]. P. Addison, J. N. Watson, and T. Feng, LOW-OSCILLATION COMPLEX WAVELETS, Journal of Sound and Vibration, vol.254, issue.4, pp.733-762, 2002.
DOI : 10.1006/jsvi.2001.4119

W. Aquino, An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD), Computer Methods in Applied Mechanics and Engineering, vol.196, issue.41-44, pp.41-444375, 2007.
DOI : 10.1016/j.cma.2007.05.009

P. Argoul, S. Han, F. Conti, and C. Boutin, Time-frequency analysis of free oscillations of mechanical structures. Application to the identification of the mechanical behaviour of buildings under shocks, Proceedings of the COST F3 conference : System Identification and Structural Health Monitoring, pp.283-292, 2000.

P. Argoul, S. Hans, T. P. Le, and C. Boutin, Analyse temps-fréquence de réponses de bâtiments bâtimentsà des essaies de chocs, Acte du 5 ` eme colloque National en Calcul de Structures, pp.1057-1064, 2001.

S. Bellizzi, K. Ege, and C. Vergez, Réduction d'un modèle physique de cuivre pour la synthèse sonore : approche par modes propres orthogonaux (Proper Orthogonal Decomposition). 8 ` eme Congrès Français d'Acoustique, 2006.

S. Bellizzi and R. Sampaio, POMs analysis of randomly vibrating systems obtained from Karhunen???Lo??ve expansion, Journal of Sound and Vibration, vol.297, issue.3-5, pp.774-793, 2006.
DOI : 10.1016/j.jsv.2006.04.023

S. Bellizzi and R. Sampaio, Smooth Karhunen???Lo??ve decomposition to analyze randomly vibrating systems, Journal of Sound and Vibration, vol.325, issue.3, pp.491-498, 2009.
DOI : 10.1016/j.jsv.2009.03.044

M. Bergmann, Optimisation aérodynamique par réduction de modèle POD et contrôle optimal Application au sillage laminaire d'un cylindre circulaire, Thèse de doctorat, Institue National Polytechnique de Lorraine, 2004.

J. Bodgi, Synchronisation piétons-structure : Application aux vibrations des passerelles souples, Thèse de doctorat, ´ Ecole Nationale des Ponts et Chaussées, 2008.

R. Carmona, W. L. Hwang, and B. Torrésani, Characterization of signals by the ridges of their wavelet transforms, IEEE Transactions on Signal Processing, vol.45, issue.10, pp.2586-2590, 1997.
DOI : 10.1109/78.640725

URL : https://hal.archives-ouvertes.fr/hal-01223134

A. Chatterjee, An introduction to the proper orthogonal decomposition, Current Science, vol.78, issue.7, 2000.

C. Chauvin, Les ondelettes comme fonctions de base dans le calcul des structuresélectroniquestructuresélectronique, Thèse de doctorat, 2005.

D. Chelidze and W. Zhou, Smooth orthogonal decomposition-based vibration mode identification, Journal of Sound and Vibration, vol.292, issue.3-5, pp.461-473, 2006.
DOI : 10.1016/j.jsv.2005.08.006

C. K. Chui, An introduction to wavelets. Wavelet Analysis and its Applications, Academic press, 1992.

]. P. Ciblat, Introduction aux communications numériques

R. R. Coifman and G. Weiss, Book Review: Littlewood-Paley and multiplier theory, Bulletin of the American Mathematical Society, vol.84, issue.2, pp.242-250, 1978.
DOI : 10.1090/S0002-9904-1978-14464-4

L. Cordier and M. Bergmann, Proper Orthogonal Decomposition : An overview. Lecture series, pp.17-21, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00417819

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.34, issue.7, pp.909-996, 1988.
DOI : 10.1002/cpa.3160410705

S. W. Doebling, C. R. Farrar, and M. B. Prime, A summary review of vibration-based damage identification methods. Shock and Vibration Digest, pp.91-105, 1998.

