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Chapter 1

Introduction.

This chapter introduces the context of my PhD project. In particular, | will present
key concepts of brain anatomy and computational neuroanatony that underly image
registration, segmentation and template estimation, and give an overviewof past and
present state-of-the-art solutions to this estimation challenge. | wil describe some issues
that these methods have to deal with and show how we handle them inhis work.
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1.1 The human brain and its shape

1.1.1 Brain anatomy

The human brain is the most complex organ in the body. It is the center ofthe nervous
system and is protected by the cerebrospinal uid (CSF). It has a heerogeneous orga-
nization, with various sub-structures associated with di erent functions. It can rst be
divided into three major parts (Fig. 1.1): 1) the cerebrum, the largest part of the brain,
that controls movement, sensation, cognition, etc.; 2) the cerebellm, that is involved
in coordination of muscle movement and balance; 3) the brainstem, thatg involved in
relaying information from the cerebrum and cerebellum to the restof the body.

The great longitudinal ssure separates the cerebrum into two hemipheres. The corpus
callosum is the nervous tissue that connects the two hemispheresThe hemispherical
surface is folded with various sulci, while the curved surfaces hween the sulci are
called gyri. The sulci are not formed randomly in the growth of the brain: their spatial
organization, shape and time of appearance are reproducible, while theidepth and
bending are slightly di erent from person to person. Some of the mostmportant sulci
(Fig.1.2) are the central sulcus, lateral sulcus and parieto-occipital sulca. The shape
of sulci and gyri are grossly symmetric across the left and right hemispéres. They
separate the hemispheres into four lobes (Fig.2): 1) the frontal lobe is involved in
abstract thought, problem solving, emotion, etc.; 2) the parietal lobe is nhvolved in
sensory combination and comprehension, language, reading and visual funats; 3) The

Figure 1.1: The brain's macroscopic organization. Image comes fromhttp:
/lIwww.cancer.gov/cancertopics/pdg/treatment/child-brain-stem-glioma/
Patient/pagel/AllPages/Print
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Figure 1.2: Large-scale organization of the cerebrum. Image comes
from http://forums.psychcentral.com/psychiatric-medications/
254913-1-amphetamines-modafinil-armodafinil-their-effectiveness-effects-brain.

html

occipital lobe is involved in reading and vision; 4) the temporal lobe isinvolved in
hearing, memory and behavior.

Based on their cellular and molecular content, brain tissues can be splinto di erent
types; the main distinction lies between gray matter (GM) and white matter (WM). GM
consists of neuronal cell bodies, neuropil, glial cells and capillarge It is present in the
cerebral cortex (surface of the cerebrum), the cerebellar cortexsfurface of cerebellum),
subcortical nuclei (thalamus, putamen, hippocampus, etc.) and braistem. It is the
part of the central nervous system that performs information processig. WM consists
mostly of glial cells and myelinated axons; it forms the bulk of the deep prts of the
brain and the super cial parts of the spinal cord; it transmits signals from one region of
the GM to another.

One aspect of our work is the segmentation of brain images into these di emt tissue
types.

Part of the human brain complexity lies in its variability: there do n ot exist two identical
brains in the population, and di erences between two brains can be lage. As described
previously, the shape and the location of the main sulci is relativelystable. However,
brains also vary from one subject to another for the others structures.Moreover, some
patterns (e.g. the presence of some folds) can be absent or present @éggling on the
subject. Such variability presents an ultimate limitation to any geometrical description
of a standard brain.



Chapter 1. Introduction 4

1.1.2 Brain imaging techniques

Brain imaging techniques allow researchers to observe the shape, agty or abnormali-
ties in the organization of the human brain, without neurosurgery. Thereare a number
of imaging techniques in use today in research facilities and hospts throughout the
world. For example, anatomical brain data can be obtained by the three-dinensional
tomographic imaging technology such as Computed Tomography (CT), Magnetic Res
onance Imaging (MRI) and Di usion Magnetic Resonance Imaging (dMRI); data on
human brain function, on the other hand, are obtained by Positron EmissionTomogra-
phy (PET) or functional Magnetic Resonance Imaging (fMRI); they re ec t brain activity
through complex metabolic pathways.

CT scanning (http://en.wikipedia.org/wiki/X-ray_computed_tomography ) builds

up a picture of the brain based on the di erential absorption of X-rays. It uses a series
of X-rays of the head taken from many di erent directions. Images made usig X-rays

depend on the absorption of the beam by the tissue it passes through. Borend hard

tissue absorb X-rays well, air and water absorb very little and soft tissie is somewhere
in between. Thus, CT scans reveal the gross features of the brain butainot resolve its

structure well.

MRI ( http://en.wikipedia.org/wiki/Magnetic_resonance_imaging ) generates im-
ages by using the response of brain tissues to radio-frequency exiion in the presence
of an intense steady magnetic eld. During an MRI scan, a detector recads the signal
emitted by the hydrogen atoms excited in a xed magnetic eld; these signals are local-
ized through a complex encoding scheme driven by the gradients of thscanners and,
after computerized reconstruction, yield 3D brain images. It is particularly e ective to
observe and characterize brain tissues. Its main features are: 1) compea with other
imaging modalities, MRI has the highest contrast for soft tissues; 2) MR can be used
to acquire images with any direction and orientation; 3) MRI enjoys a high resolution
(Imm).

fMRI ( http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging )

is an application and further development of MRI: it uses MRI to measure functional

responses of the human brain and nervous system. It works by measurirthe changes
in blood oxygenation and ow that re ect the activity of neurons given t hat the subject
is doing a speci ed cognitive task. It can be used to produce activabnh maps showing
which parts of the brain are involved in this task. This can also be compéted by the
study of other electrophysiological techniques such as Electroenpbalography (EEG) or

Magnetoencephalography (MEG).
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dMRI ( http://en.wikipedia.org/wiki/Diffusion_MRI ) is an MRI method that maps
the di usion process of molecules, mainly water, in the tissues. Mlecular di usion in
tissues re ects interactions with many obstacles, such as bers. Vdter molecule di usion
patterns can therefore reveal microscopic details about tissue archicture, either in
normal or diseased state. It is the only non-invasive imaging method to tsplay the ber
bundles in WM.

PET (http://en.wikipedia.org/wiki/Brain_positron_emission_tomography ) can
detect the positron emission of the glucose solution containing weak coeatrations of
a radioactive isotope when the brain absorbs this solution. The brain consmes energy
when it works, PET scanning can display the brain regions that consumenore glucose.
The disadvantage of PET is the use of radioactive substances.

In this work, we will concentrate our study on MRIs and fMRIs, although our modeling
can be used for other imaging modalities.

1.1.3 Computational neuroanatomy

The main access to brain structure and function in humans is currerlly provided by
neuroimaging. In particular and as recalled above, Magnetic Resonance ImaginMRI)
provides measures that are used to distinguish the nature of dierat brain tissues,
markers for functional brain subdivisions and markers of the local orietation of brain
bers through three sub-modalities: anatomical, functional and di usion MRI. These
measures are currently at the mm scale and such multi-modal datasets arcommonly
acquired across the whole brain volume in standard acquisition sessions

However, these images display di erent resolutions and contrasts, wser from distor-

tion, patient motion during acquisition, which leads to a low signal to noise ratio and,
sometimes, patient speci c contrasts or artefacts. At the observed esolution, cross-
subject variability of the measurements is striking, and naturally yields the question of
what features are common across subjects and how to compare di erent huam brain
images. Understanding the topographical organization of the most common featuse
means building a reference image, that will be calledemplate in the sequel, while al-
lowing some exibility in the comparison of individual data with thi s template. The
reference image is assumed to characterize the population as it exhibithe common
features and provides also a reference frame where individual datzan be compared.

Computational anatomy [66] is emerging for solving these problems. It combines the
knowledge of human anatomy, mathematical methods and computational techrgjues in
order to design models and develop algorithms to compare images, estimattee template
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image and transport the available information from the template to new suljects. The
goal of these e orts is to help clinicians to measure and quantify the mophometry of the
organs, localize and describe what happens during a time period and gvide statistical
analysis tools to characterize the di erences between a given subgt and the template.

Computational neuroanatomy is a branch of Computational Anatomy that considers
the human brain. Because of the complex structure of the brain, computional neu-
roanatomy has to face more challenges, such as tissue and structure segragion, func-
tional activity detection, etc. Overall, the main challenge, comparedto others organs,
is clearly the huge variability that can be observed even in a healthy goup.

One side of the research in computational anatomy is the statistical analyis that aims
at characterizing group dierence, as well as classifying and discrinmating between
populations. It can be split up into three main di erent direction. The rst one is to
determine the shape and contrast or equivalently the image of a stdard brain. Not
only should we exhibit the template brain but it is also important to q uantify the
characteristic geometrical variability of the shape in a speci ed popuation. These two
elements make it possible to better summarize this population. Theefore, in this work,
we will focus on the determination of anatlas that involves both the template image and
a quanti cation of its standard geometrical variability. This step is de tailed in Section
1.3

The second one is tocompare individual images with this atlas This requires to design
the mathematical methods that make it possible to compare the observatins with the
atlas. This has been at the core of intense researches and is known as stgition
techniques (see Sectiorl.2.1). This step enables to warp the observed images in the
same frame. As we will see next, it also plays a crucial role in the atlasstimation.

The third one is to identify the structures in the observed images with those of the
template, up to some deformation This is know as image segmentation (see Section
1.2.2) and has also been intensively studied. This segmentation step canebused as
prior information for registration in order to improve the related esti mation scheme, as
it better ts the structures of interest [ 119. Segmentation can also be the purpose of
the registration procedure that carries the segmented structuresrom one subject onto
another [155. This clearly highlights the link between these two problems andtherefore
suggests that they should be combined with each other to perform wellThis is one idea
that we have developed in our work.

Some clear application of theatlas estimation, registration and segmentationissues arose
from the clinical needs.
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Computational neuroanatomy is the basis ofimage-guided surgery [109 and surgical
simulation [40]. It helps surgeons to localize lesions such as tumors or strokes ugin
segmentation algorithm on pre-surgical acquisitions. In the near future brain imaging
together with computational anatomy will provide critical information to de ne the
course of tumor resection surgery by registering the patient pre-suical image to the
current state of the organ. This will help to avoid damaging or removing mportant
brain structures that can be preserved.

Another example lies inresearch on brain development , that tries to analyze normal
development trajectories and identify the di erences in the dierent brain structures or

regions between controls and patients during growth, aging or disease pgression. To
guantitatively characterize the di erences in the brain structu res between the normal
individuals and the patients in di erent developmental periods, these structures have to
be extracted from neuroimaging data. This implies the segmentation of bain images.
To track the same patient along time, registration methods have to be sed to analyze
the changes in the structures. Most importantly, the comparison between a new patient
to one or several reference images (representing healthy controls anghtients with a

speci ¢ disease) should be possible to classify them, e.g. to diagres disease.

1.1.4 Publicly available brain templates

A template is de ned as a gray level image with anatomical labels. It can als be de ned
as a probabilistic image that gives the probability that the voxel belongsto each tissue.
An atlas is de ned as a (probabilistic) template together with the deformation metric
like in [82]. The construction of digital atlases of the human brain is currently a very
important topic, for which a lot of e orts have been spent. In the following we will
present three brain templates that are widely used by clinicians:the well known three-
dimensional Talairach-Tournoux brain template (referred to as Talairach brain Atlas in

the literature), the Whole Brain Atlas developed by Harvard Medical School and the
Brainweb template developed by McGill University in Canada. Note that the word atlas
is sometimes used fotemplate. In the present work, we highlight the complementary
information that the atlas carries compared to the template: the geometrcal variability.

Talairach brain atlas

The Talairach Brain Atlas [ 13]] relies on a coordinate system that is based on
the anterior-posterior commissural (AC-PC) line. It relies on a grid system to
project the brain images into the three-dimensional space. TalairacHBrain Atlas
was constructed upon postmortem sections of a 59-year-old French woman. €h
brain specimen was cut every 2-5mm in sagittal direction, then the cros-section
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Figure 1.3: The axial, sagittal, coronal view of Talairach-Tournoux brain at-
las. Image comes fronhttp://psyphz.psych.wisc.edu/web/afni/class_handouts/
afni08_talairach/afniO8_talairach.jpg/index.html

of each slice was photographed. Neurologists outlined the contours of the brai
structure according to the photographs, and then color lled these conburs, the
same brain structures having the same color or texture expression. ie horizontal

and coronal section data were created by the interpolation of sagittal crossection
data. Talairach brain atlas divides the reference brain into 8 parts in the X-axis

direction (from the left to the right of the brain), 11 parts in the Y-axi s direction

(from the front to the back of the brain) and 12 parts in the Z-axis direction (from

the button to the top of the brain), see Fig.1.3. The Talairach space provides a
cube where the brain should t in a speci ed orientation. Since this reference is
based on the assumption that the brain is symmetric, it contains only onebrain

hemisphere.

The interest of this template is that, when compared to a new individual, the
localization of brain structures is accurate for areas close to AC-PC, foexample,
the thalamus. However the template accuracy decreases signi cantlydr cortical
areas, especially those that are highly asymmetric between the two meispheres
(e.g., the temporal lobe). Nevertheless, the Talairach brain templateis widely
accepted by the neuroscientists, because it was historically therst computational
template. The neuroscienti c literature still often refers to Talairach coordinates.

There are however several disadvantages. The rst one is its low resation. The
second one is that it makes a strong assumption on the symmetry of the whelbrain
which is not satis ed and is a rough approximation which may lead to misaralysis
of patients. The third one is that it is based on a single subject who m# not be
representative of the whole population.

Whole Brain Atlas

Johnson and Becker, Brigham and Women's Hospital 75 develop several digi-
tal templates of the human brain http://www.med.harvard.edu/aanlib/home.
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Figure 1.4: One slice of the whole brain atlas for Alzheimer's disease. Image comes
from http://www.med.harvard.edu/aanlib/cases/case3/mrl-tc1/020.html . T1
MRI, SPECT (an imaging technique that is similar to PET) and coupled T 1-SPECT
images are shown here. On the slice of T1 MRI, the atrophic hippocampaiand amyg-
dala can be seen. These structures subserve memory function, andeathe sites of
major damage in Alzheimer's disease. On the SPECT image, the dark blueegions in
the parietal lobes represent areas of decreased blood ow or perfusiofMhis reduction
in blood ow is due to the functional\disconnection" of this from othe r brain regions
a ected by the disease.

html. The normal template is based on 3D brain data using 1.5T MR images from
a 25-year-old white man right-handed with a resolution of 092 0:92 1.5mm lead-
ing to 256 256 128 image size. The template includes gray matter (divided into
several lobes and gyris), cerebellum, brainstem structures, cogs callosum, basal
ganglia, limbic structures and ventricular system. The normal brain is divided
into 100 structures.

The Whole Brain Atlas research program not only includes the normal human
brains, but also diseased or injured brains. Many diseases are repeded by
images from one or more modalities, including MR, CT and PET (Fig. 1.4).

Some of them include images obtained at di erent time, therefore the banges can
be observed longitudinally.

As for the Talairach brain template, they are constructed from the images ofone
single person. Although providing a large range of images, all these templas
may not be representative of each population. Note that an atlas-based model
segmentation method using this atlas has been developed9).

BrainWeb brain atlas

Evans, Collins et al. [43] from Montreal Neurologic Institute (MNI) created a
probabilistic anatomical template using the MR images of 305 normal subjec.
First, they manually de ned some landmarks in 241 MR images, then they natched
the landmarks to their position on the Talairach atlas. Then, they used alinear
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Figure 1.5: The coronal, sagittal, axial view of BrainWeb brain atlas. Image comes
from http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html

algorithm to match 305 MR images to the average of the 241 brains that had been
matched to the Talairach atlas and took the average of 305 mapped images as
template.

In addition, they scanned a healthy young subject in stereotactic spce 27 times.
The images were subsampled and intensity averaged in order to obtain aada
with high contrast and high signal to noise ratio. The volume contains 181 217
181 voxels. The map contains 10 di erent brain volumetric data sets thatde ne
the spatial distribution for these structures, including gray matter, white matter,
cerebrospinal uid, skin, skull, fat, etc.

The digital brain model can be used to simulate the head tomography, or is afdeal
tool to test inter-modality registration. This template is devoted to model-based
segmentation and coregistration. It is the standard template in many softwares,
such as Statistical Parametric Mapping (SPM) [7] 1. In some other software, like
Freesurfer ] 2 it is used as a coarse alignment step.

The problem of this template is that the linear transform does not matchthe brains
completely to the Talairach space. This makes the MNI brains slightly hrger than
the Talairach brain. The di erences are larger as one gets further from tke middle
of the brain.

1SPM is an open source created by members and collaborators of the Wécome Trust Centre for
Neuroimaging. It deals with pre-processing, image registration, image segmentation, fMRI analysis,
EEG/MEG analysis, etc. It typically implements voxel-base d methods for brain data analysis. A
parametric statistical model is t in each voxel (it is thus a ma ss-univariate approach). It uses the
estimated parameters of the univariate model to do a statistica | test and then creates images that
display the statistical information.

2 Freesurfer is an open source software that provides a tool suite for processing and analyzing human
brain MRI images, including skullstripping, image registratio n, image segmentation, cortical surface
reconstruction, cortical thickness estimation, fMRI analysis , etc. The underlying spatial model is surface-
based: it warps each individual cortical hemisphere, corrected to have a spherical topology, to a reference
sphere. Then, a map of the surface curvature is compared with that of the template brain, sampled on
the sphere. The individual spherical model is warped to match th e contrast of the template.
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Talairach template and the Whole Brain atlas were created from the images of oa per-
son, hence they cannot capture relevant characteristic elements ohe whole population.
On the other hand, the MNI template uses 305 subjects which makes it ma represen-
tative. However, the method uses linear deformations, which is not azurate enough.
Moreover, it is based on landmarks that are always di cult to place exactly; since these
landmarks are de ned manually, this makes the procedure hardly repoducible. The
neuroimaging community is still lacking a standardized procedure b estimate brain at-
lases. Other questions arise: because of the large variation across sutie one single
template may not be enough. It is also important to consider that the comprison of
mean images or templates may not be the right statistic to compare two poplations:
indeed, two populations may have the same mean image although the di emces may
appear in the deformation distribution. Last but not least, it only relie s upon anatomi-
cal images, therefore it might not be the optimal setting to detect functional activity or
other contrasts of interest.

1.1.5 Some application of digital brain templates

Teaching of neuroanatomy

Traditional neural anatomy teaching requires the aid of anatomical charts, oks,
images and renderings. Due to the very complex structure of the humarbrain,

it is di cult to understand its shape, subcortical structures and the relationships
between them. Moreover, brain-structure is, to some extent, shject dependent,
which makes the use of a digital brain templates particularly relevant Some
publications and web applications [L27, 146 make it possible to observe the brain
easily with any translation, rotation or zoom on the region of interest. Moreover,

as they are supposed to capture the most common features, they appear udigkin

brain anatomy understanding.

Surgical planning and reference

As already mentioned above, digital brain templates can provide accurateand re-
liable information for surgical planning. It can be used to assess the rlsof surgery
and choose the best surgical approach. A particular example can be mentied
here with the deep brain stimulation (DBS) [21, 157. The template is used in
order to prede ne the coordinate of one point in a subcortical structure where a
deep electrode is inserted in order to stimulate a precise teitory and cure some
disorders. It is important to couple the anatomical and functional images,as this
makes it possible to identify some areas that are critical to some esstal functions

and avoid to lesion those during the surgery.
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Atlas-based segmentation

Due to the large variability of the human brain, tissue segmentation is garticularly

di cult. It becomes even more challenging as we have to face the partl volume
e ect (PVE) issue. In low resolution images, PVE appears at boundaries baveen
tissues, where a given voxel contains several tissue types. THidurs the boundaries
between tissues. The atlas information can be used to guide the segmntation using
both the template image to indicate the location and shape of the tissuesand
structures but also using the quanti cation of the normal geometrical variability

to favor particular shapes and spatial organization.

All these applications have led to the need of population based atlas and taplate esti-
mation. Many template construction methods have been proposed in thgast decades.
The most common approach has been to choose as the template one image among sgve
observed ones. This image is considered as standard or characteristic dfet population
under study. The other observations are then mapped to thistemplate - via di erent
registration algorithms - and can then be compared in this common coordinatdrame.
The problem is that the template is subject to an arbitrary choice. If it is far from
the true population mean - which has to be de ned- it does probably not e ect the
population correctly and the registration will not show typical variabil ity as it will rst
account for correcting the bias R7]. This is not satisfactory and has motivated the de-
sign of methods for the statistical estimation of templates or atlases froma population
of observed images.

Ahead from this, registration techniques and segmentation methods, tht are prior steps
to atlas estimation, have raised a lot of attention in the last decades. Inthe following,
we brie y recall some principles of these two topics before introdicing the core of our
subject, statistical atlas estimation.

1.2 Segmentation and registration

1.2.1 Registration

Medical image registration has become an e cient tool to compare images from wo
di erent subjects. The di erence between two objects observel in images correspond
to a variability in position, described by rigid transformations, size, described by a ne
transformations, and more general transformation that change the details of tle ob-
jects. These di erent classes of transformations are characterizedybdi erent degrees
of freedom: six for rigid transformation, twelve for a ne transformation, a few tens or
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hundred of degrees of freedom when parametric models are used (polyn@is, spline)
and up to thousands or even in nite when considering more generic moels that induce
large deformations. Rigid or a ne methods are widely used in clinical practice because
of their simplicity and reduced computational cost. However, as the vaiability of the
brain consists of changes in its size, shape and internal tissue organizam, a ne de-
formations are not su cient to represent brain variability. Non-rigid d eformations have
therefore been proposed to overcome this limitation. The research onon rigid defor-
mation methods has made considerable progress in the past years. In thellbwing, we
brie y describe some of them.

1.2.1.1 Non-rigid registration methods

Non-rigid registration based on a ne transformation and polynomials

Farneback [B5] proposed a non-rigid registration method based on polynomial
transformation. It was further developed by Wang et al. [143. The disadvan-
tage of this method is that it requires polynomial functions of high degres to
produce a well behaved transformation.

