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Etude de la performance acoustique desecrans antibrdstilole
hauteur pour le tramway : optimisation numerique par nedle
de gradient et approches experimentales

Resune

Le bruit est devenu une nuisance importante en zone urbaine au point gaiselon I'Organisation
Mondiale de la Sant, 40% de la population europeenne est expoeea és niveaux de bruit ex-
cessifs, principalement d0 aux transports terrestres. 1l dewvent donc recessaire de trouver de
nouveaux moyens de lutter contre le bruit en zone urbaine.

Dans ce travail, onetudie une solution possiblea ce probeme : urecran bas antibruit. I
s'agit d'unecran de hauteur inErieurea un netre pla@ pe s d'une source, corcu pour eduire
le niveau de bruit pour les petons et les cyclistes a proximie. Ce type de protection est
etude nuneriguement et exgerimentalement. Nous nous int eressons particulerement auxecrans
adapes au bruit du tramway puisque dans ce cas les sources sont proeh du sol et peuvent étre
ateniees e cacement.

La forme ainsi que le traitement de surface de lecran sont optimiss par une nethode de
gradient coupkea une nethode 2D deéments nis de fronti ere. Les variablesa optimiser sont
les coordonrees de n uds de contrble et les paramnetres servantacecrire I'impedance de surface.
Les sensibilies sont calcukes e cacement par la methode de ktat adjoint.

Les formes cereees par l'algorithme d'optimisation sont assez irreguleres mais induisent
une nette anelioration par rapporta des formes simples, d'au moins 5 dB(A). Il estegalement
monte que l'utilisation de traitement absorbant du cot source de lecran peut aneliorer la
performance sensiblement. Ce dernier point est con rire par des rasures e ectiees sur mocele
eduit.

De plus, un prototypea lechelle 1 decran bas antibruit aet e construit et tese en conditions
eelles, le long d'une voie de tramway a Grenoble. Les mesures mdrent que la protection
eduit le niveau de 10 dB(A) pour un ecepteur proche sittea h auteur d'oreilles. Ces esultats
semblent donc con rmer I'applicabilie de ces protections pour reduire e cacement le bruit en
zone urbaine.

Mots-ceés : Ecrans antibruit de faible hauteur, Bruit de tramway, Conception optimale par
nmethode de gradient, EEments nis de frontere, Mesures sur moctles eduits , Mesures sur
prototype en conditions eelles



A study of the acoustic performance of tramway low heiglkenoi
barriers: gradient-based numerical optimization andrerpatal
approaches

Abstract

Noise has become a main nuisance in urban areas to the point that according tihne World
Health Organization 40% of the European population is exposed to excessive @i levels, mainly
due to ground transportation. There is therefore a need to nd new ways to mitigate noise in
urban areas.

In this work, a possible device to achieve this goal is studied: a loweight noise barrier.
It consists of a barrier typically less than one meter high placed clos¢o a source, designed to
decrease the noise level for nearby pedestrians and cyclists. Thigpe of device is studied both
numerically and experimentally. Tramway noise barriers are espeaily studied since the noise
sources are in this case very close to the ground and can therefore be aiteated e ciently.

The shape and the surface treatment of the barrier are optimized using gradient-based
method coupled to a 2D boundary element method (BEM). The optimizaton variables are
the node coordinates of a control mesh and the parameters describindié surface impedance.
Sensitivities are calculated e ciently using the adjoint state app roach.

Numerical results show that the shapes generated by the optimization gorithm tend to be
quite irregular but provide a signi cant improvement of more than 5 d B(A) compared to simpler
shapes. Utilizing an absorbing treatment on the source side of the barer is shown to be e cient
as well. This second point has been con rmed by scale model measurenis.

In addition, a full scale low height noise barrier prototype has been bilt and tested in situ
close to a tramway track in Grenoble. Measurements show that the deee provides more than
10 dB(A) of attenuation for a close receiver located at the typical height ofhuman ears. These
results therefore seem to con rm the applicability of such protecions to e ciently decrease noise
exposure in urban areas.

Keywords: Low-height noise barriers, Tramway noise, Gradient-based optimal dsign, Boundary
element method, Scale model measurements, In situ measuremendf a prototype device



Long esune en frarcais

En tant qu'outil principal pour le contréle du bruit en milieu ext erieur, lesecrans antibruit ont
ek largementetudes dans la seconde moite du 20°™¢ secle, d'un point de vue pratique mais
aussi dans une perspective de recherche. Cesecrans ont surtoete utilises pour eduire le bruit

a proximie des autoroutes et des voies de trains en milieu rural & peri-urbain. Cependant,

il devient de plus en plus important de eduire le bruit non seulement le long des grands axes
routiers et ferroviaires maisegalement au c ur des zones urbainespuisque le bruit est une des
nuisances principales pour les habitants des villes. En e et, de ambreuses sources de bruit sont
pesentes au sein des villes, notammenta cause de tous les moygie transport qui y coexistent :
tra c routier, bus, transports guices comme le metro mais aussi le tramway. Concevoir desecrans
antibruit adapesa ce type d'environnement, notamment pour qu'i Is puissent étre impemenes
pes d'un moyen de transport urbain bruyant, semble donc prometteur dans un objectif de
eduction du bruit en milieu urbain. Ces protections doivent &t re bien sOr su samment petites
pour pouvoir étre inegees facilementa un environnement con re comme l'espace urbain, d'a
le nom déecran de faible hauteur ou encore decran bas. L'application deces protections a
la eduction du bruit du tramway semble particulerement int eressante d'une part parce que
ce moyen de transport peu polluant a connu un regain d'inerét cette dernere decennie dans
plusieurs grandes villes en Europe eta travers le monde, et d'aut part parce que les sources
de bruit du tramway sont principalement sittees pes du sol et donc seraient plus e cacement
ateniees par unecran bas. Ce travail a donc pour principal objecti f detudier lesecrans antibruit
de faible hauteur adapes au tramway, du point de vue de la conception ake par simulation
nunerique, mais aussi exgerimentalement.

A la dierence des cas plus classiques d'impementation decrans antibruit, au sein d'un
espace urbain les distances entre source et ecepteur peuveatre de l'ordre de quelques netres
seulement. Ceci suggere que les e ets nmetorologiques lors deal propagation du son peuvent
étre regliges dans ce contexte. L'e cacie d'unecran bas en te rme de eduction du bruit est
donc principalement controke par la geornretrie des objets dans ®n voisinage proche (comme
la caisse du tramway par exemple, qui peut induire le ptenonenede e exions multiples), les
proprees acoustiques du sol et les caraceristiques de lecran lui-mé&me, c'esta-dire sa geomnetrie
et les proprees acoustiques des makriauxa sa surface. A caug de cette dependance et des
prenonenes complexes de e exion et de di raction mis en jeu, optimiser lecran de manere
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nunerique pourra certainement apporter un gain signi catifa son e cacie.

La methode desekments nis de fronteres (BEM) est une de s rares nethodes nurneriques
capable de rendre compte avec pecision de tels e ets, et a donct choisie pour calculer le
champ acoustique autour de lecran, et par conequent son e cacie. Le logiciel MICADO
cevelope au CSTB aet utili® dans ce but. De plus, comme les algorithmes d'optimisation
recessitent de nombreux calculs de champs (et donc de nombreux calls BEM), des hypotteses
simpli catrices peuvent étre faites pour acekrer le temps de calcul, tout en gardant un niveau
de pecision acceptable. Le sol est donc consicce comme rigide, ela pesence du tramway
est moctliee comme un ba e vertical in ni, ce qui revient math ematiguementa introduire
unecran image. La taille du maillage est consicerablement eduite avec cette approche, tout
comme le temps de calcul. La plage de fequences detude est de 1@02500 Hz, ce qui couvre
une grande partie du spectre demission du tramway. De plus, si Ibn suppose que lecran est
su samment long et de section constante, on peut se placer dans un cadréi-dimensionnel
moyennant une mocktlisation de la source comme ligne source coleren Il est cependant connu
que l'approximation 2D est valide pour calculer I'atenuation en bande ne pour un point source
en 3D, ce qui est pecigment ce qui est utilie dans la foncton objectif choisie. Ceci dit, une fois
I'optimisation termiree, ces approximations ne sont plus recesgires et le calcul de I'e cacie
peut se faire de manere plus pecise.

Dans ce travail,a la fois la forme et le traitement de surface de kecran sont optimises. Bien
gue dans certains cas il soit possible de cecrire la forme d'une@na l'aide d'un petit nombre de
paranetres correspondanta des caraceristiques particuleres (succession d'asgeries de hauteur
dierentes par exemple), il aee choisi de repesenter la forme de lecran d'une manere tes
ererale, par un ensemble quelconque de points de contréle, eek variablesa optimiser sont donc
les coordonrees de ces points. Une contrainte doit étre cependanajouee pour s'assurer que la
courbe cecrivant la forme de lecran ne se replie pas sur elle-rafme, et doit donc étre injective.
En ce qui concerne le traitement de surface, deux types de traiteemnts sont consicees dans ce
travail : une couche de maekriau poreux, qui absorbe le son e cacementen hautes fequences,
et un traitement eactif, e cace dans des bandes de fequences particuleres correspondant aux
esonances du traitement. De plus, on consicere deux types de matiaux poreux : un maeriau
de type breux - par exemple de la laine de verre - et du keton de clanvre, matriau plus durable
fabriquea partir de bres \egetales. On mocklise 'eet d e ces traitements par une admittance
de surface, qui est cecrite soit par le mockle de Delany et Bazleypour le matriau breux,
soit par un mocele hybride de maeriau poreux (Johnson-Zwikker-Kosten) pour le keton de
chanvre. Le traitement eactif choisi est un esonateura panneau micro-perfoe, dont on cecrit
l'admittance par le moctle de Crandall-Sivian-Fok.

L'optimisation des coordonrees des points de contrble et des paranges qui cecrivent I'admit-
tance des dierents traitements est e ectwee par un algorithme d e gradient. La cerivee de la fonc-
tion objectif par rapporta tous ces pararetres est calcuee e cacem ent en utilisant la methode
de letat adjoint adapee au probeme de la di raction acoustique. Ce type d'algorithme ne peut
trouver qu'une solution locale du probeme d'optimisation, cependant le nombre d'ierations et
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donc devaluations de la fonction objectif est bien plus faible avecce type de nethode qu'avec des
methodes d'optimisation globale, comme par exemple les algorithmes egetiques. La nethode
d'optimisation choisie sert donca aneliorer la performancea partir d'unecran initial choisi,
plutét qua trouver la solution optimale du probeme. De plus, comme les contraintesa appi-
quer aux paranetres de forme sont dierentes de celles appliguees aux paramnetres d'admittance,
il aet choisi d'utiliser deux types d'algorithme de gradient di erents : la nethode SQP (Se-
guential Quadratic Programming) pour les paranetres d'admittance, et une version adapte de
la methode de la plus grande pente (steepest descent) pour lesapanetres de forme. En e et,
bien que la nethode SQP converge plus rapidement, il est plus asd'impementer la contrainte
d'injectivie de la courbe avec la nethode de la plus grande pente.

Tout d'abord, l'algorithme d'optimisation propos est appliqe au cas des ecrans rigides,
ce qui serait le cas s'iletait fabriqe par exemple en keton. En eet, bien que les traitements
acoustiques peuvent étre e caces pour aneliorer la performance acostique de lecran, ils peu-
vent avoir un colt environnemental important et recessiter une mise en uvre particulere, par
opposition aux maeriaux rigides dont la mise en uvre est gererale ment plus aiee. Plusieurs
formes ontet choisies comme points de depart de l'algorithme d'optimisation de forme, no-
tamment un simple ecran droit et unecran en forme de T. Dans tous lescas, l'algorithme a
converg rapidement, en seulement quelques dizaines d'i&tions au maximum. Alors que les
ecrans de eparta geonetrie simple avaient une e cacie ass ez faible - atenuation inerieurea
6 dB(A) - lesecransa forme optimise ont une e cacie signi cati vement pluselewee - de 11
a 14 dB(A). Cette augmentation est duea une anelioration de l'atenu ation aux moyennes et
hautes fequences, au-deh de 500 Hz. Les formes optimises pemtent de fortes iregularies
sur la partie de lecran directement exposea la radiation de la source et aux e exions sur le
tramway. Des calculs suppementaires du champ d'intensie senblent montrer que cette aug-
mentation de l'atenuation est due a une redirection de lenergi e acoustique vers le haut, ce
qui diminue la di raction vers la zone d'ombre de lecran. Ces irregularies semblent donc agir
contre le prenonene de e exions multiples entre lecran et le tramway.

Dans un second temps, l'algorithme d'optimisation de forme a et appliqe dans le cas
decrans recouverts de traitement absorbant poreux de type laine deverre. A nouveau, la con-
vergence est rapide et I'optimisation de forme induit une anelioration de 5 dB(A) d'atenuation,
et I'e cacie totale pedite atteint 20 dB(A). La geonetrie est ¢ ependant moins aleee du coe
de la source mais plus dans la partie haute de lecran, par rapport au cas &k ecrans rigides.
Cette observation semble suggerer que lorsque les e exions mtiples entre lecran et le tramway
sont fortement atenwees par un maeriau absorbant, I'optimisation d e forme peut tout de méme
permettre d'aneliorer I'e cacie en jouant sur les e ets de di  raction qui sont peponcerants
dans la zone haute de lecran. Des esonateurs aux paramnetres bientwisis peuventegalement
augmenter l'atenuation aux fequences moyennes. De plus, des prformances similaires sont
obtenues lorsque l'optimisation est e ectiee en rempleacant le magriau breux par du keton de
chanvre.

Puis, une fois les solutions decrans optimiges trouwvees, on peti e ectuer des calculs plus
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pecis en enlevant les hypotheses simpli catrices qui avaienet faites pour diminuer le temps de
calcul pendant I'optimisation. Le tramway peut donc &tre remplae par une caisse de geonetrie
plus ealiste, le sol peut étre potentiellement absorbant et plusieurs moctles de sources sont
consicees en plus du mocele de ligne source colerente : un pait source en 3D, une rie de
point sources incoterents (qui approxime une ligne source incohente nie) sur une longueur
egalea celle d'un tramway - soit 43 netres pour le Alstom Citadis 402 implanea Grenoble - et
en n une ligne source incolerente in nie. Ces sources sont modiees par une approche BEM
2.5D, eta cause de la complexi cation importante du mockle, les calails sont e ectles jusqua
1800 Hz seulement. Tout d'abord, au vu de la grande dierence dans les mvisions entre la ligne
source incoterente nie et in nie, et puisque consicerer une source nie semble bien plus ealiste,
les esultats obtenus par la ligne incolerente in nie ne sont pas retenus puisque apparemment
peu pertinents dans notre cas.

Pour tous les autres mockles de source, les calculs montrent que |gerte par insertion est
eduite d'environ 1 dB(A) quand la caisse du tramway est moctlisee plus peciement, et de
2a 4 dB(A) quand le sol est fortement absorbant. Lorsque l'incoterence spatiale de la source
est prise en compte (mockle de ligne source incolerent nie), latenuation est sensiblement
diminwee surtout en basses fequences. Malge cela, les pert par insertion globales restent
importantes, surtout lorsque le sol est rigide : de 9a 12 dB(A) d'ate nuation pour lesecrans
optimises rigides, et de 16a 19 dB(A) pour lesecrans de forme et de taitement optimises.

En compkement des simulations nurnreriques, une nethode pour nesurer |'atenuation d'un
ecran de faible hauteur pes d'un tramway en utilisant des moce les eduits @ lechelle 1/10) a
et ceveloppee et valicke dans des cas simples. On utilise une source impulsive, de type source
etincelle, et une nethode de fenétrage temporel pour rejeterles e exions parasites. Le spectre
de la source utilie est exploitable de 200a 1800 Hz enechelle die (soit 2 kHza 18 kHza
lechelle de la maquette). Les mageriaux poreux de type breux sont reproduits dans la maquette
par des couches de feutrine. A titre d'exemple, cette nmethodeest appliqueea unecran en forme
de T recouvert de quanties dierentes d'absorbant. La correspondance entre calculs BEM et les
mesures est bonne. Notamment les mesures ont con rie la faible e cate d'un simpleecran
rigide, ainsi que l'inerét d'utiliser un traitement absorbant sur le coe source. Cependant, il est
a noter que la BEM tenda sous-estimer egerement l'atenu  ation en basses et hautes fequences.

En n, un prototype decran antibruit de faible hauteur aee cons truit et instale en conditions
eelles pes d'une voie de tramway de I'agglorreration Grenobloise. Le prototype, en forme de
Gamma, aet fabrigle gracea deseements de bois aggloree, d ont le coe expose au tramway
est recouvert de laine de verre, pour une longueur totale de 22 netres Le prototype aet
instale temporairement dans un quartier esidentiel assez calne de Saint-Martin-d'Heres au
milieu duquel passe le tramwaya des vitesses qui peuvent &rimportantes - jusqua 60 km/h -
et donc les mesures ont pu étre faites avec un bon rapport signal sur bit. Une srie de mesures
au passage avec et sans lecran ontee faitesa 1.5m du sol eta 3m du &il, soita une position
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repesentant un petona proximie du tramway. La vitesse de s tramways lors de leur passage a
etegalement mesuee gracea un microphone auxiliaire plae t es pes du rail.

Les mesures montrent qu'il y a une variabilie importante dans les riveaux au passage entre
les dierents trams, méme lorsque qu'une correction de niveau diea la vitesse est appliglee.
Cependant, l'atenuation de lecran est en moyenne sugerieurea 10 dB(A), durant tout le pas-
sage, et ceci bien que la longueur de lecran soit seulement la maitide celle du tram. Une
analyse en fequence des enregistrements aegalementet faé, et a monte que la perte par
insertion entre 200 et 2500 Hz est d'environ 13 dB(A). En n, une comparaison &t e ectlee
entre les mesures et des calculs BEM simplies et a monte queles pevisions donnent de bonnes
estimations de la performance eelle,a environ 3 dB(A) pes, malge le fait que I'environnement
soit fortement ickali® dans les calculs. Des calculs suppkmataires suggerent cependant que
I'atenuation obtenue en conditions eelles avec un telecran pourrait &tre anelioee sensiblement
par une meilleure conception.

Pour conclure, on peut dire que la conception decrans antibruit defaible hauteur pour le
milieu urbain, en tant que sujet relativement ecent dans la comnunaute du controle du bruit
environnemental, repesente un ¢e important puisque ce type de protections pourrait changer
radicalement la facon d'habiter I'espace urbain. En se basant sur lesesultats issus de letude
d'optimisation nunerique ainsi que sur les mesures colleceesau cours de ce travail, on peut
armer que lesecrans de faible hauteur peuvent étre des solutiors e caces pour eduire le
bruit du tramway, méme pour des ecepteurs proches, typiquenent des petons et des cyclistes,
mais aussi pour les batiments environnants. Il est probable que lescrans de faible hauteur
soient aussi e caces pour atenuer n'importe quelle source de brui urbaine, pourvu que les
sources soient relativement proches du sol et que lecran puissigre plae su samment pes.
semblerait aussi qu'il soit particulerement important de bien concevoir unecran bas, puisque
son e cacie epend fortement de sa forme et des traitements qui lui sont appligques, notamment
lorsqu'il est entoue d'autres objets qui peuvent induire un phenonene de e exions multiples.
Dans cette perspective, les nethodes d'optimisation comme cedl propose dans ce travail sont
donc des outils extrémement utiles d'aidea la conception de tdes protections.
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Introduction

Noise exposure is still an important nuisance in 23 century society, especially in urban areas
where many sources of noise coexist, including tra c, trains, but also tramways which have been
developing recently in several cities. Urban environments are alsoharacterized by the fact that
receivers - pedestrians and cyclists - can be very close to noise sces and therefore exposed
to high levels, even though urban noise sources are by themselves not kmid as other more
traditional environmental noise sources.

Noise barriers are a common strategy to decrease noise levels in a given ardhowever
typical solutions - commonly built along highways and train tracks - are not applicable in urban
areas. This is why the concept of low-height noise barriers has been deoped: due to the
very con ned environment one could nd in a dense city, noise barries need to be adapted
to t to this environment, and therefore should be small - typically less than one meter high
- and well-integrated to the urban landscape. Besides, low height nee barriers seem like a
particularly appropriate way to mitigate tramway noise, since in this case most sources are close
to the ground and have very little spatial variability (as opposed to tra ¢ noise), and safety
requirements are such that a device could be set up very close to aamway track. The purpose
of this work is therefore to study a low height noise barrier meant to atenuate tramway noise,
from a numerical and experimental standpoint.

One can indeed raise the question of how to design such a device to neak as e cient as
possible in terms of acoustic e ciency. Indeed, because of the tramay itself being so close to the
barrier, one expects multiple re ections to happen, which suggest that the design of the barrier -
its shape and its surface treatment - will have a signi cant in uence on its e ciency. Optimizing
the design is therefore likely to provide good improvement of thebarrier noise reduction.

For this purpose, it is necessary to develop an e cient optimization method coupled with a
numerical tool able to predict the e ciency of a given design accuratdy. The method will also
have to be general enough to explore a vast set of possible designs, andtfasough to provide
solutions in a reasonable computation time. Such a general method can thebe applied in
di erent con gurations involving for instance di erent choices of su rface treatments. In addition,
extra calculations can be made to check the performance of the optimizknoise barriers in a
more realistic situation.

Moreover, performing such a numerical optimization should allow us b determine what key
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INTRODUCTION

features of a low height barrier are essential to attenuate tramway nois e ciently. It would then
be possible to choose an appropriate design for an actual full scale low lgét barrier prototype.
Building and setting up such a prototype would provide insight regarding the feasibility and the
actual in situ performance of low height barriers for tramway noise redition applications.

It should also be pointed out that this work is the continuation of another Ph.D. dissertation
completed by the author at the Pennsylvania State University [1]. This work was also concerned
with tramway low height noise barriers optimization, but focused esentially on surface treat-
ments. The author acknowledges that a portion of the present documenis indeed very similar
to what has been presented in [1]. Nevertheless, the reader is enadaged to look at this previous
work as well to be convinced of the originality of the present document

This dissertation is organized as follows. Chapter 1 reviews parts of b accumulated knowl-
edge of noise barriers in general, and low height noise barriers in partidar. More speci cally
physical e ects that may in uence the acoustic performance of a noisereducing device are re-
viewed, and corresponding modeling assumptions for the context of aamway low height noise
barrier are proposed. Common numerical prediction methods are reviegd as well, and argu-
ments are given towards the choice of using the boundary element metid (BEM) to calculate
the device performance.

Chapter 2 presents the foundations of the BEM which is the integral egation method to
solve the forward scattering problem. Important results regarding the weak formulation of the
problem are recalled, as well as some numerical issues regarding geornel singularities. These
results will be directly applied in chapter 4.

Chapter 3 reviews optimization methods to tackle the optimization problem at stake, which
is the minimization of an objective function depending on the solution of a boundary value
problem. Arguments are given towards the interest of using a senswity-based optimization
method coupled with the adjoint state approach, which allows one to usea large number of
variables without signi cant increase of computation time. A general algorithm to optimize
both the shape and the surface treatment of the barrier is presented.

In chapter 4, the calculation model - including the di erent physical assumptions - used in
the optimization and the considered objective function are summarizd, and the expressions of
the sensitivities of the objective function with respect to all parameters are derived, implemented
numerically and validated.

Chapter 5 presents optimized designs obtained with the algorithm, assming the barrier is
made of a rigid material such as concrete. Extra numerical calculations a& made to further
analyze the generated optimized shapes. The optimization algorithm is ten applied in chapter
6 in a more general context, in which both shape and admittance parametersre optimized
at the same time. Optimized solutions coupling shape-optimized absdning porous layers and
micro-perforated panel resonators are presented, and again extra calculans are performed and
discussed.

Chapter 7 presents an experimental method to measure the insedin loss of a low height
barrier design in the presence of a tramway using scale models. Thmethod is applied to study

2



experimentally the e ect of an absorbing treatment on a simple T-shape barrier.
Chapter 8 presents a full scale low height barrier prototype which fas been set up next to
a tramway track in Grenoble. Measurements of pass-by levels with andavithout the device are
presented and analyzed, and arguments are given towards the feasibilitof such devices.
Finally, in chapter 9, conclusions are drawn and suggestions for future ark are discussed.
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Chapter

What Is a noise barrier and how does it
work ?