R. Elias, N. Point, J. Bodgi, and P. Argoul, How to retrieve the normal modes using the POD. Vibrations Shocks and Noise 2012, XVIII symposium Vibrations chocs et Bruit and ASTELAB -EDF CLAMART, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736330

S. Erlicher and P. Argoul, Modal identification of linear non-proportionally damped systems by wavelet transform, Mechanical Systems and Signal Processing, pp.1386-1421, 2007.
DOI : 10.1016/j.ymssp.2006.03.010

URL : https://hal.archives-ouvertes.fr/hal-00345307

M. Groupe, L. Maths, M. Pierre, and . Curie, Théorème de la moyenne

U. Farooq and B. F. Feeny, Smooth orthogonal decomposition for modal analysis of randomly excited systems, Journal of Sound and Vibration, vol.316, issue.1-5, pp.137-146, 2008.
DOI : 10.1016/j.jsv.2008.02.052

B. F. Feeny, On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems, Journal of Vibration and Acoustics, vol.124, issue.1, pp.157-160, 2002.
DOI : 10.1115/1.1421352

B. F. Feeny and R. Kappagantu, ON THE PHYSICAL INTERPRETATION OF PROPER ORTHOGONAL MODES IN VIBRATIONS, Journal of Sound and Vibration, vol.211, issue.4, pp.607-616, 1998.
DOI : 10.1006/jsvi.1997.1386

B. F. Feeny and Y. Liang, Interpreting proper orthogonal modes of randomly excited vibration systems, Journal of Sound and Vibration, vol.265, issue.5, pp.953-966, 2003.
DOI : 10.1016/S0022-460X(02)01265-8

R. Gorder, Use of Proper Orthogonal Decomposition in the analysis of turbulent flows. Report, Fluid Turbulence Course, 2010.

R. Gorder, On the model validation in non-linear structural dynamics, 2002.

M. Géradin and D. Rixen, Théorie des vibrations : applicationàapplicationà la dynamique des structures. Deuxì emé edition corrigée et complétée, 1996.

S. I. Gravitz, An Analytical Procedure for Orthogonalization of Experimentally Measured Modes, Journal of the Aerospace Sciences, vol.25, issue.11, pp.721-722, 1958.
DOI : 10.2514/8.7855

A. Grossmann and J. Morlet, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM Journal on Mathematical Analysis, vol.15, issue.4, pp.723-736, 1984.
DOI : 10.1137/0515056

K. Gurley and A. Kareem, Applications of wavelet transforms in earthquake, wind and ocean engineering, Engineering Structures, vol.21, pp.149-167, 1999.

A. Haar, Zur theorie der orthogonalen funktionensysteme, Thèse de doctorat, pp.331-371, 1910.
DOI : 10.1007/bf01456927

URL : https://hal.archives-ouvertes.fr/hal-01333722

S. Han and B. F. Feeny, Enhanced Proper Orthogonal Decomposition for the modal analysis of homogeneous structures Application of Proper Orthogonal Decomposition to structural vibration analysis, Journal of Vibration and Control Mechanical Systems and Signal Processing, vol.8, issue.175, pp.19-40989, 2002.

R. Hari, A. Hyvärinen, L. Parkkonen, and P. Ramkumar, Independent Component Analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis, NeuroImage, vol.49, issue.1, pp.257-271, 2010.

A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, 2001.

A. Hyvärinen and E. Oja, Independent component analysis: algorithms and applications, Neural Networks, vol.13, issue.4-5, pp.411-430, 2000.
DOI : 10.1016/S0893-6080(00)00026-5

R. Kappagantu, An optimal modal reduction for frictionally excited systems, Thèse de doctorat, 1997.

R. Kappagantu and B. F. Feeny, AN "OPTIMAL" MODAL REDUCTION OF A SYSTEM WITH FRICTIONAL EXCITATION, Journal of Sound and Vibration, vol.224, issue.5, pp.863-877, 1999.
DOI : 10.1006/jsvi.1999.2165

R. Kappagantu and B. F. Feeny, Part 1 : Dynamical characterization of a frictionally excited beam, Nonlinear Dynamics, vol.22, issue.4, pp.317-333, 2000.
DOI : 10.1023/A:1008344005183

