M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, vol.104, issue.10, p.4245, 2004.
DOI : 10.1021/cr020730k

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

M. M. Thackeray, W. I. David, and P. G. Bruce, Lithium insertion into manganese spinels, Materials Research Bulletin, vol.18, issue.4, p.461, 1983.
DOI : 10.1016/0025-5408(83)90138-1

D. W. Murphy, F. J. Disalvo, J. N. Carides, and J. V. Waszczak, Topochemical reactions of rutile related structures with lithium, Materials Research Bulletin, vol.13, issue.12, p.1395, 1978.
DOI : 10.1016/0025-5408(78)90131-9

M. Lazzari and B. Scrosati, A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes, Journal of The Electrochemical Society, vol.127, issue.3, p.773, 1980.
DOI : 10.1149/1.2129753

M. Mohri, Rechargeable lithium battery based on pyrolytic carbon as a negative electrode, Journal of Power Sources, vol.26, issue.3-4, p.545, 1989.
DOI : 10.1016/0378-7753(89)80176-4

T. Ohzuku, A. Ueda, N. Nagayama, Y. Iwakoshi, and H. Komori, Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells, Electrochimica Acta, vol.38, issue.9, p.1159, 1993.
DOI : 10.1016/0013-4686(93)80046-3

M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, vol.10, issue.10, p.725, 1998.
DOI : 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, p.43, 1993.

I. Mochida, S. Yoon, and W. Qiao, Catalysts in syntheses of carbon and carbon precursors, Journal of the Brazilian Chemical Society, vol.17, issue.6, p.1059, 2006.
DOI : 10.1590/S0103-50532006000600002

K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, 1987.

T. Tran and K. Kinoshita, Lithium intercalation/deintercalation behavior of basal and edge planes of highly oriented pyrolytic graphite and graphite powder, Journal of Electroanalytical Chemistry, vol.386, issue.1-2, p.221, 1995.
DOI : 10.1016/0022-0728(95)03907-X

A. Hérold, Chemical Physics of Intercalation, 1987.

L. B. Ebert, Intercalation Compounds of Graphite, Annual Review of Materials Science, vol.6, issue.1, p.181, 1976.
DOI : 10.1146/annurev.ms.06.080176.001145

W. Rüdorff, Advances in Inorganic Chemistry and Radiochemistry, p.223, 1959.

R. Schlögl, Progress in Intercalation Research, 1994.

P. Pfluger, V. Geiser, S. Stolz, and H. Güntherodt, Aspects of alkali metal intercalation and deintercalation in highly oriented pyrolytic graphites, Synthetic Metals, vol.3, issue.1-2, p.27, 1981.
DOI : 10.1016/0379-6779(81)90038-2

Q. Reimers, U. Zhong, and . Von-sacken, Lithium Batteries: New Materials, Developments and Perspectives, Pistoia), issue.1, 1994.

K. Yokoyama and N. Nagawa, New Sealed Rechargeable Batteries and Supercapacitors, Z. Takehara), vol.270, pp.93-116, 1993.

S. Mori, H. Asahina, H. Suzuki, A. Yonei, and E. Yasukawa, Chemical properties of various organic electrolytes for lithium rechargeable batteries, Journal of Power Sources, vol.68, issue.1, p.59, 1997.
DOI : 10.1016/S0378-7753(97)02619-0

D. Aurbach, Y. Ein-eli, B. Markovsky, A. Zaban, A. Schechter et al., Rechargeable Lithium and Lithium-Ion Batteries, pp.94-122, 1995.

