F. Stephen, W. Altschul, W. Gish, . Miller, W. Eugene et al., Basic local alignment search tool, Journal of molecular biology, vol.215, issue.3, pp.403-410, 1990.

M. J. Anderson, A new method for Non-Parametric multivariate analysis of variance, Austral Ecology, vol.26, issue.1, pp.32-46, 2001.

C. Andrieu, N. De-freitas, A. Doucet, I. Michael, and . Jordan, An introduction to mcmc for machine learning, Machine Learning, vol.50, issue.1/2, pp.5-43, 2003.
DOI : 10.1023/A:1020281327116

R. Apweiler, M. J. Martin, C. O. Donovan, M. Magrane, Y. Alam-faruque et al., al. The universal protein resource (uniprot) in 2010, Nucleic Acids Research, vol.38, pp.142-150, 2010.

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, issue.0, pp.40-79, 2010.
DOI : 10.1214/09-SS054

URL : https://hal.archives-ouvertes.fr/hal-00407906

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.
DOI : 10.1090/S0002-9947-1950-0051437-7

E. Balsa-canto, A. Alonso, and J. Banga, An iterative identification procedure for dynamic modeling of biochemical networks, BMC Systems Biology, vol.4, issue.1, p.11, 2010.
DOI : 10.1186/1752-0509-4-11

S. Bandara, J. P. Schlöder, R. Eils, H. G. Bock, and T. Meyer, Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model, PLoS Computational Biology, vol.2, issue.2, p.1000558, 2009.
DOI : 10.1371/journal.pcbi.1000558.s005

I. Beichl and F. Sullivan, The Metropolis Algorithm, Computing in Science & Engineering, vol.2, issue.1, pp.65-69, 2000.
DOI : 10.1109/5992.814660

E. Benfenati and G. Gini, Computational predictive programs (expert systems) in toxicology, Toxicology, vol.119, issue.3, pp.213-225, 1997.
DOI : 10.1016/S0300-483X(97)03631-7

A. Birmingham, L. M. Selfors, T. Forster, D. Wrobel, C. J. Kennedy et al., Statistical methods for analysis of high-throughput RNA interference screens, Nature Methods, vol.5, issue.8, pp.569-575, 2009.
DOI : 10.1093/nar/gkn435

P. Bogacki and L. F. Shampine, A 3(2) pair of Runge - Kutta formulas, Applied Mathematics Letters, vol.2, issue.4, pp.321-325, 1989.
DOI : 10.1016/0893-9659(89)90079-7

L. Bottou and O. Bousquet, The tradeoffs of large-scale learning. Optimization for Machine Learning, p.351, 2011.

M. Boutros, P. Lígia, W. Brás, . Huber-girolami, D. Neil et al., Analysis of cell-based rnai screens Accelerating bayesian inference over nonlinear differential equations with gaussian processes, Advances in neural information processing systems, pp.217-224, 2006.

M. Campillos, M. Kuhn, A. C. Gavin, L. J. Jensen, and P. Bork, Drug Target Identification Using Side-Effect Similarity, Science, vol.321, issue.5886, pp.321263-321269, 2008.
DOI : 10.1126/science.1158140

M. Campillos, M. Kuhn, A. Gavin, L. J. Jensen, and P. Bork, Drug Target Identification Using Side-Effect Similarity, Science, vol.321, issue.5886, pp.263-266, 2008.
DOI : 10.1126/science.1158140

T. George, G. Chang, and . Walther, Clustering with mixtures of logconcave distributions, Computational Statistics & Data Analysis, vol.51, issue.12, pp.6242-6251, 2007.

B. Chen, D. Wild, and R. Guha, PubChem as a Source of Polypharmacology, Journal of Chemical Information and Modeling, vol.49, issue.9, pp.2044-2055, 2009.
DOI : 10.1021/ci9001876

O. Chkrebtii, A. David, . Campbell, A. Mark, B. Girolami et al., Bayesian Solution Uncertainty Quantification for Differential Equations, Bayesian Analysis, vol.11, issue.4, 2013.
DOI : 10.1214/16-BA1017

URL : http://arxiv.org/abs/1306.2365

C. Conrad, H. Erfle, P. Warnat, N. Daigle, T. L. Ellenberg et al., Automatic Identification of Subcellular Phenotypes on Human Cell Arrays, Genome Research, vol.14, issue.6, pp.1130-1136, 2004.
DOI : 10.1101/gr.2383804