1.1 Introduction

Along with the industrialization of society, the growth of urban areas as well as the development
of transportation infrastructures, noise has become a serious nuisanda 215t century society.

Working in an o ce building or in a plant, wandering in a city, or even t raveling across a
country or across the world oceans, noise always surrounds and possibly mwys us. Noise can
even represent a danger to human health, especially to more fragile pafations (elderly and

children), which is all the more problematic since damage induced byoise can be irreversible.
More speci cally, it is clear that noise generated by means of transportaion is a major issue,
especially in urban areas where many noise sources coexist (hamely sanrban trains, tramways,

buses, aircrafts...). Indeed, according to the World Health Organizaton [2, 3]:

About 40% of the population in EU countries is exposed to road tra ¢ noise at levels exceeding
55 dB(A), 20% is exposed to levels exceeding 65 dB(A) during the daytime and more than 30% is
exposed to levels exceeding 55 dB(A) at night.

Impairment of early childhood development and education caused by noise may have lifelong
e ects on academic achievement and health. Studies and statistics on the e ects of chronic exposure
to aircraft noise on children have found consistent evidence that noise exposure harms cognitive
performance.

At least one million healthy life years are lost every year from trac -related noise in the western
part of Europe.

It also seems clear that a large infrastructure such as a highway or a highpeed train track
can induce disorders in the wildlife that inhabits its surrounding environment, since it interferes
with the ecosystem by its presence itself and by the noise it genates, which can be signi cant
several kilometers away from the infrastructure. Environmental noise is hence considered as a
serious issue, from a social, environmental or public health perspéve.

However, environmental noise, which can be de ned as any sound eld tat reaches and can
potentially annoy or harm a human or animal receiver, is extremely di ¢ ult to control since the
extent of a noise source is usually small compared to the extent of the aa where the generated
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noise can be heard: for instance, in a city, one single car radiates noiskdt can be heard several
blocks away.

One should also point out that environmental noise usually involves propgation in a complex
and unsteady physical \medium", such as a city or the atmosphere itself where many physical
e ects come into play in the sound propagation. This makes environmer#l noise control an
even more di cult task. Nevertheless, there are mainly three meansof actions for engineers to
control noise:

reducing the source radiated power : this implies a better design of pieces of machin-
ery, trains, cars, plants and any sources of sound.

protecting the receiver from the noise : a common example of this strategy is to build
houses with high performance windows to isolate the inside from the dside.

preventing the propagation by modifying the propagation path

One way to implement this third strategy is to use a screen betwen the source and the receiver,
which is commonly called anoise barrier or noise protection. In this work, we are particularly
interested in noise protections adapted to an urban context, since nge is considered one of the
most important nuisances in cities, and since the proportion of city dvellers in the worldwide
population keeps increasing, as it has been for centuries. This trenid certainly going to remain
the same in the near future and therefore it makes sense to imagine neways to tackle the issue
of noise exposure in urban areas.

1.1.1 First pass on noise barriers

Noise barriers were rst built in the middle of the 20™ century, in the United States and in
Europe, quickly followed by Japan along with its rapid highway network development. The
main application of such screens initially was road tra c noise mitigation, since screens were
mostly built along highways passing by inhabited areas, dense subugbor quiet countryside
areas. Barriers were also built to mitigate railway noise in the same caext, or noise from
HVAC (heating, ventilation and air conditioning) heavy machinery, usual ly located on buildings
roofs.

Typical highway or train noise protections can be divided into two main types: noise berms -
also known as earth mounds or natural barriers, made out of natural materials and noise walls -
also known as noise screens and widely referred to as the general exgpsionnoise barriers, which
are manufactured engineering structures. There are however manynhitations to the design of
noise barriers: materials used have to be durable, resistant to weher conditions, and even
salt in case of highway treatment against heavy snow. Concrete is thefere most commonly
chosen because of its durability, its easy maintenance and easy implentation on site during the
construction, although metal, masonry, wood or even brick are also commoglused materials.
Further, some more sophisticated materials with good sound absorption mperties, such as
porous concrete, have been used as well.



As we have mentioned earlier, the main application of noise barriers ste the beginning of
their development has been mitigation of highway and train track noise. N&ertheless, another
recent development suggests one could use noise reducing devicedtst heart of urban areas
in order to mitigate the noise exposure of urban inhabitants [4{15] - one can als refer to the
European project HOSANNA which was also concerned with noise reductiomi urban areas [16{
19]. This type of device should be easy to implement in a constrainedwironment, such as a city
canyon or along a urban train track, which would typically require its height to be limited. This
is why those devices have been referred to dew-height noise barriers \low height" typically
meaning less than one meter high. They could be used for instance to acstically isolate
pedestrians walking on pavements from the tra ¢ noise coming from the street, or to reduce
the noise received by cyclists riding really close to a heavy trac driveway. Low-height barriers
could even decrease noise reaching buildings, for instance in case tévated railroads inside
cities.

1.1.2 Tramway noise

Many sources of noise coexist in urban environments, including roadra ¢ (from light and
heavy vehicles), urban trains, but also tramways. For many decadesyrban noise studies were
mostly concerned with road tra c and trains, which were considered as the main sources of
noise in urban areas, but tramway noise has become a concern as well. Itk based on the
fact that a tramway is an environmentally-friendly non-polluting me ans of transport which helps
reduce the tra c congestion in city centers, there has been a renewd development of this means
of transportation in the past decade, for instance in several European ciés (including Paris,
Brussels and London). Tramway has hence become a signi cant urban noisesrce.

Back in the seventies and eighties, several studies had already reged signi cant levels
and annoyance due to tramways [20{22]. Along with the more recent tramway deelopment,
researchers have characterized physical emission levels of tramyanduced noise and vibration
[23{26] and annoyance [24, 27]. Tramway noise is all the more problematic since gestrians
and cyclists can be close to trams on a regular basis, and because the povevels of tramway
noise sources are signi cant (above 90 dB(A) for typical urban speeds [26]the noise level at
nearby receiver locations can be quite high, well above 80 dB(A).

However it has been shown that noise sources for modern tramway are mdglocated close to
the ground [26]. This suggests that a properly designed low-height noisearrier can be e cient
against tramway noise, even for receivers close to the tram track. Thigs why this work will be
mostly concerned with tramway noise mitigation using a low-height nose barrier.

1.1.3 Objectives of this chapter

Although they might look like rather simple manufactured objects, noise barriers - including low
height noise barriers - involve many physical phenomena in the way thy attenuate sound and
have been the topic of many research studies. We therefore intenchithis introductory chapter
to brie y review the physical and mathematical tools involved in the accurate description of
the e ect a noise barrier has on a sound wave, and therefore in the assagrent of its e ciency.
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We will also present a broad overview of the accumulated knowledge ceerning noise barrier
design, which will eventually help us identify what approach can be dllowed to explore further
the potential of low height urban noise barriers, more speci cally tramway noise barriers.

1.2 Measure of the e ciency of a noise barrier

1.2.1 General comments on the physical description of a sound eld

Physically, a sound propagating in a uid (such as air) can be describeds the \small" pertur-
bations of the thermodynamic variables describing the uid: pressire p, temperature T, particle
velocity v, and density . We will use the subscript o to refer to the mean values: py (also
referred to as the atmospheric pressure)Tg, o (also referred to as the ambient density) and
Vo (also referred to as the mean ow or simply thewind). Basically the zeroth order quantities
describe the acoustic medium in which the propagation occurs, and thest order quantities are
used to describe the acoustic eld itself. Further, the adiabatic sound speedcy, assuming air is
a perfect gas, is given by: . r
Po_ RTo
0 M

Co=

where is the ratio of specic heats, M is the molecular mass of air,R = 8:314 J/(mol.K) is
the universal gas constant andTy is expressed in Kelvin. Typically one can take = 1:4 and
M =28:97 10 3kg/mol. At a temperature of 20 C, the sound speed is abouty = 343 m/s.

In typical outdoor propagation situations, knowing the acoustic pressue eld p only is suf-
cient (other variables could be derived from it and the relevant properties of the medium), so
it will be the main physical quantity we will look at. The sound eld i s then a scalar func-
tion of a receiver point x and time t: p(x;t). Since the frequency content of a signal usually
contains easier information to interpret, one usually looks at the acoust signal as a function
of frequency p(x;f) instead of time, the transformation from one to the other simply being a
Fourier transform.

1.2.2 De nition of the insertion loss in the frequency domain

Figure 1.1: Schematic of a noise barrier implementation. De nition of the i ncident eld p" (left) and the total
eld p, which is the sum of the incident and the diracted eld p= p" + p* (right).



One can then imagine a typical situation where there is a source of soundfor instance a
tramway - and some receivers - a pedestrian walking by (see gure 1.1)The source frequency
content is described by a certain functionS which depends on frequencyf . This information
is typically related to the power spectrum of the source (measuredor instance with a power
spectral density), which is a continuous function of frequency, ot in practice one will use a
discrete version of this spectrum at a set of frequencie$,, or band-averaged values (most
typically octave or third octave bands). In environmental noise apgdications, this power source
function is typically A-weighted to take into account the Itering of the human ear, de ned for
instance in the International standard IEC 61672:2003 (which implies that the A-weighting Iter
is already included in the function S). Besides, noise sources are typically modeled as \point"
sources, whereas in reality sources are always somewhat extended pase, as it would be the
case for a vibrating structure for instance. Real sources also do not usally radiate energy equally
in all directions, and should therefore be described as well by diivity functions. In this work
however, we will consider omni-directional sources only, which is rather strong approximation
which should be kept in mind.

Then, to evaluate the noise at the receiver locations, we want to knowhe pressure eld at
the considered receiver points which consists of a discrete set pbints (Ryn). The pressure eld
at a given point and at a given frequencyf, is the complex numberp(Rm;fn).

Now, let us imagine furthermore that in the design phase of a project, oa wants to predict
how e cient a barrier will be in terms of noise reduction. The relevant reference situation in that
case is the sound eld that would exist at the receiver points without any barrier constructed,
but with the same sources of sound and in the same environment. We wiltall this the incident
eld pP"(Rm;fn) (see gure 1.1, left part).

Then, assuming that there is a barrier present (see gure 1.1, right @rt) and assuming we
can predict how the sound eld will be modi ed by the presence of the barrier, we can compute
the actual sound pressure eld, simply called thetotal eld and written as p(Rm;fn). We will
call the di erence between those two elds the scattered eld p = p p" (also called the
diracted eld ), which is precisely the eld the barrier \adds" to the existing eld and therefore
tells us how much the barrier modi es the propagation of the sound.

To have a quantitative measure that tells us how e cient the barrier is in mitigating the

incoming noise, we will de ne an average attenuation across the receivg at a given frequency:
8 S y—
g P()=  Jp(Rmif)?
P(f) , m
P (F) with § _ S x — -
3 PN(f)= iP"(Rm; f)j?

m

A(f) =

P and P" are the root-mean-square (RMS) total and incident pressure across theeceivers.
One can also convert the attenuation to a dB scale, which one can refer tas the frequency
dependentinsertion loss:

IL(f)= 10 log A(f)?
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The minus sign is there so that whenjPj j P"j, the logarithm is largely negative and theloss
is actually a high positive number. Also, we took the magnitude squared othe pressure eld
so that what we compute is really a ratio of acoustic energy. This numbetells how many dBs
are \lost" on average across the receivers due to the barrier at a given fopency.

However, the attenuation is usually a function that strongly varies with frequency, due for
instance to constructive or destructive interference e ects. To have one single number to evaluate
the bene t of the noise reduction device, one therefore needs to aage across a certain frequency
range, say betweerf ni, and f hax. One possibility would be to evaluate the total acoustic energy
by integration over frequency of the spectral acoustic energy, whiclis approximately proportional
to the RMS pressure squared, and take the ratio of the incident and toal energies (AER):

Z f e Z f
AER = P(f)?df PN (f )2 df
f min f min
The integration is replaced in practice by a discrete summation basedn a nite number of
frequencies, as follows:
X X
AER P(fn)? fn PN(fn)2 fy
n n
where f, is a frequency bandwidth associated withf,,. However, there is a major problem
with using this number: it strongly depends on the modeling of thesource. Indeed, assuming
a given frequency content for a 3D point source, if the same frequencgontent is applied to a
2D line source and the pressure eld evaluated with a 2D method, the AR in those two cases
would be signi cantly di erent. This is due to the fact that a 3D point source and a 2D line
source have by themselves di erent \frequency content”. This isproblematic since most of the
time the prediction model to assess the e ciency of a noise barrielis based on 2D modeling in
order to keep computation time reasonable.

However, it has been shown [28, 29] that the attenuation at a given frequencA(f ) is similar
whether the source is represented by a point source with an in niely long barrier or by a 2D
line source. Constructing a broadband e ciency from the attenuations therefore reduces the
error related to the 2D modeling. But, at each frequency the attenuaton does not depend on
the source spectral content. Hence to take into account the noise spgam of the considered
source, we de ne a broadband attenuation weighted by theS function, as so:

X
Sn A(fn)?

App = - X%—— (1.2)
Sn
n

Typically the frequenciesf, at which the attenuation is evaluated will be be taken equally spaced
in a third-octave band. In this case the coe cient S, can be taken asS, = 10w with L,, the
source power level in the considered third octave band. The sameoe cient is then assigned
to all the frequencies of this band, but one needs to have the same mber of frequencies per
band (typically 20 per third-octave band) to preserve the repartition of energy on the spectrum.
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One can nally de ne from the broadband attenuation a broadband insertion loss in dB(A) as:
ILpp = 10logApy. An e cient barrier has a high broadband insertion loss, and therefore this
parameter is the one we will use as the quantitativee ciency of a given noise barrier.

1.2.3 The equivalent sound pressure level L Aeq,T

Let us recall that we introduced the insertion loss as a frequency domin quantity and therefore

at each frequency it is implicitly assumed that the generated noised \steady", and does not
present radical changes with time. However, most sources of noise, espally tramway noise,

are by de nition unsteady since they are related to the passage of a tramay. Therefore, when
a frequency domain steady-state description is not possible, the eivalent sound pressure level
Leq is used. This level is related to the mean squared pressun?ms,T (x), which is a time-average
squared pressure value over a given period of tim& and at a given receiver pointx:

Z 1

Phns T (X) = p(x;t)2dt

I

where [Q T] is the time interval of the noise event we are interested in. For irstance, this could
be night time (to calculate the L nignt ), or the pass-by of a tram. The equivalent sound pressure

level is then de ned as:

Pons T (X)
Leq(X) = 10 log %

ref
with pref = 20 Pa in air. However, in environmental noise assessment, it makes moreesse
to consider A-weighted quantities. One way to do this is to apply the A-weighting Iter on
the pressure signalp(x;t) to generate pa(X;t), for instance using a time domain Iter. From
this signal the A-weighted mean squared pressur@3 ...+ (x) can be calculated and then the
A-weighted equivalent sound pressure level:

2
X

ref
This metric is the most commonly used for in situ noise exposure measements, and will be
used extensively in chapter 8. Let us also point out that it would then be straightforward to
de ne an insertion loss from the L aeq,1: ONe can measure or predicLi,’geq,T (x) before the barrier
(or any mitigation device for which we want to estimate the e ciency) w as built and the same
L aeq,7 (X) with the barrier, so that the \equivalent” insertion loss becomes:

|LAeq(X) = Ligeq,T (X) L Aeq,T (x)

This is a possible metric to measure the performance of a noise barridypically used in standard
measurement (again this will be used in chapter 8). Although, in the conéxt of numerical
simulations involving noise barriers, since we are mostly going to useequency domain prediction
methods we will rather use the insertion loss as de ned in section 2.2.
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1.3 Human response to noise

Interest in the assessment and prediction of environmental noise fudamentally started because
of concerns to its e ects on human health, especially sleep qualityor more generally human
well-being, including mood and performance at work. The latter lead b the assessment of
annoyance due to noise exposure, which is one of the main purpose of psychoacoustidt could
also be mentioned that all animals [30, 31] and not only humans are a ected by nogs

The di culty is to quantify a purely subjective judgment, and to correlate it to predictable
physical parameters, such as thel aeq 1 introduced in 1.2.3 or the insertion loss related to
some noise control device. Indeed, most of the time it is questionabl® state that such physical
quantities will correlate directly with the change in people's subjective opinions concerning their
noise exposure. For instance it has been shown that depending on thgge of source - railway,
aircraft or road tra c -, for the same L aeq,1, the human subjective annoyance would be di erent
[32]. Another study [33], focusing on a well-being degradation in noisy awes, showed that the
situation of living in a place where there are windows showing the gurce of noise can lead to
a more intense depression feeling than the equivalent noise expasusituation, which notably
includes samel aeq, 1, Without windows.

Besides, noise exposure is known to interfere with all human actities and therefore becomes
more annoying during the evening and the night when people devote tamselves to leisure activ-
ities and relaxing, including sleep. This led to the 5 and 10 dB pend} used in the community
level metric L 4en Which has now become the most widely spread metric to assess noisepesure.
A review of many relevant e ects on annoyance and correlation with metrics can be found in
[34].

More than just causing a feeling of annoyance, noise has signi cant dit e ects on human
health, especially on sleep quality [35, 36]. Depending on the nature ohe ambient noise during
sleep, sleep depth and therefore performance and mood during theag can be signi cantly
degraded. Apart from the fact that the louder the noise, the poorer the séep quality, it has been
established that the nature of the noise, especially its intermitent character, has a signi cant
in uence on sleep quality. For instance, the pass-by of a truck on itsown causes increased body
movements, which are known to be correlated to sleep shallownesand of course could even
lead to awakening and therefore interruption of the sleep cycle.

However, some psycho-social e ects seem to be relevant as well, evduring sleep since hu-
mans can still discriminate sounds while sleeping, and therefore # subjective attitude towards
certain sources of noise can a ect the physiological response, as well asetltharacter of the
source: in a recent study [37], it has been shown that railway noise a&s sleep more than
tra c noise.

Even though environmental noise is really concerned about reducing mative health e ects
of noise (namely feeling of annoyance and degradation of sleep quality), ithe remainder of this
work we will focus on a purely physical description of the noise and tke noise reduction by noise
barriers, with the fundamental assumption that purely physical quantities such as the insertion
loss exactly correlates with the feeling of noise exposure reductiohy human beings. This is
a quite dramatic simpli cation, as we have seen, but commonly accepte in the noise barriers
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performance research community, which is understandable since oghwise the problem of noise
reduction would rapidly become impaossible to handle.

1.4 Physical e ects in uencing a noise barrier e ciency

We review here the di erent physical e ects involved in the propagation of sound in outdoor
environments in general, including when a noise barrier is presén This will allow us to iden-
tify what phenomena are the most relevant to low height noise barriersacoustic performance.
Regarding outdoor sound propagation in general, one can refer to comprehensi descriptions
in two books written by Attenborough et al. [38] and Salomons [39], or in the exellent review
paper by Embleton [40].

1.4.1 Meteorological e ects

The propagation of sound from a known noise source to a receiver in a typét outdoor environ-
ment, for instance from a highway to a nearby house, with or without the presence of obstacles
such as noise barriers, is a complex problem to solve. One of the di clties is that the atmo-
spheric conditions, which de ne the medium where the sound propagads, have an in uence on
the sound eld and therefore on the performance of a noise barrier, as mearsed experimentally
in [41].

The rst e ect is the refraction of sound due to local inhomogeneities of the ambient tem-
perature and mean wind elds, which modi es the local speed of sound This causes a wave
propagating in the medium to bend, typically upward or downward, depending on the sign of
the vertical sound speed gradient. This e ect can be of importance for he assessment of noise
barriers performance, since in a downward refracting case, the sodrcould go above the barrier
and then back down, hence decreasing the shielding e ect of the baer. In fact, on a sunny
day - in which the temperature typically decrease with height - upwvards refraction naturally
happens, whereas downward refraction can happen on an unclouded night. hE presence of
wind can either strengthen or weaken this e ect, depending on the popagation being downwind
or upwind. Insertion losses of barriers in the presence of wind havbeen studied numerically
and in wind tunnel experiments [42, 43], and it has been shown that theydecrease in downwind
conditions. Besides, in a noise barrier context, the presence of éhscreen will also a ect the
wind eld [44, 45], which would typically worsen the downwind propagation e ect.

Inhomogeneities of the ambient temperature and wind elds can be causkas well by turbu-
lent uctuations, which can cause scattering of the acoustic energy, \th two main consequences
in a noise barrier context: the wave tends to lose spatial coherenceuding its propagation -
which decreases the strength of interference e ects - and sound cde backscattered to a region
where there is supposedly little energy such as the shadow zone ated by a noise barrier, which
typically limits its insertion loss. The main theoretical framework to describe backscattering is
due to Daigle [46] who introduced the concept of scattering volume andross section. Several
studies which followed this framework showed that turbulent back scattering has a signi cant
e ect at higher frequencies, typically above 4 kHz [47{49].
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Nevertheless, an important point is that meteorological e ects - temperture and wind-
induced refraction, as well as turbulence - are considered to possjbhave a signi cant in uence at
rather large distances [40], or a high enough frequency (several kHz for thulent backscattering),
and indeed most of the studies cited in this section considered a sliance of about 100 m and
more between source and receiver. Atmospheric absorption e ects ardso known to be negligible
at low enough frequencies and small enough ranges (extra attenuation typally less than 3 dB
for ranges less than 100 m and frequencies below 3000 Hz [40]). Therefore, whhe distance
between source and receiver is small, say below 20 m - which would hlee case for an urban
low-height barrier - and assuming a typical environmental noise fregency range (100 to 3000
Hz), the performance of a noise reduction device might therefore be mtg controlled by other
e ects, such as the ground properties, the presence of surroundingbjects and the features of
the device itself. However, if one was to extrapolate results obtaing at short ranges to larger
ranges, those meteorological e ects should be considered.

1.4.2 Ground e ect

The ground is always present in realistic situations and should be condered. Basically, when
assumed completely at, it can be modeled as an in nite plane over wheh the sound can re ect.
This re ection can be easily described by image source theory when its assumed perfectly
re ecting (rigid), but is more complicated when the ground is absorbing, as most outdoor ground
surfaces are [40, 50]. How absorbing the ground is can be typically quanti edvith an impedance.

The problem of predicting the sound eld due to a point source above arimpedance plane has
been tackled theoretically for several decades [51{54]. These studiehaved that the pressure
eld is this case is given by a free- eld contribution emanating from the source (S) plus a free-
eld contribution emanating from the image source (S') plus a extra cortribution due to the
nite impedance of the ground, expressed as a Fourier integral, and with also depends on
the source and receiver positions. A popular approximate expressiorsithe so-called Weyl -
Van der Pol solution (from the names of the two scientists who rst derived this expression in
electromagnetism [55, 56]), which can be found in many references [38, 40]. ikig this solution,
one can show that the main e ect of a nite impedance ground is to limit interference e ects
between direct and re ected sound, and also to cause a shift in intéerence dips [40].

One can also ask the question of the in uence of the ground impedance on aise barrier
insertion loss. It has rst been pointed out that a ground nite impedan ce can provide on its own
an attenuation, which the presence of the barrier can decrease, to thpoint that the insertion
loss becomes negative [57]. It has also been pointed out that simple emjaial expressions (see in
section 1.5), which do not take into account the ground e ect, can in some ases over-predict the
attenuation [58]. Similar conclusions were drawn by Hutchins et al. in he case of thin re ective
barriers [59] as well as for more complicated shapes [60]. The main conclusiohthese studies is
that as a general rule, the insertion loss of a noise reduction device @naller with an absorbing
ground than a rigid ground, and that the ground impedance on the source side miters more
than on the receiver side. Also, the authors state that the ground impedane has a larger e ect
on the barrier e ciency than the barrier impedance. One can howeverpoint out these results
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were found for a typical highway barrier con guration, and may not be applied directly in other
situations, such as a low-height tramway noise barrier context.

