Discrete topology and geometry algorithms for quantitative human airway trees analysis based on computed tomography images

Résumé : La tomodensitométrie est une technique très utile qui permet de mener avec succès des analyses non-invasives dans plusieurs types d'applications, par exemple médicales ou industrielles. L'analyse manuelle des structures d'intérêt présentes dans une image peut prendre beaucoup de temps, être laborieuse et parfois même impossible à faire en raison de sa complexité. C'est pour cela que dans cette thèse, nous proposons et développons des algorithmes nécessaires à cette analyse, basés sur la géométrie discrète et la topologie. Ces algorithmes peuvent servir dans de nombreuses applications, et en particulier au niveau de l'analyse quantitative automatique de l'arbre bronchique humain, sur la base d'images de tomodensitométrie. La première partie introduit les notions fondamentales de la topologie et de la géométrie discrètes utiles dans cette thèse. Ensuite, nous présentons le principe de méthodes utilisées dans de nombreuses applications : les algorithmes de squelettisation, de calcul de l'axe médian, les algorithmes de fermeture de tunnels et les estimateurs de tangentes. La deuxième partie présente les nouvelles méthodes que nous proposons et qui permettent de résoudre des problèmes particuliers. Nous avons introduit deux méthodes nouvelles de filtrage d'axe médian. La première, que nous appelons "hierarchical scale medial axis", est inspirée du "scale axis transform", sans les inconvénients qui sont propres à la méthode originale. La deuxième est une méthode nommée "discrete adaptive medial axis", où le paramètre de filtrage est adapté dynamiquement aux dimensions locales de l'objet. Dans cette partie, nous introduisons également des estimateurs de tangente nouveaux et efficaces, agissant sur des courbes discrètes tridimensionnelles, et que nous appelons "3Dlambda maximal segment tangent direction". Enfin, nous avons montré que la géométrie discrète et les algorithmes topologiques pouvaient être utiles dans le problème de l'analyse quantitative de l'arbre bronchique humain à partir d'images tomodensitométriques. Dans une chaîne de traitements de structure classique par rapport à l'état de l'art, nous avons appliqué des méthodes de topologie et de géométrie discrète afin de résoudre des problèmes particuliers dans chaque étape du processus de l'analyse quantitative. Nous proposons une méthode robuste pour segmenter l'arbre bronchique à partir d'un ensemble de données tomographiques (CT). La méthode est basée sur un algorithme de fermeture de tunnels qui est utilisé comme outil pour réparer des images CT abîmées par les erreurs d'acquisition. Nous avons aussi proposé un algorithme qui sert à créer un modèle artificiel d'arbre bronchique. Ce modèle est utilisé pour la validation des algorithmes présentés dans cette thèse. Ensuite nous comparons la qualité des différents algorithmes en utilisant un ensemble de test constitué de fantômes (informatiques) et d'un ensemble de données CT réelles. Nous montrons que les méthodes récemment présentées dans le cadre des complexes cubiques, combinées avec les méthodes présentées dans cette thèse, permettent de surmonter des problèmes indiqués par la littérature et peuvent être un bon fondement pour l'implémentation future des systèmes de quantification automatique des particularités de l'arbre bronchique
Type de document :
Thèse
Other. Université Paris-Est, 2013. English. <NNT : 2013PEST1094>
Liste complète des métadonnées

https://pastel.archives-ouvertes.fr/pastel-00977514
Contributeur : Abes Star <>
Soumis le : vendredi 11 avril 2014 - 11:27:10
Dernière modification le : dimanche 17 janvier 2016 - 01:03:10
Document(s) archivé(s) le : vendredi 11 juillet 2014 - 12:10:45

Fichier

TH2013PEST1094_complete.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : pastel-00977514, version 1

Citation

Michal Postolski. Discrete topology and geometry algorithms for quantitative human airway trees analysis based on computed tomography images. Other. Université Paris-Est, 2013. English. <NNT : 2013PEST1094>. <pastel-00977514>

Partager

Métriques

Consultations de
la notice

740

Téléchargements du document

445