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�Etude de la performance acoustique des �ecrans antibruit defaible
hauteur pour le tramway : optimisation num�erique par m�ethode

de gradient et approches exp�erimentales

R�esum�e

Le bruit est devenu une nuisance importante en zone urbaine au point que selon l'Organisation

Mondiale de la Sant�e, 40% de la population europ�eenne est expos�ee �a des niveaux de bruit ex-

cessifs, principalement dû aux transports terrestres. Il devient donc n�ecessaire de trouver de

nouveaux moyens de lutter contre le bruit en zone urbaine.

Dans ce travail, on �etudie une solution possible �a ce probl�eme : un�ecran bas antibruit. Il

s'agit d'un �ecran de hauteur inf�erieure �a un m�etre plac�e pr�e s d'une source, con�cu pour r�eduire

le niveau de bruit pour les pi�etons et les cyclistes �a proximit�e. Ce type de protection est

�etudi�e num�eriquement et exp�erimentalement. Nous nous int� eressons particuli�erement aux �ecrans

adapt�es au bruit du tramway puisque dans ce cas les sources sont proches du sol et peuvent être

att�enu�ees e�cacement.

La forme ainsi que le traitement de surface de l'�ecran sont optimis�es par une m�ethode de

gradient coupl�ee �a une m�ethode 2D d'�el�ements �nis de fronti� ere. Les variables �a optimiser sont

les coordonn�ees de n�uds de contrôle et les param�etres servant �ad�ecrire l'imp�edance de surface.

Les sensibilit�es sont calcul�ees e�cacement par la m�ethode de l'�etat adjoint.

Les formes g�en�er�ees par l'algorithme d'optimisation sont assez irr�eguli�eres mais induisent

une nette am�elioration par rapport �a des formes simples, d'au moins 5 dB(A). Il est �egalement

montr�e que l'utilisation de traitement absorbant du côt�e source de l'�ecran peut am�eliorer la

performance sensiblement. Ce dernier point est con�rm�e par des mesures e�ectu�ees sur mod�ele

r�eduit.

De plus, un prototype �a l'�echelle 1 d'�ecran bas antibruit a �et� e construit et test�e en conditions

r�eelles, le long d'une voie de tramway �a Grenoble. Les mesures montrent que la protection

r�eduit le niveau de 10 dB(A) pour un r�ecepteur proche situ�e �a h auteur d'oreilles. Ces r�esultats

semblent donc con�rmer l'applicabilit�e de ces protections pour r�eduire e�cacement le bruit en

zone urbaine.

Mots-cl�es : �Ecrans antibruit de faible hauteur, Bruit de tramway, Conception opt imale par

m�ethode de gradient, �El�ements �nis de fronti�ere, Mesures sur mod�eles r�eduits , Mesures sur

prototype en conditions r�eelles



A study of the acoustic performance of tramway low height noise
barriers: gradient-based numerical optimization and experimental

approaches

Abstract

Noise has become a main nuisance in urban areas to the point that according tothe World

Health Organization 40% of the European population is exposed to excessive noise levels, mainly

due to ground transportation. There is therefore a need to �nd new ways to mitigate noise in

urban areas.

In this work, a possible device to achieve this goal is studied: a low-height noise barrier.

It consists of a barrier typically less than one meter high placed closeto a source, designed to

decrease the noise level for nearby pedestrians and cyclists. Thistype of device is studied both

numerically and experimentally. Tramway noise barriers are especially studied since the noise

sources are in this case very close to the ground and can therefore be attenuated e�ciently.

The shape and the surface treatment of the barrier are optimized usinga gradient-based

method coupled to a 2D boundary element method (BEM). The optimization variables are

the node coordinates of a control mesh and the parameters describing the surface impedance.

Sensitivities are calculated e�ciently using the adjoint state app roach.

Numerical results show that the shapes generated by the optimization algorithm tend to be

quite irregular but provide a signi�cant improvement of more than 5 d B(A) compared to simpler

shapes. Utilizing an absorbing treatment on the source side of the barrier is shown to be e�cient

as well. This second point has been con�rmed by scale model measurements.

In addition, a full scale low height noise barrier prototype has been built and tested in situ

close to a tramway track in Grenoble. Measurements show that the device provides more than

10 dB(A) of attenuation for a close receiver located at the typical height ofhuman ears. These

results therefore seem to con�rm the applicability of such protections to e�ciently decrease noise

exposure in urban areas.

Keywords: Low-height noise barriers, Tramway noise, Gradient-based optimal design, Boundary

element method, Scale model measurements, In situ measurements of a prototype device



Long r�esum�e en fran�cais

En tant qu'outil principal pour le contrôle du bruit en milieu ext� erieur, les �ecrans antibruit ont

�et�e largement �etudi�es dans la seconde moiti�e du 20 �eme si�ecle, d'un point de vue pratique mais

aussi dans une perspective de recherche. Ces �ecrans ont surtout �et�e utilis�es pour r�eduire le bruit

�a proximit�e des autoroutes et des voies de trains en milieu rural et p�eri-urbain. Cependant,

il devient de plus en plus important de r�eduire le bruit non seulement le long des grands axes

routiers et ferroviaires mais �egalement au c�ur des zones urbaines,puisque le bruit est une des

nuisances principales pour les habitants des villes. En e�et, de nombreuses sources de bruit sont

pr�esentes au sein des villes, notamment �a cause de tous les moyens de transport qui y coexistent :

tra�c routier, bus, transports guid�es comme le m�etro mais aussi le t ramway. Concevoir des �ecrans

antibruit adapt�es �a ce type d'environnement, notamment pour qu'i ls puissent être impl�ement�es

pr�es d'un moyen de transport urbain bruyant, semble donc prometteur dans un objectif de

r�eduction du bruit en milieu urbain. Ces protections doivent êt re bien sûr su�samment petites

pour pouvoir être int�egr�ees facilement �a un environnement con� n�e comme l'espace urbain, d'o�u

le nom d'�ecran de faible hauteur ou encore d'�ecran bas. L'application deces protections �a

la r�eduction du bruit du tramway semble particuli�erement int �eressante d'une part parce que

ce moyen de transport peu polluant a connu un regain d'int�erêt cette derni�ere d�ecennie dans

plusieurs grandes villes en Europe et �a travers le monde, et d'autre part parce que les sources

de bruit du tramway sont principalement situ�ees pr�es du sol et donc seraient plus e�cacement

att�enu�ees par un �ecran bas. Ce travail a donc pour principal objecti f d'�etudier les �ecrans antibruit

de faible hauteur adapt�es au tramway, du point de vue de la conception aid�ee par simulation

num�erique, mais aussi exp�erimentalement.

A la di��erence des cas plus classiques d'impl�ementation d'�ecrans antibruit, au sein d'un

espace urbain les distances entre source et r�ecepteur peuvent ^etre de l'ordre de quelques m�etres

seulement. Ceci sugg�ere que les e�ets m�et�eorologiques lors de la propagation du son peuvent

être n�eglig�es dans ce contexte. L'e�cacit�e d'un �ecran bas en te rme de r�eduction du bruit est

donc principalement contrôl�ee par la g�eom�etrie des objets dans son voisinage proche (comme

la caisse du tramway par exemple, qui peut induire le ph�enom�enede r�e
exions multiples), les

propri�et�es acoustiques du sol et les caract�eristiques de l'�ecran lui-même, c'est-�a-dire sa g�eom�etrie

et les propri�et�es acoustiques des mat�eriaux �a sa surface. A cause de cette d�ependance et des

ph�enom�enes complexes de r�e
exion et de di�raction mis en jeu, optimiser l'�ecran de mani�ere
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LONG R �ESUM �E EN FRANC� AIS

num�erique pourra certainement apporter un gain signi�catif �a son e� cacit�e.

La m�ethode des �el�ements �nis de fronti�eres (BEM) est une de s rares m�ethodes num�eriques

capable de rendre compte avec pr�ecision de tels e�ets, et a donc �et�e choisie pour calculer le

champ acoustique autour de l'�ecran, et par cons�equent son e�cacit�e. Le logiciel MICADO

d�evelopp�e au CSTB a �et�e utilis�e dans ce but. De plus, comme le s algorithmes d'optimisation

n�ecessitent de nombreux calculs de champs (et donc de nombreux calculs BEM), des hypoth�eses

simpli�catrices peuvent être faites pour acc�el�erer le temps de calcul, tout en gardant un niveau

de pr�ecision acceptable. Le sol est donc consid�er�e comme rigide, etla pr�esence du tramway

est mod�elis�ee comme un ba�e vertical in�ni, ce qui revient math �ematiquement �a introduire

un �ecran image. La taille du maillage est consid�erablement r�eduite avec cette approche, tout

comme le temps de calcul. La plage de fr�equences d'�etude est de 100 �a 2500 Hz, ce qui couvre

une grande partie du spectre d'�emission du tramway. De plus, si l'on suppose que l'�ecran est

su�samment long et de section constante, on peut se placer dans un cadrebi-dimensionnel

moyennant une mod�elisation de la source comme ligne source coh�erente. Il est cependant connu

que l'approximation 2D est valide pour calculer l'att�enuation en bande �ne pour un point source

en 3D, ce qui est pr�ecis�ement ce qui est utilis�e dans la fonction objectif choisie. Ceci dit, une fois

l'optimisation termin�ee, ces approximations ne sont plus n�ecessaires et le calcul de l'e�cacit�e

peut se faire de mani�ere plus pr�ecise.

Dans ce travail, �a la fois la forme et le traitement de surface de l'�ecran sont optimis�es. Bien

que dans certains cas il soit possible de d�ecrire la forme d'un �ecran �a l'aide d'un petit nombre de

param�etres correspondant �a des caract�eristiques particuli�eres (succession d'asp�erit�es de hauteur

di��erentes par exemple), il a �et�e choisi de repr�esenter la forme de l'�ecran d'une mani�ere tr�es

g�en�erale, par un ensemble quelconque de points de contrôle, et les variables �a optimiser sont donc

les coordonn�ees de ces points. Une contrainte doit être cependant rajout�ee pour s'assurer que la

courbe d�ecrivant la forme de l'�ecran ne se replie pas sur elle-m^eme, et doit donc être injective.

En ce qui concerne le traitement de surface, deux types de traitements sont consid�er�es dans ce

travail : une couche de mat�eriau poreux, qui absorbe le son e�cacementen hautes fr�equences,

et un traitement r�eactif, e�cace dans des bandes de fr�equences particuli�eres correspondant aux

r�esonances du traitement. De plus, on consid�ere deux types de mat�eriaux poreux : un mat�eriau

de type �breux - par exemple de la laine de verre - et du b�eton de chanvre, mat�eriau plus durable

fabriqu�e �a partir de �bres v�eg�etales. On mod�elise l'e�et d e ces traitements par une admittance

de surface, qui est d�ecrite soit par le mod�ele de Delany et Bazleypour le mat�eriau �breux,

soit par un mod�ele hybride de mat�eriau poreux (Johnson-Zwikker-Kosten) pour le b�eton de

chanvre. Le traitement r�eactif choisi est un r�esonateur �a panneau micro-perfor�e, dont on d�ecrit

l'admittance par le mod�ele de Crandall-Sivian-Fok.

L'optimisation des coordonn�ees des points de contrôle et des param�etres qui d�ecrivent l'admit-

tance des di��erents traitements est e�ectu�ee par un algorithme d e gradient. La d�eriv�ee de la fonc-

tion objectif par rapport �a tous ces param�etres est calcul�ee e�cacem ent en utilisant la m�ethode

de l'�etat adjoint adapt�ee au probl�eme de la di�raction acoustique. Ce type d'algorithme ne peut

trouver qu'une solution locale du probl�eme d'optimisation, cependant le nombre d'it�erations et

vi



donc d'�evaluations de la fonction objectif est bien plus faible avecce type de m�ethode qu'avec des

m�ethodes d'optimisation globale, comme par exemple les algorithmes g�en�etiques. La m�ethode

d'optimisation choisie sert donc �a am�eliorer la performance �a partir d'un �ecran initial choisi,

plutôt qu'�a trouver la solution optimale du probl�eme. De plus, comme les contraintes �a appli-

quer aux param�etres de forme sont di��erentes de celles appliqu�ees aux param�etres d'admittance,

il a �et�e choisi d'utiliser deux types d'algorithme de gradient di ��erents : la m�ethode SQP (Se-

quential Quadratic Programming) pour les param�etres d'admittance, et une version adapt�ee de

la m�ethode de la plus grande pente (steepest descent) pour les param�etres de forme. En e�et,

bien que la m�ethode SQP converge plus rapidement, il est plus ais�e d'impl�ementer la contrainte

d'injectivit�e de la courbe avec la m�ethode de la plus grande pente.

Tout d'abord, l'algorithme d'optimisation propos�e est appliqu�e au cas de s �ecrans rigides,

ce qui serait le cas s'il �etait fabriqu�e par exemple en b�eton. En e�et, bien que les traitements

acoustiques peuvent être e�caces pour am�eliorer la performance acoustique de l'�ecran, ils peu-

vent avoir un coût environnemental important et n�ecessiter une mise en �uvre particuli�ere, par

opposition aux mat�eriaux rigides dont la mise en �uvre est g�en�erale ment plus ais�ee. Plusieurs

formes ont �et�e choisies comme points de d�epart de l'algorithme d'optimisation de forme, no-

tamment un simple �ecran droit et un �ecran en forme de T. Dans tous les cas, l'algorithme a

converg�e rapidement, en seulement quelques dizaines d'it�erations au maximum. Alors que les

�ecrans de d�epart �a g�eom�etrie simple avaient une e�cacit�e ass ez faible - att�enuation inf�erieure �a

6 dB(A) - les �ecrans �a forme optimis�ee ont une e�cacit�e signi�cati vement plus �elev�ee - de 11

�a 14 dB(A). Cette augmentation est due �a une am�elioration de l'att�enu ation aux moyennes et

hautes fr�equences, au-del�a de 500 Hz. Les formes optimis�ees pr�esentent de fortes irr�egularit�es

sur la partie de l'�ecran directement expos�ee �a la radiation de la source et aux r�e
exions sur le

tramway. Des calculs suppl�ementaires du champ d'intensit�e semblent montrer que cette aug-

mentation de l'att�enuation est due �a une redirection de l'�energi e acoustique vers le haut, ce

qui diminue la di�raction vers la zone d'ombre de l'�ecran. Ces irr �egularit�es semblent donc agir

contre le ph�enom�ene de r�e
exions multiples entre l'�ecran et le tramway.

Dans un second temps, l'algorithme d'optimisation de forme a �et�e appliqu�e dans le cas

d'�ecrans recouverts de traitement absorbant poreux de type laine deverre. A nouveau, la con-

vergence est rapide et l'optimisation de forme induit une am�elioration de 5 dB(A) d'att�enuation,

et l'e�cacit�e totale pr�edite atteint 20 dB(A). La g�eom�etrie est c ependant moins alt�er�ee du côt�e

de la source mais plus dans la partie haute de l'�ecran, par rapport au cas des �ecrans rigides.

Cette observation semble sugg�erer que lorsque les r�e
exions multiples entre l'�ecran et le tramway

sont fortement att�enu�ees par un mat�eriau absorbant, l'optimisation d e forme peut tout de même

permettre d'am�eliorer l'e�cacit�e en jouant sur les e�ets de di� raction qui sont pr�epond�erants

dans la zone haute de l'�ecran. Des r�esonateurs aux param�etres bien choisis peuvent �egalement

augmenter l'att�enuation aux fr�equences moyennes. De plus, des performances similaires sont

obtenues lorsque l'optimisation est e�ectu�ee en rempla�cant le mat�eriau �breux par du b�eton de

chanvre.

Puis, une fois les solutions d'�ecrans optimis�es trouv�ees, on peut e�ectuer des calculs plus
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pr�ecis en enlevant les hypoth�eses simpli�catrices qui avaient �et�e faites pour diminuer le temps de

calcul pendant l'optimisation. Le tramway peut donc être remplac�e par une caisse de g�eom�etrie

plus r�ealiste, le sol peut être potentiellement absorbant et plusieurs mod�eles de sources sont

consid�er�es en plus du mod�ele de ligne source coh�erente : un point source en 3D, une s�erie de

point sources incoh�erents (qui approxime une ligne source incoh�erente �nie) sur une longueur

�egale �a celle d'un tramway - soit 43 m�etres pour le Alstom Citadis 402 implant�e �a Grenoble - et

en�n une ligne source incoh�erente in�nie. Ces sources sont mod�elis�ees par une approche BEM

2.5D, et �a cause de la complexi�cation importante du mod�ele, les calculs sont e�ectu�es jusqu'�a

1800 Hz seulement. Tout d'abord, au vu de la grande di��erence dans les pr�evisions entre la ligne

source incoh�erente �nie et in�nie, et puisque consid�erer une source �nie semble bien plus r�ealiste,

les r�esultats obtenus par la ligne incoh�erente in�nie ne sont pas retenus puisque apparemment

peu pertinents dans notre cas.

Pour tous les autres mod�eles de source, les calculs montrent que laperte par insertion est

r�eduite d'environ 1 dB(A) quand la caisse du tramway est mod�elis�ee plus pr�ecis�ement, et de

2 �a 4 dB(A) quand le sol est fortement absorbant. Lorsque l'incoh�erence spatiale de la source

est prise en compte (mod�ele de ligne source incoh�erent �nie), l'att�enuation est sensiblement

diminu�ee surtout en basses fr�equences. Malgr�e cela, les pertes par insertion globales restent

importantes, surtout lorsque le sol est rigide : de 9 �a 12 dB(A) d'att�e nuation pour les �ecrans

optimis�es rigides, et de 16 �a 19 dB(A) pour les �ecrans de forme et de traitement optimis�es.

En compl�ement des simulations num�eriques, une m�ethode pour mesurer l'att�enuation d'un

�ecran de faible hauteur pr�es d'un tramway en utilisant des mod�e les r�eduits (�a l'�echelle 1/10) a

�et�e d�evelopp�ee et valid�ee dans des cas simples. On utilise une source impulsive, de type source

�etincelle, et une m�ethode de fenêtrage temporel pour rejeterles r�e
exions parasites. Le spectre

de la source utilis�ee est exploitable de 200 �a 1800 Hz en �echelle r�eelle (soit 2 kHz �a 18 kHz �a

l'�echelle de la maquette). Les mat�eriaux poreux de type �breux sont reproduits dans la maquette

par des couches de feutrine. A titre d'exemple, cette m�ethodeest appliqu�ee �a un �ecran en forme

de T recouvert de quantit�es di��erentes d'absorbant. La correspondance entre calculs BEM et les

mesures est bonne. Notamment les mesures ont con�rm�e la faible e�cacit�e d'un simple �ecran

rigide, ainsi que l'int�erêt d'utiliser un traitement absorbant sur le côt�e source. Cependant, il est

�a noter que la BEM tend �a sous-estimer l�eg�erement l'att�enu ation en basses et hautes fr�equences.

En�n, un prototype d'�ecran antibruit de faible hauteur a �et�e cons truit et install�e en conditions

r�eelles pr�es d'une voie de tramway de l'agglom�eration Grenobloise. Le prototype, en forme de

Gamma, a �et�e fabriqu�e grâce �a des �el�ements de bois agglom�er�e, d ont le côt�e expos�e au tramway

est recouvert de laine de verre, pour une longueur totale de 22 m�etres. Le prototype a �et�e

install�e temporairement dans un quartier r�esidentiel assez calme de Saint-Martin-d'H�eres au

milieu duquel passe le tramway �a des vitesses qui peuvent être importantes - jusqu'�a 60 km/h -

et donc les mesures ont pu être faites avec un bon rapport signal sur bruit. Une s�erie de mesures

au passage avec et sans l'�ecran ont �et�e faites �a 1.5 m du sol et �a 3 m du rail, soit �a une position
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repr�esentant un pi�eton �a proximit�e du tramway. La vitesse de s tramways lors de leur passage a

�et�e �egalement mesur�ee grâce �a un microphone auxiliaire plac�e t r�es pr�es du rail.

Les mesures montrent qu'il y a une variabilit�e importante dans les niveaux au passage entre

les di��erents trams, même lorsque qu'une correction de niveau due �a la vitesse est appliqu�ee.

Cependant, l'att�enuation de l'�ecran est en moyenne sup�erieure �a 10 dB(A), durant tout le pas-

sage, et ceci bien que la longueur de l'�ecran soit seulement la moiti�e de celle du tram. Une

analyse en fr�equence des enregistrements a �egalement �et�e faite, et a montr�e que la perte par

insertion entre 200 et 2500 Hz est d'environ 13 dB(A). En�n, une comparaison a�et�e e�ectu�ee

entre les mesures et des calculs BEM simpli��es et a montr�e queles pr�evisions donnent de bonnes

estimations de la performance r�eelle, �a environ 3 dB(A) pr�es, malgr�e le fait que l'environnement

soit fortement id�ealis�e dans les calculs. Des calculs suppl�ementaires sugg�erent cependant que

l'att�enuation obtenue en conditions r�eelles avec un tel �ecran pourrait être am�elior�ee sensiblement

par une meilleure conception.

Pour conclure, on peut dire que la conception d'�ecrans antibruit de faible hauteur pour le

milieu urbain, en tant que sujet relativement r�ecent dans la communaut�e du contrôle du bruit

environnemental, repr�esente un d�e� important puisque ce type de protections pourrait changer

radicalement la fa�con d'habiter l'espace urbain. En se basant sur lesr�esultats issus de l'�etude

d'optimisation num�erique ainsi que sur les mesures collect�eesau cours de ce travail, on peut

a�rmer que les �ecrans de faible hauteur peuvent être des solutions e�caces pour r�eduire le

bruit du tramway, même pour des r�ecepteurs proches, typiquement des pi�etons et des cyclistes,

mais aussi pour les bâtiments environnants. Il est probable que les �ecrans de faible hauteur

soient aussi e�caces pour att�enuer n'importe quelle source de bruit urbaine, pourvu que les

sources soient relativement proches du sol et que l'�ecran puissêetre plac�e su�samment pr�es. Il

semblerait aussi qu'il soit particuli�erement important de bien concevoir un �ecran bas, puisque

son e�cacit�e d�epend fortement de sa forme et des traitements qui lui sont appliqu�es, notamment

lorsqu'il est entour�e d'autres objets qui peuvent induire un ph�enom�ene de r�e
exions multiples.

Dans cette perspective, les m�ethodes d'optimisation comme celle propos�ee dans ce travail sont

donc des outils extrêmement utiles d'aide �a la conception de telles protections.
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Introduction

Noise exposure is still an important nuisance in 21st century society, especially in urban areas

where many sources of noise coexist, including tra�c, trains, but also tramways which have been

developing recently in several cities. Urban environments are alsocharacterized by the fact that

receivers - pedestrians and cyclists - can be very close to noise sources and therefore exposed

to high levels, even though urban noise sources are by themselves not asloud as other more

traditional environmental noise sources.

Noise barriers are a common strategy to decrease noise levels in a given area, however

typical solutions - commonly built along highways and train tracks - are not applicable in urban

areas. This is why the concept of low-height noise barriers has been developed: due to the

very con�ned environment one could �nd in a dense city, noise barriers need to be adapted

to �t to this environment, and therefore should be small - typically less than one meter high

- and well-integrated to the urban landscape. Besides, low height noise barriers seem like a

particularly appropriate way to mitigate tramway noise, since in this case most sources are close

to the ground and have very little spatial variability (as opposed to tra� c noise), and safety

requirements are such that a device could be set up very close to a tramway track. The purpose

of this work is therefore to study a low height noise barrier meant to attenuate tramway noise,

from a numerical and experimental standpoint.

One can indeed raise the question of how to design such a device to make it as e�cient as

possible in terms of acoustic e�ciency. Indeed, because of the tramway itself being so close to the

barrier, one expects multiple re
ections to happen, which suggests that the design of the barrier -

its shape and its surface treatment - will have a signi�cant in
uence on its e�ciency. Optimizing

the design is therefore likely to provide good improvement of thebarrier noise reduction.

For this purpose, it is necessary to develop an e�cient optimization method coupled with a

numerical tool able to predict the e�ciency of a given design accurately. The method will also

have to be general enough to explore a vast set of possible designs, and fast enough to provide

solutions in a reasonable computation time. Such a general method can then be applied in

di�erent con�gurations involving for instance di�erent choices of su rface treatments. In addition,

extra calculations can be made to check the performance of the optimized noise barriers in a

more realistic situation.

Moreover, performing such a numerical optimization should allow us to determine what key
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INTRODUCTION

features of a low height barrier are essential to attenuate tramway noise e�ciently. It would then

be possible to choose an appropriate design for an actual full scale low height barrier prototype.

Building and setting up such a prototype would provide insight regarding the feasibility and the

actual in situ performance of low height barriers for tramway noise reduction applications.

It should also be pointed out that this work is the continuation of another Ph.D. dissertation

completed by the author at the Pennsylvania State University [1]. This work was also concerned

with tramway low height noise barriers optimization, but focused essentially on surface treat-

ments. The author acknowledges that a portion of the present documentis indeed very similar

to what has been presented in [1]. Nevertheless, the reader is encouraged to look at this previous

work as well to be convinced of the originality of the present document.

This dissertation is organized as follows. Chapter 1 reviews parts of the accumulated knowl-

edge of noise barriers in general, and low height noise barriers in particular. More speci�cally

physical e�ects that may in
uence the acoustic performance of a noisereducing device are re-

viewed, and corresponding modeling assumptions for the context of a tramway low height noise

barrier are proposed. Common numerical prediction methods are reviewed as well, and argu-

ments are given towards the choice of using the boundary element method (BEM) to calculate

the device performance.

Chapter 2 presents the foundations of the BEM which is the integral equation method to

solve the forward scattering problem. Important results regarding the weak formulation of the

problem are recalled, as well as some numerical issues regarding geometrical singularities. These

results will be directly applied in chapter 4.

Chapter 3 reviews optimization methods to tackle the optimization problem at stake, which

is the minimization of an objective function depending on the solution of a boundary value

problem. Arguments are given towards the interest of using a sensitivity-based optimization

method coupled with the adjoint state approach, which allows one to usea large number of

variables without signi�cant increase of computation time. A general algorithm to optimize

both the shape and the surface treatment of the barrier is presented.