1.4.3 Multiple re ections and diuse eld

Figure 1.2: Examples of con gurations where multiple re ections can in ue nce a noise barrier e ciency. Left:
heavy truck traveling close to a highway noise barrier - center: barrier implemented close to a building - right:
low-height barrier close to a tramway.

In some situations, for instance in most urban environments, extra obgcts are present around
the site where a noise barrier is implemented, and those objects canduce many more re ec-
tions compared to the case where the barrier only is present. This ishe case for instance for
heavy trucks traveling close to a highway barrier, for a barrier cbse to a building facade, and
for a barrier close to a tramway (see gure 1.2). This could even happenn a street canyon or
between parallel noise barriers. Those re ections tend to decreasthe e ciency of noise pro-
tections and should therefore be taken into account in numerical prettion schemes modeling
barriers in such situations, for instance considering a set of image sotes or a radiosity-based
scattering scheme [61, 62]. Implementation of barriers in urban canyonsave also been investi-
gated numerically and with scale models, either for hard barriers [63, 64¢r absorbent barriers
[8, 65]. Both calculations and measurements show that in those situationgjgid barriers do not
have a signi cant noise reduction e ect, but with an absorbing treatment the e ciency of the
barriers is a lot higher.

1.4.4 Shape and material distribution over the barrier

Finally, the design of the barrier itself - namely its shape and the magrials covering it - may
have an e ect on its e ciency. Actually, from simple theoretical cons iderations, one can state
that this e ect exists. However, one should raise the question of therelative importance of the
in uence of the barrier design compared to all the other e ects mentioned in this section.

It has already been pointed out in section 1.4.2 that in a typical highway roise barrier con g-
uration, the impedance coverage of the barrier has a smaller e ect thante ground impedance
[60]. Also in a highway context, May and Osman [66] measured as well that the was not a
signi cant di erence in performance between a thin re ective and absorptive screen. However,
when a T-pro le is considered, they measured that an absorptive treament on the top yielded
an improvement of a few dB(A). Similar results were found by Watts etal. [67].

Moreover, in a railway barrier context, Morgan et al. [68] found - based on sale measure-
ments - that di erent shapes had signi cantly di erent insertion | osses, and that the barrier
impedance had a great e ect as well: for a rigid ground, insertion losses eve between 14 and
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23 dB(A), whereas for an absorbing ground, they ranged between 10 and 20 dB(A)t was also
found that going from rigid to absorbing ground does seem to decrease thasertion loss (as
stated in section 1.4.2), but however in this context the shape and mateal distribution can still
make the insertion loss vary by 10 dB(A), which means that the design of tle barrier itself has
a signi cant e ect.

In a low-height tramway noise barrier context, the presence of the tamway is similar to the
presence of the train in [68] - it causes multi re ections - and theredre it is likely that the barrier
shape and admittance will be signi cant as well, even in the presencef an absorbing ground.
This also suggests that seeking to optimize the design of the barrier #M/be worth it, in the sense
that signi cant improvement can be obtained in the barrier e ciency by careful design.

1.5 Review of prediction methods

From reviewing the di erent e ects that could come into play in th e e ciency of a low-height
noise barrier close to a tramway, one can now decide which predictiomethod can be used to
evaluate the e ciency of a low height barrier. It has been found that meteorological e ects -
related to inhomogeneities in the ambient properties describinghe propagation medium, namely
the speed of sound - are probably negligible since short range propagation onhijll be considered.
On the other hand, re ections and scattering e ects due to the barrier itself, the ground or the
surrounding geometrical features - such as the tramway - will have anmportant e ect and
therefore the chosen prediction method should be able to render daction e ects by arbitrarily
complicated geometries accurately. It should also be able to take into aount the acoustic
properties (the admittance) of the surface of the di erent obstacles We will now brie y review
some of the common methods in outdoor sound propagation prediction which Wiallow us to
decide which one seems the most appropriate in our context.

Di raction e ects from an in nite screen have rst been describe d using analytical formula
derived from Sommerfeld's geometrical theory of di raction [69], which was then extended by
McDonald [70], Keller [71] and Pierce [72, 73]. Considerations of re ections othe ground [57,
74{76] and nite barrier e ects [77, 78] have also been studied with these aalytical expressions.
Apart from this approach, several empirical formulae predicting the e ciency of a noise barrier
based on the so-called Fresnel number have been derived, the mostnious being Maekawa's
curve [79], which was then extended by Kurze and Anderson [80] and Menowiu [81]. All those
expressions, although useful and used in many engineering methodse valid in highly idealized
contexts, especially for a at screen and a straight di raction edge. They are not general enough
to model a barrier for our application.

In terms of numerical methods, mainly two main families of methods tave been developed in
the second half of the 280 century: long-range and short-range methods. Indeed, as mentioned
in section 1.4, propagation at large distances (more than 100 m) is signi cantly m uenced by
meteorological e ects, whereas the sound eld at short ranges is mostly inences by geometrical
features close to the source (obstacles, ground), but little by meterological conditions. It
therefore makes sense that di erent types of numerical methods we developed for those two
applications. Nevertheless, those two types of methods can be coupleas for instance in the

16



Harmonoise reference model [82].

Long-range propagation mostly uses ray tracing [83, 84] and the Parabolic Equation (B)
method [39, 85, 86], which is based on an approximation of the Helmholtz equatiowith non-
uniform speed of sound. It is possible to some extent to take into accau terrain and obstacles
- such as a noise barrier - in the PE by approximate methods [87, 88], but agaithese would
not be valid for an arbitrary geometry.

Concerning short range propagation, most commonly used methods for takinghto account
complex geometry are nite element methods (FEM), nite-di ere nce time-domain methods
(FDTD) and boundary element methods (BEM). The FEM and the FDTD can include quite
naturally physical e ects as well as complex geometries, with approprte meshing of the domain,
but have a rather high computational cost since a volume mesh is requad. The FEM is hence
not widely used in outdoor sound propagation simulations, although the FDTD has been applied
successfully [29, 89, 90]. On the other hand, the BEM is able to represenomplex geometries
accurately, since only the boundaries of the obstacles are meshed, and todel the ground
e ect via an appropriate choice of the Green's function. It usually asaimes a uniform speed
of sound, although there have been attempts to consider a linear soundosed pro le [91, 92].
The computation cost of the BEM is limited since only the boundary is meshed, although it
is still rather high due to the non-sparsity of the matrices. It can however be greatly reduced
using the so-called Fast Multipole method, which will not be detailed here (one can refer to the
introductory paper by Coifman et al. [93]).

From this brief review, the BEM clearly seems like the most approprate method for our
application. It will be explained in more details in chapter 2.

1.6 A few examples of surface treatment models

As mentioned earlier, the acoustic properties of a surface treatmentan have a signi cant in u-
ence on the e ciency of a noise barrier, and therefore one should be abl® model the e ect of
a surface on the sound eld. A more comprehensive review can be founa 1], and we simply
recall here a few models that will be used in this work.

The classical approach to model the e ect of a surface is to force the tml impedance to
match that of the given surface, which mathematically corresponds to aply a so-called Robin
boundary condition at the surface location. However, instead of the classal speci c acoustic
impedanceZ (ratio of pressure to particle velocity), it is usually more converient to consider the
normalized admittance , which is simply the inverse of the normalized impedanc&=2, with
Zo = 0oCp is the specic acoustic impedance of air - one therefore has = Z¢=Z, which would
for instance go to zero for a rigid material. As we will see in chapter 2, ira BEM formalism the
admittance of any surface is readily taken into account, and therefore being able to model
is the only requirement to predict the e ect of the surface treatment on the sound eld.

Most construction materials can be assumed acoustically rigid (for instane concrete, steel,
heavy wood...), but acoustic surface treatments can be used as web increase the e ciency of
a noise barrier (as mentioned in section 1.4). Those treatments can be gerally divided in two
categories: porous materials - which rely on energy dissipation through scothermal dissipation
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e ects - and reactive treatments - which rely on destructive interference e ects, usually using
one or several resonators. Examples of porous materials include brous mateals, foams, porous
concrete, or natural materials like vegetation or hemp concrete. Reacti® treatments on the
other hand include reverberation chambers (exhaust mu ers), quarter-wavelength resonators or
micro-perforated panel resonators (MPPR).

We give here three examples of possible treatments which will be ed in this work, more
speci cally in chapter 6.

1.6.1 Delany and Bazley layer model

In a noise barriers application, the most common type of treatment is porog since it can provide
absorption over a broad range of frequencies. Many models exist to expss the admittance of
such a treatment (see for instance [1] for a review of some of these mdslg however the most
common one is the Delany and Bazley model [94], which has the main advantage tiepend on
one parameter =f , with  the air ow resistivity of the medium - usually expressed in kPa.gm 2
- which corresponds to the pressure drop across a porous sample normalizby its thickness and
the air ow velocity through it. Due to its simplicity, this mode | has been extensively used to
model many materials, including soils [50], although it should be reca#ld it was initially derived
for brous materials and for a given range of validity ( =f 2 [1; 100]). The expression for the
normalized impedancezpg and wavenumberkpg are (within the e it convention):
8

075 0:73
3 zpg =1+0:0511 —  +i0:0768 —
f f 12
2 kps 07 0:59 (1.2)
T — =1+0:0858 — +i10:175 —
0 f f
where is here in Pa.s/m? and kg = !=c ¢ is the wavenumber in air . The normalized admittance
peL Of a rigid-backed layer of material of thicknessd is then:
1 .
DBL = — tanh( ikps d) (13)
ZpB

1.6.2 Hemp concrete layer

Porous materials can be made out of many di erent basic components such as peheric foams,
plastic bers, glass bers, wool bers, tire wastes, plastic grains, and so on. Some of these
components, other than being hazardous and therefore requiring appromte packaging, are
not sustainable. However, porous materials with good acoustic propert® can also be made
from wood bers binded together [95], which is the case ohemp concrete Speci cally G et
al. [96, 97] studied di erent ways to manufacture hemp concrete for acousc applications and
proposed a porous material model which matches well to experimentalata. They expressed
the impedance in terms of the dynamic density ¢, calculated with the Johnson model [98],
and dynamic bulk density K ¢, calculated with the Zwikker and Kosten model [99]. Within this
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model, the normalized admittance ¢ of a hemp concrete layer is given by:

1 .
Hc = — tanh( ikpycd) (1.4)
ZHC
with: r
Khc = ! — and ZHC = ip K
HC . Ke HC 0% eflNe
8 S 1
. 4 2 !
% e=101+|§21 |7;202
and p___ L
J iP
EKe: 0C3 142( 1)-p 1(iPr)

CiPrdo( | iPN
whereJg and J; are the Bessel functions of zeroth and rst order, and the parameter is de ned
by: r

This model therefore requires four parameters to describe the pous material (porosity , ow
resistivity , tortuosity 1 and viscous characteristic length ) and the thickness of the layer
d, as well as physical characteristics of air (dynamic viscosity , air density o, sound speedcy,
speci ¢ heats ratio and Prandtl number Pr). For a typical ratio of water, hemp and binder,
the authors give the following values for the porous parameters: = 0:73, = 19:3kPa.s/m?,
1 =3:0, =23 mandd=10cm. The physical properties of air can be taken assuming for
instance a temperature of 20C: density o = 1:21 kg/m?3, sound speedcy = 343 m/s, dynamic
viscosity =1:81 10 ® Pa.s, ratio of specic heats = 1:4 and Prandtl number Pr=0:7.

1.6.3 Micro-perforated panel resonator (MPPR) model

Some reactive treatments have been considered in noise barrier ajgations [100{107] but their
use is still limited. One possible treatment, which has the main adantage to cover a wide
range of behaviors thanks to its four design parameters, is the micro-ptorated panel resonator
(MPPR). This treatment simply consists of thin sheet of heavy material perforated by a grid
of holes and coupled to a cavity, and has been studied by many authors [100, 108{112Dne
possible model for its impedance, taking into account viscous and threnal e ects in the holes,
radiation mass and interaction e ects, is the model one can refer to as tb Crandall-Sivian-
Fok model - following the work of Crandall [113], Sivian [114] and Fok [115, 116] - whit has
been used by Melling [110] and Asdrubali et al. [100]. According to this moel, given a panel
of porosity s, of hole radius ag, of panel thicknessly and of cavity depth D, the normalized
impedance is:
. kolo 1 + 16@ ()

ZMPPR = |T X9 3 T —X) +icotan (koD) (1.5)
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8
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with the coe cients up, given by ug =1, u; = 1:4092,u, = 0, uz = 0:33818,us = 0, us =
0:06793,ug = 0:02287,u7 = 0:03015 andug = 0:01641 (values for air physical parameters are
given in section 1.6.2). %is an equivalent viscosity representing both viscous and thermal eects,
and the intermediate variablesx and x° are the so-calledperforate constantsand correspond to
ratios between the radius of the hole and either the viscous or thermoigcous penetration depth.
Finally, the Fok's function [115, 116] ( ) is a correction to take into account interaction e ects
between the di erent holes, directly related to the porosity. The normalized admittance is then

simply mppr = 1=2vppR -

1.7 Review of noise barriers designs and performance assess-
ment

1.7.1 Common designs (highway and train noise barriers)

As stated earlier, engineers have been developing noise barriers forany decades now, and
therefore there are quite a variety of common designs, mostly implemged along highways, but
also along train tracks. We here review some of the main designs and statefaw results about
their relative performance. The assessment of a noise barrier e ciecy has been typically done
using three approaches: numerical calculations (most of the time usim 2D BEM), scale model
measurements or in situ measurements.

Numerical studies are useful since they allow one to compare many dirent designs easily.
Namely, for implementation as a highway noise barrier, the most commonly asessed noise wall
shapes are: straight thin wall, T-shape, Y-shape, arrow-shape, wedge h@rs and straight wall
with added cylindrical top [117{119]. From those studies it seems like theT-shape is the most
e cient. Further, the presence of absorptive treatment on top seens to provide a few extra dB
of attenuation, although this bene t is largely diminished when sources su ciently far away are
considered.

Railway noise barriers have been studied extensively as well [120, 121]Since they are
typically implemented close to the sources of noise and therefore tthe train body, multiple
re ections can occur and consequently an absorptive treatment on the @urce side of the barrier
as well its shape may have a signi cant e ect.

Scale model measurements can be performed as well to assess the ety of a design, since
it is still relatively cheap to build a model say at a 1/20 scale of a highway or railway noise
barrier. Many di erent shapes have been tested indeed, for highwa barriers [122] and train
barriers [123]. Those di erent studies show that insertion losses masured from scale models
usually agree rather well with BEM calculations.

Fewer full scale tests have been performed. Thin straight screeand T-shape pro les imple-
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mented along highways have been assessed in [66], and again the T-shapense indeed more
e cient (by a couple of dB). Watts et al. [67, 124, 125] also pointed out the advantage of
the T-shape for highway noise barriers and good agreement with BEM caldations (although
their measurements were made under somewhat controlled environmes) not actual eld sites).
Adding multiple-edges is also shown to add some attenuation, although th e ect seems less
important than for the T-shape.

1.7.2 Complex noise barriers

Although noise barrier research has been going on for several decades, thesearch community
is still active in this area. We will not give here a comprehensive reiew but rather emphasize
a few interesting results. For more details, we refer the readerd the excellent review paper by
Ekici [126] (although since this paper was published ten years ago, it is pbably not completely
up to date). In addition, as for the more common designs, one can point out thatperformance
assessment of new designs has been essentially based on numericaliktions.

A rst idea that was investigated to increase the e ciency of an already implemented screen
is to add extra di racting edges on the side of the noise barrier, whib is referred to as a multiple-
edge device. Several measurements - both on scale models and at fulhlec- of added parallel
panels were performed by Watts et al. [67, 127]. Their results show thatxra di racting edges
do provide a consistent improvement in e ciency above a certain limiting frequency (typically
related to the dimensions of the multiple edge device). Oblique anels covered with absorptive
materials have also been studied and optimized numerically by Baulaet al. [128] in a highway
context, which can yield a good improvement of 5 dB(A) compared to a staight screen.

Another possible improvement of a typical highway straight screen isto add geometrical
complexity (or even \randomize") the top diracting edge, by using so-called thnadners A
type of thnadners had been studied by May and Osman [122], although theiransidered designs
did not show a signi cant improvement. On the other hand, other experimental and numerical
studies showed that random pro le of the top diracting edge induced consistent improvement
of the noise barrier, especially at high frequencies [129{131]. The e ect aplay here is believed
to be the loss of coherence of the secondary sources located at the edgeha barrier, which in
turns decreases the level of the di racted signal.

Another possible approach to increase the e ciency of a straight screerns to add a designed
object at the top edge, among which cylinders have received signi canattention. Numerical
investigations indeed suggested that using an acoustically soft impedae on the cylinder was
particularly e cient in increasing the barrier insertion loss [119, 132{134]. Besides, although it
is di cult to achieve a perfectly soft boundary condition over a wid e frequency range, attempts
have been made to design a device made of several resonators which wosafgproximate a soft
surface, such as the so-called \waterwheel" design [132, 133]. Improvemedn noticed although
such a device may also have a negative insertion loss outside of thesign band.

Interference-type devices to be placed on top of a screen have alseen considered, both with
BEM simulations and full scale measurements [124, 135]. The idea of this diee is to force part
of the incident wave to follow longer paths by a set of tubes, and thennterfere destructively
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with the rest of the wave. The measured improvement was reported bwever not to be as good
as traditional top devices (such as the T-shape or cylinder caps), and iis argued that the
performance could be largely dependent on the source and receiver ptsns.

Using destructive interference to attenuate the wave on a top de\de is also the idea of reactive
admittance barriers, which is somewhat similar to the idea of approxinating a soft impedance
with several tuned resonators. Several approaches have been followtm this end: build a top
device with a designed network of Helmholtz-like quarter-wavelegth resonators [102], cover the
top of T-shape barrier with wells of possibly di erent depths [103, 104], onstruct the top of
a T-shape barrier as a QRD di user [105, 106] and possibly add perforated sheein the wells
to further improve the design at low frequencies [106, 107]. Those digent studies reported
improvement which can be of the order 2-3 dB(A) for a typical tra ¢ noise spectrum.

1.7.3 Low-height noise barriers

Finally we describe some results previously obtained in the relatiely recent eld of low height
noise barriers. As stated in section 1.1.1, this type of noise reductionelice - which is typically
limited to be less than one meter high - is really meant to be implemsted in an urban context,
close to the noise sources (cars, urban trains, tramways, ...), in ol to reduce the noise level
reaching close receivers such as pedestrians or cyclists duringpass by.

A simple type of low-height barrier (pedestrian restraints) has been considered by Horoshenkov
et al. to mitigate noise in an urban canyon [8]. They showed with scale moeling that this type
of device can provide more than 8 dB(A) of attenuation for the pedestriansif it is covered with
absorptive treatment, considering light and heavy vehicles tra c noise.

Thorsson [9, 10] also considered low height barriers of simple shape (atght wall, half cylin-
der and T-shape) and optimized the admittance distribution - either by an equivalent source
method [9] or a direct optimization method [10] - to increase the insetion loss at selected fre-
guencies at di erent heights. His results suggest a large improvenm# is achievable (more than
10 dB), and that even when the ground is treated the bene t of optimizing the barrier admit-
tance was still signi cant (10 dB of extra attenuation due to the barrier optimized admittance).
However one should point out that the obtained admittances are not realistc and that only a
few low frequencies were considered.

Ding et al. [14] modeled a porous low-height barrier meant to attenuate ta ¢ noise with
an advanced time-domain method, and showed that signi cant insertion bss is obtained (which
can reach 10 dB(A), depending on the type of vehicle and receiver locamns).

We nally mention Baulac's and Koussa's Ph.D. theses [4, 11] completed at hie Centre
Scienti que et Technique du Béatiment (CSTB), since a signi cant part of their work concerned
low height noise barriers. Baulac considered a typical urban tra ¢ noise situation and optimized
the shape and the treatment (mostly absorbing) of a low-height barrier . sing BEM simulations
and genetic algorithms [6]. She showed that an insertion loss of 10 dB(A) is &evable. Simpler
shapes have also been studied with scale modeling and showed thaimerical simulations were
in good agreement with the BEM [5].

Koussa, whose work was concerned with the use of natural materials for nois®ntrol, also
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studied numerically and experimentally a type of low height noise farrier made of many rocks
of dierent sizes (gabions) [13]. The insertion loss he obtained, depahng on the gabions
arrangement, ranged from 5 to 10 dB(A), which con rmed the applicability of such a barrier.
He also studied numerically a so-calledonic crystal low height noise barrier for tramway noise
mitigation made of parallel cylinders of di erent diameters. Those barriers can provide up to
6 dB(A) of attenuation by themselves, although when a rigid screen is addd behind the sonic
crystal the e ciency reaches 10 dB(A), and more than 15 dB(A) when both the cylinders and
the screen are absorbent [11]. Koussa et al. [12] also considered paralletaargements of hollow
cylinders and found similar insertion losses.

1.8 Conclusion

Noise barriers have been studied extensively in the past few decad, along with their industrial
development and the rapid expansion of highways and railway track netwdts in many indus-
trialized countries. Several physical e ects which can in uencethe e ciency of those type of
noise control devices have been identi ed, including di raction, atmospheric refraction, turbu-
lent scattering and acoustic properties of the ground. For typical highway noise barriers, it has
been found that meteorological e ects have a signi cant impact when longranges (more than
100 m) are considered, but they can probably be neglected at short rangeseds than 10 m),
which would be typically the case in an urban environment. The ground baracteristics however
still remain important in this context.

Moreover, the presence of other re ectors of sound in the vicinity ofthe device, such as
buildings or a train body, induces a multiple re ection phenomenonwhich can negatively impact
the performance of a barrier, and therefore should be taken into accountHowever an absorbing
treatment on the barrier and well-designed barrier shapes can be e oént in limiting this e ect.
On the other hand, in a typical highway con guration in which sources and potential re ectors
are su ciently far away from the device, the acoustic treatment of th e barrier has a smaller
e ect. Nevertheless, adding a designed cap - either absorbing or usj destructive interference
e ects - on a thin vertical screen can improve the performance sign¢antly, even in the highway
case.

In the context of urban low-height barriers, especially close to a tamway which would be
the source of multiple re ections, it would therefore makes sensehat a well-designed acoustic
treatment and barrier shape may yield a signi cant improvement in the e ciency of the device.
Besides, since the re ection and diraction e ects might be complex in this case, it is also
natural to seek improvement in the design by an optimization algorithm, coupled to a numerical
prediction method, as opposed to a trial-and-error approach. Due to thecomplex geometries
and treatments the method will have to handle, the boundary elemeh method seems like the
most natural solution, although any other method that aims to solve as accuratéy as possible
the complete di raction problem would be appropriate as well.
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Chapter

Review of the forward scattering
problem and the integral equation
method

In this chapter, we give the mathematical foundations of the integral equation method to
the acoustic scattering exterior problem, which naturally yields the boundary element method
(BEM). This chapter is essentially a review (which is by no meanscomprehensive) of known
results about the acoustic scattering problem formalism and its resoltion using the integral
equation method. Some of these results will be used explicitly irthe rest of this work (es-
pecially in chapter 4), but the author's intention is essentially to give a somewhat detailed
introduction to this method, emphasizing a few points that are not perhaps very well-known.

Although the integral equation framework can be tackled in 3D, we will preent the formalism
in 2D since this is the type of calculations that we will be mostly using to predict the performance
noise barriers in this work. The general framework of the integral equatn method given here is
essentially taken from the comprehensive treatment by Terrasse anédbboud [136]. Besides, we
will also focus more speci cally on the integral equation approach propose by Jean [120], which
has been been implemented in the software MICADO, since we are going tuse this software
extensively in the rest of this work.

2.1 Initial scattering problem

The atmosphere is assumed homogeneous with a uniform speed of souaqd The problem at
stake is the resolution of the pressure eld in two dimensions in tle presence of a point source
located at point (S), of one of several obstacles which will induce scattring of the incident eld
and of a rigid ground represented as an in nite horizontal ba e (see gure 2.1). Generally
speaking, the ba e representing the ground could also have a nite impedance, but this case
will not be considered in this work. The problem is solved in the frgquency domain so that the
frequencyf is xed and k = 2 f=c  is the wavenumber. The time convention is et .