Non-rigid registration based on physical models

Non-rigid registration techniques based on physical models are also conon. These
approaches assume that the registration object is a homogeneous isotropicastic
body. They rst create a physical model of the object and then deformthis model
under external forces to achieve the registration with the referene image. This
registration method can ensure the smoothness of the deformation and ehpreser-
vation of the object topology. Most contributions on these methods have feused
on the de nition of external forces, while some of them improve the méhod by
adjusting the elastic properties of the physical model. For examplg Christensen
[38] proposed to replace the elastic model by viscous uids model, hosver this
method increases the computational complexity, Bro-Nielsen 31] improved the
viscous uids model by using fast convolution methods.

Non-rigid registration based on a smooth function

Alternative methods based on smoothing functions, such as thin-plag spline, mul-
tivariate quadratic equations or transforms of a Gaussian function have als been
used in his context. These models involve smooth functions, whitare regularized
so that they represent a prior on relevant deformations. Meyer et al. §3] use a
thin-plate spline interpolation to adjust the position of homologous control points
and calculate the similarity of image to the reference image after trangirmation.
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Like the thin-plate spline, B-spline is also widely used in non-igid transforma-
tion. For this transformation, the deformation eld is calculated by usi ng B-spline
interpolation to adjust the position of the control points. This transfor mation is
usually performed using mutual information similarity measure (se€g116, 128, and
de nition in Appendix A).

Linearized deformations

Linearized deformation methods [LO, 15] de ne a deformation' of a domainD as
the displacement of each pointx in D by a vector v(x), which is written as:

" (X) = x+ v(x):

In this case, the image under deformation is modeled as an elastic bod{.he model
is simple because it only depends on a vector el¢. An important drawback is that
when the source and target images are interchanged, the obtained transforation
is not the inverse of the previous solution, as the invertibility is not ensured.

Large Deformation Di eomorphic Metric Mapping (LDDMM)

LDDMM [ 134 has been proposed to model large deformations and overcome the
non invertibility issue. In this case, the deformation is modeledthrough the com-
position of a velocity eld that evolves over time according to the Lagrange trans-
port equation. This method provides the de nition of a mathematical metric on
the space of images. This distance is the length of the geodesic that coects
them according to this metric and can be used to study the anatomical vaiability
[23, 137]. However, it is computationally costly because the velocity eld has to be
integrated over time. Recent methods $2, 53] approximate this di eomorphism

by a nite-dimensional vector enabling fast and accurate registration.

Demons and Di eomorphic demons

Thirion [ 133 proposed to perform image registration as a di usion process inspired
by Maxwell's Demons. The di usion is driven by the force called \Demons force".
The Demons algorithm is an e cient algorithm that provides dense corregon-
dences but lacks a sound theoretical justi cation. Vercauteren et al [139 propose
a non parametric di eomorphic image registration algorithm based on the initial
Thirion's demons algorithm. They provide theoretical properties of the di erent
variants of this algorithm. These algorithms converge quickly, however they are
not based on a sound mathematical model that would provide a clearly de rd
metric on the image space. Tools can be download in Insight Segmentation and
Registration Toolkit (ITK) [ 6].



Chapter 1. Introduction 15

A more detailed description of multiple image registration techniques are presented in
[12€6. Fourteen of them are compared in 80].

1.2.1.2 Application of brain image registration

According to the modality and the patient, non-rigid registration can be used in di erent

frameworks:

Registration of the same modality of one patient (longitudinal study)

This approach is used to study the evolution of a subject over time. fithese images
contain some non-rigidly evolving structures such as tumors or strokedsions, the
brain is consequently deformed between one time point and the folloing ones.
The registration map highlights (and depending on the method, quanti es) the
di erences, which may be used in disease diagnosis or observation ofetment

results.

Registration of images from the same modality in di erent patients (int ersubject)

This is the most common use of registration mappings. Indeed, it makes ipossible
to compare two subjects by highlighting shape di erences. This isnow used for
statistical analysis of populations that were either compared pairwise for example
[94]) or mapped to a given template. In particular, the statistical analysis can be
performed in the space of deformation, which appears to be a linearizqnspace to
analyze shape di erences (among many others, we can cit@7, 44, 90, 137).

This is one aspect that we will consider for our purpose in this work.

Registration of images from di erent modalities in the same patient

In this case, the images to be registered come from di erent modalits of the same
patient. This is currently the most frequent use of registration in clinical settings

(mostly with rigid-body deformations). It is used to fuse the information from the

di erent modalities into the same image so that the information can be mmbined

in order to increase the accuracy of the analysis.

This is also an aspect that we will use in the following. In particular, considering
together anatomical and functional MRIs can be used to highlight some partic-
lar regions in the gray matter that are activated during speci c cognitive tasks.
Constraining this activation to appear only in the gray matter potentiall y pro-
vides more accurate localization and thickness of the gray matter and a Liger
localization of the subcortical structures. On the other hand, as the gay matter is
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observed in the anatomical image, this knowledge also increases the acaay of the
support of the brain activity. This coupling will be at the core of our mu Itimodal
atlas estimation in Chapter 4.

1.2.1.3 Non-rigid registration algorithms

There are currently many reports about non-rigid registration algorithms in the litera-
ture. Most of the non-rigid registration problem can be seen as an optimizabn problem
where the energy to minimize takes into account the di erence bewveen one reference
image and the deformed image and a regularity term that penalizes \too large"defor-
mations { which has to be de ned according to the deformation framework. This can
be expressed as

n=argmaxE( BiA )= I( BiA)+ L(); (1)

where A and B are the rst and the second images,J is the similarity measure, ' is
the transformation between the two images,S the space of admissible deformations and
L the regularity term. The di erent approaches di er from each other by considering
dierent S,J andL.

Di erent frameworks to construct and constrain ' have been given above as well as the
regularity term that includes the expected constraints on' . For example, in LDDMM
and Di eomorphic demons, ' is a dieomorpism. ' B =B ' landL is the kinetic
energy of the path generated by . The similarity measure J quanti es the similarity be-
tween two images and the most used are the correlatiorilD7], gradient cross-correlation
[33], mean square error 135, mutual information or normalized mutual information
[13Q that are described in Appendix A.

Although quite di erent, all these approaches can be solved the same wags the opti-
mization of the matching energy E. Currently, gradient descent optimization method
-and its accelerated versions- appears to be the easiest algorithm. Howear, other meth-
ods such as Newton-Raphson, quasi-Newton, the simplex method, simated annealing
or even genetic algorithms, may be used depending on the enerdy.

1.2.2 Segmentation

Medical image segmentation is the key to performing computer image analys. It has
important signi cance in biomedical research, clinical diagnosis and paliological anal-
ysis. The main factors a ecting the brain MR image segmentation are: 1) inensity
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inhomogeneity: due to the radio frequency magnetic eld inhomogenelt, MR equip-
ment itself, the di erences between tissues in the brain, etc 2) Partial Volume E ect
(PVE): due to the movement of the patient {given that the acquisition | asts several
minutes{ and the complex shape of the structures, the boundaries ofhe target struc-
tures are not continuous and the boundaries between the soft tissue cdme blurred. 3)
Image noise. These issues altogether make segmentation a challenging task

1.2.2.1 Methods of segmentation

In this section, we recall few examples of image segmentation that we hawgrouped into
four classes based on the way they are performed.

Gray level based approaches

This class of methods includes the threshold-based method 22, region growing
[54], clustering algorithms [62], etc. These methods are based on the gray level
image directly. The threshold-based method assumes that the distbution of the
target and the background is separable in the image histogram, so one can use a
threshold to distinguish between the target and the background. The nethod is
simple, easy to implement and fast. However in brain MR images, due tahe in-
tensity inhomogeneity, the distribution of the tissues often oveilap. It is impossible
to obtain the correct segmentation result by the threshold method. The main idea
of the region growing method is to set the initial seed, classify thevoxel that are
similar to the seeds of a given class. The disadvantage of this method that the
result of the algorithm often depend on the selected seeds. Clustiag algorithms
include K-means algorithm [87], fuzzy C-means algorithm (FCM) [51], Gaussian
mixture model (GMM) [ 48]. Wells et al. [145 propose a segmentation method
using Expectation-Maximization (EM) algorithm, that can automatically se gment
the tissues, however this method requires the speci cation of @ussian distribution
for each class. Ahmed et al§], Pham et al. [10Z have proposed methods based
on Fuzzy C-Means algorithm that segment and remove the bias eld at the sam
time. However the initial values are sensitive for these clusteng algorithm. In
addition, most of the proposed models are based on the voxel information ando
not consider the smoothness of the tissue. Ashburner and Friston2[] propose
a probabilistic framework for joint nonlinear registration, intensity normalization
and segmentation of a single image providing tissue probability maps.

Active contour method

Active contour segmentation models have become an important research topin
the last decades: speci cally, parametric active contour model (Sna& model) and
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geometric active contour model (level set model) are two commonly uskactive
contour models. Here is a brief introduction of these two models,hat come from
computer vision and thus may fail due to the characteristics of brain mages.

(i) Parametric active contour model

The parametric active contour model (Snake) was proposed by Kass et al.7§],
further developed by [B0] and successfully applied to the image segmentatiom[,
92]. The ideais to nd a methodology for the minimization of a criterion composed
of the internal energy and external energy over the entire shape. Altbugh this
model has achieved great success in medical image segmentation, there atill
some disadvantages: 1) the results are often dependent on the initiaktion; 2)
the capture range of edge energy is small; 3) the sensitivity to noise isrge, the
model fails in images with weak boundaries. As the topology of brain MR images
are complex, Snake models cannot be used to segment several struaarin the
brain MR images at the same time. However, they are often used on a singléssue
segmentation [L47], for example, segment the hippocampus, ventricles or tumor.

(i) Geometric active contour model

Geometric active contour models can be considered as an improvement 8nake
model, proposed by Caselles et al.1¢4] and Malladi et al. [89]. This model can
be solved by the level set method. The level set method can be appt to image
denoising and enhancement, image segmentation, image restoration. Thevid
set model 18, 46, 10]] improves upon the Snake model, as it allows topological
changes (the contour can break up, merge, or disappear during the course tifne
evolution). However the resulting segmentation is sensitive to tke initialization and
it is di cult to obtain global optimal solution. Chan-Vese model [ 3€] is a classical
model, that assumes the image is divided into two parts with di erent means and
segment the target from the background. Since it uses the gray level formation of
both the internal and external of the contour, it still works well for th e images with
large noise or weak boundaries. However the model assumes that the int&ty is
homogeneous in each class, therefore it often yields a wrong segmentation brain
MR images. Many segmentation modelsJ42, 156 based on local information have
been proposed in order to overcome the intensity inhomogeneity in ta brain MR
images. However the result is often dependent on the initialization.

Graph-based segmentation

Graph-based segmentation was introduced for image analysis in 1971494]. This
method converts the image to a weighted graph where the voxels are hatet as
nodes, then it uses a minimum cut criterion, e.g. minimal spanniig tree, to get the
best image segmentation. It essentially transforms image segmentation pblem
into a discrete optimization problem with convex relaxation. This class of methods
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include the graph cuts R8], random walker [64], isoperimetric partitioning [ 65]
and so on. Currently, the research of the graph-based segmentation fosas on
the following aspects: 1) optimal cut-o criteria [ 28, 69]; 2) spectral methods for
segmentation @5, 113; 3) fast algorithms [29, 56].

Atlas-based segmentation

Atlas-based segmentation can been considered as a registration problemamely
that of deforming a brain atlas into a new subject's brain. It relies on a reference
image in which some structures have been segmented. Then, a norgidl registra-
tion is applied from the reference to the new subject. The structires of the new
subject are segmented by transporting the labels from the refererc Atlas-based
segmentation is of particular interest when the information from the gray level
intensities is not su cient. For example, the gray level intensities of subcortical
structures may be closer to the white matter (WM) than gray matter ( GM) inten-

sity mean. This makes it di cult to segment these structures as GM without any

prior. However, atlas-based segmentation manages to segment these sttues
correctly with the help of a priori information given by the atlas [ 119.

There are two problems with atlas-based segmentation of brain images. Thest
one is the choice of the template, as it should be representative of a pagation
and carry an accurate segmentation. The second one is the choice of the relgis
tion framework that constrains the deformation and therefore captures dierent
similarity while leaving residuals which may be of interest. This assumes that the
template is close to the subject's anatomy. Otherwise, large registation errors
may cause important segmentation errors if large anatomical di erences est.

Aljabar et al. [9] proposed two methods for templates selection. The rst one uses
meta-information. They select the template that is closest in age to the image
to be segmented. The second one uses similarity metrics to comparéd images.
Obviously, the quality of the results depends on the metric used.

Another solution is to use multi-atlas based segmentation. It has been posed
to better deal with the registration errors obtained when using a sirgle template.
It also better captures the anatomical variability. Klein et al. [ 81] and Wu et al.
[148 show that using multi-atlas segmentation improves segmentation acaacy.
One problem is that it is unclear how many templates should one use forhe
multi-atals based segmentation. Aljabar et al. B] shows that it is not necessary
to use all the observations in the data set as templates. First, if thenumber
of \templates" is large, registering all \templates" to the image to be segmented
increases the computation time. Second, the anatomical structure mayary across
the population. For example, if a structure can be represented by tw distinct
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shapes, using a large number of templates may give a shape that does neforesent
either of them. In their study, they nd that 15-25 templates are su c ient to get
a good performance. However, the choice of the 15-25 templates still depds the
metric they used.

When doing atlas-based segmentation, the templates selection depeinth the metric used
to compare images. The choice of the registration framework assumes that éhtemplate
is close to the subject's anatomy. A statistical estimation of the atlas hat contains the
template and the metric is a better choice, because it avoids to x he template or the
metric which are closely linked. Now we will focus on atlas construdgon.

1.3 Template estimation

Two approaches have been used to construct templates from medical sges: to take
the image closest to the population mean or to estimate the true populationmean.

Marsland et al. [91] propose a method to construct the template as the observed image
that is the closest to the geometrical mean. They choose the target imagéat minimizes
the sum of distances from this image to the rest of the images and maximizethe sum
of mutual information (MI) between them. Park et al. [ 99] propose a method that deals
with the same problem as Marsland et al.'s. Their selected image is chea based on Mi
only, which is most robust to the noise inherent in anatomical images. Tlese approaches
gives the template with the smallest possible bias but neverthelgs this template is still
biased, as it is one of the image in the dataset. It is not the real mean geometrimage.

Studholme [129 proposes a method to jointly register all images simultaneously to a
common space that is very close to the mean geometry to reduce the biasharent to the
choice of one particular sample. A cost function is optimized with the am of maximizing
the similarity between images, while penalizing displacement fom the average shape.
However, this requires explicitly choosing a weighting parameteto specify the in uence
of the penalty term and thus how well the constraint is satis ed.

Bhatia et al. [26] propose a method where an arbitrary image is used just as an inten-
sity reference, after which the similarity between images is maxnized using non-rigid
registration. To ensure that the image calculated in this fashion is actally the mean,
they enforce the constraint that the sum of all transformations, repregnted by a suit-
able parametrization, is equal to zero. The algorithm does not require spcifying any
geometric reference, however an intensity reference has to be aten to evaluate the
similarity during the registration step.
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Guimond et al. [67] propose an automatic method to build average anatomical brain
atlases. First, they choose an image as the reference and register allagpes to it using
an a ne registration to correct the position and global shape di erences. Then, they
register the images after the a ne registration to the reference usirg an elastic registra-
tion and calculate the average of the images and deformations after registratin. At last,
they apply the average deformation to the average images in order to competthe aver-
age atlas. The advantage of this method is that it depends less on the refence image
used for its construction. A similar idea has been proposed ing6] where the template
is the mean deformation of an hyper template. However it requires a presegmentation
of the data.

Rueckert et al. [115 propose a statistical deformation models that can be used to
construct an average atlas of the anatomy and their variability. They use a rn-rigid
registration algorithm. The transformation consists of a global transformation and a
local transformation. This algorithm leads to good correspondences, in grticular, in
the subcortical structures.

Joshi et al. [76] propose a method to estimate a template given a collection of observed
images. The problem is that the deformation is applied to the observatios whereas it
should act on the template (ideal image). This makes this estimation di erent from the
computational anatomy model proposed by Grenander and Miller §6]. Moreover, the
iterative numerical scheme is very sensitive to noise.

Niethammer et al. [96] propose robust estimation methods for parametric models based
on Di usion Weighted Imaging (DWI). By applying the estimation metho d to registered
DWIs, a DW-atlas is constructed. This allows for the representationof average di usion
information with more exible di usion models than the di usion ten sor.

All the methods so far produce deterministic templates, that is o say a deterministic
gray level image. On the other hand, probabilistic templates providng tissue probability
maps are especially attractive, as they make it possible to take into acunt the uncer-
tainty on the underlying tissue type, which is related to partial v olume e ect (PVE) or to
perfectible registration. Moreover, most of the time, the template is estimated without
the geometric variability which may be analyzed a posterior by PCA or ICA. However,
the template estimation requires to choose a deformation framework wich somehow
freeze the geometric variability a priori. Therefore, the posterior analysis highly de-
pends on the prior choice. This suggests that the template should be #&ned jointly
with the geometric variability of the shapes represented in the poplation. These two
quantities will in the sequel form the atlas of the corresponding poplation. This is the
leading idea of our models.
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In [25], a method was proposed to do the segmentation and registration jointlywhile
creating an average brain template. This approach combines groupwise resjration us-
ing the Kullback-Leibler divergence and the EM algorithm for segmentaton, and thus
demonstrates the benet of their integration. However it does not lean the geomet-
ric variability within the estimation procedure, which may redu ce the accuracy of the
template to match the observations with prior deformations.

Ribbens et al. [L10 propose a probabilistic model to segment a heterogeneous data set
of brain MR images simultaneously while constructing templates for eae mode in the
heterogeneous population using an EM algorithm. However, it performs clstering as
an additional step, and does not learn the geometric variability of the popuation.

Sabuncu et al. 153 propose a spherical demons algorithm with geometric variability
for registering images and for creating an atlas. The registration was more accate and
this registration could be used to transfer segmentation labels onto a ew image. With
such an approach, the segmentation is not performed during the estimadin.

Glasbey and Mardia [61] made the rst step towards the statistical estimation of a
complete atlas based on a statistical model. This was improved by Allagmnere et al.
[10] who proposed a model to create an atlas containing the geometric varialiiy. As the

inputs are scalar images, the template is also estimated as a scalar (gragJel) image.
As a consequence, the segmentation of the population is not part of the estiation
process. Using both kinds of information increases the population classation accuracy,

as the model better ts the observations, as for the population classi ation in [13], the
segmentation (tissue classi cation of voxels) takes advantage of the redistion to the

template. Although they learn the geometric variability, their templ ate is deterministic.
In this work, we will develop these models in order to create a probaittistic atlas.

1.4 Algorithms used in this work

1.4.1 Gradient descent

Optimization is a branch of applied mathematics, the main research qustion is to nd

the minimum of a function f (x). The gradient descent method is the oldest optimization
method proposed by Cauchy in 184734]. The algorithm starts with an initial value x©

and calculate the gradient vectorr f (x@). The next value x® obtained by moving
some distance fromx© in the direction of the descent. In general,

x(k+1) = y(K) )y f(X(k));
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where () s the step-size which can be changed at each iteration.

The advantages of this method are that it has often low computation and storage.As
an oldest method, the rate of convergence is slower than many other mettds. Another
limitation of this method is that sometimes it is di cult to calculat e the gradient and to
choose (K). However, this method can be optimized using Newton-Raphson algorithm
or FISTA [22].

1.4.2 Stochastic algorithms

Stochastic Approximation Expectation-Maximization (SAEM)

Dempster et al. [48] proposed the Expectation Maximization (EM) algorithm in

order to nd the maximum likelihood estimator in the context of incom plete data
settings also known as mixed e ect models. Given a statistical modl consisting of
an observation X , missing dataZ and the parameters , the marginal likelihood
of the observed dataL( ;X) is often intractable as it writes as an integral over
the distribution of Z. The EM algorithm seeks to nd the maximum likelihood

estimate (MLE) of the observed likelihood by iteratively applying the following
two steps:

1. Expectation step: Calculate the expected value of the log likelihod function
given X at the current parameter (:

Q(j )= Ezjx. wlogl( ;X;2)]

2. Maximization step: Find the parameter that maximizes this quantity :

D = argmax Q( j V)

Although widely known, it su ers from the need to evaluate the expedation with

respect to the posterior distribution of the missing data given the observations.
The Stochastic Approximation Expectation-Maximization (SAEM) [ 47] is an im-
provement of the EM algorithm with good theoretical properties [47] that deals
with this issue. This is an iterative procedure that consists of three steps:

1. Simulation step: Simulate the missing dataZ from the conditional distribu-
tion q(ZjX; M).
2. Stochastic approximation step: A stochastic approximation is done onthe

su cient statistics of the model using the simulated value of the missing
data.
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3. Maximization step: Maximize the log-likelihood with respect to the model
parameters given this stochastic approximation.

SAEM is a random method which makes it less depend on the initial condion.

Its numerical e ciency has also been demonstrated. However, sometnes, we can
not simulate the missing data directly and thus resort to some indilect simulation

methods, e.g. Markov Chain Monte Carlo methods.

Markov Chain Monte Carlo (MCMC) Method

MCMC methods are a class of algorithms for sampling from probability disti-
butions. The Metropolis-Hasting algorithm and the Gibbs sampler [60] are two
popular and e cient MCMC algorithms for obtaining a sequence of observations
when direct sampling is di cult. In particular the Gibbs sampler is well adapted
for high dimensional simulation situations. In the simulation step of the SAEM,
we use MCMC methods to simulate the missing data.

Metropolis-Hastings algorithm

In order to reach the stationary distribution (Z) for a random variable Z. The
Metropolis-Hastings algorithm starts with a value Z©@. From Z{ it generates
Z°¢ using the law proposalq(Z€¢z(® D) and accept or reject this valueZ°¢ using a
procedure of acceptance-rejection. The new value is denotegl(t*1) .

When the number of dimensions is high, it is di cult to nd the dis tribution qto
sample e ciently and stride the whole support of . Gibbs samplers work better
in such situations because they simulate the sample for each dimemsi one by one.