In chapter 4, the calculation model - including the di�erent physi cal assumptions - used in

the optimization and the considered objective function are summarized, and the expressions of

the sensitivities of the objective function with respect to all parameters are derived, implemented

numerically and validated.

Chapter 5 presents optimized designs obtained with the algorithm, assuming the barrier is

made of a rigid material such as concrete. Extra numerical calculations are made to further

analyze the generated optimized shapes. The optimization algorithm is then applied in chapter

6 in a more general context, in which both shape and admittance parametersare optimized

at the same time. Optimized solutions coupling shape-optimized absorbing porous layers and

micro-perforated panel resonators are presented, and again extra calculations are performed and

discussed.

Chapter 7 presents an experimental method to measure the insertion loss of a low height

barrier design in the presence of a tramway using scale models. Themethod is applied to study

2



experimentally the e�ect of an absorbing treatment on a simple T-shape barrier.

Chapter 8 presents a full scale low height barrier prototype which has been set up next to

a tramway track in Grenoble. Measurements of pass-by levels with andwithout the device are

presented and analyzed, and arguments are given towards the feasibility of such devices.

Finally, in chapter 9, conclusions are drawn and suggestions for future work are discussed.
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Chapter 1
What is a noise barrier and how does it

work ?

1.1 Introduction

Along with the industrialization of society, the growth of urban areas as well as the development

of transportation infrastructures, noise has become a serious nuisancein 21st century society.

Working in an o�ce building or in a plant, wandering in a city, or even t raveling across a

country or across the world oceans, noise always surrounds and possibly annoys us. Noise can

even represent a danger to human health, especially to more fragile populations (elderly and

children), which is all the more problematic since damage induced bynoise can be irreversible.

More speci�cally, it is clear that noise generated by means of transportation is a major issue,

especially in urban areas where many noise sources coexist (namely cars, urban trains, tramways,

buses, aircrafts...). Indeed, according to the World Health Organization [2, 3]:

About 40% of the population in EU countries is exposed to road tra �c noise at levels exceeding

55 dB(A), 20% is exposed to levels exceeding 65 dB(A) during the daytime and more than 30% is

exposed to levels exceeding 55 dB(A) at night.

Impairment of early childhood development and education caused by noise may have lifelong

e�ects on academic achievement and health. Studies and statistics on the e�ects of chronic exposure

to aircraft noise on children have found consistent evidence that noise exposure harms cognitive

performance.

At least one million healthy life years are lost every year from tra�c -related noise in the western

part of Europe.

It also seems clear that a large infrastructure such as a highway or a highspeed train track

can induce disorders in the wildlife that inhabits its surrounding environment, since it interferes

with the ecosystem by its presence itself and by the noise it generates, which can be signi�cant

several kilometers away from the infrastructure. Environmental noise is hence considered as a

serious issue, from a social, environmental or public health perspective.

However, environmental noise, which can be de�ned as any sound �eld that reaches and can

potentially annoy or harm a human or animal receiver, is extremely di�c ult to control since the

extent of a noise source is usually small compared to the extent of the area where the generated
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noise can be heard: for instance, in a city, one single car radiates noise that can be heard several

blocks away.

One should also point out that environmental noise usually involves propagation in a complex

and unsteady physical \medium", such as a city or the atmosphere itself, where many physical

e�ects come into play in the sound propagation. This makes environmental noise control an

even more di�cult task. Nevertheless, there are mainly three meansof actions for engineers to

control noise:

� reducing the source radiated power : this implies a better design of pieces of machin-

ery, trains, cars, plants and any sources of sound.

� protecting the receiver from the noise : a common example of this strategy is to build

houses with high performance windows to isolate the inside from the outside.

� preventing the propagation by modifying the propagation path

One way to implement this third strategy is to use a screen between the source and the receiver,

which is commonly called anoise barrier or noise protection. In this work, we are particularly

interested in noise protections adapted to an urban context, since noise is considered one of the

most important nuisances in cities, and since the proportion of city dwellers in the worldwide

population keeps increasing, as it has been for centuries. This trendis certainly going to remain

the same in the near future and therefore it makes sense to imagine newways to tackle the issue

of noise exposure in urban areas.

1.1.1 First pass on noise barriers

Noise barriers were �rst built in the middle of the 20 th century, in the United States and in

Europe, quickly followed by Japan along with its rapid highway network development. The

main application of such screens initially was road tra�c noise mitigation, since screens were

mostly built along highways passing by inhabited areas, dense suburbs or quiet countryside

areas. Barriers were also built to mitigate railway noise in the same context, or noise from

HVAC (heating, ventilation and air conditioning) heavy machinery, usual ly located on buildings

roofs.

Typical highway or train noise protections can be divided into two main types: noise berms -

also known as earth mounds or natural barriers, made out of natural materials -and noise walls -

also known as noise screens and widely referred to as the general expressionnoise barriers, which

are manufactured engineering structures. There are however many limitations to the design of

noise barriers: materials used have to be durable, resistant to weather conditions, and even

salt in case of highway treatment against heavy snow. Concrete is therefore most commonly

chosen because of its durability, its easy maintenance and easy implementation on site during the

construction, although metal, masonry, wood or even brick are also commonly used materials.

Further, some more sophisticated materials with good sound absorption properties, such as

porous concrete, have been used as well.

6



As we have mentioned earlier, the main application of noise barriers since the beginning of

their development has been mitigation of highway and train track noise. Nevertheless, another

recent development suggests one could use noise reducing devices atthe heart of urban areas

in order to mitigate the noise exposure of urban inhabitants [4{15] - one can also refer to the

European project HOSANNA which was also concerned with noise reduction in urban areas [16{

19]. This type of device should be easy to implement in a constrained environment, such as a city

canyon or along a urban train track, which would typically require its height to be limited. This

is why those devices have been referred to aslow-height noise barriers, \low height" typically

meaning less than one meter high. They could be used for instance to acoustically isolate

pedestrians walking on pavements from the tra�c noise coming from the street, or to reduce

the noise received by cyclists riding really close to a heavy tra�c driveway. Low-height barriers

could even decrease noise reaching buildings, for instance in case of elevated railroads inside

cities.

1.1.2 Tramway noise

Many sources of noise coexist in urban environments, including road tra�c (from light and

heavy vehicles), urban trains, but also tramways. For many decades,urban noise studies were

mostly concerned with road tra�c and trains, which were considered as the main sources of

noise in urban areas, but tramway noise has become a concern as well. Indeed, based on the

fact that a tramway is an environmentally-friendly non-polluting me ans of transport which helps

reduce the tra�c congestion in city centers, there has been a renewed development of this means

of transportation in the past decade, for instance in several European cities (including Paris,

Brussels and London). Tramway has hence become a signi�cant urban noise source.

Back in the seventies and eighties, several studies had already reported signi�cant levels

and annoyance due to tramways [20{22]. Along with the more recent tramway development,

researchers have characterized physical emission levels of tramway-induced noise and vibration

[23{26] and annoyance [24, 27]. Tramway noise is all the more problematic since pedestrians

and cyclists can be close to trams on a regular basis, and because the power levels of tramway

noise sources are signi�cant (above 90 dB(A) for typical urban speeds [26]), the noise level at

nearby receiver locations can be quite high, well above 80 dB(A).

However it has been shown that noise sources for modern tramway are mostly located close to

the ground [26]. This suggests that a properly designed low-height noisebarrier can be e�cient

against tramway noise, even for receivers close to the tram track. Thisis why this work will be

mostly concerned with tramway noise mitigation using a low-height noise barrier.

1.1.3 Objectives of this chapter

Although they might look like rather simple manufactured objects, noise barriers - including low

height noise barriers - involve many physical phenomena in the way they attenuate sound and

have been the topic of many research studies. We therefore intend in this introductory chapter

to brie
y review the physical and mathematical tools involved in the accurate description of

the e�ect a noise barrier has on a sound wave, and therefore in the assessment of its e�ciency.
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We will also present a broad overview of the accumulated knowledge concerning noise barrier

design, which will eventually help us identify what approach can be followed to explore further

the potential of low height urban noise barriers, more speci�cally tramway noise barriers.

1.2 Measure of the e�ciency of a noise barrier

1.2.1 General comments on the physical description of a sound �eld

Physically, a sound propagating in a 
uid (such as air) can be describedas the \small" pertur-

bations of the thermodynamic variables describing the 
uid: pressure p, temperature T, particle

velocity v , and density � . We will use the subscript 0 to refer to the mean values: p0 (also

referred to as the atmospheric pressure),T0, � 0 (also referred to as the ambient density) and

v0 (also referred to as the mean 
ow or simply thewind). Basically the zeroth order quantities

describe the acoustic medium in which the propagation occurs, and the�rst order quantities are

used to describe the acoustic �eld itself. Further, the adiabatic sound speedc0, assuming air is

a perfect gas, is given by:

c0 =
r


 p 0

� 0
=

r

 R T 0

M

where 
 is the ratio of speci�c heats, M is the molecular mass of air,R = 8 :314 J/(mol.K) is

the universal gas constant andT0 is expressed in Kelvin. Typically one can take
 = 1 :4 and

M = 28:97 10� 3 kg/mol. At a temperature of 20 � C, the sound speed is aboutc0 = 343 m/s.

In typical outdoor propagation situations, knowing the acoustic pressure �eld p only is suf-

�cient (other variables could be derived from it and the relevant properties of the medium), so

it will be the main physical quantity we will look at. The sound �eld i s then a scalar func-

tion of a receiver point x and time t: p(x; t). Since the frequency content of a signal usually

contains easier information to interpret, one usually looks at the acoustic signal as a function

of frequency p(x; f ) instead of time, the transformation from one to the other simply being a

Fourier transform.

1.2.2 De�nition of the insertion loss in the frequency domain

���������������������	��
�
�����


�����	���������������

���������������
����

���������������������	��
�
�����


�����	���������������
��������������

�����������


Figure 1.1: Schematic of a noise barrier implementation. De�nition of the i ncident �eld pin (left) and the total
�eld p, which is the sum of the incident and the di�racted �eld p = pin + psc (right).
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One can then imagine a typical situation where there is a source of sound- for instance a

tramway - and some receivers - a pedestrian walking by (see �gure 1.1).The source frequency

content is described by a certain functionS which depends on frequencyf . This information

is typically related to the power spectrum of the source (measuredfor instance with a power

spectral density), which is a continuous function of frequency, but in practice one will use a

discrete version of this spectrum at a set of frequenciesf n , or band-averaged values (most

typically octave or third octave bands). In environmental noise applications, this power source

function is typically A-weighted to take into account the �ltering of the human ear, de�ned for

instance in the International standard IEC 61672:2003 (which implies that the A-weighting �lter

is already included in the function S). Besides, noise sources are typically modeled as \point"

sources, whereas in reality sources are always somewhat extended in space, as it would be the

case for a vibrating structure for instance. Real sources also do not usually radiate energy equally

in all directions, and should therefore be described as well by directivity functions. In this work

however, we will consider omni-directional sources only, which isa rather strong approximation

which should be kept in mind.

Then, to evaluate the noise at the receiver locations, we want to knowthe pressure �eld at

the considered receiver points which consists of a discrete set ofpoints (Rm ). The pressure �eld

at a given point and at a given frequencyf n is the complex numberp(Rm ; f n ).

Now, let us imagine furthermore that in the design phase of a project, one wants to predict

how e�cient a barrier will be in terms of noise reduction. The relevant reference situation in that

case is the sound �eld that would exist at the receiver points without any barrier constructed,

but with the same sources of sound and in the same environment. We willcall this the incident

�eld pin (Rm ; f n ) (see �gure 1.1, left part).

Then, assuming that there is a barrier present (see �gure 1.1, right part) and assuming we

can predict how the sound �eld will be modi�ed by the presence of the barrier, we can compute

the actual sound pressure �eld, simply called thetotal �eld and written as p(Rm ; f n ). We will

call the di�erence between those two �elds the scattered �eld psc = p � pin (also called the

di�racted �eld ), which is precisely the �eld the barrier \adds" to the existing �eld and therefore

tells us how much the barrier modi�es the propagation of the sound.

To have a quantitative measure that tells us how e�cient the barrie r is in mitigating the

incoming noise, we will de�ne an average attenuation across the receivers at a given frequency:

A(f ) =
P(f )

P in (f )
with

8
>>>><

>>>>:

P(f ) =

s X

m

jp(Rm ; f )j2

P in (f ) =

s X

m

jpin (Rm ; f )j2

P and P in are the root-mean-square (RMS) total and incident pressure across thereceivers.

One can also convert the attenuation to a dB scale, which one can refer toas the frequency

dependent insertion loss:

IL( f ) = � 10 log
�
A(f )2�
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The minus sign is there so that whenjP j � j P in j, the logarithm is largely negative and the loss

is actually a high positive number. Also, we took the magnitude squared ofthe pressure �eld

so that what we compute is really a ratio of acoustic energy. This numbertells how many dBs

are \lost" on average across the receivers due to the barrier at a given frequency.

However, the attenuation is usually a function that strongly varies with frequency, due for

instance to constructive or destructive interference e�ects.To have one single number to evaluate

the bene�t of the noise reduction device, one therefore needs to average across a certain frequency

range, say betweenf min and f max . One possibility would be to evaluate the total acoustic energy

by integration over frequency of the spectral acoustic energy, whichis approximately proportional

to the RMS pressure squared, and take the ratio of the incident and total energies (AER):

AER =
� Z f max

f min

P(f )2 df
� � � Z f max

f min

P in (f )2 df
�

The integration is replaced in practice by a discrete summation basedon a �nite number of

frequencies, as follows:

AER �
� X

n

P(f n )2 � f n

� � � X

n

P in (f n )2 � f n

�

where � f n is a frequency bandwidth associated withf n . However, there is a major problem

with using this number: it strongly depends on the modeling of thesource. Indeed, assuming

a given frequency content for a 3D point source, if the same frequencycontent is applied to a

2D line source and the pressure �eld evaluated with a 2D method, the AER in those two cases

would be signi�cantly di�erent. This is due to the fact that a 3D point source and a 2D line

source have by themselves di�erent \frequency content". This isproblematic since most of the

time the prediction model to assess the e�ciency of a noise barrieris based on 2D modeling in

order to keep computation time reasonable.

However, it has been shown [28, 29] that the attenuation at a given frequency A(f n ) is similar

whether the source is represented by a point source with an in�nitely long barrier or by a 2D

line source. Constructing a broadband e�ciency from the attenuations therefore reduces the

error related to the 2D modeling. But, at each frequency the attenuation does not depend on

the source spectral content. Hence to take into account the noise spectrum of the considered

source, we de�ne a broadband attenuation weighted by theS function, as so:

Abb =

X

n

Sn A(f n )2

X

n

Sn

(1.1)

Typically the frequenciesf n at which the attenuation is evaluated will be be taken equally spaced

in a third-octave band. In this case the coe�cient Sn can be taken asSn = 10L w with L w the

source power level in the considered third octave band. The same coe�cient is then assigned

to all the frequencies of this band, but one needs to have the same number of frequencies per

band (typically 20 per third-octave band) to preserve the repartition of energy on the spectrum.
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One can �nally de�ne from the broadband attenuation a broadband insertion l oss in dB(A) as:

IL bb = � 10 logAbb . An e�cient barrier has a high broadband insertion loss, and therefore this

parameter is the one we will use as the quantitativee�ciency of a given noise barrier.

1.2.3 The equivalent sound pressure level LAeq,T

Let us recall that we introduced the insertion loss as a frequency domain quantity and therefore

at each frequency it is implicitly assumed that the generated noise is \steady", and does not

present radical changes with time. However, most sources of noise, especially tramway noise,

are by de�nition unsteady since they are related to the passage of a tramway. Therefore, when

a frequency domain steady-state description is not possible, the equivalent sound pressure level

L eq is used. This level is related to the mean squared pressurep2
rms,T (x), which is a time-average

squared pressure value over a given period of timeT and at a given receiver pointx:

p2
rms,T (x) =

1
T

Z T

0
p(x; t)2 dt

where [0; T] is the time interval of the noise event we are interested in. For instance, this could

be night time (to calculate the L night ), or the pass-by of a tram. The equivalent sound pressure

level is then de�ned as:

L eq,T (x) = 10 log
p2

rms,T (x)

p2
ref

with pref = 20 � Pa in air. However, in environmental noise assessment, it makes more sense

to consider A-weighted quantities. One way to do this is to apply the A-weighting �lter on

the pressure signalp(x; t) to generate pA (x ; t), for instance using a time domain �lter. From

this signal the A-weighted mean squared pressurep2
A,rms,T (x) can be calculated and then the

A-weighted equivalent sound pressure level:

L Aeq,T (x) = 10 log
p2

A,rms,T (x)

p2
ref

This metric is the most commonly used for in situ noise exposure measurements, and will be

used extensively in chapter 8. Let us also point out that it would then be straightforward to

de�ne an insertion loss from theL Aeq,T : one can measure or predictL in
Aeq,T (x) before the barrier

(or any mitigation device for which we want to estimate the e�ciency) w as built and the same

L Aeq,T (x) with the barrier, so that the \equivalent" insertion loss becomes:

IL Aeq(x) = L in
Aeq,T (x) � L Aeq,T (x)

This is a possible metric to measure the performance of a noise barrier, typically used in standard

measurement (again this will be used in chapter 8). Although, in the context of numerical

simulations involving noise barriers, since we are mostly going to usefrequency domain prediction

methods we will rather use the insertion loss as de�ned in section 1.2.2.
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1.3 Human response to noise

Interest in the assessment and prediction of environmental noise fundamentally started because

of concerns to its e�ects on human health, especially sleep quality,or more generally human

well-being, including mood and performance at work. The latter lead to the assessment of

annoyancedue to noise exposure, which is one of the main purpose of psychoacoustics. It could

also be mentioned that all animals [30, 31] and not only humans are a�ected by noise.

The di�culty is to quantify a purely subjective judgment, and to correlate it to predictable

physical parameters, such as theL Aeq,T introduced in 1.2.3 or the insertion loss related to

some noise control device. Indeed, most of the time it is questionableto state that such physical

quantities will correlate directly with the change in people's subjective opinions concerning their

noise exposure. For instance it has been shown that depending on the type of source - railway,

aircraft or road tra�c -, for the same L Aeq,T , the human subjective annoyance would be di�erent

[32]. Another study [33], focusing on a well-being degradation in noisy areas, showed that the

situation of living in a place where there are windows showing the source of noise can lead to

a more intense depression feeling than the equivalent noise exposure situation, which notably

includes sameL Aeq,T , without windows.

Besides, noise exposure is known to interfere with all human activities and therefore becomes

more annoying during the evening and the night when people devote themselves to leisure activ-

ities and relaxing, including sleep. This led to the 5 and 10 dB penalty used in the community

level metric L den which has now become the most widely spread metric to assess noise exposure.

A review of many relevant e�ects on annoyance and correlation with metrics can be found in

[34].

More than just causing a feeling of annoyance, noise has signi�cant direct e�ects on human

health, especially on sleep quality [35, 36]. Depending on the nature of the ambient noise during

sleep, sleep depth and therefore performance and mood during the day can be signi�cantly

degraded. Apart from the fact that the louder the noise, the poorer the sleep quality, it has been

established that the nature of the noise, especially its intermittent character, has a signi�cant

in
uence on sleep quality. For instance, the pass-by of a truck on itsown causes increased body

movements, which are known to be correlated to sleep shallowness, and of course could even

lead to awakening and therefore interruption of the sleep cycle.

However, some psycho-social e�ects seem to be relevant as well, even during sleep since hu-

mans can still discriminate sounds while sleeping, and therefore the subjective attitude towards

certain sources of noise can a�ect the physiological response, as well as the character of the

source: in a recent study [37], it has been shown that railway noise a�ects sleep more than

tra�c noise.

Even though environmental noise is really concerned about reducing negative health e�ects

of noise (namely feeling of annoyance and degradation of sleep quality), inthe remainder of this

work we will focus on a purely physical description of the noise and the noise reduction by noise

barriers, with the fundamental assumption that purely physical quantities such as the insertion

loss exactly correlates with the feeling of noise exposure reductionby human beings. This is

a quite dramatic simpli�cation, as we have seen, but commonly accepted in the noise barriers
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performance research community, which is understandable since otherwise the problem of noise

reduction would rapidly become impossible to handle.

1.4 Physical e�ects in
uencing a noise barrier e�ciency

We review here the di�erent physical e�ects involved in the propagation of sound in outdoor

environments in general, including when a noise barrier is present. This will allow us to iden-

tify what phenomena are the most relevant to low height noise barriersacoustic performance.

Regarding outdoor sound propagation in general, one can refer to comprehensive descriptions

in two books written by Attenborough et al. [38] and Salomons [39], or in the excellent review

paper by Embleton [40].

1.4.1 Meteorological e�ects

The propagation of sound from a known noise source to a receiver in a typical outdoor environ-

ment, for instance from a highway to a nearby house, with or without the presence of obstacles

such as noise barriers, is a complex problem to solve. One of the di�culties is that the atmo-

spheric conditions, which de�ne the medium where the sound propagates, have an in
uence on

the sound �eld and therefore on the performance of a noise barrier, as measured experimentally

in [41].

The �rst e�ect is the refraction of sound due to local inhomogeneities of the ambient tem-

perature and mean wind �elds, which modi�es the local speed of sound. This causes a wave

propagating in the medium to bend, typically upward or downward, depending on the sign of

the vertical sound speed gradient. This e�ect can be of importance for the assessment of noise

barriers performance, since in a downward refracting case, the sound could go above the barrier

and then back down, hence decreasing the shielding e�ect of the barrier. In fact, on a sunny

day - in which the temperature typically decrease with height - upwards refraction naturally

happens, whereas downward refraction can happen on an unclouded night. The presence of

wind can either strengthen or weaken this e�ect, depending on the propagation being downwind

or upwind. Insertion losses of barriers in the presence of wind havebeen studied numerically

and in wind tunnel experiments [42, 43], and it has been shown that theydecrease in downwind

conditions. Besides, in a noise barrier context, the presence of the screen will also a�ect the

wind �eld [44, 45], which would typically worsen the downwind propagation e�ect.

Inhomogeneities of the ambient temperature and wind �elds can be caused as well by turbu-

lent 
uctuations, which can cause scattering of the acoustic energy, with two main consequences

in a noise barrier context: the wave tends to lose spatial coherence during its propagation -

which decreases the strength of interference e�ects - and sound canbe backscattered to a region

where there is supposedly little energy such as the shadow zone created by a noise barrier, which

typically limits its insertion loss. The main theoretical framework to describe backscattering is

due to Daigle [46] who introduced the concept of scattering volume and cross section. Several

studies which followed this framework showed that turbulent back scattering has a signi�cant

e�ect at higher frequencies, typically above 4 kHz [47{49].
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Nevertheless, an important point is that meteorological e�ects - temperature and wind-

induced refraction, as well as turbulence - are considered to possibly have a signi�cant in
uence at

rather large distances [40], or a high enough frequency (several kHz for turbulent backscattering),

and indeed most of the studies cited in this section considered a distance of about 100 m and

more between source and receiver. Atmospheric absorption e�ects arealso known to be negligible

at low enough frequencies and small enough ranges (extra attenuation typically less than 3 dB

for ranges less than 100 m and frequencies below 3000 Hz [40]). Therefore, when the distance

between source and receiver is small, say below 20 m - which would bethe case for an urban

low-height barrier - and assuming a typical environmental noise frequency range (100 to 3000

Hz), the performance of a noise reduction device might therefore be mostly controlled by other

e�ects, such as the ground properties, the presence of surroundingobjects and the features of

the device itself. However, if one was to extrapolate results obtained at short ranges to larger

ranges, those meteorological e�ects should be considered.

1.4.2 Ground e�ect

The ground is always present in realistic situations and should be considered. Basically, when

assumed completely 
at, it can be modeled as an in�nite plane over which the sound can re
ect.

This re
ection can be easily described by image source theory when itis assumed perfectly

re
ecting (rigid), but is more complicated when the ground is absorbing, as most outdoor ground

surfaces are [40, 50]. How absorbing the ground is can be typically quanti�edwith an impedance.

The problem of predicting the sound �eld due to a point source above animpedance plane has

been tackled theoretically for several decades [51{54]. These studies showed that the pressure

�eld is this case is given by a free-�eld contribution emanating from the source (S) plus a free-

�eld contribution emanating from the image source (S') plus a extra contribution due to the

�nite impedance of the ground, expressed as a Fourier integral, and which also depends on

the source and receiver positions. A popular approximate expression is the so-called Weyl -

Van der Pol solution (from the names of the two scientists who �rst derived this expression in

electromagnetism [55, 56]), which can be found in many references [38, 40]. Using this solution,

one can show that the main e�ect of a �nite impedance ground is to limit i nterference e�ects

between direct and re
ected sound, and also to cause a shift in interference dips [40].

One can also ask the question of the in
uence of the ground impedance on a noise barrier

insertion loss. It has �rst been pointed out that a ground �nite impedan ce can provide on its own

an attenuation, which the presence of the barrier can decrease, to thepoint that the insertion

loss becomes negative [57]. It has also been pointed out that simple empirical expressions (see in

section 1.5), which do not take into account the ground e�ect, can in some cases over-predict the

attenuation [58]. Similar conclusions were drawn by Hutchins et al. in the case of thin re
ective

barriers [59] as well as for more complicated shapes [60]. The main conclusionof these studies is

that as a general rule, the insertion loss of a noise reduction device issmaller with an absorbing

ground than a rigid ground, and that the ground impedance on the source side matters more

than on the receiver side. Also, the authors state that the ground impedance has a larger e�ect

on the barrier e�ciency than the barrier impedance. One can howeverpoint out these results
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were found for a typical highway barrier con�guration, and may not be applied directly in other

situations, such as a low-height tramway noise barrier context.

1.4.3 Multiple re
ections and di�use �eld

Figure 1.2: Examples of con�gurations where multiple re
ections can in
ue nce a noise barrier e�ciency. Left:
heavy truck traveling close to a highway noise barrier - center: ba rrier implemented close to a building - right:
low-height barrier close to a tramway.