R. Kappagantu and B. F. Feeny, Part 2 : Proper orthogonal modeling of a frictionally excited beam, Nonlinear Dynamics, vol.23, issue.1, pp.1-11, 2000.
DOI : 10.1023/A:1008303406091

G. Kerschen, On the model validation in non-linear structural dynamics, Thèse de doctorat université deLì ege, 2002.

G. Kerschen, B. F. Feeny, and J. C. , On the exploitation of chaos to build reduced-order models, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.13-14, pp.1785-1795, 2003.
DOI : 10.1016/S0045-7825(03)00206-8

G. Kerschen and J. C. , PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION, Journal of Sound and Vibration, vol.249, issue.5, pp.849-865, 2002.
DOI : 10.1006/jsvi.2001.3930

G. Kerschen, J. C. Golinval, A. F. Vakakis, and L. Bergman, The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview, Nonlinear Dynamics, vol.16, issue.417???441, pp.147-169, 2005.
DOI : 10.1007/s11071-005-2803-2

G. Kerschen, F. Poncelet, and J. C. , Physical interpretation of independent component analysis in structural dynamics, Mechanical Systems and Signal Processing, pp.1561-1575, 2007.
DOI : 10.1016/j.ymssp.2006.07.009

T. Le, G. Ruocci, L. Dieng, N. Point, P. Argoul et al., Damage assessment of cables by SVD based technique, Mechanical Systems and Signal Processing, under review, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00952177

T. P. Le, Auscultation dynamique des structuresàstructuresà l'aide de l'analyse continue en ondelettes, Thèse de doctorat, 2003.
URL : https://hal.archives-ouvertes.fr/pastel-00000640

T. P. Le and P. Argoul, Continuous wavelet transform for modal identification using free decay response, Journal of Sound and Vibration, vol.277, issue.1-2, pp.73-100, 2004.
DOI : 10.1016/j.jsv.2003.08.049

Y. C. Liang, H. P. Lee, S. P. Lim, W. Z. Lin, K. H. Lee et al., PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS???PART I: THEORY, Journal of Sound and Vibration, vol.252, issue.3, pp.527-544, 2002.
DOI : 10.1006/jsvi.2001.4041

E. Liberge, Réduction de modèle par POD-Galerkin pour lesprobì emes d'interaction fluide structure (IFS), Thèse de doctorat, 2008.

W. Z. Lin, K. H. Lee, P. Lu, S. P. Lim, and Y. C. Liang, THE RELATIONSHIP BETWEEN EIGENFUNCTIONS OF KARHUNEN???LO??VE DECOMPOSITION AND THE MODES OF DISTRIBUTED PARAMETER VIBRATION SYSTEM, Journal of Sound and Vibration, vol.256, issue.4, pp.791-799, 2002.
DOI : 10.1006/jsvi.2001.4223

J. E. Littlewood and R. Paley, Theorems on Fourier Series and Power Series, Journal of the London Mathematical Society, vol.1, issue.3, pp.230-233, 1931.
DOI : 10.1112/jlms/s1-6.3.230

H. V. Luong, Etude de la méthode de la transformation en ondelette et l'applicationàapplicationà la compression des images, 2005.

P. Lévy, Propriétés asymptotiques des sommes de variables aléatoires encha??néesencha??nées, Bulletin des sciences mathématiques, vol.59, pp.84-96, 1935.

D. Maar, Early Processing of Visual Information, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.275, issue.942, pp.483-519, 1976.
DOI : 10.1098/rstb.1976.0090

S. Mallat, Wavelets for a vision, Proceedings of the IEEE, vol.84, issue.4, pp.604-614, 1996.
DOI : 10.1109/5.488702

S. Mallat, A wavelet tour of signal processing, 2008.

Y. Meyer, Wavelets : Algorithms and applications, Society of Industrial and Applied Mathematics, pp.13-31101, 1993.

M. Misiti, Y. Misiti, G. Oppenheim, and J. H. Poggi, Wavelet toolbox for use with matlab

M. Munoz, F. Farges, and P. Argoul, Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach, American Mineralogist, vol.88, issue.4, pp.694-700, 2003.
DOI : 10.2138/am-2003-0423

URL : https://hal.archives-ouvertes.fr/hal-00101932

K. K. Nagarajan, Analyse et contrôle des instabilités dans une cavité par modélisation d'ordre réduit, Thèse de doctorat, Institue National Polytechnique de, 2010.

