P. R. Amestoy, I. S. Duff, and J. Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.2-4501, 2000.
DOI : 10.1016/S0045-7825(99)00242-X

URL : https://hal.archives-ouvertes.fr/hal-00856651

R. Amiet and W. R. Sears, The aerodynamic noise of small-perturbation subsonic flows, Journal of Fluid Mechanics, vol.17, issue.02, 1928.
DOI : 10.1017/S0022112070001805

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.139, issue.3, pp.153-176, 2006.
DOI : 10.1016/j.jnnfm.2006.07.007

URL : https://hal.archives-ouvertes.fr/hal-01004909

T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 2003.

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ???empirical interpolation??? method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
DOI : 10.1016/j.crma.2004.08.006

URL : https://hal.archives-ouvertes.fr/hal-00021702

A. R. Barron, A. Cohen, W. Dahmen, and R. A. Devore, Approximation and learning by greedy algorithms. The Annals of Statistics, pp.64-94, 2008.

E. Bécache, A. S. Bendhia, and G. Legendre, Perfectly Matched Layers for the Convected Helmholtz Equation, SIAM Journal on Numerical Analysis, vol.42, issue.1, pp.409-433, 2004.
DOI : 10.1137/S0036142903420984

E. Bécache, A. S. Bonnet-ben, G. Dhia, and . Legendre, Perfectly Matched Layers for the Convected Helmholtz Equation, SIAM Journal on Numerical Analysis, vol.42, issue.1, pp.409-433, 2004.
DOI : 10.1137/S0036142903420984

M. Beldi and A. Maghrebi, Some New Results for the Study of Acoustic Radiation within a Uniform Subsonic Flow Using Boundary Integral Method, Advanced Materials Research, vol.488, issue.489, pp.488-489383, 2012.
DOI : 10.4028/www.scientific.net/AMR.488-489.383

R. E. Bellman, Dynamic Programming, 1957.

R. E. Bellman, Adaptive Control Processes, 1961.

P. Bettess, Infinite Elements, 1992.

P. Bettess, D. W. Kelly, and O. C. Zienkiewicz, The coupling of the finite element method and boundary solution procedures, Int. J. Numer. Meth. Engng, vol.11, pp.355-375

P. Binev, A. Cohen, W. Dahmen, R. A. Devore, G. Petrova et al., Convergence Rates for Greedy Algorithms in Reduced Basis Methods, SIAM Journal on Mathematical Analysis, vol.43, issue.3, pp.1457-1472, 2011.
DOI : 10.1137/100795772

URL : https://hal.archives-ouvertes.fr/hal-00767082

A. Björck and C. C. Paige, Loss and Recapture of Orthogonality in the Modified Gram???Schmidt Algorithm, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.1, pp.176-190, 1992.
DOI : 10.1137/0613015

S. Boyaval, Mathematical modelling and numerical simulation in materials science, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00499254

S. Boyaval, C. Le-bris, T. Lelièvre, Y. Maday, N. C. Nguyen et al., Reduced Basis Techniques for Stochastic Problems, Archives of Computational Methods in Engineering, vol.8, issue.1, 2010.
DOI : 10.1007/s11831-010-9056-z

URL : https://hal.archives-ouvertes.fr/hal-00470522

S. Boyaval, C. Le-bris, Y. Maday, N. C. Nguyen, and A. T. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, pp.41-443187, 2009.
DOI : 10.1016/j.cma.2009.05.019

URL : https://hal.archives-ouvertes.fr/inria-00311463

H. Brakhage and P. Werner, ???ber das Dirichletsche Au???enraumproblem f???r die Helmholtzsche Schwingungsgleichung, Archiv der Mathematik, vol.55, issue.1, pp.325-329, 1965.
DOI : 10.1007/BF01220037

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 2008.