Let be the planar curve (or the set of curves) de ning the boundary of t he obstacles (it
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Figure 2.1: Typical geometrical con guration of the scattering problem. Ca rtesian coordinates are de ned such
that x; is the horizontal coordinate, x; the vertical coordinate (and X3 the direction normal to the vertical plane).
The ground is assumed to lie at x, = 0. One or several scattering bodies delimit the domain into a b ounded
interior domain ' and an unbounded exterior domain €. The curve (or set of curves) delimiting ' are referred
to as the boundary . (S) is the point where the source is located.

can be the noise barrier alone or the barrier and the tramway body for insance), and ¢ the
remaining part of the rigid ground (parts of the ground which are not rigid are taken into account
as part of ). separates the half-in nite domain in two open sets, the in terior domain ' and
the exterior domain €. Let n be the normal vector exterior to the boundary (pointing towards
€), dened on and . The source is assumed to lie in the exterior domain and therefore
we consider an exterior problem. Besides, we will assume that the acstic behavior at each
point of the boundary can be described by a normalized admittance (which is typically a
piecewise continuous function de ned on ).

Under those hypotheses, the total pressure eld in the exterior domain satis es the following
scattering problem: 3
% (r?+k?»p= (S;;) in ¢

@pﬂk p=0 on

@n (2.1)

@p_ '
g @n_o on g4

+ radiation condition

(S;) is the Dirac delta function located at point (S) and @p=@n n r pis the normal derivative
on the boundary. The Sommerfeld's radiation condition, which ensureghe fact that all waves
radiate outwardly at in nity, is given in 2D by:

gf ikp=o pl—F

Associated with this problem, one can de ne the associated half-spacproblem (obtained
by removing the boundary but keeping the in uence of the ground ), of which the solution
is the half-space Green's functionG(x;y), that is the eld at point y due to the radiation of a
point source at point X, x = (X1;X2) and y = (y1;Y2) being two arbitrary points. In the presence
of a rigid ground in 2D, the expression for the Green's function is:

i p p
G(x;y) = I Hél) k' (y1 x1)?2+(y2 x2)? + H(()l) kK (y1 Xx1)2+(y2+ Xx2)2

with H((Jl) is the Hankel function of order zero of the rst kind. If the ground had been assumed
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impedant, a correction term should be added to this expression (as nmtioned in section 1.4.2).
One can naturally de ne four partial derivatives with respect to each coordinate of the two
considered points: @ G=@x @G=@xand so on. Similarly, we write the gradient with respect
to the coordinates ofx andy asr x andr .

The total eld p solution of (2.1) can be broken down ap = p" + ps¢ where p" = G(S;?),
referred to as theincident eld, is the eld emitted by the source without in uence of the
scattering objects . p®¢, referred to as thescattered eld, then satis es the following problem:

8
% (r2+Kk?)p*=0in °

@F @p

in:

== +ik p*=h" on with h" = ik p™nj
gﬁi‘ @n (2.2)
% @120 on g

+ radiation condition

where h™™ corresponds to the in uence of the incident eld on the scattering surface and the
notation j refers to the evaluation of a function on the surface .

2.1.1 Properties of the Green's function

The Green's function satis es by de nition the following equation :
r2+k2 GoGy)= (y )+ (v x9

with x%= (x1; x»). G also satis es the fundamental reciprocity property G(x;y) = G(y;X).
From this property follows similar relationships on the gradients of G:

ryG(x;y)=r yG(y;x) r xG(x;y) =r xG(y;Xx) (2.3)

This means that regardless of the position of a point as an argument inG (rst or sec-
ond argument), the gradient with respect to a point coordinate will be the same. This can
be extended to the Laplacian with respect to each argument:r §G(x;y) = §G(y;x) and
r G(xy) = 1 £G(y;x).

2.2 Weak formulation of the scattering problem

The theoretical study of problem (2.1), especially considerations abouthe existence and unique-
ness of a solution to the problem, is more convenient using a weak forrtation. It will be helpful
as well for calculations of the shape derivative, as we will see in chapté. This type of formula-
tions is typically obtained by multiplying the equation by a test fu nction and making appropriate
transformations of the integrals to nd how the boundary conditions inte rvene. However, al-
though this kind of approach usually does not cause any trouble in bounded @mains, it cannot
be applied directly to the problem (2.1) because of convergence issui@t in nity. One there-
fore needs to consider a problem on a bounded domain, the solution of whiawill be the same
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as the initial problem (2.1). This is achieved using a so-called \transprent" boundary condi-
tion, which mathematically uses the Dirichlet-Neumann operator. We here brie y introduce the
methodology to build a well-posed weak formulation for the scattering poblem.

2.2.1 Dirichlet-Neumann operator

\\\2 )
e V1)

Figure 2.2: Schematic representing the half sphereSg containing the boundary and de nition of the truncated
exterior domain % = €\ Bgr. The normal vector n dened on [ 4 points towards §& whereas the normal

vector er de ned on Sgr points outwards §.

Let Sr be the half-sphere of radiusR located above the ground 4 and assumed su ciently
large that all the scattering surface lies inside Sk (see in gure 2.2). One could point out that
in 2D Sg is actually a half-circle but for simplicity we will keep using the term \half-sphere".
Let u be a solution of the Helmholtz equation outsideSg which satis es the radiation condition
and is smooth up to Sg. Using separation of variables between the two naturally de ned polar
coordinatesr and , u can be written as a series of outgoing cylindrical waves, as follows:

R @) Z
n_(kr) cosh ) with = 2

u(r; ): _ N7
o | HP(KR) n o

u(R; ) cos(h )d

with Hr(,l) is the Hankel function of the rst kind of order n and , = (2;1;1;1;:::). Hankel
functions of the second kind are ignored because they do not satisfy theadiation condition,
and only cosine angular functions are used since here the problem is deed on the half space
only with a rigid ground. The normal derivative of u is then given by:

0
@u * y H (kr)
Q@u_ Hn” (k1)
@,  HPKR)

where %is the derivative with respect to the argument. One can therefore onclude that u and
its normal derivative are related on Sg as follows:

X X {of
glrjs = T ujs, with T: n cosf ) 7! Hn(kR)
R

Do, " cos(h )
n=0 n=0 Hn (kR)

T is the so-called Dirichlet-Neumann operator.
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2.2.2 Equivalent scattering problem in a bounded domain

Let Br be the half-ball of radius R (its boundary is the half-sphere Sg) and § = ©\ Bgr
be the truncated exterior domain (see again in gure 2.2). Now, let us congler the following
scattering problem: 8
% (r’+k)pr= (Si) in &

@Hk pr=0 on

@n

@p_o (2.4)
@n = o

%’ﬁT(pR) on Sg

One can show that the problems (2.1) and (2.4) are equivalent in the bound# domain Bg,
which means that pjg, = pr and that pr can be extended to be equal top [136, p. 97].
This is basically related to the fact that p and pr both satisfy the Helmholtz equation and the
same boundary conditions on and 4, and they have the same traces and the same normal
derivatives on Sg. The boundary condition involving the Dirichlet-Neumann operator therefore
acts as a \transparent" boundary condition.

The main di erence however between problems (2.1) and (2.4) is that (24) is posed on a
bounded domain, and therefore there are no issues of convergence at ity It is now possible
to write down a weak formulation of the problem, basically by multiplying each equation of
(2.4) by a su ciently smooth test function q and integrating over the corresponding domains.
Following this process and replacingpr by p (which is legitimate since they are equal), one can

write:
Z Z Z Z
P @p, . @p @p _
(89 %(r + k%) pg+ q(S) + @nﬂk p g+ g @nq . @r T(p) g=0 (2.5)

Integration by parts of the Laplacian term yields:
Z A Z @p A @
20 =
r-pg= rprq = a+ =4
H : [, @ s @r
The sign is dierent in front of the integral on [ 4 and Sg because the normal vectors are
de ned di erently (see in gure 2.2). Equation (2.5) can therefore be rewritten as:
z z z z
(80) TP rarkt pargS)+ ikpg+ T(RQ=0 (2.6)
R R R
Under this form, one can notice that an appropriate space for both the solutionp and the test
function qisV = H( &)- Let us de ne the bilinear form A onV V and the linear form b on

V de ned as:
8 Z Z Z Z

2 A(p; Q) = rprg k? _pa ik pg T(p)q

R Sr

b(g) = a(S)
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One can then rewrite the weak formulation (2.6) as follows:

( Find p2 V such that:
(8a2 V) A(p;a) = q)

Under this form, one can show that there exists a unique solutiorp 2 V to the problem (2.6)
[136]. This formalism could also be used to numerically solve the scattig problem using nite

elements, however the boundary element method uses a di ererapproach to numerically solve
for the pressure eld.

2.3 Integral equations derived from the scattering problem

The idea of the integral equation formalism is to represent the scatteed eld p*¢ as a \potential”,
that is an integral expression of source distributions existing on . Swh a representation is
ensured by the so-called integral representation theorem [136, p. 189], wdh is reproduced here.

2.3.1 Single and double layer potentials
2.3.1.1 De nition

Let us rst introduce the integral operators that will be used in the r est of this chapter. Given

a function p de ned on and a point x in the interior of €[ ', we de ne the single layerS
and double layerD potentials as follows:
Z
Sp : x 7' G(x;y)p(y)d(y)

Z
Dp : x7 ggf(x;y)p(y)d(y)

with @=@r n(y) r y is the normal derivative with respect to y. One can point out that p is
in general scalar valued but using the same de nition it could be as wellector-valued. Besides,
the argument of the operatorsS and D should typically be piecewise continuous for the integrals
to be well-de ned [137].

Although the Green's function is unbounded wheny = x, the integrals are well de ned even
for x 2 . Indeed, for a given point x 2 ,dening = jjy Xjj, one has fory approachingx:

Gxiy)= Jdotk ) zNo(k )+ O()= -log + O(1)

where the asymptotic behavior ofNo the Neumann function of order 0 has been used and since
Jo is bounded at 0. The second term due to the ground has been neglected aslw&nce it
is always bounded (except at points belonging to the ground 4 and to , at which the two
terms in the Green's function are equal and have therefore the samedhavior). Therefore, for
x 2 , G(x;y) behaves as log and is therefore integrable on when multiplied by p sincep is
piecewise continuous.
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Similarly, the kernel involved in the double layer potential is integrable even forx 2
Indeed, the gradient of G with respect to y is given by:

8 .
EryGoay)= SHPK)e rom= SNPK)e rom= e + 0w
3 with e =%

e is the unit vector pointing towards y from x. The asymptotic behavior of N1 (Neumann
function of order 1) has been used as well. Now, assuming the curve isnsooth, the normal
is continuous along and therefore one hasn(y) = n(x)+ O( ) . Besides, the vectore tends
to the tangent vector t(x) asy goes tox and thereforee = t(x)+ O( ). Since the vectors
n(x) and t(x) are orthogonal by de nition, this implies n(y) e = n(x) t(x)+ O( )= O().
Therefore one has:
XY= 1 Gy(6y) )= 5Ny e + 0= O
! 2

The kernel @ G=@ns therefore bounded, which of course implies it is integrable whemultiplied
by p (again sincep is assumed piecewise continuous).

One can point out that the single and double layer potentials are well-dened as well in
3D since the kernels are integrable. Indeed in 3D both the Green's fiction and its normal
derivative behaves as ¥ wheny approachesx, which is integrable on a surface in 3D.

The single and double layer potentials are therefore de ned as well on .We are now recalling
important properties about their behaviors close to .

2.3.1.2 Behavior close to the boundary

The single layer potential Sp is continuous across , but its normal derivative is discontinuous.
Indeed, assuming the curve is smooth, one can show that:

8
Sp) e 1
L i 0= Dypd(y)
i wi p= X;Y)ply y
Sp) | 1
2@ 1o, @n

with j¢ and j' referring to the exterior and interior traces of a function. The operator D is the
pseudo-adjoint' of the operator D, in the sense that given two functionsp and g de ned on

one has:
Z Z Z

Dpq = ryG(x;y) n(y)p(y)ax)d(y)d( x)
zZ Z z

= [x_G{gV_X; n(x)p(x)qy)d(y)d(x)= D ap

=r xG(X;y)

1D s not strictly speaking the adjoint operator of D, since this would require to use an actual scalar product
- that is a sesquilinear form involving a conjugation -, which is not what is done here.
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where we simply exchanged the two variableg andy to go from the rst to the second line and
where we used equation (2.3). Furthermore, because of the symmetry ttie Green's function,
one can show that the operatorS is symmetrical (it is equal to its pseudo-adjoint), in the
following sense: 7 7

Spg=  Sqgp

Also, the operator D typically requires a continuous argument in order to be well-de ned
[137, 138].

On the other hand, Dp is discontinuous across but its normal derivative is continuous if p
is CL  (Helder di erentiable) [138]:

8 1
% Dpj®= Sp+ Dp

Dpj' = %p+ Dp
2 aop) . @n)i_
@n @n
N can therefore formally be written as:
z G
Np(x) = @a@p(x;y)p(y)d( y)

However, under this form, the integral is not de ned since the kerrel is @Gz@g@p (referred
to as the hypersingular kernel) is not integrable on . A more accurate de nition for N is the
following [136]:

Np= rot S(rot p)+ k?S(pn) n (2.7)

where rot and rot are tangential di erential operators, that is di erential operators actin g

along the boundary . A short introduction to those operators is given in appendix A. This

expression is derived by consideration of the velocity eld assoated with the pressure eld given

by the double layer potential, and as it is expressed in terms of singl layer potentials raises no
issues of integrability due to the assumed smoothness of the argument

In a variational context and in 2D, the expression for the operator N can take an even
more practical form. Given a function q de ned on , and applying an integration by parts as
described in appendix A, one has:

Z Z Z
Npqg= grot S(rot p)+ k2S(pn) an
Z Z
= S(rot p) rot q+ k?S(pn) on
Z
_ @p @q 2
= at @t+ k“S(pn) gn

where @=@ t r is the tangential derivative along the curve (t is the unit tangent vector
along ). Under this form, one can notice that N is also a symmetrical operator sinceS is
symmetrical.
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2.3.2 Integral representation theorem

Now consider a function psatisfying the homogeneous Helmholtz equation both in € and '
as well as the radiation condition:
8 .
3 (r?+k)p=0 in °©
(r?+k)p=0 in !

+ radiation condition

3

It is also assumed thatptis smooth up to the delimiting boundary , but with possible jumps
of its value of its normal derivative across . We de ne the jumps at the boundary as:
@ @

=" B° = @n @n

The integral representation theorem states that under those hypothess, the function p'is the
sum of a single layer and double layer potential. More speci cally, onenhas:

(pzso

in [ ¢ 2.8
rp=rS +rot S(rot ) k2S( n) nol (2:8)

Further one has the following relationships between the interior aml exterior traces at the bound-

ary : 8 L
2 S(@E'+p)=S D , s
Prel @, 7 29
2 @n @n

Those last two equations are also known as thérace relationships.

This means that a solution of the homogeneous Helmholtz equation can be wrigh as an
integral potential. However, the distributions and are not known a priori. In order to solve
for them, one needs to ensure that the boundary condition of a scatterig problem is veri ed,
which will impose that the distributions satisfy one or several integral equations. The resolution
of these equations can then be used to calculate the eld at any point ingace using the integral
representation formula given in equation (2.8).

One can use this approach to solve the scattering problem (2.1) but the teorem can be
applied to the scattered eld p*¢ only since the total eld does not satisfy the homogeneous
Helmholtz equation. Besides, before applying the theorem one needs de ne the represented
eld bothon ©and ', which means that the scattered eld solution of the problem (2.2) must
rst be extended to . This extension is not unique and therefore several di erent inteyral
eguations can be obtained.

Finally, one can point out that these equations are valid even fork = 0, which can be helpful
in some regularization techniques of the integral equations (see in appdix C for more details).
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2.3.3 Kirchho -Helmholtz integral theorem and Jean's equation

We rst apply the integral representation theorem to show that one can derive the well-known
Kirchho -Helmholtz integral relationships. To do so, we de ne D to be equal to ps¢ - the solution
of the problem (2.2) -in ©and p"in . psatis es the hypotheses of the theorem (the source
is assumed to lie in € and therefore the incident eld satis es the homogeneous Helmholtz
equation in '). The distributions and are here simply given by:

@f @p _ @p

@ @n @n
= 9 o= p
wherep is the total eld on the boundary and the boundary condition of the problem (2.1)
has been used. Therefore, at any receiver point 2 €, one has:
Z @G
p*(x) = Dp (x)+ S(ikp )(x)= @—p(x;y)+i k (y)G(x;y) p (y)d(y)

There is essentially one unknown here, the pressure eld on the dundary p . Now one can
write the integral equations satis ed by p by applying equation (2.9):

8 1 _
2 5P p")=Dp +S(kp )
>1 @F @b _ . .

2 @n @n _DUkp)*Np

Recalling that p>¢ = p p" and using once again the boundary condition, those two equations
can be rewritten as:

1 . in-

5P Dp S(kp )=p" (2.10)
1. . _ @B
élkp D (ikp ) Np = a@n (2.11)

Those two integral equations are most commonly used to solve the scatterg problem (2.1)
since the unknown distribution has a clear physical meaning (it isthe value of the total pressure
eld on the boundary ). Many other integral equations could be derived but the physical
interpretation of the distributions would be di erent (which is t he case in the so-called indirect
boundary element method).

It is well-known however that equation (2.10) on its own does not admit aunique solution
at the so-called singular frequencies, which are the eigenfrequemrs of a corresponding interior
problem. A popular approach to circumvent this issue is the Burton andMiller's approach [139],
which consists in considering a linear combination of equation (2.10) and2.11). Given a real
number, one can consider the equation (2.11)# (2.10):

1. . . . . _@B . in;
é|k( )Jp D (ikp ) Np ik Dp ik S (ikp )_@1 +ik p"j
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is usually taken to be 1, but any non zero real number ensures uniquess of the solution of
the new equation [139].

Instead of considering a constant coe cient , yet another approach followed by Hamdi [140]
and Jean [120], is to replace by the normalized admittance . The equation one obtains is:

Np +D (ikp )+ik Dp +ik S(kp )= h" (2.12)

with h™ de ned as in problem (2.2). This equation has the main advantage to be strongl
symmetrical. Indeed, if one considers a variational form of this equatn by multiplying this
equation by an arbitrary function q and integrating over , one obtains:
z z z z z
(8q) Np g+ D (kp )g+ ikg Dp + S(ikp )ikqg = h"g (2.13)

Because of the symmetry and pseudo-adjoint properties of the di ereth operators recalled in
section (2.3.1.2), equation (2.13) is symmetrical inp and q , which is a signi cant advantage
regarding numerical implementation.

If one assumes that the real part of is nonzero everywhere, following the same approach
as done by Burton and Miller [139], one can show that equation (2.12) has a uniqusolution
for all wavenumbers (see in appendix B). Besides, Jean pointed ouhat even in the case of an
entirely rigid barrier (= 0 everywhere on ), the results do not seem to undergo the problem
of singular frequencies, as long as the mesh is su ciently ne [120], andherefore the results are
accurate even in the case of a rigid barrier.

Classical nite element discretization techniques can be appliedo equation (2.13), which is
what has been implemented in the software MICADO developed at the CSB. By representing
the elds in terms of their nodal values and shape functions (which ae assumed linear in
MICADO), equation (2.13) can be rewritten as:

q'[Alp =q"h"

wherep , g and hi" respectively correspond to the nodal values of the total pressure ke p,
arbitrary weighting function g and source termhi™ on the boundary, [A] is a symmetric matrix
which is the discretized equivalent of the di erent operators involved in equation (2.13) and "
refers to the transpose of a vector. This equation should be true for arifrary values of q , and
therefore this yields:

[Alp = h" (2.14)

Equation (2.14) is the one implemented and solved in the BEM software MIGQDO by classical
matrix inversion techniques (either by direct inversion or using an iterative solver). Oncep is
known one can therefore calculate the pressure eld everywhere irgy the integral representation
given in equation (2.8) and the total eld is obtained by adding the incident eld.
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Figure 2.3: Schematic of a non regular point X, in the boundary (a \corner"). One can de ne a local polar
coordinate systemr and at the corner, with  ranging between 0 and «.

2.4 Issues for geometries with corners

2.4.1 Angle correction in the Kirchho Helmholtz integral equation

All the results derived in section 2.3 assumed that the curve was siciently smooth, typically
Cl. This is not true in general since a scatterer such as a noise barrier ay have corners (in 2D)
or edges (in 3D), at which the normal vector may be discontinuous and the kchho -Helmholtz
integral relationships modi ed. Indeed, at a corner, equation (2.10) slould be replaced by:

>- P Dp  S(kp )=p"j

with ¢ the exterior angle formed by the curve at the current point (see in gure 2.3). ¢ is
therefore equal to 2 where the curve is smooth. The normal vector at a corner is unde ned
and therefore the second relationship (2.11) holds only in a distributbn sense. Nevertheless, in
several circumstances, the coe cient ¢ will have no in uence on the result. For instance, when
the equation is regularized by an interior function p® as done in appendix C.2, the obtained
integral equation holding for p° should be modi ed as follows:

50 4+ pDOP SO@—B =0
> p p @n
with ; is the interior angle, which satises ¢+ ; =2 . Therefore when the two equations

are summed together, the angle terms cancel out (as long a°(x) = p (x)). Furthermore,
as pointed out by Jean [120], if a variational approach is used and if the points atvhich the
curve is not regular - where neither ¢ nor ; are equal to 12 - represent a zero-measure set
(which would be true in most practical applications since the geometrywould contain only a
nite number of corners), the functions ¢ and ; will be equal to 1=2 almost everywhere and
therefore there will be no in uence of the points where the angle isnot equal to 1=2 on the
second integration.
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2.4.2 Singular behavior of the pressure eld close to a corner

The presence of a corner also induces a singularity of the pressureagiient around in its vicinity.
This phenomenon is actually relevant in any elliptic boundary value problem. A comprehensive
treatment of this phenomenon is given in [141], we here expose some sirapiesults relevant to
our case.

Close to a corner pointxg, one can locally describe the pressure eld using a local polar
coordinate schemer and (see in gure 2.3). We would like to describe the behavior of the
pressure eld asr approaches 0. It is known that the pressure eld is continuous in the &terior
domain as well as along the boundary , and therefore remains bounded even ate to a corner.
As a bounded solution of the Helmholtz equation, in 2D, the local pressureeld can be described
as a series of cylindrical waves:

X
p(r; ) p(xo)=  JIn(kr) ~n cosq )+ T sin(n )

n
where J, is the Bessel function of ordern (Neumann functions have been discarded since they
are unbounded asr approaches 0). The indexes are positive but unknown for now and not
necessarily integers. The Bessel functions can be approximated agjoes to zero, for any nonzero
positive value of n, as [142]:

1 (kr)"

n
(n+n 2 "

Jn(kr)

So that the pressure eld can be rewritten as:

X
p(r; ) p(Xo) " ncosp )+ nsin(n ) (2.15)

n

Now, assuming for simplicity that the boundary is rigid, the boundary condition on implies
that: @ @

—(r;, =0)=0 and —(r = =0

ol =0 Sl = o

The rst condition implies |, =0 and the second de nes the values oh:

sin(n ¢)=0 Om2N f 0g) n=m — (2.16)

e

One can now de ne the so-calledsingularity exponent = = .. Since ¢ < 2, is always
greater than 1=2. Given equation (2.15) and the values oh given in equation (2.16), one nally
has the following asymptotic behavior for the pressure and its gradien

p(r; ) pxo)/ r +0(?) rpr; )/ r t+o00? b

This states that the pressure eld essentially behaves ag asr approaches 0. From this
statement, one can already conclude that when> 1 (thatis when < ), the pressure eld is
therefore at leastC?! (continuously di erentiable), which implies that the pressure eld and its
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gradient (which is related to the velocity eld) are regular even when approaching the corner.

