nj = nk = 2048. . 198

7.17 Execution times and speedups for versions of hotspot on GPU, with di " erent

iteration counts. 199

7.18 Illustration for the code used to measure performance of the static approach

on a Jacobi 2D scheme.. 201

7.19 Illustration for the code used to measure performance for the StarPU version

of the Jacobi 2D scheme.. 202

7.20 durbin example from Polybench that shows the interest of sequentialpro-

motion. 203

7.21 Execution times in ms and speedups for CUDA execution with communi-

cation optimization, using the classic scheme and the sequential promotion.

The result are based on the average over Þve runs fordurbin and gramschmidt

examples (see Figures7.20 and 3.17). 204

7.22 Speedup relative to naive sequential version for an OpenMP version on the

CPU, a version with basic PGI Accelerator and HMPP directives, a naive

CUDA version, and an optimized CUDA version, all automatically generated

from the naive sequential code. 205

7.23 bicg example from Polybench that shows the impact of the di" erent StarPU

schedulers on a sequential example. There is a direct dependence between

each of the kernels. Herenx = ny = 8000, thus the kernel3() is executed

8000 times. 207

7.24 Average execution time in ms over ten runs for3mmand bicg examples. Note

the impact of di" erent StarPU schedulers, the default greedy one and the

data-aware,dmda. 207

7.25 The vector scaling example presented in Figure6.4, modiÞed to increase the

computation time. 208

xxvi List of Figures

7.26 Output from Nvidia Visual ProÞler showing the communications in brown

and the kernel executions in blue. The mapping is done using one C2070

only. The copy-out do not overlap properly with copy-in, which is unex-

pected and limits the acceleration that can be achieved.. 209

7.27 Output from Nvidia Visual ProÞler showing the communications in brown

and the kernel executions in blue. The mapping is done using two C2070s.

The copy-out do not overlap properly with copy-in, which is unexpected and

limits the acceleration that can be achieved.. 210

8.1 Overview of the global compilation scheme.. 214

List of Tables

4.1 A comparison of some loop parallel algorithms (from datapublished

in [Boulet et al. 1998], nonexhaustive). 101

7.1 The di" erent hardware platforms available for the experiments. 179

7.2 Number of memory transfers after parallelization usingPar4All naive allo-

cation, using my automatic optimizing scheme, and as a developer would

have put it. 200

Chapter 1

Introduction

Contents
1.1 The Prophecy . 2

1.2 Motivation . 3

1.3 Outline . 7

2 Chapt er 1. I nt roduct ion

1.1 The Prophecy

Once upon a time, software programmers were merrily writing their code with the

simple von Neumann architecture in mind (see in Figure1.1). Performance was important

of course, but they were also protected by a godsend that let them launch a project

requiring computing power that was not yet available. Indeed, the time-to-market period

was for sure the scene of huge improvement in hardware performance. The prophecy that

every programmer was relying on is known as MooreÕs law. It is commonly quoted as

(see [Srinivasan 2012, Manegold 2002, Yang & Chang 2003])

the CPU clock speed will double every eighteen months.

This short and simple sentence has been immersed in the mind ofgenerations of pro-

grammers for decades. Everything was going along Þne until a bird of ill omen came and

stated

it cannot continue forever. The nature of exponentials is that you push

them out and eventually disaster happens.

He was not the Þrst one to challenge the prophecy, but this time it was Gordon Moore

himself [Dubash 2005], the author of the prophecy. It was terrible for the programmers,

and most of them locked themselves into denial. Little by little, the idea that the clock

speed does not continue to grow as before made its way. As matter of fact, the original

prophecy could probably ranked close second on the Top 10 list for misquoted statements,

right behind ÒLuke, I am your father.Ó Actually Moore originally stated [Moore 1965] that

the complexity for minimum component costs has increased ata rate of

roughly a factor of two per year. . . . Certainly over the short term this rate

can be expected to continue, if not to increase. Over the longer term, the rate

of increase is a bit more uncertain, although there is no reason to believe it

will not remain nearly constant for at least ten years. That means by 1975, the

number of components per integrated circuit for minimum cost will be 65,000.

I believe that such a large circuit can be built on a single wafer.

The forty years of easy life ended, as shown in Figure1.2, and programmers were about to

face a new challenge. In fact, hardware designers, facing the frequency wall, jumped right

into the parallel world. 1 The processor frequency was limited and they bypassed this issue

1. Parallelism has been already present in single-core processors since 1989 in the i860Very Long
Instruction Word (VLIW) processor, and later with the Matrix Math eXtension (MMX) instruction set
in Pentium. Since then, programmers were o!ered the possibilities to express Þne grained parallelism in

1.2. Motivation 3

Figure 1.1: von Neumann architecture

by aggregating multiple processors per chip, thus increasing the peak performance of their

chips. The multicore era had started.

Programmers discovered a new universe: the execution times of their programs were no

longer reduced when a new processor was released. In this new world they had to rethink

their algorithms to make use of multiple processors. As if itwere not complicated enough,

some hardware designers, who probably embraced the dark sideof the force, started to

introduce some more exotic pieces of hardware. These hardware platforms were highly

parallel but very tricky to target. The white knight programmer taking up the challenge

had not only to rethink algorithms, but also to manage some complex memory hierarchies

for which hardware designers left the management on behalf ofthe programmer.

Welcome to the heterogeneous computing universe!

1.2 Motivation

ÒYour free lunch will soon be over.Ó Herb Sutter started his 2005 article [Sutter 2005]

with this declaration to software developers. The limits of frequency scaling now forbid

automatic performance increase for sequential programs. The future is heterogeneous,

from the embedded world of smartphones to the largest supercomputers. Sutter wrote a

sequel to this article [Sutter 2011] in which he states quite accurately: ÒNow welcome to

the hardware jungle.Ó Figure1.3 illustrates this evolution.

the instruction set, with the AMD K6-2 with 3DNo w! vector instructions [Bush & Newman 1999] and
Streaming SIMD Extension (SSE) since Intel Pentium III [Intel 2008].

4 Chapt er 1. I nt roduct ion

Figure 1.2: More than three decades of prosperity, the misquoted MooreÕs law (source[Sut-
ter 2005], updated 2009, reprinted here with the kind permission of the author).

In the embedded system world, current high-end smartphonesare based on a multi-

core processor, and they include vector processing units and also aGraphics Processing

Unit (GPU) . For instance the A5 processor, used in the Apple iPhone 4S, isa dual-

core ARM Cortex-A9 MPCore Central Processing Unit (CPU) together with a dual-core

GPU [AnandTech 2011]. The same processor is used in the Apple iPad 2. The latest

Tegra 3 processor from Nvidia is a quad-core ARM Cortex-A9 MPCoreand a twelve-

core GPU [Nvidia 2012b]. In both case, each core includes a 128-bit wide NEON vector

unit [Wikipedia 2012a]. The next Tegra generation will supportGeneral-Purpose Process-

ing on Graphics Processing Units (GPGPU)computing usingOpen Computing Language

(OpenCL).

In the supercomputing world, parallelism has been present for decades now. Vector ma-

1.2. Motivation 5

Figure 1.3: The free lunch is over. Now welcome to the hardwarejungle (source[Sut-
ter 2011], reprinted here with the kind permission of the author).

chines have been replaced by clusters of multicore multiprocessor systems in the Top500

list [TOP500 Supercomputing Sites 2012]. The new trend is now adding hardware accelera-

tors to these systems, mostly usingGPUs, adding a new layer of complexity. The June 2011

Top500 list includes threeGPU-based systems in the top Þve, but there are also ÞveGPU-

based systems in the Green500 list [Feng & Cameron 2007] among the ten Þrst entries [The

Green500 2011]. The Nvidia Tesla K20 basedTitan supercomputer trusts currently the

last November 2012 list [TOP500 Supercomputing Sites 2012], and it is interesting to note

that Intel with its Xeon Phi coprocessor enters at the 7th rank.

One cannot Þnd a single-corePersonal Computer (PC) nowadays. Dual-core is the

standard at the entry level, quad-core in the mid-end, and itcurrently goes up to six-core

in the high end. Required by the gaming industry,GPUs shipped with PCs are more and

more powerful and are used in a growing set of applications beyond their primary usage:

3D rendering and graphic display.

The concern that arises now, as these heterogeneous platformsare widely available,

can be summarized as the threeP properties [Adve 1993, Benkneret al. 2011, Adve 2011]

shown in Figure1.4:

¥ Performance: the program makes use of the peak capability of the hardware.

¥ Portability: the code written by the programmer runs on a large range of platforms.

¥ Programmability: the programmer write his algorithms quickly.

A fourth P can now be added: Power. Not only because our cell phones havesmall

batteries, but also because in 2007 each of the ten biggest supercomputers consumed as

much energy as a city of forty thousand people [Feng & Cameron 2007]. People are looking

for software that is power aware [Hsu & Feng 2005], using trade-o"s between performance

6 Chapt er 1. I nt roduct ion

!"#$"%&&%'()(*+

,!

!-".#"&%/0-

!#"*%'()(*+

Figure 1.4: The threeP properties.

and power consumption.

Solutions to address these properties have been sought for along time, since clusters

of computers entered the market. The programming complexityis increased when very

specialized hardware accelerators are added in these machines. Many types of resources

must be connected, and it becomes too much of a burden for the developer.

Performance has improved with compilers, allowing new languages to be competitive

with the king C language, which is still the reference when close control of the hardware

is necessary.

On the portability side, it is hardly possible to maintain a huge C code making use of

a wide range of heterogeneous devices. A usual practice is then to restrict to a common

subset of hardware features, limiting the practical performance one can expect with respect

to the theoretical peak performance depending on the application.

Finally, the programmability has been largely addressed byApplication Programming

Interface (API) providers and language designers. For instance, UPC [UPC Consor-

tium 2005], Co-Array Fortran [ISO 2010], or Titanium [Yelick et al. 1998] exploit the

Partitioned Global Address Space (PGAS)model. The global memory address space is

logically partitioned and physically distributed among processors [Coarfa et al. 2005]. The

locality of references is then exploited by the runtime system with strategies like the owner

1.3. Outline 7

computes rule. The purpose of these languages is to let the programmer ignore the remote

memory accesses, which leads to simpler code. This simple ßat model has then evolved

to Asynchronous Partitioned Global Address Space (APGAS)with the X10 [Ebcio#lu

et al. 2004] or the Chapel [Chamberlain et al. 2007] languages. Concurrency has been

made explicit and the programmers express asynchronous constructions on multiple levels.

While the programmers have to change their usual approach toexpress their algorithms,

these languages provide high-level abstractions of architecture in a layered manner. How-

ever, these languages are new and not widely adopted by developers. Criticisms about

performance has been expressed: the code has to be optimizedonly with a good knowl-

edge of the target architecture [Zhang et al. 2011a].

The recent OpenCL standard [Khronos OpenCL Working Group 2008, Khronos

OpenCL Working Group 2011] has been developed to program accelerators. It provides an

abstraction of the hardware, based on anAPI to manage the device, and a language derived

from a subset of C to writekernels, i.e., functions to be executed on an accelerator. This

standard provides some portability across vendors and programmability at the C level.

However, performance portability is di! cult to achieve [Komatsu et al. 2010]. Another ap-

proach is directive-based languages, following the well-known OpenMP standard [OpenMP

Architecture Review Board 1997, OpenMP Architecture Review Board 2011] for shared

memory systems. For example, some sets of directives likeHybrid Multicore Parallel Pro-

gramming (HMPP) [Wikipedia 2012c], PGI Accelerator [Wolfe 2010], or more recently

OpenACC [OpenACC Consortium 2012] provide an easier way to program accelerators,

while preserving code portability.

1.3 Outline

The goal of this dissertation is to explore the potential of compilers to provide a solution

to the three Ps: Performance, Portability, and Programmability. The solution considered

is the automatic code transformation of plain C or Fortran sequential code to accelerator-

enabled equivalent code. The main target machines are accelerators like GPUs: massively

parallel, with embedded memories in the GB range. A source-to-source approach takes

advantage of theCompute UniÞed Device Architecture (CUDA)and the standardOpenCL

APIs. Programmability and portability are enforced by the fully automatic approach.

Numerous measurements are provided to show that performance is not sacriÞced.

The approach is pragmatic and the ideas and schemes presentedare implemented in a

8 Chapt er 1. I nt roduct ion

new automatic source-to-source compiler, Par4All [SILKAN 2010 (perso)], and validated

using benchmarks. The main goal is to provide a full end-to-end compilation chain, from

the sequential code to theGPU-enabled binary, good enough as a prototype for an indus-

trial solution. Therefore, instead of being deeply focused on a limited part of the problem,

this work contributes to di"erent aspects of the problem and attempts to explore and solve

all the issues raised when building such a full compilation chain.

This compiler approach is useful for legacy applications andnew developments as well.

A compiler lowers the entry cost but also the exit cost when a new platform has to be

targeted. Debugging and maintenance are easier since the code is written with a sequential

semantics that is suitable for most programmers. When the compiled code is not executing

fast enough, some speciÞc costly parts of the code, thehot spots, can be manually optimized

for a particular architecture: a source-to-source compiler makes manual optimizations

possible on the code after processing by the heterogeneous compiler.

The choice of the C and Fortran languages is driven by their broad use in the high-

performance community. C is also a common choice for other tools that generate code

from a high-level representation or a scripting language. In order to illustrate the interest

of this approach, examples of Scilab [Scilab Consortium 2003] code are included. They are

automatically converted to sequential C with a Scilab compiler, and then transformed to

exploit accelerators using the di"erent methods presented in this dissertation.

I present the history ofGPUs and the emergence ofGPGPU in Chapter 2. The hard-

ware evolution is mirrored by the associated programming languages that all failed to

match the three Ps criteria. I introduce he architectures ofGPUs and their evolutions

to show the constraints that should be met by a compiler to achieve performance: dis-

tributed memory, memory access patterns onGPUs, Þne grained parallelism, and support

for atomic operations.

In Chapter 3, I explore solutions to the automatic distribution of the data onto the

CPU and accelerator memories. The convex array region abstract representation is Þrst

presented. A simple process to generate communications based on array regions is then

explained. I propose a new interprocedural optimizing scheme, and I validate it using

experiments. The algorithm relies on a new static analysis,Kernel Data Mapping, and

minimizes the communications by preserving data on theGPU memory and avoiding re-

dundant communications.

I identify a collection of program and loop transformationsto isolate and optimizeGPU

codes in Chapter4. I propose a ßexible mapping of parallel loop nests on the di"erent layers

1.3. Outline 9

of GPUs. I designed and implemented a transformation to substituteinduction variables

and enable further parallelization. I present two di"erent loop parallelization algorithms

and the consequences on code generation and performance. I modiÞed them to handle

reduction schemes and introducedCoarse Grained with Reductions(CGR). I designed

and implemented a new transformation to beneÞt from hardware atomic operations when

parallelizing loop nests with reductions. I designed and implemented a new loop fusion

scheme, and I proposed heuristics to drive loop fusion to Þt the GPUsÕ constraints. I

present Three di"erent scalarization schemes. I modiÞed the existing transformation to

provide better performance onGPUs. I also present the impact of loop unrolling and

array linearization. I validated all these transformations with measurements.

I present the whole compilation process in Chapter5, from the sequential source code to

the Þnal binary and the runtime associated at execution. The ßexibility of a programmable

pass manager is used to produce the compilation chain. Interprocedural analyses are used,

and they require processing the source code of all functionsin the call graph. It is an issue

for external libraries. I deÞned a dynamic solution to feed the compiler on demand during

the process.

I explore perspectives about extensions for multipleGPUs in Chapter 6. I study two

di"erent schemes to extract parallelism. I implemented a simple task parallelism extraction,

and modiÞed the existing symbolic tiling transformation. The StarPU runtime library is

used to exploit task parallelism and schedule tasks on multiple GPUs.

I present all experimental results in Chapter7 to validate the solutions deÞned in the

previous chapters. I extracted twenty test cases from Polybench and Rodinia test suites.

I also used a real numericaln-body simulation to show that speedups can be obtained

automatically on application larger than the kernel benchmarks. Several targetGPU

boards from Nvidia andAdvanced Micro Devices (AMD)are used to show how the impact

of program transformations on performance depends on architectures.

Due to the variety of subjects tackled in this work, the presentation of the related works

is included in each chapter.

Finally, to pay a tribute to the environment in which this work takes place, a summary

in French is provided for each chapter at the end of the thesis.

Chapter 2

General-Purpose Processing on GPU :

History and Context

Contents
2.1 History . 12

2.2 Languages, Frameworks, and Programming Models 14

2.2.1 Open Graphics Library (OpenGL) 15

2.2.2 Shaders . 15

2.2.3 Brook and BrookGPU . 17

2.2.4 Nvidia Compute UniÞed Device Architecture (CUDA) 18

2.2.5 AMD Accelerated Parallel Processing,FireStream 20

2.2.6 Open Computing Language (OpenCL). 20

2.2.7 Microsoft DirectCompute . 21

2.2.8 C++ Accelerated Massive Parallelism (AMP) 21

2.2.9 ! C and the MPPA Accelerator . 23

2.2.10 Directive-Based Language and Frameworks. 23

2.2.11 Automatic Parallelization for GPGPU 30

2.3 Focus on OpenCL . 30

2.3.1 Introduction . 31

2.3.2 OpenCL Architecture . 31

2.3.3 OpenCL Language. 38

2.4 Target Architectures . 39

2.4.1 From Specialized Hardware to a Massively Parallel Device. 40

2.4.2 Building a GPU . 40

2.4.3 Hardware Atomic Operations . 42

2.4.4 AMD, from R300 to Graphics Core Next. 43

2.4.5 Nvidia Computing UniÞed Device Architecture, from G80 to Kepler 48

2.4.6 Impact on Code Generation. 52

2.4.7 Summary . 54

2.5 Conclusion . 55

12 Chapter 2. General-Purpose Processing on GPU : History and C ontext

The reign of the classicalCentral Processing Unit (CPU) is no longer hegemonic and

the computing world is now heterogeneous. TheGraphics Processing Units (GPUs)have

been candidate asCPUs co-processors for more than a decade now. Other architectures

were also developed like the Intel Larabee [Seiler et al. 2008], which never really reached

the market asGPU and was released recently as a co-processor under the name Xeon Phi 1

by the end of 2012, and the IBM and Sony Cell [Hofstee 2005], which was used in the Sony

PlayStation 3. However, although many researchers have tried to map e! cient algorithms

on its complex architecture, it was discontinued. This failure resulted from its di! cult

programming and memory models, especially facing the emergence of alternatives in the

industry: the GPU manufacturers entered the general computing market.

Dedicated graphic hardware units o"er, generally via their drivers, access to a standard

Application Programming Interface (API) such as OpenGL [Khronos OpenGL Working

Group 1994, Khronos OpenGL Working Group 2012] and DirectX [Microsoft 1995, Mi-

crosoft 2012]. TheseAPIs are speciÞc to graphic processing, the main application domain

for this kind of hardware. Graphic processing makes use of many vector operations, and

GPUs can multiply a vector by a scalar in one operation. This capability has been hijacked

from graphic processing toward general-purpose computations.

This chapter Þrst presents in Section2.1 the history of the general-purpose comput-

ing using GPUs, then Section2.2 gives insights about the evolution of the programming

model and the di"erent initiatives taken to pave the way toGeneral-Purpose Processing

on Graphics Processing Units (GPGPU). The OpenCL standard is introduced with more

details in Section2.3. The contemporaryGPU architectures are presented in Section2.4.

Finally I list the many programming challenges these architectures o"er to programmers

and compiler designers.

2.1 History

The use of graphic hardware for general-purpose computing has been a research domain

for more than twenty years. Harris et al. proposed [Harris et al. 2002] a history starting with

a machine like the Ikonas [England 1978], the Pixel Machine [Potmesil & Ho"ert 1989],

and Pixel-Planes 5 [Rhoadeset al. 1992]. In 2000, Trendall and Stewart [Trendall &

Stewart 2000] gave an overview of the past experiments with graphics hardware. Lengyel

1. It was also previously known under the codenameMany Integrated Core (MIC), Knights Ferry , or
Knight Corner.

2.1. History 13

et al. [Lengyel et al. 1990] performed real-time robot motion planning using rasterizing

capabilities of graphics hardware. Bohn [Bohn 1998] interprets a rectangle of pixels as a

four-dimensional vector function, to do computation on a Kohonen feature map. Ho" et

al. [Ho" et al. 1999] describe how to compute Voronoi diagrams usingz-bu"ers. Kedem et

al. [Kedem & Ishihara 1999] use the PixelFlow SIMD graphics computer [Eyleset al. 1997]

to decrypt Unix passwords. Finally some raytracing was performed on GPU in [Carr

et al. 2002] and [Purcell et al. 2002]. A survey of GPGPU computation can be found

in [Owenset al. 2007].

Until 2007, the GPUs exposed a graphic pipeline through the OpenGLAPI . All the

ŽlŽganceof this research rested in the mapping of general mathematical computations

on this pipeline [Trendall & Stewart 2000]. A key limitation was that, at that time,

GPU hardware o"ered only single-precision ßoating point units,although double precision

ßoating point is often required for engineering and most scientiÞc simulations.

GPUs have spread during the last decades, with an excellent cost/performance ratio

that led to a trend in experimental research to use these specialized pieces of hardware. This

trend was mirrored Þrst with the evolution of the programminginterface. Both OpenGL

and DirectX introduced shaders (see Section2.2.2) in 2001, and thus added programma-

bility and ßexibility to the graphic pipeline. However, using one of the graphicAPIs was

still mandatory and thereforeGeneral-Purpose Processing on Graphics Processing Units

(GPGPU) was even more challenging than it is currently.

In 2003 Buck et al. [Buck et al. 2004] implemented a subset of the Brook streaming

language to programGPUs. This new language, called BrookGPU, does not expose at all

the graphic pipeline. The code is compiled toward DirectX andOpenGL. BrookGPU is

used for instance in the Folding@home project [Pande lab Stanford University 2012]. More

insight about Brook and BrookGPU is given in Section2.2.3.

Ian Buck, who designed Brook and BrookGPU, has joined Nvidia todesign theCompute

UniÞed Device Architecture (CUDA)language, which shares similarities with BrookGPU.

However, while BrookGPU is generic,CUDA API is speciÞc to Nvidia and its then new

scalar GPU architecture introduced with CUDA is presented in Section2.4.5. CUDA is

an API and a language to programGPUs more easily. The graphic pipeline does not exist

anymore as such and the architecture is uniÞed and exposed asmulti- Single Instruction

stream, Multiple Data streams (SIMD)-like processors.CUDA is introduced with more

details in Section2.2.4.

From 2004 to 2012, the evolution ofGPUsÕ ßoating point performance increased much

14 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.1: Performance evolution for single-precision ßoating point computation, for both
Nvidia GPUs and Intel CPUs between 2003 and 2012, computed from vendorsÕ datasheets.

faster than the CPUsÕ performance, as shown in Figure2.1. The programmability o"ered

by CUDA, combined with the GPU performance advantage, has made theGPGPU more

and more popular for scientiÞc computing during the past Þveyears.

The increased interest inGPGPU attracted more attention and led to the standard-

ization of a dedicatedAPI and language to program accelerators: the Open Computing

Language known asOpenCL (see Section2.3).

Others programming models are emerging, such as directive-based languages. These let

the programmers write portable, maintainable, and hopefully e! cient code. Pragma-like

directives are added to a sequential code to tell the compiler which pieces of code should be

executed on accelerator. This method is less intrusive but may provide limited performance

currently. Several sets of directives are presented in Section 2.2.10.

2.2 Languages, Frameworks, and Programming Models

The programming language history includes many languages, frameworks, and pro-

gramming models that have been designed to program accelerators. Some were designed

for the initial purpose of the accelerator, i.e., graphic computing, and were later diverted to-

2.2. Languages, Frameworks, and Programming Models 15

ward general-purpose computation. Others were designed entirely from scratch to address

GPGPU needs.

This section surveys the major contributions, approaches, and paradigms involved dur-

ing the last decade to program hardware accelerators in general-purpose computations.

2.2.1 Open Graphics Library (OpenGL)

Open Graphics Library (OpenGL) is a speciÞcation for a multiplatformAPI that was

developed in 1992 by Silicon Graphics Inc. It is used to program software that make use

of 3D or 2D graphic processing and provides an abstraction ofthe di"erent graphic units,

hiding the complexities of interfacing with di"erent 3D accelerators. OpenGL manipulates

objects such as points, lines and polygons, and converts them into pixels via a graphics

pipeline, parametrized with theOpenGL state machine.

OpenGL is a proceduralAPI containing low-level primitives that must be used by the

programmer to render a scene.OpenGL was designed upon a state machine that mimics

the graphic hardwares available at that time. The programmermust have a good knowledge

of the graphics pipeline.

OpenGL commands mostly issue objects (points, lines and polygons)to the graph-

ics pipeline, or conÞgure the pipeline stages that process these objects. Basically, each

stage of the pipeline performs a Þxed function and is conÞgurable only within tight limits.

But since OpenGL 2.0 [Khronos OpenGL Working Group 2004] and the introduction of

shaders and theOpenGL Shading Language (GLSL)language, several stages are now fully

programmable.

In august 2012, the version 4.3 is announced with a new feature: the possibility of

executingcompute shaderssuch as thesaxpy example shown in Figure2.2 without using

the full OpenGL state machine. The shader program is executed by every singlethreads

in parallel. Then conducting the same operation over a vector, which usually exhibits a

loop, involves here an implicit iteration space. Figure2.2 illustrates this execution model

with one thread per iteration. An classicCPU version ofsaxpy is shown in Figure2.4a.

2.2.2 Shaders

Shaders are small programs used in graphics processing to operate at a speciÞc stage of

the pipeline. They are used to describe light absorption and di"usion, the textures to apply,

reßections and refractions, shadowing, moving primitives,or some other post-processing

16 Chapter 2. General-Purpose Processing on GPU : History and C ontext

#version 430
// Thread are grouped by " workgroups " o f 256
layout (local_size_x =256) in ;

// Operate on two b u f f e r s and u s i n g a g l o b a l v a r i a b l e
buffer xBuffer { f loat x []; };
buffer yBuffer { f loat y []; };
uniform float alpha ;

// The "main () " i s e x e c u t e d by eve ry s i n g l e t h r e a d
void main () {

// " i " g e t s t h e un ique t h r e a d i d
int i = int (gl_GlobalInvocat ionID .x);
// d e r i v e s i z e from b u f f e r bound
if (i < x. length ())

y[i] = alpha*x[i] + y[i];
}

Figure 2.2: Example of asaxpy OpenGL 4.4 compute shader (adapted from [Kilgard 2012]).

e"ects. The rendering process makes the shaders perfect candidates for parallel execution

on vector graphic processors, relieving theCPU and producing the result faster. Three

types of shaders exist:

¥ Vertex shaders are executed on each vertex given to theGPU. The purpose is to

transform each 3D position in the virtual space into the 2D coordinates on the tar-

get display, and a depth value for the Z-bu"er. The vertex shaders can manipulate

properties like position, color, and texture coordinates,but cannot spawn new ver-

tices. The vertex shader output is transferred to the next graphic pipeline stage, a

geometry shader if any, or directly to the rasterizer.

¥ Geometry shaders are able to add or remove vertices of a lattice and their output is

sent to the rasterizer for the rendering of the Þnal graphic picture.

¥ Pixel shaders, also known as fragment shaders, compute the color of each pixel in-

dividually. The input comes from the rasterizer, which Þlls the polygons sent in the

pipeline. Pixel shaders are typically used for lighting and associated e"ects like bump

mapping and color tone adjustment. Pixel shaders are often called many times per

pixel on the display, one for each object, even if it is hidden. The Z-bu"er is later

used to sort objects and display only visible parts.

2.2. Languages, Frameworks, and Programming Models 17

#version 120
#extension GL_EXT_geometry_shader4 : enable

void main () {
for (int i = 0; i < gl_Vert icesIn ; ++ i) {

gl_FrontColor = gl_FrontColorIn [i];
gl_Posit ion = gl_Posit ionIn [i];
EmitVertex ();

}
}

Figure 2.3: Example of a trivialpass-throughGLSL geometry shader, which emits a vertex
directly for each input vertex (sourcewikipedia [Wikipedia 2012b]).

Shaders are ßexible and e! cient. Complicated surfaces can be rendered from a sim-

ple geometry. For instance a shader can be used to generate a tiled ßoor from a plane

description.

Initially languages close to assembly, shaders became morepopular in 2001 with the

deÞnition of higher level languages and their adoption as extensions inOpenGL and Di-

rectX. Shaders made it easier to useGPUs for a wider kind of algorithms. They are close

to C and implicitly run in a parallel way on the GPU, but if they add ßexibility and pro-

grammability to the graphic pipeline for general-purpose computation, they do not provide

the programmer with a way to abstract the graphicAPIs. Figure 2.3 contains an example

of a simplepass-throughGLSL geometry shader.

2.2.3 Brook and BrookGPU

Brook is a direct successor of the Stanford Merrimac project [Dally et al. 2003]. The

goal of this project was to take advantage of a new compute model calledstreaming. This

model o"ers two main advantages over classical languages:

¥ Data parallelism: Brook lets the programmer specify how to apply the same operation

to di"erent pieces of array elements.

¥ Arithmetic intensity: the programmer is encouraged to execute operations on data

that minimize communications and maximize local computation.

The Merrimac project aimed at o"ering better performance than distributed mem-

ory [Project 2003], but using the same technology. A language is designed to take parallel

processing concepts into a familiar and e! cient language, using the streaming model.

18 Chapter 2. General-Purpose Processing on GPU : History and C ontext

void main (void) {
f loat a;
f loat4 X [100] ,

Y [100] ,
Result [100];

// . . . i n i t i a l i z e a , b , and c .

for (i=0; i <100; i++) {
Result [i] = a*X[i]+Y[i];

}
}

(a) Classical C code.

kernel void
saxpy (f loat a ,

f loat4 x<>,
f loat4 y<>,
out f loat4 result <>) {

result = a*x + y;
}

void main (void) {
f loat a;
f loat4 X [100] ,Y [100] , Result [100];
f loat4 x<100> ,y<100> , result <100 >;
... ini t ial ize a , X, Y ...
streamRead (x , X);
// copy da ta from mem to st ream
streamRead (y , Y);
// e x e c u t e k e r n e l on a l l e l emen ts
saxpy (a , x , y , result);
// copy da ta from stream to mem
streamWrite (result , Result);

}

(b) Using Brook streaming kernel.

Figure 2.4: Example of a simplesaxpy using BrookGPU (taken from [Buck et al. 2004]).

Brook is designed as a simple extension of ANSI C.

Until 2003, the only way to beneÞt from graphics hardware resources was the general

APIs OpenGL and DirectX, and the shader programming. BrookGPU [Buck et al. 2004]

implements a subset from the Brook speciÞcation [Buck 2003] to target GPUs. It allows

compiling the same code in di"erent target languages,OpenGL and DirectX of course,

but also Nvidia Cg shaders and later the generalistAdvanced Micro Devices (AMD) Close

To Metal (CTM) API . BrookGPU was used for instance in theFolding@homeproject.

Figure 2.4 illustrates a simple SAXPY operation using BrookGPU.

2.2.4 Nvidia Compute UniÞed Device Architecture (CUDA)

Nvidia hired Ian Buck, the main author of Brook and BrookGPU,to design CUDA.