In some situations, for instance in most urban environments, extra objects are present around

the site where a noise barrier is implemented, and those objects caninduce many more re
ec-

tions compared to the case where the barrier only is present. This isthe case for instance for

heavy trucks traveling close to a highway barrier, for a barrier close to a building facade, and

for a barrier close to a tramway (see �gure 1.2). This could even happen in a street canyon or

between parallel noise barriers. Those re
ections tend to decreasethe e�ciency of noise pro-

tections and should therefore be taken into account in numerical prediction schemes modeling

barriers in such situations, for instance considering a set of image sources or a radiosity-based

scattering scheme [61, 62]. Implementation of barriers in urban canyons have also been investi-

gated numerically and with scale models, either for hard barriers [63, 64]or absorbent barriers

[8, 65]. Both calculations and measurements show that in those situations,rigid barriers do not

have a signi�cant noise reduction e�ect, but with an absorbing treatm ent the e�ciency of the

barriers is a lot higher.

1.4.4 Shape and material distribution over the barrier

Finally, the design of the barrier itself - namely its shape and the materials covering it - may

have an e�ect on its e�ciency. Actually, from simple theoretical cons iderations, one can state

that this e�ect exists. However, one should raise the question of therelative importance of the

in
uence of the barrier design compared to all the other e�ects mentioned in this section.

It has already been pointed out in section 1.4.2 that in a typical highway noise barrier con�g-

uration, the impedance coverage of the barrier has a smaller e�ect than the ground impedance

[60]. Also in a highway context, May and Osman [66] measured as well that there was not a

signi�cant di�erence in performance between a thin re
ective and absorptive screen. However,

when a T-pro�le is considered, they measured that an absorptive treatment on the top yielded

an improvement of a few dB(A). Similar results were found by Watts et al. [67].

Moreover, in a railway barrier context, Morgan et al. [68] found - based on scale measure-

ments - that di�erent shapes had signi�cantly di�erent insertion l osses, and that the barrier

impedance had a great e�ect as well: for a rigid ground, insertion losses were between 14 and
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23 dB(A), whereas for an absorbing ground, they ranged between 10 and 20 dB(A).It was also

found that going from rigid to absorbing ground does seem to decrease the insertion loss (as

stated in section 1.4.2), but however in this context the shape and material distribution can still

make the insertion loss vary by 10 dB(A), which means that the design of the barrier itself has

a signi�cant e�ect.

In a low-height tramway noise barrier context, the presence of the tramway is similar to the

presence of the train in [68] - it causes multi re
ections - and therefore it is likely that the barrier

shape and admittance will be signi�cant as well, even in the presenceof an absorbing ground.

This also suggests that seeking to optimize the design of the barrier will be worth it, in the sense

that signi�cant improvement can be obtained in the barrier e�ciency by careful design.

1.5 Review of prediction methods

From reviewing the di�erent e�ects that could come into play in th e e�ciency of a low-height

noise barrier close to a tramway, one can now decide which predictionmethod can be used to

evaluate the e�ciency of a low height barrier. It has been found that meteorological e�ects -

related to inhomogeneities in the ambient properties describing the propagation medium, namely

the speed of sound - are probably negligible since short range propagation onlywill be considered.

On the other hand, re
ections and scattering e�ects due to the barrier itself, the ground or the

surrounding geometrical features - such as the tramway - will have an important e�ect and

therefore the chosen prediction method should be able to render di�raction e�ects by arbitrarily

complicated geometries accurately. It should also be able to take into account the acoustic

properties (the admittance) of the surface of the di�erent obstacles. We will now brie
y review

some of the common methods in outdoor sound propagation prediction which will allow us to

decide which one seems the most appropriate in our context.

Di�raction e�ects from an in�nite screen have �rst been describe d using analytical formula

derived from Sommerfeld's geometrical theory of di�raction [69], which was then extended by

McDonald [70], Keller [71] and Pierce [72, 73]. Considerations of re
ections onthe ground [57,

74{76] and �nite barrier e�ects [77, 78] have also been studied with these analytical expressions.

Apart from this approach, several empirical formulae predicting the e� ciency of a noise barrier

based on the so-called Fresnel number have been derived, the most famous being Maekawa's

curve [79], which was then extended by Kurze and Anderson [80] and Menounou [81]. All those

expressions, although useful and used in many engineering methods,are valid in highly idealized

contexts, especially for a 
at screen and a straight di�raction edge. They are not general enough

to model a barrier for our application.

In terms of numerical methods, mainly two main families of methods have been developed in

the second half of the 20th century: long-range and short-range methods. Indeed, as mentioned

in section 1.4, propagation at large distances (more than 100 m) is signi�cantly in
uenced by

meteorological e�ects, whereas the sound �eld at short ranges is mostly in
uences by geometrical

features close to the source (obstacles, ground), but little by meteorological conditions. It

therefore makes sense that di�erent types of numerical methods were developed for those two

applications. Nevertheless, those two types of methods can be coupled, as for instance in the
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Harmonoise reference model [82].

Long-range propagation mostly uses ray tracing [83, 84] and the Parabolic Equation (PE)

method [39, 85, 86], which is based on an approximation of the Helmholtz equationwith non-

uniform speed of sound. It is possible to some extent to take into account terrain and obstacles

- such as a noise barrier - in the PE by approximate methods [87, 88], but again these would

not be valid for an arbitrary geometry.

Concerning short range propagation, most commonly used methods for taking into account

complex geometry are �nite element methods (FEM), �nite-di�ere nce time-domain methods

(FDTD) and boundary element methods (BEM). The FEM and the FDTD can include quite

naturally physical e�ects as well as complex geometries, with appropriate meshing of the domain,

but have a rather high computational cost since a volume mesh is required. The FEM is hence

not widely used in outdoor sound propagation simulations, although the FDTDhas been applied

successfully [29, 89, 90]. On the other hand, the BEM is able to represent complex geometries

accurately, since only the boundaries of the obstacles are meshed, and to model the ground

e�ect via an appropriate choice of the Green's function. It usually assumes a uniform speed

of sound, although there have been attempts to consider a linear sound speed pro�le [91, 92].

The computation cost of the BEM is limited since only the boundary is meshed, although it

is still rather high due to the non-sparsity of the matrices. It can however be greatly reduced

using the so-called Fast Multipole method, which will not be detailed here (one can refer to the

introductory paper by Coifman et al. [93]).

From this brief review, the BEM clearly seems like the most appropriate method for our

application. It will be explained in more details in chapter 2.

1.6 A few examples of surface treatment models

As mentioned earlier, the acoustic properties of a surface treatment can have a signi�cant in
u-

ence on the e�ciency of a noise barrier, and therefore one should be ableto model the e�ect of

a surface on the sound �eld. A more comprehensive review can be found in [1], and we simply

recall here a few models that will be used in this work.

The classical approach to model the e�ect of a surface is to force the local impedance to

match that of the given surface, which mathematically corresponds to apply a so-called Robin

boundary condition at the surface location. However, instead of the classical speci�c acoustic

impedanceZ (ratio of pressure to particle velocity), it is usually more convenient to consider the

normalized admittance � , which is simply the inverse of the normalized impedanceZ=Z0, with

Z0 = � 0c0 is the speci�c acoustic impedance of air - one therefore has� = Z0=Z, which would

for instance go to zero for a rigid material. As we will see in chapter 2, ina BEM formalism the

admittance of any surface� is readily taken into account, and therefore being able to model�

is the only requirement to predict the e�ect of the surface treatment on the sound �eld.

Most construction materials can be assumed acoustically rigid (for instance concrete, steel,

heavy wood...), but acoustic surface treatments can be used as wellto increase the e�ciency of

a noise barrier (as mentioned in section 1.4). Those treatments can be generally divided in two

categories: porous materials - which rely on energy dissipation through viscothermal dissipation
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e�ects - and reactive treatments - which rely on destructive interference e�ects, usually using

one or several resonators. Examples of porous materials include �brous materials, foams, porous

concrete, or natural materials like vegetation or hemp concrete. Reactive treatments on the

other hand include reverberation chambers (exhaust mu�ers), quarter-wavelength resonators or

micro-perforated panel resonators (MPPR).

We give here three examples of possible treatments which will be used in this work, more

speci�cally in chapter 6.

1.6.1 Delany and Bazley layer model

In a noise barriers application, the most common type of treatment is porous since it can provide

absorption over a broad range of frequencies. Many models exist to express the admittance of

such a treatment (see for instance [1] for a review of some of these models), however the most

common one is the Delany and Bazley model [94], which has the main advantage todepend on

one parameter�=f , with � the air
ow resistivity of the medium - usually expressed in kPa.s/m 2

- which corresponds to the pressure drop across a porous sample normalized by its thickness and

the air
ow velocity through it. Due to its simplicity, this mode l has been extensively used to

model many materials, including soils [50], although it should be recalled it was initially derived

for �brous materials and for a given range of validity ( �=f 2 [1; 100]). The expression for the

normalized impedancezDB and wavenumberkDB are (within the e� i!t convention):

8
>><

>>:

zDB =1 + 0 :0511
� �

f

� 0:75
+ i 0 :0768

� �
f

� 0:73

kDB

k0
=1 + 0 :0858

� �
f

� 0:7
+ i 0 :175

� �
f

� 0:59
(1.2)

where� is here in Pa.s/m2 and k0 = !=c 0 is the wavenumber in air . The normalized admittance

� DBL of a rigid-backed layer of material of thicknessd is then:

� DBL =
1

zDB
tanh( � ikDB d) (1.3)

1.6.2 Hemp concrete layer

Porous materials can be made out of many di�erent basic components such as polymeric foams,

plastic �bers, glass �bers, wool �bers, tire wastes, plastic grains, and so on. Some of these

components, other than being hazardous and therefore requiring appropriate packaging, are

not sustainable. However, porous materials with good acoustic properties can also be made

from wood �bers binded together [95], which is the case ofhemp concrete. Speci�cally Gl�e et

al. [96, 97] studied di�erent ways to manufacture hemp concrete for acoustic applications and

proposed a porous material model which matches well to experimental data. They expressed

the impedance in terms of the dynamic density� e, calculated with the Johnson model [98],

and dynamic bulk density K e, calculated with the Zwikker and Kosten model [99]. Within this
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model, the normalized admittance� HC of a hemp concrete layer is given by:

� HC =
1

zHC
tanh( � ikHC d) (1.4)

with:

kHC = !
r

� e

K e
and zHC =

1
� 0c0

p
� e K e

and

8
>>>><

>>>>:

� e =
� 1 � 0

�

 

1 + i
8
� 2

s

1 � i
4� 2

1 �� 0!
� 2� 2� 2

!

K e =
� 0c2

0

�

�
1 + 2( 
 � 1)

J1(�
p

i Pr)

�
p

i Pr J0(�
p

i Pr)

� � 1

whereJ0 and J1 are the Bessel functions of zeroth and �rst order, and the parameter� is de�ned

by:

� =

r
8� 1 � 0!

��

This model therefore requires four parameters to describe the porous material (porosity � , 
ow

resistivity � , tortuosity � 1 and viscous characteristic length �) and the thickness of the layer

d, as well as physical characteristics of air (dynamic viscosity� , air density � 0, sound speedc0,

speci�c heats ratio 
 and Prandtl number Pr). For a typical ratio of water, hemp and binder,

the authors give the following values for the porous parameters:� = 0 :73, � = 19:3 kPa.s/m2,

� 1 = 3 :0, � = 23 � m and d = 10 cm. The physical properties of air can be taken assuming for

instance a temperature of 20� C: density � 0 = 1 :21 kg/m3, sound speedc0 = 343 m/s, dynamic

viscosity � = 1 :81 10� 5 Pa.s, ratio of speci�c heats 
 = 1 :4 and Prandtl number Pr = 0 :7.

1.6.3 Micro-perforated panel resonator (MPPR) model

Some reactive treatments have been considered in noise barrier applications [100{107] but their

use is still limited. One possible treatment, which has the main advantage to cover a wide

range of behaviors thanks to its four design parameters, is the micro-perforated panel resonator

(MPPR). This treatment simply consists of thin sheet of heavy material perforated by a grid

of holes and coupled to a cavity, and has been studied by many authors [100, 108{112]. One

possible model for its impedance, taking into account viscous and thermal e�ects in the holes,

radiation mass and interaction e�ects, is the model one can refer to as the Crandall-Sivian-

Fok model - following the work of Crandall [113], Sivian [114] and Fok [115, 116] - which has

been used by Melling [110] and Asdrubali et al. [100]. According to this model, given a panel

of porosity s, of hole radius a0, of panel thicknessl0 and of cavity depth D , the normalized

impedance is:

zMPPR = � i
k0l0

s

�
1

�( x0)
+

16
3�

a0

l0

	( � )
�( x)

�
+ i cotan ( k0D) (1.5)
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with

8
>>>>><

>>>>>:

k0 =
2�f
c0

; � =
p

s ; x = a0

s
2�f � 0

�
; x0 = a0

s
2�f � 0

� 0 ; � 0 = �
�

1 +

 � 1
p

Pr

� 2

�( w) = 1 �
2

w
p

i

J1(w
p

i)

J0(w
p

i)
	( � ) =

8X

m=0

um � m

with the coe�cients um given by u0 = 1, u1 = � 1:4092, u2 = 0, u3 = 0 :33818,u4 = 0, u5 =

0:06793,u6 = � 0:02287,u7 = 0 :03015 andu8 = � 0:01641 (values for air physical parameters are

given in section 1.6.2). � 0 is an equivalent viscosity representing both viscous and thermal e�ects,

and the intermediate variablesx and x0 are the so-calledperforate constants and correspond to

ratios between the radius of the hole and either the viscous or thermo-viscous penetration depth.

Finally, the Fok's function [115, 116] 	( � ) is a correction to take into account interaction e�ects

between the di�erent holes, directly related to the porosity. Th e normalized admittance is then

simply � MPPR = 1=zMPPR .

1.7 Review of noise barriers designs and performance assess-

ment

1.7.1 Common designs (highway and train noise barriers)

As stated earlier, engineers have been developing noise barriers formany decades now, and

therefore there are quite a variety of common designs, mostly implemented along highways, but

also along train tracks. We here review some of the main designs and state afew results about

their relative performance. The assessment of a noise barrier e�ciency has been typically done

using three approaches: numerical calculations (most of the time using 2D BEM), scale model

measurements or in situ measurements.

Numerical studies are useful since they allow one to compare many di�erent designs easily.

Namely, for implementation as a highway noise barrier, the most commonly assessed noise wall

shapes are: straight thin wall, T-shape, Y-shape, arrow-shape, wedge barriers and straight wall

with added cylindrical top [117{119]. From those studies it seems like theT-shape is the most

e�cient. Further, the presence of absorptive treatment on top seems to provide a few extra dB

of attenuation, although this bene�t is largely diminished when sources su�ciently far away are

considered.

Railway noise barriers have been studied extensively as well [120, 121]. Since they are

typically implemented close to the sources of noise and therefore tothe train body, multiple

re
ections can occur and consequently an absorptive treatment on the source side of the barrier

as well its shape may have a signi�cant e�ect.

Scale model measurements can be performed as well to assess the e�ciency of a design, since

it is still relatively cheap to build a model say at a 1/20 scale of a highway or railway noise

barrier. Many di�erent shapes have been tested indeed, for highway barriers [122] and train

barriers [123]. Those di�erent studies show that insertion losses measured from scale models

usually agree rather well with BEM calculations.

Fewer full scale tests have been performed. Thin straight screenand T-shape pro�les imple-
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mented along highways have been assessed in [66], and again the T-shape seems indeed more

e�cient (by a couple of dB). Watts et al. [67, 124, 125] also pointed out the advantage of

the T-shape for highway noise barriers and good agreement with BEM calculations (although

their measurements were made under somewhat controlled environments, not actual �eld sites).

Adding multiple-edges is also shown to add some attenuation, although the e�ect seems less

important than for the T-shape.

1.7.2 Complex noise barriers

Although noise barrier research has been going on for several decades, the research community

is still active in this area. We will not give here a comprehensive review but rather emphasize

a few interesting results. For more details, we refer the reader to the excellent review paper by

Ekici [126] (although since this paper was published ten years ago, it is probably not completely

up to date). In addition, as for the more common designs, one can point out thatperformance

assessment of new designs has been essentially based on numerical simulations.

A �rst idea that was investigated to increase the e�ciency of an already implemented screen

is to add extra di�racting edges on the side of the noise barrier, which is referred to as a multiple-

edge device. Several measurements - both on scale models and at full scale - of added parallel

panels were performed by Watts et al. [67, 127]. Their results show that extra di�racting edges

do provide a consistent improvement in e�ciency above a certain limiting frequency (typically

related to the dimensions of the multiple edge device). Oblique panels covered with absorptive

materials have also been studied and optimized numerically by Baulacet al. [128] in a highway

context, which can yield a good improvement of 5 dB(A) compared to a straight screen.

Another possible improvement of a typical highway straight screen isto add geometrical

complexity (or even \randomize") the top di�racting edge, by using so-called thnadners. A

type of thnadners had been studied by May and Osman [122], although their considered designs

did not show a signi�cant improvement. On the other hand, other experimental and numerical

studies showed that random pro�le of the top di�racting edge induced consistent improvement

of the noise barrier, especially at high frequencies [129{131]. The e�ect atplay here is believed

to be the loss of coherence of the secondary sources located at the edge of the barrier, which in

turns decreases the level of the di�racted signal.

Another possible approach to increase the e�ciency of a straight screenis to add a designed

object at the top edge, among which cylinders have received signi�cant attention. Numerical

investigations indeed suggested that using an acoustically soft impedance on the cylinder was

particularly e�cient in increasing the barrier insertion loss [119, 132{134]. Besides, although it

is di�cult to achieve a perfectly soft boundary condition over a wid e frequency range, attempts

have been made to design a device made of several resonators which wouldapproximate a soft

surface, such as the so-called \waterwheel" design [132, 133]. Improvement is noticed although

such a device may also have a negative insertion loss outside of the design band.

Interference-type devices to be placed on top of a screen have alsobeen considered, both with

BEM simulations and full scale measurements [124, 135]. The idea of this device is to force part

of the incident wave to follow longer paths by a set of tubes, and then interfere destructively
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with the rest of the wave. The measured improvement was reported however not to be as good

as traditional top devices (such as the T-shape or cylinder caps), and itis argued that the

performance could be largely dependent on the source and receiver positions.

Using destructive interference to attenuate the wave on a top device is also the idea of reactive

admittance barriers, which is somewhat similar to the idea of approximating a soft impedance

with several tuned resonators. Several approaches have been followedto this end: build a top

device with a designed network of Helmholtz-like quarter-wavelength resonators [102], cover the

top of T-shape barrier with wells of possibly di�erent depths [103, 104], construct the top of

a T-shape barrier as a QRD di�user [105, 106] and possibly add perforated sheets in the wells

to further improve the design at low frequencies [106, 107]. Those di�erent studies reported

improvement which can be of the order 2-3 dB(A) for a typical tra�c noise spectrum.

1.7.3 Low-height noise barriers

Finally we describe some results previously obtained in the relatively recent �eld of low height

noise barriers. As stated in section 1.1.1, this type of noise reduction device - which is typically

limited to be less than one meter high - is really meant to be implemented in an urban context,

close to the noise sources (cars, urban trains, tramways, ...), in order to reduce the noise level

reaching close receivers such as pedestrians or cyclists during apass by.

A simple type of low-height barrier (pedestrian restraints) has been considered by Horoshenkov

et al. to mitigate noise in an urban canyon [8]. They showed with scale modeling that this type

of device can provide more than 8 dB(A) of attenuation for the pedestriansif it is covered with

absorptive treatment, considering light and heavy vehicles tra�c n oise.

Thorsson [9, 10] also considered low height barriers of simple shape (straight wall, half cylin-

der and T-shape) and optimized the admittance distribution - either by an equivalent source

method [9] or a direct optimization method [10] - to increase the insertion loss at selected fre-

quencies at di�erent heights. His results suggest a large improvement is achievable (more than

10 dB), and that even when the ground is treated the bene�t of optimizing the barrier admit-

tance was still signi�cant (10 dB of extra attenuation due to the barrier optimized admittance).

However one should point out that the obtained admittances are not realistic and that only a

few low frequencies were considered.

Ding et al. [14] modeled a porous low-height barrier meant to attenuate tra�c noise with

an advanced time-domain method, and showed that signi�cant insertion loss is obtained (which

can reach 10 dB(A), depending on the type of vehicle and receiver locations).

We �nally mention Baulac's and Koussa's Ph.D. theses [4, 11] completed at the Centre

Scienti�que et Technique du Bâtiment (CSTB), since a signi�cant part of their work concerned

low height noise barriers. Baulac considered a typical urban tra�c noise situation and optimized

the shape and the treatment (mostly absorbing) of a low-height barrier using BEM simulations

and genetic algorithms [6]. She showed that an insertion loss of 10 dB(A) is achievable. Simpler

shapes have also been studied with scale modeling and showed that numerical simulations were

in good agreement with the BEM [5].

Koussa, whose work was concerned with the use of natural materials for noisecontrol, also
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studied numerically and experimentally a type of low height noise barrier made of many rocks

of di�erent sizes (gabions) [13]. The insertion loss he obtained, depending on the gabions

arrangement, ranged from 5 to 10 dB(A), which con�rmed the applicability of such a barrier.

He also studied numerically a so-calledsonic crystal low height noise barrier for tramway noise

mitigation made of parallel cylinders of di�erent diameters. Those barriers can provide up to

6 dB(A) of attenuation by themselves, although when a rigid screen is added behind the sonic

crystal the e�ciency reaches 10 dB(A), and more than 15 dB(A) when both th e cylinders and

the screen are absorbent [11]. Koussa et al. [12] also considered parallel arrangements of hollow

cylinders and found similar insertion losses.

1.8 Conclusion

Noise barriers have been studied extensively in the past few decades, along with their industrial

development and the rapid expansion of highways and railway track networks in many indus-

trialized countries. Several physical e�ects which can in
uencethe e�ciency of those type of

noise control devices have been identi�ed, including di�raction, atmospheric refraction, turbu-

lent scattering and acoustic properties of the ground. For typical highway noise barriers, it has

been found that meteorological e�ects have a signi�cant impact when longranges (more than

100 m) are considered, but they can probably be neglected at short ranges (less than 10 m),

which would be typically the case in an urban environment. The ground characteristics however

still remain important in this context.

Moreover, the presence of other re
ectors of sound in the vicinity ofthe device, such as

buildings or a train body, induces a multiple re
ection phenomenonwhich can negatively impact

the performance of a barrier, and therefore should be taken into account. However an absorbing

treatment on the barrier and well-designed barrier shapes can be e�cient in limiting this e�ect.

On the other hand, in a typical highway con�guration in which sources and potential re
ectors

are su�ciently far away from the device, the acoustic treatment of th e barrier has a smaller

e�ect. Nevertheless, adding a designed cap - either absorbing or using destructive interference

e�ects - on a thin vertical screen can improve the performance signi�cantly, even in the highway

case.

In the context of urban low-height barriers, especially close to a tramway which would be

the source of multiple re
ections, it would therefore makes sense that a well-designed acoustic

treatment and barrier shape may yield a signi�cant improvement in t he e�ciency of the device.

Besides, since the re
ection and di�raction e�ects might be complex in this case, it is also

natural to seek improvement in the design by an optimization algorithm, coupled to a numerical

prediction method, as opposed to a trial-and-error approach. Due to thecomplex geometries

and treatments the method will have to handle, the boundary element method seems like the

most natural solution, although any other method that aims to solve as accurately as possible

the complete di�raction problem would be appropriate as well.
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Chapter 2
Review of the forward scattering

problem and the integral equation

method

In this chapter, we give the mathematical foundations of the integral equation method to

the acoustic scattering exterior problem, which naturally yields the boundary element method

(BEM). This chapter is essentially a review (which is by no meanscomprehensive) of known

results about the acoustic scattering problem formalism and its resolution using the integral

equation method. Some of these results will be used explicitly inthe rest of this work (es-

pecially in chapter 4), but the author's intention is essentially to give a somewhat detailed

introduction to this method, emphasizing a few points that are not perhaps very well-known.

Although the integral equation framework can be tackled in 3D, we will present the formalism

in 2D since this is the type of calculations that we will be mostly using to predict the performance

noise barriers in this work. The general framework of the integral equation method given here is

essentially taken from the comprehensive treatment by Terrasse andAbboud [136]. Besides, we

will also focus more speci�cally on the integral equation approach proposed by Jean [120], which

has been been implemented in the software MICADO, since we are going to use this software

extensively in the rest of this work.

2.1 Initial scattering problem

The atmosphere is assumed homogeneous with a uniform speed of soundc0. The problem at

stake is the resolution of the pressure �eld in two dimensions in the presence of a point source

located at point (S), of one of several obstacles which will induce scattering of the incident �eld

and of a rigid ground represented as an in�nite horizontal ba�e (see �gure 2.1). Generally

speaking, the ba�e representing the ground could also have a �nite impedance, but this case

will not be considered in this work. The problem is solved in the frequency domain so that the

frequency f is �xed and k = 2 �f=c 0 is the wavenumber. The time convention is e� i!t .

Let � be the planar curve (or the set of curves) de�ning the boundary of t he obstacles (it
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Figure 2.1: Typical geometrical con�guration of the scattering problem. Ca rtesian coordinates are de�ned such
that x1 is the horizontal coordinate, x2 the vertical coordinate (and x3 the direction normal to the vertical plane).
The ground is assumed to lie at x2 = 0. One or several scattering bodies delimit the domain into a b ounded
interior domain 
 i and an unbounded exterior domain 
 e. The curve (or set of curves) delimiting 
 i are referred
to as the boundary �. (S) is the point where the source is located.

can be the noise barrier alone or the barrier and the tramway body for instance), and � g the

remaining part of the rigid ground (parts of the ground which are not rigid are taken into account

as part of �). � separates the half-in�nite domain in two open sets, the in terior domain 
 i and

the exterior domain 
 e. Let n be the normal vector exterior to the boundary (pointing towards


 e), de�ned on � and � g. The source is assumed to lie in the exterior domain and therefore

we consider an exterior problem. Besides, we will assume that the acoustic behavior at each

point of the boundary � can be described by a normalized admittance � (which is typically a

piecewise continuous function de�ned on �).