Gibbs sampler :
Suppose that the random variableZ = ( Z;:::; Zq) belongs toRY with large d. The
Gibbs sampler starts with a valueZ© = (Zio); :::;Z((,O)). From z® fori 2 J1;dK
it simulates the candidate Zi(t) from the conditional distribution
iz (). ... (1) .5 (t 1.5 Dy.

fi(zMjz; 20528 Yz Yy
It is necessary to know the conditional distributions f; to use the Gibbs sampler.
Since only the conditional distributions f; are used in the simulations, all simula-

tions are univariate even for a high dimensional problem. In the Gibbs ampler,
the rate of acceptation is always equal to 1.

When f; is not tractable, one may combine the Metropolis-Hastings and Gibbs
sampler. This is known as Metropolis-Hastings within Gibbs sampler.
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1.5 Contributions of this work

1.5.1 Generative Statistical Model

In Chapter 2, we propose a model to create a probabilistic atlas, which we de ne as a
probabilistic template together with a quanti cation of the population ge ometric vari-
ability. Given a set (Vi)1si6n Of images observed on a grid of voxels embedded in a
continuous domainD  R3, we denotex; 2 D the location of voxel j. We consider that
each image is composed of voxels belonging to one class amdfig corresponding toK
tissues types. We assume that the signal in th& tissue classes is normally distributed
with class dependent means (k)1sksk and variances ( |3)16 k6K as proposed in 2Q].

In order to take into account the geometric variability in shape of the brain along a
population, we consider that the unknown class of each voxel is suppodeo be the
discretization on of a random deformation of probability maps ( Px)iskek . These
probability maps correspond to the probability of each voxel to belong b each class in
the template domain.

We use small deformations in our model, i.e. a deformatiodn of the domain D is
represented by the displacement of each poink in D by a vector v(x), and is thus
written as:

" (X) = X+ v(X):

The template probability maps Py and the deformation are de ned on the whole domain.
In order to reduce the dimension to a nite dimension problem, we & ne both quantities
as a nite linear combinations of given kernels centered at some xed egi-distributed
control points in the domain D.

The previous hypothesis provides a generative statistical modeldr a sample of gray
level images. The parameter of our model contains three parts: a photomst part

corresponding to the template parametrization, a geometrical part corrsponding to the
covariance matrix of the deformation parametrization vector and a part for the class
corresponding to the class dependent means and variances.

Medical images are usually high-dimensional, but come in small samplesherefore we
propose to work in a Bayesian framework.

We consider the maximum a posteriori (MAP) estimator that maximizes the posterior
distribution of the parameters " given the observation. We prove the existence and the
consistency of the MAP.
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Theorem 1.1 (Existence of the MAP estimation in section 2.3.1). For any sample
Y1, Yn, there exists, 2 such that

o8 ("niya; i yn) = sup 8 (Y1 Yn):

Theorem 1.2 (Consistency in section2.3.2). Under weak assumptions, for any compact
setK B.
im ( (" )> ~"h2K)=0;

n! +1
where is the metric inherited from the Euclidean metric on R™ wheren; is the dimen-
sion of and is the set of optimal parameters.

In Chapter 4, we generalize the model to multivariate observations. We use multhodal
images as the input and we estimate the probability maps for each modalityas the
result.

1.5.2 Statistical Learning Procedure

In our model, it is impossible to compute the gradient of classical mathing energies
with respect to the deformation and thus precludes any algorithm basedn alternative

gradient descents. This led us to use stochastic algorithm. Thanksd the choice of
our statistical model, it belongs to the curved exponential family. Therefore we can
calculate the su cient statistics easily. As we are in an incomplete-data setting, we
choose the SAEM coupled with a MCMC method to maximize the likelirood. During the

simulation step, we simulate the missing data, i.e. the deformation prameters ( ) and

the vector of voxel classes using a Metropolis-Hastings algorithm withi Gibbs sampler.
This particular MCMC method is well adapted for high dimensional simulations and

also in our particular case where the spatial distribution of the classe across the brain
volume depends on the deformation.

We also prove the almost sure convergence of the previous estimation aldgtthm towards
the MAP estimator given an n-sample of observations.

Theorem 1.3 (Convergence of our estimation algorithm in section2.4.3). Under usual
assumptions on the model and algorithm, there exists two compacets K and Ky such
that for all ((c)o;( )o) 2 K and sp 2 Ko, we havemli!gn d(sm;L) = 0 P)o:( yoiso-@-S
wherelL is the set of critical points of the observed likelihood an® ¢, ),:s, IS the prob-
ability measure associated with the chaif{(¢)m;( )m;Sm)m>o Starting at ((¢)o; ( )o; So)-

The MCMC method can also be used to decide which model ts the databest. In
Chapter 5, we propose a statistical framework based on a hierarchical modeling taclude
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the information brought by the peptides shared by di erent proteins. We use the Gibbs
sampler for analyzing large datasets, and compare with a model based on the alysis of
one protein at a time, to prove that our method is more reliable for estmating protein

abundances and testing abundance changes.

1.5.3 Segmentation of new individuals

As we present in section1.1.5 one application of the brain atlas is atlas-based seg-
mentation. In Chapter 3, we propose a segmentation method using the atlas that we
estimated.

We rst de ne the gray level template [ using the estimated means and the estimated
probability maps. We also use the estimated covariance as a metric forhe space of
deformations to constrain the registration map according to the learned dstribution.
Given a target imagey, the template I" is deformed non-rigidly and registered to the
target image by minimizing the classical energyE (" y;[}' ). It is done by a gradient
descent on the deformation variable denoted by ,

—argmin E("  y;[}"):
2R3kg
Then, the tissue for each voxel denoted b)cj is chosen to be the class that maximizes
the posterior probability of that voxel to belong to each class, given ths deformation
eld , h i
G =argmax log o(yjig;agi ;")
¢ 2ILK K
This shows very interesting results, both quantitatively and qualitatively on synthetic
and real data.






Chapter 2

Probabilistic Atlas and Geometric
Variability Estimation.

Computerized anatomical atlases play an important role in medical image analsis.
While an atlas usually refers to a standard or mean image also called templat that
presumably represents well a given population, it is not enough to chaacterize the
observed population in detail. A template image should be learned joiny with the ge-
ometric variability of the shapes represented in the observations. Tiese two quantities
will in the sequel form the atlas of the corresponding population. The gemetric vari-
ability is modeled as deformations of the template image so that it ts the observations.
In this paper, we provide a detailed analysis of a new generative staitical model based
on dense deformable templates that represent several tissue typedserved in medical
images. Our atlas contains both an estimation of probability maps of each tisse (called
class) and a statistical summary of the deformations. We use a stochastialgorithm
for the estimation of the probabilistic atlas given a dataset. Experimens are shown on
brain T1 MRI datasets.

29
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2.1 Introduction

In neuroimaging, brain atlases are useful for both segmentation and registran tasks as
they enable to transport known information to a new patient image to perform qualita-
tive and quantitative comparisons. What is often referred to as an atlas aatally corre-
sponds to a mean image otemplate. The problem of estimating such an image given a
population has become a central issue in medical imaging during the pastecade. Many
di erent methods have been proposed for template estimation (seelRl, 124 among
others); they work either on gray level images, segmented data or shapesmmarized
by a set of landmarks. Probabilistic templates, that represent the pobability of ob-
serving di erent tissues at each location, are especially attractie [63, 84], as they make
it possible to take into account the uncertainty on the underlying tissue type, which is
related to partial volume e ect (PVE) or to perfectible registration. In many template
construction methods, pre-segmentation or pre-registration are requed. In this paper,
we aim at creating a probabilistic atlas, which we de ne as a probabilistc template
together with a quanti cation of the population geometric variability. How ever this
estimation requires only a coarse pre-registration and no pre-segmeation.

Atlas learning encompasses the two most fundamental problems in image alysis,
namely segmentation and registration, as these are the basis of template estimation
and population analysis. Concerning the segmentation issue, it is impaant to use
automated segmentation for the sake of e ciency and reproducibility. Many di er-
ent methods have already been proposed for segmentation, such as lewdt methods
[50], model-based segmentationq2], template-based approachesl23 155 among many
others. In many cases, segmentation is coupled with registration. Inded, perform-
ing registration and segmentation jointly is generally more e ective than performing
them sequentially [68, 106, 149. An accurate segmentation increases the precision of
subsequent registration steps. On the other hand, transporting a sgmentation from a
template to a subject requires an accurate registration procedureThe accuracy of the
registration depends on the class of deformations that are considered. dieed, one may
prefer smooth deformations that capture only the global shape changes ratlehan local
details. On the opposite side, when local shape features are meaningifone has to adapt
the class of deformations so that they deal with variable geometric and redarity fea-
ture. Part of this choice has to be made by the user and depends on the dat However,
the complexity of the deformation set has also to be constrained by the afervations
themselves. Some deformation models provide a metric on the space siiapes through
a metric on the deformation set L34 which describes geometrically the data. Another
viewpoint is to propose a probabilistic approach where the probability distribution of
the deformation highlights the characteristic deformations in a populaton of interest.
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Both approaches can actually be related, in particular when consideringhat, assuming
a proper parametrization, the deformations are multivariate normally distributed, as the
covariance matrix yields a natural metric to compute distances betveen deformations
[10]. More generally, this amount to using a Mahalanobis distance on deformatins,
which is an acceptable choice even without a Gaussian hypothesis.

As pointed in [15], estimating this probability distribution together with the tem plate
(gray level in [15])) increases the population classi cation accuracy, as the model bette
ts the observations. As for the population classi cation in [ 15], the segmentation (tis-
sue classi cation of voxels) takes advantage of the registration to the temlate. In the

sequel, the probabilistic template together with the geometric varability will be called

atlas.

Several solutions have been proposed previously to deal with one or thather part of
atlas or template estimation; we now discuss the closest works to ourg=irst, a problem
with average templates construction is that they do not include the ronlinear deforma-
tion to align the corresponding structures. In [83], to solve this problem, a generative
model was proposed to create a template using mesh-based represaiins endowed with
a deformation model. This method computes estimates of the deformatin eld and the
most compact mesh representation using an Expectation-Maximization (B1) algorithm.
However they require the pre-segmentation of the training image. In25], a method was
proposed to do the segmentation and registration jointly, while creatirg an average brain
template. This approach combines groupwise registration using the Kuback-Leibler di-
vergence and the EM algorithm for segmentation, and thus demonstrates théene t of
their integration. However it does not learn the geometric variability within the estima-
tion procedure, which may reduce the accuracy of the template to math the observations
with prior deformations. In [ 110, a probabilistic model was proposed to segment a het-
erogeneous data set of brain MR images simultaneously while constructintemplates
for each mode in the heterogeneous population using an EM algorithm. Howevgit
performs clustering as an additional step, and does not learn the geometrvariability of
the population. In [15], a model was proposed to create an atlas containing the geomet-
ric variability. As the inputs are scalar images, the template is also esmated as a scalar
(gray level) image. As a consequence, the segmentation of the populatios not part
of the estimation process. In 153, a spherical demons algorithm with geometric vari-
ability was proposed for registering images and for creating an atlas. The gstration
was more accurate and this registration could be used to transfer segmeation labels
onto a new image. However, the segmentation was not performed during thestimation.
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In this paper, we propose to include all the aspects of the atlas estim&in procedures de-
scribed previously, which can improve both the estimated templaé image, the estimated
geometric variability and the segmentation of individual data. Moreover, we propose to
perform this estimation using a joint segmentation-registration. For this purpose, we
propose to model the observations (gray level images) by a generativeattstical model,

the parameters of this model being our atlas, i.e. a probabilistic terplate and the ge-
ometric variability. We generalize the model proposed in 20] and use the algorithm in

[15] for the estimation part. We also learn the geometry as the metric on the pace of
deformations, which reduces the possible deformations to those that arcommon in the
population.

This takes the form of a multivariate zero mean normal distribution on the deforma-
tions, where the main parameter is the covariance matrix, which is notconstrained to
have a particular structure (e.g. diagonal or sparse). This captures tie long distance
correlations of the deformations.

To estimate the model parameters, we use a stochastic algorithm that &s demonstrated
good performances on real data in14, 111] and has theoretical convergence properties
[15. We get as nal output an estimation of both the probabilistic template and the
geometric variability. Although the individual deformation and segmentation are not
parameters of the model, the algorithm can be used to return individal deformations
and segmentations of the individual images. Additional parameters are alsoelarned by
this procedure, such as the means and variances of each tissue of graydedistribution.

As a quantitative evaluation of our method, we test our algorithm on synthetic data for
which we know the ground truth. We obtain high Jaccard indices on training and test
data. We perform two tests to evaluate our method on real data. At rst, we tested
our algorithm on 8 patients on an anatomical brain MRI dataset for which a manual
segmentation is available as a quantitative segmentation evaluation.

The rest of this paper is organized as follows. In Sectiong.2, 2.3 and 2.4, we present the
model, the estimation and the algorithm in detail. Section 2.5 yields the experimental
results on simulated and real data. In appendix, we prove the existete of the solution
and the convergence of the estimation algorithm.

2.2 The Observation Model

In this section, we present our statistical model, the selectedet of deformations and the
parametric template that we consider for the sake of computational tractablity. Then,
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we introduce the parameters of interest and the Bayesian frameworki.e. we introduce
priors to address the known issue that medical images datasets most oftecomprises
very few samples.

2.2.1 Statistical Model

We consider heren individual MR images from n patients. This set (yi)1gisn Of images
are observed on a grid of voxels embedded in a continuous domai®  R3. We denote

Xj 2 D the location of voxelj 2 . We consider that each image is composed of voxels
belonging to one class amond<, corresponding to K tissues types. We assume that
the signal in the K tissue classes is normally distributed with class dependent mean
( k)16k6Kk and variances (%)16 kek as proposed in 20]. Therefore the probability of

observing a data with intensity yf for the ith image in the j th voxel given that it belongs

to the kth class (oi = k) is de ned as follows:

POV =k ko D N (W 6 B 2.1)

where N (:; ;  2) is the normal density with mean and variance 2. This expression
results from the assumption that given the class, the voxels are assued to have inde-
pendent gray level. This assumption is not satis ed in real life exgeriment as the noise
of the observation depends on the tissue type. However, this common assption is a
rst approximation that is useful for the sake of estimation.

In order to take into account the geometric variability in shape of the brain along
a population, we consider that there exists a random deformation from thetemplate
to the subject that acts as follows: the unobservedclasses of the voxels of the data
y are assumed to follow the probability distribution given by the discretization on

of the warped probabilistic template. This template is de ned by th e probability maps
(Pk)16ke K that yield the probability of each voxel to belong to each class in the emplate
domain. In other words, the probability maps are deformed to match the obsgrvation y
(in a sense that will be detailed below) ; then they are discretied on to provide, at
each voxel, a voxel-dependent discrete probability measure fothis point that gives the
probability of each voxel to belong to each class.

As the deformation is not observed (and is actually a mathematical tool for poplation
analysis), we assume that these deformations from the template maps toaeh subject
are alsounobserved and random We de ne them through a random eld z:R3! R3
such that for j 2 the prior probability of a voxel j from subjecti to be in the ki class
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is given by:
P(d = k)= Pe(xj  2(X])): (2.2)

We consider here the linearized deformation model which de nes aeformation' of the
domain D as the displacement of each poink in D by a vector v(x), and is thus written
as:

"(X) = x+ v(X):

As we consider linearized deformations, we approximateé * by ' (x)= x v(x) at
the rst order. This makes it possible to apply the deformation to an image, herePy, as

P(d = Kk)="1 Pe(x)= Pu(xj z(x)):

As de ned above, the deformation is an in nite dimensional object. While such a dense
representation is theoretically sound, for sake of computation, we conder a subspace of
deformations that will be parameterized. We assume that the deformationis controlled

by the displacement of some given control points belonging t® . This reduces the prob-
lem to nite dimension. We de ne the deformation eld as a nite lin ear combinations

of a given kernelK ¢ centered at some xed equi-distributed control points in the domain

D: (Xg)16g6k, With parameter 2 (R3)s

o
8x 2 D;z (x)=(Kg )x)= Kg(X;xg) (K); (2.3)
k=1

where K4 is chosen as a radial Gaussian Kernel in our experiments.

As for the deformation model, the templatesPy : R31 [0; 1]; 8k 2 J1; K K which are the
tissue probability maps, should be de ned on the whole domainD. However, in order
to reduce their dimensions to allow for numerical computation, we ptk a xed set of
control points (p)1616k, that may be di erent from the geometric ones and parametrize

R
the templates by the coe cients 2 [0; 1], which satisfy 8 2 J1; koK = 1.
k=1
Then, we write
o
8x 2 D;Py(x)= Kp k(X)=  Kp(xp1) ki (2.4)
I=1
where Kp(x; pi) = 1 if p is the nearest neighbor ofx among the set of points @;); and

0 otherwise.

Remark 1. The unobserved parameter appears in the indicator function of the kernel.
This makes it impossible to compute the gradient of classical matchingenergies with
respect to and thus precludes any algorithm based on alternative gradient descents
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(as e.g. in[r7, 153). However, this indicator functions make it possible to deal with the
constraint on  which would appear much harder with other smoother kernels and can
be handled easily with our estimation algorithm.

The previous hypothesis provides a generative statistical modeldr a sample of gray
level images. The random variables are the deformation vector , the class of each
voxel ¢ and the parameters that characterize the gray levels of the tissues ¢; 2)x. The

probability distributions of the former two elements are given by Equation (2.1) and

(4.1). We assume that the deformation vector follows a normal distribution with mean

zero and full covariance matrix. The hierarchical model is given by:8i 2 J1;nK 8j 2

R _
ds . kKPe(Xj 2 ()i i (2.5)

8 -

% is N@O; g)j g

3 .

yis N( i did =k« &

where i is a Dirac measure onk. The covariance matrix g4 is not assumed to have
any particular pattern of zeros. This makes it possible to model local ad global corre-

lations between control point moves, in particular, very correlated dsplacements can be
captured such as translation of a large area of the images. The zero mean is elevant

assumption as the population is assumed to be distributed in an ellipsid around this

mean image.

2.2.2 Parameters and likelihood

Given this statistical model, the parameters to estimate are the coariance matrix ¢ of
the deformation coe cient (Equation ( 2.3)), ( «)iskex the coe cients that de ne the
templates (Equation (2.4)), ( k)iekek and ( I3)16 kek the class dependent means and
variances. Let g= ¢, p=(( Kiskek)and ¢=(( k)iskek;( £)i6kek ). We assume
that =( 4; p; c) belongs to the parameter space de ned as the open set

= f =(( Wiskek:( Kiskek:( Diskek; )i k 2]01[*; 2>0; 2 R; ¢2 gkg; (R)g
(2.6)
Here gkg; (R) is the set of strictly positive symmetric matrices of dimension &g  3Kg.

We can notice that due to the unobserved variables and c, the observed likelihood is
an integral over these random variables. This writes
ZZ
alyi )= alyic; oalg ; p)a( j g)dcd (2.7)
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where the conditional distributions are given by our model

A jo=em( 5 T ) g (28)
_ X
ag 5 p)= kPe(xj  z (%)) (2.9)
k=1
L |
i i )2
dic 9= @ 2) Fep o) 210
j=1 9

wherej j is the number of voxels.
For sake of simplicity, all the likelihood functions will be denoted by g and the variables
speci ed as arguments of this functionq.

2.2.3 Bayesian Model

Medical images are typically high-dimensional, but usually come in smdlsamples. To
deal with the data scarcity issue, we choose to regularize the statical model and
we propose to work in a Bayesian framework. As presented inlp], we use standard
conjugate priors for each parameter, i.e. an inverse-Wishart 4 in dimension kg 3kg
on 4, a Gaussian , on  and inverse-Wishart , in dimension 1 on 2 with xed
hyper-parameters. All priors are assumed independent. These prisrmakes it possible to
regularize when needed the estimated parameters but, when the nuper of observations
increases, the relative prior weight decreases.

More formally we have
.2 :
( gr ks k) S g m pr

where a

8
9
% vo( o) _ exp( 3h g% gi)pﬁ d gag> 6kg+1;

2
V(1) _exp LTS dy
ap
pL  d Zap> 3

k

Vo( ) _ exp

rm‘o’\’ N

Note that for two matrices A; B we havehA;Bi = tr (ATB) the Frobenius inner product
on matrices.

Our Bayesian model can be represented by Fig2.1 where the dependencies are high-
lighted.
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Figure 2.1: Generative model that relates the atlas to the observed images.

2.3 Estimation

2.3.1 Existence of the MAP estimation

Given the complete statistical model, we can learn the parameters tht best t the
observations. Although real data never follow any parametric model, we ty to approx-
imate their generation so that we better understand the common and spec features
of a given population. For this purpose, we consider the maximum a postéori (MAP)
estimator: ", = argmax og ( jy1;:::;Yn) Where gg denotes the posterior distribution of
the parameters givezn then observationsys;:::; ¥n.

The following theorem proves here that given an sample of observations, the maximum
a posteriori estimator exists at nite distance in the parameter space

Theorem 2.1 (Existence of the MAP estimation). For any sampleys; :::; y¥n, there exists
"y 2 such that

8 ("niya; i yn) = sup 8 (Y1 Yn):

The proof is postponed to appendix.

Remark 2. Note that one could rely on the prior distribution to prove this propert y for
the means ( k)1skek - However, as we are dealing with a Bayesian model, we introduce
priors on all parameter to keep the coherence of the model. Nonethelesg would be
possible to remove the prior on these parameters thanks to the proohithe appendix.
Concerning the priors, for the covariance matrix, the prior is informative as we choose
the usual kernel matrix used for registration issues. The prior on themeans are non-
informative as the gray level of the observations change drastically whethe acquisition
protocols change.
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2.3.2 Consistency of the estimator on our model

We are interested now in the consistency property of the MAP estimabr without making
strong assumptions on the distribution of the observationsy;; :::; yn: This means that we
do not assume that the observations are generated by the model descrid@bove. We de-
note the distribution governing the observations by and seek to prove the convergence
of the MAP estimator to the set of model distributions closestto

=f 2 JE (loga(y] ))=SL;I0 E (logalyj ))g

However, this consistency only holds for bounded variance8 ¢ 2 JLLKK 2> 2. .
This assumption on the admissible set is not restrictive as we haverpven that the MAP

estimator exists out of the boundaries. Let

B _ 2 .