Thus there are similarities betweenCUDA and BrookGPU. However, BrookGPU is generic

and has di"erent back ends whileCUDA exhibits features speciÞc to NvidiaGPUs. CUDA

o"ers features and low-level tuning unavailable in a portableand generic language such as

2.2. Languages, Frameworks, and Programming Models 19

BrookGPU. CUDA removes also many limitations found in Brook, such as the memory

model, which is quite rigid in Brook. Indeed it requires the programmers to map their

algorithm around a fairly limited memory access pattern [Buck 2009].

CUDA technology was published by Nvidia in February 2007. It is a set of components

shipped by Nvidia to program theirGPUs: a driver, a runtime, libraries (BLAS, FFT, . . .),

a language based on a extension to a C++ subset, and anAPI that exhibits an abstraction

model for the architecture.

The code that runs on theGPU is written in a C-like form and allows direct random

accesses to theGPU memory. The CUDA API is high level and abstracts the hardware.

However, to obtain a good percentage of the peak performance, the code must be tuned

with a good knowledge of the underlying architecture.CUDA allows the programmers

to bypass the compiler and to write directly code inParallel Thread eXecution (PTX), a

pseudo-assemblySIMD language that exhibits an inÞnite number of registers. ThePTX

is Just In Time (JIT) compiled by the CUDA driver for a given GPU using its own

Instruction Set Architecture (ISA). This allows Nvidia to evolve their architecture while

being backward compatible, thanks to theJIT compilation capability of the driver.

CUDA has many advantages over classicGPGPU schemes using the OpenGLAPI for

instance:

¥ Use of the C language (with extensions) instead of the classical graphicAPI : a kernel

is close to a function call.

¥ Possibility for sparse memory writes: the code can access a single address in memory.

¥ Threads can share up to 48 kB of local memory, that is nearly as fast as registers.

¥ Memory transfers between host andGPU are faster using page-locked memory.

¥ The instruction set is more extensive, for instance integer and bitwise operations and

double precision computation are supported.

However,CUDA exhibits also some limits when compared to classicCPU programming:

¥ Texture rendering is supported in a limited way.

¥ Only the most recent architectures support function calls.

¥ The IEEE 754 ßoating point standard is not fully implemented.

¥ Threads execute by groups of thirty-two in aSIMD fashion, such a group is denoted

warp by Nvidia. Branches do not impact performance signiÞcantlyas long as all

thirty-two threads in a group take the same path.

20 Chapter 2. General-Purpose Processing on GPU : History and C ontext

¥ GPUs compatible with CUDA are exclusively produced by Nvidia.

Nvidia has shipped dedicated boards forGPGPU: the Tesla series. TheseGPUs boards

do not always have any display port and therefore can be used only for intensive compute

processing. Usually Tesla boards provide dedicated features such asError-correcting code

(ECC) memory, larger memory sizes, and higher double precision peak performances.

2.2.5 AMD Accelerated Parallel Processing, FireStream

FireStream is the AMD GPGPU solution. The name refers to both the hardware and

the software shipped byAMD . The hardware was released in 2006 under the nameAMD

Stream Processor. AMD claims that it was the industryÕs Þrst commercially available

hardware stream processing solution [Advanced Micro Devices 2006]. AMD introduced at

the same time their ownGPGPU API : Close To Metal (CTM). This API is very close to

the hardware as it gives developers direct access to the native instruction set and memory,

but the trade-o" that arises when choosing a very low levelAPI and language is the usual

one: it raises the e"ort required from the programmer.AMD soon after proposed a new

solution called Stream ComputingSoftware Development Kit (SDK). It is a completeSDK

and a compiler for Brook+, a high-level language based on Brook (see Section2.2.3).

At the same time they renamedCTM as Compute Abstraction Layer (CAL) 2, which is

the target API for Brook+. CAL provides the API to control the device (open, close,

managing context, transfer data from or to the device, . . .).It comes with the language

CAL Intermediate Language (IL), an intermediate assembly-like language forAMD GPUs.

IL is then compiled for the targetISA using the CAL API .

The latest version ofAMD Õs technology is now calledAccelerated Parallel Processing

(APP) and is based uponOpen Computing Language (OpenCL). The support for Brook+

and CTM has been discontinued, andCAL API is now deprecated in favor ofOpenCL.

The IL language is still the target language for theOpenCL compiler.

The FireStream GPU series, just as the Nvidia Tesla series, does not always provide

any graphic output, and is intended to be a pureGPGPU solution.

2.2.6 Open Computing Language (OpenCL)

OpenCL is a software stack designed to write programs portable over awide range

of platforms like CPUs, GPUs, Field Programmable Gate Array (FPGA) or other em-

2. AMD CAL is unrelated to the eponymous language from Berkeley

2.2. Languages, Frameworks, and Programming Models 21

bedded hardwares. It includes a language, based on the C99 standard, to write code for

heterogeneous hardwares. It deÞnes anAPI to manage the dedicated hardware from the

host. OpenCL was proposed by Apple to the Khronos Group in 2008 to unify the various

frameworks in one standard, which was deÞned later in the sameyear [Khronos OpenCL

Working Group 2008]. I study OpenCL in detail in Section 2.3

2.2.7 Microsoft DirectCompute

Microsoft proposes its own dedicatedGPGPU solution with DirectCompute [Mi-

crosoft 2010]. It was released in fall 2009 as part of DirectX 11. The DirectCompute

API leverage theHigh Level Shader Language (HLSL)(same as Nvidia Cg) and provides

a solution that bypasses the classical graphic pipeline in favor of a direct access likeCUDA

or OpenCL. Programmers familiar withHLSL/Cg are then able to transfer bu"ers directly

to or from the GPU, and set shader-like kernels for processing these bu"ers. Figure 2.5

shows an example of such a shader. The input matricesd_A and d_B are multiplied into

d_C, using a straightforward block matrix multiplication algorithm. The three matrices are

size" size. The mmfunction is executed bysize" size number of threads. The scheduler is

instructed to group the threads by workgroups of16" 16 number of threads. This virtual

organization is mapped on the hardware by ensuring that all threads in a virtual work-

group share some resources, at least till the point where theycan be synchronized. The

groupshared declaration of local_a and local_b is linked to this thread organization, these

arrays are shared by all the threads in a virtual workgroup. The local_a and local_b array

holds the current block of the input matrices during the computation. They are loaded by

the threads among a group, and a synchronization enforce that they are fully loaded before

each thread perform the multiplication on the blocks using these shared arrays. The shared

arrays can be seen as a cache memory that is explicitly managed by the programmer.

2.2.8 C++ Accelerated Massive Parallelism (AMP)

Microsoft C++ Accelerated Massive Parallelism (AMP)is an open speciÞcation [Mi-

crosoft Corporation 2012a] for enabling data parallelism directly in C++. It was Þrst

released in January 2012. It is composed of a C++ language extension, a compiler, a

runtime, and a programming model.

The C++ AMP programming model supports multidimensional arrays, indexing, mem-

ory transfer, and tiling. Some language extensions controlthe ways data are moved from

22 Chapter 2. General-Purpose Processing on GPU : History and C ontext

cbuffer CB : register (b0)
{

int size ;
};

StructuredBuffer < float > d_A : register (t0);
StructuredBuffer < float > d_B : register (t1);
RWStructuredBuffer < float > d_C : register (u0);

groupshared float local_a [16][16];
groupshared float local_b [16][16];

[numthreads (16 , 16 , 1)]
void mm(uint3 DTid : SV_DispatchThreadID , uint3 GTid : SV_Group ThreadID)
{

int row = GTid .y;
int col = GTid .x;
f loat sum = 0.0 f ;
for (int i = 0; i < size ; i += 16) {

local_a [row][col] = d_A[DTid .y * size + i + col];
local_b [row][col] = d_B [(i + row) * size + DTid .x];
Al lMemoryBarr ierWithGroupSync ();
for (int k = 0; k < 16; k++) {

sum += local_a [row][k] * local_b [k][col];
}
Al lMemoryBarr ierWithGroupSync ();

}
d_C[DTid .y * size + DTid .x] = sum;

}

Figure 2.5: Example of a Cg/HLSL shader for DirectCompute (source Mi-
crosoft [Deitz 2012]).

the CPU to the GPU and back.

Unlike Direct Compute presented in Section2.2.7, there is no separation between the

code running on the accelerator and the host code. O$oading acomputation involves writ-

ing a kernel using a lambda function and a dedicated construction to express the iteration

set like parallel_for_each . Figure 2.6 contains an example of C++ code before and after

its conversion to C++ AMP. This example is a simple sum of two arrays. Theconcurrency

namespace allows the use ofAMP speciÞc constructions and functions, such asarray_view

for example. The code exhibits a call todiscard_data() on the array_view object sum.

2.2. Languages, Frameworks, and Programming Models 23

This call is intended to hint the runtime so that an initial copy to the accelerator memory

is avoided sincesumdoes not contain any data.

C++ AMP does not seem to provide a new paradigm, but leverages C++ power and

ßexibility to provide a more relaxed programming model thanDirect Compute orOpenCL.

It seems to compete more against a directive-based languagesuch asOpenACC, presented

in Section2.2.10.

2.2.9 ! C and the MPPA Accelerator

While far from being a new paradigm, process network language may beneÞt from

more consideration in the future. For instance Kalray leverages the! C language [Gou-

bier et al. 2011] for its (yet unreleased)Multi-Purpose Processor Array (MPPA) acceler-

ator [Kalray 2012]. It integrates a network of 256Very Long Instruction Word (VLIW)

processors, organized in sixteen clusters of sixteen processors, interconnected using a high-

bandwidth network-on-chip, but embeds only a few tens of MB of memory. This accelerator

leverages low consumption (estimated at around 5 W) when compared to power-hungry

GPUs. For example, the Nvidia Tesla C2070 eats up to 238 W.

! C is based on the Kahn process network theory [Kahn 1974]. It has been designed to

enforce properties like being deadlock-free and provides memory-bounded execution. For-

mal analysis is leveraged to achieve this goal. The! C programming model involves agents

as the most basic units. An agent is a stateless independent thread with its own memory

space. Agents communicate viaFirst In, First Out (FIFO) queues. Then an application

is designed by a set of communicating agents forming a graph.In a ! C application, the

graph is static during all the life of the application, no agent creation or destruction can

occur neither any change to the graph topology.

2.2.10 Directive-Based Language and Frameworks

Addressing the programmersÕ di! culties to write e! cient, portable, and maintainable

code, as well as the ability to convert progressively existing sequential version toward

GPGPU, several initiatives were launched, based on directives inserted in C or Fortran

sequential code.

On the basis of the popularOpen Multi Processing (OpenMP)standard, Lee et al.

propose OpenMP forGPGPU [Lee et al. 2009]. They justify the advantages ofOpenMP

as a programming paradigm forGPGPU as follows:

24 Chapter 2. General-Purpose Processing on GPU : History and C ontext

#include < iostream >

const int size = 5;

void StandardMethod () {
int aCPP []={1 ,2 ,3 ,4 ,5};
int bCPP []={6 ,7 ,8 ,9 ,10};
int sumCPP [size];

for (int idx =0; idx <5; idx ++)
{

sumCPP [idx]=
aCPP[idx]+ bCPP[idx];

}

for (int idx =0; idx <5; idx ++)
{

std :: cout << sumCPP [idx]
<<"\n" ;

}
}

(a) Pure C++.

#include <amp.h>
#include < iostream >
using namespace concurrency ;

const int size = 5;

void CppAmpMethod () {
int aCPP []={1 , 2, 3, 4, 5};
int bCPP []={6 , 7, 8, 9, 10};
int sumCPP [size];

// Crea te C++ AMP o b j e c t s .
array_view < const int ,1> a(size ,aCPP);
array_view < const int ,1> b(size ,bCPP);
array_view < int , 1> sum(size , sumCPP);
sum. discard_data ();

paral le l_for_each (
// De f ine t h e compute domain , which
// i s t h e s e t o f t h r e a d s t h a t are
// c r e a t e d .
sum.extent ,
// De f ine t h e code to run on each
// t h r e a d on t h e a c c e l e r a t o r .
[=](index <1> idx) restr ict (amp)

{
sum[idx] = a[idx] + b[idx];

}
);

// P r i n t t h e r e s u l t s . The e x p e c t e d
// o u t p u t i s "7 , 9 , 11 , 13 , 15 " .
for (int i = 0; i < size ; i++) {

std :: cout << sum[i] << "\n" ;
}

}

(b) Using C++ AMP.

Figure 2.6: Rewriting a C++ computation using C++ AMP. The example shows the use
of a lambda function and aparallel_for_each construct to express the parallelism (source
Microsoft [Microsoft Corporation 2012b]).

2.2. Languages, Frameworks, and Programming Models 25

¥ OpenMP is e! cient at expressing loop-level parallelism in applications,

which is an ideal target for utilizing the highly parallelGPU computing

units to accelerate data parallel computations.

¥ The concept of a master thread and a pool of worker threads inOpenMPÕs

fork-join model represents well the relationship between the master thread

running in a host CPU and a pool of threads in aGPU device.

¥ Incremental parallelization of applications, which is one of OpenMPÕs

features, can add the same beneÞt toGPGPU programming.

Following the same idea, the OMPCUDA project [Ohshima et al. 2010] extended the

OMNI OpenMP Compiler to target CUDA.

As OpenMP is designed for shared memory systems, it can be di! cult to convert

automatically an OpenMPcode optimized forCPU into a heterogeneous architecture. Thus

other projects bypassed this issue and introduced new directives. Han and Abdelrahman

propose with hiCUDA [Han & Abdelrahman 2009] a set of directives to manage data

allocation and transfers, and kernel mapping onGPU. The main drawback is that even

if it is simpler to write, hiCUDA still requires the programmer to have good knowledge

of the target architecture and the way the algorithm maps onto the GPU. It is unclear

how the code written this way is portable across architectures. Figure2.7 shows a sample

matrix multiplication using hiCUDA. The directives are tied to a particular architecture:

the workgroup size is statically deÞned, so is the strip-mining width.

Bodin and Bihan proposeHybrid Multicore Parallel Programming (HMPP) [Bodin &

Bihan 2009], another set of directives to perform heterogeneous computing. HMPP was

then promoted as a standard,Open Hybrid Multicore Parallel Programming (OpenHMPP),

in a consortium joining CAPS Entreprise and PathScale.HMPP requires that the code

follows some restrictions. The code to be run on an acceleratormust be wrapped in a

separate function called acodelet. Here are the codelet properties [Consortium 2011]:

¥ It is a pure function.

It does not contain static or volatile variable declarations or refer to

any global variables unless these have been declared by aHMPP directive

Òresident.Ó

It does not contain any function calls with an invisible body (that

cannot be inlined). This includes the use of libraries and system functions

such as malloc, printf. . . .

26 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.7: A sample matrix multiplication code with hiCUDA directives (source [Han &
Abdelrahman 2009]).

Every function call must refer to a static pure function (no function

pointers).

¥ It does not return any value (void function in C or a subroutine in For-

tran).

¥ The number of arguments should be set (i.e., it can not be a variadic

function as in stdarg.h in C).

¥ It is not recursive.

¥ Its parameters are assumed to be non-aliased.

2.2. Languages, Frameworks, and Programming Models 27

/ " d e c l a r a t i o n o f t h e c o d e l e t " /
pragma hmpp simple1 codelet , args [outv]. io= inout , targe t =CUDA
static void matvec (int sn , int sm , float inv [sm],

f loat inm[sn][sm], f loat *outv){
int i , j ;
for (i = 0 ; i < sm ; i++) {

f loat temp = outv [i];
for (j = 0 ; j < sn ; j++) {

temp += inv [j] * inm[i][j];
}

outv [i] = temp ;
}

int main (int argc , char ** argv) {
int n;
.

/ " c o d e l e t use " /
pragma hmpp simple1 callsite , args [outv]. size ={n}
matvec (n , m, myinc , inm , myoutv);

.
}

Figure 2.8: Simple example for HMPP directive-based code writing (source
wikipedia [Wikipedia 2012c]).

¥ It does not contain call site directives (i.e., RPC to anothercodelet) or

other HMPP directives.

HMPP requires less e"ort from the programmer, and theHMPP compiler can manage

automatically to map a given codelet on theGPU, as well as handling the data movement.

The compiler can automatically detect the parallelism in a loop nest and take any decision

involved in the process of generating the accelerator code.HoweverHMPP o"ers advanced

directive that allows the programmer to tune the compilationprocess to get better perfor-

mance. But with the same drawbacks as in hiCUDA: the code is then likely to come tied

to a speciÞc target. Figure2.8 contains a sample code written usingHMPP without any

speciÞc directive.

PGI introduced the PGI Accelerator [Wolfe 2010], which uses the same idea asHMPP.

The proposed directives are written̂ la OpenMP. The code is not outlined in a codelet

by the programmer.

The initial PGI Accelerator provided a limited set of directives. The PGI compiler was

28 Chapter 2. General-Purpose Processing on GPU : History and C ontext

module globdata
real , dimension (:) , al locatable , device :: x

end module
module globsub
contains

subrout ine sub(y)
use globdata
real , dimension (:) :: y
! $acc r e f l e c t e d (y)
! $acc r e g i o n

do i = 1, ubound (y ,1)
y(i) = y(i) + x(i)

enddo
! $acc end r e g i o n

end subrout ine
end module
subrout ine roo (z)

use globsub
real :: z (:)
! $acc da ta r e g i o n copy (z)
call sub (z)

! $acc end da ta r e g i o n
end subrout ine

Figure 2.9: Example of a PGI Accelerator code using data movement optimization (source
PGI Insider [Wolfe 2011]).

supposed to automatically do the conversion work. It was later updated with more possi-

bilities available to the programmer to help the compiler tomanage the data movements.

HMPP includes also similar directives. Figure2.9 shows a simple code written using these

directives.

In November 2011 at the SuperComputing Conference, Nvidia, Cray, PGI, and CAPS

announced that they agreed on a standard for directives:OpenACC. The OpenMP Archi-

tecture Review Board CEO Michael Wong declared at this occasionthat he looked forward

to work within the OpenMP organization to mergeOpenACC with other ideas to create

a common speciÞcation that extendsOpenMP to support accelerators. TheOpenACC

standard [NVIDIA, Cray, PGI, CAPS 2011] seems to be based upon the PGI Accelerator

solution: the directives show close similarities.

JCUDA [Yan et al. 2009] is a programming interface for Java that allows invoking

CUDA kernels. JCUDA deÞnes an extension of Java that needs to be preprocessed to

2.2. Languages, Frameworks, and Programming Models 29

double [][] I_a= new double [NUM1][NUM2];
double [][] [] I_aout = new double [NUM1][NUM2][NUM3];
double [][] I_aex= new double [NUM1][NUM2];

ini tArray (I_A); ini tArray (I_aex); // i n i t i a l i z e v a l u e in a r ray

int [] ThreadsPerBlock = {16 , 16 , 1};
int [] BlocksPerGrid = new int [3]; BlocksPerGrid [3] = 1;
BlocksPerGrid [0] = (NUM1+ ThreadsPerBlock [0] -1)/ Thread sPerBlock [0];
BlocksPerGrid [1] = (NUM2+ ThreadsPerBlock [1] -1)/ Thread sPerBlock [1];

/ " i n v o k e d e v i c e on t h i s b l o c k / t h r e a d g r i d " /
cudafoo . foo1 <<<< BlocksPerGrid , ThreadsPerBlock >>>>(I _a ,

I_aout ,
I_aex);

pr intArray (I_a); pr intArray (I_aout); pr intArray (I_aex);

.

stat ic lib cudafoo (" cfoo " ," /opt / cudafoo / lib ") {
acc void foo1 (IN double [][] a ,

OUT int [][] aout ,
INOUT float [][] aex);

acc void foo2 (IN short [][] a ,
INOUT double [][] [] aex ,
IN int total);

}

Figure 2.10: A simple JCUDA example. Note theIN, OUT, and INOUTattributes in the
kernel declaration that drive automatic memory transfers (source [Yan et al. 2009]).

generate the pure Java code and theJava Native Interface (JNI) glue to link against

CUDA kernels. The programmers make use of annotation (IN, OUT, INOUT) in front

of kernel arguments and the data transfers are managed automatically by JCUDA based

only on the annotation, it implies that a mistake from the programmer in an annotation

leads to a wrong code. A simple example of Java code invoking a kernel with JCUDA

is showed in Figure2.10. However, useless transfers cannot be avoided in this model:

the programmer has no control to preserve data on the accelerator between two kernel

calls, while the directive approach o"er the possibility to the programmer to manage data

movement across the whole program.

30 Chapter 2. General-Purpose Processing on GPU : History and C ontext

2.2.11 Automatic Parallelization for GPGPU

Not much work has been done about the automatic parallelization of a sequential

program toward GPUs. Leung et al. [Leung et al. 2009] propose an extension to a Java

JIT compiler that executes a parallel loop nest on theGPU. The major part of their

contributions seems to be the handling of Java exception semantics and Java aliasing at

runtime.

Nugteren et al. [Nugteren et al. 2011] present a technique to automatically map code

on a GPU based onskeletonization. This technique is based on a predeÞned set of skele-

tons for image processing algorithms. A Skeletonization step recognizes the algorithmÕs

functionalities in the sequential code using techniques like pattern matching, and replaces

them with another implementations for theGPU selected from the available predeÞned

implementations.

Reservoir Labs claims that its R-Stream parallelizing C compiler o"ers automatic par-

allelization from C code toCUDA since 2010 [Reservoir Labs 2012]. However, R-Stream

is proprietary software not freely available and without academic or evaluation licensing,

the few academic publications about this work are vague and there is no way to reproduce

their claims and results.

CUDA-Chill [Rudy et al. 2011] provides automatic program transformation forGPU

using the Chill framework for composing high-level loop transformations. However, the

recipes have to be adapted to each input program, limiting the applicability and portability

obtained.

Baskaran et al. [Baskaranet al. 2010] introduce a polyhedral approach to the automatic

parallelization, using Pluto [Bondhugulaet al. 2008c], of a! ne loop nest from C toCUDA.

More recently, the on-going PPCG [Verdoolaegeet al. 2013] project follows the same path

and produces optimized kernels forGPU using the polyhedral model.

2.3 Focus on OpenCL

Open Computing Language(OpenCL) is an open royalty-free standard

for general-purpose parallel programming acrossCPUs, GPUs and other pro-

cessors, giving software developers a portable and e! cient access to the

power of these heterogeneous processing platforms [Khronos OpenCL Work-

ing Group 2011].

2.3. Focus on OpenCL 31

2.3.1 Introduction

Promoted Þrst by Apple in early 2008,OpenCL was quickly supported by many other

vendors such as IBM, Nvidia,AMD , and Intel. It provides a software stack that addresses

the challenges of programming heterogeneous parallel processing platforms. The Þrst re-

vision of the standard exhibits a logical model close to the Nvidia CUDA programming

model. OpenCL does not limit itself to the dual CPU vs GPU issue, but also takes into

account mobile devices up to high-performance computers, as well as desktop computer

systems. It can target di"erent kind of accelerators, like multicore CPUs and GPUs, but

also more speciÞc devices likeDigital Signal Processing (DSP)processors and the Cell

processor.

OpenCL API abstracts the hardware at a rather low level. The purpose is toprovide

high performance by being close-to-metal, and keeping it simple enough for compilers so

that the implementation can be easy for a wider range of vendors. OpenCL targets expert

programmers who want to write portable and e! cient code. Thus it can be seen as the

lower level upon which portable libraries, middleware, or software can be built. It also

represents a Þrst choice as a backend target for code-generating tools from higher level

languages or constructions.

The OpenCL model is split between a host and computing devices in a master-and-

slaves fashion. The host manages the devices and acts as a choreographer driving the

process using theOpenCL API. On the device side, the code that is to be executed is

contained in kernels. These kernels are written in a language that is based on a subset

of ISO C99 with extensions for parallelism. TheOpenCL API lets the host indi"erently

schedule data parallel kernels or task-based kernels or a combination of both.

2.3.2 OpenCL Architecture

The OpenCL standard is organized into four parts: the platform model (see Sec-

tion 2.3.2.1), the memory model (see Section2.3.2.3), the execution model (see Sec-

tion 2.3.2.2), and the programming model (see Section2.3.2.4).

The wholeOpenCL abstract model is shown in Figures2.11and 2.12. The host entry

point is the platform. It represents the vendor implementation. The host program sees as

many platforms as there are vendor runtimes in the machine. After selecting one or several

platforms, the host program can query a list of devices available for this platform. A device

is deÞned in theOpenCL standard asa collection of compute units. [...] OpenCL devices

32 Chapter 2. General-Purpose Processing on GPU : History and C ontext

typically correspond to a GPU, a multi-core CPU, and other processors such as DSPs and

the Cell/B.E. processor. To manage the devices, the host program has to create one or

more contexts. A context is deÞned as theenvironment within which the kernels execute

and the domain in which synchronization and memory management is deÞned. The context

includes a set of devices, the memory accessible to those devices, the corresponding memory

properties and one or more command-queues used to schedule execution of a kernel(s) or

operations on memory objects.

2.3.2.1 Platform Model

OpenCL is strongly based on the concept of one host directly connected to a set of

dedicated computing devices. This is theplatform in OpenCL terminology. The host

plays the role of an orchestrator and manages the devices. These can include many compute

units, each made up of many processing elements.

For instance, currentOpenCL implementations map a multicoreCPU as a single device

with as many compute units as the number of cores. The number of processing elements per

compute units (per core) depends on the vectorizing capabilities of the OpenCL runtime.

The Intel OpenCL runtime for instance, reports sixteen processing elementsso that the

code can self-align on multiples of sixteen and allows fasterloads in vector registers. A

GPU is shown as a single device, with the number of compute units corresponding to the

available hardware.

2.3.2.2 Execution Model

The user program drives the host part of theOpenCL model. It acts as an orchestrator

for the kernel part of the program. The host part is responsible for managing contexts

of execution for the kernels, initializing the devices, controlling the data movements, and

scheduling the execution of the kernels on the devices. To achieve this, it creates at least

one context.

Contexts are created and managed using anAPI deÞned by the standard. A device can

be associated with many contexts, and a single context can manage multiple devices. For

a given context, each device has its own command queue. A command queue is the only

way for the host to request any data transfer by device, or to launch a kernel.

On the kernel side, the execution model is very close to theCUDA programming model:

a huge number of virtual threads are mapped onto real hardware threads using what Nvidia

calls in CUDA the Single Instruction stream, Multiple Thread streams (SIMT)paradigm.

2.3. Focus on OpenCL 33

��������
�������������	�
����

�
����������������

�
�
���

���
���

��
���

���
���

�

��������������

����������������

����������������
����������������

�������������	�
����

�������������	�
����

�������������	�
���

��� �!�"�
� ��� �!�"�
� ��� �!�"�
� ��� �!�"�
� ��� �!�"�
�

�
�
���

���
���

��
���

���
���

�

�
�
���

���
���

��
���

���
���

�

�
���������#
���$�%���&��

�
���������#
���$�%���&��

�
���������#
���$�%���&��

� �'������

� �'������

� �'������

��������������

���������������(

���������������)
���������������*

�
����������������
�
���������#
���$�%���&��

� �'������

��������������

����������������

����������������
����������������

Figure 2.11: SimpliÞed view of the OpenCL abstraction model.A host is connected to
multiple devices (GPUs, FPGAs, DPSs, . . .). OpenCL platforms arevendorsÕ implemen-
tations that target some types of devices. A context is created for a given platform and
a set of devices. Memory objects and events are created context-wise. Devices are then
controlled in a given context using command queues. There canbe multiple command
queues per device, and a device can be associated with queues from multiple contexts and
platforms.

34 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.12: UML representation of the OpenCL abstraction model (see Figure2.11) taken
from the Standard [Khronos OpenCL Working Group 2011].

In the OpenCL terminology, the kernel is executed by a number ofwork-items. Each of

these work-items has a unique identiÞer in a global index setnamed NDRange inOpenCL

terminology. This set can have one, two, or three dimensions,and its bounds depend on the

OpenCL runtime implementation and the device capability. The unique identiÞer is then

a three-dimensional tuple. It is up to the programmer to exhibit enough data parallelism

using a large index set and mapping di"erent work-items to di"erent sets of data.

Work-items are grouped in work-groups. Work-items inside awork-group execute on

the same compute unit, using multiple processing elements to achieve parallelism. Syn-

chronization can be performed in a work-group but not acrossdi"erent work-groups. A

work-group shares also a dedicated memory space (see Section2.3.2.3). Work-groups are

assigned a unique id in the global NDRange the same way as work-items do.

Figure 2.13shows how a simple two-dimensional parallel loop nest can be mapped onto

an OpenCL index set.

2.3. Focus on OpenCL 35

for (int i=0; i <100; i++) {
for (int j=0; j <45; j++) {

// Some p a r a l l e l
// computa t ion here
//

} //

(a) Parallel loops

__kernel void
my_kernel (/ " a rgs l i s t " / ...) {
int i = get_global_id (1);
int j = get_global_id (0);
// Some p a r a l l e l
// computa t ion here
//
//

(b) Equivalent OpenCL kernel.

(c) Mapping the iteration set to a NDRange.

Figure 2.13: A mapping example of a two-dimensional loop nest iteration set into an
OpenCL index range. The mapping is the simplest possible; one work-item executes one
iteration of the original loop nest. The work-group size usedas an illustration on Þg-
ure c is a two-dimensional square with an edge of Þve. Values forget_global_id() and
get_local_id() OpenCL primitives are exhibited for a particular work-group.

2.3.2.3 Memory Model

OpenCL exhibits a hierarchical memory model with four distinct spaces:

¥ The Global Memory is local to a given device, but shared across all work-items for the

device. It is accessible for reading or/and writing, depending on how it is allocated.

It can be cached or not depending on the underlying hardware.

¥ The Constant Memory is a part of global memory accessible read-only from the

36 Chapter 2. General-Purpose Processing on GPU : History and C ontext

kernel. It has to be initialized from the host. It is usually advised to make use of

the constant memory for performance reasons. On some devices it is more likely to

be cached and optimized for read access.

¥ The Local Memory is a small dedicated memory for sharing temporary data between

work-items in a work-group, to avoid redundant accesses to theglobal memory. De-

pending on the underlying hardware, it can be implemented with a very fast on-chip

memory or emulated with a portion of the global memory. For instance on Nvidia

Fermi architecture, it is nearly as fast as register accesses.

¥ The Private Memory is a portion of the memory that is private to a work-item and

therefore not visible from any other work-item or from the host. It typically maps

to registers on modernGPUs, but can also be mapped to global memory by the

compiler.

This hierarchy is represented in Figure2.14. There is no guarantee that all these

memory areas are really separated on the hardware. The right part of the Þgure illustrates

this situation. For example, classical multicoreCPUsdo not exhibit any separated memory

space or software managed cache, embedded into each core or not. Then a kernel optimized

for the more complex memory architecture on the left may leadto spurious costly memory

duplication when using local or private memory on the simplerarchitecture.

At a more global level, theOpenCL runtime manipulates bu"ers, i.e., linear areas of

memory that the host registers with the runtime before any useas a kernel argument.

The host can then write to or read from these memory areas using the OpenCL API, or

even directly map the memory area into the host memory space.The physical location

of the bu"er is undeÞned by the standard and is implementationspeciÞc. FromOpenCL

version 1.2 on, the programmer can explicitly request a bu"erto be moved to a particular

device. In any case, before a kernel is launched on a particular device, theOpenCLruntime

ensures that the bu"ers used by the kernel are physically allocated and copied to the device.