L. E. Alexandre-d-'aspremont, . Ghaoui, I. Michael, . Jordan, R. Gert et al., A Direct Formulation for Sparse PCA Using Semidefinite Programming, SIAM Review, vol.49, issue.3, pp.434-448, 2007.
DOI : 10.1137/050645506

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society

M. Christopher and . Dobson, Chemical space and biology, Nature, issue.7019, pp.432824-828, 2004.

S. Dudoit, J. Fridlyand, and T. P. Speed, Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data, Journal of the American Statistical Association, vol.97, issue.457
DOI : 10.1198/016214502753479248

C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, vol.1, issue.3, p.211, 1936.
DOI : 10.1007/BF02288367

K. Eitner and U. Koch, From Fragment Screening to Potent Binders: Strategies for Fragment-to-Lead Evolution, Mini-Reviews in Medicinal Chemistry, vol.9, issue.8, pp.956-961, 2009.
DOI : 10.2174/138955709788681645

G. Elidan, Copula bayesian networks, Advances in Neural Information Processing Systems 23, pp.559-567, 2010.

D. Ferández-slezak, C. Suárez, G. A. Cecchi, G. Marshall, and G. Stolovitzky, When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models, PLoS ONE, vol.276, issue.10, pp.13283-2010
DOI : 10.1371/journal.pone.0013283.s001

D. Robert, J. Finn, J. Tate, . Mistry, C. Penny et al., The pfam protein families database Additive logistic regression: A statistical view of boosting, Nucleic acids research Annals of Statistics, vol.36, issue.282, pp.281-288337, 2000.

F. Fuchs, G. Pau, D. Kranz, O. Sklyar, C. Budjan et al., Clustering phenotype populations by genome-wide RNAi and multiparametric imaging, Molecular Systems Biology, vol.63, issue.1, 2010.
DOI : 10.1038/nature05697

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913390

M. Fukuzaki, M. Seki, H. Kashima, and J. Sese, Side Effect Prediction Using Cooperative Pathways, 2009 IEEE International Conference on Bioinformatics and Biomedicine, pp.142-147, 2009.
DOI : 10.1109/BIBM.2009.26

S. Terrence, N. Furey, N. Cristianini, . Duffy, W. David et al., Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, issue.10, pp.16906-914, 2000.

C. Genest, K. Ghoudi, and L. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, vol.82, issue.3, pp.543-552, 1995.
DOI : 10.1093/biomet/82.3.543

C. Genest and A. Favre, Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask, Journal of Hydrologic Engineering, vol.12, issue.4, pp.347-368, 2007.
DOI : 10.1061/(ASCE)1084-0699(2007)12:4(347)

K. M. Giacomini, R. M. Krauss, D. M. Roden, M. Eichelbaum, M. R. Hayden et al., When good drugs go bad, Nature, vol.43, issue.7139, pp.446975-977, 2007.
DOI : 10.1038/446975a

. Tsien, The fluorescent toolbox for assessing protein location and function

R. Gozalbes, R. J. Carbajo, and A. Pineda-lucena, From fragment screening to potent binders: strategies for fragment-to-lead evolution, Mini Reviews in Medicinal Chemistry, vol.9, issue.8, pp.956-961, 2009.

J. Michael and . Greenacre, Theory and applications of correspondence analysis, 1984.

E. Gregori-puigjané and J. Mestres, A Ligand-Based Approach to Mining the Chemogenomic Space of Drugs, Combinatorial Chemistry & High Throughput Screening, vol.11, issue.8, pp.669-676, 2008.
DOI : 10.2174/138620708785739952

M. Gribskov and N. L. Robinson, Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching, Computers & Chemistry, vol.20, issue.1, pp.25-33, 1996.
DOI : 10.1016/S0097-8485(96)80004-0

M. Gribskov, L. Nina, and . Robinson, Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching, Computers & Chemistry, vol.20, issue.1, pp.25-33, 1996.
DOI : 10.1016/S0097-8485(96)80004-0

S. Günther, M. Kuhn, M. Dunkel, M. Campillos, C. Senger et al., SuperTarget and Matador: resources for exploring drug-target relationships, Nucleic Acids Research, vol.36, issue.Database, pp.919-922, 2008.
DOI : 10.1093/nar/gkm862

L. Han, Y. Wang, H. Stephen, and . Bryant, Developing and validating predictive decision tree models from mining chemical structural fingerprints and high???throughput screening data in PubChem, BMC Bioinformatics, vol.9, issue.1, p.401, 2008.
DOI : 10.1186/1471-2105-9-401

. Trevor, R. Hastie, J. Tibshirani, H. Jerome, and . Friedman, The elements of statistical learning, 2001.