N

Figure 2.4: Test geometry for the numerical study of corner singularities (di mensions are in meters). The red
star is the source location, in blue the scatterer (assumed rig id) and in black the rigid ground. The curvilinear
abscissas is de ned to be 0 at the bottom-left corner and increasing followi ng the blue line in the clockwise
direction. The corner point which we will focus on is located at s=1m.
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Figure 2.5: Boundary pressure valuesp (in arbitrary pressure unit [PU]) and tangential derivatives @p=@t
(in PU/m) as a function of curvilinear abscissa s (in meters) calculated with the BEM (MICADO) for the

con guration given in gure 2.4, at 500 Hz, and for dierent value s of the criterion ¢ (number of elements per
wavelength). Left plot: pressure values. Right plot: tangenti al derivatives.

On the other hand, in the case of an exterior angle larger than , the singularity exponent
is smaller than 1, which implies that the pressure eld is onlyC% in this case. This means that
the pressure eld is still continuous and bounded ¢ goes to zero) but the pressure gradient is
unbounded although integrable (and even square-integrable) in the nghborhood of the corner
as well as along the boundary . When evaluated on the boundary , the normal derivative has
a similar behavior as the pressure itself due to the boundary condibn, which implies that the
tangential derivative only is unbounded.

From a theoretical standpoint, even if the pressure eld is continuous but its gradient un-
bounded and integrable, there are no issues to evaluate the three opors S, D and D at the
corner since their arguments, as taken in the integral equations givenni section 2.3.3, are at
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least C% . On the other hand, there is an issue regarding the operatoN which requires the
argument to be CY | a condition which is not met at the corner point. Nevertheless, it islikely
that a regularization of the integral equation as described in section C.2and/or a variational
approach as proposed by Jean [120] may circumvent this issue to some exten

The fact that the solution is less regular close to a corner compared to pats where the
curve is smooth can induce inaccuracy in some numerical calculationgnvolving the boundary
eld, since the numerical approximation of the solution is usually piecewise continuous in the
case of constant elements, or continuous and piecewisg! in the case of linear and quadratic
elements, and therefore cannot resolve properly the exact behavior dhe solution close to a
corner. This will be especially true when evaluating the tangentialderivative which is known
to be unbounded close to the corner. However, when evaluating the attered eld at a receiver
point far from the boundary, it is likely that local inaccuracies close to corners will not have a
strong in uence on the result.

As an example of this phenomenon, the boundary pressure nodal values aralculated using
the software MICADO developed by Jean [120] (which uses linear elemesy for a simple test
geometry with corners (see in gure 2.4), at 500 Hz. The top left corner correponds to a
curvilinear abscissa ofs = 1 m, which is the point we will focus on. The re nement of the mesh
is varied by changing the minimum number of elements per wavelendit ¢ (which is one of the
input parameters of MICADO). The nodal values of the boundary pressureclose to the corner
are presented in gure 2.5, left part. Although the value exactly at the corner is essentially the
same regardless of the mesh neness, the convergence of pressure galin the vicinity of the
corner is much slower, to the point that there is still a di erence of about 3% in the eld 1cm
(less than 2% of the wavelength) away from the corner in the solutions alculated with ¢ = 48
and c = 96. Furthermore, one can notice that with ¢ = 12, which is usually assumed to be a
relatively ne meshing, the behavior of the solution is not well resolved.

This phenomenon is even more obvious when looking at the tangential dertive, calculated
as the di erence of successive nodal values divided by the length dfie element (see in gure 2.5,
right part). As the mesh size decreases, the tangential derivative vales right before and after
the corner keep increasing, as they should since they theoreticallgre unbounded. Again, when
c = 12, the tangential derivative is not well resolved, which means that numerical calculations
involving the tangential derivative cannot be accurate close to a corner unless the mesh is
extremely ne. For instance, let us assume one wishes to evaluate thfollowing integral:

Z
1m @pzds

s=0:5m @t

The result will be strongly dependent on the mesh and therefore canot be accurate (see in table
2.1). One can notice that with ¢ = 12 the error on the integral | is at least 8% (it is probably
larger since the value atc = 96 is probably not converged).

Despite this local inaccuracy, one should however point out that wherevaluating the pressure
eld far from the boundary - which is the most common application of the BEM -, convergence
is achieved a lot faster. For instance, again using MICADO, for a receivepoint located at
(x1 =3m; x2 = 1m) (following the same coordinate system as given in gure 2.4), the eror is
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less than 2% with c = 6 and drops to less than 1% with c = 12. The singular behavior of the
pressure eld will cause an issue only when one is interested in th ne description of the eld
close to a corner (this will be the case when evaluating corner nodeessitivities, as we will see
in chapter 4).

Table 2.1: Numerical evaluation of the integral | as a function of the mesh criterion ¢ and element sizeh (in
cm). The estimated relative error (with respect to the estimated value at ¢c = 96) is also shown.

c |heml | | | Error [%]
12 5.7 1.8512 8.4
24 2.8 1.9865 1.7
48 1.4 1.9915 1.5
96 0.7 2.0212 -

2.5 Extension to the 3D sound eld with in nite geometry in
one dimension

Figure 2.6: Considered geometry for three dimensional calculation of the sound eld assuming an in nitely
extending geometry in one dimension (2.5 D modeling). The point (R) has coordinates (Xx1;X2;0) and (S) has
coordinates (0; 0; x3) in the ( x1;X2;x3) coordinate system, referenced to the origin (O).

In the previous sections, the diraction problem in the presence ofa noise barrier has been
presented in two dimensions, which implicitly assumes on one hanthat the geometry is in nitely
extended in the dimension perpendicular to the vertical plane cotaining the source and receiver,
and on the other hand that the source is an in nite coherent line source.However, it is possible
to calculate the three dimensional eld - still assuming an in nite geometry extension - for
instance due to a point source which can be o set compared to the vertial plane containing
the receiver (see gure 2.6), thanks to a method proposed by Duhamel2B, 143] (this type of
approach is referred to as 2.5 D modeling). The result was rst derivel assuming rigid boundary
conditions in [28], but we give here the generalized result in the casef a nite admittance
boundary condition [143] described by a generic function of frequency. Let pop(X1;X2;k; )
be the pressure eld in two dimensions (assuming an in nite coheent line source) at a given
wavenumberk (which corresponds to frequencyf = kcg=2 ) and with an admittance distribution

, and pap (X1; X2;X3;K; ) the pressure eld in three dimensions at the wavenumberK (which
corresponds to frequencyF = Kcg=2 ) and with the corresponding admittance distribution
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(K). It turns out that psp can be expressed as the following Fourier integral [143]:

z
1 -1t P K |
Pao X1;X2iX3i Ky (K) = o= pao Xiixz; K2 2;% e*sd  (217)
1 —_—

Using simple symmetry properties of the integrand, one can show thathis expression can also
be written as:
1 Z1 P— (K)
Pap X1;X2;x3; K (K) = = pop Xi;X2; K2 2 p—=——==——= cos(x 3)d (2.18)
0 1 2=K 2
Equation (2.18) expresses the fact that the 3D sound eld can be calculatedrom a set of 2D
sound elds, calculated at di erent frequencies and at di erent admittances. As varies from
0 to K, the frequency at which the 2D calculations are made varies fronk to 0. When >K ,
the wavenumber at which the 2D calculation is made becomes imaginary, wbh requires speci ¢
attention in how to solve the 2D problem. Duhamel nevertheless pointd out that the range of
imaginary wavenumbers necessary to achieve good convergence of theegral is small [28, 143].
Jean even states that at a high enough frequency, the imaginary wavenundss can be simply
ignored if great accuracy is not required, such as in the estimation of a lmadband A-weighted
quantity [144]. In this case the integration is only performed from 0 toK in equation (2.18).
This formalism also allows to calculate the sound eld in the case of an imitely extended

but incoherent line source (meaning that the cross-correlation of thesource distribution along
the line is given by a Dirac delta function, as explained in [28]). Themean-square value of the
sound eld is independent of x3 in this case and is given by:

Z,
p%D, inc. line, rms X1; X2; K; (K) = 1 0 P2p  X1;X2; P K? 2; %

From the knowledge of a ne 2D spectrum, this approach therefore allowsone to consider
one or several point sources as well as an in nite incoherent line sourcas long as the di erent
sources are all on the same line along th&s direction (sources on another line would require
another 2D spectrum). Several point sources may be summed incoherdnand therefore one
can also approximately model a nite length incoherent line source,which might be a more
realistic model for a rail track for instance.

This method has been implemented in MICADO as well. Using those dierent source models,
it has been found that depending on which model is used, the predied attenuation can vary
signi cantly [144]: insertion losses are typically a lot smaller when tte spatial incoherence of
the sources is considered, which also means that the performance bdssolely on 2D results is
usually overestimated.

2.6 Conclusion

In this chapter, we have brie y introduced the theoretical framework of the integral equation
method to solve the exterior acoustic scattering problem. The formabkm has been mostly
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presented in two dimensions, although most results can be extendetb the three dimensions
case. We have also presented the equivalent weak formulation of the attering problem which

will be helpful in the derivation of the shape sensitivity expressions (see in chapter 4). The
integral equation derived by Jean and implemented in the BEM softwareMICADO has been

presented as well, since this will be the main tool of calculation in he rest of this work, along
with some regularization techniques.

The issue of decreased regularity of the solution close to a geometricahgularity (a corner)
has been raised as well. Although this does not cause signi cant inaccurgdn most applications
(typically for the calculation of the pressure eld in the exterior d omain), in a shape optimization
context this will induce some extra error in the evaluation of the sersitivity, as we will see in
chapter 4.

Finally, the 2.5D approach, which has been brie y presented here ands implemented in
MICADO as well, will be used to make some more realistic predictions ohoise barrier perfor-
mances, as we will see in chapter 5 and chapter 6.
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Chapter

Review of optimization methods and
their application to scatterer shape
design and inverse scattering

3.1 Introduction

As it has been shown in chapter 1, in a noise barrier application (such as &ow height noise
barrier close to a tramway), the acoustic treatments and the geometrial features of the di erent
surfaces surrounding the propagation medium - what we referred to as #hboundary in chapter
2 - will in uence the acoustic eld and therefore the e ciency of a n oise barrier (the amount
of noise reduction the device can achieve in a given receiver zone).eBause of this dependence,
it is possible to change the e ciency by varying the parameters desdbing the admittance and
the shape of the boundary, which includes the noise barrier, which @ans one can evewptimize
the design of a barrier to improve its performance.

Optimization relies on a prediction method (which calculates the eciency given a set of
parameters), which intrinsically requires some simpli cation of the situation under consideration
in order to be mathematically modeled. This can make the results of sch a process questionable
when applying it to real life situations. However, an important feature of optimization methods
is that they can help identify what parameters in uence the e cien cy the most, which is valuable
information before designing and building a possibly expensive dése such as a noise barrier.

Besides, instead of improving the e ciency of a device by changingits shape, one could
also wish to identify the shape of a boundary - or scattering surface - based on some known
typically measured quantity such as the far eld di raction pattern: this is referred to asinverse
scattering. The same approach can be followed, except that this time the functiorto minimize
will not be an e ciency, but a di erence between measured data and predicted data. A similar
approach can be followed to identify theadmittance of a surface, which has been referred to as
admittance eduction

First, we will review some general optimization strategies and associad mathematical re-
sults. We will then point out a few examples of how these strategies dwe been applied in the
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context of scattering surface optimization, which in turn will allow us to choose an appropriate
approach with application to tramway low-height noise barriers.

3.2 General considerations

3.2.1 Form of the considered optimization problem

First, one needs to de ne a real-valued criterion which characterzes the performance of the
device under consideration, which is referred to as theobjective function e. By convention,
this criterion is chosen to be better when it decreases, and thefere we wish to minimize it (if
one wants to maximize a criterion, one can simply consider minus thigriterion to make it a
function to minimize). Typically, in our context we choose a weighted attenuation provided by
the barrier, which is a positive quantity typically ranging between 0 and 1, and can be expressed
as a function of the acoustic pressure eld valuep(R) at the di erent receiver locations.

One criterion only is used, and therefore we are considering a mono-adxtive optimization. In
many cases however, several independent criteria are indeed eghnt to describe the performance
of a device, for instance noise reduction and cost, as done by Baulac [4] andiksing et al. [145].
Indeed cost is always an issue when building a noise reduction deé but unfortunately it can
be dicult to model. Specic methods exist to deal with a multi -objective optimization, but
they will not be detailed here. One can for instance consider a weigked sum of the di erent
criteria, so that the problem reduces to a classical mono-objective dpnization problem.

Moreover, we consider a set of generic, typically real-valued parametsxy;:::; Xy - gathered
in the vector x = (X1;:::; XN ) - which in uence the objective function. For our application, those
parameters can be categorized in two types:

admittance parameters : geometrical and physical inputs of the admittance models
describing the admittance (a few examples have been given in séch 1.6)

shape parameters : variables describing the shape of the scattering surface

Shape parameters can be of various types, for instance it could directl{pe the coordinates of
a set of nodes which control the shape - referred to asontrol nodes - or any type of variable
describing a geometrical feature, such as well depths or tilting angis (as done by Baulac et al.
to describe multiple-edge barriers [128]).

The parameters only in uence the objective function indirectly (or implicitly), since the
weighted attenuation simply depends on the pressure eldp, which we will call the state, fol-
lowing Allaire [146]. The state, as the solution of a boundary value problem -in which the
admittance and boundary shape intervene in the boundary condition - depnds on the parame-
ters, but again in an implicit fashion. One can write the boundary value problem in the general
form L[p] = bwith L an operator (linear in our context) and b a generic right hand side related
to the source term (this equation would be for instance equation (2.12) itroduced in chapter
2). In a sound di raction problem, both the operator and the right hand side can depend on
the boundary condition and therefore on the parametersx. The boundary value problem can

44



be hence written as:

L(x)[p] = b(x) (3.1

Equation (3.1) is referred to as thestate equation As the solution of equation (3.1), the state
p is a function of the parametersx, since indeed one can formally writep(x) = L(x) 1b(x).
The inverse of the operator is usually not known explicitly, and therefore the function p(x) is
an implicit function. The objective function, which can depend on the parametersx explicitly
as well as the state, can hence be written as x;p(x) .

3.2.1.1 Constraints

The goal is hence to minimize the functione by modifying the values of the parametersx. How-
ever, parameters usually cannot take arbitrary values but instead satif/ a set of constraints, for
instance due to the geometrical feasibility of the shape of the scattar or so that the parameters
stay within a range of physically achievable values. For instance, in dow-height noise barrier
application, the height of the barrier will be limited typically to 1 m, which means that all the
vertical coordinate above the ground of all nodes should be less than 1 nin general, constraints
can take complicated forms, but rst one can assume so-calletbound constraints. Given two
vectors| and u respectively of lower and upper bounds for the parameters, the boundonstraints
can be written as:

|6 X6 u (3.2)

with the inequalities applying element-wise.

In a shape optimization application, other geometrical constraints can arig, related to the
mathematical feasibility of the surface - or the curve in 2D - describing the boundary. Let us
assume for simplicity the 2D case (which will be the main focus of thé work). The curve - or
the set of curves when dealing with several scatterers - descrifg the boundary should also be
injective, meaning in particular that the boundary should not present any loops or $iould not
fold over itself, or that the disjoint parts of the boundary should not intersect. The easiest way
to deal with this constraint is to ensure that the representation of the shape (that is the choice
of parameters describing the shape) will always meet such a req@ment. This can be done with
bound constraints in some cases, for instance when part of the geometry @escribed as a set of
wells, as done in [128].

However, if one wishes to describe the shape with control nodes (assing for instance linear
interpolation between the nodes to generate the whole curve), preanting the presence of loops
is not as straightforward. A method to deal with this issue is presened in appendix D.1.

Finally, the optimization problem under consideration can be summarizd as follows:

] ( 16 X6 u
min e Xx; p(x) s.t. (3.3)
X ( x) is injective

where (X) is the boundary shape corresponding to the shape parameters of. This problem
falls into the general category of constrained nonlinear optimization probéms.
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3.2.2 Continuous vs. discrete representation of the search space

Under the form given in (3.3), the optimization problem is not complete yet: one still needs to
de ne the search spacethat is the set which the parametersx belong to. This basically raises
the question of how to represent the parameters. This question isx@remely important since it
strongly determines which type of optimization method can be used.

One can rst assume that the parameters can vary continuously, and therére the search
space can be here identi ed toRN . Under the assumption of su cient smoothness of the state
with respect to x and of the objective function with respect to the state, one can naturaly
introduce the notion of sensitivity (or derivative, or gradient) which quanti es how much the
state and the objective function are changed when a parameter is variedyhich is valuable infor-
mation in an optimization context. Sensitivity-based optimization met hods, as detailed in [147],
are particularly well-suited in this case, although one could also use erivative-free optimization
methods such as the Nelder-Mead method [148]. The main drawback of thikind of approach
is that it can only nd a local solution of the problem (3.3), since only a neighborhood of the
initial guess is searched. Considering several randomly chosen start) points can nevertheless
help in exploring the domain in a more \global" way.

However, one could follow a di erent approach and allow each parameter todke only a set of
discrete values, for instance corresponding to a set of existing camercially available materials
or products, or by approximating a continuous search space with a digetization. In this case,
one cannot de ne the derivative, and therefore the optimization will have to do without this
information. Evolutionary optimization methods, such as genetic algorithms, are particularly
well-suited for this purpose, although they do not necessarily reqine a discrete search space.
These methods intrinsically allow a more global search of the set of podde values, but because
one cannot use the sensitivity information any more, the number of evalations required to solve
the problem (3.3) would be much larger than in the previous case, particlarly if there is a large
number of parameters [146].

For our application, it has been chosen to use a continuous search space fitre purpose of
being as general as possible. Indeed, admittance parameters - whichuadly are geometrical
characteristics of a device or physical properties properties of a matial - as well as shape
parameters - would they be control node coordinates or geometrical featas - are more naturally
described with continuous parameters. Besides, as we will see,dlsensitivity information can be
obtained e ciently in this context, and therefore it makes sense to take advantage of the speed
of gradient-based optimization methods, which intrinsically require a continuous representation
of the parameters.

3.2.3 Optimality conditions for gradient-based optimization

Assuming a continuous search space - which means2 RN - and a su ciently smooth objective
function and state equation, one can characterize a solutiorx of the problem (3.3) (again
meaning here a local solution) by some conditions that should be satis @ at this point. First,
if there was no constraint, the objective function should bestationary at a local solution, which
means any variation of the parameters away from the solution should not mody the value of e
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to the rst order. This implies:

(8i 2 [1:N)) dfi X;p(x) =0
with d=dx; is here thetotal derivative - as opposed to@ =@ which is the partial derivative,
meaning the derivative taken while assuming other arguments are keptonstant.

However, in general, in the presence of constraints, the stationary catition should be modi-
ed to the so-called Karush-Kuhn-Tucker (KKT) conditions [147] whic h require the introduction
of a set of Lagrange multipliers. The KKT conditions are however not su ci ent to guarantee a
local minimum: since they are only based on rst order derivatives, hose conditions would be
valid both at a local maximum and a local minimum. Introduction of second order conditions,
mostly related to the positiveness of the Hessian, can help characte® a local minimum as
opposed to a maximum [147].

3.2.4 A few comments regarding practical applications

However, one should point out that those necessary optimality conditionsare usually not directly
solved in practice. Instead, iterative approaches are followed, stamg from an initial guess of
the solution x° and recursively proceeding as follows: from the current estimateX, build a new
estimation x¥*1 based on the available information atx¥, typically the gradient or the Hessian, as
we will see in the next section. One can also point out that evolutionaryoptimization methods
do follow an iterative process as well, but at every step a whole \popudtion" of points are
considered, instead of just one. From this general statement it makesense that evolutionary
methods fundamentally need many more function evaluations than gradienbased methods.
Therefore, when a function evaluation is expensive - as in the case t& since one has to solve
several diraction problems in order to calculate the attenuation provided by the barrier -
evolutionary methods will require a much larger computation time. On the other hand, these
methods will be well-suited in cases where function evaluations arfast but gradient calculations
are time consuming.

3.3 Overview of some common optimization algorithms

We brie y review here some common optimization algorithms that can be usd to tackle opti-
mization problems such as the one under consideration.

3.3.1 Derivative free optimization methods

A popular continuous search space method is the so-called Nelder-Meaddal search [148].
Although this algorithm is a continuous search space method, it does notequire the knowledge
of the gradient. Instead, at each iteration, one considers a set of points which makes this
method somewhat similar to an evolutionary optimization method - which forms a \simplex",

and from the knowledge of the objective function value at each point, thealgorithm replaces
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the \worst" point with a new one by deforming the simplex (using a contraction, expansion or
re ection of the worst point with respect to the center of the other p oints).

Due to its simplicity this algorithm has been widely used, for instance by Baulac et al. [128]
in the context of multiple edge highway noise barriers, in which theauthors coupled a genetic
algorithm to a Nelder-Mead local search in order to improve its e ciency.

3.3.2 Sensitivity-based (gradient-based) methods

As stated in section 3.2, the sensitivity of the objective function wih respect to changes of each
parameter at a given point is a valuable piece of information in an optimizaton algorithm. This
information can then be exploited in speci c methods to reach a localsolution in an e cient
manner. However, for the derivative to make sense, one needs the objeve function to be smooth
enough, although in most physics-based calculations and for simple enough j@ative functions,
this assumption is usually satis ed. Again one can point out that, although sensitivity-based
methods are limited to local minimum nding, on can add some randomnessn the search by
considering several random starting points in order to make the searcimore global.

In this section we are assuming the general framework of an iterative mébd as briey
explained in section 3.2.4. Basically, given an estimat&X of the solution, we assumed the state
p(x*) is known as well as the objective function valuee x¥; p(x*) , and we wish to build a new
estimate x¥*1 | based on the gradient atxX. We rst explain how to calculate this gradient in
a general manner. For simplicity, the current estimate, associatedstate and objective function
value will be simply written here asx, pand e x;p .

3.3.2.1 Gradient calculation

Given the form of the objective function e(x;p), for any value i 2 [1 : N], the sensitivity of e
with respect to x; has two terms, one related to the explicit dependence on the paramets x;,
and one related to the implicit dependence of the statep on x;, which can be formally written
as:
de _ @e @e dp 3.4
dxj @x @p dx;
where @e=@ghould be understood as a di erential form acting on pressure eldsand dp=dx; is
another eld characterizing how much the pressure eld depends orthe parameter Xx;.

The dierential @e=@gepends on the form of the objective function but will be rather
simple for our application (see in section 4.1.2). In this section we wilsimply assume that this
derivative is explicitly known. Now consider the remaining term dp=dx;. As it has been pointed
out in section 3.2.1, the function p(x) is implicit since p is the solution of the state equation
(3.1) in which the parameters x intervene. The derivative is therefore not as straightforward
to express. We now present two possible approaches to calculate thierivative de=dx;, namely

implicit di erentiation and the adjoint state approach.

Implicit di erentiation As the state is de ned as the solution of an equation such as equation
(2.12), one could attempt to de ne as well the eld dp=dx; to be the solution of another equation.
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This can be achieved by considering the derivative with respecta x; of the state equation, which
formally yields:

h i
dL dp _db
dT(i(X)[p(X)]+ L(x) qu(X) = Tm(x)
This can be rearranged as follows:
h i
L 5000 =B with D)= £200) (0[P (3.5)

Assuming one can express the derivatives of the operatdr and right-hand side b, since p is
already known, the right-hand side of equation (3.5) is explicitly knovn as well, and therefore
eqguation (3.5) has the same form as the state equation, with a di erent righ-hand side b and
the unknown being the eld dp=dx;. This equation can be solved using the same method as the
state equation, and therefore one can obtain the derivative eld ¢p=dx;, and recalling equation
(3.4) the sensitivity of the objective function de=dx;. This method is referred to asimplicit

di erentiation .

The main drawback of this approach is that for each parameterx;, i 2 [1 : N], in order
to obtain the term dp=dx;, one needs to solve equation (3.5), which in our context means to
solve a scattering problem, and can therefore be rather expensive garding computation time.
The whole gradient calculation therefore requires one to solve a diraton problem N times
(actually N +1 times since one problem had to be solved rst to calculate the statep). If there
are a large number of parameters, this approach would yield an excessiveroputation time.