(2.11)
B _—

=f 2 BjE (logq(yj ))= sup E (loga(yj ))g

2
Theorem 2.2 (Consistency). Assume that B is non empty. Then for any compact set
K B

nl”rpl ((An; B)> AAHZK):O;

where is the metric inherited from the Euclidean metric on R™ wheren; is the dimen-
sion of

Proof. The theorem is an application of Wald's consistency Theorem in13€. We only
need to verify that y ! logq(yj ) is a:s: upper semi-continuous and that for any
2 ; there exists an open set) 3 such that E (suplog” (q(yj 9)) < 1 (where log"

QU

is the positive part of log). In our setting, forany =( «; «; ﬁ; g) 2 B, we denote
U=flo1[;R;] 2. 5+1 [ gkg; (R)g, so that

X
suplog(a(yj 9) 6 suplog(  q(yic; 9)
02U QU

=1
0~ o Lojj
6 suplog% @g—_A
02U k=1 2 l%
0 o Lojj
6 log K @qliiA K<1
2 2

min

+

=t =(( Wekek;( Kiskek:( Diskek: g)i k2101 2> 2.5 k2 R; 42 3

(R)g
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where 2. is the lower bound of 2. O

Remark 3. Note that we only proved a limited consistency result as we have no guamnty
that B is not empty. However, looking at our model, generalized from the Baysian
Mixed E ect Templates introduced in [ 10], we expect the same result. Future work
will generalize the proof of consistency in 10] to the present model. We focus here on
the convergence property of the estimation algorithm that we present inthe following
section.

2.4 Estimation Algorithm using Stochastic Approximation
Expectation-Maximization

We now present the estimation algorithm that we use to reach the MAP esimate of
the parameters. We assume now that we observe a xed numbem of gray level images
taken from a homogeneous population.

2.4.1 Model factorization

Despite the complex dependencies of the random variables in our statiical model, it
belongs to the curved exponential family. That is to say, the complee likelihood q writes
as:

qly;c; 5 )=exp[ ()+ hS(c; ); ()il=exp(L(:S)) (2.12)

where ; are two Borel functions depending on the parametersS(c; ) is a vector
of su cient statistics and the scalar product is the usual Euclidean one. For sake of
simplicity, we have omitted the dependency with respect to tte observations that are
handled as a xed input to the estimation process. The functionL is called the complete
log-likelihood.

Thanks to Equation (2.12), we can show that the following matrix-valued functions are
the su cient statistics of the model: 8k 2 J1;KK 81 2 J1; kpK

XX X X .
Sox(c; )= Ty Sik(c; )= i WY
=1j=1 i=1 j=1
x X! i\2 A T
Sox(c; )= Tao )% Ss(c; )= i
i=1j=1 i=1
XX
84;k§|(C; ): 1C%=k1kxj X Kg i(Xj)k1<%:
i=1 j=1

(2.13)
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We denoteS(c; ) = ( Sox(C; );Suk(C; );Szak(C; ):S3(C; ) Sami(C ))sk2a1k k 812LkpK
the vector of su cient statistics and de ne the su cient statisti ¢ space as

S= f(So;k; S]_;k; Sz;k; S3; S4;k;|) j 8k 2 J;KK 8l 2 J1; ka
Sok 2 R";S1k 2 R*;Spx 2 R";S3+ ag g 2 Symy i Saxi 2 R™)g: (2.14)

The set S can be viewed as an open set &®° with s= K + K + K + w + Kkp.

Remark 4. Note that the su cient statistics Spk, Sik, Sak and Szx cannot vanish.
Indeed, if for one classko, Sp:x, = O, this particular class would be empty which means
that there are no voxel belonging to this tissue class. We assume thate actually know
the number of expected tissues in the gray level images so that thisever happens.

The second property of our model is that there exists” such as ryax_( :S) = Y(9):

Indeed , 2, Kand g are explicitly expressed with the above su cient statistics as
follows: 8k 2 J1; KK 8l 2 J1; kpK

A _ Syk(cr ). A2(Qy — 1 Sox(c; ) Suk(c; )2 2 .
«(3) = §0k(c) o K(S)= n+ ap : Sok(C; ) Sox(c; )2 T 0
A ;)T Sax:(C;
o(S) = ﬁ:ﬁ+29; r(s) = o omk G
(oot Ssxer(C; )
i (2.15)

These equations are well de ned thanks to Remarkd. This also justi es the fact that
the coe cients L belongs to JQ1[forall 16 k6 K and forall 16 |16 kp.

2.4.2 Estimation Algorithm

As we are in an incomplete-data setting, a natural way to maximize a likéihood is to
use the EM algorithm or an algorithm derived from EM. We choose the Stochatic Ap-
proximation EM (SAEM) coupled with a Markov Chain Monte Carlo (MCMC) m ethod
thanks to its good theoretical [15] and numerical [14] performances in such settings.

We detail here the m + 1™ iteration of the SAEM-MCMC algorithm which consists of
three steps:

Step 1. Simulation step. The missing data, i.e. the deformation parameters
()=( 1; ; n)and the vector of classes ) = (c1; ;cn), are drawn using the
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transition probability of a ergodic Markov chain having the posterior distribution
Gpost( jy; ) as its stationary distribution:

(( Im+1;(@m+1) s o ((C Im:(Sm); )

where we choose to be a Metropolis-Hastings within Gibbs sampler. This particular
MCMC method is well adapted for high dimensional simulation and also in ou particular
case where the distribution of the class depends on the deformation. e Gibbs sampler
works coordinate by coordinate. Since we cannot sample from the posteni distribution
of one coordinate of the vector (( ); (c)) given the others, we use a Metropolis-Hastings
step inside these loops. Therefore, we simulate the coordinates ety one. We choose as
the proposal of the Metropolis-Hastings method to use the probability dstribution of this
coordinate given the others coming from the model distributions2.5. This way, one can
estimate deformations that improve the segmentation and segmentationshat improve
the registration. With this choice, it is easy to calculate the acceptance rates (see in
Algorithm 1). Note that it would be possible to choose others priors, however payig
attention to the computational cost of the acceptance rates. Since we hava couple of
missing data, we rst simulate each coordinate of ( ) knowing others coordinates of ( )
and (c), then simulate each coordinate of €) knowing others coordinates of €) and the
new (). The detailed steps of the whole algorithm is given in Algorithm 1 in particular,
the hybrid Gibbs sampler steps are precise.

Step 2. Stochastic approximation step. A stochastic approximation is done on
the su cient statistics using the simulated value of the missing data:

Sm+1 = Sm*+ m[S((O)m+1;( Im+1) Sm]

where =( m)m IS a decreasing sequence of positive step-sizes.

Step 3: Maximization step. The parameters are updated using the previous
formula (2.15 where the su cient statistics are replaced by their stochastic approxima-
tions.

. N
m+1 =argmin " (Sm+1):
2

The initial values ( )o, (€)o, So and ¢ are arbitrarily chosen (see Algorithm 1).
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Algorithm 1 SAEM-MCMC Algorithm (with no reprojection)

Require: ¢=(Co, =( o, o0, Sos
Stochastic Approximation Expectation-Maximization
for m =0 to iters do
Simulation step using Gibbs sampler:
for i=1to ndo
for p=1to 3kq do

Metropolis-Hastings procedure
Rpg | '

bs N %2

Rpp " Rpp

h i
. A _ a(d i1 p)
em) = Tyt L
P-c; m); update P: P b

Computerp( P;b;
With probability — rp( P;b;
end for
Update iim+1 i
forj=1toj jdo

R
Cs kPk(Xj Z i (Xj )
h

k=1 i
Computer;(d;C;c ; n'1)= 7‘1.(32&?&!; J'm;)"‘)’\ 1
With probability  rj(c;C;c'; m); update d :d C

end for
Update Cim+1 G
end for

Stochastic approximation step:
Sm+1 = Sm*+ m[S(Om+1:( )m+1) Sm]
Maximization step:
m+1 =argmin 5, (Sm+1):
end for

2.4.3 Convergence analysis

We prove the almost sure convergence of the previous estimation algorith towards
the MAP estimator given a n-sample of observations. This proof requires to add an
intermediate step in the estimation algorithm. This consists in projecting the su cient
statistics on increasing compact subsets when the stochastic apptnation reaches a
too large value. We refer to [L7] for more details about this usual additional step. Note
that in practice, no projection has been required in our experimets.

Let us rst de ne some quantities that are required in the following Theorem.

Denition 1. Let S be the open subset 8ﬂ§; de ned by Equation (2.14). We de-
ne the mean eld h:S! RS ash(s) = rakg Hs(C; ) Opost(C; jy:"(s))dcd where
Hs(c; ) = S(c; ) s. Letalsow : S ! [0:1[; w(s) = [("(s)) be the corre-
spolgdli?ng Lyapunov function where | is the incomplete data log-likelihood: | () =
log  gag d(y;C; ; )dcd . Let L, fs2S;hrw(s);h(s)i =0g be the set of critical
points of the observed likelihood.
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Theorem 2.3 (Convergence of our estimation algorithm for model2.5). Assume that
there exists anMg > O such thatL f s 2 S;w(s) < Mg. Assume also that the
sequences = ( m)mso and " = ("m)ms>0 are non-increasing, positive and satisfy:
mp:o m=1, lm "y =0 and m:1f 2+ "+ (0 " HPg< 1, wherea 2]0;1[
and p > 1. Then there exists a compact seK Z whereZ = JI;KK ! R3 and
there exists another compact subseKg W v, , fs 2 S; w(s) 6 Mog such that
for all ((€)o;( )o) 2 K and sp 2 Ko, we havemli!gn d(sm;L) =0 Pge( yois0-@-S, Where
P(9)o:( )o:so IS the probability measure associated with the chaif(¢)m; ( )m; Sm)m>o start-

ing at ((¢)o; ( )o;So)-

We prove that the stochastic approximation sequence generated by oumodel and al-
gorithm satis es Assumptions (Al'), (A2) and (A3') de ned in [15]. The proof is
postponed to appendix.

2.5 Experiments and Results

We rst test our algorithm on simulated data to check that it reaches our objectives,
that is to say (1) recover the template image as probability maps, (2) esinate a relevant
covariance matrix of deformations, (3) achieve a good estimate of the mean drvariance
of each class and (4) segment the observations. Then we test on real data andrapare
with the segmentations provided by SPM8 [/] , FAST [15§ in FSL [1] and DARTEL [ 19]
algorithms. The segmentation method in SPM8 can be used for bias correicin, spatially
normalizing or segmenting the data, it uses the same model as i2()]. FAST segments a
3D image of the brain into di erent tissue types. The underlying method is based on a
hidden Markov Random Field model and an associated EM algorithm. DARTEL is an
algorithm for di eomorphic image registration that registers images by compuing a ow
eld, which can be exponentiated to generate both forward and backward déormations.

As the SAEM algorithm is an iterative procedure, we run until 250 iterations which
reaches numerical convergence. We control the convergence visually dime template
and numerically looking at the convergence curve of the variances. Forhe initialization
of our algorithm, we choose ( )p = 0 and the initial random classi cation ( ¢)o.

2.5.1 Simulated data

In the simulated data experiment, a 24 24 3 image of 4 classes is used as the
reference image where the values of each class drg; 2; 3;4g. We generate 20 images



Chapter 2. Atlas Estimation 44

Figure 2.2: Experiments on simulated data. The rst two columns correspond to one

slice of four data images and their nal segmentations. The last column corespond to

the rst slice of the probabilistic template, each row corresponds b a class. The white
color corresponds to high probability and the black color to low one.

with translations and zooms and add an independent Gaussian noise with re mean
and standard deviation 0.2 to the deformed image.

We take 64 xed control points for the deformation model given in Equation (2.3), i.e.
one control pointin each 3 3 3 cube and all the points in the image as the control
points for the template model given in Equation (2.4) to obtain a complete probabilistic
atlas. We choose (B 12)? as the parameter ofK4, where Q3 is the value that gives
the best visual result as in L0] and 12 is a half of the largest dimension size. For the
0=1d,ap=0:1and 3 =1. The values of ag and

g
ap are especially small in practice despite the constraints of theoretial de nition of the

hyper-parameters, we useg = 0:5,

priors. Note that in Equation ( 2.15, they weight the priors against the data-derived
terms weighted by the number of observations. Small values down-wght the priors and
increase the importance of data in the estimates. Although the prior lavg on 8 and

8 are improper, the posterior laws are well de ned. The main purpose of lhe regular-
ization is to make ¢ symmetric positive de nite. Although it would be possible to use
an informative prior on 8 as the one used in10], the results are similar as long as the
deformations are well captured.

The results are shown in Fig.2.2. In the rst column, each row corresponds to one slice
of three exemplars of the dataset. The nal estimated segmentation for edtindividual is
shown in the second column. The most important aspect is that we get theprobabilistic
template in the third column, each row corresponds to one class. Eachoxel belongs to
one class with high probability (white) and low probability (black).
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Class 1| Class 2| Class 3| Class 4
Training data | 99.8% | 98.6% | 99.2% | 99.4%

Table 2.1: Experiments on synthetic data. The Jaccard Index for the training data
average across 20 subjects.

Our probabilistic maps are sharp. Most voxels in each class have a probdity larger
than 0.9. Only few voxels on the boundary of two classes have a non zero givabil-
ity to belong to two classes. This particularly sharp template demorstrates that the
deformations and segmentations have both been well captured through theimulation
process. The other parameters are also well estimated upholding thiémeoretical conver-
gence of our algorithm. The fourth exemplar has a large deformation compared tthe
others. Thanks to the coupled classi cation-registration, we can seetliat our algorithm
manages to capture this large deformation and yields the corresponding @$si cation.
We calculate the Jaccard index for each class (Tabl®.1) which demonstrates that the
segmentation done during the atlas estimation is accurate.

In our model, we have a high dimensional parameter 4 that is associated with the
atlas estimation and imposes to increase the number of observations to gein accurate
estimate. To see whether its estimation improves the results, & also run our algorithm
without estimating 4. To compare di erent situations, we xed di erent values of g,

g =0:5ld; Id; 2ld and 4id. We show the estimated probabilistic templates for di er-
ent values of 4 in Fig. 2.3. Each column corresponds to 4 = 0:51d; Id; 2ld and 4id,
each row corresponds to one class. The voxel belongs to one class witlgiprobability
(white) and low probability (black). We can see that the shape of the tanplate do not
t the data as well for ¢ = Id and 4ld. It seems that we get a better template for

g = 0:51d. Compared to our estimated probabilistic template in Fig. 2.2, our maps are
sharper than that obtained with any xed 4 and the shape of the template ts better
the data.

The segmentation results with these xed g are shown in Fig. 2.4 In the rst
column, each row corresponds to one slice of one exemplar of the dataset.h@ sec-
ond to the fth columns show the nal estimated segmentation for each individual for

g = 0:5ld; Id; 2Id and 4id. The main problems appear on the fourth exemplar that
has a large deformation. None of these values ofg manages to segment this observa-
tion well. Despite it simplicity, this example shows the importance of constraining the
deformations to relevant ones with respect to the population. This result con rms the
classi cation performances presented in 15 in similar context.
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Figure 2.3: The estimated probabilistic templates for the model with xed . Each

column corresponds to 4 = 0:5ld; Id; 2ld and 4id, each row corresponds to one

class. The voxel belongs to one class with high probability (white) andow probability
(black).

Figure 2.4: The segementation results for the model with xed 4. In the rst

column, each row corresponds to one slice of one exemplar of the datasethd second

to the fth columns show the nal estimated segmentation for each individual for
0:51d; I1d; 2Id and 4id.

g:

As a quantitative evaluation, we calculate the Jaccard index for each clas$or di erent
values of ¢ (Table 2.2). We can see that we get a better value of Jaccard index for class
1 and class 2 when the value of 4 increase. However, for class 3 and class 4, the value of
Jaccard index increases rst and then decreases when the value of, becomes too large.
By considering both the template and the Jaccard index, we get a bettetemplate for

g = 0:51d, however we get a poor Jaccard index. From the rst row of Table2.1 and
Table 2.2, we can see that our model always gets a better Jaccard index than the niel
with xed values of .

In summary, our model always gets a better result than the model wibh xed values of
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g | Class 1| Class 2| Class 3| Class 4
0.5ld | 99.4% | 96.3% | 98.0% | 96.6%
Id 99.6% | 97.2% | 98.3% | 97.2%
2ld | 99.6% | 97.7% | 98.9% | 98.8%
4ld | 99.7% | 98.1% | 98.8% | 97.2%

Table 2.2: Experiments on synthetic data. The Jaccard Index for the training data
using the model with xed . Compared with the rst row of Table 2.1, our model
with estimated 4 gets the best result.

g- However, it would be dicult to choose the optimal value of 4 if we want to x
it. Furthermore, we do not know the dependence between the motiorof control points,
which may be very complex. Therefore, this justi es to estimate the high dimensional
parameter 4 in our model. Another argument is that the atlas estimation has to be
performed only once in each population. Therefore, it could be interdsg to spend some
time to get an accurate estimation so that the following tasks based on thge parameters
reach a better performance.

2.5.2 Real data

The proposed method was also tested on real MRI data, derived from manual amota-
tions that are publicly available at the Internet Brain Segmentation Repository (IBSR)

[3]. Eightimages are available. Each image has a size of 160160 128 with resolution
0.9735 0.9735 1.5mm3. The images were considered to have 3 tissue classes: gray
matter (GM), white matter (WM) and CSF+background. Each tissue class follows a
Gaussian distribution. The variances are class dependent rather thaimnomogeneous.

We take 800 xed control points for the deformation model given in Equation (2.3),
corresponding to one control points in each 16 16 16 cube and 80 80 64 points
in the image as the control points for the template model given in Equation(2.4), cor-
responding to one control point in each 2 2 2 cube. We choose (B3 80) as the
parameter of K 4 as for synthetic images. For the hyper parameters, we chooss® = 0:5,

8 =1d, ap=0:1 and 4 =1 for the same reasons as above. For comparison purpose,
we always present the same image slice z=10 for all methods in theseperiments.

In the rst experiment, we run our algorithm with 8 patient images as tr aining data.
These images are provided with their segmentation, allowing for the alidation of our
online segmentation of the training images.

At rst, we compare our estimated template with DARTEL template that u ses SPM's
segmentation as input and the average template without deformation. The rst three
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Figure 2.5: The template obtained by DARTEL ( rst column), our method with 8
subjects (second column), the average template without deformationthird column) and
20 subjects (fourth column). GM for the rst row and WM for the second. DARTEL
template shows a wide line of CSF in zone 1 and a large pattern of the V1 inane
2 which are thin in the data images. Our probabilistic maps capture thepresence of
WM in zone 3, however DARTEL only detects a small region. The shape of thé/1 in
zone 2 for our template ts better the data than the one for the average tenplate. The
presence of WM in zone 3 for the average template is fuzzy. Our estimatl template
with 8 subjects is good. With 20 subjects, we get more details on the dundary of two

types.

columns in Fig. 2.5show one slice of DARTEL template ( rst column), our probabilistic
template with 8 subjects (second column) and the average template wtout deformation
(third column), the rst and second rows correspond to GM and WM respectively.
Because of the smoothing step that creates regular contours, the DARTELtemplate is
smoother than our SAEM template. Moreover, the anatomical prior template used in
DARTEL makes the output very contrasted (almost binary). For DARTEL tem plate,
zone 1 shows wide CSF digitations and zone 2 shows large primary visual ¢ex (V1)
pattern, which are much thinner in the data. Also notice that DARTEL re quires a
pre-segmentation of the data and does not provide the geometric distbution of the
population. Our model only takes into account the training data and is thus free from
these biases. The weakly contrasted template may also be an advantage asexplains
the uncertainty on voxels coming from both the PVE and the registration level of details.
Another bias is shown in zone 3 where our probabilistic maps capture theresence of the
cerebral white matter. Thanks to the deformation estimated along the atas estimation,
the presence of the cerebral white matter in zone 3 is sharper in ouremplate than the
one in the average template and the shape of the V1 area in zone 2 better tthe data
(rst column in Fig. 2.6). The demonstrates that incorporating the deformation metric
improves the atlas estimation.
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Figure 2.6: Experiments on real data. Each column corresponds to the one slice of 3

data images, the manual segmentation and the segmentation obtained by our mkbd,

SPM8 and FAST. Our methods shows each fold of the V1 (zone 1). Our methodoes

not manage to segment the subcortical structures (zone 5a), others segmesuccessfully
with the strong prior (however not entirely, see zone 5b).

Figure 2.7: Five simulated images using the estimated template with 8 subjed. The
deformations of the ventricles are realistic as well as the cortex foldigs which look like
some training ones. Moreover, the cortex thickness changes.

In order to evaluate the estimated geometric variability, we use our geerative model to
resample some images that should be representative of the population (§i 2.7). Our
model manages to capture the global and local deformations. The second braimas a
more round shape, the forth one a more elliptical shape and the last one isulger than
the others. This global shape changes are therefore well captured. Thestbrmations of
the ventricles are realistic as well as the cortex foldings which lookike some training
ones. Moreover, the cortex thickness changes (highlighted in red).This shows that
even with a small sample, we manage to capture the population geometric vaability

accurately.

The segmentation results are shown in Fig.2.6. Each row of the rst column corresponds
to the same slice (128 160 voxels) of three training images. The manual segmentation
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for each individual is shown in the second column. Our algorithm giveshe nal classi -
cation for each exemplar in the third column. We also get the segmentatiorirom SPM8
and FAST algorithm in the last two columns. SPM8 and FAST outputs are probabilis-
tic, hence we de ne the deterministic tissue class of each voxeals the tissue that has
the maximum probability in this voxel. However, the SPM8 tissue probability maps are
sharp. Therefore, there are almost no di erence between the probabty maps and the
binary result (deterministic) that we used in our comparisons. These methods assume
that there exists three classes, the class of CSF is considered as &®ackground in
our case. Our segmentation looks accurate as it shows the calcarine suictolding in
zone 4. Moreover, thanks to the class dependent variance, which is temated along
the algorithm iterations, there is no misclassi cation of voxels that creates holes with
both SPM8 and FAST. This can be seen both in zone 4 on both sides of the corte
folds. Furthermore, the segmented cortical thickness by both SPM&nd FAST is much
smaller than that given by the manual segmentation. This may come from twodi erent
aspects of these algorithms. First, they rely on a template that is not stimated with
the observations and therefore may create a bias on the cortical thickres. Moreover,
the registration is not done simultaneously with the segmentation. This may also create
this bias as the deformation is crucial as already noticed for the synthet examples. The
FAST tissue probability maps are fuzzy, either registration or segmenéation is not well
done, therefore the resulting uncertainty is very large.