D. Aurbach, Y. Ein-eli, B. Markovsky, A. Zaban, S. Lusky et al., The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries, Journal of The Electrochemical Society, vol.142, issue.9, p.2882, 1995.
DOI : 10.1149/1.2048659

D. Aurbach and Y. Ein-eli, The Study of Li-Graphite Intercalation Processes in Several Electrolyte Systems Using In Situ X-Ray Diffraction, Journal of The Electrochemical Society, vol.142, issue.6, p.1746, 1995.
DOI : 10.1149/1.2044188

T. Zheng, J. S. Xue, and J. R. Dahn, Lithium Insertion in Hydrogen-Containing Carbonaceous Materials, Chemistry of Materials, vol.8, issue.2, p.389, 1996.
DOI : 10.1021/cm950304y

T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, and U. Von-sacken, Lithium Insertion in High Capacity Carbonaceous Materials, Journal of The Electrochemical Society, vol.142, issue.8, p.2581, 1995.
DOI : 10.1149/1.2050057

J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials, Science, vol.270, issue.5236, p.590, 1995.
DOI : 10.1126/science.270.5236.590

K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, A Mechanism of Lithium Storage in Disordered Carbons, Science, vol.264, issue.5158, p.556, 1994.
DOI : 10.1126/science.264.5158.556

M. Winter and J. O. Besenhard, Lithium Ion Battery: Fundamentals and Performance, 1998.

T. Zheng, W. Xing, and J. R. Dahn, Carbons prepared from coals for anodes of lithium-ion cells, Carbon, vol.34, issue.12, p.1501, 1996.
DOI : 10.1016/S0008-6223(96)00098-X

J. R. Dahn, J. S. Xue, W. Xing, A. M. Wilson, and A. Gibaud, Extended Abstracts of the 8th Int, Mtg. on Lithium Batteries, p.89, 1996.

T. Zheng and J. R. Dahn, Hysteresis observed in quasi open-circuit voltage measurements of lithium insertion in hydrogen-containing carbons, Journal of Power Sources, vol.68, issue.2, p.201, 1997.
DOI : 10.1016/S0378-7753(96)02552-9

A. Satoh, N. Takami, and T. Ohsaki, Electrochemical intercalation of lithium into graphitized carbons, Solid State Ionics, vol.80, issue.3-4, p.291, 1995.
DOI : 10.1016/0167-2738(95)00149-Z

A. Satoh, N. Takami, T. Ohsaki, and M. Kanda, Rechargeable Lithium and Lithium-Ion Batteries, 1995.

S. Fujimoto and . Higuchi, Batteries and Fuel Cells for Stationary and Electric Vehicle Applications1993, Z. Takehara), vol.64, pp.93-101

K. Tokumitsu, A. Mabuchi, H. Fujimoto, and T. Kasuh, Rechargeable Lithium and Lithium-Ion Batteries1995, pp.94-28136

H. , I. , A. Omaru, A. Azuma, and Y. Nishi, Lithium Batteries, pp.93-117, 1993.

J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong et al., Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon, Electrochimica Acta, vol.38, issue.9, p.1179, 1993.
DOI : 10.1016/0013-4686(93)80048-5

R. V. Moshtev, P. Zlatilova, B. Puresheva, and V. Manev, Material balance of petroleum coke/LiNiO2 lithium-ion cells, Journal of Power Sources, vol.56, issue.2, p.137, 1995.
DOI : 10.1016/0378-7753(95)80025-C

J. M. Chen, C. Y. Yao, C. H. Cheng, W. M. Hurng, and T. H. Kao, Cokes as negative electrodes in secondary batteries, Journal of Power Sources, vol.54, issue.2, p.494, 1995.
DOI : 10.1016/0378-7753(94)02133-N

A. K. Sleigh and U. Von-sacken, Unusual cycling behaviour of disordered carbons in Li/C cells, Solid State Ionics, vol.57, issue.1-2, p.99, 1992.
DOI : 10.1016/0167-2738(92)90069-2

K. Takei, K. Kumai, Y. Kobayashi, H. Miyashiro, T. Iwahori et al., An X-ray photoelectron spectroscopy study on the surface film on carbon black anode in lithium secondary cells, Journal of Power Sources, vol.54, issue.2, p.171, 1995.
DOI : 10.1016/0378-7753(94)02061-7