Under those hypotheses, the total pressure �eldp in the exterior domain satis�es the following

scattering problem: 8
>>>>>>><

>>>>>>>:

� (r 2 + k2) p = � (S; :) in 
 e

@p
@n

+ i k � p = 0 on �

@p
@n

= 0 on � g

+ radiation condition

(2.1)

� (S; :) is the Dirac delta function located at point (S) and @p=@n= n �r p is the normal derivative

on the boundary. The Sommerfeld's radiation condition, which ensuresthe fact that all waves

radiate outwardly at in�nity, is given in 2D by:

@p
@r

� ik p = o
� 1

p
r

�

Associated with this problem, one can de�ne the associated half-spaceproblem (obtained

by removing the boundary � but keeping the in
uence of the ground � g), of which the solution

is the half-space Green's functionG(x; y ), that is the �eld at point y due to the radiation of a

point source at point x, x = ( x1; x2) and y = ( y1; y2) being two arbitrary points. In the presence

of a rigid ground in 2D, the expression for the Green's function is:

G(x; y ) =
i
4

�
H (1)

0

�
k
p

(y1 � x1)2 + ( y2 � x2)2
�

+ H (1)
0

�
k
p

(y1 � x1)2 + ( y2 + x2)2
� �

with H (1)
0 is the Hankel function of order zero of the �rst kind. If the ground had been assumed
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impedant, a correction term should be added to this expression (as mentioned in section 1.4.2).

One can naturally de�ne four partial derivatives with respect to each coordinate of the two

considered points: @G=@x1 , @G=@x2 and so on. Similarly, we write the gradient with respect

to the coordinates ofx and y as r x and r y .

The total �eld p solution of (2.1) can be broken down asp = pin + psc where pin = G(S; :),

referred to as the incident �eld , is the �eld emitted by the source without in
uence of the

scattering objects �. psc, referred to as thescattered �eld, then satis�es the following problem:

8
>>>>>>>><

>>>>>>>>:

� (r 2 + k2) psc = 0 in 
 e

@psc

@n
+ i k � p sc = hin on � with hin = �

@pin

@n

�
�
�
�
�
� ik� p in j �

@psc

@n
= 0 on � g

+ radiation condition

(2.2)

where hin corresponds to the in
uence of the incident �eld on the scattering surface � and the

notation j � refers to the evaluation of a function on the surface �.

2.1.1 Properties of the Green's function

The Green's function satis�es by de�nition the following equation :

�
�

r 2
y + k2

�
G(x; y ) = � (y � x) + � (y � x0)

with x0 = ( x1; � x2). G also satis�es the fundamental reciprocity property G(x; y ) = G(y ; x).

From this property follows similar relationships on the gradients of G:

r y G(x; y ) = r y G(y ; x) r x G(x; y ) = r x G(y ; x) (2.3)

This means that regardless of the position of a point as an argument inG (�rst or sec-

ond argument), the gradient with respect to a point coordinate will be the same. This can

be extended to the Laplacian with respect to each argument:r 2
y G(x; y ) = r 2

y G(y ; x) and

r 2
x G(x; y ) = r 2

x G(y ; x).

2.2 Weak formulation of the scattering problem

The theoretical study of problem (2.1), especially considerations aboutthe existence and unique-

ness of a solution to the problem, is more convenient using a weak formulation. It will be helpful

as well for calculations of the shape derivative, as we will see in chapter 4. This type of formula-

tions is typically obtained by multiplying the equation by a test fu nction and making appropriate

transformations of the integrals to �nd how the boundary conditions inte rvene. However, al-

though this kind of approach usually does not cause any trouble in bounded domains, it cannot

be applied directly to the problem (2.1) because of convergence issues at in�nity. One there-

fore needs to consider a problem on a bounded domain, the solution of which will be the same

27



REVIEW OF THE FORWARD SCATTERING PROBLEM AND THE
INTEGRAL EQUATION METHOD

as the initial problem (2.1). This is achieved using a so-called \transparent" boundary condi-

tion, which mathematically uses the Dirichlet-Neumann operator. We here brie
y introduce the

methodology to build a well-posed weak formulation for the scattering problem.

2.2.1 Dirichlet-Neumann operator
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Figure 2.2: Schematic representing the half sphereSR containing the boundary � and de�nition of the truncated
exterior domain 
 e

R = 
 e \ BR . The normal vector n de�ned on � [ � g points towards 
 e
R whereas the normal

vector eR de�ned on SR points outwards 
 e
R .

Let SR be the half-sphere of radiusR located above the ground �g and assumed su�ciently

large that all the scattering surface � lies inside SR (see in �gure 2.2). One could point out that

in 2D SR is actually a half-circle but for simplicity we will keep using the term \half-sphere".

Let u be a solution of the Helmholtz equation outsideSR which satis�es the radiation condition

and is smooth up to SR . Using separation of variables between the two naturally de�ned polar

coordinatesr and � , u can be written as a series of outgoing cylindrical waves, as follows:

u(r; � ) =
1X

n=0

� n
H (1)

n (kr )

H (1)
n (kR)

cos(n� ) with � n =
2

� � n

Z �

0
u(R; � ) cos(n� ) d�

with H (1)
n is the Hankel function of the �rst kind of order n and � n = (2 ; 1; 1; 1; :::). Hankel

functions of the second kind are ignored because they do not satisfy theradiation condition,

and only cosine angular functions are used since here the problem is de�ned on the half space

only with a rigid ground. The normal derivative of u is then given by:

@u
@r

=
1X

n=0

k� n
H (1)

n
0
(kr )

H (1)
n (kR)

cos(n� )

where 0 is the derivative with respect to the argument. One can therefore conclude that u and

its normal derivative are related on SR as follows:

@u
@r

�
�
�
SR

= T
�
ujSR

�
with T :

1X

n=0

� n cos(n� ) 7!
1X

n=0

k
H (1)

n
0
(kR)

H (1)
n (kR)

� n cos(n� )

T is the so-called Dirichlet-Neumann operator.
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2.2.2 Equivalent scattering problem in a bounded domain

Let BR be the half-ball of radius R (its boundary is the half-sphere SR ) and 
 e
R = 
 e \ BR

be the truncated exterior domain (see again in �gure 2.2). Now, let us consider the following

scattering problem: 8
>>>>>>>><

>>>>>>>>:

� (r 2 + k2) pR = � (S; :) in 
 e
R

@pR
@n

+ i k � p R = 0 on �

@pR
@n

= 0 on � g

@pR
@r

= T(pR ) on SR

(2.4)

One can show that the problems (2.1) and (2.4) are equivalent in the bounded domain BR ,

which means that pjB R = pR and that pR can be extended to be equal top [136, p. 97].

This is basically related to the fact that p and pR both satisfy the Helmholtz equation and the

same boundary conditions on � and � g, and they have the same traces and the same normal

derivatives on SR . The boundary condition involving the Dirichlet-Neumann operator therefore

acts as a \transparent" boundary condition.

The main di�erence however between problems (2.1) and (2.4) is that (2.4) is posed on a

bounded domain, and therefore there are no issues of convergence at in�nity. It is now possible

to write down a weak formulation of the problem, basically by multiply ing each equation of

(2.4) by a su�ciently smooth test function q and integrating over the corresponding domains.

Following this process and replacingpR by p (which is legitimate since they are equal), one can

write:

(8q)
Z


 e
R

(r 2 + k2) p q+ q(S) +
Z

�

� @p
@n

+ i k� p
�

q +
Z

� g

@p
@n

q �
Z

SR

� @p
@r

� T(p)
�

q = 0 (2.5)

Integration by parts of the Laplacian term yields:

Z


 e
R

r 2p q = �
Z


 e
R

r p � r q �
Z

� [ � g

@p
@n

q +
Z

SR

@p
@r

q

The sign is di�erent in front of the integral on � [ � g and SR because the normal vectors are

de�ned di�erently (see in �gure 2.2). Equation (2.5) can therefore be rewritten as:

(8q) �
Z


 e
R

r p � r q + k2
Z


 e
R

p q+ q(S) +
Z

�
ik� p q +

Z

SR

T(p) q = 0 (2.6)

Under this form, one can notice that an appropriate space for both the solutionp and the test

function q is V = H 1(
 e
R ). Let us de�ne the bilinear form A on V � V and the linear form b on

V de�ned as:
8
><

>:

A(p; q) =
Z


 e
R

r p � r q � k2
Z


 e
R

p q�
Z

�
ik� p q �

Z

SR

T(p) q

b(q) = q(S)
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One can then rewrite the weak formulation (2.6) as follows:

(
Find p 2 V such that:

(8q 2 V) A(p; q) = b(q)

Under this form, one can show that there exists a unique solutionp 2 V to the problem (2.6)

[136]. This formalism could also be used to numerically solve the scattering problem using �nite

elements, however the boundary element method uses a di�erentapproach to numerically solve

for the pressure �eld.

2.3 Integral equations derived from the scattering problem

The idea of the integral equation formalism is to represent the scattered �eld psc as a \potential",

that is an integral expression of source distributions existing on �. Such a representation is

ensured by the so-called integral representation theorem [136, p. 189], which is reproduced here.

2.3.1 Single and double layer potentials

2.3.1.1 De�nition

Let us �rst introduce the integral operators that will be used in the r est of this chapter. Given

a function p de�ned on � and a point x in the interior of 
 e [ 
 i , we de�ne the single layerS

and double layerD potentials as follows:

Sp : x 7!
Z

�
G(x; y ) p(y ) d�( y )

Dp : x 7!
Z

�

@G
@ny

(x ; y ) p(y ) d�( y )

with @=@ny = n(y ) � r y is the normal derivative with respect to y . One can point out that p is

in general scalar valued but using the same de�nition it could be as wellvector-valued. Besides,

the argument of the operatorsS and D should typically be piecewise continuous for the integrals

to be well-de�ned [137].

Although the Green's function is unbounded wheny = x, the integrals are well de�ned even

for x 2 �. Indeed, for a given point x 2 �, de�ning � = jjy � x jj , one has fory approaching x:

G(x; y ) =
i
4

J0(k� ) �
1
4

N0(k� ) + O(1) = �
1

2�
log � + O(1)

where the asymptotic behavior ofN0 the Neumann function of order 0 has been used and since

J0 is bounded at 0. The second term due to the ground has been neglected as well since it

is always bounded (except at points belonging to the ground �g and to �, at which the two

terms in the Green's function are equal and have therefore the same behavior). Therefore, for

x 2 �, G(x; y ) behaves as log� and is therefore integrable on � when multiplied by p sincep is

piecewise continuous.

30



Similarly, the kernel involved in the double layer potential is integrable even for x 2 �.

Indeed, the gradient of G with respect to y is given by:

8
>><

>>:

r y G(x; y ) = �
ik
4

H (1)
1 (k� ) e� + O(1) =

k
4

N (1)
1 (k� ) e� + O(1) = �

1
2��

e� + O(1)

with e� =
y � x

�

e� is the unit vector pointing towards y from x. The asymptotic behavior of N1 (Neumann

function of order 1) has been used as well. Now, assuming the curve � is smooth, the normal

is continuous along � and therefore one hasn(y ) = n(x) + O(� ) . Besides, the vectore� tends

to the tangent vector t (x) as y goes tox and therefore e� = t (x) + O(� ). Since the vectors

n(x) and t (x) are orthogonal by de�nition, this implies n(y ) � e� = n(x) � t (x) + O(� ) = O(� ).

Therefore one has:

@G
@ny

(x ; y ) = r Gy (x ; y ) � n(y ) = �
1

2��
n(y ) � e� + O(1) = O(1)

The kernel @G=@ny is therefore bounded, which of course implies it is integrable whenmultiplied

by p (again sincep is assumed piecewise continuous).

One can point out that the single and double layer potentials are well-de�ned as well in

3D since the kernels are integrable. Indeed in 3D both the Green's function and its normal

derivative behaves as 1=� when y approachesx, which is integrable on a surface in 3D.

The single and double layer potentials are therefore de�ned as well on �.We are now recalling

important properties about their behaviors close to �.

2.3.1.2 Behavior close to the boundary �

The single layer potential Sp is continuous across �, but its normal derivative is discontinuous.

Indeed, assuming the curve � is smooth, one can show that:

8
><

>:

@(Sp)
@n

�
�
�
e

= �
1
2

p + D � p

@(Sp)
@n

�
�
�
i

= +
1
2

p + D � p
with D � p =

Z

�

@G
@nx

(x ; y ) p(y ) d�( y )

with je and j i referring to the exterior and interior traces of a function. The operator D � is the

pseudo-adjoint1 of the operator D , in the sense that given two functionsp and q de�ned on �,

one has:
Z

�
Dp q =

Z

�

Z

�
r y G(x; y ) � n(y ) p(y ) q(x) d�( y ) d�( x)

=
Z

�

Z

�
r x G(y ; x)
| {z }
= r x G(x ;y )

�n(x) p(x) q(y ) d�( y ) d�( x) =
Z

�
D � q p

1D � is not strictly speaking the adjoint operator of D , since this would require to use an actual scalar product
- that is a sesquilinear form involving a conjugation -, which is not what is done here.
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where we simply exchanged the two variablesx and y to go from the �rst to the second line and

where we used equation (2.3). Furthermore, because of the symmetry ofthe Green's function,

one can show that the operatorS is symmetrical (it is equal to its pseudo-adjoint), in the

following sense: Z

�
Sp q=

Z

�
Sq p

Also, the operator D � typically requires a continuous argument in order to be well-de�ned

[137, 138].

On the other hand, Dp is discontinuous across � but its normal derivative is continuous if p

is C1;� (H•older di�erentiable) [138]:

8
>>>>><

>>>>>:

Dpje =
1
2

p + Dp

Dpj i = �
1
2

p + Dp

@(Dp)
@n

�
�
�
e

=
@(Dp)

@n

�
�
�
i

= Np

N can therefore formally be written as:

Np(x) =
Z

�

@2G
@nx @ny

(x ; y ) p(y ) d�( y )

However, under this form, the integral is not de�ned since the kernel is @2G=@nx@ny (referred

to as the hypersingular kernel) is not integrable on �. A more accurate de�nition for N is the

following [136]:

Np = � rot � S(rot � p) + k2 S(pn) � n (2.7)

where rot� and rot � are tangential di�erential operators, that is di�erential operators actin g

along the boundary �. A short introduction to those operators is given in app endix A. This

expression is derived by consideration of the velocity �eld associated with the pressure �eld given

by the double layer potential, and as it is expressed in terms of single layer potentials raises no

issues of integrability due to the assumed smoothness of the argument.

In a variational context and in 2D, the expression for the operator N can take an even

more practical form. Given a function q de�ned on �, and applying an integration by parts as

described in appendix A, one has:

Z

�
Np q = �

Z

�
qrot � S(rot � p) +

Z

�
k2 S(pn) � qn

= �
Z

�
S(rot � p) � rot � q +

Z

�
k2 S(pn) � qn

= �
Z

�
S

� @p
@t

� @q
@t

+
Z

�
k2 S(pn) � qn

where @=@t= t � r is the tangential derivative along the curve � ( t is the unit tangent vector

along �). Under this form, one can notice that N is also a symmetrical operator sinceS is

symmetrical.
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2.3.2 Integral representation theorem

Now consider a function p̂ satisfying the homogeneous Helmholtz equation both in 
e and 
 i

as well as the radiation condition:
8
>><

>>:

� (r 2 + k2)p̂ = 0 in 
 e

� (r 2 + k2)p̂ = 0 in 
 i

+ radiation condition

It is also assumed that p̂ is smooth up to the delimiting boundary �, but with possible jumps

of its value of its normal derivative across �. We de�ne the jumps at the boundary as:

� = p̂j i � p̂je � =
@̂p
@n

�
�
�
i
�

@̂p
@n

�
�
�
e

The integral representation theorem states that under those hypotheses, the function p̂ is the

sum of a single layer and double layer potential. More speci�cally, onehas:

(
p̂ = S� � D�

r p̂ = r S� + rot S(rot � � ) � k2 S(� n)
in 
 i [ 
 e (2.8)

Further one has the following relationships between the interior and exterior traces at the bound-

ary �: 8
><

>:

1
2

(p̂j i + p̂je) = S� � D�

1
2

� @̂p
@n

�
�
�
i
+

@̂p
@n

�
�
�
e�

= D � � � N�
in � (2.9)

Those last two equations are also known as thetrace relationships.

This means that a solution of the homogeneous Helmholtz equation can be written as an

integral potential. However, the distributions � and � are not known a priori. In order to solve

for them, one needs to ensure that the boundary condition of a scattering problem is veri�ed,

which will impose that the distributions satisfy one or several integral equations. The resolution

of these equations can then be used to calculate the �eld at any point in space using the integral

representation formula given in equation (2.8).

One can use this approach to solve the scattering problem (2.1) but the theorem can be

applied to the scattered �eld psc only since the total �eld does not satisfy the homogeneous

Helmholtz equation. Besides, before applying the theorem one needs to de�ne the represented

�eld both on 
 e and 
 i , which means that the scattered �eld solution of the problem (2.2) must

�rst be extended to 
 i . This extension is not unique and therefore several di�erent integral

equations can be obtained.

Finally, one can point out that these equations are valid even fork = 0, which can be helpful

in some regularization techniques of the integral equations (see in appendix C for more details).
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2.3.3 Kirchho�-Helmholtz integral theorem and Jean's equation

We �rst apply the integral representation theorem to show that one can derive the well-known

Kirchho�-Helmholtz integral relationships. To do so, we de�ne p̂ to be equal topsc - the solution

of the problem (2.2) - in 
 e and � pin in 
 i . p̂ satis�es the hypotheses of the theorem (the source

is assumed to lie in 
 e and therefore the incident �eld satis�es the homogeneous Helmholtz

equation in 
 i ). The distributions � and � are here simply given by:

� = �
@psc

@n

�
�
�
�

�
@pin

@n

�
�
�
�

= �
@p
@n

�
�
�
�

= i k� p �

� = � pscj � � pin j � = � p�

where p� is the total �eld on the boundary � and the boundary condition of the problem (2.1)

has been used. Therefore, at any receiver pointx 2 
 e, one has:

psc(x) = Dp� (x) + S(ik�p � )(x) =
Z

�

� @G
@ny

(x ; y ) + i k� (y ) G(x; y )
�

p� (y ) d�( y )

There is essentially one unknown here, the pressure �eld on the boundary p� . Now one can

write the integral equations satis�ed by p� by applying equation (2.9):

8
><

>:

1
2

(pscj � � pin j � ) = Dp� + S(ik�p � )

1
2

� @psc

@n

�
�
�
�

�
@pin

@n

�
�
�
�

�
= D � (ik�p � ) + Np�

Recalling that psc = p � pin and using once again the boundary condition, those two equations

can be rewritten as:

1
2

p� � Dp� � S(ik�p � ) = pin j � (2.10)

�
1
2

ik�p � � D � (ik�p � ) � Np� =
@pin

@n

�
�
�
�

(2.11)

Those two integral equations are most commonly used to solve the scattering problem (2.1)

since the unknown distribution has a clear physical meaning (it isthe value of the total pressure

�eld on the boundary �). Many other integral equations could be derived bu t the physical

interpretation of the distributions would be di�erent (which is t he case in the so-called indirect

boundary element method).

It is well-known however that equation (2.10) on its own does not admit aunique solution

at the so-called singular frequencies, which are the eigenfrequencies of a corresponding interior

problem. A popular approach to circumvent this issue is the Burton andMiller's approach [139],

which consists in considering a linear combination of equation (2.10) and (2.11). Given � a real

number, one can consider the equation (2.11)+ik� (2.10):

1
2

ik(� � � )p� � D � (ik�p � ) � Np� � ik� Dp � � ik� S (ik�p � ) =
@pin

@n

�
�
�
�

+ i k� p in j �
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� is usually taken to be 1, but any non zero real number ensures uniqueness of the solution of

the new equation [139].

Instead of considering a constant coe�cient � , yet another approach followed by Hamdi [140]

and Jean [120], is to replace� by the normalized admittance � . The equation one obtains is:

Np� + D � (ik�p � ) + i k� Dp � + i k� S (ik�p � ) = hin (2.12)

with hin de�ned as in problem (2.2). This equation has the main advantage to be strongly

symmetrical. Indeed, if one considers a variational form of this equation by multiplying this

equation by an arbitrary function q� and integrating over �, one obtains:

(8q� )
Z

�
Np� q� +

Z

�
D � (ik�p � ) q� +

Z

�
ik�q � Dp� +

Z

�
S(ik�p � ) ik�q � =

Z

�
hin q� (2.13)

Because of the symmetry and pseudo-adjoint properties of the di�erent operators recalled in

section (2.3.1.2), equation (2.13) is symmetrical inp� and q� , which is a signi�cant advantage

regarding numerical implementation.

If one assumes that the real part of� is nonzero everywhere, following the same approach

as done by Burton and Miller [139], one can show that equation (2.12) has a uniquesolution

for all wavenumbers (see in appendix B). Besides, Jean pointed out that even in the case of an

entirely rigid barrier ( � = 0 everywhere on �), the results do not seem to undergo the problem

of singular frequencies, as long as the mesh is su�ciently �ne [120], andtherefore the results are

accurate even in the case of a rigid barrier.

Classical �nite element discretization techniques can be appliedto equation (2.13), which is

what has been implemented in the software MICADO developed at the CSTB. By representing

the �elds in terms of their nodal values and shape functions (which are assumed linear in

MICADO), equation (2.13) can be rewritten as:

qT
� [A ] p � = qT

� h in

where p � , q� and h in respectively correspond to the nodal values of the total pressure �eld p,

arbitrary weighting function q and source termhin on the boundary, [A ] is a symmetric matrix

which is the discretized equivalent of the di�erent operators involved in equation (2.13) and T

refers to the transpose of a vector. This equation should be true for arbitrary values of q� , and

therefore this yields:

[A ] p � = h in (2.14)

Equation (2.14) is the one implemented and solved in the BEM software MICADO by classical

matrix inversion techniques (either by direct inversion or using an iterative solver). Oncep� is

known one can therefore calculate the pressure �eld everywhere using the integral representation

given in equation (2.8) and the total �eld is obtained by adding the incident �eld.
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Figure 2.3: Schematic of a non regular point x 0 in the boundary � (a \corner"). One can de�ne a local polar
coordinate system r and � at the corner, with � ranging between 0 and � e.

2.4 Issues for geometries with corners

2.4.1 Angle correction in the Kirchho� Helmholtz integral equation

All the results derived in section 2.3 assumed that the curve � was su�ciently smooth, typically

C1. This is not true in general since a scatterer such as a noise barrier may have corners (in 2D)

or edges (in 3D), at which the normal vector may be discontinuous and the Kirchho�-Helmholtz

integral relationships modi�ed. Indeed, at a corner, equation (2.10) should be replaced by:

� e

2�
p� � Dp� � S(ik�p � ) = pin j �

with � e the exterior angle formed by the curve � at the current point (see in � gure 2.3). � e is

therefore equal to 1=2 where the curve is smooth. The normal vector at a corner is unde�ned

and therefore the second relationship (2.11) holds only in a distribution sense. Nevertheless, in

several circumstances, the coe�cient� e will have no in
uence on the result. For instance, when

the equation is regularized by an interior function p0 as done in appendix C.2, the obtained

integral equation holding for p0 should be modi�ed as follows:

� i

2�
p0

� + D 0p0
� � S0 @p0

@n

�
�
�
�

= 0

with � i is the interior angle, which satis�es � e + � i = 2 � . Therefore when the two equations

are summed together, the angle terms cancel out (as long asp0
� (x) = p� (x)). Furthermore,

as pointed out by Jean [120], if a variational approach is used and if the points atwhich the

curve � is not regular - where neither � e nor � i are equal to 1=2 - represent a zero-measure set

(which would be true in most practical applications since the geometrywould contain only a

�nite number of corners), the functions � e and � i will be equal to 1=2 almost everywhere and

therefore there will be no in
uence of the points where the angle isnot equal to 1=2 on the

second integration.
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2.4.2 Singular behavior of the pressure �eld close to a corner

The presence of a corner also induces a singularity of the pressure gradient around in its vicinity.

This phenomenon is actually relevant in any elliptic boundary value problem. A comprehensive

treatment of this phenomenon is given in [141], we here expose some simple results relevant to

our case.

Close to a corner point x0, one can locally describe the pressure �eld using a local polar

coordinate schemer and � (see in �gure 2.3). We would like to describe the behavior of the

pressure �eld asr approaches 0. It is known that the pressure �eld is continuous in the exterior

domain as well as along the boundary �, and therefore remains bounded even close to a corner.

As a bounded solution of the Helmholtz equation, in 2D, the local pressure�eld can be described

as a series of cylindrical waves:

p(r; � ) � p(x0) =
X

n

Jn (kr )
�
~� n cos(n� ) + ~� n sin(n� )

�

where Jn is the Bessel function of ordern (Neumann functions have been discarded since they

are unbounded asr approaches 0). The indexesn are positive but unknown for now and not

necessarily integers. The Bessel functions can be approximated asr goes to zero, for any nonzero

positive value of n, as [142]:

Jn (kr ) �
1

�( n + 1)
(kr )n

2n / r n

So that the pressure �eld can be rewritten as:

p(r; � ) � p(x0) �
X

n

r n �
� n cos(n� ) + � n sin(n� )

�
(2.15)

Now, assuming for simplicity that the boundary � is rigid, the boundary condition on � implies

that:
@p
@�

(r; � = 0) = 0 and
@p
@�

(r; � = � e) = 0

The �rst condition implies � n = 0 and the second de�nes the values ofn:

sin(n� e) = 0 , (9m 2 N � f 0g) n = m
�
� e

(2.16)

One can now de�ne the so-calledsingularity exponent � = �=� e. Since � e < 2� , � is always

greater than 1=2. Given equation (2.15) and the values ofn given in equation (2.16), one �nally

has the following asymptotic behavior for the pressure and its gradient:

p(r; � ) � p(x0) / r � + O(r 2� ) r p(r; � ) / r � � 1 + O(r 2� � 1)

This states that the pressure �eld essentially behaves asr � as r approaches 0. From this

statement, one can already conclude that when� > 1 (that is when � e < � ), the pressure �eld is

therefore at least C1 (continuously di�erentiable), which implies that the pressure �eld and its
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gradient (which is related to the velocity �eld) are regular even when approaching the corner.
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Figure 2.4: Test geometry for the numerical study of corner singularities (di mensions are in meters). The red
star is the source location, in blue the scatterer � (assumed rig id) and in black the rigid ground. The curvilinear
abscissas is de�ned to be 0 at the bottom-left corner and increasing followi ng the blue line in the clockwise
direction. The corner point which we will focus on is located at s = 1 m.
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Figure 2.5: Boundary pressure values p� (in arbitrary pressure unit [PU]) and tangential derivatives @p=@t
(in PU/m) as a function of curvilinear abscissa s (in meters) calculated with the BEM (MICADO) for the
con�guration given in �gure 2.4, at 500 Hz, and for di�erent value s of the criterion c (number of elements per
wavelength). Left plot: pressure values. Right plot: tangenti al derivatives.