Our method fails to segment the subcortical structures. The voxés belonging to these
structures have values between those of the GM and WM means in the &ining set.
Therefore, they are either classied by GM or by WM. For example, the putamen's
gray level is closer to WM than GM mean in zone 5a, therefore it is misclas ed by

our method. On the other hand, in zone 5b, as the gray level of the thalamugproper
reaches a value closer to GM, our algorithm performs better. We can notie that both

SPM8 and FAST capture these structures (however not entirely, se zone 5b). This is
made possible thanks to their prior templates used for segmentation wich contain these
structures and thus guide the segmentation around these positions. lour model, there
is no informative anatomical prior set on the template nor on the segmentatbns. Hence,
the algorithm fails to fully classify these parts as GM.

To quantify the visual performance, we calculate the Jaccard index foreach class for dif-
ferent methods (Table 2.3). We perform much better for the gray matter, as we succeed
in segmenting the cortex with the right thickness whereas SPM8 andFAST shrink it.
However the Jaccard index for the white matter is a little worse due b the misclassi ed
subcortical structures. To compensate for the misclassi ed subcdical structures, we try
to use DARTEL template as the informative prior on the probability maps ( «k)1s6k6k -
However the gray level plays a greater role than the prior in the proces, we lose the
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FAST | SPM | SAEM
GM | 58.6% | 65.2% | 79.9%
WM | 76.6% | 76.0% | 68.9%

Table 2.3: Experiments on real data. The Jaccard Index for di erent methods aveage
across 8 subjects. Our method gives a much higher value of Jaccard inddor GM.
However a little worse for WM, it is because our method does not manage tsegment
the subcortical structures as GM which is even di cult to segment manually. FAST and
SPM8 use an anatomical prior, therefore they segment successfully ése structures.

prior gradually and still fail to classify these structures.

As a last experiment, we create the probabilistic atlas with 20 images fsm Open Access
Series of Imaging Studies (OASIS)5]. There are 416 subjects aged from 18 to 96 with
resoluion 1 1 1 mm?3 in the OASIS dataset. The 20 images aged from 28 to
64 are chosen randomly. For the pre-processing, we use BETJ] to remove the non-
brain tissue from the images of the OASIS database. The fourth column in 3. 2.5
shows one slice of our probabilistic maps with 20 subjects. The tempte obtained with
20 subjects captures more details on the boundary of two types than the am with 8
subjects. This appears in particular on both right and left cerebral cotex areas, where
the 8 subjects template classi es voxels only belonging to GM whezas the 20 subjects
template captures the presence of WM voxels. Although our model has gh dimensional
parameters, we obtain a reasonable estimate with 20 images. The computatictime is
about 10 days for 8 images and almost a month for 20 images. Since our algorithm can
be parallelized for the simulation step, we are working on a parallel C++version of our
code to make it possible to increase the training set and decreasedttomputation time.
With the parallel version, it should cost about 1 day for 8 images and 3 daydor 20
images.

2.6 Conclusion and discussion

In this study, we proposed a statistical model and used a stochastialgorithm to perform

a probabilistic atlas estimation. This model opens the way to perforning registration and

segmentation simultaneously along the probabilistic atlas estimation. V¢ also provide
a proof of the convergence of the estimation procedure toward a crital point of the

observed likelihood. Our algorithm has several advantages. First, therobabilistic atlas

contains both the templates and the geometric variability of the population. Second,
we do not need any pre-registration to perform the segmentation whichd automatically
obtained as an output. The experiments show that the proposed approach copares
well with state-of-the art tools.
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Our experiments also show that our model does not manage to segment thsubcortical
structures. This is easily explained by the fact that the image gray evel provides am-
biguous information in these regions, and that the segmentation is an ill-psed problem
in the absence of prior information. One possible solution is thus to us the anatomi-
cal prior as SPM8 and FAST. Another solution is to use multimodal registration and
segmentation. Multimodal images make it possible to take advantage of the derent in-
formation given by di erent imaging modalities. In a recent generalisation of this model
[15Q (see Chapter4), we manage to segment these structures using T1- and functional
MRI. Another improvement would be to consider di eomorphic deformations as in [L34]
or [140. This control on the deformations would help to enforce anatomical constaints.
However, one should keep a parametric description in order to be ableotsample these
deformations easily.

2.7 Proof of Theorem 2.1

. . ® . R .
From Equation (2.7), we haveq(yj ) = alyic=k; ¢) alg ; g)a( j p)d :
1

k=
Since the right hand side term of Equation 2.9) is bounded by 1 (as it is a probability
distribution),
» Z
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where n is the number of images and j is the number of voxels on the grid .
We denote
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where S; = (v} ¢)% We want to bound f on R*, let f %be its derivative:
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For ~Z = n?g,-, fq~2)=0and f%~2) < 0, so that for all 2> 0,
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whereRg = 1 and C is a constant which does not depend on the parameters. If we
denote 8 the smallest eigenvalue of 8 and kRgk the operator norm of Rg (which is also
its largest eigenvalue), we get

Rq; 9i > gkRgkand log(Rgj) 6 (3kg 1)logkRgk logk gk

so that

lim R, O + BlogiRgj = 1
KRgk+k kil 2 e gt T 00

Similarly, we can show that
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8k2JLKK lim -+ —log (=1
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Moreover, for all k 2 J1; K K there exists at least one voxejk in one imageiy such that

yfkk 6 , otherwise all , would be equal and all the images would be constant. Thus
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which implies that

o

k=1 y,kﬁ )
So that
0 o 1 nj i
pi
X i=1i=1 (yf k)2 ( )2
8k 2 JLKK lim log == S 1
j - nj j 2§

Now considering the Alexandrov one-point compacti cation [flg of , we have
lim log(ce ( jyz;5yn)) ! 1

Since ! log(gs( jy1;::yn)) is smooth on , we get the result.

2.8 Proof of Theorem 2.3

In this Section, we prove Theorem2.3. To this purpose, we will follow the path of proof
in [15], i.e. prove that the stochastic approximation sequence satis esassumptions
(AL")(ii), (iii), (iv), (A2) and (A3'). The fact that the critical points remain in a level

set of the Lyapunov function remains an assumption because of the complix of our
model. We detail only the crucial steps and arguments of the proof whic di er from

the previously mentioned one and refer to 15] when it is identical.

The su cient statistic vector S, the setS as well as the explicit expression of\(s) have
been given in Subsection 3.2. As noted’ is a smooth function of S.

2.8.1 Proof of assumption (Al’).

We recall that the functions H, h and w are de ned in Subsection2.4.3 Thanks to
these particular forms, we satisfy @1'(iii) ) and (A1'(iv) ) as proved in 47].

Moreover, since the interpolation kernelK , is bounded, there existA> 0,B > 0,C > 0,
D > 0 such that for any (c; ) 2 Z, we have

0<Sok(c; )6 A;kSik(c; )k6 B;06 Syk(c; )6 C;06 Sz(c; )and 06 Sak(c; )6 D:
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We de ne the set S; by
Sa, TS2Sj06 Spk 6 A; kS1kk6 B;06 Sy 6 C;06 Szgand 06 Sy 6 Dag:

Since the constraints are obviously convex and closed, we get th&, is a closed convex
subset of R® such that
Sa S R®

and satisfying

s+ Hg(c; )2Ssforany 2 [0;1]anys2S;any(c; )2Z:

We now focus on the rst two points. As | and " are continuous functions, we only need
to prove that Wy \'S , is a bounded set for a constantM 2 R* with:

Wpm =s2S;w(s) 6 M;

where w(s) is de ned in De nition 1.

On S,, So; $1; S and s, are bounded; writing "(s) = ( «(S))16kek ;i ( k() 16k6K i ( () 16k6K ; g(S)),
we deduce from Equation Q.15 that ( «(S))16kek ; ( k(S))16k6 K ; ( E(S))lekeK are bounded
on S,;. Considering the su cient statistic sz, thus
Z Z
w(s) > log ay;c; ;7(s)ded > log(ce ("(s))+ C> log(ae; (( )+ C;

where C is a constant independent ofs 2 S,. Since

l0g(s; (9= 2(h 4% Sir +logj o)) > Zlogi g

and

, . o _ _ o o |
ksk! Erln;malog(J a(S))) = ksk! I|+rr11 1$2S4 log(i(ss+ ag g)=(n | j+ag)j)=+1;

we deduce that

lim w(s)=+1:
ksk! +1 ;s2Sg,

Sincew is continuous and S, is closed, this proves(A1'(ii))
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2.8.2 Proof of assumption (A2)

We prove the same condition DRI1 ) de ned in [15] which will imply ( A2) under the
condition that H and V are related. We, in fact, have the following property : 9 C > 0
such that :

supjHs(c; )j6 C V(c; );

s2K

where we setV : JI;KK I R3g 1 [1;+1 [ as the following function

V(c, )=1+ k k% (2.16)

We now prove the following lemma which gives the existence of themall set Crequired
by condition (DRI1) :

Lemma 2.4. Any compact set ofZ = J;KK I R3s s a small set for ( Ng))s2K

Proof. Let A be a Borel set ofZ and x 2 Ca compact subset ofZ, then we have

Z t !
neer1 (ZY) g(xt: ™
. A et\e) gxt (s) A
A(S);t (X 1 A) > At l q(zt’ A(S)) /\(S);t(xt)' q(Zt ! (S)) dZt
4 A A :
(' (s)) A ax';(s)) .
g Al A(s);t(Zt) A(s);t(Xt) | A(S);t(zt)dzt ’
z A A :
> a(z"; " (s) A 9 (s) “(s);t(Zt)lc(Z)dZt:

A (@) g (XD

If we can prove that for any compact setK 2 S, there exists a constantCg.c such that

Ay (ZY)
Az e © .
then:
z 1
Ner(GA) > ZAta;c A(S);t(zt)lc(z)dzt (2.18)
> AtCi-c k1(z)1(z)dz'; (2.19)

where8z 2 G k.(2!) = m2|r|2 A(S)_t(zt) is a positive measure thanks to the smoothness
S ;

of the probability measure q(zljz t;y;"\(s)) in its parameter s for all z 2 C

Let us now prove (2.17).
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az'iz 4y;"(s)
a(yiz; "(s) az; (s))
alyiz 4 \(s))
o)t (2) 6 1
a(zt; (s)) RQ

j=1

"(s)it (2)

exp TAéles)(yj 6)? Azt 7(s) 1d(z)dz!

Since there existsa > 0 such that 8j; (y;  ¢)?6 aandsince 2> 2 ,then we have

ex i( . )2 > ex L
p 2 g] y] G p 2 rznin
So that
"(s);t(z) 5 1

A R "

q(zt, (S)) exp 5 r2anin 1 q(zt, (S))lc(z)dzt
i Z

a. N t
6 exp 55— car q(z';"(s)1(z)dzt = 1:
2 min

i
It is bounded by Ck.c = exp Taf on K for any z 2 C The complete transition

kernel is a composition of the previous kernel fort from 1 to 3kg + j j. Since the
coordinate of z are independent we get:

0 o 1
Z 1 keti ] Bkyt] ] t
"(S)(X;A) > C K;t(z )A 1C(Z)dz
A PKC t=1

This yields the existence of the small set and the third condition of(DRI1 ) with

o 1

z 1 Heri | Sl ]

(A) = e @ k(Z)A 1(z)dz
A FKC t=1

and ends the proof. O

For proving the rst conditions of ( DRI1 ), we need to ensure that our acceptance rates

are always strictly positive. We notice that rp( P;b;  P;c; )= q(gj(cjb! )P) > oG b op)>

0, because fo8 (¢; )2 Z; q(¢ ) 2]0;1[ which is justi ed in Remark 4. Therefore, for
any compact setK S ,9ax > 0: 8rp( P;by  P;c; ) > ak. The other proof of the
rst and second conditions of (DRI1 ) is similar with the proof in [ 15] with the function
V de ned in Equation (2.16).
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2.8.3 Proof of assumption (A3')

For proving the Helder condition (A3'(ii)) . We will use the lemma 6.4 and lemma 6.5 in
[15] which state Lipschitz conditions on the transition kernel and its iterates. If we can
prove that the derivative of the acceptance rates in our model are Lipdaitz functions,
we get the result of lemma 6.4.
Proof. Concerning the derivative ofr,( P;b;  P;c; ), since
X X
log(rp( Pl Pici )= log k(g = Kj b p) log «(c; & kj );

j=1 j=1

we havejSrp( Pl Pic; ))j 6 Ckks® sk

Concerning the derivative of rj (d ;k;c 1; ),

dgrj(cj;k;cj; ) = Z—log 2

whereC4;C, > 0 and

S1:k S?-k Sl;k(Sg;k So;k) (Sg;k S1:k)Sok

d
— ¢ = =< = 6 Ckks sk
d Sok SOk S0k SOk SOk Sk
Similarly,
0 !
0 2
d n Sak S2kx Stk , Stk
di E = — T’ 27"" 5 6 CK kS Sq(:
N+ & Sok Sox Sok  Sok

Thus, we have
(;jrj(cj;k;c I;) 6 Ckks® sk

O]

The next proof for (A3'(ii) ) and the proofs for (A3)(i)(iii)  are the same as the proofs
in [15].



Chapter 3

Bayesian Estimation of
Probabillistic Atlas for Tissue
Segmentation

Automatic anatomical brain image segmentation is still a challenge. In partiailar algo-
rithms have to address the partial volume e ect (PVE) as well as the vaiability of the
gray level of internal brain structures which may appear closer to grg matter (GM) than
white matter (WM). Atlas based segmentation is one solution as it brings gior informa-
tion. For such tasks, probabilistic atlases are very useful as they takénto account PVE.
In this chapter, we provide a detailed analysis of a generative statisical model based
on dense deformable templates that represents several tissue typ@®bserved in medical
images. The inputs are gray level data whereas our atlas is composed of both astima-
tion of the deformation metric and probability maps of each tissue (calledclass). This
atlas is used to guide the tissue segmentation of new images. Experimtsnare shown
on brain T1 MRI datasets. This method only requires approximate prefegistration, as
the latter is done jointly with the segmentation. Note however that an approximate
registration is a reasonable pre-requisite given the application.

59
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3.1 Introduction

Medical image analysis often requires the accurate delineation of di eent tissue types,
based on the contrasts observed in di erent image modalities and a spadi model of the
tissues. The use of automated segmentation is important both for the sake daf ciency
and for reproducibility. Many di erent methods have already been proposed for seg-
mentation, such as level set methods141], model-based segmentation72], atlas-based
approaches 159 among a huge literature. Here we consider atlas-based segmentation,
the success of which depends crucially on the choice of the atlas. Prabilistic atlases
are attractive because they make it possible to take into account the ugertainty on the
underlying tissue type, which is related to partial volume e ect or to perfectible regis-
tration. Joint registration-segmentation [ 106 is generally more e ective than sequential
registration and segmentation [70, 71]: an accurate segmentation is needed to nesse the
registration, and is made easier in turn by an accurate registration to a tssue template.
In this chapter, we address atlas estimation, i.e. the joint estimaton of a probabilistic
template together with the geometric variability of a population, and, once the atlas
has been learned, we use it to segment new observations, while takirigto account the
estimated anatomical variability.

Several solutions have been proposed previously to deal with one or thether part of
this problem. In [112, Riklin-Raviv et al. proposed an automated method for brain
segmentation via latent templates; however it requires a pre-regitration. In [83], the
registration is used for the templates estimation; however it requies pre-segmentation.
In [117], a probabilistic model was proposed for segmentation, however it deenot do
the registration jointly with the segmentation. In [ 20], Ashburner et al. proposed to
segment a single image providing tissue probability maps. However itleals with a single
image, and thus cannot be used to understand the geometric variability arang individ-
uals. In [15, 153, a method was proposed to create an atlas containing the template
and the geometric variability. However it does not perform segmentationjointly with
atlas estimation and the learned atlases are deterministic. In35], a method was pro-
posed to do the segmentation and registration jointly, while creating anaverage brain
atlas, however it does not learn the geometric variability. Thereforethe deformations
follow a xed distribution which is not representative of the popul ation. The posterior
segmentation is coarse as it is not conditioned to relevant deformations.

In this paper, we propose a generative approach for the estimation of a probalistic atlas
including geometric variability. During this process, registration and segmentation are
coupled with atlas estimation. We use the same observation model as 2], generalize
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it and use the algorithm in [15] for the estimation. We also learn the geometry as the
metric on the space of deformation, which reduces the possible defoations to those
that are common in the population. To estimate model parameters, we use atochastic
algorithm that has demonstrated good performance on real data in14]. The output
of the algorithm is the probabilistic atlas, the individual tissue segmentation and the
means and variances of each tissue type. We use this atlas as an anatomical qurifor
segmentation of new individuals. Two tests were performed on the dierent databases.

3.2 Material

Objective: From the T1 MR images, our objective is to provide an atlas construction
which includes both the probabilistic template and the geometric vatability. During the
process, the registration and segmentation are done jointly. Then we &sthe estimated
atlas to segment new MR images by constraining the template to subjectieformation
with the estimated metric.

Dataset:

a- Internet Brain Segmentation Repository (IBSR) [3]: 18 T1 MRI with their manual

segmentations. Eight with resolution 09735 0:9735 1:5mm?, six with resolution
1 1 1:5mm3, and four with resolution 0:837 0:837 1:5mm?3. These data are
provided by the Center for Morphometric Analysis at Massachusetts Gaeral Hospital.

b- Open Access Series of Imaging Studies (OASISH]f 416 subjects aged 18 to 96 with
resolution1 1 1mm?3,

c- MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling [4]: 15 (10
females) T1 MRI from OASIS project with their manual segmentation provided by
Neuromorphometrics Inc., aged from 19 to 34 with resolution 1 1  1mm?3.

Each image in these three datasets is the size of 256 256 128. We reduce the
background in our experiment, therefore the image size is 160 160 128.

3.3 Methods

3.3.1 Statistical Model.

We considern gray level MR images from n patients. This set, {/)1sisn, Of images are
observed on a grid of voxels embedded in a continuous domairD  R3. We denote
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Xj 2 D the location of voxelj 2 . We consider that each image is composed of voxels
belonging to one class amond with an associated probability Px. We assume that
the signal in the K tissue classes is normally distributed with class dependent mean
( K)1skek and variances ( 2)1sk6k -

As mentioned previously, the gray level images have not been pre-segmted. Therefore,
the unobserved class of each voxel is assumed to follow a distribot which is the
discretization on of a random deformation of tissue probability maps (Px)1skek - These
probability maps correspond to the probability of each voxel to belong b each class in
the template domain. They form the probabilistic template of the population. The
random deformations from these template maps to each subject are also unsérved.
We de ne them through a random eld z : R® | RS2 such that for j 2 the prior
probability of a voxel j from subjecti to be in the ki class (:: = k) is given by:

P(d = k)= Pe(x;  2(X;)) (3.1)

In order to reduce the problem to nite dimension, we de ne the deformation eld as a
nite linear combinations of a given kernel K4 centered at some xed equi-distributed
control points in the domain D : (Xg)16 g6k, With parameter 2 (R3)ks

9
8x2D;z (x)=(Kg )Xx)= X Kg(X;xg) (k) (3.2)
k=1
whereK ¢ is chosen as a radial Gaussian Kernel. Note that we can also choose the control
points non uniformly, we can X more control points in regions of interest to get a more
accurate result in areas of high variability.
As for the deformation model, the templates Py : R3 | [0; 1];8k 2 J1; K Kwhich are
the tissue probability maps are parameterized by the coe cients | 2 [0; 1], which

®

satisfy 8| 2 J1; kpK | =1. We pick a xed set of landmarks (pi)1s16 k, Which may
k=1

be di erent from the geometric ones:

P
8x 2 D; Py(x) = Kp k(x)= X Ko(X;p1) ki (3.3)
I=1
where Kp(x; pi) = 1 if p is the nearest neighbor ofx among the set of points @;); and
0 otherwise.
The previous hypothesis provides a generative statistical modelor a sample of gray level
images (Fig. 3.1). The random variables are the deformation vector , the class of each
voxel ¢ and the observed gray levels of the imageg. We assume that the deformation
vector follows a normal distribution with mean zero and non-diagonal covaiance matrix
g- The covariance matrix ¢ is not assumed to have any particular pattern of zeros.
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Figure 3.1: The generative statistical model.

This makes it possible to model local and global correlations between ctmol point
moves, in particular, very correlated displacements can be captur such as translation
of a large area of the images.

The parameters to estimate are the covariance matrix 4 of the deformation vector
(Equation (3.2), the coe cients that de ne the templates (  «)1skek (Equation (3.3)),
the class dependent means () 16kek and variances ( f)lﬁ K6 K -

Medical images are typically high-dimensional, but usually come in smalsamples.
Therefore to regularize the statistical model, we propose to work in aBayesian frame-
work. We use standard conjugate priors for the covariance matrix, the clas dependent
means and variances with xed hyper-parameters.

3.3.2 Estimation Algorithm.

We use the maximum a posterior (MAP) estimator: ", = argzmax O ( jy1;::yYn) Where

Og denotes the posterior distribution of the parameters given then observationsys; :::; yn.
As we are in an incomplete-data setting, we choose to use the Stochasthpproximation
Expectation-Maximization (SAEM) [ 15, 47] to maximize the likelihood. This algorithm
coupled with a Markov Chain Monte Carlo method has demonstrated good tleoretical
[15] and numerical [14] performances in such settings. The SAEM algorithm is an
iterative procedure that consists of three steps. First, we simlate the missing data
using a Metropolis-Hastings within Gibbs sampler. In our model, themissing data are
the deformation vector and the tissue classes. Thanks to our choice of saier, we get
an online registration and segmentation. Then, a stochastic approximatn is done on
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the su cient statistics using the simulated value of the missing data. Last, we maximize
the log-likelihood with respect to the model parameters. Seelfp]] for more details.

3.3.3 Segmentation of new individuals.

Once the atlas has been estimated, one would like to perform some posier segmen-
tation of new observations. This can easily be done using atlas-based segmation
methods as in 123 155. Our model can be used directly but this typically requires
heavy computations. This complexity is not a problem when creating anatlas since this
step has to be only performed once. However, the atlas based segmentatipnocedure
has to be numerically e cient. To that purpose, we propose to use a dierent tool
keeping all the speci ¢ aspects of the model, i.e. the parametersy, |§ k and g.