M. Hoffman, R. Francis, . Bach, M. David, and . Blei, Online learning for latent dirichlet allocation, advances in neural information processing systems, pp.856-864, 2010.

B. Hoffmann, M. Zaslavskiy, J. Vert, and V. Stoven, A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction, BMC Bioinformatics, vol.11, issue.1, p.99, 2010.
DOI : 10.1186/1471-2105-11-99

URL : https://hal.archives-ouvertes.fr/inserm-00663528

H. Hotelling, RELATIONS BETWEEN TWO SETS OF VARIATES, Biometrika, vol.28, issue.3-4, pp.321-377, 1936.
DOI : 10.1093/biomet/28.3-4.321

D. Houtsma, H. J. Guchelaar, and H. Gelderblom, Pharmacogenetics in Oncology: A Promising Field, Current Pharmaceutical Design, vol.16, issue.2, pp.155-163, 2010.
DOI : 10.2174/138161210790112719

C. Hsieh, K. Chang, C. Lin, S. Keerthi, and . Sundararajan, A dual coordinate descent method for large-scale linear SVM, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.408-415, 2008.
DOI : 10.1145/1390156.1390208

L. Jacob, B. Hoffmann, V. Stoven, and J. Vert, Virtual screening of GPCRs: An in silico chemogenomics approach, BMC Bioinformatics, vol.9, issue.1, p.363, 2008.
DOI : 10.1186/1471-2105-9-363

URL : https://hal.archives-ouvertes.fr/hal-00220396

L. Jacob and J. Vert, Protein-ligand interaction prediction: an improved chemogenomics approach, Bioinformatics, vol.24, issue.19, pp.2149-2156, 2008.
DOI : 10.1093/bioinformatics/btn409

URL : https://hal.archives-ouvertes.fr/hal-00433572

K. Jajuga and D. Papla, Copula Functions in Model Based Clustering
DOI : 10.1007/3-540-31314-1_74

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal methods for hierarchical sparse coding. arXiv preprint, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00516723

X. Jiang, F. , and H. Rabitz, Optimal identification of biochemical reaction networks, Biophysical Journal, vol.86, issue.3, pp.1270-1281, 2004.

H. Joe and J. J. Xu, The estimation method of inference functions for margins for multivariate models, 1996.

H. Joe, Asymptotic efficiency of the two-stage estimation method for copula-based models, Journal of Multivariate Analysis, vol.94, issue.2, pp.401-419, 2005.
DOI : 10.1016/j.jmva.2004.06.003

R. Thouis, A. E. Jones, M. R. Carpenter, J. Lamprecht, S. J. Moffat et al., Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning, Proceedings of the National Academy of Sciences, pp.1826-1831, 2009.

. Saul, An introduction to variational methods for graphical models, Machine Learning, pp.183-233, 1999.

M. Itoh, S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa, From genomics to chemical genomics: new developments in kegg, Nucleic acids research, vol.34, issue.1, pp.354-357, 2006.

R. Jonathan, . Karr, C. Jayodita, . Sanghvi, N. Derek et al., A whole-cell computational model predicts phenotype from genotype, Cell, vol.150, issue.2, pp.389-401, 2012.

A. Matthew, C. Kayala, . Azencott, H. Jonathan, P. Chen et al., Learning to predict chemical reactions, Journal of chemical information and modeling, vol.51, issue.9, pp.2209-2222, 2011.

J. Michael, V. Keiser, . Setola, J. John, C. Irwin et al., Predicting new molecular targets for known drugs, Nature, issue.7270, pp.462175-181, 2009.

E. Kellenberger, N. Foata, and D. Rognan, Ranking Targets in Structure-Based Virtual Screening of Three-Dimensional Protein Libraries: Methods and Problems, Journal of Chemical Information and Modeling, vol.48, issue.5, pp.1014-1025, 2008.
DOI : 10.1021/ci800023x

G. Kim, M. J. Silvapulle, and P. Silvapulle, Comparison of semiparametric and parametric methods for estimating copulas, Computational Statistics & Data Analysis, vol.51, issue.6, pp.2836-2850, 2007.
DOI : 10.1016/j.csda.2006.10.009

J. Kim, Y. Jung, and E. Sungur, Kap-Hoon Han, Changyi Park, and Insuk Sohn. A copula method for modeling directional dependence of genes