Therefore it has to keep track of the locations of the bu"ers andinvalidate other copies

when a bu"er is written by a kernel. The programmer can optimize this management by

giving hints at bu"er creation times using ßags like read-only or write-only. However, these

are holding for the whole lifetime of the bu"er and thus are not helpful when a bu"er is read

or written only by some kernels. Theconst qualiÞer in the kernel declaration arguments

can be used as a hint to the runtime to avoid invalidating other copies of a bu"er after a

kernel execution.

2.3. Focus on OpenCL 37

�������������������	���
�� �����
�������
���������	���
��

�������������������� ��������������������

�����	�������������
����

���� ���
����������
�	���	���
��

���� ���
����������
�	���	���
��

�������������
����
��������������������

�������������
������
��������������������

����������
�	���	���
��

�����	�������������
����

���� ���
����������
�	���	���
��

���� ���
����������
�	���	���
��

�������������
����
��������������������

�������������
������
��������������������

����������
�	���	���
��

�������������������	���
��

�����	����������
���
����

����

����

�����	����������
���
����

����

����

���
����������
�	���	���
��

����������
�	���	���
��

�����
�������
��
�	���	���
��

Figure 2.14: Visual example of the OpenCL memory model. Two possible mappings are
illustrated: data caches are optional, and private, local,and constant memories are not
necessarily dedicated. On the right the simplest mapping, for instance a CPU, merges all
memory spaces onto the same piece of hardware.

2.3.2.4 Programming Model

The OpenCL programming model is a mix of the data parallel and task parallel

paradigms. The data parallel one is the preferred way to program OpenCL devices like

GPUs.

As explained in Section2.3.2.2, the data parallel model involves a number of work-

items that spread over an index set, computing di"erent data in a SIMD/ SIMT fashion.

The model is relaxed and does not require that each work-item produces one element, and

therefore a single work-item can produce as much output as required, or on the other hand

only some work-items can produce output. This latter situation occurs when work-items in

a work-group work together to produce a single reduced result. Then only one work-item

in the work-group is in charge of recording it in the global memory. OpenCL provides full

ßexibility on this aspect.

The task parallel model is exposed by considering each kernelexecution as a task.

The parallelism between tasks can then be exploited in two di"erent ways. First, the

programmers can issue di"erent tasks to di"erent command queues and thus rely on the

38 Chapter 2. General-Purpose Processing on GPU : History and C ontext

OpenCL runtime to schedule them in parallel. But command queues canalso be deÞned

as out-of-order, and then again theOpenCL runtime is free to schedule at the same time

as many tasks as submitted to such a queue.

The programmer can issue barriers in the queue to ensure synchronization points, but

he can also make use ofOpenCL events to enforce dependencies between tasks in a com-

mon context, either kernel launches or memory transfers. When a task is submitted to a

command queue, a handler on this request is recorded as anOpenCL event. A collection

of events can then be used when a new task is submitted in the same context, possibly in

a di"erent queue. All events in this collection have to complete before the new task starts.

2.3.3 OpenCL Language

The OpenCL language is a subset of theInternational Organization for Standardization

(ISO) C99 standard. It is used only to create kernels in theOpenCL model.

When compared to plain C, the main di"erences are the following:

¥ vector types are natively present, for sizes 2, 3, 4, 8, and 16, and for the native types

char , uchar, short , ushort , int , uint , long , ulong , float , and double ;

¥ the alignment in memory is always guaranteed to be a multipleof the type size. For

instance anint16 vector is aligned to a 16*sizeof (int) boundary;

¥ shu$e can be written directly in a ßexible way, for instance adouble4 a can be initial-

ized from double4 b and double4 c: a = (b.w, c.zyx) , equivalent to the sequence:

a.x=b.w; a.y=c.z; a.z=c.y; a.w=c.x;

¥ keywords are deÞned for the di"erent memory spaces:__global , __local , __constant

and __private . Any pointer must make use of one of them so that the memory space

to dereference is always known by the compiler;

¥ a special image object can be declared as__read_only or __write_only in kernel

argument lists:

__kernel void foo (__read_only image2d_t imageA ,

__wri te_only image2d_t imageB);

¥ the qualiÞer__kernel is used in front of a kernel declaration. Such a function always

returns void. It identiÞes functions that can be used in an NDRange object issued

in a command queue;

2.4. Target Architectures 39

¥ variable length arrays and structures with ßexible (or unsized) arrays are not sup-

ported;

¥ variadic macros and functions are not supported;

¥ The library functions deÞned in the C99 standard headersassert.h , ctype.h ,

complex.h, errno.h , fenv.h , float.h , inttypes.h , limits.h , locale.h ,

setjmp.h , signal.h , stdarg.h , stdio.h , stdlib.h , string.h , tgmath.h , time.h ,

wchar.h and wctype.h are not available and cannot be included;

¥ recursion is not supported;

¥ built-in functions are provided to manage work-items, perform asynchronous or

atomic memory operations.

2.3.3.1 Conclusion

OpenCL is a standard, which by itself is already a good thing for programmers con-

cerned with portability. However, there are some caveats withOpenCL. The performance

portability is not enforced and programmers have to write kernels for a given target. An-

other issue is programmability:OpenCL API is verbose and is rather designed as a target

for libraries, frameworks, or code generators. In this case, OpenCL provides all the control

that can be wished. Therefore it is suitable as a target for a source-to-source compiler such

as the one proposed in this work.

2.4 Target Architectures

This thesis focuses on hardware accelerators likeGPUs. The common characteristics

of such accelerators are as follows:

¥ large embedded memory: over 1 GB;

¥ high level of parallelism: from a few tens of processing elements, to many thousands,

possibly highly threaded;

¥ compliance with theOpenCL programming model introduced in Section2.3.

The most widespread matching hardware platforms are manufactured by AMD and

Nvidia, and are indeed ubiquitous in modern desktops. This section introduces someGPU

architectures starting from a high-level view to a deeper comparison between the two

current leading architectures. It also explains how two kinds of parallelism are exploited:

Instruction Level Parallelism (ILP) and Thread Level Parallelism(TLP).

40 Chapter 2. General-Purpose Processing on GPU : History and C ontext

2.4.1 From Specialized Hardware to a Massively Parallel Device

Dedicated graphic circuits were introduced in the 1980s to o$oad 2D primitives pro-

cessing from the mainCPU. At that time the purpose was to draw simple objects like a

line, a rectangle, or to write some text in the video memory (framebu"er) displayed on the

screen.

GPUs then evolved in the 1990s with the introduction of more 3D graphic processing.

Starting with the OpenGL API (see Section2.2.1) and later with Direct3D, a common

set of features began to be used by game developers, leading to more and more vendors

implementing these features in hardware in the mid-1990s. At that time, GPUs were

not programmable at all and provided hardware for a limited set of operations, but there

was already some parallel processing involved under the hood. However, it is only during

the 2000s thatGPUs became programmable, with the introduction of shaders (see Sec-

tion 2.2.2). GPU designers then continued to fuse pipeline stages into uniÞed programmable

units emulating the plain old OpenGL graphic pipeline.

This architecture survey starts with theAMD architecture. Then the Nvidia G80 that

came along withCUDA, and the evolution of the architecture to the current generation,

are introduced. Finally the impact of architectural choices on high-level code writing is

presented. This section focuses exclusively on main breakthroughs that are relevant for

GPGPU. Thus it simply ignores changes that introduce only improvements very speciÞc

to graphic workloads.

2.4.2 Building a GPU

A GPU is a huge and complicated piece of hardware. It was traditionally built upon

units very specialized for Þxed graphic processing functions. With the introduction of

shaders, it became more and more programmable. AsGPGPU are the main focus of this

work, only the computation power of shader parts and the memory hierarchy capabilities

and speciÞcities are surveyed.

At the lowest level we Þnd theProcessing Element (PE), capable of basic operations

like addition or multiplication, or at best a Fused Multiply-Add (FMA). Usually they are

limited to single-precision ßoating point and integer operations. There can also beon-

steroid PEs able to compute transcendental functions such as trigonometric, exponential,

or square roots. Such a unit is called aSpecial Function Unit (SFU).

Multiple PEs are then grouped together in aCompute Unit (CU). A CU includes all

2.4. Target Architectures 41

Figure 2.15: High-level simpliÞed GPGPU-oriented view of generic GPU architecture.

the shared logic forPEs, such as instruction fetch and decode, registers, caches, scheduler,

and so on.

A GPU chip can then be built by assembling manyCUs with an interconnecting net-

work, adding a global hardware scheduler to distribute the work among theCUs and some

memory controllers. SometimesCUs are grouped before being added to the network, and

this group shares some resources like cache, on-ship memorynetwork interconnect or also

usually graphic centric units. Figure2.15 illustrates this view of a GPU architecture.

Such a view is not so far from what can be seen in a multicoreCPU, but the Devil is in

the details. And the choices that are made at each level on thenumber of elements and the

way they are grouped together have a signiÞcant impact on the resulting programmability.

In general, unlike aCPU, most of the die space in aGPU is used for computing logics.

This is why it has a lot of PEs with complex grouping, little to no cache, an important

memory bandwidth, but also a long latency.

Most of the time, designers keepCUs as simple as possible and do not include any

out-of-order execution capabilities, thus the main sourceof parallelism is Thread Level

Parallelism (TLP). However, Instruction Level Parallelism (ILP) can be exploited by the

compiler using aVLIW instruction set, or by the hardware scheduler to keep the pipeline

full and to mask memory latency if there is not enoughTLP . Figure 2.16 illustrates the

di"erence betweenILP and TLP .

42 Chapter 2. General-Purpose Processing on GPU : History and C ontext

������������������
������������������
������������������
������������������
�����������������	
�����������������	
�����������������	
�����������������	

�
�����
�	�� �
�����
�	��

������������������
������������������
������������������
�����������������	

�
�����
�	��

������������������
������������������
������������������
�����������������	

�
�����
�	��

������������������
������������������
������������������
�����������������	

�
�����
�	��

������������������
������������������
������������������
�����������������	

������ �
����

�����������������
���
�����	������������������������������

Figure 2.16: Instruction Level Parallelism (ILP) versus Thread Level Parallelism (TPL),
two di"erent ways of extracting parallelism in GPUs.

2.4.3 Hardware Atomic Operations

Hardware atomic operations are important for many parallelalgorithms and widen the

set of applications beneÞting from a hardware accelerator.For instance, atomic operations

on the GPU have been used to implement barrier synchronizations withina kernel [Xiao

& chun Feng 2010], to build high-level programming frameworks such as MapReduce [Ji

& Ma 2011], a memory allocator for MapReduce [Hong et al. 2010], an histogram [Aubert

et al. 2009 (perso)].

Nvidia does not disclose any detail about the hardware implementation of atomic opera-

tions. It is only known that these units are located in each of the memory controllers [Col-

lange 2010b] on GT200 and directly in the L2 cache since Fermi [Halfhill 2009, Patter-

son 2009, Collange 2010a].

AMD hardware implementation is slower, so much so that some proposals using software

emulation were presented as faster [Elteir et al. 2011].

OpenCL supports as of version 1.2 the following integer atomic operations in 32-bit

mode:

¥ add: adds an integer to a value at a memory location;

¥ sub: subtracts an integer to a value at a memory location;

¥ xchg: swaps an integer with the value at a memory location;

¥ inc : increments a value at a memory location;

¥ dec: decrements a value at a memory location;

¥ cmpxchg: compares an integer to the value at a memory location andxchg if they are

equal;

2.4. Target Architectures 43

�������������������	���
�����
�
�������
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������
����������������������������

�������������������	���
�����
�
�������
���
�
�
�
�
�
�
�
�
�
�
�
�������
������������������

���� ���� �������� ������
����

����

���� ������

������

������

����

����

����

�������������������	���
�����������
� �
�!�����	����

�������������������	���
�"��������

�#�	�����$�
���������
�����	����

�%���&�����������

�����$��

�"�	�����������
�'������

�!������
�"��������

����

����

����

����

����

����

������

����

����

����

Figure 2.17: AMD R600 Compute Unit (CU) is built on top of 5-way VLIW instructions
set. Four Processing Elements (PE) and a Special Function Unit (SFU) are grouped
together in a Processing Unit (PU) to process instructions. These PUs are organized in a
16-wide SIMD array.

¥ min: compares an integer to a value at a memory location and stores the smallest

value;

¥ max: compares an integer to a value at a memory location and stores the largest

value;

¥ and: compares an integer to a value at a memory location and stores the result of a

bitwise and operation;

¥ or : compares an integer to a value at a memory location and stores the result of a

bitwise or operation;

¥ xor , compares an integer to a value at a memory location and stores the result of a

bitwise xor operation.

All these functions operate either in global or local memory, and return the old value.

The standard speciÞes 64-bit versions for all these operations, but the implementation is

optional and programmers have to check the availability using OpenCL extensions. Both

32-bit and 64-bit versions are supported by NvidiaGPUs since Fermi.

2.4.4 AMD, from R300 to Graphics Core Next

Historically, AMD has used a vector instruction set, and then in 2002 introduced a

2-way VLIW ISA at the beginning of computing shaders with the R300. This architecture

was proven to be e! cient for handling graphics workload until DirectX 10 and itsnovelties

in shading were introduced.

44 Chapter 2. General-Purpose Processing on GPU : History and C ontext

At that time, shading was quite new and pixel and vertex shaders were separate entities.

Vertex shader designers decided thatVLIW was the ideal architecture for a vertex shader.

It allows processing at the same time oneSIMD operation on a four-component vector

(e.g., w, x, y, z) and one other operation on a separate scalar component (e.g., lighting).

This organization relies on the compiler to pack theVLIW bundles from theInstruction

Level Parallelism(ILP) that can be found in a shader program. By contrast,Thread Level

Parallelism (TLP) is handled by replicating these processing units. The static scheduling

done by the compiler simpliÞes the hardware and allows using more of the die space for

compute units instead of a complex hardware scheduler.

DirectX 10 introduces the new geometry shaders (see Section2.2.2) and uniÞes the

programming language for vertex and pixel shaders. These changes pushedGPU designers

to unify the architecture. The same units are in charge of all kind of shaders. ForAMD

GPUs, this change happened with the R600 chip. To achieve such a change, the hardware

had to evolve and include more control logic to schedule the di"erent threads that compete

for the computing resources. The introduction of hardware schedulers is an important

point for GPGPU. It has been critical to enable further hardware evolutionson later

architectures.

The novelties introduced by the new DirectX 10 version of theHLSL language drove

the designers atAMD to choose a more ßexible architecture. While previously based on a

2-way vector/scalarVLIW , the R600 introduced a 5-way pure scalarVLIW instruction set.

This way, as before, Þve individual elements can be processedin each cycle. But the vector

has been split. So instead of the same operation on four packed elements, it is possible

now to execute Þve di"erent operations.

ILP is still managed by the compiler that has to packVLIW bundles. It is even more

critical now that Þve di"erent operations can be packed together. AMD introduced another

SIMD level that is exploited implicitly by TLP . The new VLIW units are grouped in a

SIMD array of sixteen units. TheSIMD beneÞts only fromTLP . At each cycle, one shader

5-wayVLIW instruction is scheduled for sixteen di"erent threads. Froma graphic workload

point of view, it means that a SIMD processing unit handles pixels or vertices by blocks

of sixteen, as shown in Figure2.17.

To increase the computing power of the architecture without increasing the complexity,

the control units are limited as much as possible in favor of processing units. A common

technique is to use a logicalSIMD width wider than the hardware. AMD chose to rely on

a virtual sixty-four wide SIMD so that if each cycle a block of sixteen threads is processed,

2.4. Target Architectures 45

the instruction scheduler can feed the processing units witha VLIW instruction every four

cycles on average. This allows the scheduler to run at a lower frequency than the compute

units.

SIMD in suchGPUs is managed di"erently thanCPU extensions likeStreaming SIMD

Extension (SSE)or Advanced Vector eXtensions (AVX). GPU registers are not vectors

but dynamically reconÞgurable arrays of scalar values. TheSIMD execution is implicit

and managed by hardware. Another e"ect is that the mapping from the registers to the

lightweight threads that run on the GPU is trivially reconÞgurable, o"ering ßexibility on

the resource sharing.

While no divergence3 occurs between the sixty-four threads, all units execute the in-

struction. If a branch occurs, then threads diverge andPEs are predicated4. Since there is

only one program counter for aSIMD unit, the di"erent branches are executed sequentially.

This behavior o"ers ßexibility to the programmer, who is able tocode in a scalar fashion

even if he has to keep in mind the architecture characteristics to avoid divergence as much

as possible to maximize performance.

The two next generations R700 and Evergreen (R800) did not introduce major new

breakthroughs. R700 scales up the R600: it increases frequency, supportsGraphic Double

Data Rate (GDDR) Dynamic Random Access Memory (DRAM)in version Þve, and im-

proves the internal bus. Evergreen again extends R700 with more PEs and CUs. Fused

Multiply-Add (FMA) and new DirectX 11 instructions are supported, and also improves

PEs precision to beIEEE 754-2008 compliant.

The Radeon HD 6900 series, codename Cayman (R900), was released in 2010. This

new generation switched to a narrower 4-wayVLIW . This reduces the complexity of the

units and it is more e! cient on the average according toAMD internal tests. Indeed the

VLIW average occupation was established to be 3.4 on common workloads. While shaders

that were able to Þll theVLIW with four-scalar operation and a transcendental operation

at the same time su"er from a performance drop, these are not socommon. All other

shaders beneÞt from the increased number ofSIMD units and the higherTLP .

The main limitation of VLIW comes from the inherentILP that the compiler is stati-

cally able to Þnd in the source program. Moreover, memory accesses are distinct instruc-

tions and have to be separated fromArithmetic and Logical Unit (ALU) instructions in

3. There is divergence when the code includes conditional branching and not all threads take the same
execution path.

4. When a branch occurs and threads diverge, both paths are executed sequentially and the PEs
corresponding to the threads that took the other path are disabled ; they are predicated.

46 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.18: Table summarizing the ALU occupation and the VLIW packing ratio for some
computing kernels, taken from [Zhang et al. 2011b] (c! 2011 IEEE).

�������������������	���
���������
�
���
�������	����

�������������������	���
�������
��

���	�������
���������
�����	����

�����������������

��������

���	�����������
��������

��������
�������
��

������
����

������

����

������

����

������

����

������

����

������

����

������

����

������

����

������

����

������

����

������

����

������

����

������

���������
�� ���������
�� ���������
�� ���������
��

�	�
�����
����
������������

���
����

�����������������

��������

�������
����
���
����

Figure 2.19: The 2012 AMD architecture Graphics Core Next. No longer VLIW, the four
separate SIMD pipelines are independent. A new integer scalar unit is introduced. The
scheduler feeds each SIMD every four cycles (one per cycle) with a 64-wide virtual SIMD
instruction.

what AMD calls a clause. If simple graphic workloads are well suited to this constraint,

it can be a di! cult limitation for complex shaders and more specially forGPGPU. Fig-

ure 2.18 shows some statistics about theALU occupation and theVLIW packing ratio5

for some computing kernels.

5. The packing ratio indicates on the average how many instructions are packed in theVLIW by the
compiler with respect to the VLIW width.

2.4. Target Architectures 47

The last generation, codenameGraphics Core Next(GCN) (R1000), introduces a major

breakthrough. Driven by the success ofGPGPU, AMD chose to quit their VLIW ISA in

favor of a scalar architecture. Basically they have split their 4-wayVLIW into four separate

SIMD pipelines. It means thatILP will no longer be exhibited by the compiler and that

these units exploitsTLP instead. As long as the workload exhibits enough threads, itis

easier to reach the architectural peak performance.

Another novelty from Graphics Core Next (GCN) is that that these four SIMDs are

packed along with anALU scalar unit. Among other uses, this unit can perform pure

scalar computation and avoid wasting resources underusinga SIMD for branch or mask

prediction computations, a function call, or a jump. An overview of aGCNÕs compute unit

is given in Figure2.19.

These changes put more pressure on the hardware scheduler. Early announcements

about GCN mention that it is able to schedule ten groups of sixty-four threads perSIMD,

that is 2560 threads per compute unit. Such a high number of threads helps to hide memory

latency. The presence of four di"erent pipelines to feed increases also the requirements on

the scheduler. While previously oneVLIW instruction was processed in four cycles by the

SIMD pipeline, the scheduler has now to feed a separate instruction every cycle. Indeed

it considers each cycle thread for one of the fourSIMD and issues up to Þve instructions

among these: one for the vector unit, one for the scalarALU, one for a vector memory

access, one for the branching unit, the local data store, forthe global data share, or an

internal one.6

GCN also includes for the Þrst a time a fully hierarchical hardware-managed cache,

while the previous architecture only had an L2 cache and a software-managedLocal Data

Store (LDS) located within eachCU.

As of early 2012,GCN is not released and we have thus no way to experiment with this

new architecture.

Figure 2.20summarizes the evolution ofPE grouping acrossAMD architectures.

AMD has later released this information aboutGCN in a white paper [AMD 2012].

6. Internal instructions are NOPs, barriers, etc.

48 Chapter 2. General-Purpose Processing on GPU : History and C ontext

���� ���� �������� ������

������������ ������������

�������	�
�����
����
���	�
���������������
�
���
��

��������������������
��������

�������	�
�����
����
���������	�����
�
���
��

���� ���� �������� ������

������������ ������������ ������������ ������������ ������������

������������������

�������	�
�����
����
�����
�
���
��

���� ���� ��������

������
������������ ������������ ������������ ������������

���	�
���	��

����

��������
������������

�����������������	� �	��
�������������������
�������
�����
����
���	�	�����������������������������	��

�
�����������	�����������
�
�����	� �	�������	

�����������������!

�!���"

Figure 2.20: Evolution of Processing Element (PE) grouping across AMD architectures.

2.4.5 Nvidia Computing UniÞed Device Architecture, from G80

to Kepler

In the fall of 2006, Nvidia released the G80. It was the Þrst DirectX 10 compliantGPU.

It is the result of a four-year e"ort, starting nearly from scratch with a full redesign. While

in previous Nvidia architecture the compute units were specialized, the G80 is a complete

uniÞcation of many stages. As for theAMD R600, one of the most visible and e"ective

change from aGPGPU viewpoint is that the compute units are now indi"erently able to

process any kind of shader (see Section2.2.2).

Another important novelty is that the compute units o"er a scalar interface, similar to

the oneAMD announced withAMD GCN , but six years earlier.

The G80 has many groups (typically sixteen) of eight scalar processors. Each group

is considered by Nvidia as a multiprocessor. There is one shared instruction issue unit

for a group, responsible of feeding the eight processors. This feeding unit runs at half

the frequency of the scalar processors and needs two cycles to feed an instruction. The

GPU e! ciency is maximized when thirty-two threads execute the sameinstruction in

a SIMD fashion (see Figure2.21). Again TLP is exploited and ILP is not directly ex-

hibited by the architecture, but can be exploited to hide memory latency as shown by

Volkov [Volkov 2010]. The scheduler can beneÞt from independent instructions toissue

2.4. Target Architectures 49

Figure 2.21: The GeForce 8800 architecture (G80) introduceduniÞed shaders where shader
programmable processors can be used to replace multiple stages of the classic graphic
pipeline. There are still specialized units for some graphics operations. (Source: Nvidia)

multiple instructions for the same thread in the pipeline.

GT200 was released in 2008 as an evolution of the G80. The main visible change from

a GPGPU point of view is the introduction of a double precision ßoating point unit in

CUs along with the PEs, providing 1/8th the single-precision ßoating point computation

power. Another novelty is the support of atomic operations in global memory.

In 2010, Nvidia released a major revision of the GT200: Fermi.It comes with a large

number of improvements in aGPGPU perspective:

¥ Indirect control ßow is now supported and opens the gate to C++and virtual func-

tions.

¥ Fine grained exception handling has been added to support C++try-and-catch

clause.

¥ UniÞed address space allows a simpler memory model where the hardware automat-

ically resolves the location of an address (thread private,shared, global, system).

¥ Hardware-managed hierarchical caches are introduced for the Þrst time. While the

previous generation had read-only caches for texture, Fermi comes with a L1 cache

located in eachCUs, and a global L2 cache.

50 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.22: GT200 compute unit (CU) on the left, FermiÕs on theright. Processing
Elements (PE) upgrade from eight to sixteen per pipeline, but the logical SIMD width is
unchanged, threads are scheduled by groups of thirty-two (source Nvidia).

¥ The PCI Express (PCIe) interface is now able to executeDirect Memory Access

(DMA) in both direction at the same time.

¥ The global scheduler is now able to process multiple kernels at the same time. ACU

still only has in-ßight threads from one kernel at a time.

¥ FMA is supported in thePEs, and the IEEE-754 rounding modes are all supported.

¥ Atomic operations execute directly in the L2 cache without having to write back the

result in global memory.

¥ ECC is supported in the global memory, the L1 and L2 caches, and the register Þle.

Figure 2.22illustrates the evolution ofCU between GT200 and Fermi side by side. The

number ofPEs is increased from eight to thirty-two, split in two separatepipelines and two

schedulers. An instruction is processed each cycle for sixteen threads. Two instructions

can be issued every two cycles, ending up with a logical thirty-two wide SIMD view as in

G80 and GT200.

The Special Function Units (SFUs)have their own pipeline shared between the two

schedulers. Since there are only fourSFUs, the throughput is four times longer than

for ALU operations. ILP allows a scheduler to feed theALU pipeline while someSFU

computations are running. Therefore there can be forty-eight threads processed perCU at

the same time.

2.4. Target Architectures 51

March 2012 has seen the release of a new major architecture by Nvidia, codename

Kepler. The most important point that Nvidia emphasizes with Kepler is the performance-

per-watt ratio, that they achieve mostly by reducing the frequency of thePEsby a half to be

the same as the instruction scheduling unit. The four big new architectural improvements

are the following:

¥ Dynamic Parallelism adds the capability for theGPU to generate new work for itself.

It make available theCUDA host API directly in the device code. A kernel can then

initiate memory transfers, or launch other kernels. This provides a disruptive change

in the CUDA programming model as known for years.

¥ Hyper-Q is the mechanism that allows up to thirty-two host threads to initiate com-

mand to the GPU in parallel, allowing more concurrent kernel parallelism tobe

exploited.

¥ Grid Management Unit is the basis piece of hardware that enables Dynamic Paral-

lelism. It replaces the previous scheduler providing ßexibility in the dispatch, queu-

ing, and dependency of up to 2000 di"erent kernel launches waiting for execution.

¥ GPU Direct allows transfer of data between di"erentGPUs or between aGPU and

any other PCIe piece of hardware directly over thePCIe bus without involving the

host.

Kepler is currently available only for gaming and graphical usage with the GTX 680.

It does not currently include all the novelty of the architecture that will be available with

the Tesla K20 by the end of 2012 along withCUDA 5. Other than these four key features,

the most visible change at that time is the organization of the PEs in the CUs. While they

were previously grouped by eight on the G80 and thirty-two orforty-eight on Fermi, Kepler

is shipped with 192PEs per CU while keeping the classical logical 32-wideSIMD view.

The number of schedulers is doubled to four, but operating nowat the same frequency as

the PE, it provides the same ratio as the forty-eightPE Fermi CU. Also the ratio between

double precision and single precision goes down to one third while it was one half on Fermi.

The Gefore GTX 680 is currently shipped with eightCUs, but Nvidia announced Þfteen

CUs, i.e., 2880PE in the Tesla K20, resulting in over one TFlop of double precision

throughput and over four TFlops using single precision.

On the memory side, theGDDR5 has been improved and should provide performance

closer to the theoretical peak. The announced bandwidth for the Tesla K20 is raised to

320 GB/s, which is nearly twice FermiÕs capability. The L2 cacheis also doubled both in

bandwidth and size, as the memory bandwidth.

52 Chapter 2. General-Purpose Processing on GPU : History and C ontext

It is interesting to note that the balance of resources perCU when compared to Fermi

shows that the capacity of eachCU scheduling has been doubled in term of number of

workgroups but multiplied by only 1.3 in terms of number of threads7. It seems to be in

favor of smaller workgroups when compared to Fermi. The L1 cache keeps the same size

while the number ofPE increases, leading to more potential concurrency and contention.

Other less important improvements reside in the more e! cient atomic operations, the

ECC overhead reduced by 66% on average, theGPU Boost technology that increases or

decrease the frequency dynamically to keep the power consumption in a given limit, and a

new shuffle instruction to exchange data between threads of a same warp.

2.4.6 Impact on Code Generation

In this dissertation, no particular architecture is targeted and we want to be able to

generate code that runs e! ciently on all the architectures introduced previously. Themain

question is this: to what extent is performance portable fromone architecture to another?

Since scalar andVLIW targets are exposed, it is di! cult to expect a unique universal

solution. Extracting more ILP may require exposing lessTLP and thus might lead to

starving on a scalar architecture.

Chapter 7 presents various experiments, and the comparison of the performance ob-

tained on di"erent architectures after various transformations conÞrms that improving the

performance for a given architecture reduces it on another architecture.

Another concern is about predicting statically that one version of a kernel will run faster

than another. Even given a particular architecture it is a complex issue. For instance, for

a very simple kernel, the number of work-items that we allocate in a work-group has an

important impact on the resulting performance. Figure2.23shows the inßuence of runtime

parameters on performance of Nvidia Fermi and AMD Evergreen. The left graphic shows

di"erent launch conÞgurations for a set of kernels. While Evergreen is not very sensitive to

it, Fermi shows up to a speedup of two by adjusting the workgroup size. The comparison

of BinomialOption and Matmul_no_smem indicates that there is no universal work-group

size. Zhang et al. [Zhang et al. 2011b] demonstrate that the loss in performance when

increasing the work-group size from 128 to 256 for BinomialOption is correlated to a

larger number of global memory accesses. In this case improving parallelism degrades

the overall performance. On the right a matrix multiplication kernel, without any local

7. The maximum number of resident workgroups per multiprocessor is eight on Fermi and sixteen on
Kepler, the maximum number of resident threads per multiprocessor is 1536 on Fermi and 2048 on Kepler.

2.4. Target Architectures 53

Figure 2.23: Inßuence of runtime parameters on performancefor di"erent kernels and
di"erent architectures, Nvidia Fermi and AMD Evergreen. On theleft the launch conÞgu-
ration for di"erent kernels shows that there is no universal work-group size. On the right
a matrix multiply kernel without local data store optimizati on is used with one to four
elements processed in each thread. The upper part shows the impact on performance for
both architectures while the lower part shows the occupancy ofthe AMD GPU and the
VLIW packing ratio. Taken from [Zhang et al. 2011b] (c! 2011 IEEE).

data store optimization, is tested with one to four elements produced in each thread.

The upper part shows the impact on performance for both architectures while the lower

part shows the occupancy8 of the GPU and, for AMD , the VLIW packing ratio. The

EvergreenVLIW architecture proves to be very sensitive as more elements toprocess means

more opportunities for the compiler to extract ILP . The performance (upper graphic)

and the packing ratio (lower graphic) are correlated and conÞrm this analysis. Fermi

and its scalar architecture are less impacted by this changeand exhibit nearly constant

performance. But the lower graphic shows that the occupancy drops signiÞcantly, leading

to fewer opportunities forTLP , and thus potentially fewer opportunities to mask memory

latency with computations in some kernels.

The impact of the launch conÞguration is explored with more detail in Section 5.8.

8. Occupancy is ratio of the number of eligible threads over the maximum number of resident threads.

54 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.24: Performance of two di"erent versions of matrix multiply kernel, a horizontal
scheme and a vertical scheme, without local memory usage for agiven architecture (Fermi),
depending on the input size and the activation or not of the L1cache. Taken from [Zhang
et al. 2011b] (c! 2011 IEEE).