Adjoint state approach Another approach consists of considering the statg as a di erent
variable and treating the state equation as a constraint relatingx and p. We here follow the
development of Allaire [146], although the approach given here is essentiglformal, without any
mathematical details regarding the existence and the appropriate spaceof the di erent terms.
A slightly more rigorous development speci ¢ to our application will be given in chapter 4.

Following a classical approach in constrained optimization, one can thenntroduce an asso-
ciated Lagrangian, de ned for arbitrary elds p and ¢, which can be taken as:

L(x;p:0) = e(x;P)+ c(x;p;4  with c(x;p;0) = hL(x)[p] b(x);ai

where t;:i is a product de ned between two pressure elds (it could be for nstance a scalar
product, but in the following derivation this is a not a requirement). The function c has been
chosen to vanish when evaluated at the solution of the state equatiop(x), and this for any eld

G
(80  cx;p(x);4 =0

This allows one to rewrite the objective function as:
(8  ex;p(x) =L x;p(x);q
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Now recalling equation (3.4), replacing the objective function with the Lagrangian yields:

de Q Q@ dp
8 — X;p(X) = — X;p(X);6 + — X;p(X); —(X 3.6
(80 g XiPX) = G XiPiA * g Xip0i®) g () (3.6)
Now, since this equation (3.6) holds for any eld g one can choose a constraint to be satis ed
by this eld to simplify the expression. Let us de ne the adjoint state q(x) as the solution of

the following equation:

Q@ _
@pX,P(X),Q(X) =0 (3.7

Substituting ¢ = q(x) in equation (3.6) hence yields:

de . N C N
ax; x;p(x) = @x X; p(x); a(x)

We therefore got rid of the implicit dependence term ¢=dx; and expressed the total derivative
as a partial derivative. Recalling the form of e and ¢, one can then write:

o XiP) = 2T + 2 X p(); ()
I @e I@dL db E
o X;p(x) + qu(X) p(x) d—Xi(X); a(x)
:gfx;p(x) h &(x) ; q(x)i (38)

with B de ned as in the previous paragraph. Again, all the terms appearing in thislast equation
are explicitly known, once the state and adjoint state are calculated.

Finally, the adjoint state equation (3.7) can be further written out. Fi rst one can de ne
L (x)Y the pseudo-adjoint operator ofL (x), which by de nition satis es the property:

(8p; ) hL(x)[pl;ai = hL(x)”[q]; pi

This allows one to calculate explicitly the term @c=@p

@C NG = @ G = @ Yral: ni = y
@px,b,q @FP)L(X)[D],QI @IQL(X) [al; i = L(x)’[d]
The adjoint state equation hence becomes:
LOOAml = @oxiP) (3.9

Basically the adjoint state satis es an equation involving the pseudo-agoint of the operator
involved in the state equation and a di erent right-hand side, related to the form of the objective
function. In case of acoustic scattering, it turns out that the operator L is symmetrical, which
meansLY = L, and therefore the adjoint state equation is another acoustic scatteringproblem
to solve [149, 150].

Basically, to calculate the sensitivity of e with respect to each parameterx;, one needs to
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solve the state equation (3.1) and the adjoint state equation (3.9) to calcula¢ the state and
adjoint state p(x) and g(x), and then apply equation (3.8). The main advantage of the adjoint
state approach, as opposed to the implicit di erentiation method, is that once the state and
the adjoint state are known, calculation of the sensitivity with respect to each parameterx;
is explicit, and usually represents a negligible computation time. This method is therefore
well-suited to gradient-based optimization algorithms with a large number of variables.

3.3.2.2 Line search methods

We have described in section 3.3.2.1 two approaches to calculate the griedt of e for a given
set of parametersx. Recalling the iterative framework of gradient-based methods exposkin
section 3.2.4, we are now able to specify how a new iterat*! can be generated from the current
estimate x¥, based on the gradient. Following Nocedal [147], we de n&* = e xX:p(x¥) as the
current objective function value and g = r e xK; p(x¥) the current gradient vector.

One rst approach is to search the new iterate along a given direction - odine - from the
current iterate, hence the nameline search method. The general expression for the new iterate

is in this case:
XKt = yk g kK

where uX is the search direction, which is a vector inRN, and ¥ a positive step-size.

In the steepest descenimethod, the search direction is chosen to be the opposite of the
gradient vector uX = gK. Indeed, in this case one can theoretically ensure that for a small
enough step-size, the value o# at the new iterate €*1 will be smaller than €€. The value of the
step-size can be xed a priori, or it can be found iteratively to ensure a su cient decrease of the
objective function (as speci ed for instance by the Armijo conditions [147]). A simple way to
nd an appropriate value of the step-size is the so-called backtrackindine search approach [147],
which consists of choosing a rather large step-size and decrease iefisitively until the condition
is met.

In Newton's method, the search direction is given byuk = [HX] *g¥, with HX the Hessian
matrix at the current estimate. This direction is referred to as the Newton direction. It comes
from locally approximating the function by a quadratic model and minimizing it, and technically
requires the Hessian to be positive de nite to be properly de ned The convergence rate of
Newton's method is much faster than that of the steepest descent méod. However calculating
the Hessian in this context can be rather cumbersome, even with an adjot state approach.
Besides, a unit step-size ¢ = 1 is usually assumed in Newton's method.

In quasi-Newton methods, one uses an approximation of the HessiaB® instead of the true
one, which is updated after each iteration based on the current and praeus values of the
gradients and iterates. The search direction is theruX =  [BK] 1gk. The update is chosen to
be computationally e ective, for instance by adding a low-rank matrix. A popular update is
the so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula,which guarantees symmetry
and positiveness of the approximate Hessian under some conditions [147].n®should point out
that this method still requires a good approximation of the initial m atrix B°, which might not
be easy to achieve. A possibility is to use nite di erences, altrough this can be rather time
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consuming (N evaluations of the gradient) and inaccurate.

Bounds constraints and projection The di erent approaches explained in this section are
technically meant to be used in an unconstrained optimization context However, they can be
adapted rather easily in the case of bounds constraints, which is one tygof constraints we have
considered in problem (3.3). Indeed, even if the current iteratexk satis es the constraints, there
is no guarantee the new iterate will. A possibility is to project the new iterate in the feasible
domain, as done by Allaire [146]. Such a projection operatolP is di cult to characterize in
general, but has a simple expression in the case of bounds constraints:

P(x) = min max(x;l); u

where the min and max values are taken element per element. The newerate that satis es the
bounds constraints can then be written as:

Kl = p k4 kK

3.3.2.3 Examples of general methods: the Sequential Quadratic Programmin g
(SQP) and the interior-point algorithm

The methods described in the previous sections have been mosthljeveloped to solve uncon-
strained problems. They are hence not appropriate when dealing with @mplicated constrained
problems, although they can be used as building blocks for more advancedethods. Two impor-
tant methods which are able to handle most nonlinear constrained optingation problems are the
Sequential Quadratic Programming (SQP) method and the interior point algorithm [147]. The
SQP basically consists of locally approximating the objective funcion with a quadratic model
and linearly approximating the constraints. This generates the so-cdeéd SQP subproblem, which
can be solved for instance using a line search approach.

In the presence of inequality constraints only, the interior-point algorithm consists in a se-
quence of unconstrained minimizations of a perturbed function equato the objective function
plus a logarithmic barrier term related to the constraints and dependng on a decreasing param-
eter. Although the rst minimizer usually does not satisfy the constraints, the sequence usually
converges to a solution that strictly satis es them (it hence lies in the interior of the feasible
domain).

Being among the most general gradient-based algorithms to solve nonlinear timization
problems, those methods have been widely used, although their indpmentation does rely on
the di erent algorithms previously introduced in this section. T hey are for instance available as
part of the Optimization Toolbox of the Matlab software [151].

3.3.3 Global search methods

We now brie y introduce the basic idea of a few global search methodswhich are fundamentally
di erent than sensitivity-based methods. First, evolutionary m ethods are presented. One can
recall that those methods typically use a discrete search space, atated in section 3.2.2, which

52



in the case of scattering surface admittance and shape optimization wouldequire one to de ne
a nite set of feasible values for each parameter. They however intnsically allow a global search
of the feasible set, as opposed to the local search provided by gradiebised methods.

Those methods are iterative, as the sensitivity-based methods arebut at each iteration a
whole set - the population - of points - the individuals - in the search space are considered.
Each iteration step is referred to as ageneration. The process basically follows the principles of
evolution introduced by Darwin at the end of the 19" century: natural selection of individuals
well-adapted to their environment and renewal of genetic information ty probabilistic processes.

We now introduce the framework typically followed by an evolutionary method, as explained
in [146]. The population is initialized, typically by uniform random selection in the feasible set.
Each individual is then evaluated, which means the objective funcion is calculated for each
individual. Based on their performance, a part of the population (the mog \well-adapted")
is selected. Mutation and crossover probabilistic operators are then ggied to the selected
individuals to generate new individuals - the children - which are evaluated as well. From the
children and the parents, a new population is selected (this sel¢ion can be deterministic or
probabilistic), both from the parents and the children. The algorithm is then repeated until
convergence.

Di erent evolutionary methods exist - for instance genetic algorithms or evolutionary strate-
gies -, which mostly di er in the way the mutation, crossover and sekction operators are de ned.
We refer to the abundant literature on the topic, for instance the book by Eiben and Smith [152].

One can also mention thesimulated annealingmethod, which is technically not evolutionary,
but is however based on a random approach to e ciently explore the sears space (controlled
by a so-called temperature history), inspired from the physical pocess occurring during the
cooling of a metal. At each iteration, a set of points is randomly generatedn the neighborhood
of the current iterate. Then the new iterate is chosen using a proballistic selection, based
on performance and a Boltzmann-type probability factor controlled by the temperature, which
allows one to retain a point with worse performance as the new iterate. Te idea of such a
process is to prevent the algorithm from being \stuck" close to a lo@al minimum, and therefore
the chance to nd a global solution is much higher.

3.3.4 General comments on the utility of global minimum nding

Itis really the randomness introduced in both methods - either inthe mutation/crossover/selection
operators for evolutionary methods, and probabilistic acceptance of the ew iterate in the sim-
ulated annealing - that allows them to globally search the feasible setHowever, the possibility
of reaching the actual global optimum may depend signi cantly on the problem under consid-
eration as well as the choice of the parameters involved in the algorithm (amber of selected
individuals, population size, probability of mutation, convergence citerion, temperature history,
etc...), and there is therefore no guarantee the global minimum will ke found. Besides, one could
add that, since the objective function - in our case for instance a weigied attenuation due to the
low height noise barrier - is calculated under many simplifying assmptions due to the modeling
of the physical problem, one could question the interest of nding \the" global solution of the
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problem, which would truly be optimal in one specic context (for a noise barrier this could
refer to source position, spectrum, receiver positions, surrouridg geometrical features, etc...).
One instead could seek aroptimized solution - a solution with a better performance than the
one we started with - as opposed to aroptimal solution, which is precisely what local search
methods achieve. Indeed it is likely that an optimized solution woul stay optimized in a slightly
di erent context (meaning with a better performance than obvious or simple solutions), whereas
an optimal solution may not stay optimal (it might not be the best solution any more). This
is another reason why using local gradient-based optimization methodseem quite appropriate
for our application.

3.4 Areview of shape and admittance optimization applications
in acoustic scattering

The methodology introduced in this chapter has been extensively sed in the past few decades
for many di erent applications, mostly divided in two categories: design optimization of a
given device (such as a cantilever beam, an airfoil, a noise barrier, an aastic liner, etc) and
identi cation of scatterers and acoustic properties of surface treatmats based on measured
data, which has been mostly referred toinverse scattering in the case of shape identi cation
or admittance eduction in the case of admittance identi cation. However, due to its obvious
industrial applications, one should recall that the eld of optimal design has been developed
and applied in many areas other than acoustic scattering. A few examples ohbse applications
include reduction of heat conduction [153], sensitivity analysis [154] andptimized design and
feature positioning of elastic solids [146, 155{158], wing drag optimization [159] or djmization
of truss structures [160]. There is an extremely abundant literatureon the topic, which is why
we will mostly focus on applications related to acoustic scattering.

3.4.1 Admittance eduction

Admittance eduction refers to any application in which one wishes to dentify in situ the acoustic
characteristics - the admittance - of a treatment already implementa in a given context, from
the knowledge of another quantity, such as the pressure value at a set akceivers. Such an
identi cation can be achieved by minimizing the di erence between predicted data - based on a
trial set of parameter values - and measured data, and therefore the di eent methods introduced
in the previous section can be used in this context.

Admittance eduction has been applied for instance to identify the inpedance of the surface
treatments in a room using the BEM and a SQP approach [161], mostly in the dw frequency
range (due to the computational load of the BEM). Besides, there has beeseveral studies on
duct liner admittance eduction, mostly in the presence of ow, with obvious application to air-
craft engine noise control. Several researchers at NASA Langley [162{164] tackletiis problem
using a nite element method for prediction of the sound eld in th e duct, with or without ow.
Of course, the frequency range in which one can educt the admittancesistrongly dependent on
the numerical method used to predict the sound eld and the asso@ted computational cost.
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3.4.2 Optimized design of admittance

The other natural application of admittance optimization is the improved design of noise control
devices. Forinstance, Chang et al. used both a genetic algorithm [165] andsimulated annealing
approach [166] to design an optimized sound absorber (micro-perforated plat@orous layer and
back cavity) at a given frequency. Simulated annealing was also appléeby Ruiz et al. [167] to
design multilayer micro-perforated panels with good absorption propeties on a wide frequency
band (1-6 kHz).

The acoustic liner community also used admittance optimization methals to design new ef-
cient liners. Approaches mostly di er in the used numerical model and the assumed geometry,
for instance semi-analytical modal representation in annular nozzleslfg8] or nite element cal-
culation applied to aircraft engine nacelles [169]. One can also refer tdne work of Reimann [170]
who compared several optimization methods (both gradient-based and evationary) to design
liners in aircraft engine nacelles, mostly using the Equivalent Sorce Method (ESM) to predict
the sound eld. Such optimized liners can induce a signi cant atteruation of the radiated noise.

Finally, a few studies also considered noise barriers. Other thanhe already mentioned
studies by Baulac et al. [4, 6, 128], one can mention Thorsson's work [9, 10], wheeci cally
studied the e ect of the admittance for low-height barriers, either using an ESM method [9]
or the BEM coupled with a SQP algorithm [10]. Particularly, the author showed that a soft
admittance can strongly enhance the insertion loss of the barrier, althogh the results were
derived only at two selected frequencies only (200 and 400 Hz). Similaroaclusions were drawn
from other studies [132{134].

3.4.3 Scatterer shape optimization and reconstruction

Several studies following optimization approaches in order to design areconstruct the shape of
acoustic scatterers - including but not limited to noise barriers -have been published. The two
main types of optimization outlined in this chapter, namely evolutionary and sensitivity-based
methods, have both been used in this context.

Evolutionary methods, especially genetic algorithms, have been useextensively to design
highway noise barriers [101, 128, 171{173] and speci ¢ sonic crystals used as lowiht noise
barriers [11, 174]. One should also point out that the simulated annealing algathm has been
applied as well in a more engineering-type con guration [175]. Dependingn the context, the
improvement of the optimized shape barriers can be an additional 5 dB of @enuation compared
to a simpler shape. One should point out however that in the given refrences, evolutionary
optimization methods were applied for barriers represented in a v speci ¢ way - succession of
wells in [101], binary ( lled/empty rectangles) representation in [171], multiple-edge geometry
in [128] or parallel arrangement of cylinders in the sonic crystal case [11].

Sensitivity-based methods have been used as well, for instancesing the boundary element
method [176{178] applied to 2D and 3D shape sensitivity analysis, or the niteelement method
to design a mu er along a duct [179]. It has been applied as well for noise bafter design using
an engineering calculation method, a pre-calculated table of values and linear interpolation
[180].
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Those methods have also been applied in the context of inverse (or ape reconstruction)
problems, for instance to identify the locations and shape of unknownrscatterers based on a
measured di raction pattern using shape sensitivity [149, 181]. This hasbeen extended to the
identi cation of both the shape and the admittance of a scatterer using alevel-set method [150].

3.4.3.1 Topological approaches

We brie y mention another approach, radically di erent from what has bee n presented above,
which is the so-called topology optimization. The idea is to representhe scattering object not

as a boundary but as a distributed function quantifying the presen@ or not of the scatterer,

coupled to a level set method. This allows the topology of the scattene- that is the number of

disconnected obstacles - to vary as well, for instance by adding extracattering bodies, based
on the so-called topological derivative (or sensitivity). Those method have been applied in
the context of noise barriers [182{184], although these studies mostly foces on low frequencies
(below 200 Hz). Topological sensitivity has been applied successfulps well in inverse scattering
applications [185, 186].

3.4.4 Conclusion of the review

Comparing the results obtained by these di erent approaches to optinally design acoustic scat-
terers such as noise barriers, one can notice that the obtained designsve very di erent charac-

ters if an evolutionary method is used as opposed to a sensitivity-basl method. This suggests
that both approaches, with their pros and cons, can be successfully udebut in somewhat dif-

ferent applications: a shape optimization problem assuming a discret representation of the
shape may be more conveniently tackled using an evolutionary methodyhereas if one is more
interested in continuous representations, sensitivity-based rathods (including topological meth-

ods) may be more appropriate. The question of computational load is also imgrtant since

it greatly in uences the choice of the calculation method: complicatel environments typically

require simple calculation methods whereas more accurate methodsich as the BEM have been
limited mostly to low frequency applications. Simplifying the considered model with appropri-

ate assumptions seems therefore paramount to apply optimization methoglto low-height noise
barriers over a wide frequency range, which is the purpose of this ovk.

3.5 Details of the chosen optimization algorithm

We nally present more details about the chosen optimization method that has been applied to
our application: full design optimization of a low-height noise barrier (including surface treat-
ments and shape) in the most general fashion possible. As stated previdysthe choice of a
continuous search space to describe the parameters seemed like a em@appropriate choice, and
since the sensitivity information can be obtained conveniently folowing for instance the adjoint
state approach (this will be detailed in chapter 4), it has been decidd to use a line-search
sensitivity-based method. Using the adjoint state method also allavs to use a large number of
variables, and therefore it has been decided to describe the shape & general manner, using

56



an arbitrary set of control nodes (which is the way a shape is de ned inthe BEM software MI-
CADO introduced in chapter 2). Admittance parameters optimization, which has been studied
extensively in [1], can be achieved as well with this approach.

One could rst try to use the same minimization method to nd optimi zed values of admit-
tance parameters and shape parameters. However, it has been chosen ifstivork to di erentiate
the optimization method between the two types of variables. The reaen is essentially related
to the fact that the two types of variables are subject to di erent constraints. Indeed, if one
refers to the vector of admittance parametersx and the vector of shape parametersx , the
optimization problem (3.3) can be written as:

8
3 | 6 x 6u
Xm;lxnex;x;p(x X ) s.t. BI 6 X 6u

" ( x )is injective
with | ;u ;1 ;u referring to lower and upper bounds corresponding either to the prameters
X or X . Under this form, it is clear that the admittance parameters are minimized under
bound constrains only, whereas the shape parameters are minimized uadbound constraints
and the much more restrictive shape injectivity constraint.

Now it would make sense to take advantage of the convergence speed prowvilby quasi-
Newton methods to perform the minimization, using for instance the P minimization routine
available in the software Matlab. However, as pointed out in section 3.3.2.2guasi-Newton
methods naturally use a unit step size, which means there is lite control on how much the shape
is modi ed from one step to the next. In particular, it would be more di cult to ensure that
the shape injectivity constraint is satis ed, which is a rather cumbersome test (see the details
of this test in appendix D.1). On the other hand, the feasible set of admnitance parameters is
essentially a hypercube - which is the type of set correspondingotbound constraints only - and
therefore using an SQP routine raises no issues.

A simple steepest descent method, however, leaves more fresd in the choice of the step
size (through the backtracking algorithm), which makes it possible to ensure the injectivity
constraint in a more convenient way. This method has the main disadvatage to be slower than
quasi-Newton methods.

To ensure the shape injectivity constraint but to keep convergene speed as fast as possi-
ble, it has therefore been decided to di erentiate the minimization with respect to admittance
parameters, which will be done using a SQP method (implementedni Matlab), and the mini-
mization with respect to shape parameters, which will be done with aradapted steepest descent
method. Both types of variables will therefore be optimized alternaively, until convergence.
The main framework of the admittance and shape optimization algorithm is outlined in gure
3.1. Typically the convergence tolerance can be taken agy = 10 4. Details of the adapted
steepest descent method as well as the loop detection test are givemappendix D.
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Given ¢ (convergence tolerance)
Given x° (initial admittance parameters), x° (initial shape parameters)
Evaluate initial objective function value and gradient: €® = e x%;x° ; g°=r e x°;x°

iIO;XI:XO;XIZXO;EIIEIZGO;QIZQO

while jé €j> oori=0
Perform the admittance optimization (SQP): nd  x'**

i+1

Update objective function value and gradient: €™ = e x'"™;x' : g™ =rex'";x

Perform the shape optimization (steepest descent): nd x'
Update objective function value and gradient: €™ = ex'™:x'" : g™ =rex'™;x
i i+l

end

Figure 3.1: Main outline of the shape and admittance optimization algori thm.

3.6 Conclusion

Optimization methods have been widely studied and applied to manydi erent applications,

which explains why numerous numerical methods are available to tadk optimization problems.
We here reviewed some of the most common methods, among which one can de two main
categories: sensitivity-based methods and evolutionary methods. lutionary methods do
not require the knowledge of the gradient and allow a rather global searchtypically on a
discrete space, at the cost of a large number of objective function evafttions. On the other
hand, sensitivity-based methods require a continuous feasiblest, a su ciently smooth objective

function and the knowledge of the gradient, and therefore are fundamermtlly less general than
evolutionary methods, although they have been applied to a large range ofrpblems including
acoustic scatterer optimization. They are however faster than evolutbnary methods but are
only able to nd local solutions to the optimization problem.

Sensitivities (the gradient) may be computed either by implicit di erentiation, which requires
one to solve one extra di raction problem for each parameter, or by the adjoint state approach,
which only requires one to solve one extra diraction problem regardlss of the number of
parameters, which makes this adjoint state method much more e cient computationally.

For the di erent reasons pointed out across this chapter (more natural cotinuous represen-
tation of the admittance and shape parameters, speed of sensitivity-bas methods, possibility
to calculate the gradient without too much increase of the computation ime), we therefore chose
to use a sensitivity-based method to optimize the surface treatrent and the cross-sectional shape
of the considered noise barrier. Besides, the adjoint state approach mak it possible to describe
the shape of the barrier in a general manner by a potentially large set of cdrol nodes.

An algorithm coupling two di erent methods to perform the optimizati on with respect to
admittance parameters and shape parameters is hence proposed. This algbrn uses a classical
SQP approach and an adapted steepest descent, which provides a good qmumise between
achieving good convergence speed and satisfying constraints at evetgration.
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Chapter

Shape and admittance sensitivity
expressions

In this chapter we derive the expressions of the sensitivity wih respect to the parameters
describing the admittance and the shape of the noise barrier, which an then be used in a
sensitivity-based optimization algorithm as exposed in chapter 3. Numercal implementation of
these theoretical expressions is discussed and validated against tei di erence calculations.

4.1 Barrier implementation and modeling assumptions

4.1.1 Physical assumptions and geometry
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Figure 4.1: Comparison of third octave spectra of Figure 4.2: Geometrical con guration for the implemen-
the di erent sources identi ed by Pallas et al. [26] tation of the low-height tramway noise barrier. Dotted line:
and their incoherent summation. idealization of the tramway side as a vertical ba e.

First we review the modeling assumptions of the problem under corideration: the optimiza-
tion of the performance of a tramway low height noise barrier. Using simpfying assumptions is
indeed convenient in an optimization application since the objectivefunction will be evaluated
many times, and therefore decreasing the computation time of each evadiion is worth it, even
if this induces a slight decrease of accuracy.