H. Kitano, Systems Biology: A Brief Overview, Science, vol.295, issue.5560, pp.2951662-1664, 2002.
DOI : 10.1126/science.1069492

J. Klekota, P. Frederick, and . Roth, Chemical substructures that enrich for biological activity, Bioinformatics, vol.24, issue.21, pp.2518-2525, 2008.
DOI : 10.1093/bioinformatics/btn479

P. Kolb, R. S. Ferreira, J. John, . Irwin, K. Brian et al., Docking and chemoinformatic screens for new ligands and targets, Current Opinion in Biotechnology, vol.20, issue.4, pp.429-436, 2009.
DOI : 10.1016/j.copbio.2009.08.003

D. Kollar and N. Friedman, Probabilistic graphical models: principles and techniques, 2009.

D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, 1231.

S. Kramer, C. Frank, and . Helma, Fragment generation and support vector machines for inducing SARs, SAR and QSAR in Environmental Research, vol.2, issue.5, pp.509-523, 2002.
DOI : 10.1214/aos/1028144844

M. A. Kravette, Perilymphatic atrophy of skin. an adverse side effect of intralesional steroid injections, Clin Podiatr Med Surg, vol.3, pp.457-62, 1986.

C. Kreutz and J. Timmer, Systems biology: experimental design, FEBS Journal, vol.16, issue.Suppl., pp.923-942, 2009.
DOI : 10.1111/j.1742-4658.2008.06843.x

M. Kuhn, M. Campillos, I. Letunic, L. J. Jensen, and P. Bork, A side effect resource to capture phenotypic effects of drugs, Molecular Systems Biology, vol.6, p.343, 2010.
DOI : 10.1093/nar/gkm958

R. Luss and M. Teboulle, Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint, SIAM Review, vol.55, issue.1, pp.65-98, 2013.
DOI : 10.1137/110839072

R. Sarah, . Mcwhinney, M. Richard, . Goldberg, L. Howard et al., Platinum neurotoxicity pharmacogenetics, Molecular cancer therapeutics, vol.8, issue.1, pp.10-16, 2009.

J. Richard, . Morris, J. Rafael, A. Najmanovich, J. M. Kahraman et al., Real spherical harmonic expansion coefficients as 3d shape descriptors for protein binding pocket and ligand comparisons, Bioinformatics, vol.21, issue.10, pp.2347-2355, 2005.

N. Nagamine and Y. Sakakibara, Statistical prediction of protein chemical interactions based on chemical structure and mass spectrometry data, Bioinformatics, vol.23, issue.15, pp.2004-2012, 2007.
DOI : 10.1093/bioinformatics/btm266

R. Najmanovich, N. Kurbatova, and J. Thornton, Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites, Bioinformatics, vol.24, issue.16, pp.105-111, 2008.
DOI : 10.1093/bioinformatics/btn263

R. B. Nelsen, An Introduction to Copulas (Lecture Notes in Statistics

M. Michael, A. A. Peters, R. Hyman, R. Durbin, J. Pepperkok et al., Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes, Nature, issue.7289, pp.464721-727, 2010.

J. Nocedal, J. Stephen, and . Wright, Numerical optimization, 2006.
DOI : 10.1007/b98874

A. Onken, S. Grünewälder, M. H. Munk, and K. Obermayer, Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation, PLoS Computational Biology, vol.20, issue.11, p.1000577, 2009.
DOI : 10.1371/journal.pcbi.1000577.s001

A. Christos and . Ouzounis, Rise and demise of bioinformatics? promise and progress, PLoS computational biology, vol.8, issue.4, p.1002487, 2012.

E. Parkhomenko, D. Tritchler, and J. Beyene, Genome-wide sparse canonical correlation of gene expression with genotypes, BMC proceedings, p.119, 2007.
DOI : 10.1186/1753-6561-1-s1-s119

E. Pauwels, V. Stoven, and Y. Yamanishi, Predicting drug side-effect profiles: a chemical fragment-based approach, BMC Bioinformatics, vol.12, issue.1, p.169, 2011.
DOI : 10.1093/biostatistics/kxp008

URL : https://hal.archives-ouvertes.fr/inserm-00663945

E. Pauwels, D. Surdez, G. Stoll, A. Lescure, E. D. Nery et al., A Probabilistic Model for Cell Population Phenotyping Using HCS Data, PLoS ONE, vol.7, issue.8, p.42715, 2012.
DOI : 10.1371/journal.pone.0042715.t001