Finally, the input size, which generally deÞnes the maximum number of work-items

that are exploited, is known only at runtime, which limits the possibilities of one universal

version for a particular kernel. Figure2.24shows the performance evolution depending on

matrix size for two di"erent versions of matrix multiplication on Fermi with and without

L1 cache enabled. The local memory is not used in any of these two versions. The fact that

L1 can be activated or not on a per kernel basis is another parameter that might inßuence

the choice of a particular kernel version to get the best performance. Section5.8 covers

in detail the implication of the launch conÞguration over performance, and in Section7.4

provides experimental results.

2.4.7 Summary

GPUs exhibit massively parallel architecture. They rely mostly on Thread Level Paral-

lelism (TLP) to expose parallelism as thousands of threads, but, depending on the under-

lying architecture, Instruction Level Parallelism (ILP) may also be a must to get decent

performance.

For a deeper insight in the architectural mysteries, such aslatency for each operation,

deep understanding of caches and so on, the reader is referred to the work of Taylor and Li

on benchmarking the AMD architecture [Taylor & Li 2010], the work of Wong et al. [Wong

et al. 2010] and Collange [Collange 2010b] for the GT200, and Lindholm et al. [Lindholm

2.5. Conclusion 55

Figure 2.25: Google trends for the word GPU during last decade.

et al. 2008] and CollangeÕs PhD thesis [Collange 2010a] for Fermi.

2.5 Conclusion

A decade ago, theGeneral-Purpose Processing on Graphics Processing Units(GPGPU)

computing was in its early days. Since then, it has been an intense Þeld of research and

it still very active as shown in Figure2.25. As shown in this chapter, many languages,

frameworks, and other solutions have been introduced to help programmers write programs

that exploit accelerators. All these approaches provide varied trade-o"s of the three Ps:

Performance, Portability, Programmability. The performance portability is a challenge in

the context of GPGPU. The programmability has been addressed by several specialized

programming languages.

The landscape in 2012 is very di"erent from what it looked like more than ten years

ago, when researchers were trying to leverage the pure graphic-oriented OpenGL pipeline

to abstract mathematical operators [Trendall & Stewart 2000] or to use it as a target for

compiling streaming language.

The programmability was very challenging. However, when a program was successfully

mapped to the OpenGLAPI , performance and portability were obtained. The introduction

of shaders in 2002 brought ßexibility and exposed more features, resulting in improved

programmability.

More recent approaches tried dedicated languages such as Brooks to trade performance

for programmability. The underlying streaming programmingmodel is a convenient inter-

face for programmers, but is not ßexible enough to be mainstream.

The evolution of DirectX droveGPU manufacturers toward more programmability. But

56 Chapter 2. General-Purpose Processing on GPU : History and C ontext

the tipping point is the introduction of CUDA, then followed by alternative programming

languages and frameworks.

The CUDA and OpenCL programming models leverage the experience with shaders

to provide an equivalent level of programmability but without all the rigid mechanisms

implied by the graphic API . However, programmers have to know well the architecture to

write e! cient kernels: the portability is traded for performance.

Directive-based languages such as hiCUDA, JCUDA,HMPP, PGI Accelerator, orOpe-

nACC (see Section2.2.10) are less invasive and provide good portability at the expense of

performance. The directives can be specialized for a given target to increase the perfor-

mance, but at the price of portability.

My PhD work started just after the Þrst release ofOpenCL 1.0 for GPU by Nvidia in

spring 2009 [Ramey 2009]. The goal of my work was to provide an end-to-end solution

that relieves programmers of adapting their codes to hardware accelerators.

The programmability is as good as possible, since programmers write their codes using

standard sequential programming languages, ignoring their heterogeneous targets. The

compiler extracts the parallelism and the code to be executed on the accelerator. The

performance may not match what an expert would get with e"ort. However, the trade-o"

on performance is acceptable if it is limited, such as for example ten, twenty, or thirty

percent depending on the application domain.

Very few people tried to provide full automatic parallelization and transformation (see

Section2.2.11page30) from sequential code toGPU. Most are limited in applicability or

focus only on part of the problem. My work tries to process a whole application, generate

kernels, optimize them all, and generate the required communication, without any user

input.

Guelton proposes in his PhD thesis [Guelton 2011a] a general high-level scheme for an

heterogeneous compiler targetingGPUs. The compiler transforms the code, separating

the host code and the kernel code, with the requiredglue. Each part is then compiled by

dedicated binary compilers for the target. This is shown in Figure 2.26.

My work instantiates this high-level compilation scheme. Anoverview of my compiler

structure and organization is presented in Figure2.27. It addresses all compilation issues

raised by heterogeneous computing withCPUs and GPUs. While not exploring deeply

each concern, this dissertation provides solutions to manyissues related to automatic

parallelization for GPUs, ranging from parallelism detection to code generation, passing

through loop nests optimizations and management of data mapping and consistency.

2.5. Conclusion 57

Figure 2.26: Source-to-source compilation scheme forGPU (source [Guelton 2011a]).

58 Chapter 2. General-Purpose Processing on GPU : History and C ontext

Figure 2.27: Overview of the global compilation scheme.

2.5. Conclusion 59

Figure 2.27 illustrates the compilation chain. The source code is Þrst analyzed to Þnd

parallelism, and transformed before extracting the code tobe executed on theGPU in new

functions: the kernels. Some optimization phases can be applied such as loop fusion, array

scalarization, array linearization, symbolic tiling, or unrolling. This part of the process is

presented in Chapter4. After kernel generation, analyses and transformations togenerate

communications are required. Array regions are used in Chapter 3 to achieve accurate

communication generation. An interprocedural static analysis is proposed to optimize the

communication by leaving data as much as possible on theGPU. Another path is the

generation of tasks that are scheduled at runtime on multiple GPUs using StarPU. The

task extraction and code generation for StarPU are presentedin Chapter 6, along with

another mapping on multipleGPUs based on symbolic tiling. The whole process is driven

by the new Par4All driver, from the input source code to the Þnal binary. It is based on

a ßexible pass manager. The challenge of automating the whole process is presented in

Chapter 5. The experimental results are presented and discussed in Chapter 7.

Chapter 3

Data Mapping, Communications and

Consistency

Contents
3.1 Case Study . 63

3.2 Array Region Analysis . 64

3.3 Basic Transformation Process . 68

3.4 Region ReÞnement Scheme . 70

3.4.1 Converting Convex Array Regions into Data Transfers 73

3.4.2 Managing Variable Substitutions . 74

3.5 Limits . 76

3.6 Communication Optimization Algorithm 77

3.6.1 A New Analysis: Kernel Data Mapping 78

3.6.2 DeÞnitions . 79

3.6.3 Intraprocedural Phase . 80

3.6.4 Interprocedural Extension . 81

3.6.5 Runtime Library . 82

3.7 Sequential Promotion . 84

3.7.1 Experimental Results . 86

3.8 Related Work . 87

3.8.1 Redundant Load-Store Elimination 88

3.9 Optimizing a Tiled Loop Nest . 90

3.10 Conclusion . 93

62 Chapter 3. Data Mapping, Communications and Consistency

GPU-like accelerators process data located in their own memory.Indeed, an accelerator

board embeds a few gigabytes of memory with high bandwidth to feed their many CUs as

discussed in Section2.4. The di! culty is that this embedded memory is not visible from the

host CPU and reciprocally host memory is not visible from theGPU. 1 The programmers

then have to explicitly transfer input data from the host memory to the acceleratorÕs before

launching a kernel and then execute some opposite transfersfrom the accelerator memory

to the hostÕs after kernel execution for the data produced bythe kernel.

These explicit communications use slow I/O buses. For example, PCIe 2.0 bus o"ers a

peak 8 GB/s, to be compared with a few hundreds of GB/s available using the on-board

GDDR memory. This is generally assumed to bethe most important bottleneck for hybrid

systems [Chen et al. 2010].

Work has been done to address this issue either using simpliÞed input from pro-

grammers [Yan et al. 2009, CAPS Entreprise 2010, Wolfe 2011, NVIDIA, Cray, PGI,

CAPS 2011], or automatically [Amini et al. 2011c (perso), Ventroux et al. 2012, Guel-

ton 2011a, Alias et al. 2011, Wolfe 2010] using compilers. A lazy scheme has also been

proposed by Enmyren and Kessler [Enmyren & Kessler 2010] in the SkePU C++ template

library, a skeleton programming framework for multicoreCPUs and multi-GPU systems.

This chapter studies the issues associated with the generation of communication in

the context of automatically or semi-automatically o$oading work to an accelerator and

presents several contributions to address this issue: array regions are exploited to opti-

mize the amount of data to transfer per kernel and a static interprocedural communication

optimization scheme is designed and implemented inParallŽliseur InterprocŽdural de Pro-

grammes ScientiÞques (PIPS).

PIPS is a twenty-year-old compiler framework [Irigoin et al. 1991, Amini et al. 2011a

(perso)] that o"ers semantic analysis and transformation passes. Initially targeting Fortan

77 as an input, it has been then extended to handle C code. It aims at exploring di"erent

program optimizations using interprocedural analyses. Unlike heroes from other projects

that target binary level parallelization [Pradelle et al. 2012, Kotha et al. 2010], PIPS

operates at source level trying to regenerate a code as closeas possible to the input.

First, the targeted program class is introduced with a case study: a cosmological sim-

ulation. Then the convex array region abstraction, which is the basis of most of the

transformations this work relies on, is introduced in Section 3.2. The most basic mapping

1. Some recent solutions like Nvidia Zero-Copy allow mapping directly the host memory in the GPU
virtual space and thus avoid the explicit copy. However, they do not provide good performance in the
general case.

3.1. Case Study 63

Figure 3.1: Stars-PM is aN -body cosmological simulation. Here a satellite triggers abar
and spiral arms in a galactic disc.

is then described in Section3.3 to give insight on the principle involved. Array region

analyses are used to reÞne the process of Section3.3 in Section 3.4. The limits of this

approach are given in Section3.5. An interprocedural optimization is then proposed in

Section3.6 to e! ciently map the data on the accelerator and limit the number of transfers.

The parallel promotion presented in Section3.7 may help as a complement to loop

fusion to reduce synchronization and sometimes memory transfers.

Finally, the related work about optimizing the communication for GPGPU is presented

in Section3.8.

3.1 Case Study

Small benchmarks like those used in the Polybench suite [Pouchet 2011] for example, are

limited to a few kernels in sequence, sometimes surrounded by a time step loop. Therefore,

if they are well suited for studying the pure performance of the GPUs, they cannot be

considered representative of a whole application when it comes to evaluating a global

problem like mapping of data between the host and the accelerator.

To address this issue, my study is based on a program more representative of numerical

simulations. It is a real numerical simulation called Stars-PM, a particle mesh cosmological

N -body code whose output is shown in Figure3.1. The sequential version was written in

64 Chapter 3. Data Mapping, Communications and Consistency

int main (int argc , char *argv []) {

// Read i n i t i a l c o n d i t i o n s from a f i l e
ini t_data (argv [1]);

// Time l o o p
for (t = 0; t < T; t += DT) {

// Do computa t i ons f o r each i t e r a t i o n
}

// Output r e s u l t s to a f i l e
wri te_data (argv [2]);

}

Figure 3.2: SimpliÞed global scheme commonly used in numerical simulations.

C at Observatoire Astronomique de Strasbourgand was later rewritten and optimized by

hand usingCUDA to target GPUs [Aubert et al. 2009 (perso)].

This simulation models the gravitational interactions between particles in space. It

discretizes the three-dimensional space with a discrete grid on which particles are mapped.

Initial conditions are read from a Þle. A sequential loop iterates over successive time steps,

where the core of the simulation is computed. Results are Þnally extracted from the Þnal

grid state and stored in an output Þle. This general organization is shown in the simpliÞed

code in Figure3.2. It is a common scheme in numerical simulations, while the core of

each iteration can vary widely from one domain to the other. Thesub-steps performed for

processing a single time step in Stars-PM are illustrated Figure 3.3.

3.2 Array Region Analysis

Several transformations in the compilation ßow used to target hardware accelerators are

based on array regions. This section provides a basic introduction to this representation.

Three examples are used throughout this section to illustrate this approach: the code in

Figure 3.4 requires interprocedural array accesses analysis, the code in Figure 3.5 contains

a while loop, for which the memory access pattern requires an approximated analysis, and

the code in Figure3.6 features a nontrivial switch-case.

Convex array regions were Þrst introduced by Triolet [Triolet 1984, Triolet et al. 1986]

with the initial purpose of summarizing the memory accesses performed on array element

sets by function calls. The concept was later generalized andformally deÞned for any

3.2. Array Region Analysis 65

void iterat ion (coord pos [NP][NP][NP],
coord vel [NP][NP][NP],
f loat dens [NP][NP][NP],
int data [NP][NP][NP],
int histo [NP][NP][NP]) {

// S tep 1 : Cut t h e 3D space in a r e g u l a r mesh
discret isat ion (pos , data);

// S tep 2 : Compute d e n s i t y on t h e g r i d
histogram (data , histo);

// S tep 3 : Compute p o t e n t i a l on t h e mesh
// in t h e Four ie r space
potential (histo , dens);

// S tep 4 : For each dimension , compute t h e
// f o r c e and then upda te t h e speed
forcex (dens , force);
updatevel (vel , force , data , X_DIM , dt);
forcey (dens , force);
updatevel (vel , force , data , Y_DIM , dt);
forcez (dens , force);
updatevel (vel , force , data , Z_DIM , dt);

// S tep 5 : Move p a r t i c l e s
updatepos (pos , vel);

}

Figure 3.3: Outline of one time step in the Stars-PM cosmological simulation code.

program statements by Creusillet [Creusillet & Irigoin 1996b, Creusillet 1996] and imple-

mented in the PIPS compiler framework.

Informally, the read (resp. write) regions for a statements are the set of all scalar

variables and array elements that are read (resp. written) during the execution ofs. This set

generally depends on the values of some program variables atthe entry point of statement

s: the read regions are said to be a function of the memory state! preceding the statement

execution, and they are collectively denotedR(s, !) (resp. W(s, !) for the write regions).

For instance the read regions associated to thefor statement in function kernel in

Figure 3.4 are these:

R(s, !) = {{ v} , { i } , { j } , { src (" 1) | " 1 = ! (i) + ! (j)} , { m(" 1) | " 1 = ! (j)}}

66 Chapter 3. Data Mapping, Communications and Consistency

// R (src) = { src [! 1] | i $! 1 $ i + k %1}
// W(dst) = { dst [! 1] | ! 1 = i }
// R(m) = { m[! 1] | 0 $! 1 $ k %1}
int kernel (int i , int n , int k , int src [n] , int dst [n -k] , int m[k]) {

int v=0;
for (int j = 0; j < k; ++ j)

v += src [i + j] * m[j];
dst [i]=v;

}
void fir (int n , int k , int src [n] , int dst [n -k] , int m[k]) {

for (int i = 0; i < n - k+ 1; ++ i)
// R(src) = { src [! 1] | i $! 1 $ i + k %1, 0 $ i $ n %k}
// R(m) = { m[! 1] | 0 $! 1 $ k %1}
// W(dst) = { dst [! 1] | ! 1 = i }
kernel (i , n , k , src , dst , m);

}

Figure 3.4: Array regions on a code with a function call.

// R (randv) = { randv[! 1] | N %3 $ 4 & ! 1; 3 & ! 1 $ N }
// W(a) = { a[! 1] | N %3 $ 4 & ! 1; 12& ! 1 $ 5 & N + 9}
void foo (int N, int a[N], int randv [N]) {

int x=N/4 ,y=0;
while (x<=N/3) {

a[x+y] = x+y;
if (randv [x -y]) x = x+2; else x++,y++;

}
}

Figure 3.5: Array regions on a code with awhile loop.

where" x is used to describe the constraints on thexth dimension of an array, and where

! (i) denotes the value of the program variablei in the memory state! . From this point,

i is used instead of! (i) when there is no ambiguity.

The regions given above correspond to a very simple statement; however, they can be

computed for every level of compound statements. For instance, theread regions of the

for loop on line 6 in the code in Figure3.4 are these:

R(s, !) = {{ v} , { i } , { src (" 1) | i $ " 1 $ i + k %1} , { m(" 1) | 0 $ " 1 $ k %1}}

However, computing exact sets is not always possible, either because the compiler lacks

information about the values of variables or the program control ßow, or because the regions

3.2. Array Region Analysis 67

// R (in) = { in [! 1] | i $! 1 $ i + 2 }
// W(out) = { out [! 1] | ! 1 = i }
void foo (int n , int i , char c , int out [n] , int in [n]) {

switch (c){
case ÕaÕ:
case ÕeÕ:

out [i]= in [i];
break ;

default :
out [i]= in [3*(i /3)+2];

}
}

Figure 3.6: Array regions on a code with aswitch case.

cannot be exactly represented by a convex polyhedron. In these cases, over-approximated

convex sets (denotedR andW) are computed. In the following example, the approximation

is due to the fact that the exact set contains holes, and cannot be represented by a convex

polyhedron:

W(! for(int i=0; i<n; i++) if (i != 3) a[i]=0; ", !) = {{ n} , { a[" 0] | 0 $ " 0 < n }}

whereas in the next example, the approximation is due to the fact that the condition and its

negation are nonlinear expressions that cannot be represented exactly in PIPS framework:

R(! if (a[i]>3) b[i]=1; else c[i]=1 ", !) =

{{ i } , { a[" 0] | " 0 = i } , { b[" 0] | " 0 = i } , { c[" 0] | " 0 = i }}

Under-approximations (denotedR and W) are required when computing region di"erences

(see [Creusillet & Irigoin 1996a] for more details on approximations when using the convex

polyhedron lattice).

read and write regions summarize the e"ects of statements and functions upon array

elements, but they do not take into account the ßow of array element values. For that

purpose,in and out regions have been introduced in [Creusillet & Irigoin 1996b] to take

array kills into account, that is to say, redeÞnitions of individual array elements:

¥ in regions contain the array elements whose values areimported by the considered

statement, which means the elements that are read before being possibly redeÞned

by another instruction of the statement.

68 Chapter 3. Data Mapping, Communications and Consistency

¥ out regions contain the array elements deÞned by the consideredstatement, which

are used afterwards in the program continuation. They are thelive or exportedarray

elements.

As for read and write regions,in and out regions may be over- or under-approximated.

There is a strong analogy between the array regions of a statement and the memory

used in this statement, at least from an external point of view, which means excluding

its privately declared variables. Intuitively, the memoryfootprint of a statement can be

obtained by counting the points in its associated array regions. In the same way, the

read (or in) and write (or out) regions can be used to compute the memory transfers

required to execute this statement in a new memory space built from the original space.

This analogy is analyzed and leveraged in the following sections.

3.3 Basic Transformation Process

The most basic process for mapping data to the accelerator consists in sending to the

accelerator all arrays that are referenced in a kernel priorexecuting it. The same set

of arrays has to be transferred back from the accelerator memory at the end of kernel

execution. This basic process is the most basic that can be used by automatic tools. It is

represented in Figure3.7.

The main issue arises when it is needed to count the number of array elements to

transfer. Depending on the target language or framework, the information can be hard

to Þgure out. Leung et al. [Leung et al. 2009] and JCUDA [Yan et al. 2009] target Java

and beneÞt from runtime information about array sizes. Others such as Verdoolaege and

Grosser [Verdoolaegeet al. 2013] handle C code but are limited to arrays with size known

at compile time. The algorithms used by proprietary softwarelike R-Stream, HMPP, or

PGI Accelerator are unknown, but they are most likely based on the same kind of scheme.

The proposed tool that comes along with this thesis, Par4All [SILKAN 2010 (perso),

Amini et al. 2012b (perso)] (see detailed presentation in Section5.1), relies on the same

scheme in its most basic version, relaxing this constraint by handling C99Variable Length

Array (VLA) . The e"ective size is then known only at runtime but the information is

available symbolically at compile time.

Some polyhedral automatic tools do not consider this problem at all. While converting

and automatically optimizing loop nests written in C code into CUDA or OpenCL kernels,

they rely on the programmer to generate the host code. This is the case at least for

3.3. Basic Transformation Process 69

Figure 3.7: Basic process for mapping data to the accelerator (source [Yan et al. 2009],
c! 2011 Springer-Verlag)g.

Baskaran et al. [Baskaranet al. 2010].

The most common optimization at this level is local to each kernel. It consists in

sending to the accelerator only the data that are used and to get back only the data

that are deÞned. This can be done automatically as in PPCG [Verdoolaegeet al. 2013]

or directive hints given by the programmer as in JCUDA, HMPP, PGI Accelerator, or

hiCUDA [Han & Abdelrahman 2009].

This basic process is illustrated below using as an example the Þrst step of Stars-PM

main iteration, the function discretization() . Figure 3.8 shows the sequential code of

this function in its initial version.

The loop nest is detected as parallel and selected to be promoted as a kernel. The

mapping on the accelerator is performed according to the technique presented forward in

Section 4.2. The loop body is outlined to a new function that will be executed by the

accelerator, and the loop nest is replaced by a call to a kernel launch function. Memory

transfers are generated according to the basic technique introduced in this section. The

resulting code is shown in Figure3.9.

Looking at the original loop nest, it is clear that thepos array is used in the kernel,

whereas thedata array is written. Therefore two transfers have to be generatedas can

be seen in Figure3.9. The Þrst one ensures thatpos are moved to the accelerator before

kernel execution while the second one gets the data back into the host memory after the

kernel execution.

70 Chapter 3. Data Mapping, Communications and Consistency

void discret izat ion (coord pos [NP][NP][NP],
int data [NP][NP][NP]){

int i , j , k ;
f loat x , y , z;
for (i = 0; i < NP; i++)

for (j = 0; j < NP; j++)
for (k = 0; k < NP; k++) {

x = pos [i][j][k].x ;
y = pos [i][j][k].y ;
z = pos [i][j][k].z ;
data [i][j][k] = (int)(x/DX)*NP*NP

+ (int)(y/DX)*NP
+ (int)(z/DX);

}
}

Figure 3.8: Sequential source code for functiondiscretization , the Þrst step of each Stars-
PM simulation main iteration.

3.4 Region ReÞnement Scheme

This section introduces reÞnement of the basic scheme based on array declarations

from the previous section using the convex array regions in Section 3.2. It also illustrates

informally the process ofstatement isolation described formally in GueltonÕs PhD the-

sis [Guelton 2011b]. It turns a statement s into a new statement Isol(s) that shares no

memory area with the remainder of the code, and is surrounded by the required memory

transfers between the two memory spaces. In other words, ifs is evaluated in a memory

state function, ! , Isol(s) does not reference any element of Domain(!). The generated

memory transfers to and from the new memory space ensure the consistency and validity

of the values used in the extended memory space during the execution of Isol(s) and once

again, back to the original execution path.

To illustrate how the convex array regions are leveraged, thewhile loop in Figure 3.5

is used as an example. The exact and over-approximated array regions for this statement

are as follows:

R = {{ x} , { y}} R(randv) = { randv[" 1] | N %3 $ 4 & " 1; 3 & " 1 $ N }

W = {{ x} , { y}} W(a) = { a[" 1] | N %3 $ 4 & " 1; 12& " 1 $ 5 & N + 9}

3.4. Region ReÞnement Scheme 71

void discret izat ion (coord pos [NP][NP][NP], int data [NP][NP][NP]) {
// Dec la re p o i n t e r s to b u f f e r s on a c c e l e r a t o r
coord (* pos0)[NP][NP][NP] = NULL ;
int (* data0)[NP][NP][NP] = NULL ;

// A l l o c a t e b u f f e r s on t h e GPU
P4A_accel_mal loc ((void **) &data0 , sizeof (int)*NP*NP*NP);
P4A_accel_mal loc ((void **) &pos0 , sizeof (coord)*NP*NP*NP);

// Copy t h e i n p u t da ta to t h e GPU
P4A_copy_to_accel (sizeof (coord)*NP*NP*NP , pos , *pos0);

// Launch t h e k e r n e l
P4A_cal l_accel_kernel_2d (discret izat ion_kernel ,NP ,N P ,*pos0 ,* data0);

// Copy t h e r e s u l t back from t h e GPU
P4A_copy_from_accel (sizeof (int)*NP*NP*NP , data , *data0);

// Free GPU b u f f e r s
P4A_accel_free (data0);
P4A_accel_free (pos0);

}

// The k e r n e l c o r r e s p o n d i n g to loop%n e s t body
P4A_accel_kernel discret izat ion_kernel (coord *pos , int *data) {

int k; f loat x , y , z;
int i = P4A_vp_1 ; // P4A_vp_ " are mapped from CUDA B lock Idx ."
int j = P4A_vp_0 ; // and ThreadIdx . " t o l o o p i n d i c e s

// I t e r a t i o n c lamping to avo id GPU i t e r a t i o n over run
if (i <=NP&&j<=NP)

for (k = 0; k < NP; k += 1) {
x = (*(pos+k+NP*NP*i+NP*j)). x ;
y = (*(pos+k+NP*NP*i+NP*j)). y ;
z = (*(pos+k+NP*NP*i+NP*j)). z ;
*(data+k+NP*NP*i+NP*j) = (int)(x/DX)*NP*NP

+ (int)(y/DX)*NP
+ (int)(z/DX);

}
}

Figure 3.9: Code for functiondiscretization after automatic GPU code generation.

72 Chapter 3. Data Mapping, Communications and Consistency

void foo (int N, int a[N], int randv [N]) {
int x=0 ,y=0;
int A[N/6] , RANDV [(N -9)/12] , X , Y;
memcpy (A, a+(N -3)/4 , N /6* sizeof (int)); // (1)
memcpy (RANDV , randv +(N -3)/4 , (N -9)/12* sizeof (int)); // (2)
memcpy (&X, &x , sizeof (x)); memcpy (&Y, &y , sizeof (y)); // (3)
while (X<=N/3) {

A[X+Y-(N -3)/4] = X+Y;
if (RANDV[X-Y -(N -3)/4]) X = X+2; else X++,Y++;

}
memcpy (a+(N -3)/4 , A , N /6* sizeof (int)); // (4)
memcpy (&x , &X, sizeof (x)); memcpy (&y , &Y, sizeof (y)); // (5)

}

Figure 3.10: Isolation of the irregularwhile loop from Figure3.5using array region analysis.

The basic idea is to turn each region into a newly allocated variable, large enough to

hold the region, then to generate data transfers from the original variables to the new

ones, and Þnally to perform the required copy from the new variables to the original ones.

This results in the code shown in Figure3.10, where isolated variables have been put in

uppercase. Statements(3) and (5) correspond to the exact regions on scalar variables.

Statements(2) and (4) correspond to the over-approximated regions on array variables.

Statement (1) is used to ensure data consistency, as explained later.

Notice how memcpysystem calls are used here to simulate data transfers, and, in par-

ticular, how the sizes of the transfers are constrained with respect to the array regions.

The beneÞts of using new variables to simulate the extended memory space and of

relying on a regular function to simulate theDMA are twofold:

1. The generated code can be executed on a general-purpose processor. It makes it

possible to verify and validate the result without the need ofan accelerator or a

simulator.

2. The generated code is independent of the hardware target: specializing its implemen-

tation for a given accelerator requires only a speciÞc implementation of the memory

transfer instructions (herememcpy).

3.4.1 Converting Convex Array Regions into Data Transfers

From this point on, the availability of data transfer operators that can transfer rectan-

gular subparts ofn-dimensional arrays to or from the accelerator is assumed. For instance,

3.4. Region ReÞnement Scheme 73

size_t memcpy2d (void * dest , void * src ,

size_t dim1 , size_t offset1 , size_t count1 ,

size_t dim2 , size_t offset2 , size_t count2);

copies fromsrc to dest the rectangular zone between(offset1 , offset2) and (offset1 +

count1, offset2 + count2). dim1 and dim2 are the sizes of the memory areas pointed to by

src and dest on the host memory, and are used to compute the addresses of the memory

elements to transfer.

We show how convex array regions are used to generate calls tothese operators. Let

src be an-dimensional variable, and{ src[" 1] . . . [" n] | # (" 1, . . . , " n)} be a convex region of

this variable.

As native DMA instructions are very seldom capable of transferring anything other

than a rectangular memory area, the rectangular hull, denoted ' á (, is Þrst computed so

that the region is expressed in the form

{ src[" 1] . . . [" n] | $1 $ " 1 < %1, . . . , $n $ " n < %n }

This transformation can lead to a loss of accuracy and the region approximation can thus

shift from exact to may. This shift is performed when the original region is not equal to

its rectangular envelope.

The call to the transfer function can then be generated withoffset k = $k and

countk = %n %$k for eachk in [1. . . n].

For a statement s, the memory transfers from! are generated using its read regions

(R(s, !)): any array element read bys must have an up-to-date value in the extended

memory space with respect to! . Symmetrically, the memory transfers back to! must

include all updated values, represented by the written regions (W(s, ! !)), where ! ! is the

memory state onces is executed from! . 2

However, if the written region is over-approximated, part ofthe values it contains may

not have been updated by the execution ofIsol(s). Therefore, to guarantee the consistency

of the values transferredback to ! , they must Þrst be correctly initialized during the

transfer from ! . These observations lead to the following equations for the convex array

2. Most of the time, variables used in the region descriptionare not modiÞed by the isolated statement
and we can safely useW(s, "). Otherwise, e.g.a[i++]=1 , methods detailed in [Creusillet & Irigoin 1996b]
must be applied to express the region in the right memory state.

74 Chapter 3. Data Mapping, Communications and Consistency

regions transferred from and to! , respectively denotedLoad(s, !) and Store(s, !):

Store(s, !) = ' W(s, !)(

Load(s, !) = ' R(s, !)) (Store(s, !) % W(s, !))(

Load(s, !) and Store(s, !) are rectangular regions by deÞnition and can be converted into

memory transfers, as detailed previously. The new variableswith ad-hoc dimensions are

declared and a substitution taking into account the shifts is performed ons to generate

Isol(s).

3.4.2 Managing Variable Substitutions

For each variablev to be transferred according toLoad(s, !), a new variableV is de-

clared, which must contain enough space to hold the loaded region. For instance if v holds

short integers and

Load(s, !) = { v[" 1][" 2] | $1 $ " 1 < %1, $2 $ " 2 < %2}

then V will be declared asshort int V[%1 %$1][%2 %$2]. The translation of an intraproce-

dural reference tov into a reference toVis straightforward as* i, j, V[i][j] = v[i + $1][j + $2].

The combination of this variable substitution with convex array regions is what makes

the isolate statement a powerful tool: all the complexity ishidden by the region abstraction.

For instance, once the regions of the switch case in Figure3.6 are computed as

R(c) = { c} R (i) = { i}

W(out) = { out[" 1] | " 1 = i } R(in) = { in[" 1] | i $ " 1 $ i + 2}

the data transfer generation and variable substitutions lead to the isolated code given in

Figure 3.11. The complexity of the isolated statement does not matter as long as it has

been modeled by the convex array region analysis.