More precisely, thanks to our estimated probabilistic template Bx)16ks« given by Equa-
tion (3.3) with the estimated weights (“«)iskex , We de ne the estimated gray level
template image as

k=1
This template is de ned on the whole spaceD. Note that this formulation of the
template accounts for PVE in voxels.

Our atlas also provides the geometric variability of the population through the covariance
matrix "y. We use this matrix as a metric for the space of deformations to constrain
the registrations according to the learned distribution.

Given a target imagey, the template I" is deformed non-rigidly and registered to the
target image by minimizing the classical energy:
E'—1|<'|<2+Z L o Yx)d
()= oK Kag m(Y(X) (x))dx

The rst term on the right hand side yields the cost of the deformation using the metric
given by Ag whereas the second term quanti es the similarity between the obseed
image and the deformed template. The trade o between these two termss given by
the noise variances which have also been estimated to best t the neé in the training
dataset. Note that this noise also accounts for the fact that the images are not khwn
by this simple approximating model.

Remark 5. We notice that in the numerical experiment, the variances of the tisue gray
levels are very close to each other so that we assume in this postericegmentation that
they are all equal to 2.
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Our model assumes that the deformations are linearized deformations gan by control
point movements. We keep this assumption and therefore the energy oy depends on
the vector of control point displacement . Using also Remark5, we can approximate
the integral by

Ao, 1 X

R M O CIERCORE (3.4

X2
We use a gradient descent algorithm to minimize the criterion in Equation (3.4), which
yields

X 2
argmin = TN+ 5T Y0 fx z ()
2R%9 2 X2

Then the tissue G for each voxelj of the new observation is chosen to be the class
that maximizes the posterior probability of that voxel to belong to each class, given this
deformation eld ,

h [

— 1 . /\ H . N\
¢ =argmax log q(yjjc; )alGj ;)
¢ 2JLKK

The segmentation is therefore constrained by both the estimated temiate and the
learned geometric variability.

3.4 Experiments and Results

We tested our algorithm on the previously described data and compared wh SPM8 [7],
package FAST [L5§ in the software FSL [1] and DARTEL algorithms [ 19].

As a rst experiment, the proposed method is tested on data derivedfrom manual
annotations that are publicly available at the IBSR. The images were congiered to
have 2 tissue classes: GM and WM. We take 800 control points to drive theeformation
model given in (Equation (3.2)) and 4066 points to drive the template model given in
(Equation (3.3)).

At rst, we run a ve fold cross validation of our algorithm with 10 patienti mages. We
visualize one group of our online segmentation of these training images and cqare
it to their manual segmentation (Fig. 3.2). Each column corresponds to one slice
(160 128 voxels) of three training data, the manual segmentation, the segment&in
obtained by rst our method, SPM8 and lastly FAST. SPM8 and FAST outputs are
probabilistic, the deterministic tissue class of each voxel is deed by the tissue that has
the maximum probability in this voxel (as for our method cf. subsection 3.3.3). These
two methods assume that there exists three classes and thereforeSE is considered as
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Figure 3.2: Each column corresponds to the one slice of 3 data images, the manual

segmentation and the segmentation obtained by our method, SPM8 and FAST. Qr

method shows each fold of the GM (zone 1). Our method does not manage togment

the subcortical structures (zone 2a), others segment successfullyith the strong prior
(however not entirely, see zone 2b).

the background. The segmentation given by our algorithm looks accurate, forristance
it shows the correct folds of the cortex in zone 1. Moreover, as it takesnio account
that the gray level of the tissues have a variance, which is estimatdalong the algorithm
iterations, there are few misclassi cation of voxels contrary to SPM8and FAST that
overestimate the CSF, thus creating hole patterns in the cortex. This can be seen in the
same brain areas in all patients as well as on all sides of the cortex folds. Ahermore,
the thickness of the cortex segmented by both SPM8 and FAST is much saller than
the one given by the manual segmentation. This may come from two di ereh aspects
of these algorithms. First they rely on an atlas that may create a bias on thethickness
of the cortex whereas our segmentation are performed at the same time as thetlas
segmentation, therefore learned on the population. Moreover, they do ot compute the
registration simultaneously with the segmentation. This may also crate this bias as
the deformation is crucial as already noticed in #7]. The SPM8 tissue probability maps
are sharp, leading to non accurate segmentation in particular due to PVE. he FAST
tissue probability maps are fuzzy, as neither registration nor segmerttion is su ciently
accurate; the uncertainty associated with this poor model resultsin a fuzzy template.
As we can see in box 2a-b, our method fails to segment the subcortical stctures. The
voxels belonging to these structures have gray level values beeen the GM and WM
means in the training set. Therefore, they are either classi ed byGM or by WM. A
solution of this problem is to use an anatomical prior as in L19. Zone 2a highlights the
putamen that is misclassi ed by our method. As we can see its gray levds closer to WM
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FAST | SPM | SAEM
GM | 59.3% | 64.9% | 78.9%
WM | 76.4% | 75.5% | 69.9%

Table 3.1: The mean Jaccard Index for di erent methods in the ve fold cross valida-
tion. Our method gives a much higher value of Jaccard index for GM. Howesr a little
worse for WM, it is because our method does not manage to segment the sutrtical
structures as GM which is even di cult to segment manually. FAST and SPM8 use an
anatomical prior, therefore they segment successfully these striagres.

than GM mean. On the other hand, in zone 2b, as the gray level of the thalamuseaches
a value closer to GM, our algorithm manages to perform better. We can noticehat

both SPM8 and FAST capture these structures (however not entirely see zone 2b). This
is made possible thanks to their prior templates used for segmentationvhich contain

these structures and thus force the segmentation around these posiins. In our model,
there is no informative anatomical prior set on the template and on the segrantations.

Hence, our algorithm fails to fully classify these parts as GM, howeveit is not forced

to construct a template with speci c patterns.

As a quantitative test, we calculate the mean Jaccard index for each clasfor di erent
methods (Table 3.1). Our method gets a better jaccard index for the gray matter than
SPM8 and FAST with a signi cant improvement ( p 6 0:05 on the paired t-test comparing
5 pairs of jaccard index), which results from the fact that our method gments the cortex
with the right thickness whereas SPM8 and FAST shrink it. As expecked, we perform a
little worse for the white matter, this phenomenon is a consequencef the misclassi ed
subcortical structures.

Now we compare our estimated template with DARTEL template that uses the SPM's
segmentation as input. The rst two columns in Fig. 3.3 show one slice of DARTEL
template (rst column) and our probabilistic maps with 8 subjects (second column),
the rst and second rows correspond to GM and WM respectively. DARTEL atlas is
smoother than our SAEM template. This comes from a smoothing step in tle algorithm
that creates these regular contours. Moreover, it also relies on an anatormal prior
template so that the output looks very contrasted (almost binary). Alth ough our atlas
is less smooth, it only takes into account the training data and thus awids creating a
bias such as the large line of CSF in zone 3 that appears much thinner in #hdata and
by consequence in our estimated template. The non smooth template nyaalso be an
advantage as it explains the uncertainty on voxels coming from both the PVEand the
registration level of details. Another bias is shown in zone 4 where our nobabilistic
maps capture the presence of WM.

As a last experiment, we create our probabilistic atlas with 20 images fromOASIS [5],
and then segment 15 new images from MICCAI Challenged] using the estimated atlas.
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Figure 3.3: The atlas obtained by DARTEL with 8 subjects( rst column), our metho d

with 8 subjects (second column) and 20 subjects (third column). GMfor the rst row

and WM for the second. DARTEL atlas shows a wide line of CSF in zone 3 whit is

thin in the data images. Our probabilistic maps capture the presenceof WM in zone

4, however DARTEL only detects a small region. Our estimated atlas with8 subjects
is good. With 20 subjects, we get more details on the boundary of two typs.

FAST | SPM | SAEM
GM | 66.4% | 66.2% | 73.2%
WM | 72.8% | 76.3% | 72.8%

Table 3.2: The Jaccard Index for di erent methods (our segmentation method for
new individual, FAST and SPM8) average across 15 subjects.

For the pre-processing, we use BET{3] to remove the non-brain tissue from the images of
the database OASIS. The posterior segmentation for the 15 new images (Fig.4) looks
quite accurate (however, with the same misclassi cation of the subortical structures).
We calculate the Jaccard index for each class (Table3.2). We get a Jaccard index
around 73% for each tissue type. These rates outperform SPM8 and FAST for GMs
we already noticed for the previous experiment. Concerning the WMpour classi cation
rate is similar to those of other algorithms, which highlights the classication power of
our model. In MICCAI Challenge, two classes (cortical and non-cortical)are considered
for evaluating the result. The subcortical structures are consideed as non-cortical:
this con rms that these structures are di cult to segment with th e gray level images.
This particular detail will lead to low jaccard indexes for algorithms based on wrong
priors (as SPM8 and FAST). The third column in Fig. 3.3 shows one slice of our
probabilistic maps with 20 subjects. Compared with our template obtained with 8
subjects, the template obtained with 20 subjects captures more detils on the boundary
of two classes. This appears in particular on both right and left cerebralcortex areas
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Figure 3.4: Each row corresponds to the one slice of 4 data images, the manual
segmentation and the segmentation obtained by our method.

where the 8 subjects template classi es voxels only belonging to B whereas the 20
subjects template captures the presence of WM voxels. Not unexpesdly, the procedure
readily bene ts from larger learning sets; at which level it asymptotes is an interesting
guestion for the future. Since we only use the gray level images to eate our atlas
without any other information, the segmentation does not work well if the new brain
is not similar to the population used to estimate the atlas. The constrant to use our
method is that the new brain should belong to the same population in thesense that
estimating an atlas from healthy brains will fail to segment a test brain with a tumor.
Concerning the computational cost of our method, the atlas construction tikes about 10
days for 8 images and almost a month for 20 images, whereas it takes about 5 mired
to segment the new image. The high dimensional covariance matrix makese template
construction long, however, it is interesting to spend some time ¢ learn the geometric
variability since the template construction should be done only once. Moreover, our
algorithm can be parallelized for the simulation step by distributing one image per
processor, which makes it possible to use more training data for the &s construction
within xed computational time.

3.5 Conclusion and Discussion

In this study, we proposed a statistical model and used a stochasti@algorithm to do
registration and segmentation simultaneously in order to create a proballistic atlas. Our
algorithm has several advantages. First, we do not need a precise pregistration which
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is done jointly with the segmentation during the atlas estimation. Sew®nd, the atlas
contains both the probabilistic templates and the geometric variability of the population.

Third, we can use this anatomical prior for segmenting new individuals Our experiments
also show that our method fails to segment the subcortical structure as GM. This is
easily explained by the fact that the voxels belonging to these stratures are between
the GM and WM means in the datasets. This gives a problem for segmentationvithout

the prior information. One possible solution is to use the anatomical pror as SPM8
and FAST. Another solution is to use multimodal images that take advantage of the
di erent information given by di erent imaging modalities. In parti cular, current work

extends this model to anatomo-functional data which manage to segment th subcortical
structures as GM thanks to some activations that only appear in GM in these structures

[150.



Chapter 4

Bayesian Estimation of
Probabillistic Atlas for
Anatomically-Informed
Functional MRI Group Analyses.

Traditional analyses of Functional Magnetic Resonance Imaging (fMRI) useittle anatom-
ical information. The registration of the images to a template is based on tte individual
anatomy and ignores functional information; subsequently detected actiations are not
con ned to gray matter (GM). In this chapter, we propose a statistical model to estimate
a probabilistic atlas from functional and T1 MRIs that summarizes both anatomical and
functional information and the geometric variability of the population. Re gistration and
Segmentation are performed jointly along the atlas estimation and the funtonal activity

is constrained to the GM, increasing the accuracy of the atlas.

71
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4.1 Introduction

Brain atlases are a useful tool in medical image analysis for both segmentain and
registration tasks. Probabilistic atlases yield a useful summary of a gien dataset 63, 84],
as they take into account the uncertainty on the underlying tissue type, which is related
to partial volume e ect (PVE) or to perfectible registration. In [ 20], a probabilistic
framework was proposed for joint nonlinear registration, intensity normaization and
segmentation of a single image, from which it infers tissue probabilitymaps. In [110,
a probabilistic model was proposed to segment a heterogeneous data setlohin MRIs
simultaneously while constructing the probabilistic atlases. In ite of its convincing
results, this model is not consistent, as the deformations are cons@ted as parameters
(whereas segmentation is an unobserved random variable). Irip]], the model proposed
in [20] was generalized in order to provide estimates of individual segmeations as well
as the probabilistic atlas from a set of anatomical images. This approach hand&both
the segmentation and registration as hidden variables, leading to a cohent convergent
statistical estimator. However, this model is limited to scalar images. Here, we generalize
it to create a probabilistic atlas that provides the probabilistic te mplates of each tissue
as well as the degree of activation on GM voxels and the geometric variabilt

Functional Magnetic Resonance Imaging of the brain is used to localize fictional areas
in the cortex and deep nuclei by measuring MRI signal changes associatavith neural
activity. It is a tool of choice for cognitive studies that aim at identif ying speci c regions
of the brain that are activated in perceptual, cognitive or motor tasks. The most pop-
ular type of analysis is Statistical Parametric Mapping (SPM) [59], an approach that
estimates the probability that some activation can be due to chance alone ah provides
p-value maps. Group analysis is then used to detect regions that show positive mean
activation across subjects $8, 132. Accurate realignment of individual scans is most of-
ten obtained by normalizing individual anatomical images to a T1 MRI template. These
processing steps are done without considering the complementayitof the anatomical
and functional information available in each subject. Therefore, deteted activations are
not con ned to gray matter. Few fMRI segmentation methods have been poposed to
take into account multi-modal data, such as T1 and functional MRI. An impl ementa-
tion of cortical-based analysis of fMRI data was proposed in16]. The fMRI data are
mapped to the cortical surface, then activations are detected on the stace. It has been
shown to achieve anatomically accurate activation detection. In §8], Markov Random
Fields (MRF) were used as a spatial regularization in fMRI detection ard anatomi-
cal information was incorporated into the MRF-based detection framework In [118,
both anatomical and functional data are used to improve the group-wise regitrations.
Anatomical information appears helpful in fMRI detection; however, the approaches
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so far do not incorporate a group model into the analysis. In this paper, & process
multi-modal data jointly to ensure that the detected active areas are conditioned to
gray matter while registration is informed by functional information. M ore speci cally,
group analysis rst performs the alignment of individual images to a T1 MRI template
and then segments active regions by thresholding. However, performgnregistration
and segmentation jointly is generally more e ective than performing them sequentially
[151, 153. In this paper, we take advantage of such coupling.

To deal with all the issues described above, we propose an atlas estiniah procedure
that can improve the template image estimation and the detection of the ative areas.
We generalize the model proposed in1p1. The input is now multivariate, as it encodes
multi-modal patient observations (gray level T1 and functional MRIs). The estimated
active areas are conditioned to GM segmentation. We perform the estimatin by cou-
pling the segmentation and registration steps. We estimate a probabisitic atlas that

accounts for the variability of active areas in the population. We also learnthe geome-
try as the metric on the space of deformations that drive the coupled segentation. We

use a stochastic algorithm with known guarantees on the convergence of ¢hestimation
procedure. The output of the algorithm is the probabilistic atlas, the individual active

areas and the means and variances of each tissue type in each modality.

The rest of this paper is organized as follows. In Section 2, we presenhé model, the
estimation procedure, the algorithm. Section 3 yields experimerdl results on simulated
and real data.

4.2 Methods

4.2.1 Statistical Model.

Let us considern groups of T1- and f- MRIs (y1:i; Y2i; 33 Ym:i )16i6 n from n patients. Each
image is observed on a grid of voxels embedded in a continuous domai® RS3. We
denotex; 2 D the location of voxelj. We consider that each T1 MRI is composed of vox-
els belonging to one of the four classes, corresponding to four tissugptes: gray matter,
white matter (WM), CSF and background (BG). Each fMRI is composed of voxels be-
longing to one class among 3K, corresponding to WM, CSF and BG, where no activa-
tion is expected to occur, andK di erent levels of activation in gray matter. We assume
that the signal in the (3+ K)(™ 1 classes is normally distributed with class dependent

means ( 1:f (k)7 2kzs 5 mikm Jke2f WMICSFBGGM 1;::GM ¢ g @Nd variances if (k2) %;kzi
i r2n;km ,Where26 s6 mandf (k) = kifk 2 f WM; CSF;

ks2f WM;CSF;BG;GM 1;::;;GMk g
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BGg, GM otherwise. We assume that8(s;s% 2 [2;m]?, f (ks) = f (kso). The whole set
of parameters is denoted by .

As mentioned previously, we are working with gray level images which &ve not been
pre-segmented. The unknown class of each voxel is supposed to beetdiscretization
on of a random deformation of probability maps ( Ps:k)16k6k +3:26s6m- These prob-
ability maps correspond to the probability of each voxel to belong to eah class in the
template domain. They form the probabilistic template of the population. The random
deformations from this template to each subject are also unobserved ash¢ images are
not pre-registered. We de ne them through a random eld z : R®! RS2 such that for
j 2 the prior probability of a voxel j from subjecti in the s image to be in the k"
class is given by:

P(cs; = ke) = Psxc(Xj (X)) (4.1)
We de ne the deformation eld as a nite linear combination of a given kernel Ky
centered at some xed equi-distributed control points in the domain D, (Xg)16g6k:
with parameter 2 (R3)ks

Xa
8x2D;z (x)= Kg(X;Xg) (9); (4.2)

g=1
whereK g4 is chosen as a radial Gaussian Kernel. Note that we expect the tissue-spi ¢
information to be found in all the brain volume, hence the whole volume fas to be
covered with control points. As for the deformation model, the probabiity template

mapsPsyk : R®! 10; 1[; 8ks 2 J1;K +3Kare parametrized by the coe cients s 2]0; 1[ke
K3

that satisfy 81 2 J1; kpK 'S;k =1. Let (p)isiek, D€ SOME control points :
k=1

Xp
8X 2 D;Psi(X) = Kp(X;p1) Sy (4.3)
=1

where Kp(x;p;) = 1 if py is the nearest neighbor ofx among (p;);; 0 otherwise.

The previous hypothesis provides a generative statistical modelor a sample of pairs of
gray level images. The random variables are the deformation vector, the class of each
voxel ¢ and the observed gray levels of the images. We assume that the deformation
vector follows a normal distribution with mean zero and non-diagonal covaiance matrix
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g- The hierarchical model is given by:

8
is N (0 o)l o

CISS kPsk(Xj 2, (x;)] i;

0 ¥ 00 10, 11 0 10
Vi L (k) L) O 0 L (k2) 11 @
y2 i Zka . 0 %'kz e i — 2kz . %;kz

N ! 0 ’ ks' .
: : 0 :
m;Km 0 0 r?n;km r%ukm
(4.4)
whereN (; ; ?)is the normal density with mean and variance 2 and  is a Dirac

function. The covariance matrix 4 is not assumed to have any particular pattern of
zeros. This makes it possible to model local and global correlations beten control point
moves, in particular, very correlated displacements can be captuie such as translation
of a large area of the images.

The parameters to estimate are the covariance matrix ¢ of the deformation distribution

(Eg. (4.2), ( sk)iessm:16kek +3 the coe cients that de ne the template maps (Eq.

(4.3)), the class dependent means and variances. As medical images are higiménsional
but usually come in small samples, we work in a Bayesian framework. We a¢ the
standard conjugate priors for the covariance matrix, the class dependdénmeans and
variances with xed hyper-parameters. All priors are assumed indepedent.

4.2.2 Estimation Algorithm.
A maximum a posteriori (MAP) approach yields estimates of the model paraneters:
"n =arg max o8 ( j(yniy21)i i (Yiniyan));

where gg denotes the posterior distribution of the parameters given then observations
(Y1 Y215 55 Ymea); 5 (Y Y2 2 ym; n). - As we are in an incomplete-data setting,
we choose the Stochastic Approximation Expectation-Maximization (SABM) algorithm

coupled with a Markov Chain Monte Carlo method to take advantage of its theoretical
and numerical properties [L5 151]. The SAEM algorithm is an iterative procedure
that consists of three steps. First, we simulate the missing data sing a Metropolis-
Hastings algorithm within Gibbs sampler. Then a stochastic approximaion is done on
the su cient statistics using the simulated value of the missing data. Last, we maximize
the expected log-likelihood with respect to the model parametes. The whole algorithm
is detailed in Algorithm 2, in particular the steps of the hybrid Gibbs sampler.
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Algorithm 2~ SAEM-MCMC Algorithm (with no reprojection)

Require: c=(c¢;:5¢Cm)o, =( o, o0, So,
Stochastic Approximation Expectation-Maximization
for t =0 to iters do

Simulation step using Gibbs sampler:
for i=1to ndo
for p=1to 3kg do
Metropoli|§-I-R|astiglgs procedure
pia

bs N %2

Rpp " Rpp

Computery( Piby  Picoiioms 1) = Q aCsj it p) A q

q(csj i)
s=2
With probability — rp( Pibi | Picoriiem; «); update P Pob
end for
Update iim+1 i

for j=1to ] jdo
for s=2to m do
Cs S sz;k(Xj z ik +1 (Xj ))

k=1
end for

Computer;(c; Cs;c.d; 1) =

a(yz;i jf (c2;i );F(C2)! s v) Q a(Ys;i iCsi ;Cs! i t) A 1
q(y;i Jf (c2;i); t) a(Ys;ijCsi 5 t)

s=2
With probability — rj(d;C;c’'; ¢); update d :d C
end for
Update Ci+1 G
end for

Stochastic approximation step:
St+1 = St +  t[S((Ot+1:( t+1) St
Maximization step:
(41 =argmin 5 "(St+1):

end for

4.3 Experiments and Results

We test our algorithm on both simulated data and real data. As the SAEM algorithm
is an iterative procedure, we run 250 iterations which was checked teeach convergence.
We initialize =0 and a random classi cation cg.