On the other hand, in the case of an exterior angle larger than� , the singularity exponent �

is smaller than 1, which implies that the pressure �eld is onlyC0;� in this case. This means that

the pressure �eld is still continuous and bounded (r � goes to zero) but the pressure gradient is

unbounded although integrable (and even square-integrable) in the neighborhood of the corner

as well as along the boundary �. When evaluated on the boundary �, the normal derivative has

a similar behavior as the pressure itself due to the boundary condition, which implies that the

tangential derivative only is unbounded.

From a theoretical standpoint, even if the pressure �eld is continuous but its gradient un-

bounded and integrable, there are no issues to evaluate the three operators S, D and D � at the

corner since their arguments, as taken in the integral equations given in section 2.3.3, are at
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least C0;� . On the other hand, there is an issue regarding the operatorN which requires the

argument to be C1;� , a condition which is not met at the corner point. Nevertheless, it islikely

that a regularization of the integral equation as described in section C.2and/or a variational

approach as proposed by Jean [120] may circumvent this issue to some extent.

The fact that the solution is less regular close to a corner compared to points where the

curve � is smooth can induce inaccuracy in some numerical calculationsinvolving the boundary

�eld, since the numerical approximation of the solution is usually piecewise continuous in the

case of constant elements, or continuous and piecewiseC1 in the case of linear and quadratic

elements, and therefore cannot resolve properly the exact behavior ofthe solution close to a

corner. This will be especially true when evaluating the tangentialderivative which is known

to be unbounded close to the corner. However, when evaluating the scattered �eld at a receiver

point far from the boundary, it is likely that local inaccuracies close to corners will not have a

strong in
uence on the result.

As an example of this phenomenon, the boundary pressure nodal values are calculated using

the software MICADO developed by Jean [120] (which uses linear elements) for a simple test

geometry with corners (see in �gure 2.4), at 500 Hz. The top left corner corresponds to a

curvilinear abscissa ofs = 1 m, which is the point we will focus on. The re�nement of the mesh

is varied by changing the minimum number of elements per wavelength c (which is one of the

input parameters of MICADO). The nodal values of the boundary pressureclose to the corner

are presented in �gure 2.5, left part. Although the value exactly at the corner is essentially the

same regardless of the mesh �neness, the convergence of pressure values in the vicinity of the

corner is much slower, to the point that there is still a di�erence of about 3% in the �eld 1 cm

(less than 2% of the wavelength) away from the corner in the solutions calculated with c = 48

and c = 96. Furthermore, one can notice that with c = 12, which is usually assumed to be a

relatively �ne meshing, the behavior of the solution is not well resolved.

This phenomenon is even more obvious when looking at the tangential derivative, calculated

as the di�erence of successive nodal values divided by the length ofthe element (see in �gure 2.5,

right part). As the mesh size decreases, the tangential derivative values right before and after

the corner keep increasing, as they should since they theoreticallyare unbounded. Again, when

c = 12, the tangential derivative is not well resolved, which means that numerical calculations

involving the tangential derivative cannot be accurate close to a corner, unless the mesh is

extremely �ne. For instance, let us assume one wishes to evaluate the following integral:

I =
Z 1 m

s=0 :5 m

�
�
�
@p
@t

�
�
�
2

ds

The result will be strongly dependent on the mesh and therefore cannot be accurate (see in table

2.1). One can notice that with c = 12 the error on the integral I is at least 8% (it is probably

larger since the value atc = 96 is probably not converged).

Despite this local inaccuracy, one should however point out that whenevaluating the pressure

�eld far from the boundary - which is the most common application of the BEM -, convergence

is achieved a lot faster. For instance, again using MICADO, for a receiver point located at

(x1 = 3 m ; x2 = 1 m) (following the same coordinate system as given in �gure 2.4), the error is
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less than 2% with c = 6 and drops to less than 1% with c = 12. The singular behavior of the

pressure �eld will cause an issue only when one is interested in the �ne description of the �eld

close to a corner (this will be the case when evaluating corner node sensitivities, as we will see

in chapter 4).

Table 2.1: Numerical evaluation of the integral I as a function of the mesh criterion c and element sizeh (in
cm). The estimated relative error (with respect to the estimated value at c = 96) is also shown.

c h [cm] I Error [%]
12 5.7 1.8512 8.4
24 2.8 1.9865 1.7
48 1.4 1.9915 1.5
96 0.7 2.0212 -

2.5 Extension to the 3D sound �eld with in�nite geometry in

one dimension

x
x

x

1

2

3

R

S
O

Figure 2.6: Considered geometry for three dimensional calculation of the sound �eld assuming an in�nitely
extending geometry in one dimension (2.5 D modeling). The point (R) has coordinates ( x1 ; x2 ; 0) and (S) has
coordinates (0; 0; x3) in the ( x1 ; x2 ; x3) coordinate system, referenced to the origin (O).

In the previous sections, the di�raction problem in the presence ofa noise barrier has been

presented in two dimensions, which implicitly assumes on one handthat the geometry is in�nitely

extended in the dimension perpendicular to the vertical plane containing the source and receiver,

and on the other hand that the source is an in�nite coherent line source.However, it is possible

to calculate the three dimensional �eld - still assuming an in�nite geometry extension - for

instance due to a point source which can be o�set compared to the vertical plane containing

the receiver (see �gure 2.6), thanks to a method proposed by Duhamel [28, 143] (this type of

approach is referred to as 2.5 D modeling). The result was �rst derived assuming rigid boundary

conditions in [28], but we give here the generalized result in the caseof a �nite admittance

boundary condition [143] described by a generic function of frequency� . Let p2D(x1; x2; k; 
 )

be the pressure �eld in two dimensions (assuming an in�nite coherent line source) at a given

wavenumberk (which corresponds to frequencyf = kc0=2� ) and with an admittance distribution


 , and p3D(x1; x2; x3; K; � ) the pressure �eld in three dimensions at the wavenumberK (which

corresponds to frequencyF = Kc0=2� ) and with the corresponding admittance distribution
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� (K ). It turns out that p3D can be expressed as the following Fourier integral [143]:

p3D
�
x1; x2; x3; K; � (K )

�
=

1
2�

Z 1

�1
p2D

�
x1; x2;

p
K 2 � � 2;

� (K )
p

1 � � 2=K 2

�
e-i �x 3 d� (2.17)

Using simple symmetry properties of the integrand, one can show that this expression can also

be written as:

p3D
�
x1; x2; x3; K; � (K )

�
=

1
�

Z 1

0
p2D

�
x1; x2;

p
K 2 � � 2;

� (K )
p

1 � � 2=K 2

�
cos(�x 3) d� (2.18)

Equation (2.18) expresses the fact that the 3D sound �eld can be calculatedfrom a set of 2D

sound �elds, calculated at di�erent frequencies and at di�erent admittances. As � varies from

0 to K , the frequency at which the 2D calculations are made varies fromF to 0. When � > K ,

the wavenumber at which the 2D calculation is made becomes imaginary, which requires speci�c

attention in how to solve the 2D problem. Duhamel nevertheless pointed out that the range of

imaginary wavenumbers necessary to achieve good convergence of the integral is small [28, 143].

Jean even states that at a high enough frequency, the imaginary wavenumbers can be simply

ignored if great accuracy is not required, such as in the estimation of a broadband A-weighted

quantity [144]. In this case the integration is only performed from 0 to K in equation (2.18).

This formalism also allows to calculate the sound �eld in the case of an in�nitely extended

but incoherent line source (meaning that the cross-correlation of thesource distribution along

the line is given by a Dirac delta function, as explained in [28]). Themean-square value of the

sound �eld is independent of x3 in this case and is given by:

p2
3D, inc. line, rms

�
x1; x2; K; � (K )

�
=

1
�

Z 1

0

�
�
�
�
�
p2D

�
x1; x2;

p
K 2 � � 2;

� (K )
p

1 � � 2=K 2

� �
�
�
�
�

2

d�

From the knowledge of a �ne 2D spectrum, this approach therefore allowsone to consider

one or several point sources as well as an in�nite incoherent line source, as long as the di�erent

sources are all on the same line along thex3 direction (sources on another line would require

another 2D spectrum). Several point sources may be summed incoherently and therefore one

can also approximately model a �nite length incoherent line source,which might be a more

realistic model for a rail track for instance.

This method has been implemented in MICADO as well. Using those di�erent source models,

it has been found that depending on which model is used, the predicted attenuation can vary

signi�cantly [144]: insertion losses are typically a lot smaller when the spatial incoherence of

the sources is considered, which also means that the performance based solely on 2D results is

usually overestimated.

2.6 Conclusion

In this chapter, we have brie
y introduced the theoretical framework of the integral equation

method to solve the exterior acoustic scattering problem. The formalism has been mostly
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presented in two dimensions, although most results can be extendedto the three dimensions

case. We have also presented the equivalent weak formulation of the scattering problem which

will be helpful in the derivation of the shape sensitivity expressions (see in chapter 4). The

integral equation derived by Jean and implemented in the BEM softwareMICADO has been

presented as well, since this will be the main tool of calculation in the rest of this work, along

with some regularization techniques.

The issue of decreased regularity of the solution close to a geometrical singularity (a corner)

has been raised as well. Although this does not cause signi�cant inaccuracy in most applications

(typically for the calculation of the pressure �eld in the exterior d omain), in a shape optimization

context this will induce some extra error in the evaluation of the sensitivity, as we will see in

chapter 4.

Finally, the 2.5D approach, which has been brie
y presented here and is implemented in

MICADO as well, will be used to make some more realistic predictions ofnoise barrier perfor-

mances, as we will see in chapter 5 and chapter 6.
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Chapter 3
Review of optimization methods and

their application to scatterer shape

design and inverse scattering

3.1 Introduction

As it has been shown in chapter 1, in a noise barrier application (such as alow height noise

barrier close to a tramway), the acoustic treatments and the geometrical features of the di�erent

surfaces surrounding the propagation medium - what we referred to as the boundary in chapter

2 - will in
uence the acoustic �eld and therefore the e�ciency of a n oise barrier (the amount

of noise reduction the device can achieve in a given receiver zone). Because of this dependence,

it is possible to change the e�ciency by varying the parameters describing the admittance and

the shape of the boundary, which includes the noise barrier, which means one can evenoptimize

the design of a barrier to improve its performance.

Optimization relies on a prediction method (which calculates the e�ciency given a set of

parameters), which intrinsically requires some simpli�cation of the situation under consideration

in order to be mathematically modeled. This can make the results of such a process questionable

when applying it to real life situations. However, an important feature of optimization methods

is that they can help identify what parameters in
uence the e�cien cy the most, which is valuable

information before designing and building a possibly expensive device such as a noise barrier.

Besides, instead of improving the e�ciency of a device by changingits shape, one could

also wish to identify the shape of a boundary - or scattering surface - based on some known

typically measured quantity such as the far �eld di�raction pattern: this is referred to asinverse

scattering. The same approach can be followed, except that this time the functionto minimize

will not be an e�ciency, but a di�erence between measured data and predicted data. A similar

approach can be followed to identify theadmittance of a surface, which has been referred to as

admittance eduction.

First, we will review some general optimization strategies and associated mathematical re-

sults. We will then point out a few examples of how these strategies have been applied in the
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context of scattering surface optimization, which in turn will allow us to choose an appropriate

approach with application to tramway low-height noise barriers.

3.2 General considerations

3.2.1 Form of the considered optimization problem

First, one needs to de�ne a real-valued criterion which characterizes the performance of the

device under consideration, which is referred to as theobjective function e. By convention,

this criterion is chosen to be better when it decreases, and therefore we wish to minimize it (if

one wants to maximize a criterion, one can simply consider minus thiscriterion to make it a

function to minimize). Typically, in our context we choose a weighted attenuation provided by

the barrier, which is a positive quantity typically ranging between 0 and 1, and can be expressed

as a function of the acoustic pressure �eld valuesp(R) at the di�erent receiver locations.

One criterion only is used, and therefore we are considering a mono-objective optimization. In

many cases however, several independent criteria are indeed relevant to describe the performance

of a device, for instance noise reduction and cost, as done by Baulac [4] and Leissing et al. [145].

Indeed cost is always an issue when building a noise reduction device but unfortunately it can

be di�cult to model. Speci�c methods exist to deal with a multi -objective optimization, but

they will not be detailed here. One can for instance consider a weighted sum of the di�erent

criteria, so that the problem reduces to a classical mono-objective optimization problem.

Moreover, we consider a set of generic, typically real-valued parameters x1; :::; xN - gathered

in the vector x = ( x1; :::; xN ) - which in
uence the objective function. For our application, those

parameters can be categorized in two types:

� admittance parameters : geometrical and physical inputs of the admittance models

describing the admittance (a few examples have been given in section 1.6)

� shape parameters : variables describing the shape of the scattering surface

Shape parameters can be of various types, for instance it could directlybe the coordinates of

a set of nodes which control the shape - referred to ascontrol nodes - or any type of variable

describing a geometrical feature, such as well depths or tilting angles (as done by Baulac et al.

to describe multiple-edge barriers [128]).

The parameters only in
uence the objective function indirectly ( or implicitly), since the

weighted attenuation simply depends on the pressure �eldp, which we will call the state, fol-

lowing Allaire [146]. The state, as the solution of a boundary value problem -in which the

admittance and boundary shape intervene in the boundary condition - depends on the parame-

ters, but again in an implicit fashion. One can write the boundary value problem in the general

form L[p] = b with L an operator (linear in our context) and b a generic right hand side related

to the source term (this equation would be for instance equation (2.12) introduced in chapter

2). In a sound di�raction problem, both the operator and the right hand side can depend on

the boundary condition and therefore on the parametersx. The boundary value problem can
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be hence written as:

L (x)[p] = b(x) (3.1)

Equation (3.1) is referred to as thestate equation. As the solution of equation (3.1), the state

p is a function of the parametersx, since indeed one can formally writep(x) = L(x) � 1 b(x).

The inverse of the operator is usually not known explicitly, and therefore the function p(x) is

an implicit function. The objective function, which can depend on the parametersx explicitly

as well as the state, can hence be written ase
�
x; p(x)

�
.

3.2.1.1 Constraints

The goal is hence to minimize the functione by modifying the values of the parametersx. How-

ever, parameters usually cannot take arbitrary values but instead satisfy a set of constraints, for

instance due to the geometrical feasibility of the shape of the scatterer or so that the parameters

stay within a range of physically achievable values. For instance, in alow-height noise barrier

application, the height of the barrier will be limited typically to 1 m, which means that all the

vertical coordinate above the ground of all nodes should be less than 1 m.In general, constraints

can take complicated forms, but �rst one can assume so-calledbound constraints. Given two

vectors l and u respectively of lower and upper bounds for the parameters, the boundconstraints

can be written as:

l 6 x 6 u (3.2)

with the inequalities applying element-wise.

In a shape optimization application, other geometrical constraints can arise, related to the

mathematical feasibility of the surface - or the curve in 2D - describing the boundary. Let us

assume for simplicity the 2D case (which will be the main focus of this work). The curve - or

the set of curves when dealing with several scatterers - describing the boundary should also be

injective, meaning in particular that the boundary should not present any loops or should not

fold over itself, or that the disjoint parts of the boundary should not in tersect. The easiest way

to deal with this constraint is to ensure that the representation of the shape (that is the choice

of parameters describing the shape) will always meet such a requirement. This can be done with

bound constraints in some cases, for instance when part of the geometry isdescribed as a set of

wells, as done in [128].

However, if one wishes to describe the shape with control nodes (assuming for instance linear

interpolation between the nodes to generate the whole curve), preventing the presence of loops

is not as straightforward. A method to deal with this issue is presented in appendix D.1.

Finally, the optimization problem under consideration can be summarized as follows:

min
x

e
�
x; p(x)

�
s.t.

(
l 6 x 6 u

�( x) is injective
(3.3)

where �( x) is the boundary shape corresponding to the shape parameters ofx. This problem

falls into the general category of constrained nonlinear optimization problems.
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3.2.2 Continuous vs. discrete representation of the search space

Under the form given in (3.3), the optimization problem is not complete yet: one still needs to

de�ne the search space, that is the set which the parametersx belong to. This basically raises

the question of how to represent the parameters. This question is extremely important since it

strongly determines which type of optimization method can be used.

One can �rst assume that the parameters can vary continuously, and therefore the search

space can be here identi�ed toRN . Under the assumption of su�cient smoothness of the state

with respect to x and of the objective function with respect to the state, one can naturally

introduce the notion of sensitivity (or derivative, or gradient) which quanti�es how much the

state and the objective function are changed when a parameter is varied,which is valuable infor-

mation in an optimization context. Sensitivity-based optimization met hods, as detailed in [147],

are particularly well-suited in this case, although one could also use derivative-free optimization

methods such as the Nelder-Mead method [148]. The main drawback of thiskind of approach

is that it can only �nd a local solution of the problem (3.3), since only a neighborhood of the

initial guess is searched. Considering several randomly chosen starting points can nevertheless

help in exploring the domain in a more \global" way.

However, one could follow a di�erent approach and allow each parameter to take only a set of

discrete values, for instance corresponding to a set of existing commercially available materials

or products, or by approximating a continuous search space with a discretization. In this case,

one cannot de�ne the derivative, and therefore the optimization will have to do without this

information. Evolutionary optimization methods, such as genetic algorithms, are particularly

well-suited for this purpose, although they do not necessarily require a discrete search space.

These methods intrinsically allow a more global search of the set of possible values, but because

one cannot use the sensitivity information any more, the number of evaluations required to solve

the problem (3.3) would be much larger than in the previous case, particularly if there is a large

number of parameters [146].

For our application, it has been chosen to use a continuous search space forthe purpose of

being as general as possible. Indeed, admittance parameters - which usually are geometrical

characteristics of a device or physical properties properties of a material - as well as shape

parameters - would they be control node coordinates or geometrical features - are more naturally

described with continuous parameters. Besides, as we will see, the sensitivity information can be

obtained e�ciently in this context, and therefore it makes sense to take advantage of the speed

of gradient-based optimization methods, which intrinsically require a continuous representation

of the parameters.

3.2.3 Optimality conditions for gradient-based optimization

Assuming a continuous search space - which meansx 2 RN - and a su�ciently smooth objective

function and state equation, one can characterize a solutionx � of the problem (3.3) (again

meaning here a local solution) by some conditions that should be satis�ed at this point. First,

if there was no constraint, the objective function should bestationary at a local solution, which

means any variation of the parameters away from the solution should not modify the value of e
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to the �rst order. This implies:

(8i 2 [1 : N ])
de
dx i

�
x � ; p(x � )

�
= 0

with d =dx i is here the total derivative - as opposed to@=@xi which is the partial derivative,

meaning the derivative taken while assuming other arguments are keptconstant.

However, in general, in the presence of constraints, the stationary condition should be modi-

�ed to the so-called Karush-Kuhn-Tucker (KKT) conditions [147] whic h require the introduction

of a set of Lagrange multipliers. The KKT conditions are however not su�ci ent to guarantee a

local minimum: since they are only based on �rst order derivatives, those conditions would be

valid both at a local maximum and a local minimum. Introduction of second order conditions,

mostly related to the positiveness of the Hessian, can help characterize a local minimum as

opposed to a maximum [147].

3.2.4 A few comments regarding practical applications

However, one should point out that those necessary optimality conditionsare usually not directly

solved in practice. Instead, iterative approaches are followed, starting from an initial guess of

the solution x0 and recursively proceeding as follows: from the current estimatexk , build a new

estimation xk+1 based on the available information atxk , typically the gradient or the Hessian, as

we will see in the next section. One can also point out that evolutionaryoptimization methods

do follow an iterative process as well, but at every step a whole \population" of points are

considered, instead of just one. From this general statement it makes sense that evolutionary

methods fundamentally need many more function evaluations than gradient-based methods.

Therefore, when a function evaluation is expensive - as in the case here, since one has to solve

several di�raction problems in order to calculate the attenuation provided by the barrier -

evolutionary methods will require a much larger computation time. On the other hand, these

methods will be well-suited in cases where function evaluations are fast but gradient calculations

are time consuming.

3.3 Overview of some common optimization algorithms

We brie
y review here some common optimization algorithms that can be used to tackle opti-

mization problems such as the one under consideration.

3.3.1 Derivative free optimization methods

A popular continuous search space method is the so-called Nelder-Mead local search [148].

Although this algorithm is a continuous search space method, it does not require the knowledge

of the gradient. Instead, at each iteration, one considers a set of points -which makes this

method somewhat similar to an evolutionary optimization method - which forms a \simplex",

and from the knowledge of the objective function value at each point, thealgorithm replaces
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the \worst" point with a new one by deforming the simplex (using a contraction, expansion or

re
ection of the worst point with respect to the center of the other p oints).

Due to its simplicity this algorithm has been widely used, for instance by Baulac et al. [128]

in the context of multiple edge highway noise barriers, in which theauthors coupled a genetic

algorithm to a Nelder-Mead local search in order to improve its e�ciency.

3.3.2 Sensitivity-based (gradient-based) methods

As stated in section 3.2, the sensitivity of the objective function with respect to changes of each

parameter at a given point is a valuable piece of information in an optimization algorithm. This

information can then be exploited in speci�c methods to reach a localsolution in an e�cient

manner. However, for the derivative to make sense, one needs the objective function to be smooth

enough, although in most physics-based calculations and for simple enough objective functions,

this assumption is usually satis�ed. Again one can point out that, although sensitivity-based

methods are limited to local minimum �nding, on can add some randomnessin the search by

considering several random starting points in order to make the searchmore global.

In this section we are assuming the general framework of an iterative method as brie
y

explained in section 3.2.4. Basically, given an estimatexk of the solution, we assumed the state

p(xk ) is known as well as the objective function valuee
�
xk ; p(xk )

�
, and we wish to build a new

estimate xk+1 , based on the gradient atxk . We �rst explain how to calculate this gradient in

a general manner. For simplicity, the current estimate, associatedstate and objective function

value will be simply written here as x, p and e
�
x; p

�
.

3.3.2.1 Gradient calculation

Given the form of the objective function e(x; p), for any value i 2 [1 : N ], the sensitivity of e

with respect to x i has two terms, one related to the explicit dependence on the parameters x i ,

and one related to the implicit dependence of the statep on x i , which can be formally written

as:
de
dx i

=
@e
@xi

+
@e
@p

�
dp
dx i

(3.4)

where @e=@pshould be understood as a di�erential form acting on pressure �eldsand dp=dx i is

another �eld characterizing how much the pressure �eld depends onthe parameter x i .

The di�erential @e=@pdepends on the form of the objective function but will be rather

simple for our application (see in section 4.1.2). In this section we will simply assume that this

derivative is explicitly known. Now consider the remaining term dp=dx i . As it has been pointed

out in section 3.2.1, the function p(x) is implicit since p is the solution of the state equation

(3.1) in which the parameters x intervene. The derivative is therefore not as straightforward

to express. We now present two possible approaches to calculate thederivative de=dx i , namely

implicit di�erentiation and the adjoint state approach.

Implicit di�erentiation As the state is de�ned as the solution of an equation such as equation

(2.12), one could attempt to de�ne as well the �eld dp=dx i to be the solution of another equation.
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This can be achieved by considering the derivative with respect to x i of the state equation, which

formally yields:
dL
dx i

(x) [p(x)] + L(x)
h dp

dx i
(x)

i
=

db
dx i

(x)

This can be rearranged as follows:

L (x)
h dp

dx i
(x)

i
= ~b(x) with ~b(x) =

db
dx i

(x) �
dL
dx i

(x) [p(x)] (3.5)

Assuming one can express the derivatives of the operatorL and right-hand side b, since p is

already known, the right-hand side of equation (3.5) is explicitly known as well, and therefore

equation (3.5) has the same form as the state equation, with a di�erent right-hand side ~b and

the unknown being the �eld dp=dx i . This equation can be solved using the same method as the

state equation, and therefore one can obtain the derivative �eld dp=dx i , and recalling equation

(3.4) the sensitivity of the objective function de=dx i . This method is referred to as implicit

di�erentiation .

The main drawback of this approach is that for each parameterx i , i 2 [1 : N ], in order

to obtain the term d p=dx i , one needs to solve equation (3.5), which in our context means to

solve a scattering problem, and can therefore be rather expensive regarding computation time.

The whole gradient calculation therefore requires one to solve a di�raction problem N times

(actually N + 1 times since one problem had to be solved �rst to calculate the statep). If there

are a large number of parameters, this approach would yield an excessive computation time.

Adjoint state approach Another approach consists of considering the statep as a di�erent

variable and treating the state equation as a constraint relating x and p. We here follow the

development of Allaire [146], although the approach given here is essentially formal, without any

mathematical details regarding the existence and the appropriate spaces of the di�erent terms.

A slightly more rigorous development speci�c to our application will be given in chapter 4.