For interprocedural translation, a new version of the called function is created using

the following scheme: for each transferred variable passed as an actual parameter, and for

each of its dimensions, an extra parameter is added to the call and to the new function,

holding the value of the corresponding o"set. These extra parameters are then used to

3.4. Region ReÞnement Scheme 75

void foo (int n , int i , char c , int out [n] , int in [n]) {
char C; int OUT [1] , IN [3] , I ;
memcpy (&I ,&i , sizeof (int));
memcpy (&C ,&c,sizeof (char));
memcpy (IN , in+i , sizeof (int)*3);
switch (C) {

case ÕaÕ:
case ÕeÕ:

OUT[I - I]= IN[I - I];
break ;

default :
OUT[I]= IN [3*(I /3)+2 - I];

}
memcpy (out+i , OUT , sizeof (int));

}

Figure 3.11: Code with aswitch case from Figure3.6 after isolation.

void fir (int n , int k , int src [n] , int dst [n -k] , int m[k]) {
int N=n - k+ 1;
for (int i = 0; i < N; ++ i) {

int DST [1] , SRC[k] ,M[k];
memcpy (SRC , src+i , k* sizeof (int));
memcpy (M, m+0, k*sizeof (int));
KERNEL (i , n , k , SRC , DST , M, i/ " SRC" / , i / " DST" / , 0 / "M" /);
memcpy (dst , DST+0, 1*sizeof (int));

}
}

Figure 3.12: Interprocedural isolation of the outermost loop of a Finite Impulse Response.

perform the translation in the called function.

The output of the whole process applied to the outermost loop ofthe Finite Impulse

Response (FIR)is illustrated in Figure 3.12, where a newKERNELfunction with two extra

parameters is now called instead of the originalkernel function. These parameters hold

the o"sets between the original array variablessrc and mand the isolated onesSRCand M.

The body of the newKERNELfunction is given in Figure3.13. The extra o"set parame-

ters are used to perform the translation on the array parameters. The same scheme applies

for multidimensional arrays, with one o"set per dimension.

76 Chapter 3. Data Mapping, Communications and Consistency

void KERNEL (int i , int n , int k , int SRC[k] , int DST [1] , int M[k] ,
int SRC_offset , int DST_offset , int M_offset) {

int v=0;
for (int j = 0; j < k; ++ j)

v += SRC[i+j - SRC_offset]*M[j - M_offset];
DST[i - SRC_offset]=v;

}

Figure 3.13: Isolated version of theKERNELfunction of the Finite Impulse Response (see
Figure 3.4).

3.5 Limits

Data exchanges between host and accelerator are performed as DMA transfers between

Random Access Memory (RAM)memories across thePCI Express bus, which currently

o"ers a theoretical bandwidth of 8 GB/s. This is really small compared to the GPU inner

memory bandwidth, which exceeds often 150 GB/s. This low bandwidth can annihilate all

gains obtained when o$oading computations in kernels, unless they are really compute-

intensive.

With the available hardware (see Section7.1), up to 5.6GB/s was measured from the

host to the GPU, and 6.2GB/s back. This throughput is obtained for blocks of a few

tens of MB, but decreases dramatically for smaller blocks. Moreover, this bandwidth is

reduced by more than half when the transferred memory areas are not pinned ; i.e. subject

to paging by the virtual memory manager of the operating system. Figure3.14 illustrates

this behavior.

Using as reference a cube with 128 cells per edge and as many particles as cells, for

a function like discretization , one copy to theGPU for particle positions is a block of

25 MB. After execution, one copy back from theGPU for the particle-to-cell association

is an 8 MB block.

The communication time for these two copies is about 5 ms. Recent GPUs o"er ECC

hardware memory error checking that more than doubles time needed for the same copies

to 12 ms. Moreover, each bu"er allocation and deallocation require 10 ms. In comparison,

kernel execution fordiscretization and this problem size requires only 0.37 ms on the

GPU, but 37 ms on theCPU.

Note that memory transfers and bu"er allocations represent the largest part of the total

execution time for the discretization step, and therefore the highest potential for obtaining

accelerations. This is why the next section exposes a static interprocedural optimization

3.6. Communication Optimization Algorithm 77

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50 100 150 200 250 300 350 400

M
B

/s

KiBytes

H-TO-D
D-TO-H

D-TO-H pinned
H-TO-D pinned

Figure 3.14: Bandwidth for memory transfers over the PCI-Express 2.0 bus as a function
of block size. Results are shown for transfers from the host tothe GPU (H-TO-D) and in
the opposite direction (D-TO-H), each for pinned or standardallocated memory.

to map data transfers more e! ciently.

3.6 Communication Optimization Algorithm

Much work has been done regarding communication optimization for distributed com-

puters. Examples include message fusion in the context ofSingle Program Distributed Data

(SPDD) [Gerndt & Zima 1990], data ßow analysis based on array regions to eliminate re-

dundant communications and to overlap the remaining communications with computations

operations [Gonget al. 1993], and distribution in the context of High Performance Fortran

(HPF) compilation [Coelho 1996, Coelho & Ancourt 1996].

Similar methods are applied in this section to o$ oad computation in the context of a

hostÐaccelerator relationship and to integrate in a parallelizing compiler a transformation

that limit the amount of CPUÐGPU communications at compile time.

This section introduces a new data ßow analysis designed to drive the static generation

of memory transfers between host and accelerator. The main scheme is Þrst presented and

the intraprocedural algorithm is detailed. Then the interprocedural extension of the algo-

78 Chapter 3. Data Mapping, Communications and Consistency

rithm is presented. The metric used to evaluate the scheme is introduced and experiments

are performed using a 12-core Xeon multiprocessor machine with a Nvidia Tesla GPU

C2050. The proposed solution is evaluated on well-known benchmarks [Pouchet 2011, Che

et al. 2009] before showing how it scales with the real numerical cosmological simulation

Stars-PM.

It is assumed for this section that the memory of theGPU is large enough to handle

the arrays to process. While this assumption can represent an unacceptable constraint

for some workloads, like those encountered when dealing with out-of-core computing, the

many gigabytes of memory embedded in modernGPUs are large enough for a wide range

of simulations.

3.6.1 A New Analysis: Kernel Data Mapping

At each time step, the function iteration (see in Figure3.3) uses data deÞned by

the previous step. The parallelized code performs many transfers to the GPU followed

immediately by the opposite transfer.

Our simulation (see in Figure3.2) presents the common pattern of data dependencies

between loop iterations, where the current iteration uses data deÞned during previous

ones. Such data should remain on theGPU, with copies back to the host only as needed

for checkpoints and Þnal results.

A new analysis is introduced for the compiler middle-end to generate e! cient hostÐ

GPU data copying. The host and the accelerator have separated memory spaces; my

analysis annotates internally the source program with information about the locations of

up-to-date copies: in host memory and/orGPU memory. This allows a further additional

transformation to statically determine interesting places to insert asynchronous transfers

with a simple strategy: Launch transfers from host toGPU as early as possible and launch

those fromGPU back to host as late as possible, while still guaranteeing data integrity.

Additionally, launching transfers inside loops is avoidedwhenever possible. A heuristic

is used to place transfers as high as possible in the call graph and in the Abstract Syn-

tax Tree (AST). PIPS uses a hierarchical control ßow graph [Irigoin et al. 1991, Amini

et al. 2011a (perso)] to preserve as much as possible of theAST. However, to simplify

the presentation of the analyses, equations are written in a classical way assuming that a

traditional Control Flow Graph (CFG) is available.

The sets used in the data ßow analysis are Þrst introduced. Thenthe equations used

for intraprocedural construction are presented, before extending them to interprocedural

3.6. Communication Optimization Algorithm 79

construction. Finally the generation of transfers and the lightweight runtime involved to

support the copy process are illustrated.

3.6.2 DeÞnitions

The analysis computes the following sets for each statement:

¥ U is the set of arrays known to beused next (>) by the accelerator;

¥ D is the set of arrays known to be last (<) deÞned by the accelerator, and not used

on the host in the meantime;

¥ TH " A is the set of arrays to transfer to the accelerator memory space immediately

after the statement;

¥ TA" H is the set of arrays to transfer from the accelerator to the host immediately

before the statement.

These sets are initially empty for every statement. Note thateven if array regions are

used in the following equations to compute these sets, the granularity is the array. Data-

ßow equations presented in the next sections describe the computation of these sets on the

control-ßow graph of the global program. LetS denotes a statement of the program. It

can be complex but in order to simplify in the following it is considered that statements are

assignments or function calls. A call to a kernel on theGPU is handled through di"erent

equations. Such a statement is denotedSk . The control-ßow graph is represented with

pred(S) for the set of statements that can precede immediatelyS at execution. Symmet-

rically, succ(S) stands for the set of statements that can be executed immediately after

S.

As explained in Section3.2, PIPS computes array regions. These analyses produce

Þne grained resources; these local Þne grained pieces of information are used to build a

coarse grained analysis in which arrays are represented atomically. Therefore the equations

presented in the following do not require a deep understanding of array regions. The

interested reader is referred to BŽatrice CreusilletÕs PhD thesis [Creusillet & Irigoin 1996b]

for more information.

In the equations below, the arrays totally or partially written by a statement S are

denotedW(S). Similarly, the arrays read byS are denotedR(S).

When S is a function call, the set represents the summary of the function, i.e., the set

of e"ects that can be seen on function parameters and on globalvariables.

80 Chapter 3. Data Mapping, Communications and Consistency

Moreover, OUT(Sk) represents the set of arrays modiÞed by a kernel for whichPIPS

established that they are alive, i.e., their value is potentially used by a later statement in

the program. By contrast, IN (Sk) stands for the set of arrays consumed by the kernel,

i.e., those for which a value is read without being previously produced in the kernel.

3.6.3 Intraprocedural Phase

The analysis begins with the setD in a forward pass through the control ßow graph.

An array is deÞned on theGPU for a statementS i" it is also the case for all its immediate

predecessors in the control ßow graph and if the array is not used or deÞned by the host,

i.e., is not in the setR(S) or W(S) computed byPIPS:

D(S) =

!

"
#

S! # pred(S)

D(S!)

$

% % R(S) % W(S) (3.1)

The initialization is performed by the Þrst kernel callSk with the arrays deÞned by the

kernel k and used later,OUT(Sk). The following equation is involved at each kernel call

site:

D(Sk) = OUT(Sk)
&

!

"
#

S! # pred(Sk)

D(S!)

$

% (3.2)

A backward pass is then performed in order to computeU. For a statementS, an array

has its next use on the accelerator i" it is also the case for all statements immediately

following in the control ßow graph, and if it is not deÞned byS.

U(S) =

!

"
&

S! # succ(S)

U(S!)

$

% % W(S) (3.3)

As above withD, U is initially empty and is Þrst initialized at kernel call sites with the

arrays necessary to run the kernel,IN (Sk), and the arrays deÞned by the kernel,W(Sk).

These deÞned arrays have to be transferred to theGPU if it cannot be proved that they

are written entirely by the kernel. Otherwise, if not all the values have been updated in

3.6. Communication Optimization Algorithm 81

the GPU memory, the transfer may overwrite still-valid data on theCPU when copying

back the array from theGPU after kernel execution:

U(Sk) = IN (Sk)
&

W(Sk)
&

!

"
&

S! # succ(Sk)

U(S!)

$

% (3.4)

An array must be transferred from the accelerator to the hostafter a statementS i"

its last deÞnition is in a kernel and if it is not the case for atleast one of the immediately

following statements:

TA" H (S) = D(S) %
#

S! # succ(S)

D(S!) (3.5)

This set is used to generate a copy operation at the latest possible location.

An array must be transferred from the host to the acceleratorif it has a next use

on the accelerator. In order to perform the communication atthe earliest, its launch is

placed immediately after the statement that deÞnes it, i.e., the statement whoseW(S) set

contains it. The following equation applies for anyS which is not a kernel call.

TH " A (S) = W(S)
#

!

"
&

S! # succ(S)

U(S!)

$

% (3.6)

3.6.4 Interprocedural Extension

Kernel calls are potentially localized deep in the call graph. Consequently, a reuse be-

tween kernels requires interprocedural analysis. The function iteration (see in Figure3.3)

illustrates this situation: each step corresponds to one ormore kernel executions.

My approach is to perform a backward analysis on the call graph. For each function

f , summary setsD(f) and U(f) are computed. They summarize information about the

formal parameters of the function and the global variables.These sets can be viewed as

contracts. They specify a data mapping that the call site mustconform to. All arrays

present in U(f) must be transferred to theGPU before the call, and all arrays deÞned in

D(f) must be transferred back from theGPU before any use on the host.

82 Chapter 3. Data Mapping, Communications and Consistency

These sets are required in the computation ofD and U when a call site is encountered.

Indeed, at a call sitec for a function f , each argument of the call that corresponds to a

formal parameter present inU must be transferred to theGPU before the call, because we

know that the Þrst use in the called function occurs in a kernel. Similarly, an argument

that is present in D has been deÞned in a kernel during the call and not already transferred

back when the call ends. This transfer can be scheduled later, but before any use on the

host.

Equations 3.1 and 3.3 are modiÞed for a call site by adding a translation operator,

transf" c, between arguments and formal parameters:

D(c) =

'

transf" c(D(f))
&

(
#

S! # pred(c)

D(S!)

)*

% R(c) % W(c) (3.7)

U(c) =

'

transf" c(U(f))
&

(
&

S! # succ(c)

U(S!)

)*

% W(c) (3.8)

The whole process implied by these equations is shown in Figure3.15.

In the code in Figure3.16, comparing the result of the interprocedural optimized code

with the very local approach of Figure3.9 shows that all communications and memory

management instructions (allocation/deallocation) havebeen eliminated from the main

loop.

3.6.5 Runtime Library

Our compiler Par4All includes a lightweight runtime library that lets the generated code

be independent from the target (currentlyOpenCL and CUDA). Par4All also supports

common functions such as memory allocation at kernel call sites and memory transfer

sites. The runtime relies on a hash table that maps host addresses toGPU addresses. This

hash table allows ßexibility in the handling of the memory allocations. Using it, the user

call sites and function signatures can be preserved, avoiding more advanced and heavy

transformations, i.e., duplicating the function arguments for the arrays in the whole call

graph and at all call sites to carry theCPU and GPU addresses.

The memory management in the runtime does not free theGPU bu"ers immediately

after they have been used, but preserves them as long as thereis enough memory on the

3.6. Communication Optimization Algorithm 83

�������������������	�������
�����������
����
���	
�����������������	�������
��
��
�������������������������
��
���������������������������	�����������������	�
������
�����������������	�������������
��
��

���������	���
���������������	� ��� ������
�!���������"�#�������$�%�������&�"�'�%�
����
�������������	�������
���
�����������	�������������������
��
�������!�����������
������
��������������������������������
����������������� �	�(�����	�
��
�����������������)�������
�������	�
��
������
����

������

����������

�����������	��

���	������

����������

����������

�"����

�"����

����������

����������

����������

����������������������

���������������	�
�����
�
����

���������������	�
�����
�
����

�"�����������	��

�"���	������

�����������	��

����������
����������

�"����
������������������

���
�����
�
����

���	������

�� �	������

�� �	������

�"����

����������������������

������������������������������������
���������������	��������������

�������
�	���
������

Figure 3.15: Illustration of set construction using the intraprocedural analysis on the
function iteration . The di"erent calls to step functions use and produce data on the GPU
via kernel calls. Sometimes in the main loop, arraya is read to display or to checkpoint.
The interprocedural translation exploits at call site the summary computed on function
iteration . A Þx point is sought on the loop.

GPU. When a kernel execution requires more memory than is available, the runtime frees

some bu"ers. The policy used for selecting a bu"er to free can be the same as for cache and

virtual memory management, for instanceLeast Recently Used (LRU)or Least Frequently

Used (LFU).

This behavior requires updating hardware caches inSymmetric MultiProcessing (SMP)

with protocols such asMESI. The scheme involved keeps a copy of the data up to date in

the CPU and the accelerator memory at the same time. When the host or the accelerator

writes data, the copy in the other one is invalidated and a transfer may be scheduled if

necessary.

The calls to the runtime that retrieves addresses in the accelerator memory space for

arrays pos and data can be noticed in Figure3.16. If the arrays are not already allocated

84 Chapter 3. Data Mapping, Communications and Consistency

void discret izat ion (coord pos [NP][NP][NP],
int data [NP][NP][NP]) {

// g e n e r a t e d v a r i a b l e
coord *pos0 = P4A_runt ime_resolve (pos ,NP*NP*NP*sizeof (coord));
int *data0 = P4A_runt ime_resolve (pos ,NP*NP*NP* sizeof (int));
// C a l l k e r n e l
P4A_cal l_accel_kernel_2d (discret izat ion_kernel ,

NP , NP , pos0 , data0);
}
int main (int argc , char *argv []) {

// Read da ta from i n p u t f i l e s
ini t_data (argv [1] ,) ;
P4A_runt ime_copy_to_accel (pos , ...* sizeof (.. .));
// Main tempora l l o o p
for (t = 0; t < T; t+=DT)

iterat ion (.. .);
// Output r e s u l t s to a f i l e
P4A_runt ime_copy_from_accel (pos , ...* sizeof (. . .)) ;
wri te_data (argv [2] ,.. . .);

}

Figure 3.16: SimpliÞed code for functionsdiscretization and main after interprocedural
communication optimization.

in the accelerator, a lazy allocation is done the Þrst time. The code is lighter than the

previous version shown in Figure3.9, and easier to generate from the compiler point of

view.

3.7 Sequential Promotion

Two parallel loop nests can be separated by some sequential code. When this sequential

code uses or produces the data involved in the parallel computations, transfers may occur

between the host memory and the accelerator memory.

A solution to this issue is to promote the sequential code asparallel, with only one

thread that executes it. Using one thread on theGPU is totally ine! cient. However, the

slowdown can be dramatically lower than the cost of communication if the code is small

enough. This issue is similar to the decision about the proÞtability whether or not to

o$ oad a kernel to the accelerator that is discussed more generally in Section 5.6 page156.

The gramschmidt example mentioned in the previous section is shown in Figure3.17.

3.7. Sequential Promotion 85

for (k = 0; k < n; k++) {
// The f o l l o w i n g i s s e q u e n t i a l
nrm = 0;
for (i = 0; i < m; i++)

nrm += A[i][k] * A[i][k];
R[k][k] = sqrt (nrm);

// The f o l l o w i n g i s p a r a l l e l
for (i = 0; i < m; i++)

Q[i][k] = A[i][k] / R[k][k];
for (j = k + 1; j < n; j++) {

R[k][j] = 0;
for (i = 0; i < m; i++)

R[k][j] += Q[i][k] * A[i][j];
for (i = 0; i < m; i++)

A[i][j] = A[i][j] - Q[i][k] * R[k][j];
}

}

kernel_0 (R, n);
copy_from_accel (R);
for (k = 0; k <= n -1; k += 1) {

// S e q u e n t i a l
nrm = 0;
for (i = 0; i <= m -1; i += 1)

nrm += A[i][k]*A[i][k];
R[k][k] = sqrt (nrm);

// P a r a l l e l r e g i o n
copy_to_accel (R);
kernel_1 (A, Q, R, k , m);
kernel_2 (A, Q, R, k , m, n);
kernel_3 (A, Q, R, k , m, n);
copy_from_accel (A);
copy_from_accel (R);

}

(a) Usual Host code.

copy_to_accel (A);
kernel_0 (R, n);
for (k = 0; k <= n -1; k += 1) {

// S e q u e n t i a l code promoted
// on t h e GPU
sequent ial_kernel (A ,R,m,k);

// No more
// t r a n s f e r s
// he re
kernel_1 (A, Q, R, k , m);
kernel_2 (A, Q, R, k , m, n);
kernel_3 (A, Q, R, k , m, n);

}
// t r a n s f e r s i s o u t s i d e o f t h e l o o p
copy_from_accel (A);

(b) Host code after sequential promotion.

Figure 3.17: gramschmidt example taken from Polybench suite. The Þrst part of the loop
body is sequential while the following are parallel loop nests. The sequential promotion on
the GPU avoids costly memory transfers.

86 Chapter 3. Data Mapping, Communications and Consistency

The codes generated with and without sequential promotion illustrate how this trade-o"

can reduce the communication. The di! culty is to evaluate the trade-o". This depends

on both the GPU PEsÕ speed and thePCIe bandwidth.

Section 7.8.4, page 201, contains measurements showing up to eight times speedup

over the optimized scheme for thegramschmidt example, but also up to thirty-seven times

speedup for thedurbin example from the Polybench suite.

In case of inaccurate evaluation, the performance can be dramatically degraded. This

transformation requires a careful evaluation of the execution time of both versions. One

possibility to overcome this issue is to perform an o"-line proÞling with just one iteration

of the sequential loop on theGPU and then decide at runtime if the overhead is worth the

transfers that must be performed. Such an approach is explored in Section5.7, page158,

however I did not study how it can be mixed with the communication optimization scheme

introduced in this chapter.

3.7.1 Experimental Results

Section7.8, page197, presents detailed experimental results for the optimizing scheme

introduced in this chapter.

The Þrst question is: what should we measure? While speedup area very e"ective

metric commercially speaking, in the context of this optimization it is biased because it

is largely impacted by input parameters (see Section7.8.1, page 197). The very same

benchmark exhibits speedups ranging from 1.4 to fourteen just by changing the input

parameters.

A more objective measurement for evaluating the proposed approach is the number of

communications removed and the comparison with a scheme written by an expert pro-

grammer. Focusing on the speedup would also emphasize the parallelizer capabilities.

Using benchmarks from Polybench 2.0 suite and Rodinia, along with the Stars-PM

numerical simulation introduced in Section3.1, Section 7.8.2, page 199 illustrates the

performance of the optimizing scheme using this metric, andshows that the optimized

code performs almost as well as a hand-written code.

One noticeable exception isgramschmidt. Communications cannot be moved out of any

loop due to data dependencies introduced by some sequentialcode. The parallel promotion

scheme shown in Section3.7 helps by accepting a more slowly generated code and allowing

data to stay on the accelerator. This is still valuable while the slowdown is signiÞcantly

smaller than the communication overhead. The di! culty for the compiler is to evaluate the

3.8. Related Work 87

slowdown and to attempt parallelization only if optimized communications lead to a net

performance increase. The result of this scheme, shown in Section 7.8.4, page201, exhibits

promising results with a speedup of up to thirty-seven, depending on the test case.

Finally Section 7.8.3, page199, explores the performance impact of deferring the deci-

sion at runtime using the StarPU library; speedup of up to Þve times is obtained with the

proposed static approach. Although StarPU is a library that has capabilities ranging far

beyond the issue of optimizing communications, my static scheme is relevant.

3.8 Related Work

Among the compilers that I evaluated, none implement such anautomatic static in-

terprocedural optimization. While Lee et al. address this issue [Lee et al. 2009, ¤ 4.2.3],

their work is limited to liveness of data and thus quite similar to the unoptimized scheme

proposed in Section3.3. Leung addresses the case of a sequential loop surrounding akernel

launch and moves the communications out of the loop [Leung 2008].

The optimizing scheme proposed in this chapter is independent of the parallelizing

scheme involved, and is applicable to systems that transform OpenMP in CUDA or

OpenCL like OMPCUDA [Ohshima et al. 2010] or OpenMP to GPU [Lee et al. 2009].

It is also relevant for a directive-based compiler, such as JCUDA and hiCUDA [Han &

Abdelrahman 2009]. It would also complete the work done on OpenMPC [Lee & Eigen-

mann 2010] by not only removing useless communications but moving them up in the call

graph. Finally it would free the programmer of the task of adding directives to manage

data movements inHMPP [Bodin & Bihan 2009] and PGI Accelerator [Wolfe 2010].

My approach can be compared to the algorithm proposed by Aliaset al. [Alias

et al. 2011, Alias et al. 2012b, Alias et al. 2012a]. This work studies, at a very Þne grained

level, the loading and unloading of data from memory for a tiled code running on a FPGA.

My scheme optimizes at a coarse grained level and keeps the data on the accelerator as

late as possible.

In a recent paper [Jablin et al. 2011], Jablin et al. introduce CGCM, a system targeting

exactly the same issue. CGCM, just like my scheme, is focused on transferring full alloca-

tion units. While my granularity is the array, CGCM is coarser and considers a structure of

arrays as a single allocation unit. While my decision process is fully static, CGCM makes

decisions dynamically. It relies on a complete runtime to handle general pointers to the

middle of any heap-allocated structure, which we do not support at this time.

88 Chapter 3. Data Mapping, Communications and Consistency

I obtain similar overall speedup results, and I used the sameinput sizes. However,

CGCM is not publicly available and the author does not provide us with a version. There-

fore it has not been possible to reproduce their results and compare my solution in the

same experimental conditions.

Jablin et al. measured a less-than-eight geometric mean speedup vs. mines of more

than fourteen. However, a direct comparison of my measurement is hazardous. I used

GNU C Compiler (GCC) while Jablin et al. usedClang, which produces a sequential

reference code slower thanGCC. I measured a slowdown of up to 20% on this benchmark

set. Moreover, I made my measurements on a Xeon Westmere while they use an older

Core2Quad KentsÞeld. They generate theirGPU version using aPTX generator forLow

Level Virtual Machine (LLVM) while I used NVCC, the Nvidia compiler toolchain.

Finally, a key point is the scope on which the optimization is applied. Jablin et al.

perform the optimization across the whole program and measured wall clock time, while I

exclude the initialization functions from the scope of my compiler and exclude them from

my measurements. Indeed, if I do not do so, the initializations of small benchmarks like

the one in the Polybench suite would be parallelized and o$oaded on theGPU, then no

copy to theGPU would be required. Therefore I limit myself from optimization possibilities

because I consider that this way is closer to what can be seen inreal-world programs where

initializations cannot usually be parallelized.

The overhead introduced by the runtime system in CGCM is thus impossible to evaluate

by a direct comparison of the speedups obtained by my implementation.

3.8.1 Redundant Load-Store Elimination

Note that PIPS also includes another approach to the communication optimization

issue that has been described formally in GueltonÕs thesis [Guelton 2011b]. This section

informally describes how this approach uses step-by-step propagation of the memory trans-

fers across theCFG of the host program.PIPS represents the program using aHierarchical

Control Flow Graph (HCFG): for example the statements that are part of a loop body

are stored at lower level that the loop header. The representation is close to anAST.

The main idea is the same as the one expressed earlier in Section 3.6, i.e., to move load

operations upward in theHCFG so that they are executed as soon as possible, whilestore

operations are symmetrically moved so that they are executed as late as possible. Redun-

dant load-store elimination is performed in the meantime. For instance, loads and stores

inside a loop may be moved outwards, which is similar to invariant code motion. But this

3.8. Related Work 89

propagation is also performed interprocedurally, as data transfers are also moved outward

function boundaries whenever possible.

3.8.1.1 Interprocedural Propagation

When a load is performed at the entry point of a function, it may be interesting to

move it at the call sites. However, this is valid only if the memory state before the call site

is the same as the memory state at the function entry point, that is, if there is no write

e"ect during the e"ective parameter evaluation. In that case,the load statement can be

moved before the call sites, after backward translation from formal parameters to e"ective

parameters.

Similarly, if the samestore statement is found at each exit point of a function, it may

be possible to move it past its call sites. Validity criteriainclude that the store statement

depends only on formal parameters and that these parametersare not written by the

function. If this the case, thestore statement can be removed from the function call and

added after each call site after backward translation of theformal parameters.

3.8.1.2 Combining Load and Store Elimination

In the meanwhile, the intraprocedural and interprocedural propagation of DMA may

trigger other optimization opportunities. Loads andstores may for instance interact across

loop iterations, when the loop body is surrounded by a load anda store; or when a kernel

is called in a function to produce data immediately consumedby a kernel hosted in another

function, and the DMA have been moved in the calling function.

The optimization then consists in removing load and store operations when

they are in direct sequence. This relies on the following property: consider-

ing that the statement denoted by Òmemcpy(a,b,10*sizeof (in)) Ó is a DMA and

its reciprocal is denoted by Òmemcpy(b,a,10*sizeof (in)) Ó, then in the sequence

memcpy(a,b,10*sizeof (in));memcpy(b,a,10* sizeof (in)) , the second call can be removed

since it would not change the values already stored ina.

Figure 3.18, page90, illustrates the result of the algorithm on an example takenfrom

the PIPS validation suite. It demonstrates the interprocedural elimination of data com-

munications represented by thememloadand memstorefunctions. These function calls are

Þrst moved outside of the loop, then outside of thebar function; Þnally, redundant loads

are eliminated.

90 Chapter 3. Data Mapping, Communications and Consistency

void bar (int i , int j [2] , int k [2]) {
while (i - - >=0) {

memload (k , j , sizeof (int)*2);
k [0]++;
memstore (j , k , sizeof (int)*2);

}
}
void foo (int j [2] , int k [2]) {

bar (0 , j , k);
bar (1 , j , k);

}

+

void bar (int i , int j [2] , int k [2]) {
memload (k , j , sizeof (int) *2) ; // moved o u t s i d e o f t h e l o o p
while (i - - >=0) k [0]++;
memstore (j , k , sizeof (int)) ;

}

+

void bar (int i , int j [2] , int k [2]) {
while (i - - >=0) k [0]++;

}
void foo (int j [2] , int k [2]) {

memload (k , j , sizeof (int)*2); // l o a d moved b e f o r e c a l l
bar (0 , j , k);
memstore (j , k , sizeof (int)*2); // redundant l o a d e l i m i n a t e d
bar (1 , j , k);
memstore (j , k , sizeof (int)*2); // s t o r e moved a f t e r c a l l

}

Figure 3.18: Illustration of the redundant load-store elimination algorithm.

3.9 Optimizing a Tiled Loop Nest

Alias et al. have published an interesting study about Þne grained optimization of com-

munications in the context ofFPGA [Alias et al. 2011, Alias et al. 2012b, Alias et al. 2012a].

The fact that they target FPGAs changes some considerations on the memory size:FPGAs

usually embed a very small memory compared to the many gigabytes available in aGPU

board. The proposal from Alias et al. focuses on optimizing loads fromDouble Data Rate

3.9. Optimizing a Tiled Loop Nest 91

for (int i = 0; i < N; ++ i) {
memcpy (M,m,k*sizeof (int));
memcpy (& SRC[i] ,&src [i] ,k* sizeof (int));
kernel (i , n , k , SRC , DST , M);
memcpy (& dst [i] ,&DST[i] ,1* sizeof (int));

}

(a) With naive communication scheme.

for (int i = 0; i < N; ++ i) {
if (i ==0) {

memcpy (SRC ,src ,k*sizeof (int));
memcpy (M,m,k*sizeof (int));

} else {
memcpy (& SRC[i+k -1] ,& src [i+k -1] ,1* sizeof (int));

}
kernel (i , n , k , SRC , DST , m);
if (i<N -1) {

memcpy (& dst [i] ,&DST[i] ,1* sizeof (int));
} else {

memcpy (& dst [i] ,&DST[i] ,1* sizeof (int));
}

}

(b) After the inter-iterations redundant elimination.

Figure 3.19: Code with communication for FIR function presented in Figure 3.4.

(DDR) in the context of a tiled loop nest, where the tiling is done such that tiles execute

sequentially on the accelerator while the computation inside each tile can be parallelized.

While their work is based on theQuasi-A! ne Selection Tree (QUAST)abstraction,

this section recalls how their algorithm can be used with the less expensive convex array

region abstraction.

The classical scheme proposed to isolate kernels would exhibit full communications

as shown in Figure3.19a. An inter-iteration analysis allows avoiding redundant commu-

nications and produces the code shown in Figure3.19b. The inter-iteration analysis is

performed on a do loop, but with the array regions. The code partto isolate is not bound

by static control constraints.

The theorem proposed for exact sets in [Alias et al. 2011, Alias et al. 2012b, Alias

et al. 2012a] is the following:3

3. Regions are supposed exact here; the equation can be adapted to under- and over-approximations.

92 Chapter 3. Data Mapping, Communications and Consistency

Theorem 3.1

Load(T) = R(T) %
+
R(t < T)

&
W(t < T)

,
(3.9)

Store(T) = W(T) % W(t > T) (3.10)

where T represents a tile,t < T represents the tiles scheduled for execution before the

tile T, and t > T represents the tiles scheduled for execution afterT. The denotation

W(t > T) corresponds to
-

t>T W(t).