The atmosphere is assumed homogeneous with a speed of soundgf 343 m/s. The source
is idealized as an in nite line source located on the ground with a specal content given by the
incoherent sum of the rail track and bogie contributions in [26] (see in gue 4.1). One can infer
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that most of the A-weighted acoustic energy is contained in the frequeng range 100-2500 Hz,
which will be the frequency range of study. It is also assumed that tle geometry is invariant
along the axis of the track, which makes the problem purely two dimen®nal. This assumption
has been shown [28] to be correct when predicting excess attenuati@t single frequencies due
to point sources, which is what we will use in the calculation of the boadband attenuation.

The presence of the tramway will cause the sound to bounce on its swte and diract at
the roof edge and at the gap between the carriage and the ground. Those geomet details
could be modeled with the BEM, but one can also idealize the tramway isle as an in nite rigid
vertical ba e (see in gure 4.2). This is mathematically equivalent to introducing an image
barrier, symmetrical to the original one with respect to the tramway side surface, which greatly
reduces the mesh surface and therefore the computation time. The beer and its image with
respect to the vertical ba e are represented by the boundary , whic h separates the 2D plane
as an interior domain ' and an exterior domain €. Finally, the ground is modeled as rigid,
which represents correctly many urban-like surfaces.

The barrier cross section is assumed to lie in a one meter wide squarbalf a meter away
from the tramway (see in gure 4.2). The surface of the barrier is assume locally reacting and
its acoustical behavior described in terms of a normalized acoustic adittance

The receiver locations (Ry) have been chosen to represent a range of possible locations of
pedestrian ears: horizontal distance from the bottom-right corner of thebarrier between 2m
and 5m, and height between 1 m and 8 m (see again in gure 4.2).

4.1.2 Objective function

The purpose of this work is to maximize the insertion loss calculated athe receivers by changing
the shape of the barrier. The 2D BEM, implemented in the software MICADO developed at the
CSTB by Jean [120], has been used for this purpose. The BEM provides aay to calculate the
complex pressure amplitudep(R; f ) at each frequency and at each receiver point for an arbitrary
geometry. One can then de ne an average attenuation across all receivers #te frequencyf ,:

8 § .
2 P= pRmifP
= PF:”(Ifn)) with m . (4.1)
’ E Pin(fn)z jpin(Rm;fn)j2 ’

m

wherep = p" + p*¢is the total pressure eld, p" is the incident eld ( eld without the barrier)

and p®° the scattered eld. P is an average pressure across the receivers afRd" the incident
pressure which is a normalizing constant independent of the barriegeometry. Then, a broad-
band attenuation based on the sound power level&,, shown in gure 4.1 and the attenuations
at each frequency is considered. In order to have a somewhat fasterauation of the objective
function (which will be called many times in the optimization) but a good evaluation of the
third octave insertion losses, we consider a few frequencies mpthird-octave between 100 and
2500 Hz (typically 4 or 10, depending on the context). For each third-octae band, we de ne an
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amplitude-like quantity S = 10-+=1° which is assigned to all the frequencies in this third-octave
band. Recalling equation (1.1), the broadband attenuation is then given by

e= M (4.2)

n Sn

which is similar to the objective function considered by other authors [4, 11]. We would like to
minimize the function e, which only depends on the properties of the barrier, that is its geomtey
and its admittance. One can also calculate from the objective function abroadband insertion
loss for the considered source spectrum in dB(A) de ned by IL = 10 loge.

The purpose of this chapter is to derive explicit expressions of th sensitivity of the objective
function with respect to the di erent parameters describing the low-height barrier, namely its
shape and the parameters describing the surface admittance. This Wiallow us to use this
information in a sensitivity-based optimization method, as descriked in chapter 3.

4.2 Formal de nitions of the gradient with respect to the ad-
mittance and the shape

First we quickly introduce the mathematical concepts used in thecalculation of the derivative of
the objective function with respect to changes in the admittance andor the shape of the barrier.
This section is not meant to be completely rigorous from a mathematical stndpoint, especially
concerning the spaces which the di erent variables belong to and carerning the behavior at
in nity which requires speci ¢ attention as mentioned in chapter 2, but simply to give the
reader an idea of the concepts needed. For a more rigorous analysis, one cafer to other
works [146, 150].

4.2.1 Field derivative

First, we need to de ne the gradient with respect to the pressue eld, and therefore we now
introduce the concept of eld derivative. Let D be the set of piecewise su ciently smooth
complex functions de ned on © (D can be for instanceH *( ©)). The dot notation u v refers
to the integral of the product of two functions in D (which is similar to a duality product):

This product is technically not a scalar product (sinceu u is not a positive real number), but
this de nition is su cient for the purpose of this work.

Let F be a complex functional de ned onD. F is said to be di erentiable in f 2 D if there
exists a linear formLs such that:

(8g2D) F(f +g)= F(f)+ Li(9)+ o jidi (4.3)
where jj:jj is an appropriate norm for the spaceD (it could be for instance the H-norm). In
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this context, one can then identify the linear form L; to a complex function dF=df (called the
\gradient" or the \ eld derivative" of F) such that:

(892 D) Li(g= & g (4.4)

df
Actually the function d F=df could be a generalized function, and in this case the de nition is
to be taken in a distribution sense. Also, if a complex functionalF is linear and has the form
F(f) = fo f then the derivative is simply given by dF=df = fo. When the functional has
several arguments, one can naturally use the notion of partial functional davatives, written as

@F=@f

In the particular case whenF takes real values, the gradient termL¢ (g) has to be real as
well, and therefore it could be replaced by its real part in the de nition (4.3). So, if F takes real
values, it is equivalent to state that F is di erentiable in f if there exists a complex function
dF=df such that:

dF _
(8g2D) F(f+g=F(f)+Re o g + 0 jjgi (4.5)
Several properties of usual derivatives can be extended to the case ald derivatives. For
instance, for F a complex di erentiable functional on D, one can also show that:
. .2
djFj - F dF ‘ F dF dF

af g= ar g ar g =Re 2F ar g (4.6)

with  denoting complex conjugation. From this follows:

djFj? _ dF diFj _F dF
o ~2F g @ G T R a

(4.7)

4.2.2 Boundary eld derivative

Similarly, one can de ne the derivative of a functional de ned on D , the set of piecewise
su ciently smooth complex functions de ned on . The pressure el d evaluated on the scatterer
boundary as well as the admittance are typical functions belonging to D . For simplicity,
we keep the dot notation to refer to the duality product, even though for the functions u and
v in D , the product is de ned as:

Let F be a complex functional de ned onD . F is said to be di erentiable in f 2 D if there
exists a linear formLs such that:

(8g 2D) F(f +g)=F(f )+ Lt(g)+ 0 jig ] (4.8)
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where againjj:jj is a suitable norm. Again one can then identify the linear formL; to a complex
function dF=df such that:

(689 2D) Lig)= 4 g @.9)

The properties recalled in equation (4.7) valid for eld derivatives also hold for boundary eld
derivatives.

4.2.3 Shape derivative

Similarly, the concept of shape derivative can be understood as a lear form acting on the set
of displacements elds, which we will refer to asvelocity elds. A velocity eld is simply a
mapping x 7! (x) in the 2D plane. Let D be the set of su ciently smooth (typically bounded

and with compact support) velocity elds in the 2D plane. Such a velocity eld can therefore

transform the initial boundary to a new boundary ( )denedas ( )= + , which can
also be writtenas ( )= f x+ (x) : x2 ¢@. Now, consider a complex functionald depending
on the boundary . J is said to be di erentiable with respect to the shape if there exists a
linear form that we will write d J=d acting on D such that:

8 2D) J () =J +33 rojij (4.10)

where again we keep the dot notation to refer to the duality product beiveenD and its dual
for consistency, andjj:jj refers to an appropriate norm. For instance, let us consider a functioal
F de ned as: Z

F()= fd

e

with f a piecewise smooth function (or generalized function) de ned on €. F depends indeed
on since there is a unique correspondence between and its extaor domain €. One can
show that the shape derivative in this case is given by [149, 150, 187]:

Z
dF
— = f )d
g o)
Applying the divergence theorem and de ning , =  n the normal component of the velocity
eld on , one has: 7
dF
T = f .d (4.11)

One should point out that the minus sign is due to the fact that the normal n has been de ned
as exterior to and therefore interior to €, and that there is no contribution from in nity since
is typically assumed to have a compact support. Now consider a funabnal G of the form:
z
G()= fd

The formula for the shape derivative of this functional, one can most ea$y nd in the literature,
holds for a closed smooth surface [149, 150]. However, in a numerical distized context with
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linear shape functions, the shape will be represented by a set of gments with possible abrupt
changes of directions from one segment to another, which cannot be modedlevell as a smooth
curve. This is why here we consider that the boundary and the function f are only piecewise
smooth. Let ; =[x( D;xM];i 2 [1:N] the smooth portions of the curve . x©@ and x(N) are
the start and end points of , and x{) are the points where the curve is not smooth. The parts
i are such that they do not overlap, except at both their ends, but ther union recovers the
entire curve . Also, the function f is assumed to be smooth on each; separately, but are not
necessarily smooth at the edges of each part so thétor its gradient may have jumps at the edges
of each part. Also, the velocity eld on is broken down in tangential and n ormal components:
= ,n+ (t. One can show (see appendix E) that in this case the shape derivativis:
z
@6 _T O by X g0(r g™ ¢ 06®) @12
@ @n i=1
where [J) is the jump of a function at the point x(), de ned as the limiting value after the
jump minus the limiting value before the jump, and H the mean curvature. Equation (4.12) is a
particular case of the general expressions derived by Petryk and MroZLB7]. Besides, when the
boundary is piecewise linear (as it will be the case in the consideed BEM discretized context),
the curvature is locally zero, and therefore has no contribution to tre integral. In a way, one
could say that the curvature contribution to the shape derivative is best described here by the
jump terms at the end of each segment. In this case the expression spines to:
es _° ef :

D4 .
@ - @n . [f 9+ ox™)  (F )(x@) (4.13)

4.3 Derivation of the sensitivity expressions

To carry on the optimization of the objective function, an iterative met hod based on the gradient
has been chosen. Accurate calculation of the sensitivities (derivates or gradients) with respect
to the admittance and shape are therefore necessary. We derive heranple expressions based
on the adjoint state approach.

4.3.1 General expressions

First, we derive the expression of the shape and admittance sensiiity of the RMS pressure P at
a given frequency, as recalled in section 4.1. Let us recall that the totapressure eld p satis es
the scattering problem (2.1). Let us now consider the weak formulation othis problem, as done
by Bonnet [149], which will allow an easier derivation of the sensitiviy expressions. Again, the
mathematical treatment given here is not extremely rigorous, since secial care should be given
to express the weak formulation in a bounded domain and to bring down tle radiation condition
at a nite distance (as exposed in section 2.2). However, the results gen here would not be
changed if these precautions were taken, which is why a simpler appach is followed. Again,
we refer to the work by He et al. [150] and Terrasse [136] for a more rigorous treatemt, as well
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as to section 2.2.

We consider the 2D scattering problem exposed in section 2.1, in whichrefers to the noise
barrier and its image with respect to the vertical ba e which approxi mates the e ect of the
tramway side, and € is the exterior domain. Given any su ciently smooth and locally inte grable
function ¢ in € (typically belonging to H( €)) which satis es the radiation condition, recalling
equation (2.6) - but ignoring the term on the surrounding half-sphereSg - the problem (2.1) is
equivalent to:

8¢ Q ;;p;®=0
with Q de ned for arbitrary regular functions ‘p and ¢ as:

z z z
Q( ;; p;0)=Re rprad °+k?®  pad ®+ik  pad +7q(S) (4.14)

We now de ne the Lagrangian:
LC:sp@=P(;:m)+Q(;; pma
By de nition, we have Q( ; ;p; @) = 0 for all functions 4y, therefore:
B8 P(iip)=L(;;p 0 (4.15)

Since p implicitly depends on and  as the solution of the scattering problem (2.1), taking
the derivative of equation (4.15) with respect to and , in the sense explained in section 4.2,

yields: 8
dpP d
3Py & ;;p;Q)+@F§ )
d @ @ d
(89) (4.16)
P =Sy &g P
d Ll 1 @ Ll l ) @ l ) ) d
Now, let us de ne the adjoint state q as the solution of the following variational problem:
Q
8w) —( ;ip; w=0 4.17
(8w) @rs p:a) (4.17)
Since equation (4.16) is valid for any functiond; especially ford'= g, and using equation (4.17),
we have: 8 dp a
2 g Ciip)= @( ;i pa)
s dP (4.18)

oy @
g (iP)= @( ;P d)
which are explicit functions of the shape , the admittance , the state p and the adjoint state
g
4.3.1.1 Adjoint state equation

In this section we derive the explicit form of the problem the adjoint state g must satisfy.
Recalling equation (4.14), one can se€ is a linear function of p plus a source term which is
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independent ofp, and therefore:

@ 4 y4 4
@(3 ;5 P W=Re rqrwd ®+k?> aqwd ®+ik awd

Recalling equation (4.7) and the de nition of P given in equation (4.1), the partial derivative of
P with respect to p is given by:

@P . _pe * B(Rm)
@Fg i pP) W=Re i P W(Rm)
Therefore the adjoint state equation (4.17) becomes:
z ZZ : 2 X P(Rm)
(8W) Re rqgrwd+ Kk gwd +i k gwd + 5 W(Rm) =0
e e m

The similarity with the weak formulation of the initial scattering pr oblem (2.1) allows us to
recognize that this equation is the weak formulation of the following scatering problem :

X
% + kZ)q: p(RPm) (Rm1) in ©

+ik q =0 on (4.19)

Oong

radlatlon condition

where (Rp;:) is the Dirac delta function located at the point (R ). The solution g of this
problem is therefore the eld due to the radiation of weighted point souces located at the
receivers (see gure 4.3), which had already been pointed out by Bonnefl49]. The problem
(4.19) will be referred to as thedual or adjoint scattering problem, whereas the initial problem
(2.1) will be referred to as the primal or direct scattering problem.

One can point out that if the term involving the Dirichlet-Neumann ope rator on a surround-
ing half-sphere (see in section 2.2) had been kept, the scatteringgblem satis ed by the adjoint
state would have been the same, due to the fact that the operatorT is itself symmetrical.
One could state that considering the weak formulation of the problem in he unbounded do-
main but implicitly assuming the radiation condition is essentially equivalent to considering the
weak formulation in the bounded domain with the extra term involving t he Dirichlet-Neumann
operator.

In order to solve the adjoint problem, one can use once again the BEM, whichvould yield
the boundary eld g . To do so, one only needs to solve the equivalent of the integral equation
(2.12) for the adjoint problem, which is given by:

Ng +D (kg )+ik Dg +ik S(ikq )= hizn(;p) (4.20)
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. [ . _ X
with hf'(;p) = @@HL ik q"Mj andg"(x) = @ G(Rm;X) . Equation (4.20) will be

m
referred to as the adjoint state equation, as opposed to equation (2.12) which is referred to as
the state equation.

e e ® ® e ® ® O e ® ® )
/ /

Figure 4.3: Source-receiver con guration for calculation of the state p (left) and that of the adjoint state ¢
(right). The source has a unit amplitude in the primal problem, bu t in the dual problem each source is weighted
by the coe cient p(Rm) =P (P being the average pressure amplitude across the receivers, as de ad in equation

(4.1)).

4.3.1.2 Shape derivative expression

In this section, we give the explicit expression of the shape derative expression given in the
rst line of equation (4.18). We therefore consider a velocity eld acting in a neighborhood
of the shape , and therefore of zero value at the source location (S) and regvers locations
(Rm). This assumption is essentially related to the fact that the sourceand receivers locations
are xed in our problem, even when the shape is modied. Let , = nand = t be
the normal and tangent trace of the velocity eld on .

Assuming that the boundary is piecewise smooth and keeping the sameotations as in
section (4.22), we can now apply equations (4.11) and (4.12) to the expression gf recalled in
equation (4.14), which yields:

Z Z

oliipa) =Re rprand K paad+ik  Edippg g
X |
ik [pa dV+ik (pg dxM™)  (pg )(x@)
7 i
=Re nrprqgt+ik @@;?u k2+ik H )pq d

X ,
ik Ipa 9 +ik (pg O(x™)  (pa )(x?)

with H is the curvature of the curve and [:J() is the jump at the point x(). Now, recalling
the boundary condition satis ed by p and g and the fact that the gradient can be broken up in
tangential and normal components, we have:

@pg _ @@q_ @p@q, @p _ @mq 2>

. @q_ . _
@n @t@t @n@n 'Iﬁ@ﬁ@@nﬂkq |@n @t@t
- @p=@n

rpraq+ik

Pq
= ikq
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Therefore one has:

z
@Q . . _ @m@q | 2 > -
@? ;:p;d)  =Re n —@t—@t+ k=( 1)+ikH pq d

X )
ik  [pa dV+ik (pg Ox™)  (pa )(x@)

(4.21)

Now, recalling that the function P explicitly depends only on the eld p at the receiver points
(Rm) which are not moved by the velocity eld , we can conclude that the functionP does not
explicitly depend on the shape when it is transported by , and therefore @P=® = 0.
SincelL = P + Q, we have:

dpP @
—(Ci5p) =—(% ;i pa)
d @ 5
_ @m@q. o, > -
=Re " @@t k?( = 1+ikH pqd (4.22)
X .
ik [pa 9 +ik (pg dx™)  (pg O(x@)
[
Equation (4.22) is similar to the expression derived by He et al. [150] , whth generalizes the one
found by Bonnet [149] in case of a nite admittance boundary condition. Besdes, if the curve
is piecewise linear (which will be the case in the numerical img@mentation), the curvature H is
zero except maybe on a zero-measure set (the poinis'), and therefore has no contribution to
the integral term. In this case the shape derivative is:

@@q_'_ k2
@t@t

X .
k- [pg JdO+ik (pa )(x™)  (pg )(x@)

dp
g (ip) =Re (% 1)pg d

(4.23)

4.3.1.3 Admittance derivative expression

Similarly, one can explicitly give the expression for the derivative with respect to the admittance
given in the second line of equation (4.18). Again, there is no explicit deendence of° on since
the admittance function exists only at the boundary , which is far from t he receiver points, and
therefore @P=@= 0. Finally, recalling equation (4.14), one can see thatQ is a linear function
of plus a term independent of , and therefore the derivative with respect to applied to a
perturbation is simply given by:
z
(;—P( i p) =Re ik pqd (4.24)

Again, equation (4.24) is similar to the one obtained by He et al. [150] and by the autor in [1]
(although in this case the derivation was based on integral equations only)We can also directly
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write the boundary eld derivative function:

dpP

4 (::p)=ikpg (4.25)

4.3.2 Derivatives with respect to shape and admittance parameters

From the general results derived in section (4.3.1), one can easily wetthe derivative of P with
respect to particular parameters used to describe the admittance igtribution as well as the
shape. The idea is to nd a perturbation (either on the admittance or the shape) that induces
a change in one parameter only, and apply the general expression. We herevgia few examples
of this process.

4.3.2.1 Derivative with respect to an admittance parameter

Figure 4.4: Schematic for calculation of the objective function sensitivi ty with respect to admittance parameters.
Left: case of a segment , covered with an uniform admittance ,. Right: case of a parameter ug de ning the
location of an admittance discontinuity.

Let us assume that the admittance is described by a small number of parameterdy, for
instance if the barrier is covered with a nite number of segmentsof uniform admittance, and if
each admittance value is described by a few parameters (which is thease for most admittance
models), then the derivative of the RMS pressure at the receivex with respect to the parameter
by is given by:

dP dP d d

—=Re — — =Re ik —

dh d dh RS
Here the dot notation refers to the duality product on the boundary (int egral on of the product
of two functions). For instance, if a panel covering the part , of the barrier (see gure 4.4,
left part) is made of a Delany and Bazley porous layer with an admittance , depending on the

parameters and d, the gradient of P for instance with respect to is:
— =Re ik— pPq (4.26)

This requires the knowledge of the expression of the derivative ofiie admittance model with
respect to each parameter (the term d,=d ), which can be done easily for most models (see
appendix F for the values of those derivatives for the two admittance malels we will be using
in this work).
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It is also possible to calculate the gradient with respect to a changen width of a certain
panel. For instance, let us assume that the curve is parametrized byu 2 [0; 1], and that a
panel covers the part of the curve corresponding to [Qug] with ug 6 1 (see gure 4.4, right part).
We assume that the panel has an admittance ¢ and the rest of the barrier is covered with an
admittance ;. The admittance function as a function of the parameteru can be written as:

(uy= oH(up u)+ 1H(U ug)

The derivative of this function considered as a distribution with respect toug can be directly

written as: q
qrW= o u) 1 (U u)=(Co 1) (U Uo)
Uo
So that the derivative of P with respect to ug is:

dP Z1
H=Re ik puygu)d (U( o 1) (U ug)du
0 0 (4.27)

=Re ik( o 1) p(uo)q(uo)J (uo)

with J is the Jacobian of the transformation from the parameter space to the geomeital space.
For instance, on a straight segment of physical lengttiL parametrized by u 2 [0; 1], the Jacobian
is constant of valueL.

It is interesting to notice that one can nd the expression given in equation (4.27) with the
given general expression for the shape derivative given in equation (4.22)Jndeed, in order to
make the parameterug vary, one can also apply a local tangential velocity eld ,, de ned
as: y, = J (up)t(ug) in a neighborhood of x(up) and zero everywhere else. Then, applying
equation (4.22), since the pointx(ug) is precisely a point where there is an admittance jump
and since the velocity eld is purely tangential, the derivative with respect to ug can be written
as:

SUPOZRe i[ pqJ (uo)] X(uo) =Re ik( o  1)p(uo)c(to)d (Uo)

since here the admittance jump (de ned as the value after minus thevalue before the disconti-

nuity) at x(ug)is: [ 1=( 1 o0)= (o 1). One can point out that this expression could
not have been found with the classical shape derivative expression af smooth line integral.

4.3.2.2 Derivative with respect to a node coordinate

We can also use the general shape derivative expression given in equati(4.22) in order to
calculate the derivative of the P with respect to parameters describing the shape of the barrier.
In order to be as general as possible, we will here consider the deriveg¢ with respect to a node
coordinate of a \control mesh". Here we assume the BEM discretized cont¢ implemented in
the software MICADO, which is that the boundary is represented by a set of straight segments.
Following the notations introduced in section 4.3.1.2, letx() (i 2 [0 : N]) be the set of control
nodes and ; = [x(" D;xM] (i 2 [1 : N]) be each straight segment de ning the curve (see
gure 4.5). One can point out that here the barrier is oriented clockwise. The coordinates of
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Figure 4.5: Representation of a generic barrier in the software MICADO, based on the control nodes x(" and
assuming linear interpolation.

the control nodes are the parameters needed to de ne the geometry inhe software MICADO.
From this set of control nodes, MICADO generates the calculation mesh ba=d on two criteria: a
minimum number of elements per segment, and a minimum number of elments per wavelength.
The calculation mesh is therefore usually much ner than the mesh dened by the control nodes.
This di erentiation between the control mesh and the calculation megh is necessary since the
calculation mesh should be frequency dependent, whereas the contrmesh should not, since its
variation is controlled by a broadband objective function.

(

Figure 4.6: De nition of the node speci ¢ velocity eld ji), which moves the control node x along the j"

component.

Now, the derivative of P with respect to a change of coordinate of the control nodex(!) =
(x(l');x(z')) can be de ned by applying a speci c velocity eld which moves only this control node

along one directionj = 1;2. We therefore de ne the velocity eld j(i) on the control nodes by:
Bk2[0:N]) PxMy= ye

with i being the Kronecker delta function ande; the unit vector in the j™ coordinate. Then,
on the two segments ; and 41 adjacent to x(), the velocity eld is linearly interpolated (see
gure 4.6). This allows one to de ne the derivative of P with respect to xj(') as:

dP _ dP 0)

o d ]
J

(4.28)

One should point out that a symmetrical velocity eld is applied on th e corresponding part of
the image barrier, which means that when a node on the actual barrier is mved, its image is
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moved as well in a symmetrical fashion.

4.3.3 Derivatives of the broadband objective function

Finally, one can write the expression of the derivative of the broadbandbjective function de ned
in section 4.1.2 with respect to a generic admittance or shape parametet. Recalling equation
(4.2) the derivative of e with respect to a parameter x is simply given by:
X
@z e 1 s, 2_P(fn) dP(fn)
dx Sho Pin(f,)2 dx

n

(4.29)

with d P (f )=dx calculated as explained in section 4.3.2.