Following a classical approach in constrained optimization, one can then introduce an asso-

ciated Lagrangian, de�ned for arbitrary �elds p̂ and q̂, which can be taken as:

L (x; p̂; q̂) = e(x; p̂) + c(x; p̂; q̂) with c(x; p̂; q̂) = hL(x)[p̂] � b(x); q̂i

where h:; :i is a product de�ned between two pressure �elds (it could be for instance a scalar

product, but in the following derivation this is a not a requirement). The function c has been

chosen to vanish when evaluated at the solution of the state equationp(x), and this for any �eld

q̂:

(8q̂) c
�
x ; p(x); q̂

�
= 0

This allows one to rewrite the objective function as:

(8q̂) e
�
x ; p(x)

�
= L

�
x; p(x); q̂

�
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Now recalling equation (3.4), replacing the objective function with the Lagrangian yields:

(8q̂)
de
dx i

�
x ; p(x)

�
=

@L
@xi

�
x ; p(x); q̂

�
+

@L
@p

�
x; p(x); q̂)

�
�

dp
dx i

(x) (3.6)

Now, since this equation (3.6) holds for any �eld q̂, one can choose a constraint to be satis�ed

by this �eld to simplify the expression. Let us de�ne the adjoint state q(x) as the solution of

the following equation:
@L
@p

�
x; p(x); q(x)

�
= 0 (3.7)

Substituting q̂ = q(x) in equation (3.6) hence yields:

de
dx i

�
x ; p(x)

�
=

@L
@xi

�
x ; p(x); q(x)

�

We therefore got rid of the implicit dependence term dp=dx i and expressed the total derivative

as a partial derivative. Recalling the form of e and c, one can then write:

de
dx i

�
x ; p(x)

�
=

@e
@xi

�
x ; p(x)

�
+

@c
@xi

�
x ; p(x); q(x)

�

=
@e
@xi

�
x ; p(x)

�
+

DdL
dx i

(x)
�
p(x)

�
�

db
dx i

(x) ; q(x)
E

=
@e
@xi

�
x ; p(x)

�
� h ~b(x) ; q(x)i (3.8)

with ~b de�ned as in the previous paragraph. Again, all the terms appearing in thislast equation

are explicitly known, once the state and adjoint state are calculated.

Finally, the adjoint state equation (3.7) can be further written out. Fi rst one can de�ne

L(x)y the pseudo-adjoint operator ofL (x), which by de�nition satis�es the property:

(8p̂; q̂) hL (x)[p̂]; q̂i = hL(x)y[q̂]; p̂i

This allows one to calculate explicitly the term @c=@p:

@c
@p

�
x; p̂; q̂

�
=

@
@p

hL(x)[p̂]; q̂i =
@
@p

hL(x)y[q̂]; p̂i = L (x)y[q̂]

The adjoint state equation hence becomes:

L (x)y[q(x)] = �
@e
@p

�
x; p(x)

�
(3.9)

Basically the adjoint state satis�es an equation involving the pseudo-adjoint of the operator

involved in the state equation and a di�erent right-hand side, related to the form of the objective

function. In case of acoustic scattering, it turns out that the operator L is symmetrical, which

meansL y = L, and therefore the adjoint state equation is another acoustic scatteringproblem

to solve [149, 150].

Basically, to calculate the sensitivity of e with respect to each parameterx i , one needs to
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solve the state equation (3.1) and the adjoint state equation (3.9) to calculate the state and

adjoint state p(x) and q(x), and then apply equation (3.8). The main advantage of the adjoint

state approach, as opposed to the implicit di�erentiation method, is that once the state and

the adjoint state are known, calculation of the sensitivity with respect to each parameterx i

is explicit, and usually represents a negligible computation time. This method is therefore

well-suited to gradient-based optimization algorithms with a large number of variables.

3.3.2.2 Line search methods

We have described in section 3.3.2.1 two approaches to calculate the gradient of e for a given

set of parametersx. Recalling the iterative framework of gradient-based methods exposed in

section 3.2.4, we are now able to specify how a new iteratexk+1 can be generated from the current

estimate xk , based on the gradient. Following Nocedal [147], we de�neek = e
�
xk ; p(xk )

�
as the

current objective function value and gk = r e
�
xk ; p(xk )

�
the current gradient vector.

One �rst approach is to search the new iterate along a given direction - orline - from the

current iterate, hence the nameline search method. The general expression for the new iterate

is in this case:

xk+1 = xk + � k uk

where uk is the search direction, which is a vector inRN , and � k a positive step-size.

In the steepest descentmethod, the search direction is chosen to be the opposite of the

gradient vector uk = � gk . Indeed, in this case one can theoretically ensure that for a small

enough step-size, the value ofe at the new iterate ek+1 will be smaller than ek . The value of the

step-size can be �xed a priori, or it can be found iteratively to ensure a su�cient decrease of the

objective function (as speci�ed for instance by the Armijo conditions [147]). A simple way to

�nd an appropriate value of the step-size is the so-called backtrackingline search approach [147],

which consists of choosing a rather large step-size and decrease it iteratively until the condition

is met.

In Newton's method, the search direction is given byuk = � [H k ]
� 1

gk , with H k the Hessian

matrix at the current estimate. This direction is referred to as the Newton direction. It comes

from locally approximating the function by a quadratic model and minimizing it, and technically

requires the Hessian to be positive de�nite to be properly de�ned. The convergence rate of

Newton's method is much faster than that of the steepest descent method. However calculating

the Hessian in this context can be rather cumbersome, even with an adjoint state approach.

Besides, a unit step-size� k = 1 is usually assumed in Newton's method.

In quasi-Newton methods, one uses an approximation of the HessianB k instead of the true

one, which is updated after each iteration based on the current and previous values of the

gradients and iterates. The search direction is thenuk = � [B k ]
� 1

gk . The update is chosen to

be computationally e�ective, for instance by adding a low-rank matrix . A popular update is

the so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula,which guarantees symmetry

and positiveness of the approximate Hessian under some conditions [147]. One should point out

that this method still requires a good approximation of the initial m atrix B 0, which might not

be easy to achieve. A possibility is to use �nite di�erences, although this can be rather time
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consuming (N evaluations of the gradient) and inaccurate.

Bounds constraints and projection The di�erent approaches explained in this section are

technically meant to be used in an unconstrained optimization context. However, they can be

adapted rather easily in the case of bounds constraints, which is one type of constraints we have

considered in problem (3.3). Indeed, even if the current iteratexk satis�es the constraints, there

is no guarantee the new iterate will. A possibility is to project the new iterate in the feasible

domain, as done by Allaire [146]. Such a projection operatorP is di�cult to characterize in

general, but has a simple expression in the case of bounds constraints:

P(x) = min
�
max(x; l ) ; u

�

where the min and max values are taken element per element. The new iterate that satis�es the

bounds constraints can then be written as:

xk+1 = P
�
xk + � k uk �

3.3.2.3 Examples of general methods: the Sequential Quadratic Programmin g

(SQP) and the interior-point algorithm

The methods described in the previous sections have been mostlydeveloped to solve uncon-

strained problems. They are hence not appropriate when dealing with complicated constrained

problems, although they can be used as building blocks for more advancedmethods. Two impor-

tant methods which are able to handle most nonlinear constrained optimization problems are the

Sequential Quadratic Programming (SQP) method and the interior point algorithm [147]. The

SQP basically consists of locally approximating the objective function with a quadratic model

and linearly approximating the constraints. This generates the so-called SQP subproblem, which

can be solved for instance using a line search approach.

In the presence of inequality constraints only, the interior-point algorithm consists in a se-

quence of unconstrained minimizations of a perturbed function equalto the objective function

plus a logarithmic barrier term related to the constraints and depending on a decreasing param-

eter. Although the �rst minimizer usually does not satisfy the constraints, the sequence usually

converges to a solution that strictly satis�es them (it hence lies in the interior of the feasible

domain).

Being among the most general gradient-based algorithms to solve nonlinear optimization

problems, those methods have been widely used, although their implementation does rely on

the di�erent algorithms previously introduced in this section. T hey are for instance available as

part of the Optimization Toolbox of the Matlab software [151].

3.3.3 Global search methods

We now brie
y introduce the basic idea of a few global search methods, which are fundamentally

di�erent than sensitivity-based methods. First, evolutionary m ethods are presented. One can

recall that those methods typically use a discrete search space, as stated in section 3.2.2, which
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in the case of scattering surface admittance and shape optimization wouldrequire one to de�ne

a �nite set of feasible values for each parameter. They however intrinsically allow a global search

of the feasible set, as opposed to the local search provided by gradient-based methods.

Those methods are iterative, as the sensitivity-based methods are, but at each iteration a

whole set - the population - of points - the individuals - in the search space are considered.

Each iteration step is referred to as ageneration. The process basically follows the principles of

evolution introduced by Darwin at the end of the 19th century: natural selection of individuals

well-adapted to their environment and renewal of genetic information by probabilistic processes.

We now introduce the framework typically followed by an evolutionary method, as explained

in [146]. The population is initialized, typically by uniform random sel ection in the feasible set.

Each individual is then evaluated, which means the objective function is calculated for each

individual. Based on their performance, a part of the population (the most \well-adapted")

is selected. Mutation and crossover probabilistic operators are then applied to the selected

individuals to generate new individuals - the children - which are evaluated as well. From the

children and the parents, a new population is selected (this selection can be deterministic or

probabilistic), both from the parents and the children. The algorithm is then repeated until

convergence.

Di�erent evolutionary methods exist - for instance genetic algorithms or evolutionary strate-

gies -, which mostly di�er in the way the mutation, crossover and selection operators are de�ned.

We refer to the abundant literature on the topic, for instance the bookby Eiben and Smith [152].

One can also mention thesimulated annealingmethod, which is technically not evolutionary,

but is however based on a random approach to e�ciently explore the search space (controlled

by a so-called temperature history), inspired from the physical process occurring during the

cooling of a metal. At each iteration, a set of points is randomly generatedin the neighborhood

of the current iterate. Then the new iterate is chosen using a probabilistic selection, based

on performance and a Boltzmann-type probability factor controlled by the temperature, which

allows one to retain a point with worse performance as the new iterate. The idea of such a

process is to prevent the algorithm from being \stuck" close to a local minimum, and therefore

the chance to �nd a global solution is much higher.

3.3.4 General comments on the utility of global minimum �nding

It is really the randomness introduced in both methods - either inthe mutation/crossover/selection

operators for evolutionary methods, and probabilistic acceptance of the new iterate in the sim-

ulated annealing - that allows them to globally search the feasible set.However, the possibility

of reaching the actual global optimum may depend signi�cantly on the problem under consid-

eration as well as the choice of the parameters involved in the algorithm (number of selected

individuals, population size, probability of mutation, convergence criterion, temperature history,

etc...), and there is therefore no guarantee the global minimum will be found. Besides, one could

add that, since the objective function - in our case for instance a weighted attenuation due to the

low height noise barrier - is calculated under many simplifying assumptions due to the modeling

of the physical problem, one could question the interest of �nding \the" global solution of the
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problem, which would truly be optimal in one speci�c context (for a noi se barrier this could

refer to source position, spectrum, receiver positions, surrounding geometrical features, etc...).

One instead could seek anoptimized solution - a solution with a better performance than the

one we started with - as opposed to anoptimal solution, which is precisely what local search

methods achieve. Indeed it is likely that an optimized solution would stay optimized in a slightly

di�erent context (meaning with a better performance than obvious or simple solutions), whereas

an optimal solution may not stay optimal (it might not be the best solution any more). This

is another reason why using local gradient-based optimization methods seem quite appropriate

for our application.

3.4 A review of shape and admittance optimization applications

in acoustic scattering

The methodology introduced in this chapter has been extensively used in the past few decades

for many di�erent applications, mostly divided in two categories: design optimization of a

given device (such as a cantilever beam, an airfoil, a noise barrier, an acoustic liner, etc) and

identi�cation of scatterers and acoustic properties of surface treatments based on measured

data, which has been mostly referred toinverse scattering in the case of shape identi�cation

or admittance eduction in the case of admittance identi�cation. However, due to its obvious

industrial applications, one should recall that the �eld of optimal design has been developed

and applied in many areas other than acoustic scattering. A few examples of those applications

include reduction of heat conduction [153], sensitivity analysis [154] andoptimized design and

feature positioning of elastic solids [146, 155{158], wing drag optimization [159] or optimization

of truss structures [160]. There is an extremely abundant literatureon the topic, which is why

we will mostly focus on applications related to acoustic scattering.

3.4.1 Admittance eduction

Admittance eduction refers to any application in which one wishes to identify in situ the acoustic

characteristics - the admittance - of a treatment already implemented in a given context, from

the knowledge of another quantity, such as the pressure value at a set ofreceivers. Such an

identi�cation can be achieved by minimizing the di�erence between predicted data - based on a

trial set of parameter values - and measured data, and therefore the di�erent methods introduced

in the previous section can be used in this context.

Admittance eduction has been applied for instance to identify the impedance of the surface

treatments in a room using the BEM and a SQP approach [161], mostly in the low frequency

range (due to the computational load of the BEM). Besides, there has beenseveral studies on

duct liner admittance eduction, mostly in the presence of 
ow, with obvious application to air-

craft engine noise control. Several researchers at NASA Langley [162{164] tackled this problem

using a �nite element method for prediction of the sound �eld in th e duct, with or without 
ow.

Of course, the frequency range in which one can educt the admittance is strongly dependent on

the numerical method used to predict the sound �eld and the associated computational cost.
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3.4.2 Optimized design of admittance

The other natural application of admittance optimization is the improved design of noise control

devices. For instance, Chang et al. used both a genetic algorithm [165] and asimulated annealing

approach [166] to design an optimized sound absorber (micro-perforated plate, porous layer and

back cavity) at a given frequency. Simulated annealing was also applied by Ruiz et al. [167] to

design multilayer micro-perforated panels with good absorption properties on a wide frequency

band (1-6 kHz).

The acoustic liner community also used admittance optimization methods to design new ef-

�cient liners. Approaches mostly di�er in the used numerical model and the assumed geometry,

for instance semi-analytical modal representation in annular nozzles [168] or �nite element cal-

culation applied to aircraft engine nacelles [169]. One can also refer to the work of Reimann [170]

who compared several optimization methods (both gradient-based and evolutionary) to design

liners in aircraft engine nacelles, mostly using the Equivalent Source Method (ESM) to predict

the sound �eld. Such optimized liners can induce a signi�cant attenuation of the radiated noise.

Finally, a few studies also considered noise barriers. Other than the already mentioned

studies by Baulac et al. [4, 6, 128], one can mention Thorsson's work [9, 10], who speci�cally

studied the e�ect of the admittance for low-height barriers, either using an ESM method [9]

or the BEM coupled with a SQP algorithm [10]. Particularly, the author showed that a soft

admittance can strongly enhance the insertion loss of the barrier, although the results were

derived only at two selected frequencies only (200 and 400 Hz). Similar conclusions were drawn

from other studies [132{134].

3.4.3 Scatterer shape optimization and reconstruction

Several studies following optimization approaches in order to design orreconstruct the shape of

acoustic scatterers - including but not limited to noise barriers -have been published. The two

main types of optimization outlined in this chapter, namely evolutionary and sensitivity-based

methods, have both been used in this context.

Evolutionary methods, especially genetic algorithms, have been used extensively to design

highway noise barriers [101, 128, 171{173] and speci�c sonic crystals used as low-height noise

barriers [11, 174]. One should also point out that the simulated annealing algorithm has been

applied as well in a more engineering-type con�guration [175]. Dependingon the context, the

improvement of the optimized shape barriers can be an additional 5 dB of attenuation compared

to a simpler shape. One should point out however that in the given references, evolutionary

optimization methods were applied for barriers represented in a very speci�c way - succession of

wells in [101], binary (�lled/empty rectangles) representation in [171], multiple-edge geometry

in [128] or parallel arrangement of cylinders in the sonic crystal case [11].

Sensitivity-based methods have been used as well, for instance using the boundary element

method [176{178] applied to 2D and 3D shape sensitivity analysis, or the �niteelement method

to design a mu�er along a duct [179]. It has been applied as well for noise barrier design using

an engineering calculation method, a pre-calculated table of values anda linear interpolation

[180].
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Those methods have also been applied in the context of inverse (or shape reconstruction)

problems, for instance to identify the locations and shape of unknownscatterers based on a

measured di�raction pattern using shape sensitivity [149, 181]. This hasbeen extended to the

identi�cation of both the shape and the admittance of a scatterer using alevel-set method [150].

3.4.3.1 Topological approaches

We brie
y mention another approach, radically di�erent from what has bee n presented above,

which is the so-called topology optimization. The idea is to representthe scattering object not

as a boundary but as a distributed function quantifying the presence or not of the scatterer,

coupled to a level set method. This allows the topology of the scatterer - that is the number of

disconnected obstacles - to vary as well, for instance by adding extrascattering bodies, based

on the so-called topological derivative (or sensitivity). Those methods have been applied in

the context of noise barriers [182{184], although these studies mostly focused on low frequencies

(below 200 Hz). Topological sensitivity has been applied successfullyas well in inverse scattering

applications [185, 186].

3.4.4 Conclusion of the review

Comparing the results obtained by these di�erent approaches to optimally design acoustic scat-

terers such as noise barriers, one can notice that the obtained designs have very di�erent charac-

ters if an evolutionary method is used as opposed to a sensitivity-based method. This suggests

that both approaches, with their pros and cons, can be successfully used but in somewhat dif-

ferent applications: a shape optimization problem assuming a discrete representation of the

shape may be more conveniently tackled using an evolutionary method,whereas if one is more

interested in continuous representations, sensitivity-based methods (including topological meth-

ods) may be more appropriate. The question of computational load is also important since

it greatly in
uences the choice of the calculation method: complicated environments typically

require simple calculation methods whereas more accurate methods such as the BEM have been

limited mostly to low frequency applications. Simplifying the considered model with appropri-

ate assumptions seems therefore paramount to apply optimization methods to low-height noise

barriers over a wide frequency range, which is the purpose of this work.

3.5 Details of the chosen optimization algorithm

We �nally present more details about the chosen optimization method that has been applied to

our application: full design optimization of a low-height noise barrier (including surface treat-

ments and shape) in the most general fashion possible. As stated previously, the choice of a

continuous search space to describe the parameters seemed like a more appropriate choice, and

since the sensitivity information can be obtained conveniently following for instance the adjoint

state approach (this will be detailed in chapter 4), it has been decided to use a line-search

sensitivity-based method. Using the adjoint state method also allows to use a large number of

variables, and therefore it has been decided to describe the shape in a general manner, using
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an arbitrary set of control nodes (which is the way a shape is de�ned inthe BEM software MI-

CADO introduced in chapter 2). Admittance parameters optimization, wh ich has been studied

extensively in [1], can be achieved as well with this approach.

One could �rst try to use the same minimization method to �nd optimi zed values of admit-

tance parameters and shape parameters. However, it has been chosen in this work to di�erentiate

the optimization method between the two types of variables. The reason is essentially related

to the fact that the two types of variables are subject to di�erent constraints. Indeed, if one

refers to the vector of admittance parametersx � and the vector of shape parametersx � , the

optimization problem (3.3) can be written as:

min
x � ;x �

e
�
x � ; x � ; p(x � ; x � )

�
s.t.

8
>><

>>:

l � 6 x � 6 u �

l � 6 x � 6 u �

�( x � ) is injective

with l � ; u � ; l � ; u � referring to lower and upper bounds corresponding either to the parameters

x � or x � . Under this form, it is clear that the admittance parameters are minimized under

bound constrains only, whereas the shape parameters are minimized under bound constraints

and the much more restrictive shape injectivity constraint.

Now it would make sense to take advantage of the convergence speed provided by quasi-

Newton methods to perform the minimization, using for instance the SQP minimization routine

available in the software Matlab. However, as pointed out in section 3.3.2.2,quasi-Newton

methods naturally use a unit step size, which means there is little control on how much the shape

is modi�ed from one step to the next. In particular, it would be more d i�cult to ensure that

the shape injectivity constraint is satis�ed, which is a rather cumbersome test (see the details

of this test in appendix D.1). On the other hand, the feasible set of admittance parameters is

essentially a hypercube - which is the type of set corresponding to bound constraints only - and

therefore using an SQP routine raises no issues.

A simple steepest descent method, however, leaves more freedom in the choice of the step

size (through the backtracking algorithm), which makes it possible to ensure the injectivity

constraint in a more convenient way. This method has the main disadvantage to be slower than

quasi-Newton methods.

To ensure the shape injectivity constraint but to keep convergence speed as fast as possi-

ble, it has therefore been decided to di�erentiate the minimization with respect to admittance

parameters, which will be done using a SQP method (implemented in Matlab), and the mini-

mization with respect to shape parameters, which will be done with anadapted steepest descent

method. Both types of variables will therefore be optimized alternatively, until convergence.

The main framework of the admittance and shape optimization algorithm is outlined in �gure

3.1. Typically the convergence tolerance can be taken as� 0 = 10 � 4. Details of the adapted

steepest descent method as well as the loop detection test are givenin appendix D.
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Given � 0 (convergence tolerance)

Given x 0
� (initial admittance parameters), x 0

� (initial shape parameters)

Evaluate initial objective function value and gradient: e0 = e
�
x 0

� ; x 0
�

�
; g0 = r e

�
x 0

� ; x 0
�

�

i = 0 ; x i
� = x 0

� ; x i
� = x 0

� ; ei
� = ei

� = e0 ; g i = g0

while
�

jei
� � ei

� j > � 0 or i = 0
�

Perform the admittance optimization (SQP): �nd x i +1
�

Update objective function value and gradient: ei +1
� = e

�
x i +1

� ; x i
�

�
; g i +1

� = r e
�
x i +1

� ; x i
�

�

Perform the shape optimization (steepest descent): �nd x i +1
�

Update objective function value and gradient: ei +1
� = e

�
x i +1

� ; x i +1
�

�
; g i +1

� = r e
�
x i +1

� ; x i +1
�

�

i  i + 1

end

Figure 3.1: Main outline of the shape and admittance optimization algori thm.

3.6 Conclusion

Optimization methods have been widely studied and applied to manydi�erent applications,

which explains why numerous numerical methods are available to tackle optimization problems.

We here reviewed some of the most common methods, among which one can de�ne two main

categories: sensitivity-based methods and evolutionary methods. Evolutionary methods do

not require the knowledge of the gradient and allow a rather global search,typically on a

discrete space, at the cost of a large number of objective function evaluations. On the other

hand, sensitivity-based methods require a continuous feasible set, a su�ciently smooth objective

function and the knowledge of the gradient, and therefore are fundamentally less general than

evolutionary methods, although they have been applied to a large range of problems including

acoustic scatterer optimization. They are however faster than evolutionary methods but are

only able to �nd local solutions to the optimization problem.

Sensitivities (the gradient) may be computed either by implicit di�erentiation, which requires

one to solve one extra di�raction problem for each parameter, or by the adjoint state approach,

which only requires one to solve one extra di�raction problem regardless of the number of

parameters, which makes this adjoint state method much more e�cient computationally.

For the di�erent reasons pointed out across this chapter (more natural continuous represen-

tation of the admittance and shape parameters, speed of sensitivity-based methods, possibility

to calculate the gradient without too much increase of the computation time), we therefore chose

to use a sensitivity-based method to optimize the surface treatment and the cross-sectional shape

of the considered noise barrier. Besides, the adjoint state approach makes it possible to describe

the shape of the barrier in a general manner by a potentially large set of control nodes.

An algorithm coupling two di�erent methods to perform the optimizati on with respect to

admittance parameters and shape parameters is hence proposed. This algorithm uses a classical

SQP approach and an adapted steepest descent, which provides a good compromise between

achieving good convergence speed and satisfying constraints at everyiteration.
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Chapter 4
Shape and admittance sensitivity

expressions

In this chapter we derive the expressions of the sensitivity with respect to the parameters

describing the admittance and the shape of the noise barrier, which can then be used in a

sensitivity-based optimization algorithm as exposed in chapter 3. Numerical implementation of

these theoretical expressions is discussed and validated against �nite di�erence calculations.

4.1 Barrier implementation and modeling assumptions

4.1.1 Physical assumptions and geometry
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Figure 4.1: Comparison of third octave spectra of
the di�erent sources identi�ed by Pallas et al. [26]
and their incoherent summation.
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Figure 4.2: Geometrical con�guration for the implemen-
tation of the low-height tramway noise barrier. Dotted line:
idealization of the tramway side as a vertical ba�e.

First we review the modeling assumptions of the problem under consideration: the optimiza-

tion of the performance of a tramway low height noise barrier. Using simplifying assumptions is

indeed convenient in an optimization application since the objectivefunction will be evaluated

many times, and therefore decreasing the computation time of each evaluation is worth it, even

if this induces a slight decrease of accuracy.

The atmosphere is assumed homogeneous with a speed of sound ofc0 = 343 m/s. The source

is idealized as an in�nite line source located on the ground with a spectral content given by the

incoherent sum of the rail track and bogie contributions in [26] (see in �gure 4.1). One can infer
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that most of the A-weighted acoustic energy is contained in the frequency range 100-2500 Hz,

which will be the frequency range of study. It is also assumed that the geometry is invariant

along the axis of the track, which makes the problem purely two dimensional. This assumption

has been shown [28] to be correct when predicting excess attenuationat single frequencies due

to point sources, which is what we will use in the calculation of the broadband attenuation.

The presence of the tramway will cause the sound to bounce on its surface and di�ract at

the roof edge and at the gap between the carriage and the ground. Those geometrical details

could be modeled with the BEM, but one can also idealize the tramway side as an in�nite rigid

vertical ba�e (see in �gure 4.2). This is mathematically equivalent to introducing an image

barrier, symmetrical to the original one with respect to the tramway side surface, which greatly

reduces the mesh surface and therefore the computation time. The barrier and its image with

respect to the vertical ba�e are represented by the boundary �, whic h separates the 2D plane

as an interior domain 
 i and an exterior domain 
 e. Finally, the ground is modeled as rigid,

which represents correctly many urban-like surfaces.

The barrier cross section is assumed to lie in a one meter wide square, half a meter away

from the tramway (see in �gure 4.2). The surface of the barrier is assumed locally reacting and

its acoustical behavior described in terms of a normalized acoustic admittance � .

The receiver locations (Rm ) have been chosen to represent a range of possible locations of

pedestrian ears: horizontal distance from the bottom-right corner of thebarrier between 2 m

and 5 m, and height between 1 m and 1:8 m (see again in �gure 4.2).