In Theorem3.1, a di"erence exists for each loop between the Þrst iteration,the last one,

and the rest of the iteration set. Indeed, the Þrst iterationcannot beneÞt from reuse from

previously transferred data and has to transfer all needed data. In other words,R(t < T)

and W(t < T) are empty for the Þrst iteration while W(t > T) is empty for the last

iteration.

For instance, in the code presented in Figure3.19a, three cases are considered:i = 0,

0 < i < N %1 and i = N %1.

Using the array region abstraction available inPIPS, a reÞnement with respect to the

naive case can be carried out to compute each case, starting with the full region, adding

the necessary constraints and performing a di"erence.

For example, the region computed byPIPS to represent the set of elements read for

array src , is, for each tile (here corresponding to a single iterationi)

R(i) = { src[" 1] | i $ " 1 $ i + k %1, 0 $ i < N }

For each iteration i of the loop except the Þrst one (herei > 0), the region of src that is

read minus the elements read in all previous iterationsi ! < i has to be processed; that is,
-

i ! R(i ! < i).

R(i ! < i) is built from R(i) by renaming i as i ! and adding the constraint0 $ i ! < i to

the polyhedron:

R(i ! < i) = { src[" 1] | i ! $ " 1 $ i ! + k %1, 0 $ i ! < i, 1 $ i < N }

i ! is then eliminated to obtain
-

i ! R(i ! < i):

&

i !

R(i ! < i) = { src[" 1] | 0 $ " 1 $ i + k %2, 1 $ i < N }

3.10. Conclusion 93

The result of the subtractionR(i > 0) %
-

i ! R(i ! < i) is then the following region:4

Load(i > 0) = { src[" 1] | " 1 = i + k %1, 1 $ i < N }

This region is then exploited for generating theloads for all iterations but the Þrst one.

The resulting code after optimization is presented in Figure3.19b. While the naive version

loads i & k & 2 elements, the optimized version exhibits loads only fori + 2 & k elements.

3.10 Conclusion

With the increasing use of hardware accelerators, automatic or semi-automatic trans-

formations assisted by directives take on an ever-greater importance.

The communication impact is critical when targeting hardwareaccelerators for mas-

sively parallel code like numerical simulations. Optimizing data movements is thus a key

to high performance.

An optimizing scheme that addresses this issue has been designed and implemented in

PIPS and Par4All.

The proposed approach has been validated against twenty benchmarks of the Poly-

bench 2.0 suite, three from Rodinia, and on one real numerical simulation code. They are

presented in Sections3.1 and 7.2. It was found that the proposed scheme performs very

close to a hand-written mapping in terms of number of communications.

As for future work, the cache management in the runtime can beimproved further than

a classic cache management algorithm because, unlike a hardware cache, the runtime that

comes along the proposed optimizing scheme is software managed and can be dynamically

controlled by the compiler inserting hints in the code. Indeed data ßow analyses provide

knowledge on the potential future course of execution of the program. This can be used in

metrics to choose the next bu"er to free from the cache. Bu"ers unlikely to be used again

should be discarded Þrst, while those that are certain to be used again should be freed last.

The execution times measured with multicore processors show that attention should

be paid to work sharing between hosts and accelerators rather than keeping the host idle

during the completion of a kernel. Multicore and multi-GPU conÞgurations are another

path to explore, with new requirements to determine accuratearray region based transfers

and computation localization.

4. As the write regions are empty forsrc , this corresponds to the loads.

94 Chapter 3. Data Mapping, Communications and Consistency

Most of the work described in this chapter was published in [Amini et al. 2011b (perso),

Amini et al. 2011c (perso), Guelton et al. 2012 (perso), Amini et al. 2012a (perso)].

The next chapter presents the di"erent steps performed on the sequential input code

to achieve parallelization andGPU code generation.

Chapter 4

Transformations for GPGPU

Contents
4.1 Introduction . 96

4.2 Loop Nest Mapping on GPU . 98

4.3 Parallelism Detection . 101

4.3.1 Allen and Kennedy . 102

4.3.2 Coarse Grained Parallelization . 103

4.3.3 Impact on Code Generation. 104

4.4 Reduction Parallelization . 105

4.4.1 Detection . 105

4.4.2 Reduction Parallelization for GPU 109

4.4.3 Parallel PreÞx Operations on GPUs 111

4.5 Induction Variable Substitution . 111

4.6 Loop Fusion . 112

4.6.1 Legality . 113

4.6.2 Di!erent Goals . 115

4.6.3 Loop Fusion for GPGPU. 116

4.6.4 Loop Fusion in PIPS . 118

4.6.5 Loop Fusion Using Array Regions. 124

4.6.6 Further Special Considerations . 126

4.7 Scalarization . 127

4.7.1 Scalarization inside Kernel. 128

4.7.2 Scalarization after Loop Fusion . 128

4.7.3 Perfect Nesting of Loops. 130

4.7.4 Conclusion . 131

4.8 Loop Unrolling . 132

4.9 Array Linearization . 133

4.10 Toward a Compilation Scheme . 134

96 Chapter 4. Transformations for GPGPU

The contributions of this chapter leverage some of the previously existing transforma-

tions in PIPS, extending some of them to handle C code, improving others for speciÞc

requirements ofGPU code generation, and Þnally introducing new ones.

4.1 Introduction

The path leading from a sequential code to e! cient parallel code forGPU includes

many analyses and transformations. Moreover, some speciÞcities of the input programs

have to be taken into account. For instance, hand-written programs do not exhibit the

same patterns as automatically generated code from high-level tools or languages. The

code in Figure4.1shows how a three-line-long Scilab script ends up with temporary arrays

and Þve loop nests.

The whole compilation scheme involved going from the sequential code down to the

GPU code is presented in Figure2.27page58 and identiÞes the contributions presented in

this chapter.

Section 4.2 explains my scheme to map a parallel loop nest to aGPU, and how it

leverages an implicit blocking and loop interchange at runtime for the NDRange and work-

group decomposition (see Section2.3.2.2, page32).

I studied the combination of two di"erent parallelizing algorithms, with analysis of the

impact on code generation of both of them in Section4.3.

I improved the existing reduction detection analysis to handle C code more accurately,

and leveraged this analysis to enable parallelization of loops with reduction by improving

the existing parallelization algorithms. I implemented a mapping scheme for some loops

with reductions onto the GPU using atomic operations supported byOpenCL and CUDA

(see Section4.4, page105). Actually, I proposed a new generic scheme for parallelizing

loops with reduction, and implemented it inPIPS. It provides improvements for other

targets like multicore usingOpenMP code generation.

I designed and implemented a new induction variable substitution transformation based

on linear precondition analysis (see Section4.5). This transformation can enable the par-

allelization of loops that contain induction variables.

I implemented two loop fusion transformation phases: one based on the dependence

graph and the other on array regions (see in Section4.6). I designed heuristics to drive

the fusion in order to target GPUs. This is particularly critical when processing code

generated from high-level tools and languages, such as Scilab, which include many loops.

4.1. Introduction 97

a = ones (1000 ,1000);
b = a+a+a
c = b *2.+3.

(a) Scilab source.

double a [1000][1000];
for (i=0; i <1000; i++)

for (j=0; j <1000; j++)
a[i][j] = (double) (1.0);

double t0 [1000][1000];
for (i=0; i <1000; i++)

for (j=0; j <1000; j++)
t0 [i][j] = a[i][j]+a[i][j];

double b [1000][1000];
for (i=0; i <1000; i++)

for (j=0; j <1000; j++)
b[i][j] = t0 [i][j]+a[i][j];

disp_s0d2 ("b" ,1000 ,1000 ,b);

double t1 [1000][1000];
for (i=0; i <1000; i++)

for (j=0; j <1000; j++)
t1 [i][j] = b[i][j]*2.;

double c [1000][1000];
for (i=0; i <1000; i++)

for (j=0; j <1000; j++)
c[i][j] = t1 [i][j]+3.;

disp_s0d2 ("c" ,1000 ,1000 ,c);

(b) Generated C code.

Figure 4.1: Example of a short Scilab program with the generated C Þle.

This transformation enables removing some temporary arraysgenerated by such tools.

I studied di"erent array scalarization schemes in the context of GPGPU in Section4.7,

page127, and I modiÞed thePIPS implementation to match requirements forGPU code

generation, especially to enforce the perfect nesting of loops.

Section4.8 and 4.9 explore the impact of unrolling and array linearization.

Finally, Section 4.10 summarizes the contributions of this chapter and how they are

connected together in the next chapter to form a complete compilation chain.

98 Chapter 4. Transformations for GPGPU

for (i=1; i <=n; i++)
for (j=1; j <=n; j++)

computat ion statements

(a) Input code.

for (T=...) // S e q u e n t i a l , on t h e CPU
parfor (P=pl (T) to pu(T)) // NDRange decompos i t i on

for (t =...) // S e q u e n t i a l , on t h e GPU
parfor (p=...) // Thread p a r a l l e l i s m i n s i d e work %group

computat ion statements

(b) After loop transformation for GPU mapping.

Figure 4.2: Example from Baghdadi et al. [Baghdadi et al. 2010] that illustrates how to
tile a loop nest to map the GPU execution.

4.2 Loop Nest Mapping on GPU

Scheduling a parallel loop nest on aGPU usingCUDA or OpenCLrequires an elaborate

mapping from the iteration set of the loop nest to the abstraction of the threaded GPU

execution exhibited by NDRange (see Section2.3.2.2page32).

Previous works [Baghdadi et al. 2010, Lee et al. 2009, Baskaran et al. 2010] made

the compiler aware of the whole execution model hierarchy andtried to express it using

nested loops. The transformations performed are principally multilevel tilings with some

restructuring including loop interchanges or index set splittings. Figure 4.2 illustrates an

example of how a loop nest is tiled to map the two-levelGPU execution model.

The approach implemented in our Par4All compiler [Amini et al. 2012b (perso)] is quite

di"erent and does not expose any explicit multilevel tiling operation. Instead the source

code generated byPIPS keeps a sequential semantics and is specialized at post-processing.

Let us assume that loops are Þrst normalized, i.e., that theystart at zero and have an in-

crement of one. This is to express the iteration set using theOpenCL concept of NDRange

introduced in Section2.3.2.2. Figure 4.3 gives the four steps included in this transforma-

tion. First, the body of the initial parallel loop nest in Figure 4.3 is outlined to a new

function, the kernel executed by each thread on theGPU. The loop indices are rebuilt in the

kernel using two macrosP4A_vp_x for each virtual processor dimension. The sequential ex-

ecution is performed with an expansion of#define P4A_vp_1 ti and #define P4A_vp_0 tj.

The parallel loop nest is then annotated with the iteration setas shown in Figure4.3c. In

fact, the rectangular hull of the iteration set is represented, as it is not possible to be more

4.2. Loop Nest Mapping on GPU 99

precise using eitherOpenCL or CUDA. 1

Finally, a post-processing phase matches the annotation and contracts the loop nest to

a pseudo-call to aCall_kernel_ xd() macro with the NDRange dimensionx ranging from

one to three. The result of the contraction is shown in Figure4.3d. This macro abstracts

the parallel execution of the kernel on anl & m & n grid of threads. The work-group size is

not expressed in this abstraction and can then be chosen at runtime according to di"erent

parameters.

The proposed abstraction is used to expand the macro at compile time according to

the e"ective target. CUDA, OpenCL, and OpenMP back ends have been implemented.

The latter is particularly useful for debugging purposes, since the parallel execution of

the kernel is emulated usingCPU threads with dedicated bu"ers in the host memory to

simulate the separate memory spaces.

As the iteration set is approximated by a rectangular hull, there may be more threads

than necessary to execute the kernel. This situation can occurs in two cases, (1) because

of the over-approximation of some triangular iteration sets for example, and (2) because

the CUDA API requires the iteration set as a multiple of the work-group size. While the

former can be detected at compile time, the latter is known only at runtime when the

work-group size can be known. The iteration set is then systematically clamped using a

guard, as shown in Figure4.4.

A key point when targeting GPU is memory coalescing. To beneÞt from the memory

bandwidth without su"ering from the latency, consecutive threads in a block should access

a contiguous memory area. This constraint is naturally respected when writing a code for

the CPU. Programmers are taught to write loop nests in such a way that two consecutive

iterations access contiguous array elements to exploit spatial locality in the caches. CUDA

and OpenCL schedule consecutive threads along the Þrst dimension of the work-group,

then along the second dimension, and Þnally along the last one. Therefore the loop nest

must be mapped with the innermost loop along the Þrst work-group dimension. In the

proposed representation, the mapping of threads to the work-group dimension is performed

in the kernel with the index recovery shown in Figure4.3b. The macrosP4A_vp_x mask

the dimension of the work-group along which the index implicitly iterates.

The tiling is implicit since each loop iteration set is potentially split according to the

work-group size chosen. Again, the macrosP4A_vp_x are involved to perform implicitly

this transformation.

1. CUDA 5 and Kepler GPU, which should both be released by the end of 2012, bring a potential
solution introducing what Nvidia calls Dynamic Parallelism.

100 Chapter 4. Transformations for GPGPU

// p a r a l l e l
for (i=0; i <=n; i++)

// p a r a l l e l
for (j=0; j <=m; j++) {

// computa t ion s t a t e m e n t s
...

}

(a) Input code.

void kernel (int ti , int tj , . . .) {
int i = P4A_vp_1 ;
int j = P4A_vp_0 ;
// computa t ion s t a t e m e n t s
...

}

// p a r a l l e l
for (ti =0; ti <=n; ti ++)

// p a r a l l e l
for (tj =0; tj <=m; tj ++)

kernel (ti , tj , . . .) ;

(b) Body outlined in a new function.

// Loop n e s t P4A beg in , 2D(n , n)
// p a r a l l e l
for (ti =0; ti <=n; ti ++)

// p a r a l l e l
for (tj =0; tj <=m; tj ++) {

// Loop n e s t P4A end
kernel (ti , tj , . . .) ;

}

(c) Annotated loop nest iteration set.

Call_kernel_2d (n , m, kernel ,. . .);

(d) The loop nest replaced by an abstract macro call.

Figure 4.3: Illustration of the successive steps performedto map a loop nest on the GPU.

void kernel (int ti , int tj , . . .) {
int i = P4A_vp_1 ;
int j = P4A_vp_0 ;
if (i<n&&j<m) { // Guard

// computa t ion s t a t e m e n t s
...

}
}

Figure 4.4: The iteration set is over-approximated with a rectangular hull; a guard is added
to clamp it.

4.3. Parallelism Detection 101

Algorithms Dependence abstraction Loop transformations

AllenÐKennedy [Allen & Kennedy 1987]

Dependence level
Multiple Statements Distribution

Nonperfect

WolfÐLam [Wolf & Lam 1991a]

Direction vectors
One statement Unimodular

Perfect

DarteÐVivien [Darte & Vivien 1996a]

Polyhedra
Multiple Statements Shifted Linear

Perfect

Feautrier [Feautrier 1992]

A! ne (exact)
Multiple Statements A! ne

Nonperfect

LimÐLam [Lim & Lam 1997]

A! ne (exact)
Multiple Statements A! ne

Nonperfect

Table 4.1: A comparison of some loop parallel algorithms (from data published in [Boulet
et al. 1998], nonexhaustive).

The expressiveness of these macros is limited, but still allows application of trans-

formations that would otherwise require some work in the compiler. For instance, loop

interchange, strip mining, or tiling can be achieve by usingdi"erent macros.

This representation allows postponing some decisions about the transformations, there-

fore providing a code that is more target independent while simplifying the compiler in-

ternal representation.

4.3 Parallelism Detection

Parallelism detection is the foundation of our process. It consists in proving that a loop

can be scheduled for a parallel execution. Such techniques are well known in the compiler

community, at least since the hyperplane method by Lamport in 1974 [Lamport 1974].

Among all parallelizing algorithms, the most famous is certainly the one from Allen and

Kennedy [Allen & Kennedy 1982, Allen & Kennedy 1987]. Darte et Vivien, and Boulet

et al. survey existing parallelization algorithms [Darte & Vivien 1997, Boulet et al. 1998]

and classify them according to the underlying dependence abstraction involved. Table 4.1

reproduces the summary that they established.

PIPS relies on two parallelization algorithms, the Þrst one is Allen and KennedyÕs and

102 Chapter 4. Transformations for GPGPU

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

a[i][j]= i+ j ;
b[i][j]=b[i][j -1]+a[i][j]*c [i -1][j];
c [i][j]=2*b[i][j]+a[i][j];

}
}

(a) Input code.

#pragma omp paral lel for
for (i=0; i<N; i++) {

pragma omp paral lel for
for (j=0; j<N; j++) {

a[i][j]= i+ j ;
}

}
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
b[i][j]=b[i][j -1]+a[i][j]*c [i -1][j];

}
pragma omp paral lel for
for (j=0; j<N; j++) {

c[i][j]=2*b[i][j]+a[i][j];
}

}

(b) After parallelization.

Figure 4.5: Example of Allen and Kennedy algorithm as implemented in PIPS: loops are
distributed and parallelism is expressed using OpenMP pragmas.

the other one is based on CreusilletÕs array region analysis [Creusillet & Irigoin 1996b] I

detail further now.

4.3.1 Allen and Kennedy

The Allen and Kennedy algorithm is based on the dependence graph with levels. This

algorithm has been proven optimal by Darte and Vivien [Darte & Vivien 1996b] for such

dependence abstraction. This algorithm was designed for vector machines, and thus in its

basic version distributes the loops as much as possible and maximizes parallelism.

The implementation in PIPS uses a dependence graph built using a dependence

test [Irigoin et al. 1991] based on a variation of the FourierÐMotzkin pairwise elimina-

4.3. Parallelism Detection 103

tion technique [Triolet et al. 1986]. Allen and KennedyÕs algorithm is implemented by

structuring the dependence graph into strongly connected components, each of which is

recursively analyzed with an incremented dependence level.

An example illustrating the result of the processing of thePIPS implementation of the

Allen and Kennedy algorithm is presented in Figure4.5. The loop distribution involved

exhibits the maximum parallelism but adds implicit synchronization barriers. Moreover, it

can break cache temporal reuse and prevent array scalarization. In the code in Figure4.5a

the same reference to arraya appears in the three statements, thus the corresponding array

element may stay in the cache. Moreover, ifa is not used later in the computation, the

reference can be scalarized. The resulting code after transformation (shown in Figure4.5b)

shows that a cannot any longer be scalarized since it is referenced in more than one loop

now. Moreover, it is less likely to remain in the caches and the ratio of the number of

arithmetic operations to the number of memory accesses decreases. The drawback of loop

distribution can be circumvented using a loop fusion algorithm presented in Section4.6.

Another issue is that this algorithm in this basic form (the one implemented in PIPS)

has restrictions on the control ßow; for instance, no test is allowed in the loop body.

The algorithm introduced in the next section addressed theseissues by providing a coarse

grained parallelization algorithm based on convex summarized array regions [Creusillet &

Irigoin 1996b].

4.3.2 Coarse Grained Parallelization

The second parallelization algorithm is a coarse grained scheme that relies on array

region analyses [Creusillet & Irigoin 1996b]. No speciÞc loop transformation is involved.

The details about this parallelization method have been published in [Irigoin et al. 2011

(perso)]. The process is summarized below.

BersteinÕs conditions [Bernstein 1966] are used between two iterations and extends the

original deÞnition to array regions. A loop is scheduled as parallel if no iteration reads or

write an array element written by another iteration. It is expressed for any variablev:

{ " | , !, ! ! - PB " - (RB,v (!) . WB,v (!)) / " - WB,v (! !) / (! (i) 0= ! !(i))} = !

with ! the store, PB the preconditions over the loop body,RB,v (!) the read array region

for the whole loop body for variablev, and Þnally WB,v (! !) the written array region for

the whole loop body for variablev.

104 Chapter 4. Transformations for GPGPU

It can be rewritten more precisely:

{ " | , !, ! ! - PB " - (RB,v (!) . WB,v (!)) / " - WB,v (! !) / TB,B (!, ! !)} = !

where TB,B stands for the transformer expressing the transition of at least one iteration

on the store, i.e., the transitive closure for one iterationTB,B = T+
B considering that B

includes going to the next iteration.

This algorithm is used extensively inPIPS because it is complementary with Allen and

Kennedy. When parallelization is sought instead of vectorization, the Allen and Kennedy

distribution adds undesired implicit synchronization barriers. Moreover, no dependence

graph is involved, computation of which can be costly. The array regions can be costly

as well, but while the dependence graph complexity depends onthe number of statements

involved, the complexity depends on the size of the linear algebra system resulting from

the array accesses. There are no restrictions on the loop bodysuch as on the control

ßow or function calls as introduced in Section3.2 page64; it avoids loop distribution and

thus improves the locality and size of the loops. The main limitation is that the current

implementation does not integrate an array privatization phase [Creusillet 1996] and a

reduction detection. This latter point is addressed separately in PIPS as presented in the

following section.

4.3.3 Impact on Code Generation

As shown above, there are two existing di"erent parallelization algorithms implemented

in PIPS. Figure 4.6 illustrates the impact of using one algorithm over the other. While

Allen and Kennedy distribute the original loop nest in three di"erent perfectly nested loop

nests expressing two-dimensional parallelism, the coarsegrained parallelization keeps the

original nesting and detects one dimension as parallel. Moreover, the parallel dimension is

inside a sequential one, which means that it leads tomkernel launches.

Section 7.3 provides experiments about the parallelizing algorithms and shows that

overall the Allen and Kennedy scheme leads to a more e! cient code on all tested architec-

tures with respect to coarse grained parallelization. Whilethe acceleration is very limited

on old architectures such as the G80, dramatic improvement is observable on more recent

GPUs with an execution time up to eight times faster on Fermi and four times on Kepler

using the example Þgure4.6.

4.4. Reduction Parallelization 105

/ " C a l c u l a t e t h e m " m c o r r e l a t i o n mat r i x . " /
for (i=1; i<m; i++) {

for (j= i ; j <=m;j++) {
symmat [i][j] = 0.0;
for (k=1;k<=n;k++)

symmat [i][j] += data [k][i] * data [k][j];
symmat [j][i] = symmat [i][j];

}
}

(a) Input code.

for (i=1; i<m; i++) // P a r a l l e l
for (j= i ; j <=m;j++) // P a r a l l e l

symmat [i][j] = 0.0;
for (i=1; i<m; i++) // P a r a l l e l

for (j= i ; j <=m;j++) // P a r a l l e l
for (k=1;k<=n;k++)

symmat [i][j] +=
data [k][i]* data [k][j];

for (i=1; i<m; i++) // P a r a l l e l
for (j= i ; j <=m;j++) // P a r a l l e l

symmat [j][i] = symmat [i][j];

(b) After parallelization using Allen and Kennedy.

for (i=1; i<m; i++) {
for (j= i ; j <=m;j++) { // P a r a l l e l

symmat [i][j] = 0.0;
for (k=1;k<=n;k++)

symmat [i][j] +=
data [k][i]* data [k][j];

symmat [j][i] = symmat [i][j];
}

}

(c) After parallelization using Coarse Grained
method.

Figure 4.6: The impact of the two parallelization schemes on aexample of code performing
a correlation. Allen and Kennedy algorithm results to three di"erent parallel loop nests
expressing the maximum parallelism, while the coarse grained algorithm detects only one
parallel loop leading to less synchronization but also lessexposed parallelism.

4.4 Reduction Parallelization

PIPS provides an algorithm for reduction detection based on the uniÞed framework

introduced by Jouvelot and Dehbonei [Jouvelot & Dehbonei 1989]. The implementation

is rather straightforward yet powerful. Once detected, thereductions can be parallelized

depending on the target capabilities.

4.4.1 Detection

The algorithm is interprocedural and requires that a summaryis produced for all the

callees in a function. This implies that the algorithm has to be applied Þrst on the leaf of

the call graph before handling callers. Intraprocedurally, the following algorithm detects

106 Chapter 4. Transformations for GPGPU

reductions in statements like

// c a l l sum [s [a]] , sum [b] ,

s[a] = s[a]+b++;

where you can see the comment added byPIPS that indicates that two reductions have

been detected, one ons[a] and the other onb. Statements are Þrst processed individually

and reductions are extracted according to these properties:

1. If the statement is a call, then get the translated interprocedural summary for this

call site.

2. The statement is not a call, then perform a recursion on the inner expression to Þnd

an operation that would correspond to either an assignment,an update, or an unary

operator. The recognized operators are the following:+=, -= , *=, /= , |= , &=, ^=, ++

(pre and post), and-- (pre and post).

3. For other than unary operators, assert that the left-hand side is a reference, either a

scalar or an array.

4. Both the left-hand side and the right-hand side expressions(if any) must be side

e"ect free. i.e., if any call occurs it has to be a call to a pure function.

5. In the case of an assignment, the right-hand side has to use a compatible operator,

i.e., one of the following:+, - , * , / , min, max, &&, || , &, | , and ^.

6. In the case of an assignment, the right-hand side also has to include a reference to the

same reference as the one on the left-hand side. Perform thissearch with a recursion

through the right-hand side expression accepting only compatible operators.

7. Assert that there is no e"ect that may conßict with the reduced variable other than

the ones touching reference in the left-hand side of the considered reduction and

the reference found in the right-hand side. This prevents thewrong catching of the

following two examples

// c a l l sum [b] , sum [b] ,

b = b+b;

// c a l l sum [s [a]] , sum [b] ,

s[a] = s[a] + (b=b+1,b);

8. Finally, conduct a sanity pass to avoid the declaration of two reductions on the same

variable. If compatible, they are merged.

4.4. Reduction Parallelization 107

The last step prevents situations such as the two following function calls with side

e"ects:

C summary sum[X],prod [Y] ,

REAL FUNCTION FSUMPROD (X, Y, Z)

C call sum[X],

X = X+Z

C call prod [Y] ,

Y = Y*Z

FSUMPROD = Z

END

C summary sum[X],prod [Y] ,

SUBROUTINE SUMPROD (X, Y, Z)

C call sum[X],

X = X+Z

C call prod [Y] ,

Y = Y*Z

END

PROGRAM REDUCTION

...

C call prod [P] , sum[S],prod [P] , sum[S],

CALL SUMPROD (S, P, FSUMPROD (S, P, 3.))

C call prod [S] , sum[P],prod [P] , sum[S],

CALL SUMPROD (P, S, FSUMPROD (S, P, 3.))

The Þrst function call shows that the reduction is duplicated for S and P, because they

are present for bothSUMPRODand FSUMPROD. Since they are compatible (only sum or only

product on a given array) they can be merged and kept, this is not the case for the second

call where the two reductions are mutually exclusive (sum andproduct) and are eliminated

of the detected reductions by the algorithm.

The reduction information is summarized at each level of thePIPSÕHCFG. For instance,

it is summarized at loop level so that this information can beused for parallelization. The

summarization ensures that there is no other write of the reduced reference that would

be incompatible with the reduction. Figure4.7 shows an example of an interprocedural

analysis of the reduction in a Fortran program.

108 Chapter 4. Transformations for GPGPU

C summary sum[X],prod [Y] ,
REAL FUNCTION FSUMPROD (X, Y, Z)

C call sum[X],
X = X+Z

C call prod [Y] ,
Y = Y*Z
FSUMPROD = Z
END

C summary sum[X],prod [Y] ,
SUBROUTINE SUMPROD (X, Y, Z)

C call sum[X],
X = X+Z

C call prod [Y] ,
Y = Y*Z
END

PROGRAM INTERACT
S = 0.
P = 1.

C call prod [P] , sum[S],
CALL SUMPROD (S, P, 2.1)

C call prod [P] , sum[S],
CALL SUMPROD (S, P, 2.+ I)

C loop prod [P] , sum[S],
DO I = 1, N

C call prod [P] , sum[S],
CALL SUMPROD (S, P, 2.+ I)

C call prod [P] , sum[S],
CALL SUMPROD (S, P, FSUMPROD (S, P, 3.))

ENDDO
DO I = 1, N

CALL SUMPROD (P, S, FSUMPROD (S, P, 3.))
ENDDO
DO I = 1, N

C call prod [P] , sum[S],
CALL SUMPROD (S, P, 2.+ I)

C call prod [S] , sum[P],
CALL SUMPROD (P, S, 1. - I)

ENDDO
END

Figure 4.7: Example of reduction detection and interprocedural propagation in PIPS.

4.4. Reduction Parallelization 109

4.4.2 Reduction Parallelization for GPU

The parallelization of loops with reductions can be handled indi"erent ways. PIPS used

to provide only a simple parallelization for OpenMP. This implementation was a simple

transformation that was adding an OpenMP pragma with a reduce clause to loops whose

statements were all scalar-only reductions.

I have designed and implemented a new method, called Coarse Grained Reductions

(CGR) that Þts within the existing parallelization algorithms. The implementation is

made in the coarse grained parallelization algorithm presented in Section4.3.2.

The coarse grained parallelization uses array region analysis to Þnd conßicts between

two iterations of a loop. Such conßicts prevent parallel scheduling of the loop. The

algorithm has been adapted to handle reductions by ignoringconßicts related to references

involved in the reduction. If ignoring a conßict eliminatesall cycles, the loop is marked

aspotentially parallel. Potentially because another transformation replacing the reduction

with a parallel compliant equivalent operation is necessaryto execute the loop in parallel.

The fact that the parallelization phase does not directly modify the schedule but pro-

vides only the information that a potential parallelization may occur provides a decoupling

of the reduction detection and the transformation. While this indicates the maximum po-

tential parallelism that may be found in a code, not all reductions can be parallelized

depending on the capabilities of the target. The OpenMP outputbeneÞts directly from

this approach. It is generated by a new transformation that parallelizes a wider range

of loops, since it is no longer limited to loops with a body thatcontains only reduction

statements as was the legacy transformation available inPIPS.

Targeting GPU, one way of parallelizing loops with reductions is to make useof hard-

ware atomic operations introduced in Section2.4.3, Page42. Since di"erent GPUs do not

share the same capabilities, and sinceCUDA and OpenCL do not exhibit the exact same

set of functions, a rough description of the target capabilities is provided to the compiler. A

new implemented transformation exploits this descriptionto select compatible previously

detected reductions. If the target supports the corresponding atomic operation, then the

substitution is made and the loop is declared as parallel in order to be transformed as a

kernel in a further phase. Figure4.8 contains an example of a sequential histogram code

and the resulting code after reduction detection and replacement with an atomic operation.

110 Chapter 4. Transformations for GPGPU

static void _histogram (int data [NP][NP][NP],
int histo [NP][NP][NP]) {

int i , j ,k ;
for (i = 0; i < NP; i++) {

for (j = 0; j < NP; j++) {
for (k = 0; k < NP; k++) {

int x = floor (((f loat)data [i][j][k]) / (f loat)(NP * NP));
int y = floor (((f loat)(data [i][j][k] - x * NP * NP))

/ (f loat)(NP));
int z = data [i][j][k] - x * NP * NP - y * NP;
++ histo [x][y][z];

}
}

}
}

(a) Input code.

static void _histogram (int data [NP][NP][NP],
int histo [NP][NP][NP]) {

int i , j ,k ;
for (i = 0; i < NP; i++) { // Schedu led as p a r a l l e l

for (j = 0; j < NP; j++) { // Schedu led as p a r a l l e l
for (k = 0; k < NP; k++) { // Schedu led as p a r a l l e l

int x = floor (((f loat)data [i][j][k]) / (f loat)(NP * NP));
int y = floor (((f loat)(data [i][j][k] - x * NP * NP))

/ (f loat)(NP));
int z = data [i][j][k] - x * NP * NP - y * NP;
atomicAddInt (& histo [x][y][z] ,1);

}
}

}
}

(b) After replacement with atomic operation.