R. Pepperkok and J. Ellenberg, High-throughput fluorescence microscopy for systems biology, Nature Reviews Molecular Cell Biology, vol.6, issue.9, pp.690-696, 2006.
DOI : 10.1016/j.cell.2006.01.040

M. Piazza, X. Feng, J. D. Rabinowitz, and H. Rabitz, Diverse metabolic model parameters generate similar methionine cycle dynamics, Journal of Theoretical Biology, vol.251, issue.4, pp.628-639, 2008.
DOI : 10.1016/j.jtbi.2007.12.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386584

C. Richard and M. D. Klein, Ventricular arrhythmias in aortic valve disease: Analysis of 102 patients, The American Journal of Cardiology, vol.53, issue.8, pp.1079-1083, 1984.

N. Rieber, B. Knapp, R. Eils, and L. Kaderali, RNAither, an automated pipeline for the statistical analysis of high-throughput RNAi screens, Bioinformatics, vol.25, issue.5, pp.678-679, 2009.
DOI : 10.1093/bioinformatics/btp014

N. Roy and A. Mccallum, Toward optimal active learning through sampling estimation of error reduction, Proc. 18th International Conf. on Machine Learning, pp.441-448, 2001.

K. Sander and D. Sander, New insights into transient global amnesia: recent imaging and clinical findings, The Lancet Neurology, vol.4, issue.7, pp.437-444, 2005.
DOI : 10.1016/S1474-4422(05)70121-6

J. Scheiber, J. L. Jenkins, S. C. Sukuru, A. Bender, D. Mikhailov et al., Mapping Adverse Drug Reactions in Chemical Space, Journal of Medicinal Chemistry, vol.52, issue.9, pp.523103-523110, 2009.
DOI : 10.1021/jm801546k

J. Scheiber, B. Chen, M. Milik, S. Chetan, K. Sukuru et al., Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis, Journal of Chemical Information and Modeling, vol.49, issue.2, pp.308-317, 2009.
DOI : 10.1021/ci800344p

B. Schölkopf and A. J. Smola, Learning with kernels, 2002.

B. Schölkopf, K. Tsuda, and J. Vert, Kernel methods in computational biology [106] C. Schölzel and P. Friederichs. Multivariate non-normally distributed random variables in climate research ? introduction to the copula approach, Nonlinear Processes in Geophysics, vol.15, issue.5, pp.761-772, 2004.

B. Settles, Active learning literature survey, 2010.

D. Shigemizu, M. Araki, S. Okuda, S. Goto, and M. Kanehisa, Extraction and Analysis of Chemical Modification Patterns in Drug Development, Journal of Chemical Information and Modeling, vol.49, issue.4, pp.1122-1129, 2009.
DOI : 10.1021/ci8003804

J. H. Shih and T. A. Louis, Inferences on the Association Parameter in Copula Models for Bivariate Survival Data, Biometrics, vol.51, issue.4, pp.1384-399, 1995.
DOI : 10.2307/2533269

A. Sklar, Fonctions de répartitionrépartition`répartitionà n dimensions et leurs marges. Publications de l'Institut de statistique de l, pp.229-231, 1959.

M. D. Slack, E. D. Martinez, L. F. Wu, and S. J. Altschuler, Characterizing heterogeneous cellular responses to perturbations, Proceedings of the National Academy of Sciences, pp.19306-19311, 2008.
DOI : 10.1073/pnas.0807038105

A. J. Smola and B. Schölkopf, On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion, Algorithmica, vol.22, issue.1-2, pp.211-231, 1998.
DOI : 10.1007/PL00013831

B. Snijder, R. Sacher, P. Rämö, E. Damm, P. Liberali et al., Population context determines cell-to-cell variability in endocytosis and virus infection, Nature, vol.7, issue.7263, pp.461520-523, 2009.
DOI : 10.1038/nature08282

K. Soetaert, T. Petzoldt, and W. Setzer, Solving differential equations in r: Package desolve, Journal of Statistical Software, vol.33, issue.9, pp.1-25, 2010.

W. St, D. X. Li, and D. X. Li, On default correlation: A copula function approach, Journal of Fixed income, vol.9, issue.4, pp.43-54, 2000.

B. Steiert, A. Raue, J. Timmer, and C. Kreutz, Experimental Design for Parameter Estimation of Gene Regulatory Networks, PLoS ONE, vol.7, issue.7, p.40052, 2012.
DOI : 10.1371/journal.pone.0040052.t002

R. Brent and . Stockwell, Chemical genetics: ligand-based discovery of gene function, Nature Reviews Genetics, vol.1, issue.2, pp.116-125, 2000.