T. Zheng and J. R. Dahn, Effect of turbostratic disorder on the staging phase diagram of lithium-intercalated graphitic carbon hosts, Physical Review B, vol.53, issue.6, p.3061, 1996.
DOI : 10.1103/PhysRevB.53.3061

K. Sawai, Y. Iwakoshi, and T. Ohzuku, Carbon materials for lithium-ion (shuttlecock) cells, Solid State Ionics, vol.69, issue.3-4, p.273, 1994.
DOI : 10.1016/0167-2738(94)90416-2

H. Fujimoto, A. Mabuchi, K. Tokumitsu, and T. Kasuh, Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material, Journal of Power Sources, vol.54, issue.2, p.440, 1995.
DOI : 10.1016/0378-7753(94)02120-R

K. Tokumitsu, A. Mabuchi, H. Fujimoto, and T. Kasuh, Charge/discharge characteristics of synthetic carbon anode for lithium secondary battery, Journal of Power Sources, vol.54, issue.2, p.444, 1995.
DOI : 10.1016/0378-7753(94)02121-I

R. Feynman, Caltech's Engineering and Science Magazine, 1960.

Y. Ren, R. A. Armstrong, F. Jiao, and G. P. Bruce, Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries, Journal of the American Chemical Society, vol.132, issue.3, p.996, 2010.
DOI : 10.1021/ja905488x

T. Belin and F. Epron, Characterization methods of carbon nanotubes: a review, Materials Science and Engineering: B, vol.119, issue.2, p.105, 2005.
DOI : 10.1016/j.mseb.2005.02.046

URL : https://hal.archives-ouvertes.fr/hal-00288405

J. Zhao, A. Buldum, and J. Han, First-Principles Study of Li-Intercalated Carbon Nanotube Ropes, Physical Review Letters, vol.85, issue.8, p.1706, 2000.
DOI : 10.1103/PhysRevLett.85.1706

A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System, Journal of The Electrochemical Society, vol.147, issue.8, p.2845, 2000.
DOI : 10.1149/1.1393615

W. Lu and D. D. Chung, Anodic performance of vapor-derived carbon filaments in lithium-ion secondary battery, Carbon, vol.39, issue.4, pp.493-496, 2001.
DOI : 10.1016/S0008-6223(00)00157-3

T. Kar, J. Pattanayak, and S. Scheiner, Insertion of Lithium Ions into Carbon Nanotubes:?? An ab Initio Study, The Journal of Physical Chemistry A, vol.105, issue.45, p.10397, 2001.
DOI : 10.1021/jp011698l

C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. Zhang et al., High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, vol.4, issue.8, p.31, 2007.
DOI : 10.1038/nnano.2007.411

D. H. Renecker, A. L. Yarine, H. Fong, and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied Physics, vol.87, issue.9, p.4531, 2000.
DOI : 10.1063/1.373532

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. Macdiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic Metals, vol.114, issue.2, pp.109-114, 2000.
DOI : 10.1016/S0379-6779(00)00217-4

F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye et al., Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns, Advanced Materials, vol.15, issue.14, p.1161, 2003.
DOI : 10.1002/adma.200304955

C. Kim and K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Applied Physics Letters, vol.83, issue.6, p.1216, 2003.
DOI : 10.1063/1.1599963

R. Bacon, Production of graphite whiskers, J. Appl. Phys, pp.31-283, 1960.

J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of Electrostatics, vol.35, issue.2-3, p.151, 1995.
DOI : 10.1016/0304-3886(95)00041-8

N. T. Xuyen, E. J. Ra, H. Z. Geng, K. K. Kim, K. H. An et al., Enhancement of Conductivity by Diameter Control of Polyimide-Based Electrospun Carbon Nanofibers, The Journal of Physical Chemistry B, vol.111, issue.39, p.11350, 2007.
DOI : 10.1021/jp075541q

K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds. Part A: theory and applications in inorganic chemistry ?, 2009.