We are now able to calculate the gradient of the objective function with respect to the
parameters describing the admittance and the shape. For each frequey one only needs to
know the state and the adjoint state, which is achieved by solving twoclassical BEM integral
equations per frequency. This increases the computation time comped to the evaluation of
the evaluation of the objective function only, but only by a small amount. Indeed, since the
di erence between the state and adjoint state equations only comes fronsource locations, the
equations to solve both boundary elds use the same matrix but di erernt right-hand sides, which
does not severely increase the computation time.

Furthermore, the main advantage of using the adjoint state approach is, oncehe state and
the adjoint state are known, the calculation of the gradient with resped to a parameter is fast
(it is an explicit integral), and therefore a great number of parameters can be used without
signi cant increase of computation time. Also, the expression of the gradént is simply a post-
treatment of the BEM calculations, and therefore its calculation does ot require coding a new
integral equation solver, and can therefore be achieved using the reks of any commercial
BEM solver. For instance, in this work, the calculation of the states and adjoint states have
been achieved using the software MICADO, whereas the calculation of # gradient have been
performed in Matlab.

4.4 Numerical implementation

4.4.1 Numerical evaluation of the sensitivity expressions from BEM solutions

In order to evaluate numerically the sensitivity expressions deived in section 4.3.1, one only
needs to know the values of the statgp and adjoint state g at the boundary and the value of

the RMS pressureP which can be calculated from the boundary values op thanks to the integral

representation explained in chapter 2. The values o and g are found by solving the two
integral equations (2.12) and (4.20). In practice, one can set point sources ahe actual source
location (S) and at each receiver point (Ry,), solve for the boundary elds p - corresponding
to (S) - and g r,, - corresponding to (Ry). From p one can calculatep(Rny) and P, and since
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the adjoint state equation is linear, nally calculate the adjoint state b oundary values by:

X
q = . @ 9 Rm

In a BEM discretized context, the solutions of the integral equationsare typically a set of
nodal valuesfp gandfq g, corresponding to the values of the state and adjoint state at the BEM
calculation mesh, which is ner than the control mesh. Typically, calculations were performed
with a requirement of 10 elements per wavelength and at least 3 elemés per straight segment
(joining two following control nodes). MICADO assumes linear shape finction and therefore
for consistency we will assume linear shape functions as well to regsent the two elds on the
boundary. Therefore, de ning fN(a)g' = f1 a;ag and ffg = ff (x( Y);f(x())g the two
nodal values of a eldf on the element ;, we therefore have:

fi (@=fN(@gd ffg  with a2 [0;1]
Also, the tangential derivative of f is constant and is simply given by:

@f _ f(X(i)) f(X(i 1)) 1
@t li i

fDNg ff g

where the vector DN is given by DN = f 1;1g' and I; = jjx® x( Djj is the length of the
element, which is also the value of the Jacobian of the transformation fronthe reference to the
geometrical element.

4.4.1.1 Sensitivity with respect to a node coordinate

Now, consider the calculation of the derivative of P with respect to a xj(i), with 0 <i<N .
Recalling equation (4.28), since the velocity eld j(') is non zero only on the two segments ;

and 41, one can write:

z
P _dP (. @m@q - > : () ¢.70)
= =R ; == % k 1 k \ .
w0 Td 1R e KT e d e ]
=Re B n/+ B "t +k*(? 1)C nl+k*( A& 1)Cin™ (4.30)

ikp(xM)a(xM)( 1w t]™ it))

where ; is the assumed constant value of the admittance on the segment;, n' = ( n‘l; ni2) and
t! = (t};t,) are respectively the normal and tangent vectors on the segment;, and the integrals
Bi ,Bi+, Ci andC;; are de ned as follows:

- _  @m@qqg o @mE@q
Bi ", @@t d B+ = @@t d
Ci = pqd Cs=  pq’d

i+1
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Due to the de nition of the node-speci ¢ velocity eld j(i) given in section 4.3.2.2, one has:
f j(')gi = f0;1g and f j(')gi+1 = f1;0g. Using the linear shape function representation for the
other elds yields:

mn #
1, . 21 1, , 1 1
Bi =-fagfDNgfDNg'fpg  ada= -—faqg f pgi
li 0 2l 1 1 ;
~ #
1, . ! 1 . 1 1
Bi+ =—fagi.; fDNgfDNg'f pgi+1 (1 ada= —fag fpgi+1
li+1 0 o 2im 1 1
Zl
1=4 1=12
Ci =li fpofN(a)gfN(a)g'fqg ada= I;fqg f pgi
=l TratN(2)gIN(2)g T ag AL P pail
21 1=12 1—12#
Civ =lisx PO IN@OIN(G T ags (1 @) da=liuafagy |0 " PG

One can nally point out that these expressions correspond to integraton over the actual barrier
only, and therefore one should add the contribution due to the image barer, which is calculated
in a similar fashion.

Sensitivity with respect to nodes on the ground The sensitivities with respect to the
nodesx©@ and x(\) are calculated in a similar way, except that the corresponding veloity elds
are non zero on one element only. Besides, these nodes cannot be moaohg the x, direction
in order to keep the curve connected to the ground. Therefore, one las:

dP _
d (0) =Re Bl+ n}+ k2( ]2_ 1)Cl+ n% Ikp(X(O))q(X(O)) 1'&
X1
. N 2( 2 NI (N) (N) N
dxN) =Re By np +k°(§ 1Cn np +ikp(x™)a(x™’) ity
1
ap . dP
dx(zo) , dx(zN)

4.4.1.2 Sensitivity with respect to an admittance parameter

Similarly, one can evaluate the derivative with respect to an admittance parameter from the
nodal values of the state and the adjoint state. Say the segment; is covered by an admittance
i function of several parameters fy; by;:::). Recalling equation (4.26), one has:
Z " #
dP . 1=3 16

_ d o L di _
E—Re |kﬁ ipqdI =Re Ikdbql'fqg' 15 13 f pgi

4.4.2 Mesh re nement close to corners

As we have seen in section 2.4, the presence of a corner with an exteramngle greater than in-
duces a local singularity in the pressure gradient, which becomesibounded although integrable
in the vicinity of the corner. It has also been pointed out this phenonenon causes inaccuracy
in numerical calculations involving the tangential derivative. Since the shape derivative expres-
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sion given in equation (4.22) does require integration of the product of tle state and adjoint
state tangential derivative, it is expected that the evaluation of the sensitivity with respect to a
control node coordinate will not be accurate close to corners.

One approach to somewhat limit this e ect is to force a ner mesh in the vicinity of corners.
In the BEM software MICADO, two meshing criteria have to be provided by the user on each
segment de ning the geometry: ¢; the minimum number of elements per wavelength, andc,
the minimum number of elements per segment. From the knowledge oftie geometry, one can
evaluate the exterior angle at the beginning and at the end of the segment;. We will call
the maximum of those two angles ;. In the rest of this work, given two generic values of the
criteria ¢; and c, (typically those two values will be taken as ¢; = 10 and ¢; = 3 when the
shape derivative will be evaluated, andc; = 6 and ¢, = 1 otherwise), the following values for
the meshing criteria on each segment are proposed:

8

3c =c 1+max — 1,0
3 _ i .
T =6 1+4max — 1,0

These expressions are heuristic and were found to be a good compromim limiting both the

inaccuracy in the shape derivative numerical evaluation and the compudtion time. Nevertheless,
as it has been shown in section 2.4, some inaccuracy will remain even Wwitan extremely ne

mesh since usual shape functions cannot resolve the singular behaviof the pressure gradient.
The purpose of this re ned meshing strategy is essentially to make we that the error in the

evaluation of the shape derivative is not excessively large.

4.4.3 Validation

Figure 4.7: Schematic of the barrier (solid line) and its image (dashed lin ) used for the validation of the shape
sensitivity calculations. The control nodes are numbered from 0 t 0 11 as shown.

To validate the calculation of the sensitivity with respect to contr ol nodes coordinates and
admittance parameters, we consider a simple wall barrier geometry (1 mhigh, 0:2m wide).
Control nodes are placed every 20cm, so there arBl = 12 nodes on the true barrier (see
gure 4.7), and therefore 22 shape independent variables (correspondinto the two coordinates
of each node except the nodes on the ground which only have one shape vdle, their rst
coordinate). The node coordinates of the image barrier are not consideteas variables since
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their displacement is not independent of that of their correspondirg nodes on the actual barrier.
In addition, the barrier is covered by a ctitious admittance distr ibution which we set to be:
1+i i 1
— 1
' 2 N 1

i2[1:N 1]

There are therefore 11 complex admittance parameters, hence 22 real admaince parameters
(each corresponding to either the real and imaginary part of the segment aaittance). We
calculate the derivative of the broadband objective functions (with four frequencies per third-
octave between 100 and 2500 Hz) with respect to every node coordinate amery admittance
variable using equation (4.29) and the approach exposed in section 4.4.1. Thease and the
adjoint state are solved with the two MICADO meshing criteria set as: ¢; = 10 and ¢; = 3.

The sensitivity can also be estimated by a nite di erence approach Considering for instance
the variation of a generic parameterx, one can considere as a function of this parameter, and
given a small parameter , one can estimate the sensitivity as:

de e(x+ ) ex)

dx
However, it is not easy to choose the parameter a priori, since by setting it too small we would
run into numerical errors, and by setting too large the variation of e might be no longer well
described by a linear curve. If one assumes that the numerical evadtion of the sensitivity based
on the adjoint state yields at least the correct order of magnitude, one canlwose the parameter

to ensure that the function approximately varies by a relative amount . Calling de=dxjas the

evaluation of the gradient using the adjoint state approach, one could then wite:

ox+ ) e+ 9°

dx Aas

Now say that we would like the function to vary by about 0.1%, we set = 10 2 and we can
write: e(x+ )=(1+ )e(x). This yields;

de . Ly — e(x)
F ) with ~00= s

e(x)

One can then set a range of possible values forin the vicinity of ~(x) - for instance in the
range [01 «x); 10«x)] - and then do a polynomial t. The sensitivity is then the coe ci ent of
the linear term of this polynomial.

Even though this process is relatively tedious, it is clear that erprs may remain in the
evaluation of the sensitivity using nite di erences. This is one of the reasons why sensitivities
are usually not calculated with this approach. Here this calculation is dore for the purpose of
validating the expressions derived in section 4.3.1.

4.4.3.1 Shape parameters

Results for the sensitivities with respect to shape parameters & presented table 4.1. Writing
r gjas the gradient vector obtained by the adjoint state calculation of the sensiivities and r €jgp
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that obtained using nite di erences, one can de ne the error based onthe in nity-norm of the
gradient vector, de ned as: o o
_lIr €, ' €as))1
- jir erplia
which gives an estimate on how accurate the whole gradient vector is, sie this is really what
is used in the optimization algorithm.

Relative errors for each node and each component between the sensitivvalue derived from
nite di erences (FD) and that derived from the adjoint state approach (AS) are shown, as well
as the errorE; based on the in nity norm for all nodes and each component. First of all, one
can notice that the displacements of nodes located close to the sour¢eodes O to 5) induce a
much bigger change in the objective function than nodes on the oppositeide (nodes 6 to 11).
The relative error is also signi cantly larger for the opposite nodes, lut because the sensitivity
is much smaller on this side, this should not in uence the optimizaion process too much. Also,

=51

one should realize that without the added jump terms in the shape dewative formula given
in equation (4.22), one would have obtained zero for the calculation of the s®nd component
of most nodes sensitivities (except the nodes 5 and 6), since thevariations correspond to
tangential velocity elds.

Even though the error is rather small for most nodes with a signi cant sensitivity, it is large
for nodes 5 and 6, that is at the nodes making the corners of the wall. Inds, there is a large
di erence in the error based on the in nity norm when the two corner nodes are taken into
account or not: 35% and 43% with, 1.3 and 2.8% without. Such a large error when evadting
the sensitivity with respect to corner node coordinates was expeed, as mentioned in section
4.4.2, due to the singularity in the pressure gradient which cannot be esolved numerically. It
is however noticed that sensitivities at the corner have at least tle correct sign, which means
that an actual decrease (respectively increase) in the objective fuiction by increasing a node
coordinate is predicted by the adjoint state sensitivity calculation to be a decrease (respectively
an increase) as well, even though the predicted change might be signiamtly over- or under-
estimated. Because of this fact, it is likely that this source of errorwill not cause too big an
issue in the optimization process.

Shape sensitivity values
Node # First component Second component
FD AS Err.[9%6] FD AS Err.[%]
0 -8.59e-2 | -8.57e-2 0.1 - - -
1 2.3%e-2 | 2.3%-2 <0.1 -1.92e-3 | -1.92e-3 0.3
2 8.69e-2 | 8.75e-2 0.8 -4.85e-3 | -4.97e-3 2.6
3 -5.70e-2 | -5.59e-2 1.9 -1.42e-3 | -1.41e-3 <0.1
4 -3.35e-2 | -3.37e-2 0.6 -4.28e-4 | -4.41e-4 3.1
5 -3.93e-2 | -8.84e-3 775 3.10e-2 | 5.14e-3 83.4
6 -4.09e-2 | -4.47e-2 9.2 -5.88e-2 | -5.61e-2 45
7 1.29e-2 | 1.30e-2 0.3 -5.68e-4 | -4.30e-4 24.2
8 -1.53e-3 | -1.78e-3 16.2 -2.48e-4 | -2.03e-4 18.1
9 3.02e-3 | 3.06e-3 1.2 -2.07e-5 | -5.25e-5 | 154.1
10 3.41e-3 3.45-3 0.9 -2.39%e-4 | -1.97e-4 17.8
11 -5.83e-3 | -5.84e-3 0.2 - - -
Error E; - - 35 - - 43

Table 4.1: Comparison of the broadband objective function sensitivity wit h respect to control nodes coordinates
for the geometry given in gure 4.7, calculated with nite diere nces (FD) and the adjoint state approach (AS)
(with four frequencies per third-octave between 100 and 2500 Hz).
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SHAPE AND ADMITTANCE SENSITIVITY EXPRESSIONS

4.4.3.2 Admittance parameters

A similar comparison can be made for admittance parameter sensitivities Here it has been
assumed that the ctitious admittance distribution is constant over frequency and that the pa-
rameters describing the admittance are the admittance values thermedves. Results are presented
in table 4.2. The error is small for most segments, although slightly larger bse to corners
(segments 5, 6 and 7). The error is however smaller than in the node codinate case, since the
admittance sensitivity depends on the state and adjoint state values oly, which are solved with
a much better accuracy than for the tangential derivatives.

Shape sensitivity values
Real part Imaginary part
Segment # FD AS = FD AS Err.[%]
1 -8.55e-2 | -8.56e-2 0.1 1.24e-2 | 1.24e-2 <0.1
2 -1.73e-2 | -1.73e-2 <0.1 2.25e-3 | 2.26e-3 0.4
3 -2.17e-2 | -2.17e-2 <0.1 7.64e-3 | 7.65e-3 0.2
4 -1.14e-2 | -1.14e-2 0.1 1.13e-2 | 1.13e-2 0.1
5 -1.02e-2 | -1.03e-2 0.4 -4.23e-3 | -4.27e-3 1.0
6 -4.95e-3 | -4.98e-3 0.6 -2.02e-2 | -2.02e-2 0.2
7 -4.18e-3 | -4.21e-3 0.6 -2.87e-4 | -2.71e-4 55
8 5.26e-4 | 5.27e-4 0.2 9.93e-4 | 9.89%-4 0.4
9 -8.22e-3 | -8.88e-3 8.0 -2.08e-4 | -2.08e-4 <0.1
10 1.82e-4 | 1.74e-3 43 9.47e-4 | 9.48e-4 0.1
11 2.74e-5 | 3.52e-5 28.2 -1.00e-3 | -9.99e-4 0.1
Error E; - - 0.2 - - 0.2

Table 4.2: Comparison of the broadband objective function sensitivity wit h respect to admittance parameters
for the geometry given in gure 4.7, calculated with nite diere nces (FD) and the adjoint state approach (AS)
(with four frequencies per third-octave between 100 and 2500 Hz).

45 Conclusion

The goal of this chapter was essentially to show that it is possible to caulate e ciently and
accurately the sensitivity of the chosen objective function (the weighted broadband attenuation
of the low-height noise barrier) with respect to parameters desching the shape and the ad-
mittance distribution of the barrier. Convenient derivation of the s ensitivity expressions can be
made by expressing the scattering problem under a weak formulation ath by consideration of
the adjoint state, which is found to be the pressure eld solution of arother scattering problem.
Although this approach has been followed by many authors including Allaire[146] and Bonnet
[149], we have focused more speci cally on the context of the MICADO softare (BEM reso-
lution with linear shape functions) and in the assumed modeling congxt (2D modeling, image
barrier approximation, rigid ground). The given expressions howeveinclude extra terms to take
into account discontinuities of the di erent elds.

It is also found that shape sensitivity calculation is not accurate closeto geometrical singu-
larities, namely corners, as soon as the exterior angle exceeds This is due to a singularity in
the pressure gradient close to corners, which cannot be resolved pregy by classical nite ele-
ment discretization techniques. A re nement strategy speci cally close to corners is proposed to
limit the error, which nevertheless stays important. Is is however believed that this inaccuracy
will not cause severe issues in the optimization process.
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Chapter

Application to the shape optimization
of rigid barriers

5.1 Introduction

The optimization algorithm is rst applied to the case of entirely rigid barriers. Acoustical treat-

ments which can typically provide absorption can indeed help in inceasing the performance of
the low-height noise barrier, however such treatments can be costland require proper pack-
aging to avoid any health hazard issues. Sustainability of an absorbing tratment acoustical

performance is also an issue especially in outdoor environments. Trefore in this chapter we
focus on purely rigid barriers, which could be made out of concrete fornistance, but we allow
the shape of the barrier cross-section to be optimized. This implig that the admittance is set
to zero over the whole boundary .

Several \starting" geometries are considered, which we will referré to as: small wall, medium
wall, quarter cylinder, T-shape and Gamma-shape (see gure 5.1). The maium wall seems like
the most natural choice for a low-height barrier. The small wall geometry(which is essentially a
simple wall but only 0.5 m high) has been chosen to see if the shape optimation process would
tend to increase the height or not. The quarter-cylinder was chosen écause a round geometry
diracts sound in a radically di erent way compared to more usual strai ght geometries. The
T-shape geometry also seemed like a natural choice as it is considereddeneral as one of the
best geometry for a noise barrier (especially in the highway case). Rally, the Gamma-shape
geometry is essentially a more compact version of the T-shape, and thefare it seemed interesting
to study how much the far end of the \T" would in uence the result of t he optimization.

The control mesh of each initial geometry is rst generated with a maximum distance between
two adjacent nodes of 2cm. Depending on the geometry, this yields 620t183 control nodes,
therefore 112 to 364 optimization variables (details are given in the captiorof gure 5.1). The
optimization algorithm is the steepest descent method with backtra&ing and box projection (as
explained in section 3.5 and appendix D).
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Figure 5.1: De nition of the ve initial geometries for the rigid low-height  barrier shape optimization. Dimen-

sions are given in meters. The dotted line represents the one mete wide constraint box. The number of nodes
representing each geometry is indicated as well in parenthesis. Top left: medium wall (112 nodes) ; top middle:
small wall (62 nodes) ; top right: quarter cylinder (131 nodes) ; bottom left: T-shape (183 nodes) ; bottom right:
Gamma-shape (143 nodes).

5.2 Results

First, geometries at the initial and nal step of the optimization algorith m for the considered
cases are shown in gure 5.2. Corresponding broadband insertion losses fine considered fre-
guency range are shown in table 5.1, as well as third-octave insertioro$ses in gure 5.3. First
of all, one can notice that the shape optimization increased the e ciency signi cantly in all
cases (of about 6 dB(A) in general and of 11 dB(A) for the medium wall geometry) gcept for
the quarter cylinder case (+ 3 dB(A)). However, the initial perform ance of the quarter cylinder
barrier was much higher than those of the other cases, and therefore one dduhave expected a
smaller improvement due to the optimization.

Table 5.1: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the considered
starting geometries and corresponding optimized geometries.

Medium wall | Small wall | Quarter cylinder | T-shape | Gamma-shape
Initial 4.2 1.8 10.3 5.3 5.9
Optimized 15.2 8.2 13.3 11.3 11.1

For all geometries, the part of the barrier opposite to the source (the \ba&" side) does
not undergo strong alterations. Indeed, since the displacement of th geometry is based on
the sensitivity, which is small for nodes located on this part of this barrier as shown in section
4.4.3, the algorithm had no reasons to alter the back side signi cantly. Futhermore, this also
implies that any type of treatment could be applied on the back side of tke barrier, due to its
limited in uence on the acoustic performance. For instance, one couldhink of covering it with
vegetation or any material that could meet aesthetic or environmental reqirements.
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wide constraint box is shown as well.

Figure 5.3:
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Initial and optimized geometries for the considered starting ge ometries and assuming rigid admit-
tance coverage. Top left: medium wall - top center: small wall - t op right: quarter cylinder - bottom left: T-shape
- bottom right: Gamma-shape. Solid line: optimized geometry - d otted line: initial geometry. The one meter

left: medium wall - top right: small wall - middle left: quarter cy

Gamma-shape.
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Comparison of third-octave insertion losses in dB between initial and optimized geometry, and
for the ve considered starting geometries. Solid line: optimiz ed geometry - dotted line: initial geometry. Top
linder - middle right: T-shape - bottom:




APPLICATION TO THE SHAPE OPTIMIZATION OF RIGID BARRIERS

However, there seems to be a general trend in the way the shape optimation altered the
di erent geometries: the part of the barrier most exposed to the radiaton of the source - the
\source" side - tends to become more irregular. Especially in the smalwall case, instead of
signi cantly increasing the height, the optimization rather made the barrier cross section more
irregular, and indeed the broadband e ciency of the optimized small wall is higher than that
of the initial straight medium wall. From the third-octave inserti on losses (see in gure 5.3),
one can see that all optimized geometries attenuate higher frequencidgypically above 600 Hz)
more e ciently. We believe that the insertion losses of the optimized geometries are higher
because multiple re ections phenomena between the barrier and th ba e (tramway side) are
somewhat prevented due to the irregularities. However, since théarriers have been assumed
rigid, there is no absorption of acoustic energy, which implies the inrease of attenuation at
higher frequencies is related to the redirection of the acoustic esrgy, away from the shadow
zone. To have a closer look at this e ect, one can compare the intensitynap between the initial
and optimized geometry, calculated at a frequency where the attenuatin is increased. The
time-averaged intensity vector | is calculated at one frequency as:

prp
ik 0oCo

1 1
| = éRe(pv)— éRe

with v the particle velocity which has rewritten in terms of the pressue gradient using Euler's
equation. The pressure gradient is calculated via its integral repreentation, as explained in
chapter 2. Examples of intensity maps calculated at 1000 Hz in the medium walcase and the
small wall cases are shown in gure 5.5. One can indeed notice that for the @jpnized geometry,
the energy tends to propagate mostly in thex, direction, parallel to the vertical ba e, whereas
in the initial geometry a signi cant part of the energy is directed tow ards the shadow zone. One
can also notice the presence of recirculating regions of sound energytivithe optimized irregular
shapes, which would also cause less energy to reach the shadow zone.o3é two e ects could
explain why there is an increase of attenuation behind the barrier wih the optimized shapes
compared to the case of simple straight barriers.

Finally, the evolution of the objective function for all geometries is siown in gure 5.4. One
can notice the convergence was rather fast (at most a few dozens iterationsThis is consistent
with the fact that, as pointed out in chapter 3, sensitivity-based methods are inherently faster
than evolutionary methods (convergence is achieved in a small numbeof iterations).

Figure 5.4: Evolution of the objective function during the optimization for the ve geometries given in gure
5.1, with either 4 or 10 frequencies per third octave. Thin solid line: medium wall - thick solid line: small wall -
dotted line: quarter cylinder - thin dashed line: T-shape - th ick dashed line: Gamma-shape.
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