H. Brézis, Analyse fonctionnelle. Dunod, 1999.

A. Buffa and R. Hiptmair, Regularized Combined Field Integral Equations, Numerische Mathematik, vol.74, issue.1, pp.1-19, 2005.
DOI : 10.1007/s00211-004-0579-9

A. Buffa, Y. Maday, A. T. Patera, C. Prud-'homme, and G. Turinici, convergence of the Greedy algorithm for the parametrized reduced basis method, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.3, pp.595-603, 2012.
DOI : 10.1051/m2an/2011056

URL : https://hal.archives-ouvertes.fr/hal-00659314

E. Candès and B. Recht, Simple bounds for recovering low-complexity models, Mathematical Programming, pp.577-589, 2013.
DOI : 10.1007/s10107-012-0540-0

B. Carpentieri, Sparse preconditioners for dense linear systems from electromagnetic applications, CERFACS, 2002.

B. Carpentieri, I. Duff, L. Giraud, and G. Sylvand, Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations, SIAM Journal on Scientific Computing, vol.27, issue.3, pp.774-792, 2005.
DOI : 10.1137/040603917

C. Carstensen, S. A. Funken, and E. P. Stephan, On the adaptive coupling of FEM and BEM in 2-d-elasticity, Numerische Mathematik, vol.77, issue.2, pp.187-221, 1997.
DOI : 10.1007/s002110050283

Y. Chen, J. S. Hesthaven, Y. Maday, J. Rodriguez, and X. Zhu, Certified reduced basis method for electromagnetic scattering and radar cross section estimation, Computer Methods in Applied Mechanics and Engineering, vol.233, issue.236, pp.233-23692, 2012.
DOI : 10.1016/j.cma.2012.04.013

URL : https://hal.archives-ouvertes.fr/hal-00644805

Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez, error estimate for reduced basis approximation of 2D Maxwell's problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.6, pp.1099-1116, 2009.
DOI : 10.1051/m2an/2009037

URL : https://hal.archives-ouvertes.fr/hal-00976057

A. Delnevo and I. Terrasse, Code acti3s harmonique, justification mathématique, Partie I, 2001.

A. Delnevo and I. Terrasse, Code acti3s, justifications mathématiques, Partie II : presence d'un écoulement uniforme, 2002.

R. A. Devore, G. Petrova, and P. Wojtaszczyk, Greedy Algorithms for Reduced Bases in Banach Spaces, Constructive Approximation, vol.335, issue.3, pp.455-466, 2013.
DOI : 10.1007/s00365-013-9186-2

R. A. Devore and V. N. Temlyakov, Some remarks on greedy algorithms, Advances in Computational Mathematics, vol.102, issue.1, pp.173-187, 1996.
DOI : 10.1007/BF02124742

C. Domínguez, E. P. Stephan, and M. Maischak, FE/BE coupling for an acoustic fluid-structure interaction problem. Residual a posteriori error estimates, International Journal for Numerical Methods in Engineering, vol.3, issue.4, pp.299-322, 2012.
DOI : 10.1002/nme.3242

F. Dubois, E. Duceau, and F. , Maréchal, and I. Terrasse. Lorentz transform and staggered finite differences for advective acoustics, 2002.

S. Duprey, Analyse Mathématique et Numérique du Rayonnement Acoustique des Turboréacteurs, 2005.

V. Erhlacher, Quelques modèles mathématiques en chimie quantique et propagation d'incertitudes, 2012.

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, 2004.
DOI : 10.1007/978-1-4757-4355-5

G. Fairweather, A. Karageorghis, and P. A. Martin, The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, pp.759-769, 2003.

M. Fares, J. S. Hesthaven, Y. Maday, and B. Stamm, The reduced basis method for the electric field integral equation, Journal of Computational Physics, vol.230, issue.14, pp.5532-5555, 2011.
DOI : 10.1016/j.jcp.2011.03.023

URL : https://hal.archives-ouvertes.fr/hal-01090913

N. Garofalo and F. Lin, Unique continuation for elliptic operators: A geometric-variational approach, Communications on Pure and Applied Mathematics, vol.7, issue.3, pp.347-366, 1987.
DOI : 10.1002/cpa.3160400305

L. Giraud and J. Langou, When modified Gram-Schmidt generates a well-conditioned set of vectors, IMA Journal of Numerical Analysis, vol.22, issue.4, pp.521-528, 2002.
DOI : 10.1093/imanum/22.4.521

H. Glauert, The Effect of Compressibility on the Lift of an Aerofoil, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.118, issue.779, pp.113-119, 1928.
DOI : 10.1098/rspa.1928.0039

D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, vol.23, issue.1, pp.5-48, 1991.
DOI : 10.1145/103162.103163

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics: Theory and Applications, 1998.

R. Hiptmair, Coupling of Finite Elements and Boundary Elements in Electromagnetic Scattering, SIAM Journal on Numerical Analysis, vol.41, issue.3, pp.919-944
DOI : 10.1137/S0036142901397757

R. Hiptmair and P. Meury, Stable FEM-BEM Coupling for Helmholtz Transmission Problems, ETH, Seminar für Angewandte Mathematik, 2005.