Figure 4.8: An example of reduction parallelization of an histogram using hardware atomic
operations.

4.5. Induction Variable Substitution 111

4.4.3 Parallel PreÞx Operations on GPUs

To parallelize some reductions, parallel preÞx operations can be used. In 1980, Lad-

ner and Fischer introduced parallel preÞx reductions [Ladner & Fischer 1980]: this has

been a widely studied Þeld since then. In 2004, Buck and Purcell[Buck & Purcell 2004]

explained how map, reduce, scan, and sort can be implementedon a GPU using graphic

primitives. Sengupta et al. presented later the implementation of parallel preÞx scan using

CUDA [Senguptaet al. 2007].

In 2010, Ravi et al. introduced a runtime system and framework to generate code from

a high-level description of the reductions [Ravi et al. 2010]. The runtime scheduling is

ßexible enough to share the workload betweenGPUs and multicore CPUs. This system

can be seen as a potential back end for an automatic parallelizer like ours.

The recognition and the parallelization of reductions that do not match the classic

patterns like the ones detected inPIPS have been widely studied, and is still an active

Þeld [Redon & Feautrier 1993, Fisher & Ghuloum 1994, Matsuzaki et al. 2006, Zou &

Rajopadhye 2012].

There has been work to provide e! cient implementation for parallel preÞx operations

on GPUs [Senguptaet al. 2007, Harris et al. 2007, Capannini 2011]. An automatic scheme

that detects such operations could be associated with a code generator that targets such

libraries.

4.5 Induction Variable Substitution

Induction variable substitution is a classical transformation to enable parallelization.

It is the opposite of strength reduction. Induction variables are usually detected in loops

using pattern matching on the initialization and on the updates in the loop body. This

section shows how thePIPS precondition analysis [Irigoin et al. 2011] is used to deÞne a

new algorithm to detect and replace induction variables. Given a loopL, the algorithm

processes every statementS in its body, and performs the following steps:

1. Fetch the preconditionP associated toS.

2. Evaluate individually each linear relation inP equations and inequations:

(a) Þnd in the relation a variablek modiÞed in the loop body,

(b) verify that all other variables are either loop indices or loop invariant,

(c) construct the linear expression to replacek.

112 Chapter 4. Transformations for GPGPU

k = -1;
for (i=0; i<SIZE ; i++) {

k = i ;
for (j=0; j<SIZE ; j++) {

sum = B[j -k][k] + A[k];
A[k++] = sum;

}
}
k = SIZE ;
for (i=0; i<SIZE ; i++) {

if (k - -)
A[k] +=

B[j -k][k];
if (- -k)

A[k] +=
B[j -k][k];

}

(a) Original code.

k = -1;
for (i=0; i<SIZE ; i++) {

k = i ;
for (j=0; j<SIZE ; j++) {

sum = B[j -(i+ j)][i+ j]+A[i+ j];
A[k = i+j+1 , k -1] = sum;

}
}
k = SIZE ;
for (i=0; i<SIZE ; i++) {

if (k = -2* i+SIZE -1 , k -1)
A[-2* i+SIZE -1] +=

B[j -((-2)* i+SIZE -1)][-2* i+SIZE -1];
if (k = -2* i+SIZE -2)

A[-2* i+SIZE -2] +=
B[j -((-2)* i+SIZE -2)][-2* i+SIZE -2];

}

(b) After induction substitution.

Figure 4.9: Example of induction variable substitution to enable loop nest parallelization.

3. Replace in the statement allk induction variables found with a linear expression.

This transformation is challenging in a source-to-source context when targeting C code.

Figure 4.9agives an example of such challenge. The C language allows side e"ects in ref-

erences, for instanceA[k++] = The solution that I designed and implemented handles

these references with respect to the C standard. For instanceA[k++] = ... is replaced by

A[k = i+j+1, k-1] = ... (see in Figure4.9b), thanks to the comma operator that evalu-

ates its Þrst operand and discards the result, and then evaluates the second operand and

returns this value. The transformed source code is as close aspossible to the initial code

and the number of statements is left unchanged.

4.6 Loop Fusion

Loop fusion is a transformation that consists in collapsingtwo or more loops together

into one loop. It has been widely studied for a long time [Allen & Cocke 1972, Burstall

& Darlington 1977, Kuck et al. 1981, Allen 1983, Goldberg & Paige 1984, Wolfe 1990,

Bondhugula et al. 2010]. Finding an optimal solution to the global fusion problem is all

but trivial [Darte 2000] and there are many ways to address the problem, as well as di"erent

4.6. Loop Fusion 113

for (i=0; i<n; i++)
for (j=0; j<m; j++)

A[i][j] = (double) 1.0;
for (i=0; i<n; i++)

for (j=0; j<m; j++)
B[i][j] = (double) 1.0;

for (i=0; i<n; i++)
for (j=0; j<m; j++)

C[i][j] = A[i][j]+B[i][j];

(a) The code before fusion.

for (i=0; i<n; i++)
for (j=0; j<m; j++) {

A[i][j] = (double) 1.0;
B[i][j] = (double) 1.0;
C[i][j] = A[i][j]+B[i][j];

}

(b) After fusion.

Figure 4.10: Example of loop fusion.

deÞnitions of the problem itself.

This transformation helps to reduce the overhead of the branching and incrementation

by eliminating loop headers and increase the size of the body. It exhibits several beneÞts

such as

¥ more opportunities for data reuse, mostly temporal locality,

¥ more instructions can be scheduled, better pipeline usage or ILP ,

¥ further array contraction [Gao et al. 1993, Sarkar & Gao 1991] (see also Figure4.21

and Section4.7).

However, loop fusion has some disadvantages. For instance,the pressure on the in-

struction cache and on the registers usage within the loop increases.

4.6.1 Legality

Loop fusion is not always legal as it may modify the semanticsof the program. An

invalid loop fusion can lead to a reverse order of dependent computations. Data dependence

analysis is used to determine when the fusion is legal or not.

The validity of loop fusion has been widely studied [Allen & Cocke 1972, Warren 1984,

Aho et al. 1986], but can be expressed in di"erent ways. Allen and Cocke propose simple

conditions for the validity of loop fusion in [Allen & Cocke 1972]:

1. the control conditions are unique among the loops,

2. the loop headers control the same number of iterations,

3. the loops are not linked by a data dependence.

114 Chapter 4. Transformations for GPGPU

However, it restricts the number of loops that can fused and prevents any array con-

traction since no data dependence is allowed. Warren [Warren 1984] proposes a slightly

relaxed but still simple set of conditions:

1. the candidate loop nests are consecutive in the source code,

2. induction variables of both loops iterate toward the same upper bound after loop

normalization,

3. the fused bodies preserve all the dependences from the Þrst loop to the second loop.

To summarize, the Þrst condition in both proposals aims at avoiding control depen-

dences, i.e., it ensures that both loops always share the same execution path. The second

condition intends to enforce that loops are compatible without any sophisticated transfor-

mations such as loop shifting or index set splitting for example, i.e., they have the same

number of iterations. Finally, the last conditions guarantee the semantic equivalence of

the two fused loops with the initial code. The Þrst proposal is more restrictive because it

prevents any data dependence between the two loops, while thesecond proposal is more

general.

The last condition is key in establishing the validity of a loop fusion. It has been shown

in [Warren 1984] that dependence with a distance vector allows stating whetherthe fusion

is possible or not. If the distance is positive or null then the fusion is valid. Another

deÞnition without distance was given in [Kennedy & McKinley 1994]. The fusion is valid

if no dependence arc from the Þrst loop body to the second is inverted after fusion. Such

dependence arcs are called fusion-preventing in the next section.

Irigoin et al. conjectured another solution [Irigoin et al. 2011 (perso)] based on array

region analysis [Creusillet & Irigoin 1996b]. The proposal allows identifying these depen-

dences without any dependence graph (see Section4.6.5).

When fusing parallel loops, a legal fusion may end up with a sequential loop. This

happens when the dependence distance is positive, or, with thealternative deÞnition,

when the dependence after fusion becomes carried by the loop.Such dependences might

also be considered as fusion-preventing depending on the goals of the algorithm, as shown

in Figure 4.11.

Some advanced transformations can remove fusion-preventing dependences. For exam-

ple, Xue et al. eliminate anti-dependences using array copying [Xue 2005]. Shifting and

peeling2 techniques described in [Manjikian & Abdelrahman 1997] allow the fusion and

2. These transformations enable loop fusion for loops with di! erent iteration set.

4.6. Loop Fusion 115

for (i=1; i<N; i++) // P a r a l l e l
a[i]=0;

for (i=1; i<N; i++) // P a r a l l e l
b[i]=a[i -1];

(a) Original code: two parallel fusable loops.

for (i=1; i<N; i++) { // S e q u e n t i a l
a[i]=0;
b[i]=a[i -1];

}

(b) After fusion, the loop is sequential.

Figure 4.11: Example of two parallel loops that can be legallyfused, but the resulting loop
nest would be sequential.

parallelization of multiple loops in the presence of loop-carried dependences. Loop shifting

and peeling were also addressed by Darte et al. [Darte et al. 1996, Darte & Huard 2000].

Figure 4.10 illustrates a simple loop fusion.

4.6.2 Di!erent Goals

While the earlier algorithms intended to maximize the number of fusions or minimize

the total number of loops [Allen & Cocke 1972, Kuck et al. 1981, Warren 1984] to reduce

the control overhead, later contributions extended the goals of loop fusion.

When any bad memory access pattern resulted in swapping a memory page, Kuck

et al. studied the applicability of loop fusion for improving performance in environment

with virtual memory management [Kuck et al. 1981]. It was also used to maximize the

usage of vector registers [Kuck et al. 1981, Allen 1983] or to enable more e"ective scalar

optimizations such as common subexpression elimination [Wolfe 1990]. Later, fusion was

used to increase locality [Manjikian & Abdelrahman 1997, Bondhugula et al. 2010], to

generate better access patterns for hardware prefetchers [Bondhugulaet al. 2010], or even

to reduce power consumption [Zhu et al. 2004, Wang et al. 2010].

Other algorithms using loop fusion were designed to maximize task parallelism with

minimum barrier synchronization [Allen et al. 1987, Callahan 1987].

Kennedy and McKinley introduced an algorithm that focuses on maximizing the paral-

lelism, the ordered typed fusion[Kennedy & McKinley 1994], by avoiding fusing sequential

and parallel loops. The type carries the information about the schedule of the loop: parallel

or sequential. This solution is minimal in term of number of parallel loops.

They extended this algorithm to handle an arbitrary number oftypes [Kennedy &

Mckinley 1993] in order to handle noncompatible loop headers. They obtained a solution

they claim to be minimal in the number of parallel loops and the total number of loops.

They then introduced the general weighted fusion algorithms[Kennedy & Mckin-

116 Chapter 4. Transformations for GPGPU

ley 1993] to maximize reuse. The weight represents any metric that would indicate that it

is preferable to fuse a couple of loops instead of another one.

Gao et al. also proposed a weighted loop fusion to maximize array contraction [Gao

et al. 1993] based on the maximum-ßow/minimum-cut algorithm [Dantzig et al. 1954]

but they did not address loops with di"erent headers. Their algorithm relies on a Loop

Dependence Graph (LDG)(see Section4.6.4) where edges can be of three types: nonfusible,

fusible and contractable, and fusible but noncontractable.

The weighted fusion problem was shown in 1994 to be NP-hard Þrst in [Kennedy &

McKinley 1994], then Darte proved it for a broader class of unweighted fusion [Darte 2000],

including the typed fusion for two types or more.

Kennedy and McKinley proposed two polynomial-time heuristics[Kennedy & McKin-

ley 1994] as a solution for the weighted loop fusion [Gao et al. 1993]. Finally Kennedy

proposed a fast greedy weighted loop fusion heuristic [Kennedy 2001].

Megiddo et al. present a linear-sized integer programming formulation for weighted

loop fusion [Megiddo & Sarkar 1997]. They claim that despite the NP-hardness of the

problem, an optimal solution can be found within time constraints corresponding to a

product-quality optimizing compiler.

Bondhugula et al. used the polyhedral model to provide Þrst maximal fusion [Bond-

hugula et al. 2008c, Bondhugula et al. 2008a], and later a metric-based [Bondhugula

et al. 2010] algorithm that optimizes at the same time for hardware prefetch, locality,

and parallelism.

Pouchet et al. [Pouchet et al. 2010b] build a convex set that models the set of all legal

possibilities on which an iterative empirical search is performed.

Loop fusion can also be used to extend the iteration set of a loop, using some index

set splitting as shown in Figure4.12. This technique is explored by Wang et al. [Wang

et al. 2010].

The loop-fusion transformation has been widely studied in di"erent contexts. The next

section present aGPGPU perspective and the associated speciÞc constraint.

4.6.3 Loop Fusion for GPGPU

In the context of GPGPU, loop fusion is directly related to the number of kernels

obtained and their size, as presented in Section4.2. Four major beneÞts are expected from

loop fusion:

1. data reuse,

4.6. Loop Fusion 117

2. array contraction (see Section4.7),

3. increasing the size of the kernel,

4. reducing the overhead associated to the kernel launch.

Items one and two are common beneÞts when dealing with loop fusion. Since recent

GPU architectures include multilevel hardware caches (see Section 2.4), they may beneÞt

from such reuse. However, caches are small when compared to the number of threads, and

are intended mostly to provide spatial locality. We expect loop fusion to allow to keep

data in registers, avoiding external memory accesses. Finally a fused-kernel exhibits more

opportunities for data reuse in local memory, as shown in Section. 2.3.

The third beneÞt exposes potentially moreILP to the hardware scheduler and the

compiler. This is helpful for small kernels, but also increases the register pressure and the

code size dramatically for larger kernels. Section2.4.2demonstrates howILP is exploited

in modern GPUs.

Finally, the last beneÞt is directly linked to the reductionof the number of kernels, and

thus the number of kernel calls. Launching a kernel requiresthe driver to send the binary

code for the kernel, the parameters, and the launch conÞguration (number of threads, work-

group size) to theGPU over thePCIe bus. Then the hardware scheduler begins scheduling

and Þlling the multiprocessors with many thousands of threads (see Section2.4). Finally,

at the end of the computation, the scheduler has to wait for all the threads to Þnish,

leaving potentially some multiprocessors stalled. These operations are not negligible for

small kernels. Stock et al. measured the overhead of starting a kernel of theGPU as20 µs

for an Nvidia GTS 8800 512 and as40 µs for an Nvidia GTX 280 [Stock & Koch 2010].

They manually performed loop fusions to reduce the number of kernel launches, and thus

the overhead.

Overall, these fusions can improve signiÞcantly the performance. Membarth et al.

obtained a 2.3 speedup by manually applying loop fusion on a multiresolution Þltering

application [Membarth et al. 2009]. Wang et al. published measurements with a speedup of

Þve after loop fusion [Wang et al. 2010]. Fousek et al. evaluated the fusion ofCUDA kernels

in the context of predeÞned parallel map operations. The algorithm they proposed performs

an oriented search over the set of valid fusions. They predictthe resulting execution times,

based on o"-line benchmarking of predeÞned functions. On a simple example that chains six

operations (matrixÐmatrix multiply, matrixÐvector multiply, vector normalization, matrixÐ

matrix multiply, matrixÐmatrix add, matrixÐscalar multip ly) they obtained a 2.49 speedup.

118 Chapter 4. Transformations for GPGPU

for (i=0; i<N; i++) {
F(i ,N ,A,B,C);

}
for (i=0; i<M; i++) {

G(i ,M,X,Y,Z);
}

(a) Input code.

for (i=0; i<N+M;i++) {
if (i<N)

F(i ,N ,A,B,C);
else

G(i -N,M,X,Y,Z);
}

(b) Loop fusion to schedule more
threads on the GPU.

Figure 4.12: Example of a loop fusion scheme to extend the iteration set of a loop nest.

Wang et al. [Wang et al. 2010] study three di"erent types of loop fusion, extending the

iteration set to concatenate the two original loop iteration set (see Figure4.12). Their goal

is reduction of power consumption and they do not improve performance with respect to

the classical loop fusion scheme implemented inPIPS. Modern GPUs are able to schedule

more than one kernel at a time on di"erent multiprocessors. Therefore the performance

improvement of this approach, even on small iteration set, is rather theoretical and only

the launch overhead of the fused kernel may be avoided.

Loop fusion is also used in theGPU implementation of MapReduce [Catanzaro

et al. 2008]. Map kernels are fused to reduce synchronizations, communications, and en-

abling data exchange in on-chip memories.

Finally the Thrust library manual [Bell & Hoberock 2011] recommends programmers

to fuse explicitly several computation functions into a single kernel, as shown Figure4.13.

This is presented as a good practice and is a key point in order to get good performance.

4.6.4 Loop Fusion in PIPS

In 2010,PIPS did not include any algorithm for loop fusion. I implementeda heuristic-

based algorithm that performs unweighted typed loop fusion. It can take into account two

types: parallel and sequential loops.

Most algorithms from the previous sections are based on theLoop Dependence Graph

(LDG) [Gao et al. 1993, Megiddo & Sarkar 1997]. It represents a sequence of loop nests

and can be seen as a specialization of the Program Dependence Graph (PDG) [Ferrante

et al. 1987]. Each loop nest is represented as a node of theLDG. Edges correspond to

dependences between statements that belong to the two loop nest bodies. An edge repre-

sents a dependence and the information whether the corresponding dependence prevents

4.6. Loop Fusion 119

void saxpy_slow (float A ,
thrust :: device_vector < float >& X,
thrust :: device_vector < float >& Y) {

thrust :: device_vector < float > temp(X.size ());
// temp < % A
thrust :: f i l l (temp .begin () , temp .end () , A);
// temp < % A " X
thrust :: transform (X.begin () , X.end () ,

temp .begin () , temp .begin () ,
thrust :: mult ipl ies < float >());

// Y < % A " X + Y
thrust :: transform (temp .begin () , temp .end () ,

Y.begin () , Y.begin () ,
thrust :: plus < float >());

}

(a) Using native Thrust operator, performing 4N reads and 3N writes.

struct saxpy_functor {
const f loat a;
saxpy_functor (f loat _a) : a(_a) {}
__host__ __device__ float operator ()(const f loat & x ,

const f loat & y) const {
return a * x + y;

}
};
// Y < % A " X + Y
void saxpy_fast (f loat A ,

thrust :: device_vector < float >& X,
thrust :: device_vector < float >& Y) {

thrust :: transform (X.begin () , X.end () ,
Y.begin () , Y.begin () ,
saxpy_functor (A));

}

(b) Using a user-deÞned kernel, performing 2N reads and N writes.

Figure 4.13: Example of manual kernel fusion using Thrust library and a SAXPY example.
The Þrst version is expressed using native Thrust operators and requires temporary arrays,
the second version fuses the three steps in one user-deÞned kernel (source [Hoberock &
Bell 2012]).

120 Chapter 4. Transformations for GPGPU

for (i=0; i<N; i++){ //S1
a[i]=b[i]; //S2
a[i]+=2*c[i]; //S3

}

for (i=1; i<M; i++){ //S4
e[i]=c[i]; //S5
e[i]+=2*b[i]; //S6

}

int k; //S7
k = d [1]; //S8
int l ; //S9
l = e [1]; // S10

for (i=1; i<M; i++){ // S11
d[i]=2*e[i]; // S12
d[i]+=b[i]; // S13

}

for (i=0; i<N; i++){ // S14
c[i]+=a[i]; // S15
c[i]+=k+l ; // S16

}

(a) Input code.

����
����

����

����
����

��������

���	

���

������

������ ������

������
������

������

������

(b) Dependence
Graph (DG).

����

����

����

������

���� ����

����

���	���

����

������ ������

������

������

�����
 �����	

(c) Reduced Depen-
dence Graph (RDG).

Figure 4.14: On the left, a sequence of statements, in the middle the associated Dependence
Graph (DG), and on the right the corresponding Reduced Dependence Graph (RDG)
obtained after clustering the vertices that belong to the same loop.
In solid red the ßow dependences, in dashed blue the anti-dependence, and in dotted green
the special dependences that model the declaration. The DG view showed here is simpliÞed
for the sake of clarity, for instance output dependences andthe loop carried dependences
are omitted.

the fusion of its two vertices. This information is a key pointfor many algorithms from

the previous section.

The direction or distance vector dependence graphs, introduced in Section4.6.1, are

used to build the LDG with the fusion-compliant status attached to all the edges. But

since thePIPS dependence graph exhibits an abstraction based on the dependence level,

it does not provide the distance vector in the graph. It wouldrequire re-implementing

4.6. Loop Fusion 121

the PIPS dependence test [Irigoin et al. 1991] and the dependence graph representation to

provide this information.

Without this information, the alternative method for ident ifying the fusion-preventing

nature of an edge (see Section4.6.1) requires Þrst e"ectively fusing the loop nests and

recomputing a dependence graph on the new body to establish if a dependence is fusion-

preventing or not by a comparison with the original graph. However, it would require a

lot of spurious computations to do that preventively for allpossible combinations of two

loop nests.

Instead I designed a heuristic that provides features similar to the typed fusion intro-

duced by Kennedy and McKinley [Kennedy & McKinley 1994], but operating on anLDG

that does not include any information on the fusion-preventing nature of the edges. The

vertices are selected by the algorithm and the fusion is tried. It is only at that time that

the validity is checked. The algorithm has to proceed using a trial-and-error strategy.

This algorithm traverses thePIPS Hierarchical Control Flow Graph(HCFG) and con-

siders statements that share the same control in the same wayas [Ferrante et al. 1987].

In PIPS terminology these statements are in the samesequenceof statements, such as

a compound block{ ... } in the C language, with nogoto from or to the statements

directly in the sequence.

In a sequence, we have to take into account not only loops but also any kind of constructs

such as tests, assignments, function calls, etc. The nodes ofour graph are not necessarily

loop nests. Therefore I use the generic termReduced Dependence Graph (RDG)instead

of LDG, with an example shown on Figure4.14.

PIPS HCFG represents all these constructs as statements, and they arestored in a

linked list to represent the sequence. TheRDG is then built by

1. creating a vertex for each statement in the sequence,

2. mapping all the inner statements to the vertex statement, and

3. adding an edge for each edge in the dependence graph to theRDG using the previ-

ously computed mappings.

It considers only the dependence arcs related to the statements within the sequence,

and then the dependence graph is acyclic, so is theRDG obtained.

Figure 4.14a, Page113, contains a sequence of statements including some loops. The

resulting (simpliÞed)Dependence Graph (DG)and the RDG computed by PIPS are pre-

sented in Figures4.14b and 4.14c. At all times, there is a one-to-one mapping from the

vertices in theRDG and the statements in the sequence.

122 Chapter 4. Transformations for GPGPU

����

����

���� ����

����

����

(a) The original RDG.

����

����

���� ����

����

����

(b) The RDG after pruning.

Figure 4.15: The algorithm begins with a pruning phase. For each direct edge between
two vertices it ensures that there is no other path between them.

The originality of the algorithm is to prune the RDG so that any direct arc between

two statements guarantees that no other statement needs to bescheduled between the two

statements. Therefore this pruning allows traversing the graph in any topological order

and trying to fuse two adjacent statements without having Þrst to check if a fusion would

introduce a cycle.

Since PIPS is a source-to-source compiler, the readability of the transformed source

is an important point. Each transformation must be designed to keep the code structure

as close as possible to the original input code. For example,declarations are represented

in the Internal Representation (IR) like any other statements. TheDG includes edges

from these declarations to every use of the variable. Therefore a transformation algorithm

relying on the DG naturally keeps the declarations consistent with the uses ofvariables.

My fusion algorithm allows declarations everywhere in the codewithout preventing fusion.

My algorithm traverses the graph in three independent ways. Each traversal has a

dedicated goal:

1. The Þrst traversal favors array contraction, and thus followsthe edges in theRDG

that correspond to ßow dependences. These represent the opportunities to fuse to

get reduced liveness, from the deÞnition to the use of a value.

2. The second traversal improves temporal locality. It fuses vertices of theRDG that are

linked by edge corresponding to a read-read dependence. In the context ofGPGPU,

the purposes are multiple. First, accesses to the same memory location are likely to

4.6. Loop Fusion 123

stay in a register. Then the accesses among a block of threads are more likely to

beneÞt from the cache levels. Finally at a coarser grain level, some transfers between

the CPU and the GPU may be avoided.

3. The last traversal is a greedy one that intends to minimize thetotal number of loops

and therefore fuse all vertices in the graph that are not connected. The motivation is

to minimize the number of kernel launches and to exhibit moreinstructions in kernels,

leading to moreILP . The drawback is a potentially increased register pressure, and

therefore spilling may occur in large kernels.

Note that the second traversal relies on edges that do not exist in the classicDG in

PIPS. Moreover, it is not desirable to use them the same way as theother edges since they

do not carry the same constraints: they do not imply any orderbetween the connected

vertices. One may think about these edges as being undirected arcs. However, since

the RDG is a Directed Acyclic Graph (DAG), it cannot include any undirected edge. A

separated undirected graph structure over theRDG vertices is computed to keep track of

data reuse.

The Þrst traversal starts with each vertex that does not have any predecessor in the

graph. It then tries to fuse the vertex with each of its successors, and recurses on each,

following edges in theRDG as paths. The algorithm presented in Figure4.16 illustrates

this process.

The second traversal is based on edges representing data reuse. The algorithm is similar

to the one used for the Þrst traversal and illustrated in Figure 4.16. Edges are pruned like

arcs. The pruning involves the information about the arcs. Infact, an edge between two

vertices is kept only if there are no paths between the two vertices in the directed graph.

This guarantees that fusing two vertices linked by an undirected edge is always valid from

the graph point of view, i.e., it does not create any cycle in the RDG.

Finally the last traversal is a greedy one; every possible pair of vertices that are not

linked by any path in the RDG are tried for fusion.

Figure 4.17 presents the algorithm involved in pruning the graph when merging two

vertices. The resulting process of this algorithm on the codeshown in Figure 4.14 is

presented in Figure4.18. Note how the declaration and initialization ofk are moved to

ensure consistency.

The order these three traversals are performed matters. Since for example in a sequence

of three loops, it can arise that the Þrst one can be fused with the second or the third but

not both. Therefore the heuristic to chose which fusion to perform instead of the other has

124 Chapter 4. Transformations for GPGPU

// v is modiÞed as side-e"ect
function fuse_rdg (V, E)

for v - V do
if v has no predecessorthen

fuse_along_path (v)
end if

end for
end function

// Fuse all directly connected vertices starting fromv
// v is modiÞed as side-e"ect
function fuse_along_path (v)

toFuse1 succ(v)
alreadyTried 1 !
while toFuse 0= ! do

v! 1 Pop (toFuse)
if v is a loop andv! is a loopthen

if try_to_fuse (v, v!) then
// Fusion succeeded, register successors ofv! to be tried
toFuse1 toFuse

- +
succ(v!) \ alreadyTried

,

// Fuse in the graph
fuse_vertices (v, v!)

else
// Record the failure about fusion with v!

alreadyTried 1 alreadyTried
-

{ v!}
end if

end if
// Recurse on v!

fuse_along_path (v!)
end while

end function

Figure 4.16: Heuristic algorithmFUSE_RDGto traverse the RDG and apply fusion. The
graph is modiÞed as side e"ect.

to consider the criteria that is likely to provide the best performance.

4.6.5 Loop Fusion Using Array Regions

Section4.6.1presents the classic way of determining the legality of a fusion based on the

dependence graph. Irigoin conjectured another solution [Irigoin et al. 2011 (perso)] exploit-

ing the array region analysis [Creusillet & Irigoin 1996b]. I designed and implemented in

4.6. Loop Fusion 125

function fuse_vertices (v, v!)
// Fuse v! into v
pred(v) = pred(v)

- +
pred(v!) \ { v}

,

succ(v) = succ(v)
-

succ(v!)
for s - succ(v!) do

// For each successor ofv!, replacev! with v as a predecessor
pred(s) =

+
pred(s) \ { v!}

, -
{ v}

end for
for p - pred(v!) do

if p 0= v then
// For each predecessor ofv!, replacev! with v as a successor
succ(p) =

+
succ(p) \ { v!}

, -
{ v}

end if
end for
// Prune the graph, traversing all paths in both direction from v
prune (v)

end function

Figure 4.17: Merging two vertices in the graph while enforcingpruning as introduced in
Figure 4.15.

int k; //S7
k = d [1]; //S8

for (i=1; i<M; i++){ //S4
e[i] = c[i]; //S5
e[i] += 2*b[i]; //S6
d[i] = 2*e[i]; // S12
d[i] += b[i]; // S13

}

int l ; //S9
l = e [0]; // S10

for (i=0; i<N; i++){ //S1
a[i] = b[i]; //S2
a[i] += 2*c[i]; //S3
c[i] += a[i]; // S15
c[i] += k+l ; // S16

}

Figure 4.18: The resulting code after applying the loop-fusion algorithm on the code
presented in Figure4.14a.

126 Chapter 4. Transformations for GPGPU

PIPS the corresponding algorithm,FusionWithRegions, that is based on a summarization

mechanism using array regions (see Section3.2).

PIPS computes array region accesses for each structure of itsHCFG, including loops

and their body. This information, summarized at body-level,enables establishing if the

loops can be fused with an extended dependence test [Triolet et al. 1986]. Array regions are

convex polyhedra. The linear system is used directly in thePIPS dependence test [Irigoin

et al. 1991] to establish the dependence between the array regions associated to the loop

bodies.

In the case of conßict, the dependence test states whether thedependence is loop-carried

or not, and whether it is a backward or a forward dependence. A forward loop-independent

dependence is totally harmless and therefore can be safely ignored for the fusion.

A backward loop-carried dependence breaks the semantics ofthe program and always

has to be considered as fusion-preventing [Warren 1984, Kennedy & McKinley 1994].

Finally a forward loop-carried dependence does not break the semantics of the program

but serializes the execution of the loop. If the loop-fusionalgorithm has to maximize the

parallelism, then such a dependence has to be considered as fusion-preventing, if at least

one of the original loops is parallel.

The main interest of the FusionWithRegions algorithm is the simplicity of its imple-

mentation in PIPS. It relies on a well-tried polyhedral framework used for array regions.

This solution allows avoiding recomputing a full dependence graph each time a fusion is

attempted by the algorithm FUSE_RDG.

4.6.6 Further Special Considerations

As mentioned in Section4.2, the mapping of a loop nest onGPU involves only perfectly

nested parallel loops. The fusion algorithm can be parametrized to enforce this property.

When a fusion succeeds, if the original loops both containeda single parallel loop as body

then a fusion is tried on these inner loops. In case of failure, the fusion of the outer loops

is reverted.

The algorithm presented at the previous section has to be applied in sequences. The

order sequences are picked for processing duringHCFG traversal matters. Figure 4.19

presents an example where the sequence corresponding to the body of the Þrst loop has to

be processed Þrst. If the inner loops are not fused Þrst, thenthe outer loops are not fused

to avoid breaking the perfect nesting.