Y. Tabei, E. Pauwels, V. Stoven, K. Takemoto, and Y. Yamanishi, Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers, Bioinformatics, vol.28, issue.18, pp.487-494, 2012.
DOI : 10.1093/bioinformatics/bts412

N. P. Tatonetti, T. Liu, and R. B. Altman, Predicting drug side-effects by chemical systems biology, Genome Biology, vol.10, issue.9, p.238, 2009.
DOI : 10.1186/gb-2009-10-9-238

URL : http://doi.org/10.1186/gb-2009-10-9-238

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays, Statistical Science, vol.18, issue.1, pp.104-117, 2003.
DOI : 10.1214/ss/1056397488

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal Stem Cell Features of Ewing Tumors, Cancer Cell, vol.11, issue.5, pp.421-429, 2007.
DOI : 10.1016/j.ccr.2007.02.027

M. Transtrum and P. Qiu, Optimal experiment selection for parameter estimation in biological differential equation models, BMC Bioinformatics, vol.13, issue.1, p.181, 2012.
DOI : 10.1049/iet-syb:20060065

N. Vladimir and . Vapnik, An overview of statistical learning theory, Neural Networks IEEE Transactions on, vol.10, issue.5, pp.988-999, 1999.

S. Waaijenborg, C. Philip, . Verselewel-de-witt, A. Hamer, P. L. Zhou et al., Quantifying the association between gene expressions and dna-markers by penalized canonical correlation analysis Statistical Applications in Cellular phenotype recognition for high-content rna interference genome-wide screening, Genetics and Molecular Biology Journal of Biomolecular Screening, vol.7125, issue.131, pp.29-39, 2008.

N. Weill and D. Rognan, Development and Validation of a Novel Protein???Ligand Fingerprint To Mine Chemogenomic Space: Application to G Protein-Coupled Receptors and Their Ligands, Journal of Chemical Information and Modeling, vol.49, issue.4, pp.1049-1062, 2009.
DOI : 10.1021/ci800447g

S. Whitebread, J. Hamon, D. Bojanic, and L. Urban, Keynote review:in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug discovery today, pp.1421-1433, 2005.

S. David, C. Wishart, A. C. Knox, S. Guo, M. Shrivastava et al., Drugbank: a comprehensive resource for in silico drug discovery and exploration, Nucleic acids research, vol.34, issue.1, pp.668-672, 2006.

M. Daniela, R. Witten, T. Tibshirani, and . Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, vol.10, issue.3, pp.515-534, 2009.

O. Wolkenhauer, M. Ullah, W. Kolch, and K. Cho, Modeling and Simulation of Intracellular Dynamics: Choosing an Appropriate Framework, IEEE Transactions on Nanobioscience, vol.3, issue.3, pp.200-207, 2004.
DOI : 10.1109/TNB.2004.833694

L. Xie, J. Li, L. Xie, E. Philip, and . Bourne, Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors, PLoS Computational Biology, vol.45, issue.5, p.1000387, 2009.
DOI : 10.1371/journal.pcbi.1000387.s012

P. Song, Multivariate Dispersion Models Generated From Gaussian Copula, Scandinavian Journal of Statistics, vol.27, issue.2, pp.305-320, 2000.
DOI : 10.1111/1467-9469.00191

Y. Yamanishi, Supervised bipartite graph inference, Advances in Neural Information Processing Systems, pp.1841-1848, 2008.

Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, Prediction of drug-target interaction networks from the integration of chemical and genomic spaces, Bioinformatics, vol.24, issue.13, pp.24-232, 2008.
DOI : 10.1093/bioinformatics/btn162

Y. Yamanishi, E. Pauwels, and M. Kotera, Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces, Journal of Chemical Information and Modeling, vol.52, issue.12, pp.3284-3292, 2012.
DOI : 10.1021/ci2005548

Y. Yamanishi, E. Pauwels, H. Saigo, and V. Stoven, Extracting Sets of Chemical Substructures and Protein Domains Governing Drug-Target Interactions, Journal of Chemical Information and Modeling, vol.51, issue.5, pp.1183-1194, 2011.
DOI : 10.1021/ci100476q

T. Zhao, F. Robert, and . Murphy, Automated learning of generative models for subcellular location: Building blocks for systems biology, Cytometry Part A, vol.85, issue.12, pp.978-990, 2007.
DOI : 10.1002/cyto.a.20487