G. C. Hsiao and W. L. Wendland, Boundary Element Methods: Foundation and Error Analysis, 2004.
DOI : 10.1002/0470091355.ecm007

D. B. Huynh, A. T. Patera, G. Rozza, and S. Sen, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf???sup stability constants, Comptes Rendus Mathematique, vol.345, issue.8, pp.345473-478, 2007.
DOI : 10.1016/j.crma.2007.09.019

J. M. Jin and V. V. Liepa, A note on hybrid finite element method for solving scattering problems, IEEE Transactions on Antennas and Propagation, vol.36, issue.10, pp.1486-1490, 1988.
DOI : 10.1109/8.8638

C. Johnson and J. C. Nédélec, On the coupling of boundary integral and finite element methods, Mathematics of Computation, vol.35, issue.152, pp.1063-1079, 1980.
DOI : 10.1090/S0025-5718-1980-0583487-9

D. J. Knezevic, N. C. Nguyen, and A. T. Patera, ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.21, issue.07, pp.1415-1442, 2011.
DOI : 10.1142/S0218202511005441

A. Knyazev, Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method, SIAM Journal on Scientific Computing, vol.23, issue.2, pp.517-541, 2001.
DOI : 10.1137/S1064827500366124

P. Ladevèze, Nonlinear computational structural mechanics: new approaches and nonincremental methods of calculation. Mechanical engineering series, 1999.
DOI : 10.1007/978-1-4612-1432-8

P. Langlois, S. Graillat, and N. Louvet, Compensated Horner Scheme, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2006.

J. Langou, Solving large linear systems with multiple right-hand sides, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00007026

B. Laurent and P. Massart, Adaptive estimation of a quadratic functional of a density by model selection, ESAIM: Probability and Statistics, vol.9, issue.5, pp.1302-1338, 2000.
DOI : 10.1051/ps:2005001

R. Leis, Zur Dirichletschen Randwertaufgabe des Au???enraumes der Schwingungsgleichung, Mathematische Zeitschrift, vol.55, issue.3, pp.205-211, 1965.
DOI : 10.1007/BF01119203

V. Levillain, Couplage éléments finis-équations intégrales pour la résolution des équations de Maxwell en milieu hétérogène, 1991.

F. Leydecker, M. Maischak, E. P. Stephan, and M. Teltscher, Adaptive FE-BE coupling for an electromagnetic problem in ???3-A residual error estimator, Mathematical Methods in the Applied Sciences, vol.95, issue.18, pp.2162-2186, 2010.
DOI : 10.1002/mma.1389

L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.153-158, 2000.
DOI : 10.1016/S0764-4442(00)00270-6

L. Machiels, Y. Maday, A. T. Patera, C. Prud-'homme, D. V. Rovas et al., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, CJ Fluids Engineering, vol.124, pp.70-80, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00798326

Y. Maday, N. C. Nguyen, A. T. Patera, and S. Pau, A general multipurpose interpolation procedure: the magic points, Communications on Pure and Applied Analysis, vol.8, issue.1, pp.383-404, 2008.
DOI : 10.3934/cpaa.2009.8.383

URL : https://hal.archives-ouvertes.fr/hal-00174797

M. Maischak and E. P. Stephan, A FEM???BEM coupling method for a nonlinear transmission problem modelling Coulomb friction contact, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.453-466, 2005.
DOI : 10.1016/j.cma.2004.03.018

B. Mcdonald and A. Wexler, Finite-Element Solution of Unbounded Field Problems, IEEE Transactions on Microwave Theory and Techniques, vol.20, issue.12, pp.841-847, 1972.
DOI : 10.1109/TMTT.1972.1127895

W. C. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

R. V. Mises and H. Pollaczek-geiringer, Praktische Verfahren der Gleichungsaufl??sung ., ZAMM - Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.4, issue.1, pp.58-77, 1929.
DOI : 10.1002/zamm.19290090105

D. Mitsoudis, C. Makridakis, and M. Plexousakis, Helmholtz Equation with Artificial Boundary Conditions in a Two-Dimensional Waveguide, SIAM Journal on Mathematical Analysis, vol.44, issue.6, pp.4320-4344, 2012.
DOI : 10.1137/120864052

C. L. Morfey, Acoustic energy in non-uniform flows, Journal of Sound and Vibration, vol.14, issue.2, pp.159-170, 1971.
DOI : 10.1016/0022-460X(71)90381-6

J. C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 2001.

A. Nouy, A priori tensor approximations for the numerical solution of high dimensional problems: alternative definitions, The Seventh International Conference on Engineering Computational Technology (ECT2010), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00664061

D. P. Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its Applications, vol.29, issue.0, pp.293-322, 1980.
DOI : 10.1016/0024-3795(80)90247-5

O. Panich, On the question of the solvability of the exterior boundary value problems for the wave equation and maxwell's equations, Usp. Mat. Nauk, vol.20, pp.221-226, 1965.