Finally, when parallelizing forGPUs, since only the perfectly nested loops are scheduled

4.7. Scalarization 127

for (i=0; i<n; i++) { // P a r a l l e l
for (j=0; j<m; j++) { // P a r a l l e l

a[i][j]=b[j][i];
}
for (j=0; j<m; j++) { // P a r a l l e l

c[i][j]=a[i][j]+k* j ;
}

}
for (i=0; i<n; i++) { // P a r a l l e l

for (j=0; j<m; j++) { // P a r a l l e l
d[i][j]= sqrt (c[i][j]);

}
}

Figure 4.19: Sample code showing that inner loops have to be fused Þrst in order to be
able to fuse the outer loops without breaking the perfect nesting.

for (i=0; i<n; i++) { // P a r a l l e l
int tmp [10];
tmp [0]=0;
for (j=1; j <10; j++) { // S e q u e n t i a l

tmp [j]= tmp [j -1]+a[i][j]+b[i][j];
}
for (j=1; j <10; j++) { // P a r a l l e l

c[i][j]+= tmp[j];
}

}

Figure 4.20: Only perfectly nested loops are labeled parallel to avoid GPU unfriendly loop
fusion.

on the GPUs, parallel loops that are located in the body of an outer parallel loop must be

declared as sequential. If they are not, the fusion of the inner parallel loop with another

inner sequential loop is prevented. This situation is illustrated in Figure 4.20. The second

inner loop should not be declared parallel, so that it can be fused with the previous loop.

4.7 Scalarization

Scalarization is a transformation that replaces constant array references to arrays with

scalars. This transformation can occur in the usual backend compiler, when it comes to

keeping in a register a value fetched from memory as long as possible. Intuitively it means

128 Chapter 4. Transformations for GPGPU

that performing this transformation at source level might increase the pressure on registers

and lead to spilling.

This transformation can also eliminate temporary arrays, most of the time after loop

fusion and especially in the context of automatically generated code from high-level lan-

guages and tools. The generated C code from a three-line Scilab program contains three

temporary arrays that can be totally replaced with scalars after loop fusion (see in Fig-

ure 4.21).

In the context of targeting accelerators likeGPUs, this transformation is even more

critical than on a shared memory system. Indeed, the generated kernel will be faster by

performing fewer memory accesses, but it is probably from the reduced memory transfers

over the PCIe bus that most of the gains are to be expected.

Array scalarization has been widely studied in the past [Gao et al. 1993, Sarkar &

Gao 1991, Darte & Huard 2002, Carribault & Cohen 2004]. This section explores di"erent

schemes to apply this transformation in the context of o$oading kernels to theGPU. The

performance impact is evaluated for di"erentGPU architectures.

4.7.1 Scalarization inside Kernel

A simple matrix multiplication naively mapped onto the GPU is shown in Figure4.22.

This kernel includes a sequential loop with a constant array reference. This reference

can be kept in a scalar variable during the whole loop. These transformations could be

done by the target backend compiler. However, the measurement presented in Figure7.11,

Page192, indicates that performing it at source level is valuable onall architectures tested,

with speedup up to 2.39.

4.7.2 Scalarization after Loop Fusion

Loop fusion generates code where deÞnitions and uses of temporary arrays are in the

same loop body. The arrays can be totally removed, saving bothmemory bandwidth and

memory footprint. In the context of automatically generated code from high-level languages

and tools, this situation is a common pattern. Figure4.21 shows an example of such

generated code from a three-line Scilab program. After loopfusion, the generated C code

contains three temporary arrays that can be replaced by scalars as shown in Figure4.21b.

To eliminate a temporary array, its elements must not be used later in the program

execution. This is checked inPIPS with OUT regions (see Section3.2, Page64).

4.7. Scalarization 129

double a [1000][1000];
double t0 [1000][1000];
double b [1000][1000];
double t1 [1000][1000];
double c [1000][1000];
for (i=0; i <1000; i++) {

for (j=0; j <1000; j++) {
a[i][j] = (double) (1.0);
t0 [i][j] = a[i][j]+a[i][j];
b[i][j] = t0 [i][j]+a[i][j];
t1 [i][j] = b[i][j]*2.;
c[i][j] = t1 [i][j]+3.;

}
}
disp_s0d2 ("b" ,1000 ,1000 ,b);
disp_s0d2 ("c" ,1000 ,1000 ,c);

(a) After loop fusion.

double b [1000][1000];
double c [1000][1000];
for (i=0; i <1000; i++) {

for (j=0; j <1000; j++) {
double a , t1 , t0 ;
a = (double) (1.0);
t0 = a+a;
b[i][j] = t0+a;
t1 = b[i][j]*2.;
c[i][j] = t1 +3.;

}
}
disp_s0d2 ("b" ,1000 ,1000 ,b);
disp_s0d2 ("c" ,1000 ,1000 ,c);

(b) After array scalarization.

Figure 4.21: Processing of example in Figure4.1. A Scilab script compiled to C code o"ers
good opportunities for loop fusion and array scalarization.

for (i = 0; i < ni ; i ++) {
for (j = 0; j < nj ; j ++) {

C[i][j] = 0;
for (k = 0; k < nk ; ++k)

C[i][j]+=A[i][k]*B[k][j];
}

}

C[i][j] = 0;
for (k = 0; k < nk ; ++k)

C[i][j]+=A[i][k]*B[k][j];

(a) Naive Kernel body.

int scal_C = 0;
for (k = 0; k < nk ; ++k)

scal_C +=A[i][k]*B[k][j];
C[i][j]= scal_C ;

(b) After scalarization.

Figure 4.22: Simple matrix multiplication example to illustrate the impact of scalarization.

Section7.5.2, Page191, shows how this simple case exhibits speedup ranging from 1.96

up to 5.75. In this case the backend compiler cannot do anything and thus it is critical to

apply this transformation at source level.

130 Chapter 4. Transformations for GPGPU

4.7.3 Perfect Nesting of Loops

In some cases, scalarization can break the perfect nesting of loops. Figure4.23 illus-

trates such a situation. Constant references in the innermost loop are assigned to scalars

and thus the two loops are no longer perfectly nested. Since only perfectly nested loops

are mapped, then here only one of the two loops can be executedin parallel after transfor-

mation. The useful parallelism is reduced: fewer threads canexecute on theGPU.

The kernel generated without scalarization is shown in Figure4.23c, while the kernel

generated for the outer loop is shown in Figure4.23e: it contains a sequential loop in

the kernel. Finally, Figure 4.23d illustrates the mapping of the inner loop resulting in a

sequential loop on the host. These three versions di"er on the host side; as shown on the

host code in Figure4.23d, no DMA operation is required foru1 and u2. The drawback

is that, while the other two versions include only one kernel launch, this one requires as

many launches as iterations of the outer loop.

Evaluating which of these three versions leads to the best performance is highly depen-

dent on data size. Here the two loops have di"erent iteration numbers,Nand M. First of all,

the transfer times of arraysu1 and u2 for the versions in Figure4.23eand in Figure 4.23c

increase withN. The number of threads mapped on theGPU scales withNand Mfor version

in Figure 4.23c, with N for version in Figure4.23e, and Mfor version 4.23d. By increasing

the number of threads, more computation has to be done on the accelerator but also more

parallelism is exposed and thus it is potentially more likely to keep the GPU busy. The

time for computing one kernel with one thread is constant for the versions in Figures4.23c

and 4.23dbut scales withMin version in Figure4.23e. Finally, version in Figure 4.23dmay

su"er from a high number of kernel launches whenN grows.

This issue is multidimensional, and does not even take into account the di"erence in

performance from one version to the other linked to architectural details like the memory

accesses patterns or the potentialILP exposed.

Unless N is large and M is small, version4.23esu"ers from less parallelism exposed

with respect to version4.23c. When we compare this latter with version4.23d, a small N

and a high Mmay provide a slight advantage to version4.23dbecause no data transfer is

performed. Although the same amount of data has to be transferred, it will be performed

using the arguments of the kernel call instead of a separateDMA . Since kernels are executed

asynchronously, while the Þrst kernel executes the argumentfor the second kernel are

transfered, providing a kind of overlapping of transfers and computation. However, the

overhead ofN kernel launches can be a lot higher than a singleDMA .

4.7. Scalarization 131

for (i=0; i<N; i++) {
// u1 [i] and u2 [i] a re c o n s t a n t
// r e f e r e n c e s in t h e inne r l o o p
for (j=0; j<M; j++) {

A[i][j]=A[i][j]+u1[i]+u2 [i];
}

}

(a) Nest candidate to scalarization.

for (i=0; i<N; i++) {
s_u1 = u1[i]
s_u2 = u2[i]
for (j=0; j<M; j++) {

A[i][j]=A[i][j]+ s_u1+s_u2 ;
}

}

(b) After array scalarization.

void k_2d (
data_type A[N][M],
data_type u1[N],
data_type u2[N])

{
int i = P4A_vp_1 ;
int j = P4A_vp_0 ;
if (i<N && j<M)

A[i][j]=A[i][j]+
u1 [i]+u2 [i];

}

copy_to_accel (u1);
copy_to_accel (u2);
k_2d (A,u1 ,u2);

(c) Bi-dimensional kernel with-
out scalarization.

void k_in (
data_type A[N][M],
data_type u1 ,
data_type u2 ,
int i)

{
int j = P4A_vp_0 ;

if (j<M)
A[i][j]=A[i][j]+

u1+u2;
}

for (i=0; i<N; i++) {
u1_s = u1[i];
u2_s = u2[i];
k_in (A,u1_s ,u2_s , i);

}

(d) Kernel when mapping the in-
ner loop.

void k_out (
data_type A[N][M],
data_type u1[N],
data_type u2[N])

{
int j , i = P4A_vp_0 ;
if (i<N) {

u1_s = u1[i];
u2_s = u2[i];
for (j=0; j<M; j++)

A[i][j]=A[i][j]
+u1_s+u2_s ;

}
}

copy_to_accel (u1);
copy_to_accel (u2);
k_out (A ,u1 ,u2);

(e) Kernel when mapping the
outer loop.

Figure 4.23: Array scalarization can break the perfect nesting of loop nests, thus limiting
potential parallelism when mapping on the GPU.

This analysis is conÞrmed by the experiments in Section7.5.3, Page191, and illustrated

in Figure 7.13.

4.7.4 Conclusion

This section surveys a well-known transformation, scalarization, and shows how the

implementation in PIPS, leveraging array region analysis, can help reducing the memory

footprint and improving overall performance when targetingGPU.

The GPGPU puts some unusual constraints in such state-of-the-art transformation:

132 Chapter 4. Transformations for GPGPU

preserve the perfect nesting of loops. I modiÞed the existing implementation to enforce

this property. Detailed experiments are presented in Section 7.5, Page181, and speedups

ranging from 1.12 to 2.39 are obtained.

4.8 Loop Unrolling

Loop unrolling (or unwinding) is a well-known loop transformation [Aho & Ullman 1977]

to improve the performance of loop execution time. The basic principle is to replicate

the loop body many times to perform many iterations. The trip count is then reduced.

Figure 4.24 shows an example of such a transformation. The original loop contains only

one statement. After unrolling by a factor of four, the new loop body corresponds to four

iterations of the original loop. A second loop is added to compute the remaining iterations.

Indeed, the unrolled loop can compute only multiples of fouriterations and thus, depending

on the total number of iterations, the remainder must be processed separately.

This transformation is used to reduce the execution time. The original loop in Fig-

ure 4.24 contains just a few computations per iteration, thus the overhead of the loop

header and the hazard associated to the branching may be signiÞcant. Moreover, theIn-

struction Level Parallelismavailable to the hardware scheduler is poor. The unrolled loop

addresses these issues and exhibits also a larger potentialfor further optimization. This

is obtained by means of increased register pressure [Bachir et al. 2008] and a larger code

that might break the instruction cache. These shortcomings can annihilate any of the

aforementioned beneÞts.

In spite of its drawbacks, unrolling is a common optimizationtechnique implemented

in all mainstream compilers. In the context ofGPU programming, this transformation is

interesting for two reasons. The Þrst arises when sequential loops are encountered inside

kernels, while the second consists in unrolling parallel loops that are mapped on threads

as shown in Section4.2 page98. In this latter case, it is a trade-o" since it reduces the

TLP exposed in favor of potentially moreILP .

Section 2.4 presents theGPU architectures, and more especially howILP can be ex-

ploited by current GPU architectures. For instance, someAMD architectures are based

on a VLIW instruction set. Sohi & Vajapeyam show that loop unrolling is a must to

get speedup forVLIW architectures [Sohi & Vajapeyam 1989]. Lee et al. show interest-

ing speedups obtained with loop unrolling for superscalar architectures [Lee et al. 1991].

Nvidia architectures and the latestAMD one include a hardware scheduler that can ben-

4.9. Array Linearization 133

for (k = 0; k < nk ; k += 1) {
D_scalar += alpha*A[i][k]*B[k][j];

}

(a) Original code.

for (k = 0; k < 4*((nk)/4); k += 4) {
D_scalar += alpha*A[i][k]*B[k][j];
D_scalar += alpha*A[i][k+1]*B[k+1][j];
D_scalar += alpha*A[i][k+2]*B[k+2][j];
D_scalar += alpha*A[i][k+3]*B[k+3][j];

}
// E p i l o g u e
for (; k < nk ; k += 1) {

D_scalar += alpha*A[i][k]*B[k][j];
}

(b) After loop unrolling.

Figure 4.24: Example of loop unrolling with a factor four.

eÞt from unrolling in the same way. Stone et al. found that unrolling the parallel loops

mapped on threads eight times can provide a speedup of two [Stone et al. 2007], Volkov

conÞrmed later this results with other experiments [Volkov 2011].

Section 7.6 presents the performance gains that I obtained by simply unrolling the

inner loop in the kernel from the code in Figure4.22. An acceleration of up to 1.4 can be

observed depending on the architecture. The register pressure impact is also studied, and

it is shown that loop unrolling impacts the register consumption in kernels.

4.9 Array Linearization

Fortran and C programs make use of multidimensional arrays.However, this is an

issue when usingOpenCL: the standard does not allow the use of multidimensional arrays.

These have to be converted to pointers or 1D arrays and the accesses have to be linearized.

This transformation is also mandatory when usingCUDA and C99VLA arrays that are

not supported.

The result of this transformation is illustrated in Figure 4.25.

The impact on performance forCUDA code is checked in Section7.7. This transfor-

mation can lead to a slowdown up to twenty percent, but can also,in one conÞguration,

leads to a small speedup of about two percent.

134 Chapter 4. Transformations for GPGPU

void k(int ni , int nj , int nk ,
double A[ni][nk] ,
double B[nk][nj] ,
double C[ni][nj] ,
int i , int j) {

int k;
C[i][j] = 0;
for (k=0; k<nk ; ++k)

C[i][j]+=A[i][k]*
B[k][j];

}

(a) Original kernel.

void k(int ni , int nj , int nk ,
double *A,
double *B,
double *C,
int i , int j) {

int k;
*(C+i*nk+j) = 0;
for (k=0; k<nk ; ++k)

*(C+i*nj+j)+=*(A+i*nk+k) *
*B(k*nj+j);

}

(b) After array linearization.

Figure 4.25: Simple matrix multiplication example to illustrate array linearization interest.

There is no reason in my opinion why a standard likeOpenCL forbids the use of

multidimensional arrays in the formal parameters of the functions, and, considering the

performance impact, we hope that a future release will removethis constraint.

4.10 Toward a Compilation Scheme

This chapter presents many individual transformations thatare applicable at di"erent

times in the whole process. The chaining of all these transformations can be tough and

di"erent choices in the process will lead to di"erent performance results.

I proposed and implemented a simple but ßexible mapping of parallel loop nests on the

GPU. This mapping allows keeping the internal representation unaware of the full hierarchy

implied by the OpenCL NDRange. I designed and implemented an induction variable

substitution to enable parallelization of some loops, using an original scheme based on

linear preconditions. I improved the parallelism detection in PIPS, especially the coupling

with the reduction detection, and studied the impact of the two di"erent algorithms on the

code generation and on the performance onGPUs. I designed and implemented dedicated

parallelization of reductions using the atomic operationsavailable on GPUs. I designed

and implemented a loop fusion phase inPIPS, including several di"erent heuristics to favor

a performing mapping ontoGPUs. I improved the existing scalarization transformation

in PIPS to keep the perfect nesting of loops. I identiÞed three di"erent schemes and

analyzed the impact of scalarization in these cases. I conducted experiments to validate

the individual impact of each of the transformations presented in this chapter. While most

4.10. Toward a Compilation Scheme 135

concepts are well known, it is shown that for many transformations, the state-of-the-art

scheme has to be adapted to the speciÞc requirements of the massively parallel pieces of

hardware that areGPUs.

PIPS o"ers a ßexible framework, but the compilation ßow among these individual

transformations has to be driven to provide an automatic end-to-end solution, as shown

in Figure 2.27 on page58. The next chapter motivates and introduces the concepts of

the programmable pass manager implemented inPIPS, which Par4All leverages to provide

automated process driving all the transformation steps.

Chapter 5

Heterogeneous Compiler Design and

Automation

Contents
5.1 Par4All Project . 138

5.2 Source-to-Source Transformation System 140

5.3 Programmable Pass Managers . 141

5.3.1 PyPS . 142

5.3.2 Related Work . 149

5.3.3 Conclusion . 150

5.4 Library Handling . 151

5.4.1 Stubs Broker . 152

5.4.2 Handling Multiple Implementations of an API: Dealing with Ex ternal

Libraries . 153

5.5 Tool Combinations . 155

5.6 ProÞtability Criteria . 156

5.6.1 Static Approach . 157

5.6.2 Runtime Approach . 157

5.6.3 Conclusion . 158

5.7 Version Selection at Runtime . 158

5.8 Launch ConÞguration Heuristic . 159

5.8.1 Tuning the Work-Group Size . 159

5.8.2 Tuning the Block Dimensions . 162

5.9 Conclusion . 163

138 Chapter 5. Heterogeneous Compiler Design and Automatio n

While previous chapters are focused on individual transformations implemented in the

PIPS framework, this chapter addresses the issue of automating the whole compilation

process, from the original source code to the Þnal binary. Tothis end, we introduce

Par4All [SILKAN 2010 (perso), Amini et al. 2012b (perso)] in Section 5.1. Par4All is an

Open Source initiative that we propose to incubate e"orts made around compilers to allow

automatic parallelization of applications to hybrid architectures.

As hardware platforms grow in complexity, compiler infrastructures need more ßexi-

bility: due to the heterogeneity of these platforms, compiler phases must be combined in

unusual and dynamic ways, and several tools may have to be combined to handle speciÞc

parts of the compilation process e! ciently. The need for ßexibility also appears in iterative

compilation, when di"erent phases orderings are explored.

In this context, we need to assemble pieces of software like compiler phases without

having to dive into the tool internals. The entity in charge ofthis phase management in

a standard monolithic compiler is called apass manager. While pass managers usually

rely on a statically deÞned schedule, the introduction of plug-ins in GCC and the current

trends in compiler design showcased byLLVM pave the way for dynamic pass schedulers.

Moreover, the heterogeneity of targets requires the combination of di"erent tools in the

compilation chain. In this context, automating the collaboration of such di"erent tools

requires deÞning a higher levelmeta pass manager.

The source-to-source aspect is key in this process, as explained in Section 5.2. A

programmable pass manager is then introduced in Section5.3.

Numerical simulations often make use of external librariessuch asBasic Linear Algebra

Subprograms (BLAS)or Fast Fourier transform (FFT) for example. Section5.4 presents

the handling of such speciÞc libraries for mapping these computations on a GPU.

Section 5.5 gives insights on how di"erent tools can collaborate. The proÞtability

decision of o$oad computation is studied in Section5.6. Solutions for selecting among

di"erent versions of a kernel at runtime are presented Section 5.7. Finally, Section 5.8

explores the impact of launch conÞguration on kernel performance.

5.1 Par4All Project

Recent compilers propose an incremental way for convertingsoftware toward acceler-

ators. For instance, the PGI Accelerator [Wolfe 2010] or HMPP [Bodin & Bihan 2009]

require the use of directives. The programmer must select thepieces of source that are

5.1. Par4All Project 139

to be executed on the accelerator. He provides optional directives that act as hints for

data allocations and transfers. The compiler then automatically generates a transformed

code that targets a speciÞc platform. JCUDA [Yan et al. 2009] o"ers a simpler interface to

target CUDA from Java. There have been several attempts to automate transformations

for OpenMP annotated source code toCUDA [Lee et al. 2009, Ohshimaet al. 2010]. The

GPU programming model and the host accelerator paradigm greatly restrict the poten-

tial of this approach, sinceOpenMP is designed for a shared memory computer. Recent

work [Han & Abdelrahman 2009, Lee & Eigenmann 2010] adds extensions toOpenMP to

account for CUDA speciÞcity. These make programs easier to write, but the developer is

still responsible for designing and writing communicationscode, and usually the program-

mer has to specialize his source code for a particular architecture. These previous works

are presented with more detail in Section2.2.

Unlike these approaches, Par4All [SILKAN 2010 (perso), Amini et al. 2012b (perso)]

is an automatic parallelizing and optimizing compiler for Cand Fortran sequential pro-

grams funded by the SILKAN company. The purpose of this source-to-source compiler is to

integrate several compilation tools into an easy-to-use yet powerful compiler that automat-

ically transforms existing programs to target various hardware platforms. Heterogeneity is

everywhere nowadays, from the supercomputers to the mobile world, and the future seems

to be more and more heterogeneous. Thus automatically adapting programs to targets

such as multicore systems, embedded systems, high- performance computers andGPUs is

a critical challenge.

Par4All is currently mainly based on thePIPS [Irigoin et al. 1991, Amini et al. 2011a

(perso)] source-to-source compiler infrastructure and beneÞts from its interprocedural capa-

bilities like memory e"ects, reduction detection, parallelism detection, but also polyhedral-

based analyses such as convex array regions [Creusillet & Irigoin 1996b] and preconditions.

The source-to-source nature of Par4All makes it easy to integrate third-party tools into

the compilation ßow. For instance,PIPS is used to identify parts that are of interest in a

whole program, and then Par4All relies on the PoCC [Pouchetet al. 2010a] or PPCG [Ver-

doolaegeet al. 2013] polyhedral loop optimizers to perform memory accesses optimizations

on these parts, in order to beneÞt from local memory for instance, as shown in Section5.5.

The combination of PIPSÕ analyses together and the insertion of other optimizers in

the middle of the compilation ßow is automated by Par4All using a programmable pass

manager (see Section5.3) to perform whole-program analysis, spot parallel loops and

generate mostlyOpenMP, CUDA or OpenCL code.

140 Chapter 5. Heterogeneous Compiler Design and Automatio n

To that end, we mainly face two challenges: parallelism detection and data transfer

generation. TheOpenMP directive generation relies on coarse grained parallelization and

semantic-based reduction detection, as presented in Section 4.4. The CUDA and OpenCL

targets add the di! culty of data transfer management. PIPS helps tackling this using

convex array regions that are translated into optimized, interprocedural data transfers

between host and accelerator as described in Chapter3.

5.2 Source-to-Source Transformation System

Many previous successful compilers are source-to-source compilers [Bozkuset al. 1994,

Frigo et al. 1998, AyguadŽ et al. 1999, Munk et al. 2010] or based on source-to-source

compiler infrastructures [Irigoin et al. 1991, Wilson et al. 1994, Quinlan 2000, ik Lee

et al. 2003, Derrien et al. 2012]. They provide interesting transformations in the context

of heterogeneous computing, such as parallelism detectionalgorithms (see Section4.3),

variable privatization, and many others including those presented in Chapter4.

In the heterogeneous world, it is common to rely on speciÞc hardware compilers to

generate binary code for the part of the application intended to be run on a particular

hardware. Such compilers usually take a C dialect as input language to generate assembly

code. Thus, it is mandatory for the whole toolbox to be able to generate C code as the

result of its processing.

In addition to the intuitive collaboration with hardware compilers, source-to-source

compilers can also collaborate with each other to achieve their goal, using source Þles as a

common medium, at the expense of extra conversions between the Textual Representation

(TR) and the IR. Figure 5.1 illustrates this generic behavior and, in Section5.5, the use

of external polyhedral tools for some loop nest optimizations is presented. Moreover, two

source-to-source compilers written in the same infrastructure can be combined in that way.

For instance, anSIMD instruction generator has been used for both the generationof SSE

instructions on Intel processors and enhancing the code generated by theCUDA/ OpenCL

generator presented in Chapter4.

More traditional advantages of source-to-source compilersinclude their ease of debug-

ging: the IR can be dumped as aTR at anytime and executed. For the same reason, they

are very pedagogical tools and make it easier to illustrate the behavior of a transformation.

5.3. Programmable Pass Managers 141

IR

pretty-printer

TR

external tool

TR

parser

IR

Figure 5.1: Source-to-source cooperation with external tools.

5.3 Programmable Pass Managers

The continuous search for performance leads to numerous di"erent hardware architec-

tures, as showcased by current trends in heterogeneous computing. To use these archi-

tectures e! ciently, new languages and paradigms are often introduced,but they typically

target only speciÞc architectures. For instanceAVX intrinsics target vector registers of

recent x86 processors,OpenMP directives target multicores, and most noticeablyCUDA

targets NvidiaÕsGPU. It is di ! cult to master all these language-hardware bindings with-

out losing control of the original code. Thus compilers play akey role for ÒÞlling the gapÓ

between generic sequential languages and speciÞc parallellanguages [Asanovi%et al. 2006].

Because of the diversity of targeted architecture, ßexibility and retargetability are critical

properties for compiler frameworks that must keep up with theongoing work of hard-

ware designers and founders. Also, applications targeting heterogeneous architectures, e.g.

GPGPU with an x86 host, raise new problems such as the generation of di"erentcodes in

di"erent assembly languages, remote memory management, data transfer generations, etc.,

thus requiring new functionalities that are not available in current mainline compilers.

A recurrent point when compiling for heterogeneous platforms is the need to dynam-

ically create new functions that will be mapped onto speciÞc pieces of hardware, using a

transformation called outlining. This transformation dynamically creates new functions

and new compilation units depending on the processed code, so it does not Þt well into

static pass managers.

Additionally, iterative compilation [Goldberg 1989, Kulkarni et al. 2003]Ñthe process

of iteratively transforming, compiling and evaluating a program to maximize a Þtness

functionÑis more and more considered as an alternative to standard program optimiza-

tions to solve complex problems, but it requires a dynamic reconÞguration of the compi-

lation process. In a compiler infrastructure, the latter ismanaged by thepass manager.

Because of the much more complicated compilation schemes, this pass manager must be

ßexible and provide ways of overtaking the traditional hard-coded pass sequence to al-

142 Chapter 5. Heterogeneous Compiler Design and Automatio n

low compiler developers to manipulate the interactions between passes and the compiled

program dynamically.

This section is organized as follows: Section5.3.1overviewsPythonic PIPS (PyPS), the

pass manager implemented in thePIPS source-to-source compiler framework. It involves an

API with a high-level abstraction of compilation entities such as analyses, passes, functions,

loops, etc. Building upon the fact that anAPI is relevant only when used extensively, some

cases of use are mentioned in Section5.3.1.5, with the summarized compilation scheme

of distinct compiler prototypes using this model. Finally,related works is presented in

Section5.3.2.

5.3.1 PyPS

A formal model description is available in [Guelton et al. 2011a (perso), Guelton

et al. 2011b (perso), Guelton 2011a]. Multiple operators are proposed to describe transfor-

mations, error handling, and di"erent pass-combination schemes. Guelton also improves

it and provides a signiÞcantly extended version in his PhD thesis [Guelton 2011a]. The

assumption made in PyPS is that the resources required to execute a given pass are trans-

parently provided by an underlying component. InPIPS, the consistency manager PIPS-

Make is present. It takes care of executing the analysis required by a compiling pass and

keeps track of any change that invalidates the results of an analysis.

Instead of introducing yet another new domain-speciÞc language to express these op-

erators, we beneÞt from existing tools and languages, taking advantage of the similarity

with existing control ßow operators. Indeed the transformation composition is similar to

a function deÞnition; the failsafe operator can be implemented using exception handling

and the conditional composition performs a branching operation. This leads to the idea of

using a general-purpose language coupled with an existing compiler infrastructure, while

clearly separating the concerns.

5.3.1.1 BeneÞting from Python: on the shoulders of giants

Using a programming language to manage pass interactions o"ers all the ßexibility

needed to drive complex compilation processes, without the need of much insight on the

actual IR. Conceptually, a scripting language is not required. However, it speeds up the

development process without being a burden in terms of performance as all the time is

spent in the transformations themselves.

5.3. Programmable Pass Managers 143

Some approaches introduced dedicated language [Yi 2011] for the pass management, but

we rather follow the well-known Bernard de ChartresÕ motto: Òon the shoulders of giantsÓ

and thus use Python as our base language. This choice proved to be better than expected

by not only providing high-level constructions in the language but also by opening access

to a rich ecosystem that widens the set of possibilities, at the expense of a dependency on

the Python interpreter.

5.3.1.2 Program Abstractions

In the model presented in [Guelton et al. 2011b (perso), Guelton et al. 2011a (perso)],

transformations process the program as a whole. However, transformations can proceed at

lower granularity: compilation unit level,1 function level2 or loop level:

¥ at compilation unit level, decisions based upon the target can be made following the

rule of thumb Òone compilation unit per target.Õ This helps drive the compilation

process by applying di"erent transformations to di"erent compilation units;

¥ most functions that consider stack-allocated variables work at the function level:

common subexpression elimination, forward substitution or partial evaluation are

good examples;

¥ a lot of optimizations are dedicated to loop nests, without taking care of the sur-

rounding statements. This is the case for polyhedral transformations.

Interprocedural transformations, like building thecallgraph, require knowledge of the

whole program, or can be improved by such knowledge (e.g.constant propagation), thus

the program granularity is still relevant.

The class diagram in Figure5.2 shows the relations between all these abstractions.

TheseÑand only theseÑare exposed to the pass manager. Thebuilder, in charge of the

compilation process, is introduced in Section5.3.1.4.

5.3.1.3 Control Structures

The main control structures involved are introduced here. Thecomplete formal de-

scription of the operators is found in [Guelton et al. 2011a (perso), Guelton et al. 2011b

(perso), Guelton 2011a].

1. A source Þle in C.
2. Also referred as Òmodule level.Ó

144 Chapter 5. Heterogeneous Compiler Design and Automatio n

Figure 5.2: PyPS class hierarchy (source [Guelton et al. 2011a (perso), Guelton et al. 2011b
(perso)]).

f i r s t argument i s t h e argument name , second i s t h e d e f a u l t va l u e
if condit ions .get (Õ if_conversion Õ,False):

module . i f_conversion ()

Figure 5.3: Conditionals in PyPS.

for kernel in terapix_kernels :
kernel . microcode_normal ize ()

(a) Iteration over selected modules

for l in module . inner_loops (): l . unrol l (4)

(b) Iteration over inner loops

for pattern in ["min " ,"max" ,"adds "]:
module . pattern_recognit ion (pattern)

(c) Multiple instruction selection.

Figure 5.4: For loop is a control structure commonly involved in PyPS

Conditionals Conditionals are used when transformation scheduling depends on user in-

put or on the current compilation state. Figure5.3, extracted from theSIMD Architecture

Compiler (SAC) compiler [Guelton 2011a], illustrates the use of conditionals to implement

the -fno-pass-name/-fpass-name switch as inGCC.

For Loops For loops are used to perform repetitive tasks (see in Figure5.4):

1. applying a transformation to each function or loop of a set;

2. applying a transformation iteratively with varying parameters.

Figure 5.4a illustrates a basic iteration over selected modules in the compiler for Ter-

apix [Guelton 2011a]. Figure 5.4b from the SAC compiler [Guelton 2011a] shows how to

unroll all inner loops by a factor of four. Finally, in theSAC compiler, early pattern recog-

nition is also performed. Figure5.4c demonstrates the use of loops to apply this pass for