C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li, and T. H. Wang, Porous Carbon Nanofibers Derived from Conducting Polymer: Synthesis and Application in Lithium-Ion Batteries with High-Rate Capability, The Journal of Physical Chemistry C, vol.113, issue.30, p.13438, 2009.
DOI : 10.1021/jp901968v

J. P. Maranchi, A. F. Hepp, A. G. Evans, N. T. Nuhfer, and P. N. Kumta, Interfacial Properties of the a-Si???Cu:Active???Inactive Thin-Film Anode System for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.153, issue.6, p.1246, 2006.
DOI : 10.1149/1.2184753

J. Y. Howe, D. J. Burton, Y. Qi, H. M. Meyer, I. et al., Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode, Journal of Power Sources, vol.221, p.455, 2013.
DOI : 10.1016/j.jpowsour.2012.08.026

P. C. Chen, J. Xu, H. T. Chen, and C. W. Zhou, Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries, Nano Research, vol.4, issue.3, p.290, 2011.
DOI : 10.1007/s12274-010-0081-x

J. W. Choi, L. B. Hu, L. F. Cui, J. R. Mcdonough, and Y. Cui, Metal current collector-free freestanding silicon???carbon 1D nanocomposites for ultralight anodes in lithium ion batteries, Journal of Power Sources, vol.195, issue.24, p.8311, 2010.
DOI : 10.1016/j.jpowsour.2010.06.108

L. W. Ji, K. H. Jung, A. J. Medford, and X. W. Zhang, Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization, Journal of Materials Chemistry, vol.156, issue.28, p.4992, 2009.
DOI : 10.1039/b903165k

L. W. Ji and X. W. Zhang, Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries, Energy Environ. Sci., vol.2, issue.1, p.124, 2010.
DOI : 10.1039/B912188A

G. Kanellis, J. F. Morhange, and M. Balkanski, Effect of dimensions on the vibrational frequencies of thin slabs of silicon, Physical Review B, vol.21, issue.4, p.1543, 1980.
DOI : 10.1103/PhysRevB.21.1543

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors, Physical Review Letters, vol.26, issue.11, p.642, 1971.
DOI : 10.1103/PhysRevLett.26.642

K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds. Part A: theory and applications in inorganic chemistry ?, 2009.

N. Fourches, G. Turban, and B. Grolleau, Study of DLC/silicon interfaces by XPS and in-situ ellipsometry, Applied Surface Science, vol.68, issue.1, p.149, 1993.
DOI : 10.1016/0169-4332(93)90224-Y

W. Wang and P. N. Kumta, Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries, Journal of Power Sources, vol.172, issue.2, p.650, 2007.
DOI : 10.1016/j.jpowsour.2007.05.025

K. A. Striebel, A. Sierra, J. Shim, C. W. Wang, and A. M. Sastry, The effect of compression on natural graphite anode performance and matrix conductivity, Journal of Power Sources, vol.134, issue.2, p.241, 2004.
DOI : 10.1016/j.jpowsour.2004.03.052

K. Naoi, N. Ogihara, Y. Igarashi, A. Kamakura, Y. Kusachi et al., Disordered Carbon Anode for Lithium-Ion Battery, Journal of The Electrochemical Society, vol.152, issue.6, p.1047, 2005.
DOI : 10.1149/1.1896531

J. B. Gong and H. Q. Wu, Electrochemical intercalation of lithium species into disordered carbon prepared by the heat-treatment of poly (p-phenylene) at 650??C for anode in lithium-ion battery, Electrochimica Acta, vol.45, issue.11, p.1753, 2000.
DOI : 10.1016/S0013-4686(99)00400-4