D. E. Newland, Ridge and Phase Identification in the Frequency Analysis of Transient Signals by Harmonic Wavelets, Journal of Vibration and Acoustics, vol.121, issue.2, pp.149-155, 1999.
DOI : 10.1115/1.2893957

V. H. Nguyen and J. C. , Damage localization in linear-form structures based on sensitivity investigation for Principal Component Analysis, Journal of Sound and Vibration, vol.329, issue.21, pp.4550-4566, 2010.

V. H. Nguyen and J. C. , Localization and quantification of damage in beam-like structures using sensitivities of Principal Component Analysis results, Mechanical Systems and Signal Processing, vol.24, issue.6, pp.1831-1843, 2010.

A. Pecker, Dynamique des structures et des ouvrages. ´ Ecole des Ponts -ParisTech, 2011.

N. Point, Méthodes d'optimisation pour l'identification des caractéristiques de chaussées aéronautiquesaéronautiquesà partir d'essais au déflectomètrè a masse tombante, Laboratoire Central des Ponts et Chaussées, Stage effectué au sein du laboratoire de l'UR Navier -´ Ecole Nationale des Ponts ParisTech, 2009.

M. S. Riaz and B. F. Feeny, Proper Orthogonal Modes of a Beam Sensed with Strain Gages, Journal of Vibration and Acoustics, vol.125, issue.1, pp.129-131, 2003.
DOI : 10.1115/1.1521950

J. Salvic, I. Simonovski, and M. Bolte-zar, Damping identification using a continuous wavelet transform: application to real data, Journal of Sound and Vibration, vol.262, issue.2, pp.291-307, 2003.
DOI : 10.1016/S0022-460X(02)01032-5

D. B. Segala, D. Chelidze, and D. Gates, Linear and nonlinear smooth orthogonal decomposition to reconstruct local fatigue dynamics : A comparaison. 22nd international conference on design theory and methodology ; special conference on Mechanical Vibration and Noise, DETC Nonlinear Smooth Orthogonal Decomposition of Kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography, Journal of Biomechanical Engineering, vol.28852, issue.1333, pp.763-770, 2010.

M. Sifuzzaman, M. R. Islam, and M. Z. Ali, Application of wavelet transform and its advantages compared to Fourier transform, Journal of Physical Sciences, vol.13, pp.121-134, 2009.

G. Strang, Wavelets and Dilation Equations: A Brief Introduction, SIAM Review, vol.31, issue.4, pp.614-627, 1989.
DOI : 10.1137/1031128

B. Torrésani, Analyse continue par Ondelettes. InterÉditionInter´InterÉdition-CNRSÉditionCNRS´CNRSÉdition, 1995.

F. Truchetet, Ondelettes pour le signal numérique. ´ Edition Hermes, 1998.

C. G. Wu, Y. C. Liang, W. Z. Lin, H. P. Lee, and S. P. Lim, A note on equivalence of proper orthogonal decomposition methods, Journal of Sound and Vibration, vol.265, issue.5, pp.1103-1110, 2003.
DOI : 10.1016/S0022-460X(03)00032-4

H. Xu and W. Wang, Orthogonal decomposition of external oscillation, 1988 IEEE AP-S. International Symposium, Antennas and Propagation, pp.684-686, 1988.
DOI : 10.1109/APS.1988.94167

A. M. Yan and J. C. , Null subspace-based damage detection of structures using vibration measurements, Mechanical Systems and Signal Processing, vol.20, issue.3, pp.611-626, 2006.
DOI : 10.1016/j.ymssp.2005.04.010

A. M. Yan, G. Kerschen, P. De-boe, and J. C. , Structural damage diagnosis under varying environmental conditions???part II: local PCA for non-linear cases, Mechanical Systems and Signal Processing, vol.19, issue.4, pp.865-880, 2005.
DOI : 10.1016/j.ymssp.2004.12.003