4.1.2 Objective function

The purpose of this work is to maximize the insertion loss calculated atthe receivers by changing

the shape of the barrier. The 2D BEM, implemented in the software MICADO developed at the

CSTB by Jean [120], has been used for this purpose. The BEM provides a way to calculate the

complex pressure amplitudep(R; f ) at each frequency and at each receiver point for an arbitrary

geometry. One can then de�ne an average attenuation across all receivers atthe frequency f n :

An =
P(f n )

P in (f n )
with

8
>>>>><

>>>>>:

P(f n ) =
� X

m

jp(Rm ; f n )j2
� 1

2

P in (f n ) =
� X

m

jpin (Rm ; f n )j2
� 1

2

(4.1)

where p = pin + psc is the total pressure �eld, pin is the incident �eld (�eld without the barrier)

and psc the scattered �eld. P is an average pressure across the receivers andP in the incident

pressure which is a normalizing constant independent of the barrier geometry. Then, a broad-

band attenuation based on the sound power levelsL w shown in �gure 4.1 and the attenuations

at each frequency is considered. In order to have a somewhat faster evaluation of the objective

function (which will be called many times in the optimization) but a good evaluation of the

third octave insertion losses, we consider a few frequencies per third-octave between 100 and

2500 Hz (typically 4 or 10, depending on the context). For each third-octave band, we de�ne an
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amplitude-like quantity S = 10L w =10, which is assigned to all the frequencies in this third-octave

band. Recalling equation (1.1), the broadband attenuation is then given by:

e =
P

n Sn A2
nP

n Sn
(4.2)

which is similar to the objective function considered by other authors [4, 11]. We would like to

minimize the function e, which only depends on the properties of the barrier, that is its geometry

and its admittance. One can also calculate from the objective function abroadband insertion

loss for the considered source spectrum in dB(A) de�ned by IL =� 10 loge.

The purpose of this chapter is to derive explicit expressions of the sensitivity of the objective

function with respect to the di�erent parameters describing the low-height barrier, namely its

shape and the parameters describing the surface admittance. This will allow us to use this

information in a sensitivity-based optimization method, as described in chapter 3.

4.2 Formal de�nitions of the gradient with respect to the ad-

mittance and the shape

First we quickly introduce the mathematical concepts used in thecalculation of the derivative of

the objective function with respect to changes in the admittance and/or the shape of the barrier.

This section is not meant to be completely rigorous from a mathematical standpoint, especially

concerning the spaces which the di�erent variables belong to and concerning the behavior at

in�nity which requires speci�c attention as mentioned in chapter 2, but simply to give the

reader an idea of the concepts needed. For a more rigorous analysis, one can refer to other

works [146, 150].

4.2.1 Field derivative

First, we need to de�ne the gradient with respect to the pressure �eld, and therefore we now

introduce the concept of �eld derivative. Let D be the set of piecewise su�ciently smooth

complex functions de�ned on 
 e (D can be for instanceH 1(
 e)). The dot notation u � v refers

to the integral of the product of two functions in D (which is similar to a duality product):

u � v =
Z


 e
uv d


This product is technically not a scalar product (since u � u is not a positive real number), but

this de�nition is su�cient for the purpose of this work.

Let F be a complex functional de�ned onD. F is said to be di�erentiable in f 2 D if there

exists a linear form L f such that:

(8g 2 D) F (f + g) = F (f ) + L f (g) + o
�

jjgjj
�

(4.3)

where jj :jj is an appropriate norm for the spaceD (it could be for instance the H 1-norm). In
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this context, one can then identify the linear form L f to a complex function dF=df (called the

\gradient" or the \�eld derivative" of F ) such that:

(8g 2 D) L f (g) =
dF
df

� g (4.4)

Actually the function d F=df could be a generalized function, and in this case the de�nition is

to be taken in a distribution sense. Also, if a complex functionalF is linear and has the form

F (f ) = f 0 � f then the derivative is simply given by dF=df = f 0. When the functional has

several arguments, one can naturally use the notion of partial functional derivatives, written as

@F=@f.

In the particular case when F takes real values, the gradient termL f (g) has to be real as

well, and therefore it could be replaced by its real part in the de�nition (4.3). So, if F takes real

values, it is equivalent to state that F is di�erentiable in f if there exists a complex function

dF=df such that:

(8g 2 D) F (f + g) = F (f ) + Re
� dF

df
� g

�
+ o

�
jjgjj

�
(4.5)

Several properties of usual derivatives can be extended to the case of�eld derivatives. For

instance, for F a complex di�erentiable functional on D, one can also show that:

djF j2

df
� g = F �

� dF
df

� g
�

+ F
� dF

df
� g

� �

= Re
�

2F � dF
df

� g
�

(4.6)

with � denoting complex conjugation. From this follows:

djF j2

df
= 2 F � dF

df
and

djF j
df

=
F �

jF j
dF
df

(4.7)

4.2.2 Boundary �eld derivative

Similarly, one can de�ne the derivative of a functional de�ned on D � , the set of piecewise

su�ciently smooth complex functions de�ned on �. The pressure �el d evaluated on the scatterer

boundary � as well as the admittance � are typical functions belonging to D � . For simplicity,

we keep the dot notation to refer to the duality product, even though for the functions u� and

v� in D � , the product is de�ned as:

u� � v� =
Z

�
u� v� d�

Let F� be a complex functional de�ned onD � . F� is said to be di�erentiable in f � 2 D � if there

exists a linear form L f such that:

(8g� 2 D) F (f � + g� ) = F (f � ) + L f (g� ) + o
�

jjg� jj
�

(4.8)
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where againjj :jj is a suitable norm. Again one can then identify the linear formL f to a complex

function dF=df � such that:

(8g� 2 D � ) L f (g� ) =
dF
df �

� g� (4.9)

The properties recalled in equation (4.7) valid for �eld derivatives also hold for boundary �eld

derivatives.

4.2.3 Shape derivative

Similarly, the concept of shape derivative can be understood as a linear form acting on the set

of displacements �elds, which we will refer to asvelocity �elds. A velocity �eld � is simply a

mapping x 7! � (x) in the 2D plane. Let D � be the set of su�ciently smooth (typically bounded

and with compact support) velocity �elds in the 2D plane. Such a velocity �eld can therefore

transform the initial boundary � to a new boundary �( � ) de�ned as �( � ) = � + � , which can

also be written as �( � ) = f x + � (x) : x 2 � g. Now, consider a complex functionalJ depending

on the boundary �. J is said to be di�erentiable with respect to the shape � if there exists a

linear form that we will write d J=d� acting on D � such that:

(8� 2 D � ) J
�
�( � )

�
= J

�
�

�
+

dJ
d�

� � + o
�

jj � jj
�

(4.10)

where again we keep the dot notation to refer to the duality product betweenD � and its dual

for consistency, andjj :jj refers to an appropriate norm. For instance, let us consider a functional

F de�ned as:

F (�) =
Z


 e
f d


with f a piecewise smooth function (or generalized function) de�ned on 
e. F depends indeed

on � since there is a unique correspondence between � and its exterior domain 
 e. One can

show that the shape derivative in this case is given by [149, 150, 187]:

dF
d�

� � =
Z


 e
r � (f � ) d


Applying the divergence theorem and de�ning � n = � � n the normal component of the velocity

�eld on �, one has:
dF
d�

� � = �
Z

�
f � n d� (4.11)

One should point out that the minus sign is due to the fact that the normal n has been de�ned

as exterior to � and therefore interior to 
 e, and that there is no contribution from in�nity since

� is typically assumed to have a compact support. Now consider a functional G of the form:

G(�) =
Z

�
f d�

The formula for the shape derivative of this functional, one can most easily �nd in the literature,

holds for a closed smooth surface [149, 150]. However, in a numerical discretized context with
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SHAPE AND ADMITTANCE SENSITIVITY EXPRESSIONS

linear shape functions, the shape will be represented by a set of segments with possible abrupt

changes of directions from one segment to another, which cannot be modeled well as a smooth

curve. This is why here we consider that the boundary � and the function f are only piecewise

smooth. Let � i = [ x (i � 1) ; x (i ) ]; i 2 [1 : N ] the smooth portions of the curve �. x (0) and x (N ) are

the start and end points of �, and x (i ) are the points where the curve is not smooth. The parts

� i are such that they do not overlap, except at both their ends, but their union recovers the

entire curve �. Also, the function f is assumed to be smooth on each �i separately, but are not

necessarily smooth at the edges of each part so thatf or its gradient may have jumps at the edges

of each part. Also, the velocity �eld on � is broken down in tangential and n ormal components:

� = � n n + � t t . One can show (see appendix E) that in this case the shape derivativeis:

@G
@�

� � =
Z

�

� @f
@n

+ Hf
�

� n d� �
N � 1X

i =1

[[f � t ]](i ) + ( f � t )(x (N ) ) � (f � t )(x (0) ) (4.12)

where [[:]](i ) is the jump of a function at the point x (i ) , de�ned as the limiting value after the

jump minus the limiting value before the jump, and H the mean curvature. Equation (4.12) is a

particular case of the general expressions derived by Petryk and Mroz [187]. Besides, when the

boundary � is piecewise linear (as it will be the case in the considered BEM discretized context),

the curvature is locally zero, and therefore has no contribution to the integral. In a way, one

could say that the curvature contribution to the shape derivative is best described here by the

jump terms at the end of each segment. In this case the expression simpli�es to:

@G
@�

� � =
Z

�

@f
@n

� n d� �
N � 1X

i =1

[[f � t ]](i ) + ( f � t )(x (N ) ) � (f � t )(x (0) ) (4.13)

4.3 Derivation of the sensitivity expressions

To carry on the optimization of the objective function, an iterative met hod based on the gradient

has been chosen. Accurate calculation of the sensitivities (derivatives or gradients) with respect

to the admittance and shape are therefore necessary. We derive here simple expressions based

on the adjoint state approach.

4.3.1 General expressions

First, we derive the expression of the shape and admittance sensitivity of the RMS pressureP at

a given frequency, as recalled in section 4.1. Let us recall that the totalpressure �eld p satis�es

the scattering problem (2.1). Let us now consider the weak formulation ofthis problem, as done

by Bonnet [149], which will allow an easier derivation of the sensitivity expressions. Again, the

mathematical treatment given here is not extremely rigorous, since special care should be given

to express the weak formulation in a bounded domain and to bring down the radiation condition

at a �nite distance (as exposed in section 2.2). However, the results given here would not be

changed if these precautions were taken, which is why a simpler approach is followed. Again,

we refer to the work by He et al. [150] and Terrasse [136] for a more rigorous treatment, as well
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as to section 2.2.

We consider the 2D scattering problem exposed in section 2.1, in which� refers to the noise

barrier and its image with respect to the vertical ba�e which approxi mates the e�ect of the

tramway side, and 
 e is the exterior domain. Given any su�ciently smooth and locally inte grable

function q̂ in 
 e (typically belonging to H 1(
 e)) which satis�es the radiation condition, recalling

equation (2.6) - but ignoring the term on the surrounding half-sphereSR - the problem (2.1) is

equivalent to:

8q̂ Q(� ; �; p; q̂) = 0

with Q de�ned for arbitrary regular functions p̂ and q̂ as:

Q(� ; �; p̂; q̂) = Re
�
�

Z


 e
r p̂ � r q̂d
 e + k2

Z


 e
p̂ q̂d
 e + i k

Z

�
� p̂ q̂d� + ^q(S)

�
(4.14)

We now de�ne the Lagrangian:

L (� ; �; p̂; q̂) = P(� ; �; p̂) + Q(� ; �; p̂; q̂)

By de�nition, we have Q(� ; �; p; q̂) = 0 for all functions q̂, therefore:

(8q̂) P(� ; �; p ) = L (� ; �; p; q̂) (4.15)

Since p implicitly depends on � and � as the solution of the scattering problem (2.1), taking

the derivative of equation (4.15) with respect to � and � , in the sense explained in section 4.2,

yields:

(8q̂)

8
>><

>>:

dP
d�

(� ; �; p ) =
@L
@�

(� ; �; p; q̂) +
@L
@p

(� ; �; p; q̂) �
dp
d�

dP
d�

(� ; �; p ) =
@L
@�

(� ; �; p; q̂) +
@L
@p

(� ; �; p; q̂) �
dp
d�

(4.16)

Now, let us de�ne the adjoint state q as the solution of the following variational problem:

(8ŵ)
@L
@p

(� ; �; p; q ) � ŵ = 0 (4.17)

Since equation (4.16) is valid for any functionq̂, especially forq̂ = q, and using equation (4.17),

we have: 8
>><

>>:

dP
d�

(� ; �; p ) =
@L
@�

(� ; �; p; q )

dP
d�

(� ; �; p ) =
@L
@�

(� ; �; p; q )
(4.18)

which are explicit functions of the shape �, the admittance � , the state p and the adjoint state

q.

4.3.1.1 Adjoint state equation

In this section we derive the explicit form of the problem the adjoint state q must satisfy.

Recalling equation (4.14), one can seeQ is a linear function of p plus a source term which is
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independent ofp, and therefore:

@Q
@p

(� ; �; p̂; q̂) � ŵ = Re
�
�

Z


 e
r q̂ � r ŵ d
 e + k2

Z


 e
q̂ŵ d
 e + i k

Z

�
� q̂ŵ d�

�

Recalling equation (4.7) and the de�nition of P given in equation (4.1), the partial derivative of

P with respect to p is given by:

@P
@p

(� ; �; p̂) � ŵ = Re
� X

m

p̂(Rm ) �

P
ŵ(Rm )

�

Therefore the adjoint state equation (4.17) becomes:

(8ŵ) Re
�
�

Z


 e
r q � r ŵ d
 + k2

Z


 e
qŵ d
 + i k

Z

�
� q ŵ d� +

X

m

p(Rm ) �

P
ŵ(Rm )

�
= 0

The similarity with the weak formulation of the initial scattering pr oblem (2.1) allows us to

recognize that this equation is the weak formulation of the following scattering problem :

8
>>>>>>>>><

>>>>>>>>>:

� (r 2 + k2) q =
X

m

p(Rm ) �

P
� (Rm ; :) in 
 e

@q
@n

+ i k � q = 0 on �

@q
@n

= 0 on � g

+ radiation condition

(4.19)

where � (Rm ; :) is the Dirac delta function located at the point (R m ). The solution q of this

problem is therefore the �eld due to the radiation of weighted point sources located at the

receivers (see �gure 4.3), which had already been pointed out by Bonnet[149]. The problem

(4.19) will be referred to as thedual or adjoint scattering problem, whereas the initial problem

(2.1) will be referred to as theprimal or direct scattering problem.

One can point out that if the term involving the Dirichlet-Neumann ope rator on a surround-

ing half-sphere (see in section 2.2) had been kept, the scattering problem satis�ed by the adjoint

state would have been the same, due to the fact that the operatorT is itself symmetrical.

One could state that considering the weak formulation of the problem in the unbounded do-

main but implicitly assuming the radiation condition is essentially equivalent to considering the

weak formulation in the bounded domain with the extra term involving t he Dirichlet-Neumann

operator.

In order to solve the adjoint problem, one can use once again the BEM, whichwould yield

the boundary �eld q� . To do so, one only needs to solve the equivalent of the integral equation

(2.12) for the adjoint problem, which is given by:

Nq� + D � (ik�q � ) + i k� Dq � + i k� S (ik�q � ) = hin
2 (�; p ) (4.20)
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with hin
2 (�; p ) = �

@qin

@n

�
�
�
�
�
� ik� q in j � and qin (x) =

X

m

p(Rm ) �

P
G(Rm ; x) . Equation (4.20) will be

referred to as theadjoint state equation, as opposed to equation (2.12) which is referred to as

the state equation.
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Figure 4.3: Source-receiver con�guration for calculation of the state p� (left) and that of the adjoint state q�

(right). The source has a unit amplitude in the primal problem, bu t in the dual problem each source is weighted
by the coe�cient p(Rm ) � =P (P being the average pressure amplitude across the receivers, as de�ned in equation
(4.1)).

4.3.1.2 Shape derivative expression

In this section, we give the explicit expression of the shape derivative expression given in the

�rst line of equation (4.18). We therefore consider a velocity �eld � acting in a neighborhood

of the shape �, and therefore of zero value at the source location (S) and receivers locations

(Rm ). This assumption is essentially related to the fact that the sourceand receivers locations

are �xed in our problem, even when the shape � is modi�ed. Let � n = � � n and � t = � � t be

the normal and tangent trace of the velocity �eld on �.

Assuming that the boundary � is piecewise smooth and keeping the samenotations as in

section (4.22), we can now apply equations (4.11) and (4.12) to the expression ofQ recalled in

equation (4.14), which yields:

@Q
@�

(� ; �; p; q ) � � =Re
� Z

�
r p � r q �n d� � k2

Z

�
pq �n d� + i k

Z

�
�

� @(pq)
@n

+ H pq
�

� n d�

� ik
X

i

[[�pq� t ]](i ) + i k
�
(�pq� t )(x (N ) ) � (�pq� t )(x (0) )

�

=Re
� Z

�
� n

�
r p � r q + i k�

@(pq)
@n

+ ( � k2 + i k�H ) pq
�

d�

� ik
X

i

[[�pq� t ]](i ) + i k
�
(�pq� t )(x (N ) ) � (�pq� t )(x (0) )

�
�

with H is the curvature of the curve � and [[ :]](i ) is the jump at the point x (i ) . Now, recalling

the boundary condition satis�ed by p and q and the fact that the gradient can be broken up in

tangential and normal components, we have:

r p � r q + i k�
@(pq)

@n
=

@p
@t

@q
@t

+
@p
@n

@q
@n

+ i k�p
| {z }

= � @p=@n

@q
@n

+ i k�q
@p
@n|{z}

= � ik�q

=
@p
@t

@q
@t

+ k2� 2 pq
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Therefore one has:

@Q
@�

(� ; �; p; q ) � � =Re
� Z

�
� n

� @p
@t

@q
@t

+
�
k2(� 2 � 1) + i k�H

�
pq

�
d�

� ik
X

i

[[�pq� t ]](i ) + i k
�
(�pq� t )(x (N ) ) � (�pq� t )(x (0) )

�
� (4.21)

Now, recalling that the function P explicitly depends only on the �eld p at the receiver points

(Rm ) which are not moved by the velocity �eld � , we can conclude that the functionP does not

explicitly depend on the shape � when it is transported by � , and therefore (@P=@�) � � = 0.

SinceL = P + Q, we have:

dP
d�

(� ; �; p ) � � =
@Q
@�

(� ; �; p; q ) � �

=Re
� Z

�
� n

� @p
@t

@q
@t

+
�
k2(� 2 � 1) + i k�H

�
pq

�
d�

� ik
X

i

[[�pq� t ]](i ) + i k
�
(�pq� t )(x (N ) ) � (�pq� t )(x (0) )

�
�

(4.22)

Equation (4.22) is similar to the expression derived by He et al. [150] , which generalizes the one

found by Bonnet [149] in case of a �nite admittance boundary condition. Besides, if the curve

is piecewise linear (which will be the case in the numerical implementation), the curvature H is

zero except maybe on a zero-measure set (the pointsx (i ) ), and therefore has no contribution to

the integral term. In this case the shape derivative is:

dP
d�

(� ; �; p ) � � =Re
� Z

�
� n

� @p
@t

@q
@t

+ k2 (� 2 � 1) pq
�

d�

� ik
X

i

[[�pq� t ]](i ) + i k
�
(�pq� t )(x (N ) ) � (�pq� t )(x (0) )

�
� (4.23)

4.3.1.3 Admittance derivative expression

Similarly, one can explicitly give the expression for the derivative with respect to the admittance

given in the second line of equation (4.18). Again, there is no explicit dependence ofP on � since

the admittance function exists only at the boundary �, which is far from t he receiver points, and

therefore @P=@�= 0. Finally, recalling equation (4.14), one can see thatQ is a linear function

of � plus a term independent of � , and therefore the derivative with respect to � applied to a

perturbation 
 is simply given by:

dP
d�

(� ; �; p ) � 
 = Re
�
ik

Z

�

 pq d�

�
(4.24)

Again, equation (4.24) is similar to the one obtained by He et al. [150] and by the author in [1]

(although in this case the derivation was based on integral equations only).We can also directly
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write the boundary �eld derivative function:

dP
d�

(� ; �; p ) = i k pq (4.25)

4.3.2 Derivatives with respect to shape and admittance parameters

From the general results derived in section (4.3.1), one can easily write the derivative of P with

respect to particular parameters used to describe the admittance distribution as well as the

shape. The idea is to �nd a perturbation (either on the admittance or the shape) that induces

a change in one parameter only, and apply the general expression. We here give a few examples

of this process.

4.3.2.1 Derivative with respect to an admittance parameter

����

�� ����

���� ����

��

Figure 4.4: Schematic for calculation of the objective function sensitivi ty with respect to admittance parameters.
Left: case of a segment �p covered with an uniform admittance � p . Right: case of a parameter u0 de�ning the
location of an admittance discontinuity.

Let us assume that the admittance� is described by a small number of parametersbj , for

instance if the barrier is covered with a �nite number of segmentsof uniform admittance, and if

each admittance value is described by a few parameters (which is thecase for most admittance

models), then the derivative of the RMS pressure at the receivers with respect to the parameter

bj is given by:
dP
dbj

= Re
� dP

d�
�

d�
dbj

�
= Re

�
ik pq �

d�
dbj

�

Here the dot notation refers to the duality product on the boundary (int egral on � of the product

of two functions). For instance, if a panel covering the part � p of the barrier (see �gure 4.4,

left part) is made of a Delany and Bazley porous layer with an admittance� p depending on the

parameters � and d, the gradient of P for instance with respect to � is:

dP
d�

= Re
�
ik

d� p

d�

Z

� p

pq
�

(4.26)

This requires the knowledge of the expression of the derivative of the admittance model with

respect to each parameter (the term d� p=d� ), which can be done easily for most models (see

appendix F for the values of those derivatives for the two admittance models we will be using

in this work).
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It is also possible to calculate the gradient with respect to a change in width of a certain

panel. For instance, let us assume that the curve � is parametrized byu 2 [0; 1], and that a

panel covers the part of the curve corresponding to [0; u0] with u0 6 1 (see �gure 4.4, right part).

We assume that the panel has an admittance� 0 and the rest of the barrier is covered with an

admittance � 1. The admittance function as a function of the parameteru can be written as:

� (u) = � 0 H (u0 � u) + � 1 H (u � u0)

The derivative of this function considered as a distribution with respect to u0 can be directly

written as:
d�
du0

(u) = � 0 � (u � u0) � � 1 � (u � u0) = ( � 0 � � 1) � (u � u0)

So that the derivative of P with respect to u0 is:

dP
du0

=Re
�
ik

Z 1

0
p(u) q(u) J� (u) ( � 0 � � 1) � (u � u0) du

�

=Re
�
ik (� 0 � � 1) p(u0) q(u0) J� (u0)

� (4.27)

with J� is the Jacobian of the transformation from the parameter space to the geometrical space.

For instance, on a straight segment of physical lengthL parametrized by u 2 [0; 1], the Jacobian

is constant of valueL .

It is interesting to notice that one can �nd the expression given in equation (4.27) with the

given general expression for the shape derivative given in equation (4.22). Indeed, in order to

make the parameter u0 vary, one can also apply a local tangential velocity �eld � u0 de�ned

as: � u0 = J� (u0) t (u0) in a neighborhood of x(u0) and zero everywhere else. Then, applying

equation (4.22), since the point x(u0) is precisely a point where there is an admittance jump

and since the velocity �eld is purely tangential, the derivative with respect to u0 can be written

as:
dP
du0

= Re
�
� ik[[� pq J � (u0)]]

�
x(u0)

�
�

= Re
�
ik (� 0 � � 1) p(u0) q(u0) J� (u0)

�

since here the admittance jump (de�ned as the value after minus thevalue before the disconti-

nuity) at x(u0) is: [[� ]] = ( � 1 � � 0) = � (� 0 � � 1). One can point out that this expression could

not have been found with the classical shape derivative expression ofa smooth line integral.

4.3.2.2 Derivative with respect to a node coordinate

We can also use the general shape derivative expression given in equation (4.22) in order to

calculate the derivative of the P with respect to parameters describing the shape of the barrier.

In order to be as general as possible, we will here consider the derivative with respect to a node

coordinate of a \control mesh". Here we assume the BEM discretized context implemented in

the software MICADO, which is that the boundary � is represented by a set of straight segments.

Following the notations introduced in section 4.3.1.2, letx (i ) (i 2 [0 : N ]) be the set of control

nodes and �i = [ x (i � 1) ; x (i ) ] (i 2 [1 : N ]) be each straight segment de�ning the curve � (see

�gure 4.5). One can point out that here the barrier is oriented clockwise. The coordinates of
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Figure 4.5: Representation of a generic barrier in the software MICADO, based on the control nodes x ( i ) and
assuming linear interpolation.

the control nodes are the parameters needed to de�ne the geometry in the software MICADO.

From this set of control nodes, MICADO generates the calculation mesh based on two criteria: a

minimum number of elements per segment, and a minimum number of elements per wavelength.

The calculation mesh is therefore usually much �ner than the mesh de�ned by the control nodes.

This di�erentiation between the control mesh and the calculation mesh is necessary since the

calculation mesh should be frequency dependent, whereas the control mesh should not, since its

variation is controlled by a broadband objective function.
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Figure 4.6: De�nition of the node speci�c velocity �eld � ( i )
j , which moves the control node x ( i ) along the j th

component.

Now, the derivative of P with respect to a change of coordinate of the control nodex (i ) =

(x(i )
1 ; x(i )

2 ) can be de�ned by applying a speci�c velocity �eld which moves only this control node

along one directionj = 1 ; 2. We therefore de�ne the velocity �eld � (i )
j on the control nodes by:

(8k 2 [0 : N ]) � (i )
j (x (k) ) = � ik ej

with � ik being the Kronecker delta function andej the unit vector in the j th coordinate. Then,

on the two segments �i and � i +1 adjacent to x (i ) , the velocity �eld is linearly interpolated (see

�gure 4.6). This allows one to de�ne the derivative of P with respect to x(i )
j as:

dP

dx(i )
j

=
dP
d�

� � (i )
j (4.28)

One should point out that a symmetrical velocity �eld is applied on th e corresponding part of

the image barrier, which means that when a node on the actual barrier is moved, its image is
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moved as well in a symmetrical fashion.