K. S. Novoselov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, p.666, 2004.
DOI : 10.1126/science.1102896

D. A. Brownson and D. K. Kampouris, An overview of graphene in energy production and storage applications, Journal of Power Sources, vol.196, issue.11, p.4873, 2011.
DOI : 10.1016/j.jpowsour.2011.02.022

P. Lian, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electrochimica Acta, vol.55, issue.12, p.3909, 2010.
DOI : 10.1016/j.electacta.2010.02.025

A. K. Geims and K. S. Novoselvo, The rise of graphene, Nature Materials, vol.42, issue.3, p.183, 2007.
DOI : 10.1038/nmat1849

. D. Ph, . Thesis, and . Dr, Vladimiras Gavriusinas, Faculty of Physics, 2008.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, issue.5887, p.385, 2008.
DOI : 10.1126/science.1157996

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, issue.5881, p.1308, 2008.
DOI : 10.1126/science.1156965

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, p.666, 2004.
DOI : 10.1126/science.1102896

P. Sutter, Epitaxial graphene: How silicon leaves the scene, Nature Materials, vol.9, issue.3, p.171, 2009.
DOI : 10.1038/nmat2392

M. Eizenberg and J. M. Blakely, Carbon monolayer phase condensation on Ni(111), Surface Science, vol.82, issue.1, p.228, 1970.
DOI : 10.1016/0039-6028(79)90330-3

X. Gao, J. Jang, and S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, The Journal of Physical Chemistry C, vol.114, issue.2, p.832, 2010.
DOI : 10.1021/jp909284g

M. Winter, O. J. Besenhard, E. M. Spahr, and P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, vol.10, issue.10, p.725, 1998.
DOI : 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

D. Bar-tow, E. Peled, and L. Bursteinb, A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries, Journal of The Electrochemical Society, vol.146, issue.3, p.824, 1999.
DOI : 10.1149/1.1391688

Y. Ren, R. A. Armstrong, F. Jiao, and G. P. Bruce, Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries, Journal of the American Chemical Society, vol.132, issue.3, p.996, 2010.
DOI : 10.1021/ja905488x

T. Tran and K. Kinoshita, Lithium intercalation/deintercalation behavior of basal and edge planes of highly oriented pyrolytic graphite and graphite powder, Journal of Electroanalytical Chemistry, vol.386, issue.1-2, p.221, 1995.
DOI : 10.1016/0022-0728(95)03907-X

J. M. Tarascon and D. G. Guyomard, Extended Abstracts, pp.93-94, 1993.

A. L. Reddy, A. Srivastava, R. S. Gowda, H. Gullapalli, M. Dubey et al., Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application, ACS Nano, vol.4, issue.11, p.6337, 2010.
DOI : 10.1021/nn101926g

J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. Möller et al., Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, issue.1-2, p.269, 2005.
DOI : 10.1016/j.jpowsour.2005.01.006

T. Wijesinghe and D. Blackwood, Real time pit initiation studies on stainless steels: The effect of sulphide inclusions, Corrosion Science, vol.49, issue.4, p.1755, 2007.
DOI : 10.1016/j.corsci.2006.10.025

C. T. Hyams, J. Go, and M. T. Devinea, Corrosion of Aluminum Current Collectors in High-Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles, Journal of The Electrochemical Society, vol.154, issue.8, p.390, 2007.
DOI : 10.1149/1.2742321

S. Song, J. T. Richardson, V. G. Zhuang, M. T. Devine, and W. J. Evans, Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM, Electrochimica Acta, vol.49, issue.9-10, p.1483, 2004.
DOI : 10.1016/S0013-4686(03)00930-7

X. Zhang, B. Winget, M. Doeff, W. J. Evans, and M. T. Devine, Corrosion of Aluminum Current Collectors in Lithium-Ion Batteries with Electrolytes Containing LiPF[sub 6], Journal of The Electrochemical Society, vol.152, issue.11, p.448, 2005.
DOI : 10.1149/1.2041867