A. T. Patera, C. Prud-'homme, D. V. Rovas, and K. Veroy, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01219051

A. T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007.

J. Periaux, Three dimensional analysis of compressible potential flows with the finite element method, International Journal for Numerical Methods in Engineering, vol.3, issue.4, pp.775-831, 1975.
DOI : 10.1002/nme.1620090404

C. J. Powles and B. J. Tester, Scattering of sound from a monopole source by a steady cylindrical jet, 2007.

C. J. Powles and B. J. Tester, Asymptotic and Numerical Solutions for Shielding of Noise Sources by Parallel Coaxial Jet Flows, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008.
DOI : 10.2514/6.2008-2975

C. J. Powles and B. J. Tester, Asymptotic and Numerical Solutions for Shielding of Noise Sources by Parallel Coaxial Jet Flows, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008.
DOI : 10.2514/6.2008-2975

A. Hirschberg and S. W. Rienstra, An Introduction to Acoustics, 2004.

Y. Saad and M. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

S. A. Sauter and C. Schwab, Boundary Element Methods, 2010.

S. Sen, Error Estimation for Many-Parameter Heat Conduction Problems, Numerical Heat Transfer, Part B: Fundamentals, vol.15, issue.5, pp.369-389, 2008.
DOI : 10.1051/cocv:2002041

S. Sen, K. Veroy, D. B. Huynh, S. Deparis, N. C. Nguyen et al., ???Natural norm??? a posteriori error estimators for reduced basis approximations, Journal of Computational Physics, vol.217, issue.1, pp.37-62, 2006.
DOI : 10.1016/j.jcp.2006.02.012

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize and H. Chebli, Random Uncertainties Model in Dynamic Substructuring Using a Nonparametric Probabilistic Model, Journal of Engineering Mechanics, vol.129, issue.4, pp.449-457, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:4(449)

URL : https://hal.archives-ouvertes.fr/hal-00686215

M. L. Stein, Interpolation of spatial data: some theory for kriging. Springer Series in Statistics Series, 1999.
DOI : 10.1007/978-1-4612-1494-6

G. Sylvand, La méthode multipôle rapide en électromagnétisme : Performances, parallélisation , applications, 2002.

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture notes of The Unione Matematica Italiana, 2007.

V. Temlyakov, Greedy Approximation, Cambridge Monographs on Applied and Computational Mathematics, p.205, 2011.
DOI : 10.1017/cbo9780511762291

J. Utzmann, C. Munz, M. Dumbser, E. Sonnendrücker, S. Salmon et al., Numerical Simulation of Turbulent Flows and Noise Generation, 2009.

K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible navier-tokes equations: rigorous reduced-basis a posteriori error bounds, International Journal for Numerical Methods in Fluids, vol.47, pp.8-9773, 2005.

K. Veroy, C. Prud-'homme, and A. T. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds, Comptes Rendus Mathematique, vol.337, issue.9, pp.619-624, 2003.
DOI : 10.1016/j.crma.2003.09.023

URL : https://hal.archives-ouvertes.fr/hal-01219048

O. Von-estorff and M. Firuziaan, Coupled BEM/FEM approach for nonlinear soil/structure interaction. Engineering Analysis with Boundary Elements, pp.715-725, 2000.

T. and V. Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems, Mathematical Methods in the Applied Sciences, vol.1, issue.2, pp.185-213, 1989.
DOI : 10.1002/mma.1670110203

M. Yano, A Space-Time Petrov--Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations, SIAM Journal on Scientific Computing, vol.36, issue.1, 2012.
DOI : 10.1137/120903300

O. C. Zienkiewicz and P. Bettess, Dynamic fuid-structure interaction. numerical modelling of the coupled problem, Numerical Methods in Offshore Engineering, pp.185-194, 1978.