4.3.3 Derivatives of the broadband objective function

Finally, one can write the expression of the derivative of the broadbandobjective function de�ned

in section 4.1.2 with respect to a generic admittance or shape parameterx. Recalling equation

(4.2) the derivative of e with respect to a parameter x is simply given by:

de
dx

=
1

P
n Sn

X

n

Sn
2P(f n )
P in (f n )2

dP(f n )
dx

(4.29)

with d P(f n )=dx calculated as explained in section 4.3.2.

We are now able to calculate the gradient of the objective function with respect to the

parameters describing the admittance and the shape. For each frequency, one only needs to

know the state and the adjoint state, which is achieved by solving twoclassical BEM integral

equations per frequency. This increases the computation time compared to the evaluation of

the evaluation of the objective function only, but only by a small amount. Indeed, since the

di�erence between the state and adjoint state equations only comes fromsource locations, the

equations to solve both boundary �elds use the same matrix but di�erent right-hand sides, which

does not severely increase the computation time.

Furthermore, the main advantage of using the adjoint state approach is, oncethe state and

the adjoint state are known, the calculation of the gradient with respect to a parameter is fast

(it is an explicit integral), and therefore a great number of parameters can be used without

signi�cant increase of computation time. Also, the expression of the gradient is simply a post-

treatment of the BEM calculations, and therefore its calculation does not require coding a new

integral equation solver, and can therefore be achieved using the results of any commercial

BEM solver. For instance, in this work, the calculation of the states and adjoint states have

been achieved using the software MICADO, whereas the calculation of the gradient have been

performed in Matlab.

4.4 Numerical implementation

4.4.1 Numerical evaluation of the sensitivity expressions from BEM solutions

In order to evaluate numerically the sensitivity expressions derived in section 4.3.1, one only

needs to know the values of the statep� and adjoint state q� at the boundary � and the value of

the RMS pressureP which can be calculated from the boundary values ofp thanks to the integral

representation explained in chapter 2. The values ofp� and q� are found by solving the two

integral equations (2.12) and (4.20). In practice, one can set point sources at the actual source

location (S) and at each receiver point (Rm ), solve for the boundary �elds p� - corresponding

to (S) - and q� ;Rm - corresponding to (Rm ). From p� one can calculatep(Rm ) and P, and since
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the adjoint state equation is linear, �nally calculate the adjoint state b oundary values by:

q� =
X

m

p(Rm ) �

P
q� ;Rm

In a BEM discretized context, the solutions of the integral equationsare typically a set of

nodal valuesf p� g and f q� g, corresponding to the values of the state and adjoint state at the BEM

calculation mesh, which is �ner than the control mesh. Typically, calculations were performed

with a requirement of 10 elements per wavelength and at least 3 elements per straight segment

(joining two following control nodes). MICADO assumes linear shape function and therefore

for consistency we will assume linear shape functions as well to represent the two �elds on the

boundary. Therefore, de�ning f N(a)gt = f 1 � a; ag and f f gt
i = f f (x (i � 1)); f (x (i ) )g the two

nodal values of a �eld f on the element � i , we therefore have:

f j � i (a) = f N(a)gt f f gi with a 2 [0; 1]

Also, the tangential derivative of f is constant and is simply given by:

@f
@t

�
�
�
�
� i

=
f (x (i ) ) � f (x (i � 1))

l i
=

1
l i

f DNgt f f gi

where the vector DN is given by DN = f� 1; 1gt and l i = jjx (i ) � x (i � 1) jj is the length of the

element, which is also the value of the Jacobian of the transformation fromthe reference to the

geometrical element.

4.4.1.1 Sensitivity with respect to a node coordinate

Now, consider the calculation of the derivative of P with respect to a x(i )
j , with 0 < i < N .

Recalling equation (4.28), since the velocity �eld � (i )
j is non zero only on the two segments �i

and � i +1 , one can write:

dP

dx(i )
j

=
dP
d�

� � (i )
j = Re

� Z

� i [ � i +1

� (i )
j nj

� @p
@t

@q
@t

+ k2 (� 2 � 1) pq
�

d� � ik[[�pq� (i )
j t j ]](i )

�
�

=Re
�
B i � ni

j + B i + ni +1
j + k2 (� 2

i � 1) Ci � ni
j + k2 (� 2

i +1 � 1) Ci + ni +1
j

� ik p(x (i ) )q(x (i ) )( � i +1 t i +1
j � � i t i

j )
�

(4.30)

where � i is the assumed constant value of the admittance on the segment �i , n i = ( ni
1; ni

2) and

t i = ( t i
1; t i

2) are respectively the normal and tangent vectors on the segment �i , and the integrals

B i � , B i + , Ci � and Ci + are de�ned as follows:

B i � =
Z

� i

@p
@t

@q
@t

� (i )
j d� B i + =

Z

� i +1

@p
@t

@q
@t

� (i )
j d�

Ci � =
Z

� i

pq � (i )
j d� Ci + =

Z

� i +1

pq � (i )
j d�
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Due to the de�nition of the node-speci�c velocity �eld � (i )
j given in section 4.3.2.2, one has:

f � (i )
j gi = f 0; 1g and f � (i )

j gi +1 = f 1; 0g. Using the linear shape function representation for the

other �elds yields:

B i � =
1
l i

f qgt
i f DNg f DNgt f pgi

Z 1

0
a da =

1
2l i

f qgt
i

"
1 � 1

� 1 1

#

f pgi

B i + =
1

l i +1
f qgt

i +1 f DNg f DNgt f pgi +1

Z 1

0
(1 � a) da =

1
2l i +1

f qgt
i +1

"
1 � 1

� 1 1

#

f pgi +1

Ci � = l i

Z 1

0
f pgt

i f N(a)g f N(a)gt f qgi a da = l i f qgt
i

"
1=4 1=12

1=12 1=12

#

f pgi

Ci + = l i +1

Z 1

0
f pgt

i +1 f N(a)g f N(a)gt f qgi +1 (1 � a) da = l i +1 f qgt
i +1

"
1=12 1=12

1=12 1=4

#

f pgi +1

One can �nally point out that these expressions correspond to integration over the actual barrier

only, and therefore one should add the contribution due to the image barrier, which is calculated

in a similar fashion.

Sensitivity with respect to nodes on the ground The sensitivities with respect to the

nodesx (0) and x (N ) are calculated in a similar way, except that the corresponding velocity �elds

are non zero on one element only. Besides, these nodes cannot be movedalong the x2 direction

in order to keep the curve � connected to the ground. Therefore, one has:

dP

dx(0)
1

=Re
�
B1+ n1

1 + k2 (� 2
1 � 1) C1+ n1

1 � ik p(x (0) )q(x (0) )� 1t1
1

�

dP

dx(N )
1

=Re
�
BN � nN

1 + k2 (� 2
N � 1) CN � nN

1 + i k p(x (N ) )q(x (N ) )� N tN
1

�

dP

dx(0)
2

=0 ;
dP

dx(N )
2

= 0

4.4.1.2 Sensitivity with respect to an admittance parameter

Similarly, one can evaluate the derivative with respect to an admittance parameter from the

nodal values of the state and the adjoint state. Say the segment �i is covered by an admittance

� i function of several parameters (b1; b2; :::). Recalling equation (4.26), one has:

dP
dbq

= Re
�
ik

d� i

dbq

Z

� i

pqd� i

�
= Re

�
ik

d� i

dbq
l i f qgt

i

"
1=3 1=6

1=6 1=3

#

f pgi

�

4.4.2 Mesh re�nement close to corners

As we have seen in section 2.4, the presence of a corner with an exteriorangle greater than� in-

duces a local singularity in the pressure gradient, which becomes unbounded although integrable

in the vicinity of the corner. It has also been pointed out this phenomenon causes inaccuracy

in numerical calculations involving the tangential derivative. Since the shape derivative expres-
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sion given in equation (4.22) does require integration of the product of the state and adjoint

state tangential derivative, it is expected that the evaluation of the sensitivity with respect to a

control node coordinate will not be accurate close to corners.

One approach to somewhat limit this e�ect is to force a �ner mesh in the vicinity of corners.

In the BEM software MICADO, two meshing criteria have to be provi ded by the user on each

segment de�ning the geometry: c1 the minimum number of elements per wavelength, andc2

the minimum number of elements per segment. From the knowledge of the geometry, one can

evaluate the exterior angle at the beginning and at the end of the segment �i . We will call

the maximum of those two angles� i . In the rest of this work, given two generic values of the

criteria c1 and c2 (typically those two values will be taken as c1 = 10 and c2 = 3 when the

shape derivative will be evaluated, andc1 = 6 and c2 = 1 otherwise), the following values for

the meshing criteria on each segment are proposed:

8
>><

>>:

ci
1 = c1

�
1 + max

� � i

�
� 1; 0

� �

ci
2 = c2

�
1 + 4 max

� � i

�
� 1; 0

� �

These expressions are heuristic and were found to be a good compromise in limiting both the

inaccuracy in the shape derivative numerical evaluation and the computation time. Nevertheless,

as it has been shown in section 2.4, some inaccuracy will remain even with an extremely �ne

mesh since usual shape functions cannot resolve the singular behaviorof the pressure gradient.

The purpose of this re�ned meshing strategy is essentially to make sure that the error in the

evaluation of the shape derivative is not excessively large.

4.4.3 Validation

��

���
�

������������������������

�������	
�������	
�������	
�����
�	
�������	

�������	

���������	
���������	
�������	
�����
�	
�������	

�������	

Figure 4.7: Schematic of the barrier (solid line) and its image (dashed lin e) used for the validation of the shape
sensitivity calculations. The control nodes are numbered from 0 t o 11 as shown.

To validate the calculation of the sensitivity with respect to contr ol nodes coordinates and

admittance parameters, we consider a simple wall barrier geometry (1 mhigh, 0:2 m wide).

Control nodes are placed every 20 cm, so there areN = 12 nodes on the true barrier (see

�gure 4.7), and therefore 22 shape independent variables (corresponding to the two coordinates

of each node except the nodes on the ground which only have one shape variable, their �rst

coordinate). The node coordinates of the image barrier are not considered as variables since
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their displacement is not independent of that of their corresponding nodes on the actual barrier.

In addition, the barrier is covered by a �ctitious admittance distr ibution which we set to be:

� i =
1 + i

2

�
1 �

i � 1
N � 1

�
i 2 [1 : N � 1]

There are therefore 11 complex admittance parameters, hence 22 real admittance parameters

(each corresponding to either the real and imaginary part of the segment admittance). We

calculate the derivative of the broadband objective functions (with four frequencies per third-

octave between 100 and 2500 Hz) with respect to every node coordinate andevery admittance

variable using equation (4.29) and the approach exposed in section 4.4.1. The state and the

adjoint state are solved with the two MICADO meshing criteria set as: c1 = 10 and c2 = 3.

The sensitivity can also be estimated by a �nite di�erence approach. Considering for instance

the variation of a generic parameterx, one can considere as a function of this parameter, and

given a small parameter� , one can estimate the sensitivity as:

de
dx

�
e(x + � ) � e(x)

�

However, it is not easy to choose the parameter� a priori, since by setting it too small we would

run into numerical errors, and by setting too large the variation of e might be no longer well

described by a linear curve. If one assumes that the numerical evaluation of the sensitivity based

on the adjoint state yields at least the correct order of magnitude, one can choose the parameter

� to ensure that the function approximately varies by a relative amount � . Calling de=dxjAS the

evaluation of the gradient using the adjoint state approach, one could then write:

e(x + � ) � e(x) + �
de
dx

�
�
�
AS

Now say that we would like the function to vary by about 0.1%, we set � = 10 � 3 and we can

write: e(x + � ) = (1 + � ) e(x). This yields;

� e(x) � �
de
dx

�
�
�
AS

, � � ~� (x) with ~� (x) = �
�
�
�

e(x)
de=dxjAS

�
�
�

One can then set a range of possible values for� in the vicinity of ~� (x) - for instance in the

range [0:1 ~� (x); 10 ~� (x)] - and then do a polynomial �t. The sensitivity is then the coe�ci ent of

the linear term of this polynomial.

Even though this process is relatively tedious, it is clear that errors may remain in the

evaluation of the sensitivity using �nite di�erences. This is one of the reasons why sensitivities

are usually not calculated with this approach. Here this calculation is done for the purpose of

validating the expressions derived in section 4.3.1.

4.4.3.1 Shape parameters

Results for the sensitivities with respect to shape parameters are presented table 4.1. Writing

r ejAS the gradient vector obtained by the adjoint state calculation of the sensitivities and r ejFD
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that obtained using �nite di�erences, one can de�ne the error based onthe in�nity-norm of the

gradient vector, de�ned as:

E1 =
jjr ejFD � r ejAS jj1

jjr ejFD jj1

which gives an estimate on how accurate the whole gradient vector is, since this is really what

is used in the optimization algorithm.

Relative errors for each node and each component between the sensitivity value derived from

�nite di�erences (FD) and that derived from the adjoint state approach (AS) are shown, as well

as the error E1 based on the in�nity norm for all nodes and each component. First of all, one

can notice that the displacements of nodes located close to the source(nodes 0 to 5) induce a

much bigger change in the objective function than nodes on the opposite side (nodes 6 to 11).

The relative error is also signi�cantly larger for the opposite nodes, but because the sensitivity

is much smaller on this side, this should not in
uence the optimization process too much. Also,

one should realize that without the added jump terms in the shape derivative formula given

in equation (4.22), one would have obtained zero for the calculation of the second component

of most nodes sensitivities (except the nodes 5 and 6), since their variations correspond to

tangential velocity �elds.

Even though the error is rather small for most nodes with a signi�cant sensitivity, it is large

for nodes 5 and 6, that is at the nodes making the corners of the wall. Indeed, there is a large

di�erence in the error based on the in�nity norm when the two corner nodes are taken into

account or not: 35% and 43% with, 1.3 and 2.8% without. Such a large error when evaluating

the sensitivity with respect to corner node coordinates was expected, as mentioned in section

4.4.2, due to the singularity in the pressure gradient which cannot be resolved numerically. It

is however noticed that sensitivities at the corner have at least the correct sign, which means

that an actual decrease (respectively increase) in the objective function by increasing a node

coordinate is predicted by the adjoint state sensitivity calculation to be a decrease (respectively

an increase) as well, even though the predicted change might be signi�cantly over- or under-

estimated. Because of this fact, it is likely that this source of errorwill not cause too big an

issue in the optimization process.

Shape sensitivity values

Node #
First component Second component

FD AS Err.[%] FD AS Err.[%]
0 -8.59e-2 -8.57e-2 0.1 - - -
1 2.39e-2 2.39e-2 < 0.1 -1.92e-3 -1.92e-3 0.3
2 8.69e-2 8.75e-2 0.8 -4.85e-3 -4.97e-3 2.6
3 -5.70e-2 -5.59e-2 1.9 -1.42e-3 -1.41e-3 < 0.1
4 -3.35e-2 -3.37e-2 0.6 -4.28e-4 -4.41e-4 3.1
5 -3.93e-2 -8.84e-3 77.5 3.10e-2 5.14e-3 83.4
6 -4.09e-2 -4.47e-2 9.2 -5.88e-2 -5.61e-2 4.5
7 1.29e-2 1.30e-2 0.3 -5.68e-4 -4.30e-4 24.2
8 -1.53e-3 -1.78e-3 16.2 -2.48e-4 -2.03e-4 18.1
9 3.02e-3 3.06e-3 1.2 -2.07e-5 -5.25e-5 154.1
10 3.41e-3 3.45-3 0.9 -2.39e-4 -1.97e-4 17.8
11 -5.83e-3 -5.84e-3 0.2 - - -

Error E1 - - 35 - - 43

Table 4.1: Comparison of the broadband objective function sensitivity wit h respect to control nodes coordinates
for the geometry given in �gure 4.7, calculated with �nite di�ere nces (FD) and the adjoint state approach (AS)
(with four frequencies per third-octave between 100 and 2500 Hz).
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4.4.3.2 Admittance parameters

A similar comparison can be made for admittance parameter sensitivities. Here it has been

assumed that the �ctitious admittance distribution is constant over frequency and that the pa-

rameters describing the admittance are the admittance values themselves. Results are presented

in table 4.2. The error is small for most segments, although slightly larger close to corners

(segments 5, 6 and 7). The error is however smaller than in the node coordinate case, since the

admittance sensitivity depends on the state and adjoint state values only, which are solved with

a much better accuracy than for the tangential derivatives.

Shape sensitivity values

Segment #
Real part Imaginary part

FD AS Err.[%] FD AS Err.[%]
1 -8.55e-2 -8.56e-2 0.1 1.24e-2 1.24e-2 < 0.1
2 -1.73e-2 -1.73e-2 < 0.1 2.25e-3 2.26e-3 0.4
3 -2.17e-2 -2.17e-2 < 0.1 7.64e-3 7.65e-3 0.2
4 -1.14e-2 -1.14e-2 0.1 1.13e-2 1.13e-2 0.1
5 -1.02e-2 -1.03e-2 0.4 -4.23e-3 -4.27e-3 1.0
6 -4.95e-3 -4.98e-3 0.6 -2.02e-2 -2.02e-2 0.2
7 -4.18e-3 -4.21e-3 0.6 -2.87e-4 -2.71e-4 5.5
8 5.26e-4 5.27e-4 0.2 9.93e-4 9.89e-4 0.4
9 -8.22e-3 -8.88e-3 8.0 -2.08e-4 -2.08e-4 < 0.1
10 1.82e-4 1.74e-3 4.3 9.47e-4 9.48e-4 0.1
11 2.74e-5 3.52e-5 28.2 -1.00e-3 -9.99e-4 0.1

Error E1 - - 0.2 - - 0.2

Table 4.2: Comparison of the broadband objective function sensitivity wit h respect to admittance parameters
for the geometry given in �gure 4.7, calculated with �nite di�ere nces (FD) and the adjoint state approach (AS)
(with four frequencies per third-octave between 100 and 2500 Hz).

4.5 Conclusion

The goal of this chapter was essentially to show that it is possible to calculate e�ciently and

accurately the sensitivity of the chosen objective function (the weighted broadband attenuation

of the low-height noise barrier) with respect to parameters describing the shape and the ad-

mittance distribution of the barrier. Convenient derivation of the s ensitivity expressions can be

made by expressing the scattering problem under a weak formulation and by consideration of

the adjoint state, which is found to be the pressure �eld solution of another scattering problem.

Although this approach has been followed by many authors including Allaire[146] and Bonnet

[149], we have focused more speci�cally on the context of the MICADO software (BEM reso-

lution with linear shape functions) and in the assumed modeling context (2D modeling, image

barrier approximation, rigid ground). The given expressions howeverinclude extra terms to take

into account discontinuities of the di�erent �elds.

It is also found that shape sensitivity calculation is not accurate closeto geometrical singu-

larities, namely corners, as soon as the exterior angle exceeds� . This is due to a singularity in

the pressure gradient close to corners, which cannot be resolved properly by classical �nite ele-

ment discretization techniques. A re�nement strategy speci�cally close to corners is proposed to

limit the error, which nevertheless stays important. Is is however believed that this inaccuracy

will not cause severe issues in the optimization process.
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Chapter 5
Application to the shape optimization

of rigid barriers

5.1 Introduction

The optimization algorithm is �rst applied to the case of entirely rigid barriers. Acoustical treat-

ments which can typically provide absorption can indeed help in increasing the performance of

the low-height noise barrier, however such treatments can be costly and require proper pack-

aging to avoid any health hazard issues. Sustainability of an absorbing treatment acoustical

performance is also an issue especially in outdoor environments. Therefore in this chapter we

focus on purely rigid barriers, which could be made out of concrete for instance, but we allow

the shape of the barrier cross-section to be optimized. This implies that the admittance � is set

to zero over the whole boundary �.

Several \starting" geometries are considered, which we will referred to as: small wall, medium

wall, quarter cylinder, T-shape and Gamma-shape (see �gure 5.1). The medium wall seems like

the most natural choice for a low-height barrier. The small wall geometry(which is essentially a

simple wall but only 0.5 m high) has been chosen to see if the shape optimization process would

tend to increase the height or not. The quarter-cylinder was chosen because a round geometry

di�racts sound in a radically di�erent way compared to more usual strai ght geometries. The

T-shape geometry also seemed like a natural choice as it is considered in general as one of the

best geometry for a noise barrier (especially in the highway case). Finally, the Gamma-shape

geometry is essentially a more compact version of the T-shape, and therefore it seemed interesting

to study how much the far end of the \T" would in
uence the result of t he optimization.

The control mesh of each initial geometry is �rst generated with a maximum distance between

two adjacent nodes of 2 cm. Depending on the geometry, this yields 62 to 183 control nodes,

therefore 112 to 364 optimization variables (details are given in the captionof �gure 5.1). The

optimization algorithm is the steepest descent method with backtracking and box projection (as

explained in section 3.5 and appendix D).
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APPLICATION TO THE SHAPE OPTIMIZATION OF RIGID BARRIERS

��

��

������

������

��

��������

��

��������

��

��������

��

��������

Figure 5.1: De�nition of the �ve initial geometries for the rigid low-height barrier shape optimization. Dimen-
sions are given in meters. The dotted line represents the one meter wide constraint box. The number of nodes
representing each geometry is indicated as well in parenthesis. Top left: medium wall (112 nodes) ; top middle:
small wall (62 nodes) ; top right: quarter cylinder (131 nodes) ; bottom left: T-shape (183 nodes) ; bottom right:
Gamma-shape (143 nodes).

5.2 Results

First, geometries at the initial and �nal step of the optimization algorith m for the considered

cases are shown in �gure 5.2. Corresponding broadband insertion losses inthe considered fre-

quency range are shown in table 5.1, as well as third-octave insertion losses in �gure 5.3. First

of all, one can notice that the shape optimization increased the e�ciency signi�cantly in all

cases (of about 6 dB(A) in general and of 11 dB(A) for the medium wall geometry) except for

the quarter cylinder case (+ 3 dB(A)). However, the initial perform ance of the quarter cylinder

barrier was much higher than those of the other cases, and therefore one could have expected a

smaller improvement due to the optimization.

Table 5.1: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the considered
starting geometries and corresponding optimized geometries.

Medium wall Small wall Quarter cylinder T-shape Gamma-shape

Initial 4.2 1.8 10.3 5.3 5.9
Optimized 15.2 8.2 13.3 11.3 11.1

For all geometries, the part of the barrier opposite to the source (the \back" side) does

not undergo strong alterations. Indeed, since the displacement of the geometry is based on

the sensitivity, which is small for nodes located on this part of this barrier as shown in section

4.4.3, the algorithm had no reasons to alter the back side signi�cantly. Furthermore, this also

implies that any type of treatment could be applied on the back side of the barrier, due to its

limited in
uence on the acoustic performance. For instance, one couldthink of covering it with

vegetation or any material that could meet aesthetic or environmental requirements.
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Figure 5.2: Initial and optimized geometries for the considered starting ge ometries and assuming rigid admit-
tance coverage. Top left: medium wall - top center: small wall - t op right: quarter cylinder - bottom left: T-shape
- bottom right: Gamma-shape. Solid line: optimized geometry - d otted line: initial geometry. The one meter
wide constraint box is shown as well.
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Figure 5.3: Comparison of third-octave insertion losses in dB between init ial and optimized geometry, and
for the �ve considered starting geometries. Solid line: optimiz ed geometry - dotted line: initial geometry. Top
left: medium wall - top right: small wall - middle left: quarter cy linder - middle right: T-shape - bottom:
Gamma-shape.
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APPLICATION TO THE SHAPE OPTIMIZATION OF RIGID BARRIERS

However, there seems to be a general trend in the way the shape optimization altered the

di�erent geometries: the part of the barrier most exposed to the radiation of the source - the

\source" side - tends to become more irregular. Especially in the small wall case, instead of

signi�cantly increasing the height, the optimization rather made the barrier cross section more

irregular, and indeed the broadband e�ciency of the optimized small wall is higher than that

of the initial straight medium wall. From the third-octave inserti on losses (see in �gure 5.3),

one can see that all optimized geometries attenuate higher frequencies(typically above 600 Hz)

more e�ciently. We believe that the insertion losses of the optimized geometries are higher

because multiple re
ections phenomena between the barrier and the ba�e (tramway side) are

somewhat prevented due to the irregularities. However, since thebarriers have been assumed

rigid, there is no absorption of acoustic energy, which implies the increase of attenuation at

higher frequencies is related to the redirection of the acoustic energy, away from the shadow

zone. To have a closer look at this e�ect, one can compare the intensitymap between the initial

and optimized geometry, calculated at a frequency where the attenuation is increased. The

time-averaged intensity vector I is calculated at one frequency as:

I =
1
2

Re(p� v) =
1
2

Re
� p� r p

ik � 0c0

�

with v the particle velocity which has rewritten in terms of the pressure gradient using Euler's

equation. The pressure gradient is calculated via its integral representation, as explained in

chapter 2. Examples of intensity maps calculated at 1000 Hz in the medium wall case and the

small wall cases are shown in �gure 5.5. One can indeed notice that for the optimized geometry,

the energy tends to propagate mostly in thex2 direction, parallel to the vertical ba�e, whereas

in the initial geometry a signi�cant part of the energy is directed tow ards the shadow zone. One

can also notice the presence of recirculating regions of sound energy with the optimized irregular

shapes, which would also cause less energy to reach the shadow zone. Those two e�ects could

explain why there is an increase of attenuation behind the barrier with the optimized shapes

compared to the case of simple straight barriers.

Finally, the evolution of the objective function for all geometries is shown in �gure 5.4. One

can notice the convergence was rather fast (at most a few dozens iterations). This is consistent

with the fact that, as pointed out in chapter 3, sensitivity-based methods are inherently faster

than evolutionary methods (convergence is achieved in a small numberof iterations).
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Figure 5.4: Evolution of the objective function during the optimization for the �ve geometries given in �gure
5.1, with either 4 or 10 frequencies per third octave. Thin solid line: medium wall - thick solid line: small wall -
dotted line: quarter cylinder - thin dashed line: T-shape - th ick dashed line: Gamma-shape.

82










































































































































































































	Contents