A. L. Reddy, A. Srivastava, R. S. Gowda, H. Gullapalli, M. Dubey et al., Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application, ACS Nano, vol.4, issue.11, p.6337, 2010.
DOI : 10.1021/nn101926g

D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, Graphene: Corrosion-Inhibiting Coating, ACS Nano, vol.6, issue.2, p.1102, 2012.
DOI : 10.1021/nn203507y

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, issue.5881, p.1308, 2008.
DOI : 10.1126/science.1156965

X. Li, D. Geng, Y. Zhang, X. Meng, R. Li et al., Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochemistry Communications, vol.13, issue.8, p.822, 2011.
DOI : 10.1016/j.elecom.2011.05.012

F. Yao and F. Gunes, Diffusion Mechanism of Lithium Ion through Basal Plane of Layered Graphene, Journal of the American Chemical Society, vol.134, issue.20, pp.8646-8654, 2012.
DOI : 10.1021/ja301586m

URL : https://hal.archives-ouvertes.fr/hal-00793916

H. T. Nguyen, F. Yao, M. R. Zamfir, C. Biswas, . Kang-pyo et al., Highly Interconnected Si Nanowires for Improved Stability Li-Ion Battery Anodes, Advanced Energy Materials, vol.111, issue.1, pp.1154-1161, 2011.
DOI : 10.1002/aenm.201100259

F. Güne?, H. Gang-hee-han, S. Y. Shin, M. Lee, D. L. Jin et al., HYBRIDIZATION OF GRAPHENE, Nano, vol.06, issue.05, pp.409-418, 2011.
DOI : 10.1142/S1793292011002780

F. Yao, D. L. Duong, S. C. Lim, S. Bum-yang, H. R. Hwang et al., Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes, Journal of Materials Chemistry, vol.112, issue.3, pp.4502-4508, 2011.
DOI : 10.1039/c0jm03227a

U. J. Il-ha-lee, . Kim, S. Hyung-bin-son, F. Yoon, and . Yao, -Doped Carbon Nanotubes, The Journal of Physical Chemistry C, vol.114, issue.26, pp.11618-11622, 2010.
DOI : 10.1021/jp1036662

F. Yao and S. C. Lim, AC Response to Gas Exposure in Vertically Aligned Multiwalled Carbon Nanotube Electrode, The Journal of Physical Chemistry C, vol.114, issue.8, pp.3659-3663, 2010.
DOI : 10.1021/jp910678m

F. Yao, B. Li, K. So, and J. Chang, Silicon-Coated Carbon Nanofiber Mat for Anode of Lithium Ion Battery, Didier Priba1, Costel Sorin Cojocaru, 2013.

F. Yao, F. Gunes, T. Q. Huy, S. M. Lee, . Seung-jin-chae et al., Lithium Ion Diffusion Through Basal Plane of Layered Graphene Synthesized by Chemical Vapor Deposition', 16th International Meeting on Lithium Batteries (New Era for Smart Energy Storage), p.104, 2012.

F. Yao, H. T. Nguyen, C. Kang-pyo-so, G. Biswas, S. T. Kwon et al., Carbon Nanofiber/Si Nanowire As an Anodematerial for Li-Ion Battery', 1st Korean-French Seminar On Nanomaterials for Energy, p.50, 2011.

F. Yao, S. C. Duong-dinh-loc, S. Lim, H. R. Bum-yang, W. Hwang et al., Humidity-assisted selective reactivity between NO 2 and SO 2 gas on carbon nanotubes, NT10(11th International Conference on the Science and Application of Nanotubes 2010), p.96, 2010.

F. Yao, S. C. Lim, W. Yu, F. Gunes, and Y. H. Lee, Capacitive Gas Sensor of Vertically Aligned Carbon Nanotubes', International Green Energy Nanocarbon Conference 2009,Jeollabuk-do provincial office, p.155, 2009.