4.3.1 Simulated data.

We use a pair of 64 64 8 images as the reference images € 2). We consider here
K = 3, i.e. three dierent levels of activation in GM and 6 classes in total. We de ne
the means and the standard deviations as follows (taking values that are olesved in
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Figure 4.1: Experiments on simulated data. The rst column displays the rst s lice

of the probabilistic template, each row corresponding to a class and wite/black colors

to high/low probability. The second and third columns show one slice ofsix pairs of

data images. The fourth to seventh columns correspond to the ground trth and the
estimated segmentation for di erent models.

real fMRI for the standard deviations):

! ! ! !
116 124 3 3 3 116 0:25 025 025 025 025 025

2:1:6 0 00 25 0 2:5 ’ 2:1:6 0:24 122 091 078 (071 Q83

The training data is composed of 20 pairs of images with random deformations of ou
template following Eqg. (4.4) with previous parameters. We take 64 xed control points
for the deformation model given in Eq. (4.2), i.e. one control pointin each 4 4 4
cube. We take all the points in the image as landmarks for the template modl given in
Eq. (4.3).

The most important output of our estimation procedure is the probabilistic template.
The estimated probabilistic maps are shown in the rst column in Fig. 4.1, each row
corresponding to one class. The white/dark colors represent high/low pobability of
the tissues. Our probabilistic maps are sharp, as most voxels in eachlass have a
probability larger than 0.9. Only voxels at the boundary between two clases are fuzzy,
which account for both the accuracy of deformation and the level of noise.
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BG CSF WM GM GM» GM3

Our model | 98.5% | 92.3% | 88.4% | 88.0% | 73.1% | 90.4%
fMRI only 89.0% | 75.0% | 69.7% | 78.3% | 48.2% | 81.4%
Pre-Aligned | 96.6% | 91.1% | 87.0% | 86.6% | 67.8% | 86.6%

Table 4.1: Experiments on synthetic data. Jaccard Index for the di erent methods
averaged across all data.

As mentioned previously, our model uses both the T1- and f- MRIs becaweswe want the
active areas to be conditioned to GM. We compare our model with the segnmgation
model in [15]] using fMRI only. The result is shown in Fig. 4.1. The second and third
columns correspond to one slice of six pairs of data images. The ground tratand the
nal estimated segmentation of di erent methods (our model, the model using fMRI
only) are shown from the fourth to sixth columns. From the fourth and f th columns,
we can see that the segmentation obtained with our atlas estimation is accate. From
the fth and sixth columns, we see the improvement using the inbrmation provided from
the T1 MRI. We calculate the Jaccard index for each class as a quantitatie validation
(Table 4.1) for each method. Our model yields an accurate segmentation, as only few
voxels are misclassi ed. For the model using fMRI only, we are onlynterested in GM 1
and GM 3 which correspond to the active areas. As the other classes are non-activine
means of these classes are close to zero, therefore they are di cult teegment without
the MRI tissue type information, leading to lower values for these tasses. Moreover, the
Jaccard indexes for the active area are lower than those obtained with ouprocedure,
which shows that the coupling of information from both images increaseshe accuracy
of detection.

In our model, the registration and segmentation are done jointly, which aoids any pre-
registration. In the preprocessing, each fMRI is pre-aligned to itscorresponding MR
image. However, the inter-subject non-rigid registration is not done,as it would re-

quire a template and would not take into account the fMRI observation to drive this

preprocessing step. We compare our model with the pre-aligned med which does the
registration and the segmentation sequentially. Fisrt, we use the sgmentation model in

[15]] using the T1 MRIs, we get the deformation vector and individual tissue segmen-
tation as our output. Then we apply the same deformation to the fMRI and detect the

activation only in GM. The estimated segmentation of the pre-aligned moael is shown in
the seventh columns in Fig. 4.1 Comparing the fth and seventh columns, the segmen-
tations look similar which makes it di cult to say which method give s the better result.

However our model gives less isolated points. Moreover, looking at théaccard indexes
(Table 4.1), we see that our model outperforms the pre-aligned model. This shas the

improvement of doing registration and segmentation jointly.



Figure 4.2: Estimated functional templates on real data for the experiments that use only one fMRI (the rst and third rows) and the experiment
that uses two fMRIs (the second and fourth rows). The yellow/red cobrs correspond to high/low probability of the activation for the computation
task (the rst two rows) and the left motor task (the third and fourth r ows).
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Figure 4.3: The estimated anatomy template for the experiments use only one fMRI
(the rst two columns) and the experiment uses two fMRIs (the third column).

4.3.2 In-vivo data.

The proposed method was also tested on a real MRI and fMRI dataset desdréd in
[103. Both anatomical and functional data were subject to standard preprocasing
using SPM8, including spatial normalization and General Linear Model anaysis. Images
are sampled at 3mm resolution, yielding volumes of shape 46 53 63. We select a
contrast from the fMRI that yields di erential e ect of a computation t ask versus a
simple instruction reading/listening. We have K = 3 levels of activation in the GM.

We take 792 xed control points for the deformation model given in Eqg. (4.2), corre-
sponding to one control points in each 6 6 6 cube and 23 27 32 points in the
image as the landmarks for the template model given in Eq.4.3), corresponding to one
landmark in each 2 2 2 cube.

At rst, we use s = 2 that means we use the T1 image and one fMRI. The estimated
functional probabilistic maps, thresholded at the p > :95 level, are shown in the rst
two rows of Fig. 4.2. The yellow/red colors correspond to high/low probability for the
computation task activation (the rst row) and the motor left task activati on (the third
row). Our probabilistic maps are sharp. The detected areas are well caditioned to
GM and ts the known active areas for the computation task. For example, in the slice
X =25mm in the rst row, one can clearly see the Putamen. The anatomical templag is



Chapter 4. Group Analyses 81

Figure 4.4: Experiments on real data showing the detected active areap > :95 for

the computation task. The rst row for our method using both T1- and f- MR | and

the second row for the standard method using fMRI only. Each column caresponds to
one slice of the same patient.

shown in the rst two columns of Fig. 4.3. The templates for the two tasks are similar.
In Chapter 2, we have noticed that our model fails to segment the subcoritcal stratures.
However, we mange to segment these structures as GM with the informain given by
fMRI.

We compared our model with the standard method that thresholds the groy-level mean
activation. We represent the active areas in the computation task overdid on T1 images.
The results of one patient are shown in Fig.4.4. The rst row for our method uses both
T1- and f- MRI and the second row for the method uses fMRI only. Each colmn
corresponds to one slice of the same patient. In zone 1, we see that the asedetected
as active by our method are limited to the GM. However, a part of the dekected active
areas by the non-anatomically aware method are outside of the brain. In zon@, the
standard method detects some active areas in WM, while our method desenot. These
show that we reach our goal, i.e. the detected active areas are well contned to GM.
The detected active areas by our method are similar to those by the stasiard method
in GM, this shows that our segmentation is accurate.

As the second experiment, we use = 3 that means we use the T1 image and two fMRIs.
The estimated functional probabilistic maps are shown in the second at fourth rows
of Fig. 4.2. The results are smoother than the one use only one fMRI. The anatomical
templates are shown in the third column of Fig. 4.3, The templates are similar to
these obtained with one fMRI, however a little smoother, especidy for the GM near the
ventricles.
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4.4 Conclusion

In this study, we proposed a statistical model to detect the activeareas in the brain using
both T1 and functional MRI. We used a stochastic algorithm to perform registration,
segmentation and to create a probabilistic atlas simultaneously. Our mdel has several
advantages. First, the probabilistic atlas contains both the templates aml the geometric
variability of the population. Second, we do not need any pre-registraton to perform
the segmentation which is automatically obtained as an output. Third, the detected
active areas are con ned to GM with the information provided from the MR | data.
Our experiments show that we get better results with our algorithm than the standard
method. The detected active areas are well conditioned to GM and the das is sharp.



Chapter 5

Including Shared Peptides for
Estimating Protein Abundances:
A Signi cant Improvement for
Quantitative Proteomics.

Inferring protein abundances from peptide intensities is the kg step in quantitative
proteomics. The inference is necessarily more accurate when many gt@les are taken
into account for a given protein. Yet, the information brought by the peptides shared
by di erent proteins is commonly discarded. We propose a statisticalframework based
on a hierarchical modeling to include that information. Our methodology, based on a
simultaneous analysis of all the quanti ed peptides, handles the biabgical and technical
errors as well as the peptide e ect. In addition, we propose a practicaimplementation
suitable for analyzing large datasets. Compared to a method based on the anais of
one protein at a time (that does not include shared peptides), our metodology proved to
be far more reliable for estimating protein abundances and testing abugiance changes.
The source codes are available at http://pappso.inra.fr/bioinfo/all _P/.

83
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5.1 Introduction

One of the main application of proteomics is the quanti cation of large and compgex
sets of proteins extracted from biological samples49. Among the available quantita-
tive methods [12(0, the MS based technologies have become increasingly popular. In
these approaches, proteins are digested and the resulting mixture gdeptides is sepa-
rated and analyzed by LC-MS/MS. Data are recorded either as a humber of tandm
mass spectra per protein or as peptide intensities derived from fak areas [2(. Gen-
erally, these data are processed to estimate protein abundances andeintify proteins
responsive to treatments of interest. The estimation of protein abumances and the
detection of abundance changes are necessarily more reliable when mangptides are
considered for a given protein. Shared peptides constitute a relewt source of infor-
mation, especially when proteins are represented by few proteotypipeptides (see Fig.
5.1). Shared peptides are common, particularly when genes are duplicatedin some
databases, they represent over 50% of the peptided(5. In most proteomic studies,
these peptides are discarded because of the di culty to deconvolveéhe information they
carry. Several approaches were developed to address this issue iretlsase of spectral
counting [57, 157] or peptide intensity data [32, 74, 85]. Among the latter, Bukhman et
al. [32] proposed a statistical model to infer protein abundances from both sared and
proteotypic peptide intensities. However, their model su ersfrom two drawbacks. First,
the peptide intensities are supposed to be normally distributedwhereas they are widely
assumed to be log-normally distributed L05. Second, it does not take into account
experimental variability.

In this paper, we propose an improved statistical framework to estimaé protein abun-
dances from peptide intensities that (i) includes shared pepti@ information and (i)
takes into account experimental variability, allowing normalization of signal intensities
across multiple samples. In addition, we propose a practical implemeation suitable
for handling large datasets. Our methodology considers data derived frontlabel-free
experiments but it can be applied to other LC-MS approaches. The soure codes are
available at http://pappso.inra.fr/bioinfo/all _P/. They can be easily reproduced and
adapted to other experimental designs.

5.2 Method

Our statistical model, referred to as the all-proteins (all-P) model, is based on the
following assumptions.
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Figure 5.1: Relevance of shared peptides for quantitative proteomics illustratd by

two proteins P1 and P2, quanti ed in two treatments, T1 and T2. (A) Inte nsities

measured for shared and proteotypic peptides derived from P1 and P2. (BEstimated

(black dots) and real (dashed lines) protein abundances. Including lsared peptides in

protein quanti cation increased the power of detecting P1 abundancechange between
the treatments and allowed to better estimate P2 abundance.

() The abundance of a peptide is the sum of the abundances of the di ent proteins

this peptide belongs to B2): X

k

where a; is the abundance of peptidei, Py is the abundance of proteink, i =1
if peptide i belongs to proteink and j = 0 otherwise.

(i) The measured intensity of a peptide is proportional to its abundance in a sample,
with a coe cient of proportionality depending on the peptide [ 32. The measured
intensity of a peptide is proportional to its abundance in a sample, wih a coe cient
of proportionality depending on the peptide [32].

li= iy (5.2)

where |; = intensity of peptide i and ; is the coe cient of proportionality for
peptide i.

(iii) The intensity measures are assumed to be approximately log-nanally distributed

[105.
log(lip) = log(li) + Eip (5.3)
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where |, is the pth intensity measured for peptide i (for instance di erent treat-
ments and/or replicates), Ei, N (0; 2) is the error. Combining Egs.(5.1), (5.2)

and (5.3), we get |
X
log(lip) = log ikPx + Di+ Ejp (5.4)
k

where the peptide e ect D; = log( i) re ects the LC-MS response of peptidei.

(iv) Experimental variability can be properly estimated by considering experimental
parameters globally, for all the proteins P7]. To account for biological variability,
a classical proteomic experiment containing the di erent treatments of interest
is repeated several times independently. We thus decomposed therror term of
Eqg.(5.4) in an error B, due to the biological variation of replicate r, an error Cy
due to the technical variation in treatment t and replicate r and a residual error
itr

Eip = Eir = Br + Co + itr (5-5)

where
Br N (0; 3);Ce N (0; 2);ir N (0; ?

(v) The goal of our model was to accurately estimate the protein abundancéy; that,
for this reason, was considered as a xed e ect. Conversely, the pepde e ect Dj,

of less interest, was regarded as random:

!
« !
log(lip) = log kPt +Dj+ B+ Cy+ i (5.6)

k

whereD; N (0; 3).

To recover a classical log-linear model for proteotypic peptides, wset : = log(Pxt),
leading to the all-P model
!

log(lir ) = log s ik€Xp( kt) + Dij+ Br+ Cy + iy (5.7)
k

Because of shared peptides, the all-P model is nonlinear. So the @sftion of its param-
eters is not straightforward. To solve the problem of estimating the paameters ¢, é,
2, 2, 2 we used a Bayesian hierarchical framework that presented the advaage to
be easier to implement than the other existing methods. It consits in characterizing the
posterior distributions of the parameters given experimental data andnon-informative
prior information. The model is described in Fig. 5.2. Since the parameters y; re ected

biological values, we chose as prior distribution a centered Gaussian stribution with
a variance large enough to be non-informative. The variances3, &, 3, 2 being
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Figure 5.2: Directed Acyclic Graph for the Bayesian hierarchical model used irthe all-
P model. The indicesk, i, t andr refer to proteins, peptides, treatments and replicates,
respectively. Non-informative prior distributions (shown in bold) were assigned to the
parameters «, 3, &, 2 and 2. An ergodic sample of the posterior distribution
was generated by a Monte Carlo Markov Chain algorithm called Gibbs sampler

positive values, we chose gamma laws as priors. To avoid unnecessaryn@al Unit
Processing (CPU) time waste, the expectations of these gamma laws wechosen as the
variances ofDj, B, Cy and i, estimated in the one-protein-at-a-time (one-P) model
previously described B9]. Each parameter y; was estimated by the empirical mean of
the sample of the posterior distribution generated by JAGS [L04. From the classical
asymptotic Bayesian theory, it is known that the distribution of thi s estimator is close
to the distribution of the maximum likelihood.

The performances of the all-P model were compared to the performances the one-P
model. For each protein k, we have

log(likr )= k+ i+ Br+Cu+ it (5.8)

wherelj denotes the intensity of peptidei, proteotypic to protein k, observed in treat-
ment t and replicater and ; is the peptide e ect.

The parameters of this model were estimated for each proteirk, only on the basis of
proteotypic peptide intensities. Therefore, for some proteins, he number of observa-
tions might be too small to infer accurately the variances of the random ects. To

overcome this drawback, the peptide e ect ; was considered as xed. This model was
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implemented in R [108 by using the Ime function from the nime package.

The procedure used to detect the proteins with di erential abundance across the treat-
ments was similar in the all-P and one-P models. Let T be the number of teatments.
For each proteink, we tested the null hypothesisHy : = ko forevery 16 t6 t°6 T
against the alternative hypothesis Ay: there exists ¢;t9; t 6 t© such that i 6 o
The Wald test based on a 2 distribution with ( T -1) degrees of freedom is classically
used to perform this test. However, the computation of the Wald statigic in the all-P
model is rather complicated and may be instable whenl is large. For these reasons,
for testing Hy against Ax, we used a multiple testing procedure based on the following
statistic:

Sk = rq;?-g(fsk(t;to)g (5.9)

where

_ (A A N2 .
Skt = Tkt kt9) = k(tto)s

"9 IS an estimator for the variance of (i "«o) calculated from the sample of the
posterior distributions in the all-P model and given in the Ime outputs in the one-P
model. Under H, the distribution of sy ;0 is approximated by a 2 distribution. The
probability x to wrongly decide that the abundance of protein k changed between
treatments t and t' is estimated by

k=P 2> maxf (199 - (5.10)
Since a large number of proteins had to be tested simultaneously, we pfied the Ben-
jaminiHochberg procedure R4] to decide which hypothesedd we rejected. To have a fair

control of the false discovery rate (FDR), we had to adjust each  to ~ = T(T 1) =2
so that ~ satised P(~x 6 x) 6 X.

5.3 Material

Original yeast proteome dataset

Four monosporic derivates obtained from two S. cerevisiae strains (VL1 supplied by
LAFFORT nologie, Bordeaux, France and NRRL-Y-7327 supplied by ARS/NRRL

culture collection, Peoria, lllinois, USA) and two S. uvarum strains (BR20.1 supplied
by ADRIA NORMANDIE, Villers-Bocage, France and LC3 supplied by ISVV, Facul &
d' nologie, Villenave d'Ornon, France) were inoculated in the Sauvi gnon must at 1P
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cells per mL and grown in anaerobic culture at 18 C. This experiment was repeated
three times independently. Five mL of fermentative media wereharvested when 30% of
the fermetation was completed. Proteins were extracted in TCA- -mercaptoethanol
in acetone, denatured in urea, reduced, alkylated and digested with riypsin. LC-
MS/MS analyses were performed using an Ultimate 3000 LC system (Dionex) cen
nected to an LTQ Orbitrap mass spectrometer (Thermo Electron). lonization was per-
formed with a 1.3-kV spray voltage applied to an uncoated capillary probe. Rptide
ions were analyzed using Xcalibur 2.0.7 (Thermo Electron). Dynamic eglusion was
set to 90s. A custom FASTA format database of 5885 sequences & cerivisiae and
4966 sequences db. uvarum downloaded from the Saccharomyces Genome Database
website (http://downloads.yeastgenome.org) was searched by using X!Tadem (version
2010.01.01.4) (http://www.thegpm.org/TANDEM). The decoy database comprised he
reverse protein sequences of the custom database. False discoventer was less than
1% for both peptide and protein identi cation. Peptide intensities were quanti ed by
integration of their peak area by using MassChroQ software as describedybvalot et al.
Protein abundances were estimated by the all-P model described ithis paper.

Synthetic yeast proteome dataset

The parameters estimated from the original data using the all-P model vere used to-
gether with Eq.(5.7), the design matrix and the peptide-protein relationships to geneate
synthetic datasets. To reduce the CPU time, we arbitrarily chose 100proteins among
those quanti ed in the original dataset. For 50 of them that exhibited signi cant abun-
dance change between yeast strains, estimated abundancés were kept unchanged. For
the 50 remaining proteins, " was replaced by = 1:T(P ilT "¢). Hence, we expected
to nd 50 proteins exhibiting signi cant abundance changes between e treatments. In
the 100 proteins, 58 of them were only represented by proteotypic pepmes (type P

proteins) and 42 by shared and proteotypic peptides (type S proteins)

Human yeast proteome dataset

The human yeast proteome dataset was obtained from the Clinical Proteomic &ch-
nology Assessment for Cancer (CPTAC) study 6. Forty eight human proteins(Sigma
UPS1) were spiked in ve di erent amounts (0.25, 0.74, 2.2, 6.7 and 20 fmol/ 1) in a
yeast reference proteome (60ng/l). Samples were all prepared at the National Institute
for Standards and Technology (NIST) and then distributed in ve laboratori es for MS
analyses on seven di erent mass spectrometers. Each sample was analgze tripli-

cates on each instrument. Material and methods are detailed in. In thepresent study,
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we used the datasets obtained on one LTQ-XL-Orbitrap (Thermo), one LTQ-Orbitrap
(Thermo) and one LTQ-Orbitrap(Jamie Hill Intruments) in two dier ent laboratories
(site 65 and 86) for two di erent amounts of human proteins (6.7 and 20 fmol/ ). Raw
data les were transformed to mzXML open source format using ReadW softwae (v
4.3.1, http://tools.proteomecenter.org/wiki/index.php?title=Softw are:ReAdW). During
transformation pro le MS data were centroided. The FASTA le containin g the human,
yeast and contaminant protein sequences available on the CPTAC webgitwas searched
with X!Tandem (version 2010.01.01.4; http://www.thegpm.org/TANDEM/) with the
following settings. Enzymatic cleavage was declared as a trypsin digdon with one
possible misscleavage. Carboxyamidomethylation of cysteine residls and oxidation of
methionine residuals were set to static and possible modi cationsrespectively. Precur-
sor mass precision was set to 20 ppm. Fragment mass tolerance was 0.5 Th. Arrement
search was added with the same settings, except that semi-trypsicgptides and protein
N-ter acetylations were also searched. Only peptides with an E-valusmaller than 0.1
were reported.

Identi ed proteins were lItered and sorted by using the X!Tandem pipeline (http://
pappso.inra.fr/bioinfo/xtandempipeline/). Criteria used for protei n identi cation were:
i. at least two di erent peptides identi ed with an E-value smaller t han 0.05. ii. a
protein E-value (product of proteotypic peptide E-values) smaller than 10*. To take
into account that the same peptide sequence can be found in several gieins, proteins
sharing at least one peptide were gathered in groups generally correspang to pro-
teins of similar functions. Within each group, proteins with at least one proteotypic
peptide were reported as sub-groups. Peptides were quanti ed badeon extracted ion
chromatograms using MassChroQ software.

5.4 Results

We compared the performances of the estimation procedures used in¢tall-P and one-P
models with simulation experiments. A total of 122 synthetic data ses were generated
from the same original data. For 22 of them, the algorithm used in the one-P modl did
not converge for some proteins, probably owing to the small number of obgeations and
to the model complexity (with xed and random e ects). This is in i tself a limitation
for the use of the one-P model. The all-P model did not present this cawback since it
relies on all proteins to estimate the parameters. However, it was moréme consuming,
taking three days to complete one simulation on a computer with an Inté Core Xeon
W3520 processor running at 2.60 GHz with 4 GB of RAM.
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All proteins Proteins of type S Proteins of type P

(' 1000) ( 1000) ( 1000)
One-P 2.6 (0.5) 2.5 (0.8) 2.7 (0.6)
Al-P 2.1 (0.3) 1.4 (0.3) 2.6(0.5)

Table 5.1: Means and standard-errors (in parentheses) of mean squared error (MSE)

calculated over 100 simulations, for all proteins, for proteins quanti ed from both shared

and proteotypic peptides (type S), and for proteins quanti ed from pr oteotypic peptides

only (type P). The means and standard-errors are averaged over all pairspfotein k,
treatment t)

The performances of the one-P and all-P models for estimating protein almdances in the
100 remaining synthetic data sets were assessed by the mean squarecbe(MSE). MSE
was de ned, for each estimator“y;, as the expectation of [(k k)= k]? (Table 5.1).
The all-P model outperformed the one-P model, since the mean of the BE calculated
over 100 simulations was 19.2% lower in the all-P model. This result ilistrates the
instability of the one-P model. The estimation of the variance of the rardom e ects B,
and Ci for each protein in the data set, with sometimes few observations per ptein
contributed to its poor performance (see Fig5.3). The di erence between the two models
was more important for the type S proteins (Table 5.1), showing that including the
shared peptides in the model improved by 44% the accuracy of the estiators. Because
the testing procedure relied on the assumption that the statistics (" Akto):p )
were distributed as centered standardized Gaussian variables, wéecked the normality
of these quantities (see Fig.5.3). In the one-P model, their distribution was dramatically
more dispersed than standardized Gaussian variables, while in the a® model, their
distribution satis ed the assumption.

The performances of the one-P and all-P models for detecting the protas of variable
abundance are shown in Fig.5.4 A as curves of power (proportion of proteins actually
variable that were declared signi cantly variable) versus FDR (proportion of proteins
that were wrongly declared signi cantly variable). These quantities were estimated by
averaging on the 100 simulated experiments. Again, the all-P model cle&y outper-
formed the one-P model. For example, for a FDR below 5%, the all-P modeallowed
to increase the power by more than 10% compared with the one-P model. Wdn con-
sidering the proteins of type S and type P, the gain in power obtained sing the all-P
model was superior by 14% and 6%, respectively. For (level of threshold of the ad-
justed p-values) xed at 0.05, the all-P model resulted in a gain of power (92.5% agairns
89.6%) and FDR (1.8% against 10.2%) for proteins of type S. Conversely, the one-P
model showed a higher power for proteins of type P (82.6% against 77%) but th was
compensated by a higher FDR (6.8% against 2.3%). The high FDR values obtaineds-
ing the one-P model are easily explained by the discrepancy betwadhe distribution of
the test statistics and the Gaussian distribution previously shown (see Fig. 5.2). Indeed,
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Figure 5.3: Synthetic dataset. Normal QQ plots of the statistics ("« "kt 0)=p At o)

for the one-P (A) and all-P models (B). (C) same as (A), but the di erence () ")

resulting from the one-P model was normalized by the standard deviatn = "o

estimated by the all-P model for the proteins showing no di erential abundance. This

graph indicates that the bad t observed in (A) is due to a bad estimation of the
variance of the random e ects by the one-P model.

the quantiles of the distribution of the statistics were larger than those of a Gaussian
distribution, leading to ¢ values smaller than expected. Finally, these results show, as
expected, that the advantage of the all-P model over the one-P model wagreater for
proteins of type S.

To validate the performances of the all-P model, we analyzed a publigl available real
data set [100, in which 48 human proteins were spiked in a yeast reference prodene in
two amounts (i.e. treatments) di ering by a one-to-three ratio (Su pporting Information

Material and Methods). Each humanyeast proteome mix was analyzed on thredi erent

mass spectrometers (i.e. replicates). A total of 763 proteins, of whic41l human, were
reproducibly quanti ed by using the MassChroQ software [L3§. Among them, 9.8%
of the human proteins and 12.9% of the yeast proteins were of type S (Tabl&.2).

To validate our choice to consider peptide intensities as log-normal, @ analyzed the
residuals obtained in all-P model. The results con rmed the absene of any particular
structure, except a very slight increase of absolute residuals veus tted values (see Fig.
5.5). The performances of the one-P and all-P models for detecting the hman proteins
are shown in Fig. 5.4 B. For =0.05, compared to the one-P model, the all-P model
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Figure 5.4: PowerversusFDR estimated for all proteins, for proteins with both shared
and proteotypic peptides (type S) and for proteins with proteotypic peptides only (type
P) with the synthetic dataset (A) and the human-yeast dataset (B). The curves were
generated by varying . Circles indicate the power and FDR values obtained for =0.05.

showed a much lower FDR (0% against 87% for proteins of type S; 20% against 70%
for proteins of type P), a better power for proteins of type S (100% against 75%and

a lower power for proteins of type P (75.7% against 89.2%). These results tfs con rm
those obtained with the synthetic data sets.

5.5 Conclusion

In conclusion, the all-P model presented in this paper proved to b far more reliable
and more powerful than the one-P model. We particularly highlighted the very poor
performances of the one-P model regarding the FDR. Our results alsogint out that the
information carried by shared peptides is highly valuable and has to be@nsidered in the
data analyses. The all-P model is time consuming, but a computer automatally does it,
and in any case, this time is negligible compared to the time requiredo design a project
and perform the experiments. Moreover, with the development of hgh throughput
technologies that generate spectacular amounts of data, this type of statigtal analysis
is expected to become increasingly useful in biology.
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Number of Number of Number of Number of
proteins proteins with shared proteotypic
shared peptides peptides peptides

Synthetic dataset

Whole dataset 100 42 122 712
Set of variable proteins 50 19 72 545
Set of invariable proteins 50 23 91 167

Human-yeast dataset

Synthetic dataset

Whole dataset 763 97 321 3571
Set of variable proteins 41 4 7 113
Set of invariable proteins 722 3 321 3460

Table 5.2: Composition of the synthetic and human-yeast datasets. Note that a
peptide can be shared between variable and invariable proteins.

Figure 5.5: Human-yeast data set. Graphic of standardized residqglsnr corrected

from the peptide random e ect versus tted values "i: ¢ = log( | it exp("kt)),

Ne =log(ly ™ DBiand v =[og(liy "¢ Dil=sd®y ). The red dotted line

represents a local polynomial smoother of the scatter plot. This graphd shows that the

distribution of the residuals is heavy tailed, but does not show anyparticular structure,
except a very slight increase of absolute residuals versus tted vales.



Chapter 6

Conclusion and Discussion.

We summarize here our contributions and propose some open questions fartdire work.

95
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6.1 Summary

In this work, we have rst proposed a generative statistical model for estimating a
probabilistic atlas that includes both the photometric and geometric characterization
of the observed population. The photometric information is given by a prolabilistic
template that contains each tissue probability map. This model makes ti possible to
take into account the uncertainty on the underlying tissue type, which is known as
the partial volume e ect (PVE). The geometrical characterization of the p opulation
is given by the covariance matrix of the template-to-subject deformaton distribution.

This highlights both what would be the normal variability in this populat ion and the
correlations underlying the deformations across di erent parts of theimage.

The atlas estimation is based on non-registered and non-segmented data. bur esti-

mation process, the registration and segmentation are performed jointhyalong the atlas

estimation. Compared to the method that performs them sequentially it increases the
relevance between these two important and correlated steps and alsodrease the accu-
racy of our atlas.

The estimation algorithm is based on a Stochastic Approximation Expectaton Maxi-
mization (SAEM) algorithm which is coupled with a Metropolis within Gi bbs sampler
to provide an e cient sampling procedure.

This has been developed in Chaptel.

The estimated atlas does not only provide a characterization of the obseed population:
it can also be used to perform an atlas-based segmentation. The new sulsjémage is a
gray level observation drawn from the same population (for example healthh controls)
as our training sample. This image has neither been pre-segmented norgsregistered
to any template image. We rst construct a gray level template thanks to our estimated
tissue probability maps and mean gray levels of each tissue. This prages us with a
gray level template image. Thanks to the estimated geometric variabily, we can con-
strain the gray level template-to-new-subject deformations to thog that are common
in the population. To this purpose, we introduce the estimated coariance matrix as a
penalty term for the deformation and add this term to the usual data attachment term.
This results in a classic matching energy to minimize. The regigation is therefore ob-
tained by minimizing this energy. The segmentation is then obtainedby transporting
the template segmentation to the observation frame by the estimated d®rmation. Our
posterior segmentation method of new observations is fast and gives an acaie result
(see Chapter3).
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We have then generated our single modality model to a multi-modal ongChapter 4).
The inputs are now multivariate, as they encode multi-modal patiert observations (gray
level T1 and functional MRIs). In this case, we have managed to impose ganingful
biological constraints, such as the fact that the activation appears only in he gray mat-
ter. We got both the activation probability maps and the tissue probability maps as
our probabilistic template. Thanks to this model, we were able to inprove the accuracy
of the estimated template as well as estimated geometrical variability;jn particular, we
better localized the activation patterns. We have tested our modelon simulated data,
which has shown the good performance with a quantitative test. We als managed to
do experiments on real data. The results appear to better approach to th ground truth
by coupling registration-segmentation and anatomo-functional images.

Concerning the theoretical study of these estimators on the proposed odels and the
estimation algorithms, we have proved the existence and the consishcy of the estimator
on our rst model. We have also proved that our algorithm converges to this estimator.
These two asymptotic properties enabled us to increase the con deze we have on our
estimates which are also validated by the experiments.

In Chapter 5, we have proposed a model to analysis all the protein at same time (inatle
shared peptides). We have proposed to use Gibbs samplers for handlj large datasets.
Compared to a method based on the analysis of one protein at a time (that daenot
include shared peptides), our methodology proved to be far more redble for estimating
protein abundances and testing abundance changes.

6.2 Large deformations for deformable template estima-
tion

In this work, we use the small deformations that is to say, deformationghat are driven
by the displacement of each point. This writes: for allx in the domain of interest D:

"(X)=x+ (X); (6.1)

where is a velocity vector eld with xed regularity.

As mentioned in the Introduction, these deformations, although very meaningful at
rst sight, are not optimal, as they are not constrained to be di eomorphic. In the
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medical applications that we target, this may be critical as it may delge some tissue
parts by creating some overlaps. An improvement would be to considedi eomorphic
deformations as in [L34] or [140. This control on the deformations would help to respect
anatomical constraints.

In particular, our model would become the following in the Large Di eomorphic Defor-
mation Metric Mapping (LDDMM) setting introduced in [ 134]. We will only consider
here the generalization of the single modality model in Chapte, the multi-modal model
is straightforward.

The probability of observing a data with intensity y{ for the ith image in the j th voxel
given that it belongs to the kth class (c! = k) remains de ned as follows:

POYIid = ki i &) N (W« B (6.2)

For j 2 the prior probability of a voxel | from subjecti to be in the k™ class would
now be given by:
Pd = k) =" Pe(x)= Pe((" ¥) (%)) : (6.3)

where ' Y is the solution of the di eomorphic ow equation for a velocity vector eld

( De2po1)-

8 @

% @tt: t 4
(6.4)

2

"o= Id:

The velocity vector eld v; should belong for all timet 2 [0; 1] to a smooth deformation
vector spaceV in order to ensure that there exists a unique solution to the ow equation
and that the solution at t = 1 is a di eomorphism. The spaceV is de ned as a RKHS
for which stating the kernel enables to easily deal with the smoothess of its elements.

This LDDMM formulation has the drawback that it requires to parametriz e the defor-
mation with the dense time dependent vector eld (vi)20,3)- It has been shown in §2]
that an approximation of the deformation can be done by considering that theinitial
velocity vector eld is driven by the displacement of some control pints. Thanks to this
formulation and due to the theoretical properties of the generated defamation along
the geodesic path 95|, this parametrization with a nite number of control points is
preserved along time.

Let us consider some given control points >(('§)16 k6kg and initial momentum vectors
o(k), then the initial velocity vector eld writes:
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¥o
8x 2 D;vo(x) = (Kg(Xo) 0)(X)= Kg(x; x('§) o(K); (6.5)
k=1

where K4 is the RKHS kernel. Along the geodesic we get:

¥
8x 2 D;vi(x) = (Kg(xt) t)(x)= Kg(x;x't‘) t(K); (6.6)
k=1

where the couple of vectors X¢; ) satis es the Hamiltonian system:

% dxi(k) _ K g(xe(K); xe (1)) ¢(1)

1, (6.7)
§ t(k) *9
A o (K (e () xe (1) 1A 1(K)

=1

Using this formulation, the di eomorphic deformation can be parametrized as in the
small deformation setting by a nite vector which contains initial mom enta. This for-
mulation makes it possible to also take into account in our estimation praeess the initial
positions of the control points xg. This has been recently studied in 11] for the gray level
template estimation and could be applied in our models. The statisti@al model would
look therefore very similar to the one presented in a previous chagr. Let ¢ =(Xp; o))

then: 8
( gr ki E)S g m ps

(0is N@O; g)i g
(6.8)

: 2} .
ds K' ,( o) Pe(X))i( 0)is
k=1

yi s N( ki ig =k« §&
where  is a Dirac measure ork and is .

After calculating the log-likelihood, we get the same su cient stati stics Sp, S1, Sy, S3
and S; (with an additional one if we optimize the position of initial control point as
well) given in the section 2.4.1 The same SAEM-MCMC algorithm may be used with
an optimization of the MCMC sampler as the dimension increases (se€ll] for one
example).
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6.3 Multicomponent generalization of the models

Each of our models is designed for an homogeneous population. However, many
the acquired data bases may contain several clusters that are still ladded control for
example, yet carry di erent but normal patterns. This may be easily treated in our
context by considering mixtures of our models. The observed images dhe data base
are not pre-clustered so that their component label inside the popuwtion is not known.
This same framework has been introduced in13] for the gray level template estimation
problem in the small deformation setting. This adds a new unobservedariable for each
image which is the component label.

Although quite natural and easy to write and study theoretically, this m ixture model
requires to change the MCMC method. As this sample step is the bottneck of our
estimation algorithm, considering this generalization would require b optimize (in a
way di erent from the di eomorphic case) the MCMC sampler.

6.4 Other remarks

6.4.1 Extension of the multi-modal atlas

In our multi-modal generative model, we have introduced the funt¢ional MR images in
order to get an anatomo-functional atlas that satis es some biological constrains. In
the same way, one can include complementary information given by the er directions
of the Diusion Weighted Images (DWIs). These images provides the le@al directions
of the bers in the brain which form the white matter. The white matt er appears with
the same gray level in the MRIs therefore the registration mappings areot constrained
at all in these regions. This is the same issue when considering theayr matter without
the functional information.

To overcome this issue, following the same lines of our anatomo-funathal brain atlas, we
can add a third input image - as the Fractional anisotropy obtained from a set ofDWIs
- in our input vector. The registration will be constrained now by all t he input together
forcing some particular deformations in all regions of the brain dependig on the gray
or white matter tissue. This extension can be inspired by the ideasn [35, 88, 114, 125
among others.

This generalization will have to be carefully done because of the large emory this may
require to deal with so many images per subjects.

of



Chapter 6. Conclusion 101

6.4.2 Kernel choice

One remark is the choice of the interpolation kernels. For the templaé model in section
2.5, the templates are probability maps, which yields the following corstraint

X
8x 2 D; Pc(x)=1: (6.9)
k=1

Using a step function (described by the nearest neighbor interpoldbn) as the interpola-

tion kernel enables to rewrite this as8l 2 J1; kpK | =1. This reduces the constraints
k=1
to a single nite dimensional constraint on our parameters ( | )16 ke k: 1616j j- However,

we may prefer to use others in order for the template probability mapsto be smoother
and to reduce the dimension of the parameter vector.

Other choices can be done using for example regular kernels as Gaussiarnels. How-
ever, the dense constraints.9 has to be carefully taken into account so that this does not
increase the computational time or the theoretical properties of the malel and estimator.

We have made several attempts to keep an easy formulation. For example, avhave
tried to use all the neighbors (rst in a deterministic way). Sin ce we consider all the
neighbors and calculate the mean, we get a smoother result and there areds isolated
points than the model with the nearest neighbor. Although this enablesto remove the
isolated missegmented voxels, the structures with small volume & misclassi ed. This
would require to better estimate the smoothness that we expect onhe template maps.
Moreover, this kernel needs more computation time.

Another attempt was to consider the spatial dependencies between ats labels in the
prior law P(c! = k). One solution is de ning a Markov random eld on class labels. We
have de ned the grid with a neighborhood system and an Ising model orclass label.
Unfortunately, this drastically increased the computation time, whereas not improving
the results very much. This may be due to the bad choice of the sysim and model, and
we could investigate other Markov random eld that would better t our ex pectations.

6.4.3 Algorithm implementation optimization

A common problem for our two previous algorithms is the computation time. Qur
model has high dimensional parameters and high dimensional observed andchaobserved
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random variables. This makes the computation time long because of the ndeof memory
and the need to sample from the posterior distribution. However our algoithm can be
parallelized for this particular simulation step. We are currently working on a parallel
C++ version of our code to make it possible to increase the training sesize as well as
the size of the training image data and decrease the computation time.

6.4.4 Bias eld correction

In all this work, we have been considering MR images as our observationsAlthough
never pre-registered nor pre-segmented, the images may sometimest be used directly
as they come out the scanner. Indeed, they su er from what is know as th bias eld.
This e ect is related to the high magnitude of the magnetic eld that is applied to the
patient for the imaging process. Its e ect on the images is to make the antrast smoothly
evolve from one corner to the opposite one. This a ects signi cantly the gray levels of
each tissues which, if not corrected, may lead to mis-segmentationOne direction of
interest would be to include this bias eld in the generative modd in order to account
for this e ect in our atlas estimation.



Appendix A

De nition of the most used
similarity measures.

We de ned the most used similarity measures that quantify the simiarity between two
imagesA and B here.

The correlation coe cient

Press [L07] proposes the correlation coe cient of two images as the similarity
measure. This metric calculates the correlation between intensit values divided
by the square root autocorrelation of two images:
1
(Ai  A)Bi B)
Free= S =0 S ; (A.1)

(A A2 (B B

where Aj, B; are the values of the voxeli in the two images, A, B are the mean
values of the voxel in the two images\N is the number of the voxels.

If the registration is well done, the two images should be strongly corriated. This
means that the registration is better if we have a high correlation of twoimages, i.e.
the registration is the best whenr is 1, and the worst whenr is O or negative.

Minimum Mean Square Error (MMSE)

Umbaugh [135 proposes the minimum mean square error of two images as the
similarity measure. This metric is used as the default metric in nost applications.

103
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It calculates the sum of squared di erences between intensity vales:

MSE = [Ai  Bi]% (A.2)
where A;j, B; are value of the voxeli in the two images.

If the registration is well done, the gray level value of the voxel in he image
A should be close to the one in the imagd3. This means that the smaller the
minimum mean square error is, the better the registration is.

Mutual Information (MI) and Normalized Mutual Information (NMI)

Collignon et al. [42] propose the Mutual Information as the similarity measure for
registration. It is de ned as

MI (A;B)= H(A) H(BjA); (A.3)

where H (A) is the marginal entropy of the histogram of imageA and H(BjA) is
the conditional entropy that gives the uncertainty about the gray level in B when
the gray level in A is given.

The entropy gives the uncertainty of image voxel intensities. An imageconsisting
of almost a single intensity will have a low entropy value; it contains very little

information. A high entropy value will be yielded by an image with more or less
equal quantities of many di erent intensities, which is an image contining a lot
of information. Ml is the amount of information A contains about B, i.e. their
dependency. It is a symmetric measureA and B can be interchanged:

MI (A;B)= H(A)+ H(B) H(A;B); (A.4)

where H (A), H(B) are the marginal entropy of the two images andH (A;B) is
the joint entropy that calculated from the joint histogram of A and B.

This formula shows that maximizing mutual information is related to minimizing
joint entropy. Registration aims at maximizing mutual information: the i mages
have to be aligned in such a manner that the amount of information they congin
about each other is maximal. The joint entropy is calculated for the joint histogram
of the images and it is therefore sensitive to the size and the contestof overlap.
An issue that can occur when using joint entropy on its own, is that low values
can be found for complete misregistrations.

Studholme et al. [13( proposes to use the normalized mutual information to
eliminate the e ect of the overlap area. The normalization makes the aligmnment
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measure sesnitive to overlap area. It is de ned as

H(A)+ H(B)

NMI (A;B) = HAE)

; (A.5)

where H(A), H(B) are the marginal entropy of the two images, andH (A;B) is
the joint entropy that calculated from the joint histogram of A and B.
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Resune

Cette these s'inscrit dans le domaine de l'analyse statistique dmages du cerveau. Dans
la premeére partie, nous avons propos un nouveau m octle statistgque gereratif base sur
des templates ceformables qui prend en compte les dierents types de tissus obsenes
dans les images @ebrales. Un prototype (appek template) est appis conjointement
avec la variabilie geonetrique des formes repesenees dans les observations. Ces deux
ekments forment un atlas qui contienta la fois une estimation de s cartes de probabilie de
chaque tissu (appeke classes) et la netrique de deformation. Leecalage et la segmenta-
tion, qui sont directement ineges dans le processus d'estination, sont e ectle conjointe-
ment. Nous utilisons un algorithme EM stochastique (SAEM) coupke awec des nethodes
MCMC pour l'estimation de cet atlas probabilistes. Nous avons prouwe l'existence et
consistance de l'estimateur ainsi que la convergence de l'algorithmé'estimation. Cet
atlas est ensuite utilise pour segmenter les nouvelles images par enrethode de segmen-
tation contrainte par notre atlas en particulier la netrique de I'esp ace des ceformations
admissibles. Le moctle est ensuite gereraliga des donrees multidimensionnelles perme-
ttant la prise en comte de diverses modalies comme l'anatomie coupé au fonctionnel.
Ce mocktle prend en compte les contraintes biologiques interente au cerveau en parti-
culier le fait que l'activation fonctionnelle n'apparat que dans la matere grise. Inkrer
I'abondance des prokines de l'intensie de peptides est letape ck dans la proeomique
guantitative. La conclusion est recessairement plus pecis quad de nombreux peptides
sont pris en compte pour une protine donree. Pourtant, l'informati on apporee par les
peptides partagees par dierentes proeines est souvent jete. Dans la troiseme partie
du travail, nous proposons un syseme statistique base sur une maele herarchiquea
inclure cette information. Notre methodologie, base sur une analysesimultaree de tous
les peptides quanties, gere les erreurs biologiques et techigues ainsi que I'e et des pep-
tides. En outre, nous proposons une mise en uvre pratique adapta énalyse de grandes
bases de donrees en utilisant des nmethodes MCMC pour l'estimatbn d'abondance.
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